]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/memory.c
USB: cdc-acm: downgrade message to debug
[mirror_ubuntu-focal-kernel.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
1da177e4 74
6952b61d 75#include <asm/io.h>
33a709b2 76#include <asm/mmu_context.h>
1da177e4 77#include <asm/pgalloc.h>
7c0f6ba6 78#include <linux/uaccess.h>
1da177e4
LT
79#include <asm/tlb.h>
80#include <asm/tlbflush.h>
81#include <asm/pgtable.h>
82
42b77728
JB
83#include "internal.h"
84
af27d940 85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
87#endif
88
d41dee36 89#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
90/* use the per-pgdat data instead for discontigmem - mbligh */
91unsigned long max_mapnr;
1da177e4 92EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
93
94struct page *mem_map;
1da177e4
LT
95EXPORT_SYMBOL(mem_map);
96#endif
97
1da177e4
LT
98/*
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
104 */
166f61b9 105void *high_memory;
1da177e4 106EXPORT_SYMBOL(high_memory);
1da177e4 107
32a93233
IM
108/*
109 * Randomize the address space (stacks, mmaps, brk, etc.).
110 *
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
113 */
114int randomize_va_space __read_mostly =
115#ifdef CONFIG_COMPAT_BRK
116 1;
117#else
118 2;
119#endif
a62eaf15 120
c8efcda2
JH
121#ifndef arch_faults_on_old_pte
122static inline bool arch_faults_on_old_pte(void)
123{
124 /*
125 * Those arches which don't have hw access flag feature need to
126 * implement their own helper. By default, "true" means pagefault
127 * will be hit on old pte.
128 */
129 return true;
130}
131#endif
132
a62eaf15
AK
133static int __init disable_randmaps(char *s)
134{
135 randomize_va_space = 0;
9b41046c 136 return 1;
a62eaf15
AK
137}
138__setup("norandmaps", disable_randmaps);
139
62eede62 140unsigned long zero_pfn __read_mostly;
0b70068e
AB
141EXPORT_SYMBOL(zero_pfn);
142
166f61b9
TH
143unsigned long highest_memmap_pfn __read_mostly;
144
a13ea5b7
HD
145/*
146 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
147 */
148static int __init init_zero_pfn(void)
149{
150 zero_pfn = page_to_pfn(ZERO_PAGE(0));
151 return 0;
152}
1e0b9303 153early_initcall(init_zero_pfn);
a62eaf15 154
d559db08 155
34e55232
KH
156#if defined(SPLIT_RSS_COUNTING)
157
ea48cf78 158void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
159{
160 int i;
161
162 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
163 if (current->rss_stat.count[i]) {
164 add_mm_counter(mm, i, current->rss_stat.count[i]);
165 current->rss_stat.count[i] = 0;
34e55232
KH
166 }
167 }
05af2e10 168 current->rss_stat.events = 0;
34e55232
KH
169}
170
171static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
172{
173 struct task_struct *task = current;
174
175 if (likely(task->mm == mm))
176 task->rss_stat.count[member] += val;
177 else
178 add_mm_counter(mm, member, val);
179}
180#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
181#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
182
183/* sync counter once per 64 page faults */
184#define TASK_RSS_EVENTS_THRESH (64)
185static void check_sync_rss_stat(struct task_struct *task)
186{
187 if (unlikely(task != current))
188 return;
189 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 190 sync_mm_rss(task->mm);
34e55232 191}
9547d01b 192#else /* SPLIT_RSS_COUNTING */
34e55232
KH
193
194#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
195#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
196
197static void check_sync_rss_stat(struct task_struct *task)
198{
199}
200
9547d01b
PZ
201#endif /* SPLIT_RSS_COUNTING */
202
1da177e4
LT
203/*
204 * Note: this doesn't free the actual pages themselves. That
205 * has been handled earlier when unmapping all the memory regions.
206 */
9e1b32ca
BH
207static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
208 unsigned long addr)
1da177e4 209{
2f569afd 210 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 211 pmd_clear(pmd);
9e1b32ca 212 pte_free_tlb(tlb, token, addr);
c4812909 213 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
214}
215
e0da382c
HD
216static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
217 unsigned long addr, unsigned long end,
218 unsigned long floor, unsigned long ceiling)
1da177e4
LT
219{
220 pmd_t *pmd;
221 unsigned long next;
e0da382c 222 unsigned long start;
1da177e4 223
e0da382c 224 start = addr;
1da177e4 225 pmd = pmd_offset(pud, addr);
1da177e4
LT
226 do {
227 next = pmd_addr_end(addr, end);
228 if (pmd_none_or_clear_bad(pmd))
229 continue;
9e1b32ca 230 free_pte_range(tlb, pmd, addr);
1da177e4
LT
231 } while (pmd++, addr = next, addr != end);
232
e0da382c
HD
233 start &= PUD_MASK;
234 if (start < floor)
235 return;
236 if (ceiling) {
237 ceiling &= PUD_MASK;
238 if (!ceiling)
239 return;
1da177e4 240 }
e0da382c
HD
241 if (end - 1 > ceiling - 1)
242 return;
243
244 pmd = pmd_offset(pud, start);
245 pud_clear(pud);
9e1b32ca 246 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 247 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
248}
249
c2febafc 250static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
251 unsigned long addr, unsigned long end,
252 unsigned long floor, unsigned long ceiling)
1da177e4
LT
253{
254 pud_t *pud;
255 unsigned long next;
e0da382c 256 unsigned long start;
1da177e4 257
e0da382c 258 start = addr;
c2febafc 259 pud = pud_offset(p4d, addr);
1da177e4
LT
260 do {
261 next = pud_addr_end(addr, end);
262 if (pud_none_or_clear_bad(pud))
263 continue;
e0da382c 264 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
265 } while (pud++, addr = next, addr != end);
266
c2febafc
KS
267 start &= P4D_MASK;
268 if (start < floor)
269 return;
270 if (ceiling) {
271 ceiling &= P4D_MASK;
272 if (!ceiling)
273 return;
274 }
275 if (end - 1 > ceiling - 1)
276 return;
277
278 pud = pud_offset(p4d, start);
279 p4d_clear(p4d);
280 pud_free_tlb(tlb, pud, start);
b4e98d9a 281 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
282}
283
284static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
285 unsigned long addr, unsigned long end,
286 unsigned long floor, unsigned long ceiling)
287{
288 p4d_t *p4d;
289 unsigned long next;
290 unsigned long start;
291
292 start = addr;
293 p4d = p4d_offset(pgd, addr);
294 do {
295 next = p4d_addr_end(addr, end);
296 if (p4d_none_or_clear_bad(p4d))
297 continue;
298 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
299 } while (p4d++, addr = next, addr != end);
300
e0da382c
HD
301 start &= PGDIR_MASK;
302 if (start < floor)
303 return;
304 if (ceiling) {
305 ceiling &= PGDIR_MASK;
306 if (!ceiling)
307 return;
1da177e4 308 }
e0da382c
HD
309 if (end - 1 > ceiling - 1)
310 return;
311
c2febafc 312 p4d = p4d_offset(pgd, start);
e0da382c 313 pgd_clear(pgd);
c2febafc 314 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
315}
316
317/*
e0da382c 318 * This function frees user-level page tables of a process.
1da177e4 319 */
42b77728 320void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
321 unsigned long addr, unsigned long end,
322 unsigned long floor, unsigned long ceiling)
1da177e4
LT
323{
324 pgd_t *pgd;
325 unsigned long next;
e0da382c
HD
326
327 /*
328 * The next few lines have given us lots of grief...
329 *
330 * Why are we testing PMD* at this top level? Because often
331 * there will be no work to do at all, and we'd prefer not to
332 * go all the way down to the bottom just to discover that.
333 *
334 * Why all these "- 1"s? Because 0 represents both the bottom
335 * of the address space and the top of it (using -1 for the
336 * top wouldn't help much: the masks would do the wrong thing).
337 * The rule is that addr 0 and floor 0 refer to the bottom of
338 * the address space, but end 0 and ceiling 0 refer to the top
339 * Comparisons need to use "end - 1" and "ceiling - 1" (though
340 * that end 0 case should be mythical).
341 *
342 * Wherever addr is brought up or ceiling brought down, we must
343 * be careful to reject "the opposite 0" before it confuses the
344 * subsequent tests. But what about where end is brought down
345 * by PMD_SIZE below? no, end can't go down to 0 there.
346 *
347 * Whereas we round start (addr) and ceiling down, by different
348 * masks at different levels, in order to test whether a table
349 * now has no other vmas using it, so can be freed, we don't
350 * bother to round floor or end up - the tests don't need that.
351 */
1da177e4 352
e0da382c
HD
353 addr &= PMD_MASK;
354 if (addr < floor) {
355 addr += PMD_SIZE;
356 if (!addr)
357 return;
358 }
359 if (ceiling) {
360 ceiling &= PMD_MASK;
361 if (!ceiling)
362 return;
363 }
364 if (end - 1 > ceiling - 1)
365 end -= PMD_SIZE;
366 if (addr > end - 1)
367 return;
07e32661
AK
368 /*
369 * We add page table cache pages with PAGE_SIZE,
370 * (see pte_free_tlb()), flush the tlb if we need
371 */
ed6a7935 372 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 373 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
374 do {
375 next = pgd_addr_end(addr, end);
376 if (pgd_none_or_clear_bad(pgd))
377 continue;
c2febafc 378 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 379 } while (pgd++, addr = next, addr != end);
e0da382c
HD
380}
381
42b77728 382void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 383 unsigned long floor, unsigned long ceiling)
e0da382c
HD
384{
385 while (vma) {
386 struct vm_area_struct *next = vma->vm_next;
387 unsigned long addr = vma->vm_start;
388
8f4f8c16 389 /*
25d9e2d1 390 * Hide vma from rmap and truncate_pagecache before freeing
391 * pgtables
8f4f8c16 392 */
5beb4930 393 unlink_anon_vmas(vma);
8f4f8c16
HD
394 unlink_file_vma(vma);
395
9da61aef 396 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 397 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 398 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
399 } else {
400 /*
401 * Optimization: gather nearby vmas into one call down
402 */
403 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 404 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
405 vma = next;
406 next = vma->vm_next;
5beb4930 407 unlink_anon_vmas(vma);
8f4f8c16 408 unlink_file_vma(vma);
3bf5ee95
HD
409 }
410 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 411 floor, next ? next->vm_start : ceiling);
3bf5ee95 412 }
e0da382c
HD
413 vma = next;
414 }
1da177e4
LT
415}
416
4cf58924 417int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 418{
c4088ebd 419 spinlock_t *ptl;
4cf58924 420 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
421 if (!new)
422 return -ENOMEM;
423
362a61ad
NP
424 /*
425 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 * visible before the pte is made visible to other CPUs by being
427 * put into page tables.
428 *
429 * The other side of the story is the pointer chasing in the page
430 * table walking code (when walking the page table without locking;
431 * ie. most of the time). Fortunately, these data accesses consist
432 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 * being the notable exception) will already guarantee loads are
434 * seen in-order. See the alpha page table accessors for the
435 * smp_read_barrier_depends() barriers in page table walking code.
436 */
437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438
c4088ebd 439 ptl = pmd_lock(mm, pmd);
8ac1f832 440 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 441 mm_inc_nr_ptes(mm);
1da177e4 442 pmd_populate(mm, pmd, new);
2f569afd 443 new = NULL;
4b471e88 444 }
c4088ebd 445 spin_unlock(ptl);
2f569afd
MS
446 if (new)
447 pte_free(mm, new);
1bb3630e 448 return 0;
1da177e4
LT
449}
450
4cf58924 451int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 452{
4cf58924 453 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
454 if (!new)
455 return -ENOMEM;
456
362a61ad
NP
457 smp_wmb(); /* See comment in __pte_alloc */
458
1bb3630e 459 spin_lock(&init_mm.page_table_lock);
8ac1f832 460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 461 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 462 new = NULL;
4b471e88 463 }
1bb3630e 464 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
465 if (new)
466 pte_free_kernel(&init_mm, new);
1bb3630e 467 return 0;
1da177e4
LT
468}
469
d559db08
KH
470static inline void init_rss_vec(int *rss)
471{
472 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473}
474
475static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 476{
d559db08
KH
477 int i;
478
34e55232 479 if (current->mm == mm)
05af2e10 480 sync_mm_rss(mm);
d559db08
KH
481 for (i = 0; i < NR_MM_COUNTERS; i++)
482 if (rss[i])
483 add_mm_counter(mm, i, rss[i]);
ae859762
HD
484}
485
b5810039 486/*
6aab341e
LT
487 * This function is called to print an error when a bad pte
488 * is found. For example, we might have a PFN-mapped pte in
489 * a region that doesn't allow it.
b5810039
NP
490 *
491 * The calling function must still handle the error.
492 */
3dc14741
HD
493static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
494 pte_t pte, struct page *page)
b5810039 495{
3dc14741 496 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
497 p4d_t *p4d = p4d_offset(pgd, addr);
498 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
499 pmd_t *pmd = pmd_offset(pud, addr);
500 struct address_space *mapping;
501 pgoff_t index;
d936cf9b
HD
502 static unsigned long resume;
503 static unsigned long nr_shown;
504 static unsigned long nr_unshown;
505
506 /*
507 * Allow a burst of 60 reports, then keep quiet for that minute;
508 * or allow a steady drip of one report per second.
509 */
510 if (nr_shown == 60) {
511 if (time_before(jiffies, resume)) {
512 nr_unshown++;
513 return;
514 }
515 if (nr_unshown) {
1170532b
JP
516 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
517 nr_unshown);
d936cf9b
HD
518 nr_unshown = 0;
519 }
520 nr_shown = 0;
521 }
522 if (nr_shown++ == 0)
523 resume = jiffies + 60 * HZ;
3dc14741
HD
524
525 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
526 index = linear_page_index(vma, addr);
527
1170532b
JP
528 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
529 current->comm,
530 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 531 if (page)
f0b791a3 532 dump_page(page, "bad pte");
6aa9b8b2 533 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 534 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 535 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
536 vma->vm_file,
537 vma->vm_ops ? vma->vm_ops->fault : NULL,
538 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
539 mapping ? mapping->a_ops->readpage : NULL);
b5810039 540 dump_stack();
373d4d09 541 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
542}
543
ee498ed7 544/*
7e675137 545 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 546 *
7e675137
NP
547 * "Special" mappings do not wish to be associated with a "struct page" (either
548 * it doesn't exist, or it exists but they don't want to touch it). In this
549 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 550 *
7e675137
NP
551 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
552 * pte bit, in which case this function is trivial. Secondly, an architecture
553 * may not have a spare pte bit, which requires a more complicated scheme,
554 * described below.
555 *
556 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
557 * special mapping (even if there are underlying and valid "struct pages").
558 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 559 *
b379d790
JH
560 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
561 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
562 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
563 * mapping will always honor the rule
6aab341e
LT
564 *
565 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
566 *
7e675137
NP
567 * And for normal mappings this is false.
568 *
569 * This restricts such mappings to be a linear translation from virtual address
570 * to pfn. To get around this restriction, we allow arbitrary mappings so long
571 * as the vma is not a COW mapping; in that case, we know that all ptes are
572 * special (because none can have been COWed).
b379d790 573 *
b379d790 574 *
7e675137 575 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
576 *
577 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
578 * page" backing, however the difference is that _all_ pages with a struct
579 * page (that is, those where pfn_valid is true) are refcounted and considered
580 * normal pages by the VM. The disadvantage is that pages are refcounted
581 * (which can be slower and simply not an option for some PFNMAP users). The
582 * advantage is that we don't have to follow the strict linearity rule of
583 * PFNMAP mappings in order to support COWable mappings.
584 *
ee498ed7 585 */
25b2995a
CH
586struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
587 pte_t pte)
ee498ed7 588{
22b31eec 589 unsigned long pfn = pte_pfn(pte);
7e675137 590
00b3a331 591 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 592 if (likely(!pte_special(pte)))
22b31eec 593 goto check_pfn;
667a0a06
DV
594 if (vma->vm_ops && vma->vm_ops->find_special_page)
595 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
596 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
597 return NULL;
df6ad698
JG
598 if (is_zero_pfn(pfn))
599 return NULL;
e1fb4a08
DJ
600 if (pte_devmap(pte))
601 return NULL;
602
df6ad698 603 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
604 return NULL;
605 }
606
00b3a331 607 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 608
b379d790
JH
609 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
610 if (vma->vm_flags & VM_MIXEDMAP) {
611 if (!pfn_valid(pfn))
612 return NULL;
613 goto out;
614 } else {
7e675137
NP
615 unsigned long off;
616 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
617 if (pfn == vma->vm_pgoff + off)
618 return NULL;
619 if (!is_cow_mapping(vma->vm_flags))
620 return NULL;
621 }
6aab341e
LT
622 }
623
b38af472
HD
624 if (is_zero_pfn(pfn))
625 return NULL;
00b3a331 626
22b31eec
HD
627check_pfn:
628 if (unlikely(pfn > highest_memmap_pfn)) {
629 print_bad_pte(vma, addr, pte, NULL);
630 return NULL;
631 }
6aab341e
LT
632
633 /*
7e675137 634 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 635 * eg. VDSO mappings can cause them to exist.
6aab341e 636 */
b379d790 637out:
6aab341e 638 return pfn_to_page(pfn);
ee498ed7
HD
639}
640
28093f9f
GS
641#ifdef CONFIG_TRANSPARENT_HUGEPAGE
642struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
643 pmd_t pmd)
644{
645 unsigned long pfn = pmd_pfn(pmd);
646
647 /*
648 * There is no pmd_special() but there may be special pmds, e.g.
649 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 650 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
651 */
652 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
653 if (vma->vm_flags & VM_MIXEDMAP) {
654 if (!pfn_valid(pfn))
655 return NULL;
656 goto out;
657 } else {
658 unsigned long off;
659 off = (addr - vma->vm_start) >> PAGE_SHIFT;
660 if (pfn == vma->vm_pgoff + off)
661 return NULL;
662 if (!is_cow_mapping(vma->vm_flags))
663 return NULL;
664 }
665 }
666
e1fb4a08
DJ
667 if (pmd_devmap(pmd))
668 return NULL;
28093f9f
GS
669 if (is_zero_pfn(pfn))
670 return NULL;
671 if (unlikely(pfn > highest_memmap_pfn))
672 return NULL;
673
674 /*
675 * NOTE! We still have PageReserved() pages in the page tables.
676 * eg. VDSO mappings can cause them to exist.
677 */
678out:
679 return pfn_to_page(pfn);
680}
681#endif
682
1da177e4
LT
683/*
684 * copy one vm_area from one task to the other. Assumes the page tables
685 * already present in the new task to be cleared in the whole range
686 * covered by this vma.
1da177e4
LT
687 */
688
570a335b 689static inline unsigned long
1da177e4 690copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 691 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 692 unsigned long addr, int *rss)
1da177e4 693{
b5810039 694 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
695 pte_t pte = *src_pte;
696 struct page *page;
1da177e4
LT
697
698 /* pte contains position in swap or file, so copy. */
699 if (unlikely(!pte_present(pte))) {
0661a336
KS
700 swp_entry_t entry = pte_to_swp_entry(pte);
701
702 if (likely(!non_swap_entry(entry))) {
703 if (swap_duplicate(entry) < 0)
704 return entry.val;
705
706 /* make sure dst_mm is on swapoff's mmlist. */
707 if (unlikely(list_empty(&dst_mm->mmlist))) {
708 spin_lock(&mmlist_lock);
709 if (list_empty(&dst_mm->mmlist))
710 list_add(&dst_mm->mmlist,
711 &src_mm->mmlist);
712 spin_unlock(&mmlist_lock);
713 }
714 rss[MM_SWAPENTS]++;
715 } else if (is_migration_entry(entry)) {
716 page = migration_entry_to_page(entry);
717
eca56ff9 718 rss[mm_counter(page)]++;
0661a336
KS
719
720 if (is_write_migration_entry(entry) &&
721 is_cow_mapping(vm_flags)) {
722 /*
723 * COW mappings require pages in both
724 * parent and child to be set to read.
725 */
726 make_migration_entry_read(&entry);
727 pte = swp_entry_to_pte(entry);
728 if (pte_swp_soft_dirty(*src_pte))
729 pte = pte_swp_mksoft_dirty(pte);
730 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 731 }
5042db43
JG
732 } else if (is_device_private_entry(entry)) {
733 page = device_private_entry_to_page(entry);
734
735 /*
736 * Update rss count even for unaddressable pages, as
737 * they should treated just like normal pages in this
738 * respect.
739 *
740 * We will likely want to have some new rss counters
741 * for unaddressable pages, at some point. But for now
742 * keep things as they are.
743 */
744 get_page(page);
745 rss[mm_counter(page)]++;
746 page_dup_rmap(page, false);
747
748 /*
749 * We do not preserve soft-dirty information, because so
750 * far, checkpoint/restore is the only feature that
751 * requires that. And checkpoint/restore does not work
752 * when a device driver is involved (you cannot easily
753 * save and restore device driver state).
754 */
755 if (is_write_device_private_entry(entry) &&
756 is_cow_mapping(vm_flags)) {
757 make_device_private_entry_read(&entry);
758 pte = swp_entry_to_pte(entry);
759 set_pte_at(src_mm, addr, src_pte, pte);
760 }
1da177e4 761 }
ae859762 762 goto out_set_pte;
1da177e4
LT
763 }
764
1da177e4
LT
765 /*
766 * If it's a COW mapping, write protect it both
767 * in the parent and the child
768 */
1b2de5d0 769 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 770 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 771 pte = pte_wrprotect(pte);
1da177e4
LT
772 }
773
774 /*
775 * If it's a shared mapping, mark it clean in
776 * the child
777 */
778 if (vm_flags & VM_SHARED)
779 pte = pte_mkclean(pte);
780 pte = pte_mkold(pte);
6aab341e
LT
781
782 page = vm_normal_page(vma, addr, pte);
783 if (page) {
784 get_page(page);
53f9263b 785 page_dup_rmap(page, false);
eca56ff9 786 rss[mm_counter(page)]++;
df6ad698
JG
787 } else if (pte_devmap(pte)) {
788 page = pte_page(pte);
6aab341e 789 }
ae859762
HD
790
791out_set_pte:
792 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 793 return 0;
1da177e4
LT
794}
795
21bda264 796static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
797 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
798 unsigned long addr, unsigned long end)
1da177e4 799{
c36987e2 800 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 801 pte_t *src_pte, *dst_pte;
c74df32c 802 spinlock_t *src_ptl, *dst_ptl;
e040f218 803 int progress = 0;
d559db08 804 int rss[NR_MM_COUNTERS];
570a335b 805 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
806
807again:
d559db08
KH
808 init_rss_vec(rss);
809
c74df32c 810 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
811 if (!dst_pte)
812 return -ENOMEM;
ece0e2b6 813 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 814 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 815 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
816 orig_src_pte = src_pte;
817 orig_dst_pte = dst_pte;
6606c3e0 818 arch_enter_lazy_mmu_mode();
1da177e4 819
1da177e4
LT
820 do {
821 /*
822 * We are holding two locks at this point - either of them
823 * could generate latencies in another task on another CPU.
824 */
e040f218
HD
825 if (progress >= 32) {
826 progress = 0;
827 if (need_resched() ||
95c354fe 828 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
829 break;
830 }
1da177e4
LT
831 if (pte_none(*src_pte)) {
832 progress++;
833 continue;
834 }
570a335b
HD
835 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
836 vma, addr, rss);
837 if (entry.val)
838 break;
1da177e4
LT
839 progress += 8;
840 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 841
6606c3e0 842 arch_leave_lazy_mmu_mode();
c74df32c 843 spin_unlock(src_ptl);
ece0e2b6 844 pte_unmap(orig_src_pte);
d559db08 845 add_mm_rss_vec(dst_mm, rss);
c36987e2 846 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 847 cond_resched();
570a335b
HD
848
849 if (entry.val) {
850 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
851 return -ENOMEM;
852 progress = 0;
853 }
1da177e4
LT
854 if (addr != end)
855 goto again;
856 return 0;
857}
858
859static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
860 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
861 unsigned long addr, unsigned long end)
862{
863 pmd_t *src_pmd, *dst_pmd;
864 unsigned long next;
865
866 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
867 if (!dst_pmd)
868 return -ENOMEM;
869 src_pmd = pmd_offset(src_pud, addr);
870 do {
871 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
872 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
873 || pmd_devmap(*src_pmd)) {
71e3aac0 874 int err;
a00cc7d9 875 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
876 err = copy_huge_pmd(dst_mm, src_mm,
877 dst_pmd, src_pmd, addr, vma);
878 if (err == -ENOMEM)
879 return -ENOMEM;
880 if (!err)
881 continue;
882 /* fall through */
883 }
1da177e4
LT
884 if (pmd_none_or_clear_bad(src_pmd))
885 continue;
886 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
887 vma, addr, next))
888 return -ENOMEM;
889 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
890 return 0;
891}
892
893static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 894 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
895 unsigned long addr, unsigned long end)
896{
897 pud_t *src_pud, *dst_pud;
898 unsigned long next;
899
c2febafc 900 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
901 if (!dst_pud)
902 return -ENOMEM;
c2febafc 903 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
904 do {
905 next = pud_addr_end(addr, end);
a00cc7d9
MW
906 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
907 int err;
908
909 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
910 err = copy_huge_pud(dst_mm, src_mm,
911 dst_pud, src_pud, addr, vma);
912 if (err == -ENOMEM)
913 return -ENOMEM;
914 if (!err)
915 continue;
916 /* fall through */
917 }
1da177e4
LT
918 if (pud_none_or_clear_bad(src_pud))
919 continue;
920 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
921 vma, addr, next))
922 return -ENOMEM;
923 } while (dst_pud++, src_pud++, addr = next, addr != end);
924 return 0;
925}
926
c2febafc
KS
927static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
929 unsigned long addr, unsigned long end)
930{
931 p4d_t *src_p4d, *dst_p4d;
932 unsigned long next;
933
934 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
935 if (!dst_p4d)
936 return -ENOMEM;
937 src_p4d = p4d_offset(src_pgd, addr);
938 do {
939 next = p4d_addr_end(addr, end);
940 if (p4d_none_or_clear_bad(src_p4d))
941 continue;
942 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
943 vma, addr, next))
944 return -ENOMEM;
945 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
946 return 0;
947}
948
1da177e4
LT
949int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 struct vm_area_struct *vma)
951{
952 pgd_t *src_pgd, *dst_pgd;
953 unsigned long next;
954 unsigned long addr = vma->vm_start;
955 unsigned long end = vma->vm_end;
ac46d4f3 956 struct mmu_notifier_range range;
2ec74c3e 957 bool is_cow;
cddb8a5c 958 int ret;
1da177e4 959
d992895b
NP
960 /*
961 * Don't copy ptes where a page fault will fill them correctly.
962 * Fork becomes much lighter when there are big shared or private
963 * readonly mappings. The tradeoff is that copy_page_range is more
964 * efficient than faulting.
965 */
0661a336
KS
966 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
967 !vma->anon_vma)
968 return 0;
d992895b 969
1da177e4
LT
970 if (is_vm_hugetlb_page(vma))
971 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
972
b3b9c293 973 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 974 /*
975 * We do not free on error cases below as remove_vma
976 * gets called on error from higher level routine
977 */
5180da41 978 ret = track_pfn_copy(vma);
2ab64037 979 if (ret)
980 return ret;
981 }
982
cddb8a5c
AA
983 /*
984 * We need to invalidate the secondary MMU mappings only when
985 * there could be a permission downgrade on the ptes of the
986 * parent mm. And a permission downgrade will only happen if
987 * is_cow_mapping() returns true.
988 */
2ec74c3e 989 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
990
991 if (is_cow) {
7269f999
JG
992 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
993 0, vma, src_mm, addr, end);
ac46d4f3
JG
994 mmu_notifier_invalidate_range_start(&range);
995 }
cddb8a5c
AA
996
997 ret = 0;
1da177e4
LT
998 dst_pgd = pgd_offset(dst_mm, addr);
999 src_pgd = pgd_offset(src_mm, addr);
1000 do {
1001 next = pgd_addr_end(addr, end);
1002 if (pgd_none_or_clear_bad(src_pgd))
1003 continue;
c2febafc 1004 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1005 vma, addr, next))) {
1006 ret = -ENOMEM;
1007 break;
1008 }
1da177e4 1009 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1010
2ec74c3e 1011 if (is_cow)
ac46d4f3 1012 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1013 return ret;
1da177e4
LT
1014}
1015
51c6f666 1016static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1017 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1018 unsigned long addr, unsigned long end,
97a89413 1019 struct zap_details *details)
1da177e4 1020{
b5810039 1021 struct mm_struct *mm = tlb->mm;
d16dfc55 1022 int force_flush = 0;
d559db08 1023 int rss[NR_MM_COUNTERS];
97a89413 1024 spinlock_t *ptl;
5f1a1907 1025 pte_t *start_pte;
97a89413 1026 pte_t *pte;
8a5f14a2 1027 swp_entry_t entry;
d559db08 1028
ed6a7935 1029 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1030again:
e303297e 1031 init_rss_vec(rss);
5f1a1907
SR
1032 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1033 pte = start_pte;
3ea27719 1034 flush_tlb_batched_pending(mm);
6606c3e0 1035 arch_enter_lazy_mmu_mode();
1da177e4
LT
1036 do {
1037 pte_t ptent = *pte;
166f61b9 1038 if (pte_none(ptent))
1da177e4 1039 continue;
6f5e6b9e 1040
7b167b68
MK
1041 if (need_resched())
1042 break;
1043
1da177e4 1044 if (pte_present(ptent)) {
ee498ed7 1045 struct page *page;
51c6f666 1046
25b2995a 1047 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1048 if (unlikely(details) && page) {
1049 /*
1050 * unmap_shared_mapping_pages() wants to
1051 * invalidate cache without truncating:
1052 * unmap shared but keep private pages.
1053 */
1054 if (details->check_mapping &&
800d8c63 1055 details->check_mapping != page_rmapping(page))
1da177e4 1056 continue;
1da177e4 1057 }
b5810039 1058 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1059 tlb->fullmm);
1da177e4
LT
1060 tlb_remove_tlb_entry(tlb, pte, addr);
1061 if (unlikely(!page))
1062 continue;
eca56ff9
JM
1063
1064 if (!PageAnon(page)) {
1cf35d47
LT
1065 if (pte_dirty(ptent)) {
1066 force_flush = 1;
6237bcd9 1067 set_page_dirty(page);
1cf35d47 1068 }
4917e5d0 1069 if (pte_young(ptent) &&
64363aad 1070 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1071 mark_page_accessed(page);
6237bcd9 1072 }
eca56ff9 1073 rss[mm_counter(page)]--;
d281ee61 1074 page_remove_rmap(page, false);
3dc14741
HD
1075 if (unlikely(page_mapcount(page) < 0))
1076 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1077 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1078 force_flush = 1;
ce9ec37b 1079 addr += PAGE_SIZE;
d16dfc55 1080 break;
1cf35d47 1081 }
1da177e4
LT
1082 continue;
1083 }
5042db43
JG
1084
1085 entry = pte_to_swp_entry(ptent);
1086 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1087 struct page *page = device_private_entry_to_page(entry);
1088
1089 if (unlikely(details && details->check_mapping)) {
1090 /*
1091 * unmap_shared_mapping_pages() wants to
1092 * invalidate cache without truncating:
1093 * unmap shared but keep private pages.
1094 */
1095 if (details->check_mapping !=
1096 page_rmapping(page))
1097 continue;
1098 }
1099
1100 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1101 rss[mm_counter(page)]--;
1102 page_remove_rmap(page, false);
1103 put_page(page);
1104 continue;
1105 }
1106
3e8715fd
KS
1107 /* If details->check_mapping, we leave swap entries. */
1108 if (unlikely(details))
1da177e4 1109 continue;
b084d435 1110
8a5f14a2
KS
1111 if (!non_swap_entry(entry))
1112 rss[MM_SWAPENTS]--;
1113 else if (is_migration_entry(entry)) {
1114 struct page *page;
9f9f1acd 1115
8a5f14a2 1116 page = migration_entry_to_page(entry);
eca56ff9 1117 rss[mm_counter(page)]--;
b084d435 1118 }
8a5f14a2
KS
1119 if (unlikely(!free_swap_and_cache(entry)))
1120 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1121 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1122 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1123
d559db08 1124 add_mm_rss_vec(mm, rss);
6606c3e0 1125 arch_leave_lazy_mmu_mode();
51c6f666 1126
1cf35d47 1127 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1128 if (force_flush)
1cf35d47 1129 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1130 pte_unmap_unlock(start_pte, ptl);
1131
1132 /*
1133 * If we forced a TLB flush (either due to running out of
1134 * batch buffers or because we needed to flush dirty TLB
1135 * entries before releasing the ptl), free the batched
1136 * memory too. Restart if we didn't do everything.
1137 */
1138 if (force_flush) {
1139 force_flush = 0;
fa0aafb8 1140 tlb_flush_mmu(tlb);
7b167b68
MK
1141 }
1142
1143 if (addr != end) {
1144 cond_resched();
1145 goto again;
d16dfc55
PZ
1146 }
1147
51c6f666 1148 return addr;
1da177e4
LT
1149}
1150
51c6f666 1151static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1152 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1153 unsigned long addr, unsigned long end,
97a89413 1154 struct zap_details *details)
1da177e4
LT
1155{
1156 pmd_t *pmd;
1157 unsigned long next;
1158
1159 pmd = pmd_offset(pud, addr);
1160 do {
1161 next = pmd_addr_end(addr, end);
84c3fc4e 1162 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1163 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1164 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1165 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1166 goto next;
71e3aac0
AA
1167 /* fall through */
1168 }
1a5a9906
AA
1169 /*
1170 * Here there can be other concurrent MADV_DONTNEED or
1171 * trans huge page faults running, and if the pmd is
1172 * none or trans huge it can change under us. This is
1173 * because MADV_DONTNEED holds the mmap_sem in read
1174 * mode.
1175 */
1176 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1177 goto next;
97a89413 1178 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1179next:
97a89413
PZ
1180 cond_resched();
1181 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1182
1183 return addr;
1da177e4
LT
1184}
1185
51c6f666 1186static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1187 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1188 unsigned long addr, unsigned long end,
97a89413 1189 struct zap_details *details)
1da177e4
LT
1190{
1191 pud_t *pud;
1192 unsigned long next;
1193
c2febafc 1194 pud = pud_offset(p4d, addr);
1da177e4
LT
1195 do {
1196 next = pud_addr_end(addr, end);
a00cc7d9
MW
1197 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1198 if (next - addr != HPAGE_PUD_SIZE) {
1199 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1200 split_huge_pud(vma, pud, addr);
1201 } else if (zap_huge_pud(tlb, vma, pud, addr))
1202 goto next;
1203 /* fall through */
1204 }
97a89413 1205 if (pud_none_or_clear_bad(pud))
1da177e4 1206 continue;
97a89413 1207 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1208next:
1209 cond_resched();
97a89413 1210 } while (pud++, addr = next, addr != end);
51c6f666
RH
1211
1212 return addr;
1da177e4
LT
1213}
1214
c2febafc
KS
1215static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1216 struct vm_area_struct *vma, pgd_t *pgd,
1217 unsigned long addr, unsigned long end,
1218 struct zap_details *details)
1219{
1220 p4d_t *p4d;
1221 unsigned long next;
1222
1223 p4d = p4d_offset(pgd, addr);
1224 do {
1225 next = p4d_addr_end(addr, end);
1226 if (p4d_none_or_clear_bad(p4d))
1227 continue;
1228 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1229 } while (p4d++, addr = next, addr != end);
1230
1231 return addr;
1232}
1233
aac45363 1234void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1235 struct vm_area_struct *vma,
1236 unsigned long addr, unsigned long end,
1237 struct zap_details *details)
1da177e4
LT
1238{
1239 pgd_t *pgd;
1240 unsigned long next;
1241
1da177e4
LT
1242 BUG_ON(addr >= end);
1243 tlb_start_vma(tlb, vma);
1244 pgd = pgd_offset(vma->vm_mm, addr);
1245 do {
1246 next = pgd_addr_end(addr, end);
97a89413 1247 if (pgd_none_or_clear_bad(pgd))
1da177e4 1248 continue;
c2febafc 1249 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1250 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1251 tlb_end_vma(tlb, vma);
1252}
51c6f666 1253
f5cc4eef
AV
1254
1255static void unmap_single_vma(struct mmu_gather *tlb,
1256 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1257 unsigned long end_addr,
f5cc4eef
AV
1258 struct zap_details *details)
1259{
1260 unsigned long start = max(vma->vm_start, start_addr);
1261 unsigned long end;
1262
1263 if (start >= vma->vm_end)
1264 return;
1265 end = min(vma->vm_end, end_addr);
1266 if (end <= vma->vm_start)
1267 return;
1268
cbc91f71
SD
1269 if (vma->vm_file)
1270 uprobe_munmap(vma, start, end);
1271
b3b9c293 1272 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1273 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1274
1275 if (start != end) {
1276 if (unlikely(is_vm_hugetlb_page(vma))) {
1277 /*
1278 * It is undesirable to test vma->vm_file as it
1279 * should be non-null for valid hugetlb area.
1280 * However, vm_file will be NULL in the error
7aa6b4ad 1281 * cleanup path of mmap_region. When
f5cc4eef 1282 * hugetlbfs ->mmap method fails,
7aa6b4ad 1283 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1284 * before calling this function to clean up.
1285 * Since no pte has actually been setup, it is
1286 * safe to do nothing in this case.
1287 */
24669e58 1288 if (vma->vm_file) {
83cde9e8 1289 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1290 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1291 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1292 }
f5cc4eef
AV
1293 } else
1294 unmap_page_range(tlb, vma, start, end, details);
1295 }
1da177e4
LT
1296}
1297
1da177e4
LT
1298/**
1299 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1300 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1301 * @vma: the starting vma
1302 * @start_addr: virtual address at which to start unmapping
1303 * @end_addr: virtual address at which to end unmapping
1da177e4 1304 *
508034a3 1305 * Unmap all pages in the vma list.
1da177e4 1306 *
1da177e4
LT
1307 * Only addresses between `start' and `end' will be unmapped.
1308 *
1309 * The VMA list must be sorted in ascending virtual address order.
1310 *
1311 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1312 * range after unmap_vmas() returns. So the only responsibility here is to
1313 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1314 * drops the lock and schedules.
1315 */
6e8bb019 1316void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1317 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1318 unsigned long end_addr)
1da177e4 1319{
ac46d4f3 1320 struct mmu_notifier_range range;
1da177e4 1321
6f4f13e8
JG
1322 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1323 start_addr, end_addr);
ac46d4f3 1324 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1325 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1326 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1327 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1328}
1329
1330/**
1331 * zap_page_range - remove user pages in a given range
1332 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1333 * @start: starting address of pages to zap
1da177e4 1334 * @size: number of bytes to zap
f5cc4eef
AV
1335 *
1336 * Caller must protect the VMA list
1da177e4 1337 */
7e027b14 1338void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1339 unsigned long size)
1da177e4 1340{
ac46d4f3 1341 struct mmu_notifier_range range;
d16dfc55 1342 struct mmu_gather tlb;
1da177e4 1343
1da177e4 1344 lru_add_drain();
7269f999 1345 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1346 start, start + size);
ac46d4f3
JG
1347 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1348 update_hiwater_rss(vma->vm_mm);
1349 mmu_notifier_invalidate_range_start(&range);
1350 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1351 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1352 mmu_notifier_invalidate_range_end(&range);
1353 tlb_finish_mmu(&tlb, start, range.end);
1da177e4 1354}
ceaf03b4 1355EXPORT_SYMBOL(zap_page_range);
1da177e4 1356
f5cc4eef
AV
1357/**
1358 * zap_page_range_single - remove user pages in a given range
1359 * @vma: vm_area_struct holding the applicable pages
1360 * @address: starting address of pages to zap
1361 * @size: number of bytes to zap
8a5f14a2 1362 * @details: details of shared cache invalidation
f5cc4eef
AV
1363 *
1364 * The range must fit into one VMA.
1da177e4 1365 */
f5cc4eef 1366static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1367 unsigned long size, struct zap_details *details)
1368{
ac46d4f3 1369 struct mmu_notifier_range range;
d16dfc55 1370 struct mmu_gather tlb;
1da177e4 1371
1da177e4 1372 lru_add_drain();
7269f999 1373 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1374 address, address + size);
ac46d4f3
JG
1375 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1376 update_hiwater_rss(vma->vm_mm);
1377 mmu_notifier_invalidate_range_start(&range);
1378 unmap_single_vma(&tlb, vma, address, range.end, details);
1379 mmu_notifier_invalidate_range_end(&range);
1380 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1381}
1382
c627f9cc
JS
1383/**
1384 * zap_vma_ptes - remove ptes mapping the vma
1385 * @vma: vm_area_struct holding ptes to be zapped
1386 * @address: starting address of pages to zap
1387 * @size: number of bytes to zap
1388 *
1389 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1390 *
1391 * The entire address range must be fully contained within the vma.
1392 *
c627f9cc 1393 */
27d036e3 1394void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1395 unsigned long size)
1396{
1397 if (address < vma->vm_start || address + size > vma->vm_end ||
1398 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1399 return;
1400
f5cc4eef 1401 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1402}
1403EXPORT_SYMBOL_GPL(zap_vma_ptes);
1404
25ca1d6c 1405pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1406 spinlock_t **ptl)
c9cfcddf 1407{
c2febafc
KS
1408 pgd_t *pgd;
1409 p4d_t *p4d;
1410 pud_t *pud;
1411 pmd_t *pmd;
1412
1413 pgd = pgd_offset(mm, addr);
1414 p4d = p4d_alloc(mm, pgd, addr);
1415 if (!p4d)
1416 return NULL;
1417 pud = pud_alloc(mm, p4d, addr);
1418 if (!pud)
1419 return NULL;
1420 pmd = pmd_alloc(mm, pud, addr);
1421 if (!pmd)
1422 return NULL;
1423
1424 VM_BUG_ON(pmd_trans_huge(*pmd));
1425 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1426}
1427
238f58d8
LT
1428/*
1429 * This is the old fallback for page remapping.
1430 *
1431 * For historical reasons, it only allows reserved pages. Only
1432 * old drivers should use this, and they needed to mark their
1433 * pages reserved for the old functions anyway.
1434 */
423bad60
NP
1435static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1436 struct page *page, pgprot_t prot)
238f58d8 1437{
423bad60 1438 struct mm_struct *mm = vma->vm_mm;
238f58d8 1439 int retval;
c9cfcddf 1440 pte_t *pte;
8a9f3ccd
BS
1441 spinlock_t *ptl;
1442
238f58d8 1443 retval = -EINVAL;
0ee930e6 1444 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
5b4e655e 1445 goto out;
238f58d8
LT
1446 retval = -ENOMEM;
1447 flush_dcache_page(page);
c9cfcddf 1448 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1449 if (!pte)
5b4e655e 1450 goto out;
238f58d8
LT
1451 retval = -EBUSY;
1452 if (!pte_none(*pte))
1453 goto out_unlock;
1454
1455 /* Ok, finally just insert the thing.. */
1456 get_page(page);
eca56ff9 1457 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1458 page_add_file_rmap(page, false);
238f58d8
LT
1459 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1460
1461 retval = 0;
1462out_unlock:
1463 pte_unmap_unlock(pte, ptl);
1464out:
1465 return retval;
1466}
1467
bfa5bf6d
REB
1468/**
1469 * vm_insert_page - insert single page into user vma
1470 * @vma: user vma to map to
1471 * @addr: target user address of this page
1472 * @page: source kernel page
1473 *
a145dd41
LT
1474 * This allows drivers to insert individual pages they've allocated
1475 * into a user vma.
1476 *
1477 * The page has to be a nice clean _individual_ kernel allocation.
1478 * If you allocate a compound page, you need to have marked it as
1479 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1480 * (see split_page()).
a145dd41
LT
1481 *
1482 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1483 * took an arbitrary page protection parameter. This doesn't allow
1484 * that. Your vma protection will have to be set up correctly, which
1485 * means that if you want a shared writable mapping, you'd better
1486 * ask for a shared writable mapping!
1487 *
1488 * The page does not need to be reserved.
4b6e1e37
KK
1489 *
1490 * Usually this function is called from f_op->mmap() handler
1491 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1492 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1493 * function from other places, for example from page-fault handler.
a862f68a
MR
1494 *
1495 * Return: %0 on success, negative error code otherwise.
a145dd41 1496 */
423bad60
NP
1497int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1498 struct page *page)
a145dd41
LT
1499{
1500 if (addr < vma->vm_start || addr >= vma->vm_end)
1501 return -EFAULT;
1502 if (!page_count(page))
1503 return -EINVAL;
4b6e1e37
KK
1504 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1505 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1506 BUG_ON(vma->vm_flags & VM_PFNMAP);
1507 vma->vm_flags |= VM_MIXEDMAP;
1508 }
423bad60 1509 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1510}
e3c3374f 1511EXPORT_SYMBOL(vm_insert_page);
a145dd41 1512
a667d745
SJ
1513/*
1514 * __vm_map_pages - maps range of kernel pages into user vma
1515 * @vma: user vma to map to
1516 * @pages: pointer to array of source kernel pages
1517 * @num: number of pages in page array
1518 * @offset: user's requested vm_pgoff
1519 *
1520 * This allows drivers to map range of kernel pages into a user vma.
1521 *
1522 * Return: 0 on success and error code otherwise.
1523 */
1524static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1525 unsigned long num, unsigned long offset)
1526{
1527 unsigned long count = vma_pages(vma);
1528 unsigned long uaddr = vma->vm_start;
1529 int ret, i;
1530
1531 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1532 if (offset >= num)
a667d745
SJ
1533 return -ENXIO;
1534
1535 /* Fail if the user requested size exceeds available object size */
1536 if (count > num - offset)
1537 return -ENXIO;
1538
1539 for (i = 0; i < count; i++) {
1540 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1541 if (ret < 0)
1542 return ret;
1543 uaddr += PAGE_SIZE;
1544 }
1545
1546 return 0;
1547}
1548
1549/**
1550 * vm_map_pages - maps range of kernel pages starts with non zero offset
1551 * @vma: user vma to map to
1552 * @pages: pointer to array of source kernel pages
1553 * @num: number of pages in page array
1554 *
1555 * Maps an object consisting of @num pages, catering for the user's
1556 * requested vm_pgoff
1557 *
1558 * If we fail to insert any page into the vma, the function will return
1559 * immediately leaving any previously inserted pages present. Callers
1560 * from the mmap handler may immediately return the error as their caller
1561 * will destroy the vma, removing any successfully inserted pages. Other
1562 * callers should make their own arrangements for calling unmap_region().
1563 *
1564 * Context: Process context. Called by mmap handlers.
1565 * Return: 0 on success and error code otherwise.
1566 */
1567int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1568 unsigned long num)
1569{
1570 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1571}
1572EXPORT_SYMBOL(vm_map_pages);
1573
1574/**
1575 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1576 * @vma: user vma to map to
1577 * @pages: pointer to array of source kernel pages
1578 * @num: number of pages in page array
1579 *
1580 * Similar to vm_map_pages(), except that it explicitly sets the offset
1581 * to 0. This function is intended for the drivers that did not consider
1582 * vm_pgoff.
1583 *
1584 * Context: Process context. Called by mmap handlers.
1585 * Return: 0 on success and error code otherwise.
1586 */
1587int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1588 unsigned long num)
1589{
1590 return __vm_map_pages(vma, pages, num, 0);
1591}
1592EXPORT_SYMBOL(vm_map_pages_zero);
1593
9b5a8e00 1594static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1595 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1596{
1597 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1598 pte_t *pte, entry;
1599 spinlock_t *ptl;
1600
423bad60
NP
1601 pte = get_locked_pte(mm, addr, &ptl);
1602 if (!pte)
9b5a8e00 1603 return VM_FAULT_OOM;
b2770da6
RZ
1604 if (!pte_none(*pte)) {
1605 if (mkwrite) {
1606 /*
1607 * For read faults on private mappings the PFN passed
1608 * in may not match the PFN we have mapped if the
1609 * mapped PFN is a writeable COW page. In the mkwrite
1610 * case we are creating a writable PTE for a shared
f2c57d91
JK
1611 * mapping and we expect the PFNs to match. If they
1612 * don't match, we are likely racing with block
1613 * allocation and mapping invalidation so just skip the
1614 * update.
b2770da6 1615 */
f2c57d91
JK
1616 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1617 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1618 goto out_unlock;
f2c57d91 1619 }
cae85cb8
JK
1620 entry = pte_mkyoung(*pte);
1621 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1622 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1623 update_mmu_cache(vma, addr, pte);
1624 }
1625 goto out_unlock;
b2770da6 1626 }
423bad60
NP
1627
1628 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1629 if (pfn_t_devmap(pfn))
1630 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1631 else
1632 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1633
b2770da6
RZ
1634 if (mkwrite) {
1635 entry = pte_mkyoung(entry);
1636 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1637 }
1638
423bad60 1639 set_pte_at(mm, addr, pte, entry);
4b3073e1 1640 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1641
423bad60
NP
1642out_unlock:
1643 pte_unmap_unlock(pte, ptl);
9b5a8e00 1644 return VM_FAULT_NOPAGE;
423bad60
NP
1645}
1646
f5e6d1d5
MW
1647/**
1648 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1649 * @vma: user vma to map to
1650 * @addr: target user address of this page
1651 * @pfn: source kernel pfn
1652 * @pgprot: pgprot flags for the inserted page
1653 *
1654 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1655 * to override pgprot on a per-page basis.
1656 *
1657 * This only makes sense for IO mappings, and it makes no sense for
1658 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1659 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1660 * impractical.
1661 *
ae2b01f3 1662 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1663 * Return: vm_fault_t value.
1664 */
1665vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1666 unsigned long pfn, pgprot_t pgprot)
1667{
6d958546
MW
1668 /*
1669 * Technically, architectures with pte_special can avoid all these
1670 * restrictions (same for remap_pfn_range). However we would like
1671 * consistency in testing and feature parity among all, so we should
1672 * try to keep these invariants in place for everybody.
1673 */
1674 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1675 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1676 (VM_PFNMAP|VM_MIXEDMAP));
1677 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1678 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1679
1680 if (addr < vma->vm_start || addr >= vma->vm_end)
1681 return VM_FAULT_SIGBUS;
1682
1683 if (!pfn_modify_allowed(pfn, pgprot))
1684 return VM_FAULT_SIGBUS;
1685
1686 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1687
9b5a8e00 1688 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1689 false);
f5e6d1d5
MW
1690}
1691EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1692
ae2b01f3
MW
1693/**
1694 * vmf_insert_pfn - insert single pfn into user vma
1695 * @vma: user vma to map to
1696 * @addr: target user address of this page
1697 * @pfn: source kernel pfn
1698 *
1699 * Similar to vm_insert_page, this allows drivers to insert individual pages
1700 * they've allocated into a user vma. Same comments apply.
1701 *
1702 * This function should only be called from a vm_ops->fault handler, and
1703 * in that case the handler should return the result of this function.
1704 *
1705 * vma cannot be a COW mapping.
1706 *
1707 * As this is called only for pages that do not currently exist, we
1708 * do not need to flush old virtual caches or the TLB.
1709 *
1710 * Context: Process context. May allocate using %GFP_KERNEL.
1711 * Return: vm_fault_t value.
1712 */
1713vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1714 unsigned long pfn)
1715{
1716 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1717}
1718EXPORT_SYMBOL(vmf_insert_pfn);
1719
785a3fab
DW
1720static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1721{
1722 /* these checks mirror the abort conditions in vm_normal_page */
1723 if (vma->vm_flags & VM_MIXEDMAP)
1724 return true;
1725 if (pfn_t_devmap(pfn))
1726 return true;
1727 if (pfn_t_special(pfn))
1728 return true;
1729 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1730 return true;
1731 return false;
1732}
1733
79f3aa5b
MW
1734static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1735 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 1736{
87744ab3 1737 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 1738 int err;
87744ab3 1739
785a3fab 1740 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1741
423bad60 1742 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1743 return VM_FAULT_SIGBUS;
308a047c
BP
1744
1745 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1746
42e4089c 1747 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1748 return VM_FAULT_SIGBUS;
42e4089c 1749
423bad60
NP
1750 /*
1751 * If we don't have pte special, then we have to use the pfn_valid()
1752 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1753 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1754 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1755 * without pte special, it would there be refcounted as a normal page.
423bad60 1756 */
00b3a331
LD
1757 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1758 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1759 struct page *page;
1760
03fc2da6
DW
1761 /*
1762 * At this point we are committed to insert_page()
1763 * regardless of whether the caller specified flags that
1764 * result in pfn_t_has_page() == false.
1765 */
1766 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1767 err = insert_page(vma, addr, page, pgprot);
1768 } else {
9b5a8e00 1769 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1770 }
b2770da6 1771
5d747637
MW
1772 if (err == -ENOMEM)
1773 return VM_FAULT_OOM;
1774 if (err < 0 && err != -EBUSY)
1775 return VM_FAULT_SIGBUS;
1776
1777 return VM_FAULT_NOPAGE;
e0dc0d8f 1778}
79f3aa5b
MW
1779
1780vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1781 pfn_t pfn)
1782{
1783 return __vm_insert_mixed(vma, addr, pfn, false);
1784}
5d747637 1785EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1786
ab77dab4
SJ
1787/*
1788 * If the insertion of PTE failed because someone else already added a
1789 * different entry in the mean time, we treat that as success as we assume
1790 * the same entry was actually inserted.
1791 */
ab77dab4
SJ
1792vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1793 unsigned long addr, pfn_t pfn)
b2770da6 1794{
79f3aa5b 1795 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 1796}
ab77dab4 1797EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1798
1da177e4
LT
1799/*
1800 * maps a range of physical memory into the requested pages. the old
1801 * mappings are removed. any references to nonexistent pages results
1802 * in null mappings (currently treated as "copy-on-access")
1803 */
1804static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1805 unsigned long addr, unsigned long end,
1806 unsigned long pfn, pgprot_t prot)
1807{
519d2087 1808 pte_t *pte, *mapped_pte;
c74df32c 1809 spinlock_t *ptl;
42e4089c 1810 int err = 0;
1da177e4 1811
519d2087 1812 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1813 if (!pte)
1814 return -ENOMEM;
6606c3e0 1815 arch_enter_lazy_mmu_mode();
1da177e4
LT
1816 do {
1817 BUG_ON(!pte_none(*pte));
42e4089c
AK
1818 if (!pfn_modify_allowed(pfn, prot)) {
1819 err = -EACCES;
1820 break;
1821 }
7e675137 1822 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1823 pfn++;
1824 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1825 arch_leave_lazy_mmu_mode();
519d2087 1826 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 1827 return err;
1da177e4
LT
1828}
1829
1830static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1831 unsigned long addr, unsigned long end,
1832 unsigned long pfn, pgprot_t prot)
1833{
1834 pmd_t *pmd;
1835 unsigned long next;
42e4089c 1836 int err;
1da177e4
LT
1837
1838 pfn -= addr >> PAGE_SHIFT;
1839 pmd = pmd_alloc(mm, pud, addr);
1840 if (!pmd)
1841 return -ENOMEM;
f66055ab 1842 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1843 do {
1844 next = pmd_addr_end(addr, end);
42e4089c
AK
1845 err = remap_pte_range(mm, pmd, addr, next,
1846 pfn + (addr >> PAGE_SHIFT), prot);
1847 if (err)
1848 return err;
1da177e4
LT
1849 } while (pmd++, addr = next, addr != end);
1850 return 0;
1851}
1852
c2febafc 1853static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1854 unsigned long addr, unsigned long end,
1855 unsigned long pfn, pgprot_t prot)
1856{
1857 pud_t *pud;
1858 unsigned long next;
42e4089c 1859 int err;
1da177e4
LT
1860
1861 pfn -= addr >> PAGE_SHIFT;
c2febafc 1862 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1863 if (!pud)
1864 return -ENOMEM;
1865 do {
1866 next = pud_addr_end(addr, end);
42e4089c
AK
1867 err = remap_pmd_range(mm, pud, addr, next,
1868 pfn + (addr >> PAGE_SHIFT), prot);
1869 if (err)
1870 return err;
1da177e4
LT
1871 } while (pud++, addr = next, addr != end);
1872 return 0;
1873}
1874
c2febafc
KS
1875static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1876 unsigned long addr, unsigned long end,
1877 unsigned long pfn, pgprot_t prot)
1878{
1879 p4d_t *p4d;
1880 unsigned long next;
42e4089c 1881 int err;
c2febafc
KS
1882
1883 pfn -= addr >> PAGE_SHIFT;
1884 p4d = p4d_alloc(mm, pgd, addr);
1885 if (!p4d)
1886 return -ENOMEM;
1887 do {
1888 next = p4d_addr_end(addr, end);
42e4089c
AK
1889 err = remap_pud_range(mm, p4d, addr, next,
1890 pfn + (addr >> PAGE_SHIFT), prot);
1891 if (err)
1892 return err;
c2febafc
KS
1893 } while (p4d++, addr = next, addr != end);
1894 return 0;
1895}
1896
bfa5bf6d
REB
1897/**
1898 * remap_pfn_range - remap kernel memory to userspace
1899 * @vma: user vma to map to
1900 * @addr: target user address to start at
1901 * @pfn: physical address of kernel memory
1902 * @size: size of map area
1903 * @prot: page protection flags for this mapping
1904 *
a862f68a
MR
1905 * Note: this is only safe if the mm semaphore is held when called.
1906 *
1907 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 1908 */
1da177e4
LT
1909int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1910 unsigned long pfn, unsigned long size, pgprot_t prot)
1911{
1912 pgd_t *pgd;
1913 unsigned long next;
2d15cab8 1914 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1915 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1916 unsigned long remap_pfn = pfn;
1da177e4
LT
1917 int err;
1918
1919 /*
1920 * Physically remapped pages are special. Tell the
1921 * rest of the world about it:
1922 * VM_IO tells people not to look at these pages
1923 * (accesses can have side effects).
6aab341e
LT
1924 * VM_PFNMAP tells the core MM that the base pages are just
1925 * raw PFN mappings, and do not have a "struct page" associated
1926 * with them.
314e51b9
KK
1927 * VM_DONTEXPAND
1928 * Disable vma merging and expanding with mremap().
1929 * VM_DONTDUMP
1930 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1931 *
1932 * There's a horrible special case to handle copy-on-write
1933 * behaviour that some programs depend on. We mark the "original"
1934 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1935 * See vm_normal_page() for details.
1da177e4 1936 */
b3b9c293
KK
1937 if (is_cow_mapping(vma->vm_flags)) {
1938 if (addr != vma->vm_start || end != vma->vm_end)
1939 return -EINVAL;
fb155c16 1940 vma->vm_pgoff = pfn;
b3b9c293
KK
1941 }
1942
d5957d2f 1943 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1944 if (err)
3c8bb73a 1945 return -EINVAL;
fb155c16 1946
314e51b9 1947 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1948
1949 BUG_ON(addr >= end);
1950 pfn -= addr >> PAGE_SHIFT;
1951 pgd = pgd_offset(mm, addr);
1952 flush_cache_range(vma, addr, end);
1da177e4
LT
1953 do {
1954 next = pgd_addr_end(addr, end);
c2febafc 1955 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1956 pfn + (addr >> PAGE_SHIFT), prot);
1957 if (err)
1958 break;
1959 } while (pgd++, addr = next, addr != end);
2ab64037 1960
1961 if (err)
d5957d2f 1962 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1963
1da177e4
LT
1964 return err;
1965}
1966EXPORT_SYMBOL(remap_pfn_range);
1967
b4cbb197
LT
1968/**
1969 * vm_iomap_memory - remap memory to userspace
1970 * @vma: user vma to map to
1971 * @start: start of area
1972 * @len: size of area
1973 *
1974 * This is a simplified io_remap_pfn_range() for common driver use. The
1975 * driver just needs to give us the physical memory range to be mapped,
1976 * we'll figure out the rest from the vma information.
1977 *
1978 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1979 * whatever write-combining details or similar.
a862f68a
MR
1980 *
1981 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
1982 */
1983int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1984{
1985 unsigned long vm_len, pfn, pages;
1986
1987 /* Check that the physical memory area passed in looks valid */
1988 if (start + len < start)
1989 return -EINVAL;
1990 /*
1991 * You *really* shouldn't map things that aren't page-aligned,
1992 * but we've historically allowed it because IO memory might
1993 * just have smaller alignment.
1994 */
1995 len += start & ~PAGE_MASK;
1996 pfn = start >> PAGE_SHIFT;
1997 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1998 if (pfn + pages < pfn)
1999 return -EINVAL;
2000
2001 /* We start the mapping 'vm_pgoff' pages into the area */
2002 if (vma->vm_pgoff > pages)
2003 return -EINVAL;
2004 pfn += vma->vm_pgoff;
2005 pages -= vma->vm_pgoff;
2006
2007 /* Can we fit all of the mapping? */
2008 vm_len = vma->vm_end - vma->vm_start;
2009 if (vm_len >> PAGE_SHIFT > pages)
2010 return -EINVAL;
2011
2012 /* Ok, let it rip */
2013 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2014}
2015EXPORT_SYMBOL(vm_iomap_memory);
2016
aee16b3c
JF
2017static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2018 unsigned long addr, unsigned long end,
2019 pte_fn_t fn, void *data)
2020{
2021 pte_t *pte;
2022 int err;
94909914 2023 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2024
2025 pte = (mm == &init_mm) ?
2026 pte_alloc_kernel(pmd, addr) :
2027 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2028 if (!pte)
2029 return -ENOMEM;
2030
2031 BUG_ON(pmd_huge(*pmd));
2032
38e0edb1
JF
2033 arch_enter_lazy_mmu_mode();
2034
aee16b3c 2035 do {
8b1e0f81 2036 err = fn(pte++, addr, data);
aee16b3c
JF
2037 if (err)
2038 break;
c36987e2 2039 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2040
38e0edb1
JF
2041 arch_leave_lazy_mmu_mode();
2042
aee16b3c
JF
2043 if (mm != &init_mm)
2044 pte_unmap_unlock(pte-1, ptl);
2045 return err;
2046}
2047
2048static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2049 unsigned long addr, unsigned long end,
2050 pte_fn_t fn, void *data)
2051{
2052 pmd_t *pmd;
2053 unsigned long next;
2054 int err;
2055
ceb86879
AK
2056 BUG_ON(pud_huge(*pud));
2057
aee16b3c
JF
2058 pmd = pmd_alloc(mm, pud, addr);
2059 if (!pmd)
2060 return -ENOMEM;
2061 do {
2062 next = pmd_addr_end(addr, end);
2063 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2064 if (err)
2065 break;
2066 } while (pmd++, addr = next, addr != end);
2067 return err;
2068}
2069
c2febafc 2070static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2071 unsigned long addr, unsigned long end,
2072 pte_fn_t fn, void *data)
2073{
2074 pud_t *pud;
2075 unsigned long next;
2076 int err;
2077
c2febafc 2078 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2079 if (!pud)
2080 return -ENOMEM;
2081 do {
2082 next = pud_addr_end(addr, end);
2083 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2084 if (err)
2085 break;
2086 } while (pud++, addr = next, addr != end);
2087 return err;
2088}
2089
c2febafc
KS
2090static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2091 unsigned long addr, unsigned long end,
2092 pte_fn_t fn, void *data)
2093{
2094 p4d_t *p4d;
2095 unsigned long next;
2096 int err;
2097
2098 p4d = p4d_alloc(mm, pgd, addr);
2099 if (!p4d)
2100 return -ENOMEM;
2101 do {
2102 next = p4d_addr_end(addr, end);
2103 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2104 if (err)
2105 break;
2106 } while (p4d++, addr = next, addr != end);
2107 return err;
2108}
2109
aee16b3c
JF
2110/*
2111 * Scan a region of virtual memory, filling in page tables as necessary
2112 * and calling a provided function on each leaf page table.
2113 */
2114int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2115 unsigned long size, pte_fn_t fn, void *data)
2116{
2117 pgd_t *pgd;
2118 unsigned long next;
57250a5b 2119 unsigned long end = addr + size;
aee16b3c
JF
2120 int err;
2121
9cb65bc3
MP
2122 if (WARN_ON(addr >= end))
2123 return -EINVAL;
2124
aee16b3c
JF
2125 pgd = pgd_offset(mm, addr);
2126 do {
2127 next = pgd_addr_end(addr, end);
c2febafc 2128 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2129 if (err)
2130 break;
2131 } while (pgd++, addr = next, addr != end);
57250a5b 2132
aee16b3c
JF
2133 return err;
2134}
2135EXPORT_SYMBOL_GPL(apply_to_page_range);
2136
8f4e2101 2137/*
9b4bdd2f
KS
2138 * handle_pte_fault chooses page fault handler according to an entry which was
2139 * read non-atomically. Before making any commitment, on those architectures
2140 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2141 * parts, do_swap_page must check under lock before unmapping the pte and
2142 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2143 * and do_anonymous_page can safely check later on).
8f4e2101 2144 */
4c21e2f2 2145static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2146 pte_t *page_table, pte_t orig_pte)
2147{
2148 int same = 1;
2149#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2150 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2151 spinlock_t *ptl = pte_lockptr(mm, pmd);
2152 spin_lock(ptl);
8f4e2101 2153 same = pte_same(*page_table, orig_pte);
4c21e2f2 2154 spin_unlock(ptl);
8f4e2101
HD
2155 }
2156#endif
2157 pte_unmap(page_table);
2158 return same;
2159}
2160
c8efcda2
JH
2161static inline bool cow_user_page(struct page *dst, struct page *src,
2162 struct vm_fault *vmf)
6aab341e 2163{
c8efcda2
JH
2164 bool ret;
2165 void *kaddr;
2166 void __user *uaddr;
528b3653 2167 bool locked = false;
c8efcda2
JH
2168 struct vm_area_struct *vma = vmf->vma;
2169 struct mm_struct *mm = vma->vm_mm;
2170 unsigned long addr = vmf->address;
2171
0abdd7a8
DW
2172 debug_dma_assert_idle(src);
2173
c8efcda2
JH
2174 if (likely(src)) {
2175 copy_user_highpage(dst, src, addr, vma);
2176 return true;
2177 }
2178
6aab341e
LT
2179 /*
2180 * If the source page was a PFN mapping, we don't have
2181 * a "struct page" for it. We do a best-effort copy by
2182 * just copying from the original user address. If that
2183 * fails, we just zero-fill it. Live with it.
2184 */
c8efcda2
JH
2185 kaddr = kmap_atomic(dst);
2186 uaddr = (void __user *)(addr & PAGE_MASK);
2187
2188 /*
2189 * On architectures with software "accessed" bits, we would
2190 * take a double page fault, so mark it accessed here.
2191 */
528b3653 2192 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
c8efcda2 2193 pte_t entry;
5d2a2dbb 2194
c8efcda2 2195 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
528b3653 2196 locked = true;
c8efcda2
JH
2197 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2198 /*
2199 * Other thread has already handled the fault
2200 * and we don't need to do anything. If it's
2201 * not the case, the fault will be triggered
2202 * again on the same address.
2203 */
2204 ret = false;
2205 goto pte_unlock;
2206 }
2207
2208 entry = pte_mkyoung(vmf->orig_pte);
2209 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2210 update_mmu_cache(vma, addr, vmf->pte);
2211 }
2212
2213 /*
2214 * This really shouldn't fail, because the page is there
2215 * in the page tables. But it might just be unreadable,
2216 * in which case we just give up and fill the result with
2217 * zeroes.
2218 */
2219 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
528b3653
KS
2220 if (locked)
2221 goto warn;
2222
2223 /* Re-validate under PTL if the page is still mapped */
2224 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2225 locked = true;
2226 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2227 /* The PTE changed under us. Retry page fault. */
2228 ret = false;
2229 goto pte_unlock;
2230 }
2231
5d2a2dbb 2232 /*
528b3653
KS
2233 * The same page can be mapped back since last copy attampt.
2234 * Try to copy again under PTL.
5d2a2dbb 2235 */
528b3653
KS
2236 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2237 /*
2238 * Give a warn in case there can be some obscure
2239 * use-case
2240 */
2241warn:
2242 WARN_ON_ONCE(1);
2243 clear_page(kaddr);
2244 }
c8efcda2
JH
2245 }
2246
2247 ret = true;
2248
2249pte_unlock:
528b3653 2250 if (locked)
c8efcda2
JH
2251 pte_unmap_unlock(vmf->pte, vmf->ptl);
2252 kunmap_atomic(kaddr);
2253 flush_dcache_page(dst);
2254
2255 return ret;
6aab341e
LT
2256}
2257
c20cd45e
MH
2258static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2259{
2260 struct file *vm_file = vma->vm_file;
2261
2262 if (vm_file)
2263 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2264
2265 /*
2266 * Special mappings (e.g. VDSO) do not have any file so fake
2267 * a default GFP_KERNEL for them.
2268 */
2269 return GFP_KERNEL;
2270}
2271
fb09a464
KS
2272/*
2273 * Notify the address space that the page is about to become writable so that
2274 * it can prohibit this or wait for the page to get into an appropriate state.
2275 *
2276 * We do this without the lock held, so that it can sleep if it needs to.
2277 */
2b740303 2278static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2279{
2b740303 2280 vm_fault_t ret;
38b8cb7f
JK
2281 struct page *page = vmf->page;
2282 unsigned int old_flags = vmf->flags;
fb09a464 2283
38b8cb7f 2284 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2285
dc617f29
DW
2286 if (vmf->vma->vm_file &&
2287 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2288 return VM_FAULT_SIGBUS;
2289
11bac800 2290 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2291 /* Restore original flags so that caller is not surprised */
2292 vmf->flags = old_flags;
fb09a464
KS
2293 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2294 return ret;
2295 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2296 lock_page(page);
2297 if (!page->mapping) {
2298 unlock_page(page);
2299 return 0; /* retry */
2300 }
2301 ret |= VM_FAULT_LOCKED;
2302 } else
2303 VM_BUG_ON_PAGE(!PageLocked(page), page);
2304 return ret;
2305}
2306
97ba0c2b
JK
2307/*
2308 * Handle dirtying of a page in shared file mapping on a write fault.
2309 *
2310 * The function expects the page to be locked and unlocks it.
2311 */
69191d05 2312static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2313{
69191d05 2314 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2315 struct address_space *mapping;
69191d05 2316 struct page *page = vmf->page;
97ba0c2b
JK
2317 bool dirtied;
2318 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2319
2320 dirtied = set_page_dirty(page);
2321 VM_BUG_ON_PAGE(PageAnon(page), page);
2322 /*
2323 * Take a local copy of the address_space - page.mapping may be zeroed
2324 * by truncate after unlock_page(). The address_space itself remains
2325 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2326 * release semantics to prevent the compiler from undoing this copying.
2327 */
2328 mapping = page_rmapping(page);
2329 unlock_page(page);
2330
69191d05
JW
2331 if (!page_mkwrite)
2332 file_update_time(vma->vm_file);
2333
2334 /*
2335 * Throttle page dirtying rate down to writeback speed.
2336 *
2337 * mapping may be NULL here because some device drivers do not
2338 * set page.mapping but still dirty their pages
2339 *
2340 * Drop the mmap_sem before waiting on IO, if we can. The file
2341 * is pinning the mapping, as per above.
2342 */
97ba0c2b 2343 if ((dirtied || page_mkwrite) && mapping) {
69191d05
JW
2344 struct file *fpin;
2345
2346 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2347 balance_dirty_pages_ratelimited(mapping);
69191d05
JW
2348 if (fpin) {
2349 fput(fpin);
2350 return VM_FAULT_RETRY;
2351 }
97ba0c2b
JK
2352 }
2353
69191d05 2354 return 0;
97ba0c2b
JK
2355}
2356
4e047f89
SR
2357/*
2358 * Handle write page faults for pages that can be reused in the current vma
2359 *
2360 * This can happen either due to the mapping being with the VM_SHARED flag,
2361 * or due to us being the last reference standing to the page. In either
2362 * case, all we need to do here is to mark the page as writable and update
2363 * any related book-keeping.
2364 */
997dd98d 2365static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2366 __releases(vmf->ptl)
4e047f89 2367{
82b0f8c3 2368 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2369 struct page *page = vmf->page;
4e047f89
SR
2370 pte_t entry;
2371 /*
2372 * Clear the pages cpupid information as the existing
2373 * information potentially belongs to a now completely
2374 * unrelated process.
2375 */
2376 if (page)
2377 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2378
2994302b
JK
2379 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2380 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2381 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2382 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2383 update_mmu_cache(vma, vmf->address, vmf->pte);
2384 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2385}
2386
2f38ab2c
SR
2387/*
2388 * Handle the case of a page which we actually need to copy to a new page.
2389 *
2390 * Called with mmap_sem locked and the old page referenced, but
2391 * without the ptl held.
2392 *
2393 * High level logic flow:
2394 *
2395 * - Allocate a page, copy the content of the old page to the new one.
2396 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2397 * - Take the PTL. If the pte changed, bail out and release the allocated page
2398 * - If the pte is still the way we remember it, update the page table and all
2399 * relevant references. This includes dropping the reference the page-table
2400 * held to the old page, as well as updating the rmap.
2401 * - In any case, unlock the PTL and drop the reference we took to the old page.
2402 */
2b740303 2403static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2404{
82b0f8c3 2405 struct vm_area_struct *vma = vmf->vma;
bae473a4 2406 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2407 struct page *old_page = vmf->page;
2f38ab2c 2408 struct page *new_page = NULL;
2f38ab2c
SR
2409 pte_t entry;
2410 int page_copied = 0;
2f38ab2c 2411 struct mem_cgroup *memcg;
ac46d4f3 2412 struct mmu_notifier_range range;
2f38ab2c
SR
2413
2414 if (unlikely(anon_vma_prepare(vma)))
2415 goto oom;
2416
2994302b 2417 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2418 new_page = alloc_zeroed_user_highpage_movable(vma,
2419 vmf->address);
2f38ab2c
SR
2420 if (!new_page)
2421 goto oom;
2422 } else {
bae473a4 2423 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2424 vmf->address);
2f38ab2c
SR
2425 if (!new_page)
2426 goto oom;
c8efcda2
JH
2427
2428 if (!cow_user_page(new_page, old_page, vmf)) {
2429 /*
2430 * COW failed, if the fault was solved by other,
2431 * it's fine. If not, userspace would re-fault on
2432 * the same address and we will handle the fault
2433 * from the second attempt.
2434 */
2435 put_page(new_page);
2436 if (old_page)
2437 put_page(old_page);
2438 return 0;
2439 }
2f38ab2c 2440 }
2f38ab2c 2441
2cf85583 2442 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2443 goto oom_free_new;
2444
eb3c24f3
MG
2445 __SetPageUptodate(new_page);
2446
7269f999 2447 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2448 vmf->address & PAGE_MASK,
ac46d4f3
JG
2449 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2450 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2451
2452 /*
2453 * Re-check the pte - we dropped the lock
2454 */
82b0f8c3 2455 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2456 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2457 if (old_page) {
2458 if (!PageAnon(old_page)) {
eca56ff9
JM
2459 dec_mm_counter_fast(mm,
2460 mm_counter_file(old_page));
2f38ab2c
SR
2461 inc_mm_counter_fast(mm, MM_ANONPAGES);
2462 }
2463 } else {
2464 inc_mm_counter_fast(mm, MM_ANONPAGES);
2465 }
2994302b 2466 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2467 entry = mk_pte(new_page, vma->vm_page_prot);
2468 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2469 /*
2470 * Clear the pte entry and flush it first, before updating the
2471 * pte with the new entry. This will avoid a race condition
2472 * seen in the presence of one thread doing SMC and another
2473 * thread doing COW.
2474 */
82b0f8c3
JK
2475 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2476 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2477 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2478 lru_cache_add_active_or_unevictable(new_page, vma);
2479 /*
2480 * We call the notify macro here because, when using secondary
2481 * mmu page tables (such as kvm shadow page tables), we want the
2482 * new page to be mapped directly into the secondary page table.
2483 */
82b0f8c3
JK
2484 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2485 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2486 if (old_page) {
2487 /*
2488 * Only after switching the pte to the new page may
2489 * we remove the mapcount here. Otherwise another
2490 * process may come and find the rmap count decremented
2491 * before the pte is switched to the new page, and
2492 * "reuse" the old page writing into it while our pte
2493 * here still points into it and can be read by other
2494 * threads.
2495 *
2496 * The critical issue is to order this
2497 * page_remove_rmap with the ptp_clear_flush above.
2498 * Those stores are ordered by (if nothing else,)
2499 * the barrier present in the atomic_add_negative
2500 * in page_remove_rmap.
2501 *
2502 * Then the TLB flush in ptep_clear_flush ensures that
2503 * no process can access the old page before the
2504 * decremented mapcount is visible. And the old page
2505 * cannot be reused until after the decremented
2506 * mapcount is visible. So transitively, TLBs to
2507 * old page will be flushed before it can be reused.
2508 */
d281ee61 2509 page_remove_rmap(old_page, false);
2f38ab2c
SR
2510 }
2511
2512 /* Free the old page.. */
2513 new_page = old_page;
2514 page_copied = 1;
2515 } else {
f627c2f5 2516 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2517 }
2518
2519 if (new_page)
09cbfeaf 2520 put_page(new_page);
2f38ab2c 2521
82b0f8c3 2522 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2523 /*
2524 * No need to double call mmu_notifier->invalidate_range() callback as
2525 * the above ptep_clear_flush_notify() did already call it.
2526 */
ac46d4f3 2527 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2528 if (old_page) {
2529 /*
2530 * Don't let another task, with possibly unlocked vma,
2531 * keep the mlocked page.
2532 */
2533 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2534 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2535 if (PageMlocked(old_page))
2536 munlock_vma_page(old_page);
2f38ab2c
SR
2537 unlock_page(old_page);
2538 }
09cbfeaf 2539 put_page(old_page);
2f38ab2c
SR
2540 }
2541 return page_copied ? VM_FAULT_WRITE : 0;
2542oom_free_new:
09cbfeaf 2543 put_page(new_page);
2f38ab2c
SR
2544oom:
2545 if (old_page)
09cbfeaf 2546 put_page(old_page);
2f38ab2c
SR
2547 return VM_FAULT_OOM;
2548}
2549
66a6197c
JK
2550/**
2551 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2552 * writeable once the page is prepared
2553 *
2554 * @vmf: structure describing the fault
2555 *
2556 * This function handles all that is needed to finish a write page fault in a
2557 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2558 * It handles locking of PTE and modifying it.
66a6197c
JK
2559 *
2560 * The function expects the page to be locked or other protection against
2561 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2562 *
2563 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2564 * we acquired PTE lock.
66a6197c 2565 */
2b740303 2566vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2567{
2568 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2569 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2570 &vmf->ptl);
2571 /*
2572 * We might have raced with another page fault while we released the
2573 * pte_offset_map_lock.
2574 */
2575 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2576 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2577 return VM_FAULT_NOPAGE;
66a6197c
JK
2578 }
2579 wp_page_reuse(vmf);
a19e2553 2580 return 0;
66a6197c
JK
2581}
2582
dd906184
BH
2583/*
2584 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2585 * mapping
2586 */
2b740303 2587static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2588{
82b0f8c3 2589 struct vm_area_struct *vma = vmf->vma;
bae473a4 2590
dd906184 2591 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2592 vm_fault_t ret;
dd906184 2593
82b0f8c3 2594 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2595 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2596 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2597 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2598 return ret;
66a6197c 2599 return finish_mkwrite_fault(vmf);
dd906184 2600 }
997dd98d
JK
2601 wp_page_reuse(vmf);
2602 return VM_FAULT_WRITE;
dd906184
BH
2603}
2604
2b740303 2605static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2606 __releases(vmf->ptl)
93e478d4 2607{
82b0f8c3 2608 struct vm_area_struct *vma = vmf->vma;
69191d05 2609 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 2610
a41b70d6 2611 get_page(vmf->page);
93e478d4 2612
93e478d4 2613 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2614 vm_fault_t tmp;
93e478d4 2615
82b0f8c3 2616 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2617 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2618 if (unlikely(!tmp || (tmp &
2619 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2620 put_page(vmf->page);
93e478d4
SR
2621 return tmp;
2622 }
66a6197c 2623 tmp = finish_mkwrite_fault(vmf);
a19e2553 2624 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2625 unlock_page(vmf->page);
a41b70d6 2626 put_page(vmf->page);
66a6197c 2627 return tmp;
93e478d4 2628 }
66a6197c
JK
2629 } else {
2630 wp_page_reuse(vmf);
997dd98d 2631 lock_page(vmf->page);
93e478d4 2632 }
69191d05 2633 ret |= fault_dirty_shared_page(vmf);
997dd98d 2634 put_page(vmf->page);
93e478d4 2635
69191d05 2636 return ret;
93e478d4
SR
2637}
2638
1da177e4
LT
2639/*
2640 * This routine handles present pages, when users try to write
2641 * to a shared page. It is done by copying the page to a new address
2642 * and decrementing the shared-page counter for the old page.
2643 *
1da177e4
LT
2644 * Note that this routine assumes that the protection checks have been
2645 * done by the caller (the low-level page fault routine in most cases).
2646 * Thus we can safely just mark it writable once we've done any necessary
2647 * COW.
2648 *
2649 * We also mark the page dirty at this point even though the page will
2650 * change only once the write actually happens. This avoids a few races,
2651 * and potentially makes it more efficient.
2652 *
8f4e2101
HD
2653 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2654 * but allow concurrent faults), with pte both mapped and locked.
2655 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2656 */
2b740303 2657static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2658 __releases(vmf->ptl)
1da177e4 2659{
82b0f8c3 2660 struct vm_area_struct *vma = vmf->vma;
1da177e4 2661
a41b70d6
JK
2662 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2663 if (!vmf->page) {
251b97f5 2664 /*
64e45507
PF
2665 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2666 * VM_PFNMAP VMA.
251b97f5
PZ
2667 *
2668 * We should not cow pages in a shared writeable mapping.
dd906184 2669 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2670 */
2671 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2672 (VM_WRITE|VM_SHARED))
2994302b 2673 return wp_pfn_shared(vmf);
2f38ab2c 2674
82b0f8c3 2675 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2676 return wp_page_copy(vmf);
251b97f5 2677 }
1da177e4 2678
d08b3851 2679 /*
ee6a6457
PZ
2680 * Take out anonymous pages first, anonymous shared vmas are
2681 * not dirty accountable.
d08b3851 2682 */
52d1e606 2683 if (PageAnon(vmf->page)) {
ba3c4ce6 2684 int total_map_swapcount;
52d1e606
KT
2685 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2686 page_count(vmf->page) != 1))
2687 goto copy;
a41b70d6
JK
2688 if (!trylock_page(vmf->page)) {
2689 get_page(vmf->page);
82b0f8c3 2690 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2691 lock_page(vmf->page);
82b0f8c3
JK
2692 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2693 vmf->address, &vmf->ptl);
2994302b 2694 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2695 unlock_page(vmf->page);
82b0f8c3 2696 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2697 put_page(vmf->page);
28766805 2698 return 0;
ab967d86 2699 }
a41b70d6 2700 put_page(vmf->page);
ee6a6457 2701 }
52d1e606
KT
2702 if (PageKsm(vmf->page)) {
2703 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2704 vmf->address);
2705 unlock_page(vmf->page);
2706 if (!reused)
2707 goto copy;
2708 wp_page_reuse(vmf);
2709 return VM_FAULT_WRITE;
2710 }
ba3c4ce6
HY
2711 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2712 if (total_map_swapcount == 1) {
6d0a07ed
AA
2713 /*
2714 * The page is all ours. Move it to
2715 * our anon_vma so the rmap code will
2716 * not search our parent or siblings.
2717 * Protected against the rmap code by
2718 * the page lock.
2719 */
a41b70d6 2720 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2721 }
a41b70d6 2722 unlock_page(vmf->page);
997dd98d
JK
2723 wp_page_reuse(vmf);
2724 return VM_FAULT_WRITE;
b009c024 2725 }
a41b70d6 2726 unlock_page(vmf->page);
ee6a6457 2727 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2728 (VM_WRITE|VM_SHARED))) {
a41b70d6 2729 return wp_page_shared(vmf);
1da177e4 2730 }
52d1e606 2731copy:
1da177e4
LT
2732 /*
2733 * Ok, we need to copy. Oh, well..
2734 */
a41b70d6 2735 get_page(vmf->page);
28766805 2736
82b0f8c3 2737 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2738 return wp_page_copy(vmf);
1da177e4
LT
2739}
2740
97a89413 2741static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2742 unsigned long start_addr, unsigned long end_addr,
2743 struct zap_details *details)
2744{
f5cc4eef 2745 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2746}
2747
f808c13f 2748static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2749 struct zap_details *details)
2750{
2751 struct vm_area_struct *vma;
1da177e4
LT
2752 pgoff_t vba, vea, zba, zea;
2753
6b2dbba8 2754 vma_interval_tree_foreach(vma, root,
1da177e4 2755 details->first_index, details->last_index) {
1da177e4
LT
2756
2757 vba = vma->vm_pgoff;
d6e93217 2758 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2759 zba = details->first_index;
2760 if (zba < vba)
2761 zba = vba;
2762 zea = details->last_index;
2763 if (zea > vea)
2764 zea = vea;
2765
97a89413 2766 unmap_mapping_range_vma(vma,
1da177e4
LT
2767 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2768 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2769 details);
1da177e4
LT
2770 }
2771}
2772
977fbdcd
MW
2773/**
2774 * unmap_mapping_pages() - Unmap pages from processes.
2775 * @mapping: The address space containing pages to be unmapped.
2776 * @start: Index of first page to be unmapped.
2777 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2778 * @even_cows: Whether to unmap even private COWed pages.
2779 *
2780 * Unmap the pages in this address space from any userspace process which
2781 * has them mmaped. Generally, you want to remove COWed pages as well when
2782 * a file is being truncated, but not when invalidating pages from the page
2783 * cache.
2784 */
2785void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2786 pgoff_t nr, bool even_cows)
2787{
2788 struct zap_details details = { };
2789
2790 details.check_mapping = even_cows ? NULL : mapping;
2791 details.first_index = start;
2792 details.last_index = start + nr - 1;
2793 if (details.last_index < details.first_index)
2794 details.last_index = ULONG_MAX;
2795
2796 i_mmap_lock_write(mapping);
2797 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2798 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2799 i_mmap_unlock_write(mapping);
2800}
2801
1da177e4 2802/**
8a5f14a2 2803 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2804 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2805 * file.
2806 *
3d41088f 2807 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2808 * @holebegin: byte in first page to unmap, relative to the start of
2809 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2810 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2811 * must keep the partial page. In contrast, we must get rid of
2812 * partial pages.
2813 * @holelen: size of prospective hole in bytes. This will be rounded
2814 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2815 * end of the file.
2816 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2817 * but 0 when invalidating pagecache, don't throw away private data.
2818 */
2819void unmap_mapping_range(struct address_space *mapping,
2820 loff_t const holebegin, loff_t const holelen, int even_cows)
2821{
1da177e4
LT
2822 pgoff_t hba = holebegin >> PAGE_SHIFT;
2823 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2824
2825 /* Check for overflow. */
2826 if (sizeof(holelen) > sizeof(hlen)) {
2827 long long holeend =
2828 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2829 if (holeend & ~(long long)ULONG_MAX)
2830 hlen = ULONG_MAX - hba + 1;
2831 }
2832
977fbdcd 2833 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2834}
2835EXPORT_SYMBOL(unmap_mapping_range);
2836
1da177e4 2837/*
8f4e2101
HD
2838 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2839 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2840 * We return with pte unmapped and unlocked.
2841 *
2842 * We return with the mmap_sem locked or unlocked in the same cases
2843 * as does filemap_fault().
1da177e4 2844 */
2b740303 2845vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2846{
82b0f8c3 2847 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2848 struct page *page = NULL, *swapcache;
00501b53 2849 struct mem_cgroup *memcg;
65500d23 2850 swp_entry_t entry;
1da177e4 2851 pte_t pte;
d065bd81 2852 int locked;
ad8c2ee8 2853 int exclusive = 0;
2b740303 2854 vm_fault_t ret = 0;
1da177e4 2855
eaf649eb 2856 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2857 goto out;
65500d23 2858
2994302b 2859 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2860 if (unlikely(non_swap_entry(entry))) {
2861 if (is_migration_entry(entry)) {
82b0f8c3
JK
2862 migration_entry_wait(vma->vm_mm, vmf->pmd,
2863 vmf->address);
5042db43 2864 } else if (is_device_private_entry(entry)) {
897e6365
CH
2865 vmf->page = device_private_entry_to_page(entry);
2866 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
2867 } else if (is_hwpoison_entry(entry)) {
2868 ret = VM_FAULT_HWPOISON;
2869 } else {
2994302b 2870 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2871 ret = VM_FAULT_SIGBUS;
d1737fdb 2872 }
0697212a
CL
2873 goto out;
2874 }
0bcac06f
MK
2875
2876
0ff92245 2877 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2878 page = lookup_swap_cache(entry, vma, vmf->address);
2879 swapcache = page;
f8020772 2880
1da177e4 2881 if (!page) {
0bcac06f
MK
2882 struct swap_info_struct *si = swp_swap_info(entry);
2883
aa8d22a1 2884 if (si->flags & SWP_SYNCHRONOUS_IO &&
eb085574 2885 __swap_count(entry) == 1) {
0bcac06f 2886 /* skip swapcache */
e9e9b7ec
MK
2887 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2888 vmf->address);
0bcac06f
MK
2889 if (page) {
2890 __SetPageLocked(page);
2891 __SetPageSwapBacked(page);
2892 set_page_private(page, entry.val);
2893 lru_cache_add_anon(page);
2894 swap_readpage(page, true);
2895 }
aa8d22a1 2896 } else {
e9e9b7ec
MK
2897 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2898 vmf);
aa8d22a1 2899 swapcache = page;
0bcac06f
MK
2900 }
2901
1da177e4
LT
2902 if (!page) {
2903 /*
8f4e2101
HD
2904 * Back out if somebody else faulted in this pte
2905 * while we released the pte lock.
1da177e4 2906 */
82b0f8c3
JK
2907 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2908 vmf->address, &vmf->ptl);
2994302b 2909 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2910 ret = VM_FAULT_OOM;
0ff92245 2911 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2912 goto unlock;
1da177e4
LT
2913 }
2914
2915 /* Had to read the page from swap area: Major fault */
2916 ret = VM_FAULT_MAJOR;
f8891e5e 2917 count_vm_event(PGMAJFAULT);
2262185c 2918 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2919 } else if (PageHWPoison(page)) {
71f72525
WF
2920 /*
2921 * hwpoisoned dirty swapcache pages are kept for killing
2922 * owner processes (which may be unknown at hwpoison time)
2923 */
d1737fdb
AK
2924 ret = VM_FAULT_HWPOISON;
2925 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2926 goto out_release;
1da177e4
LT
2927 }
2928
82b0f8c3 2929 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2930
073e587e 2931 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2932 if (!locked) {
2933 ret |= VM_FAULT_RETRY;
2934 goto out_release;
2935 }
073e587e 2936
4969c119 2937 /*
31c4a3d3
HD
2938 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2939 * release the swapcache from under us. The page pin, and pte_same
2940 * test below, are not enough to exclude that. Even if it is still
2941 * swapcache, we need to check that the page's swap has not changed.
4969c119 2942 */
0bcac06f
MK
2943 if (unlikely((!PageSwapCache(page) ||
2944 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2945 goto out_page;
2946
82b0f8c3 2947 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2948 if (unlikely(!page)) {
2949 ret = VM_FAULT_OOM;
2950 page = swapcache;
cbf86cfe 2951 goto out_page;
5ad64688
HD
2952 }
2953
2cf85583
TH
2954 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2955 &memcg, false)) {
8a9f3ccd 2956 ret = VM_FAULT_OOM;
bc43f75c 2957 goto out_page;
8a9f3ccd
BS
2958 }
2959
1da177e4 2960 /*
8f4e2101 2961 * Back out if somebody else already faulted in this pte.
1da177e4 2962 */
82b0f8c3
JK
2963 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2964 &vmf->ptl);
2994302b 2965 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2966 goto out_nomap;
b8107480
KK
2967
2968 if (unlikely(!PageUptodate(page))) {
2969 ret = VM_FAULT_SIGBUS;
2970 goto out_nomap;
1da177e4
LT
2971 }
2972
8c7c6e34
KH
2973 /*
2974 * The page isn't present yet, go ahead with the fault.
2975 *
2976 * Be careful about the sequence of operations here.
2977 * To get its accounting right, reuse_swap_page() must be called
2978 * while the page is counted on swap but not yet in mapcount i.e.
2979 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2980 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2981 */
1da177e4 2982
bae473a4
KS
2983 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2984 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2985 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2986 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2987 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2988 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2989 ret |= VM_FAULT_WRITE;
d281ee61 2990 exclusive = RMAP_EXCLUSIVE;
1da177e4 2991 }
1da177e4 2992 flush_icache_page(vma, page);
2994302b 2993 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2994 pte = pte_mksoft_dirty(pte);
82b0f8c3 2995 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 2996 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 2997 vmf->orig_pte = pte;
0bcac06f
MK
2998
2999 /* ksm created a completely new copy */
3000 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3001 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3002 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3003 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
3004 } else {
3005 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3006 mem_cgroup_commit_charge(page, memcg, true, false);
3007 activate_page(page);
00501b53 3008 }
1da177e4 3009
c475a8ab 3010 swap_free(entry);
5ccc5aba
VD
3011 if (mem_cgroup_swap_full(page) ||
3012 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3013 try_to_free_swap(page);
c475a8ab 3014 unlock_page(page);
0bcac06f 3015 if (page != swapcache && swapcache) {
4969c119
AA
3016 /*
3017 * Hold the lock to avoid the swap entry to be reused
3018 * until we take the PT lock for the pte_same() check
3019 * (to avoid false positives from pte_same). For
3020 * further safety release the lock after the swap_free
3021 * so that the swap count won't change under a
3022 * parallel locked swapcache.
3023 */
3024 unlock_page(swapcache);
09cbfeaf 3025 put_page(swapcache);
4969c119 3026 }
c475a8ab 3027
82b0f8c3 3028 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3029 ret |= do_wp_page(vmf);
61469f1d
HD
3030 if (ret & VM_FAULT_ERROR)
3031 ret &= VM_FAULT_ERROR;
1da177e4
LT
3032 goto out;
3033 }
3034
3035 /* No need to invalidate - it was non-present before */
82b0f8c3 3036 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3037unlock:
82b0f8c3 3038 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3039out:
3040 return ret;
b8107480 3041out_nomap:
f627c2f5 3042 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 3043 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3044out_page:
b8107480 3045 unlock_page(page);
4779cb31 3046out_release:
09cbfeaf 3047 put_page(page);
0bcac06f 3048 if (page != swapcache && swapcache) {
4969c119 3049 unlock_page(swapcache);
09cbfeaf 3050 put_page(swapcache);
4969c119 3051 }
65500d23 3052 return ret;
1da177e4
LT
3053}
3054
3055/*
8f4e2101
HD
3056 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3057 * but allow concurrent faults), and pte mapped but not yet locked.
3058 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3059 */
2b740303 3060static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3061{
82b0f8c3 3062 struct vm_area_struct *vma = vmf->vma;
00501b53 3063 struct mem_cgroup *memcg;
8f4e2101 3064 struct page *page;
2b740303 3065 vm_fault_t ret = 0;
1da177e4 3066 pte_t entry;
1da177e4 3067
6b7339f4
KS
3068 /* File mapping without ->vm_ops ? */
3069 if (vma->vm_flags & VM_SHARED)
3070 return VM_FAULT_SIGBUS;
3071
7267ec00
KS
3072 /*
3073 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3074 * pte_offset_map() on pmds where a huge pmd might be created
3075 * from a different thread.
3076 *
3077 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3078 * parallel threads are excluded by other means.
3079 *
3080 * Here we only have down_read(mmap_sem).
3081 */
4cf58924 3082 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3083 return VM_FAULT_OOM;
3084
3085 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3086 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3087 return 0;
3088
11ac5524 3089 /* Use the zero-page for reads */
82b0f8c3 3090 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3091 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3092 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3093 vma->vm_page_prot));
82b0f8c3
JK
3094 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3095 vmf->address, &vmf->ptl);
3096 if (!pte_none(*vmf->pte))
a13ea5b7 3097 goto unlock;
6b31d595
MH
3098 ret = check_stable_address_space(vma->vm_mm);
3099 if (ret)
3100 goto unlock;
6b251fc9
AA
3101 /* Deliver the page fault to userland, check inside PT lock */
3102 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3103 pte_unmap_unlock(vmf->pte, vmf->ptl);
3104 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3105 }
a13ea5b7
HD
3106 goto setpte;
3107 }
3108
557ed1fa 3109 /* Allocate our own private page. */
557ed1fa
NP
3110 if (unlikely(anon_vma_prepare(vma)))
3111 goto oom;
82b0f8c3 3112 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3113 if (!page)
3114 goto oom;
eb3c24f3 3115
2cf85583
TH
3116 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3117 false))
eb3c24f3
MG
3118 goto oom_free_page;
3119
52f37629
MK
3120 /*
3121 * The memory barrier inside __SetPageUptodate makes sure that
3122 * preceeding stores to the page contents become visible before
3123 * the set_pte_at() write.
3124 */
0ed361de 3125 __SetPageUptodate(page);
8f4e2101 3126
557ed1fa 3127 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3128 if (vma->vm_flags & VM_WRITE)
3129 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3130
82b0f8c3
JK
3131 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3132 &vmf->ptl);
3133 if (!pte_none(*vmf->pte))
557ed1fa 3134 goto release;
9ba69294 3135
6b31d595
MH
3136 ret = check_stable_address_space(vma->vm_mm);
3137 if (ret)
3138 goto release;
3139
6b251fc9
AA
3140 /* Deliver the page fault to userland, check inside PT lock */
3141 if (userfaultfd_missing(vma)) {
82b0f8c3 3142 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3143 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3144 put_page(page);
82b0f8c3 3145 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3146 }
3147
bae473a4 3148 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3149 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3150 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3151 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3152setpte:
82b0f8c3 3153 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3154
3155 /* No need to invalidate - it was non-present before */
82b0f8c3 3156 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3157unlock:
82b0f8c3 3158 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3159 return ret;
8f4e2101 3160release:
f627c2f5 3161 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3162 put_page(page);
8f4e2101 3163 goto unlock;
8a9f3ccd 3164oom_free_page:
09cbfeaf 3165 put_page(page);
65500d23 3166oom:
1da177e4
LT
3167 return VM_FAULT_OOM;
3168}
3169
9a95f3cf
PC
3170/*
3171 * The mmap_sem must have been held on entry, and may have been
3172 * released depending on flags and vma->vm_ops->fault() return value.
3173 * See filemap_fault() and __lock_page_retry().
3174 */
2b740303 3175static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3176{
82b0f8c3 3177 struct vm_area_struct *vma = vmf->vma;
2b740303 3178 vm_fault_t ret;
7eae74af 3179
63f3655f
MH
3180 /*
3181 * Preallocate pte before we take page_lock because this might lead to
3182 * deadlocks for memcg reclaim which waits for pages under writeback:
3183 * lock_page(A)
3184 * SetPageWriteback(A)
3185 * unlock_page(A)
3186 * lock_page(B)
3187 * lock_page(B)
3188 * pte_alloc_pne
3189 * shrink_page_list
3190 * wait_on_page_writeback(A)
3191 * SetPageWriteback(B)
3192 * unlock_page(B)
3193 * # flush A, B to clear the writeback
3194 */
3195 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3196 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3197 if (!vmf->prealloc_pte)
3198 return VM_FAULT_OOM;
3199 smp_wmb(); /* See comment in __pte_alloc() */
3200 }
3201
11bac800 3202 ret = vma->vm_ops->fault(vmf);
3917048d 3203 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3204 VM_FAULT_DONE_COW)))
bc2466e4 3205 return ret;
7eae74af 3206
667240e0 3207 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3208 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3209 unlock_page(vmf->page);
3210 put_page(vmf->page);
936ca80d 3211 vmf->page = NULL;
7eae74af
KS
3212 return VM_FAULT_HWPOISON;
3213 }
3214
3215 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3216 lock_page(vmf->page);
7eae74af 3217 else
667240e0 3218 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3219
7eae74af
KS
3220 return ret;
3221}
3222
d0f0931d
RZ
3223/*
3224 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3225 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3226 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3227 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3228 */
3229static int pmd_devmap_trans_unstable(pmd_t *pmd)
3230{
3231 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3232}
3233
2b740303 3234static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3235{
82b0f8c3 3236 struct vm_area_struct *vma = vmf->vma;
7267ec00 3237
82b0f8c3 3238 if (!pmd_none(*vmf->pmd))
7267ec00 3239 goto map_pte;
82b0f8c3
JK
3240 if (vmf->prealloc_pte) {
3241 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3242 if (unlikely(!pmd_none(*vmf->pmd))) {
3243 spin_unlock(vmf->ptl);
7267ec00
KS
3244 goto map_pte;
3245 }
3246
c4812909 3247 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3248 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3249 spin_unlock(vmf->ptl);
7f2b6ce8 3250 vmf->prealloc_pte = NULL;
4cf58924 3251 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3252 return VM_FAULT_OOM;
3253 }
3254map_pte:
3255 /*
3256 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3257 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3258 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3259 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3260 * running immediately after a huge pmd fault in a different thread of
3261 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3262 * All we have to ensure is that it is a regular pmd that we can walk
3263 * with pte_offset_map() and we can do that through an atomic read in
3264 * C, which is what pmd_trans_unstable() provides.
7267ec00 3265 */
d0f0931d 3266 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3267 return VM_FAULT_NOPAGE;
3268
d0f0931d
RZ
3269 /*
3270 * At this point we know that our vmf->pmd points to a page of ptes
3271 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3272 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3273 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3274 * be valid and we will re-check to make sure the vmf->pte isn't
3275 * pte_none() under vmf->ptl protection when we return to
3276 * alloc_set_pte().
3277 */
82b0f8c3
JK
3278 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3279 &vmf->ptl);
7267ec00
KS
3280 return 0;
3281}
3282
e496cf3d 3283#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
82b0f8c3 3284static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3285{
82b0f8c3 3286 struct vm_area_struct *vma = vmf->vma;
953c66c2 3287
82b0f8c3 3288 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3289 /*
3290 * We are going to consume the prealloc table,
3291 * count that as nr_ptes.
3292 */
c4812909 3293 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3294 vmf->prealloc_pte = NULL;
953c66c2
AK
3295}
3296
2b740303 3297static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3298{
82b0f8c3
JK
3299 struct vm_area_struct *vma = vmf->vma;
3300 bool write = vmf->flags & FAULT_FLAG_WRITE;
3301 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3302 pmd_t entry;
2b740303
SJ
3303 int i;
3304 vm_fault_t ret;
10102459
KS
3305
3306 if (!transhuge_vma_suitable(vma, haddr))
3307 return VM_FAULT_FALLBACK;
3308
3309 ret = VM_FAULT_FALLBACK;
3310 page = compound_head(page);
3311
953c66c2
AK
3312 /*
3313 * Archs like ppc64 need additonal space to store information
3314 * related to pte entry. Use the preallocated table for that.
3315 */
82b0f8c3 3316 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3317 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3318 if (!vmf->prealloc_pte)
953c66c2
AK
3319 return VM_FAULT_OOM;
3320 smp_wmb(); /* See comment in __pte_alloc() */
3321 }
3322
82b0f8c3
JK
3323 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3324 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3325 goto out;
3326
3327 for (i = 0; i < HPAGE_PMD_NR; i++)
3328 flush_icache_page(vma, page + i);
3329
3330 entry = mk_huge_pmd(page, vma->vm_page_prot);
3331 if (write)
f55e1014 3332 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3333
fadae295 3334 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3335 page_add_file_rmap(page, true);
953c66c2
AK
3336 /*
3337 * deposit and withdraw with pmd lock held
3338 */
3339 if (arch_needs_pgtable_deposit())
82b0f8c3 3340 deposit_prealloc_pte(vmf);
10102459 3341
82b0f8c3 3342 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3343
82b0f8c3 3344 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3345
3346 /* fault is handled */
3347 ret = 0;
95ecedcd 3348 count_vm_event(THP_FILE_MAPPED);
10102459 3349out:
82b0f8c3 3350 spin_unlock(vmf->ptl);
10102459
KS
3351 return ret;
3352}
3353#else
2b740303 3354static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3355{
3356 BUILD_BUG();
3357 return 0;
3358}
3359#endif
3360
8c6e50b0 3361/**
7267ec00
KS
3362 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3363 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3364 *
82b0f8c3 3365 * @vmf: fault environment
7267ec00 3366 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3367 * @page: page to map
8c6e50b0 3368 *
82b0f8c3
JK
3369 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3370 * return.
8c6e50b0
KS
3371 *
3372 * Target users are page handler itself and implementations of
3373 * vm_ops->map_pages.
a862f68a
MR
3374 *
3375 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3376 */
2b740303 3377vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3378 struct page *page)
3bb97794 3379{
82b0f8c3
JK
3380 struct vm_area_struct *vma = vmf->vma;
3381 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3382 pte_t entry;
2b740303 3383 vm_fault_t ret;
10102459 3384
82b0f8c3 3385 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3386 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3387 /* THP on COW? */
3388 VM_BUG_ON_PAGE(memcg, page);
3389
82b0f8c3 3390 ret = do_set_pmd(vmf, page);
10102459 3391 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3392 return ret;
10102459 3393 }
3bb97794 3394
82b0f8c3
JK
3395 if (!vmf->pte) {
3396 ret = pte_alloc_one_map(vmf);
7267ec00 3397 if (ret)
b0b9b3df 3398 return ret;
7267ec00
KS
3399 }
3400
3401 /* Re-check under ptl */
b0b9b3df
HD
3402 if (unlikely(!pte_none(*vmf->pte)))
3403 return VM_FAULT_NOPAGE;
7267ec00 3404
3bb97794
KS
3405 flush_icache_page(vma, page);
3406 entry = mk_pte(page, vma->vm_page_prot);
3407 if (write)
3408 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3409 /* copy-on-write page */
3410 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3411 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3412 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3413 mem_cgroup_commit_charge(page, memcg, false, false);
3414 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3415 } else {
eca56ff9 3416 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3417 page_add_file_rmap(page, false);
3bb97794 3418 }
82b0f8c3 3419 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3420
3421 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3422 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3423
b0b9b3df 3424 return 0;
3bb97794
KS
3425}
3426
9118c0cb
JK
3427
3428/**
3429 * finish_fault - finish page fault once we have prepared the page to fault
3430 *
3431 * @vmf: structure describing the fault
3432 *
3433 * This function handles all that is needed to finish a page fault once the
3434 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3435 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3436 * addition.
9118c0cb
JK
3437 *
3438 * The function expects the page to be locked and on success it consumes a
3439 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3440 *
3441 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3442 */
2b740303 3443vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3444{
3445 struct page *page;
2b740303 3446 vm_fault_t ret = 0;
9118c0cb
JK
3447
3448 /* Did we COW the page? */
3449 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3450 !(vmf->vma->vm_flags & VM_SHARED))
3451 page = vmf->cow_page;
3452 else
3453 page = vmf->page;
6b31d595
MH
3454
3455 /*
3456 * check even for read faults because we might have lost our CoWed
3457 * page
3458 */
3459 if (!(vmf->vma->vm_flags & VM_SHARED))
3460 ret = check_stable_address_space(vmf->vma->vm_mm);
3461 if (!ret)
3462 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3463 if (vmf->pte)
3464 pte_unmap_unlock(vmf->pte, vmf->ptl);
3465 return ret;
3466}
3467
3a91053a
KS
3468static unsigned long fault_around_bytes __read_mostly =
3469 rounddown_pow_of_two(65536);
a9b0f861 3470
a9b0f861
KS
3471#ifdef CONFIG_DEBUG_FS
3472static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3473{
a9b0f861 3474 *val = fault_around_bytes;
1592eef0
KS
3475 return 0;
3476}
3477
b4903d6e 3478/*
da391d64
WK
3479 * fault_around_bytes must be rounded down to the nearest page order as it's
3480 * what do_fault_around() expects to see.
b4903d6e 3481 */
a9b0f861 3482static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3483{
a9b0f861 3484 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3485 return -EINVAL;
b4903d6e
AR
3486 if (val > PAGE_SIZE)
3487 fault_around_bytes = rounddown_pow_of_two(val);
3488 else
3489 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3490 return 0;
3491}
0a1345f8 3492DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3493 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3494
3495static int __init fault_around_debugfs(void)
3496{
d9f7979c
GKH
3497 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3498 &fault_around_bytes_fops);
1592eef0
KS
3499 return 0;
3500}
3501late_initcall(fault_around_debugfs);
1592eef0 3502#endif
8c6e50b0 3503
1fdb412b
KS
3504/*
3505 * do_fault_around() tries to map few pages around the fault address. The hope
3506 * is that the pages will be needed soon and this will lower the number of
3507 * faults to handle.
3508 *
3509 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3510 * not ready to be mapped: not up-to-date, locked, etc.
3511 *
3512 * This function is called with the page table lock taken. In the split ptlock
3513 * case the page table lock only protects only those entries which belong to
3514 * the page table corresponding to the fault address.
3515 *
3516 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3517 * only once.
3518 *
da391d64
WK
3519 * fault_around_bytes defines how many bytes we'll try to map.
3520 * do_fault_around() expects it to be set to a power of two less than or equal
3521 * to PTRS_PER_PTE.
1fdb412b 3522 *
da391d64
WK
3523 * The virtual address of the area that we map is naturally aligned to
3524 * fault_around_bytes rounded down to the machine page size
3525 * (and therefore to page order). This way it's easier to guarantee
3526 * that we don't cross page table boundaries.
1fdb412b 3527 */
2b740303 3528static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3529{
82b0f8c3 3530 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3531 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3532 pgoff_t end_pgoff;
2b740303
SJ
3533 int off;
3534 vm_fault_t ret = 0;
8c6e50b0 3535
4db0c3c2 3536 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3537 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3538
82b0f8c3
JK
3539 vmf->address = max(address & mask, vmf->vma->vm_start);
3540 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3541 start_pgoff -= off;
8c6e50b0
KS
3542
3543 /*
da391d64
WK
3544 * end_pgoff is either the end of the page table, the end of
3545 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3546 */
bae473a4 3547 end_pgoff = start_pgoff -
82b0f8c3 3548 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3549 PTRS_PER_PTE - 1;
82b0f8c3 3550 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3551 start_pgoff + nr_pages - 1);
8c6e50b0 3552
82b0f8c3 3553 if (pmd_none(*vmf->pmd)) {
4cf58924 3554 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3555 if (!vmf->prealloc_pte)
c5f88bd2 3556 goto out;
7267ec00 3557 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3558 }
3559
82b0f8c3 3560 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3561
7267ec00 3562 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3563 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3564 ret = VM_FAULT_NOPAGE;
3565 goto out;
3566 }
3567
3568 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3569 if (!vmf->pte)
7267ec00
KS
3570 goto out;
3571
3572 /* check if the page fault is solved */
82b0f8c3
JK
3573 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3574 if (!pte_none(*vmf->pte))
7267ec00 3575 ret = VM_FAULT_NOPAGE;
82b0f8c3 3576 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3577out:
82b0f8c3
JK
3578 vmf->address = address;
3579 vmf->pte = NULL;
7267ec00 3580 return ret;
8c6e50b0
KS
3581}
3582
2b740303 3583static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3584{
82b0f8c3 3585 struct vm_area_struct *vma = vmf->vma;
2b740303 3586 vm_fault_t ret = 0;
8c6e50b0
KS
3587
3588 /*
3589 * Let's call ->map_pages() first and use ->fault() as fallback
3590 * if page by the offset is not ready to be mapped (cold cache or
3591 * something).
3592 */
9b4bdd2f 3593 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3594 ret = do_fault_around(vmf);
7267ec00
KS
3595 if (ret)
3596 return ret;
8c6e50b0 3597 }
e655fb29 3598
936ca80d 3599 ret = __do_fault(vmf);
e655fb29
KS
3600 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3601 return ret;
3602
9118c0cb 3603 ret |= finish_fault(vmf);
936ca80d 3604 unlock_page(vmf->page);
7267ec00 3605 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3606 put_page(vmf->page);
e655fb29
KS
3607 return ret;
3608}
3609
2b740303 3610static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3611{
82b0f8c3 3612 struct vm_area_struct *vma = vmf->vma;
2b740303 3613 vm_fault_t ret;
ec47c3b9
KS
3614
3615 if (unlikely(anon_vma_prepare(vma)))
3616 return VM_FAULT_OOM;
3617
936ca80d
JK
3618 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3619 if (!vmf->cow_page)
ec47c3b9
KS
3620 return VM_FAULT_OOM;
3621
2cf85583 3622 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3623 &vmf->memcg, false)) {
936ca80d 3624 put_page(vmf->cow_page);
ec47c3b9
KS
3625 return VM_FAULT_OOM;
3626 }
3627
936ca80d 3628 ret = __do_fault(vmf);
ec47c3b9
KS
3629 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3630 goto uncharge_out;
3917048d
JK
3631 if (ret & VM_FAULT_DONE_COW)
3632 return ret;
ec47c3b9 3633
b1aa812b 3634 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3635 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3636
9118c0cb 3637 ret |= finish_fault(vmf);
b1aa812b
JK
3638 unlock_page(vmf->page);
3639 put_page(vmf->page);
7267ec00
KS
3640 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3641 goto uncharge_out;
ec47c3b9
KS
3642 return ret;
3643uncharge_out:
3917048d 3644 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3645 put_page(vmf->cow_page);
ec47c3b9
KS
3646 return ret;
3647}
3648
2b740303 3649static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3650{
82b0f8c3 3651 struct vm_area_struct *vma = vmf->vma;
2b740303 3652 vm_fault_t ret, tmp;
1d65f86d 3653
936ca80d 3654 ret = __do_fault(vmf);
7eae74af 3655 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3656 return ret;
1da177e4
LT
3657
3658 /*
f0c6d4d2
KS
3659 * Check if the backing address space wants to know that the page is
3660 * about to become writable
1da177e4 3661 */
fb09a464 3662 if (vma->vm_ops->page_mkwrite) {
936ca80d 3663 unlock_page(vmf->page);
38b8cb7f 3664 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3665 if (unlikely(!tmp ||
3666 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3667 put_page(vmf->page);
fb09a464 3668 return tmp;
4294621f 3669 }
fb09a464
KS
3670 }
3671
9118c0cb 3672 ret |= finish_fault(vmf);
7267ec00
KS
3673 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3674 VM_FAULT_RETRY))) {
936ca80d
JK
3675 unlock_page(vmf->page);
3676 put_page(vmf->page);
f0c6d4d2 3677 return ret;
1da177e4 3678 }
b827e496 3679
69191d05 3680 ret |= fault_dirty_shared_page(vmf);
1d65f86d 3681 return ret;
54cb8821 3682}
d00806b1 3683
9a95f3cf
PC
3684/*
3685 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3686 * but allow concurrent faults).
3687 * The mmap_sem may have been released depending on flags and our
3688 * return value. See filemap_fault() and __lock_page_or_retry().
fc8efd2d
JS
3689 * If mmap_sem is released, vma may become invalid (for example
3690 * by other thread calling munmap()).
9a95f3cf 3691 */
2b740303 3692static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3693{
82b0f8c3 3694 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3695 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3696 vm_fault_t ret;
54cb8821 3697
ff09d7ec
AK
3698 /*
3699 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3700 */
3701 if (!vma->vm_ops->fault) {
3702 /*
3703 * If we find a migration pmd entry or a none pmd entry, which
3704 * should never happen, return SIGBUS
3705 */
3706 if (unlikely(!pmd_present(*vmf->pmd)))
3707 ret = VM_FAULT_SIGBUS;
3708 else {
3709 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3710 vmf->pmd,
3711 vmf->address,
3712 &vmf->ptl);
3713 /*
3714 * Make sure this is not a temporary clearing of pte
3715 * by holding ptl and checking again. A R/M/W update
3716 * of pte involves: take ptl, clearing the pte so that
3717 * we don't have concurrent modification by hardware
3718 * followed by an update.
3719 */
3720 if (unlikely(pte_none(*vmf->pte)))
3721 ret = VM_FAULT_SIGBUS;
3722 else
3723 ret = VM_FAULT_NOPAGE;
3724
3725 pte_unmap_unlock(vmf->pte, vmf->ptl);
3726 }
3727 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3728 ret = do_read_fault(vmf);
3729 else if (!(vma->vm_flags & VM_SHARED))
3730 ret = do_cow_fault(vmf);
3731 else
3732 ret = do_shared_fault(vmf);
3733
3734 /* preallocated pagetable is unused: free it */
3735 if (vmf->prealloc_pte) {
fc8efd2d 3736 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3737 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3738 }
3739 return ret;
54cb8821
NP
3740}
3741
b19a9939 3742static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3743 unsigned long addr, int page_nid,
3744 int *flags)
9532fec1
MG
3745{
3746 get_page(page);
3747
3748 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3749 if (page_nid == numa_node_id()) {
9532fec1 3750 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3751 *flags |= TNF_FAULT_LOCAL;
3752 }
9532fec1
MG
3753
3754 return mpol_misplaced(page, vma, addr);
3755}
3756
2b740303 3757static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3758{
82b0f8c3 3759 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3760 struct page *page = NULL;
98fa15f3 3761 int page_nid = NUMA_NO_NODE;
90572890 3762 int last_cpupid;
cbee9f88 3763 int target_nid;
b8593bfd 3764 bool migrated = false;
04a86453 3765 pte_t pte, old_pte;
288bc549 3766 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3767 int flags = 0;
d10e63f2
MG
3768
3769 /*
166f61b9
TH
3770 * The "pte" at this point cannot be used safely without
3771 * validation through pte_unmap_same(). It's of NUMA type but
3772 * the pfn may be screwed if the read is non atomic.
166f61b9 3773 */
82b0f8c3
JK
3774 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3775 spin_lock(vmf->ptl);
cee216a6 3776 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3777 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3778 goto out;
3779 }
3780
cee216a6
AK
3781 /*
3782 * Make it present again, Depending on how arch implementes non
3783 * accessible ptes, some can allow access by kernel mode.
3784 */
04a86453
AK
3785 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3786 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 3787 pte = pte_mkyoung(pte);
b191f9b1
MG
3788 if (was_writable)
3789 pte = pte_mkwrite(pte);
04a86453 3790 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 3791 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3792
82b0f8c3 3793 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3794 if (!page) {
82b0f8c3 3795 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3796 return 0;
3797 }
3798
e81c4802
KS
3799 /* TODO: handle PTE-mapped THP */
3800 if (PageCompound(page)) {
82b0f8c3 3801 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3802 return 0;
3803 }
3804
6688cc05 3805 /*
bea66fbd
MG
3806 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3807 * much anyway since they can be in shared cache state. This misses
3808 * the case where a mapping is writable but the process never writes
3809 * to it but pte_write gets cleared during protection updates and
3810 * pte_dirty has unpredictable behaviour between PTE scan updates,
3811 * background writeback, dirty balancing and application behaviour.
6688cc05 3812 */
d59dc7bc 3813 if (!pte_write(pte))
6688cc05
PZ
3814 flags |= TNF_NO_GROUP;
3815
dabe1d99
RR
3816 /*
3817 * Flag if the page is shared between multiple address spaces. This
3818 * is later used when determining whether to group tasks together
3819 */
3820 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3821 flags |= TNF_SHARED;
3822
90572890 3823 last_cpupid = page_cpupid_last(page);
8191acbd 3824 page_nid = page_to_nid(page);
82b0f8c3 3825 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3826 &flags);
82b0f8c3 3827 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 3828 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
3829 put_page(page);
3830 goto out;
3831 }
3832
3833 /* Migrate to the requested node */
1bc115d8 3834 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3835 if (migrated) {
8191acbd 3836 page_nid = target_nid;
6688cc05 3837 flags |= TNF_MIGRATED;
074c2381
MG
3838 } else
3839 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3840
3841out:
98fa15f3 3842 if (page_nid != NUMA_NO_NODE)
6688cc05 3843 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3844 return 0;
3845}
3846
2b740303 3847static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3848{
f4200391 3849 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3850 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3851 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3852 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3853 return VM_FAULT_FALLBACK;
3854}
3855
183f24aa 3856/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3857static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3858{
82b0f8c3
JK
3859 if (vma_is_anonymous(vmf->vma))
3860 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3861 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3862 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3863
3864 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3865 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3866 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3867
b96375f7
MW
3868 return VM_FAULT_FALLBACK;
3869}
3870
38e08854
LS
3871static inline bool vma_is_accessible(struct vm_area_struct *vma)
3872{
3873 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3874}
3875
2b740303 3876static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3877{
3878#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3879 /* No support for anonymous transparent PUD pages yet */
3880 if (vma_is_anonymous(vmf->vma))
3881 return VM_FAULT_FALLBACK;
3882 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3883 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3884#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3885 return VM_FAULT_FALLBACK;
3886}
3887
2b740303 3888static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3889{
3890#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3891 /* No support for anonymous transparent PUD pages yet */
3892 if (vma_is_anonymous(vmf->vma))
3893 return VM_FAULT_FALLBACK;
3894 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3895 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3896#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3897 return VM_FAULT_FALLBACK;
3898}
3899
1da177e4
LT
3900/*
3901 * These routines also need to handle stuff like marking pages dirty
3902 * and/or accessed for architectures that don't do it in hardware (most
3903 * RISC architectures). The early dirtying is also good on the i386.
3904 *
3905 * There is also a hook called "update_mmu_cache()" that architectures
3906 * with external mmu caches can use to update those (ie the Sparc or
3907 * PowerPC hashed page tables that act as extended TLBs).
3908 *
7267ec00
KS
3909 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3910 * concurrent faults).
9a95f3cf 3911 *
7267ec00
KS
3912 * The mmap_sem may have been released depending on flags and our return value.
3913 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3914 */
2b740303 3915static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3916{
3917 pte_t entry;
3918
82b0f8c3 3919 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3920 /*
3921 * Leave __pte_alloc() until later: because vm_ops->fault may
3922 * want to allocate huge page, and if we expose page table
3923 * for an instant, it will be difficult to retract from
3924 * concurrent faults and from rmap lookups.
3925 */
82b0f8c3 3926 vmf->pte = NULL;
7267ec00
KS
3927 } else {
3928 /* See comment in pte_alloc_one_map() */
d0f0931d 3929 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3930 return 0;
3931 /*
3932 * A regular pmd is established and it can't morph into a huge
3933 * pmd from under us anymore at this point because we hold the
3934 * mmap_sem read mode and khugepaged takes it in write mode.
3935 * So now it's safe to run pte_offset_map().
3936 */
82b0f8c3 3937 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3938 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3939
3940 /*
3941 * some architectures can have larger ptes than wordsize,
3942 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3943 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3944 * accesses. The code below just needs a consistent view
3945 * for the ifs and we later double check anyway with the
7267ec00
KS
3946 * ptl lock held. So here a barrier will do.
3947 */
3948 barrier();
2994302b 3949 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3950 pte_unmap(vmf->pte);
3951 vmf->pte = NULL;
65500d23 3952 }
1da177e4
LT
3953 }
3954
82b0f8c3
JK
3955 if (!vmf->pte) {
3956 if (vma_is_anonymous(vmf->vma))
3957 return do_anonymous_page(vmf);
7267ec00 3958 else
82b0f8c3 3959 return do_fault(vmf);
7267ec00
KS
3960 }
3961
2994302b
JK
3962 if (!pte_present(vmf->orig_pte))
3963 return do_swap_page(vmf);
7267ec00 3964
2994302b
JK
3965 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3966 return do_numa_page(vmf);
d10e63f2 3967
82b0f8c3
JK
3968 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3969 spin_lock(vmf->ptl);
2994302b 3970 entry = vmf->orig_pte;
82b0f8c3 3971 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3972 goto unlock;
82b0f8c3 3973 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3974 if (!pte_write(entry))
2994302b 3975 return do_wp_page(vmf);
1da177e4
LT
3976 entry = pte_mkdirty(entry);
3977 }
3978 entry = pte_mkyoung(entry);
82b0f8c3
JK
3979 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3980 vmf->flags & FAULT_FLAG_WRITE)) {
3981 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3982 } else {
3983 /*
3984 * This is needed only for protection faults but the arch code
3985 * is not yet telling us if this is a protection fault or not.
3986 * This still avoids useless tlb flushes for .text page faults
3987 * with threads.
3988 */
82b0f8c3
JK
3989 if (vmf->flags & FAULT_FLAG_WRITE)
3990 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3991 }
8f4e2101 3992unlock:
82b0f8c3 3993 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3994 return 0;
1da177e4
LT
3995}
3996
3997/*
3998 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3999 *
4000 * The mmap_sem may have been released depending on flags and our
4001 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4002 */
2b740303
SJ
4003static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4004 unsigned long address, unsigned int flags)
1da177e4 4005{
82b0f8c3 4006 struct vm_fault vmf = {
bae473a4 4007 .vma = vma,
1a29d85e 4008 .address = address & PAGE_MASK,
bae473a4 4009 .flags = flags,
0721ec8b 4010 .pgoff = linear_page_index(vma, address),
667240e0 4011 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4012 };
fde26bed 4013 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4014 struct mm_struct *mm = vma->vm_mm;
1da177e4 4015 pgd_t *pgd;
c2febafc 4016 p4d_t *p4d;
2b740303 4017 vm_fault_t ret;
1da177e4 4018
1da177e4 4019 pgd = pgd_offset(mm, address);
c2febafc
KS
4020 p4d = p4d_alloc(mm, pgd, address);
4021 if (!p4d)
4022 return VM_FAULT_OOM;
a00cc7d9 4023
c2febafc 4024 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4025 if (!vmf.pud)
c74df32c 4026 return VM_FAULT_OOM;
7635d9cb 4027 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4028 ret = create_huge_pud(&vmf);
4029 if (!(ret & VM_FAULT_FALLBACK))
4030 return ret;
4031 } else {
4032 pud_t orig_pud = *vmf.pud;
4033
4034 barrier();
4035 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4036
a00cc7d9
MW
4037 /* NUMA case for anonymous PUDs would go here */
4038
f6f37321 4039 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4040 ret = wp_huge_pud(&vmf, orig_pud);
4041 if (!(ret & VM_FAULT_FALLBACK))
4042 return ret;
4043 } else {
4044 huge_pud_set_accessed(&vmf, orig_pud);
4045 return 0;
4046 }
4047 }
4048 }
4049
4050 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4051 if (!vmf.pmd)
c74df32c 4052 return VM_FAULT_OOM;
7635d9cb 4053 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4054 ret = create_huge_pmd(&vmf);
c0292554
KS
4055 if (!(ret & VM_FAULT_FALLBACK))
4056 return ret;
71e3aac0 4057 } else {
82b0f8c3 4058 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4059
71e3aac0 4060 barrier();
84c3fc4e
ZY
4061 if (unlikely(is_swap_pmd(orig_pmd))) {
4062 VM_BUG_ON(thp_migration_supported() &&
4063 !is_pmd_migration_entry(orig_pmd));
4064 if (is_pmd_migration_entry(orig_pmd))
4065 pmd_migration_entry_wait(mm, vmf.pmd);
4066 return 0;
4067 }
5c7fb56e 4068 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4069 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4070 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4071
f6f37321 4072 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4073 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4074 if (!(ret & VM_FAULT_FALLBACK))
4075 return ret;
a1dd450b 4076 } else {
82b0f8c3 4077 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4078 return 0;
1f1d06c3 4079 }
71e3aac0
AA
4080 }
4081 }
4082
82b0f8c3 4083 return handle_pte_fault(&vmf);
1da177e4
LT
4084}
4085
9a95f3cf
PC
4086/*
4087 * By the time we get here, we already hold the mm semaphore
4088 *
4089 * The mmap_sem may have been released depending on flags and our
4090 * return value. See filemap_fault() and __lock_page_or_retry().
4091 */
2b740303 4092vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 4093 unsigned int flags)
519e5247 4094{
2b740303 4095 vm_fault_t ret;
519e5247
JW
4096
4097 __set_current_state(TASK_RUNNING);
4098
4099 count_vm_event(PGFAULT);
2262185c 4100 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4101
4102 /* do counter updates before entering really critical section. */
4103 check_sync_rss_stat(current);
4104
de0c799b
LD
4105 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4106 flags & FAULT_FLAG_INSTRUCTION,
4107 flags & FAULT_FLAG_REMOTE))
4108 return VM_FAULT_SIGSEGV;
4109
519e5247
JW
4110 /*
4111 * Enable the memcg OOM handling for faults triggered in user
4112 * space. Kernel faults are handled more gracefully.
4113 */
4114 if (flags & FAULT_FLAG_USER)
29ef680a 4115 mem_cgroup_enter_user_fault();
519e5247 4116
bae473a4
KS
4117 if (unlikely(is_vm_hugetlb_page(vma)))
4118 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4119 else
4120 ret = __handle_mm_fault(vma, address, flags);
519e5247 4121
49426420 4122 if (flags & FAULT_FLAG_USER) {
29ef680a 4123 mem_cgroup_exit_user_fault();
166f61b9
TH
4124 /*
4125 * The task may have entered a memcg OOM situation but
4126 * if the allocation error was handled gracefully (no
4127 * VM_FAULT_OOM), there is no need to kill anything.
4128 * Just clean up the OOM state peacefully.
4129 */
4130 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4131 mem_cgroup_oom_synchronize(false);
49426420 4132 }
3812c8c8 4133
519e5247
JW
4134 return ret;
4135}
e1d6d01a 4136EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4137
90eceff1
KS
4138#ifndef __PAGETABLE_P4D_FOLDED
4139/*
4140 * Allocate p4d page table.
4141 * We've already handled the fast-path in-line.
4142 */
4143int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4144{
4145 p4d_t *new = p4d_alloc_one(mm, address);
4146 if (!new)
4147 return -ENOMEM;
4148
4149 smp_wmb(); /* See comment in __pte_alloc */
4150
4151 spin_lock(&mm->page_table_lock);
4152 if (pgd_present(*pgd)) /* Another has populated it */
4153 p4d_free(mm, new);
4154 else
4155 pgd_populate(mm, pgd, new);
4156 spin_unlock(&mm->page_table_lock);
4157 return 0;
4158}
4159#endif /* __PAGETABLE_P4D_FOLDED */
4160
1da177e4
LT
4161#ifndef __PAGETABLE_PUD_FOLDED
4162/*
4163 * Allocate page upper directory.
872fec16 4164 * We've already handled the fast-path in-line.
1da177e4 4165 */
c2febafc 4166int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4167{
c74df32c
HD
4168 pud_t *new = pud_alloc_one(mm, address);
4169 if (!new)
1bb3630e 4170 return -ENOMEM;
1da177e4 4171
362a61ad
NP
4172 smp_wmb(); /* See comment in __pte_alloc */
4173
872fec16 4174 spin_lock(&mm->page_table_lock);
c2febafc 4175#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4176 if (!p4d_present(*p4d)) {
4177 mm_inc_nr_puds(mm);
c2febafc 4178 p4d_populate(mm, p4d, new);
b4e98d9a 4179 } else /* Another has populated it */
5e541973 4180 pud_free(mm, new);
b4e98d9a
KS
4181#else
4182 if (!pgd_present(*p4d)) {
4183 mm_inc_nr_puds(mm);
c2febafc 4184 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4185 } else /* Another has populated it */
4186 pud_free(mm, new);
c2febafc 4187#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4188 spin_unlock(&mm->page_table_lock);
1bb3630e 4189 return 0;
1da177e4
LT
4190}
4191#endif /* __PAGETABLE_PUD_FOLDED */
4192
4193#ifndef __PAGETABLE_PMD_FOLDED
4194/*
4195 * Allocate page middle directory.
872fec16 4196 * We've already handled the fast-path in-line.
1da177e4 4197 */
1bb3630e 4198int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4199{
a00cc7d9 4200 spinlock_t *ptl;
c74df32c
HD
4201 pmd_t *new = pmd_alloc_one(mm, address);
4202 if (!new)
1bb3630e 4203 return -ENOMEM;
1da177e4 4204
362a61ad
NP
4205 smp_wmb(); /* See comment in __pte_alloc */
4206
a00cc7d9 4207 ptl = pud_lock(mm, pud);
1da177e4 4208#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4209 if (!pud_present(*pud)) {
4210 mm_inc_nr_pmds(mm);
1bb3630e 4211 pud_populate(mm, pud, new);
dc6c9a35 4212 } else /* Another has populated it */
5e541973 4213 pmd_free(mm, new);
dc6c9a35
KS
4214#else
4215 if (!pgd_present(*pud)) {
4216 mm_inc_nr_pmds(mm);
1bb3630e 4217 pgd_populate(mm, pud, new);
dc6c9a35
KS
4218 } else /* Another has populated it */
4219 pmd_free(mm, new);
1da177e4 4220#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4221 spin_unlock(ptl);
1bb3630e 4222 return 0;
e0f39591 4223}
1da177e4
LT
4224#endif /* __PAGETABLE_PMD_FOLDED */
4225
5f369a12
PB
4226int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4227 struct mmu_notifier_range *range, pte_t **ptepp,
4228 pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4229{
4230 pgd_t *pgd;
c2febafc 4231 p4d_t *p4d;
f8ad0f49
JW
4232 pud_t *pud;
4233 pmd_t *pmd;
4234 pte_t *ptep;
4235
4236 pgd = pgd_offset(mm, address);
4237 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4238 goto out;
4239
c2febafc
KS
4240 p4d = p4d_offset(pgd, address);
4241 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4242 goto out;
4243
4244 pud = pud_offset(p4d, address);
f8ad0f49
JW
4245 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4246 goto out;
4247
4248 pmd = pmd_offset(pud, address);
f66055ab 4249 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4250
09796395
RZ
4251 if (pmd_huge(*pmd)) {
4252 if (!pmdpp)
4253 goto out;
4254
ac46d4f3 4255 if (range) {
7269f999 4256 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4257 NULL, mm, address & PMD_MASK,
4258 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4259 mmu_notifier_invalidate_range_start(range);
a4d1a885 4260 }
09796395
RZ
4261 *ptlp = pmd_lock(mm, pmd);
4262 if (pmd_huge(*pmd)) {
4263 *pmdpp = pmd;
4264 return 0;
4265 }
4266 spin_unlock(*ptlp);
ac46d4f3
JG
4267 if (range)
4268 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4269 }
4270
4271 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4272 goto out;
4273
ac46d4f3 4274 if (range) {
7269f999 4275 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4276 address & PAGE_MASK,
4277 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4278 mmu_notifier_invalidate_range_start(range);
a4d1a885 4279 }
f8ad0f49 4280 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4281 if (!pte_present(*ptep))
4282 goto unlock;
4283 *ptepp = ptep;
4284 return 0;
4285unlock:
4286 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4287 if (range)
4288 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4289out:
4290 return -EINVAL;
4291}
4292
5f369a12
PB
4293/**
4294 * follow_pte - look up PTE at a user virtual address
4295 * @mm: the mm_struct of the target address space
4296 * @address: user virtual address
4297 * @ptepp: location to store found PTE
4298 * @ptlp: location to store the lock for the PTE
4299 *
4300 * On a successful return, the pointer to the PTE is stored in @ptepp;
4301 * the corresponding lock is taken and its location is stored in @ptlp.
4302 * The contents of the PTE are only stable until @ptlp is released;
4303 * any further use, if any, must be protected against invalidation
4304 * with MMU notifiers.
4305 *
4306 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4307 * should be taken for read.
4308 *
4309 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4310 * it is not a good general-purpose API.
4311 *
4312 * Return: zero on success, -ve otherwise.
4313 */
4314int follow_pte(struct mm_struct *mm, unsigned long address,
4315 pte_t **ptepp, spinlock_t **ptlp)
4316{
4317 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4318}
4319EXPORT_SYMBOL_GPL(follow_pte);
4320
3b6748e2
JW
4321/**
4322 * follow_pfn - look up PFN at a user virtual address
4323 * @vma: memory mapping
4324 * @address: user virtual address
4325 * @pfn: location to store found PFN
4326 *
4327 * Only IO mappings and raw PFN mappings are allowed.
4328 *
5f369a12
PB
4329 * This function does not allow the caller to read the permissions
4330 * of the PTE. Do not use it.
4331 *
a862f68a 4332 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4333 */
4334int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4335 unsigned long *pfn)
4336{
4337 int ret = -EINVAL;
4338 spinlock_t *ptl;
4339 pte_t *ptep;
4340
4341 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4342 return ret;
4343
5f369a12 4344 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
4345 if (ret)
4346 return ret;
4347 *pfn = pte_pfn(*ptep);
4348 pte_unmap_unlock(ptep, ptl);
4349 return 0;
4350}
4351EXPORT_SYMBOL(follow_pfn);
4352
28b2ee20 4353#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4354int follow_phys(struct vm_area_struct *vma,
4355 unsigned long address, unsigned int flags,
4356 unsigned long *prot, resource_size_t *phys)
28b2ee20 4357{
03668a4d 4358 int ret = -EINVAL;
28b2ee20
RR
4359 pte_t *ptep, pte;
4360 spinlock_t *ptl;
28b2ee20 4361
d87fe660 4362 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4363 goto out;
28b2ee20 4364
5f369a12 4365 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4366 goto out;
28b2ee20 4367 pte = *ptep;
03668a4d 4368
f6f37321 4369 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4370 goto unlock;
28b2ee20
RR
4371
4372 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4373 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4374
03668a4d 4375 ret = 0;
28b2ee20
RR
4376unlock:
4377 pte_unmap_unlock(ptep, ptl);
4378out:
d87fe660 4379 return ret;
28b2ee20
RR
4380}
4381
4382int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4383 void *buf, int len, int write)
4384{
4385 resource_size_t phys_addr;
4386 unsigned long prot = 0;
2bc7273b 4387 void __iomem *maddr;
28b2ee20
RR
4388 int offset = addr & (PAGE_SIZE-1);
4389
d87fe660 4390 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4391 return -EINVAL;
4392
9cb12d7b 4393 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4394 if (!maddr)
4395 return -ENOMEM;
4396
28b2ee20
RR
4397 if (write)
4398 memcpy_toio(maddr + offset, buf, len);
4399 else
4400 memcpy_fromio(buf, maddr + offset, len);
4401 iounmap(maddr);
4402
4403 return len;
4404}
5a73633e 4405EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4406#endif
4407
0ec76a11 4408/*
206cb636
SW
4409 * Access another process' address space as given in mm. If non-NULL, use the
4410 * given task for page fault accounting.
0ec76a11 4411 */
84d77d3f 4412int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4413 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4414{
0ec76a11 4415 struct vm_area_struct *vma;
0ec76a11 4416 void *old_buf = buf;
442486ec 4417 int write = gup_flags & FOLL_WRITE;
0ec76a11 4418
1e426fe2
KK
4419 if (down_read_killable(&mm->mmap_sem))
4420 return 0;
4421
183ff22b 4422 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4423 while (len) {
4424 int bytes, ret, offset;
4425 void *maddr;
28b2ee20 4426 struct page *page = NULL;
0ec76a11 4427
1e987790 4428 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4429 gup_flags, &page, &vma, NULL);
28b2ee20 4430 if (ret <= 0) {
dbffcd03
RR
4431#ifndef CONFIG_HAVE_IOREMAP_PROT
4432 break;
4433#else
28b2ee20
RR
4434 /*
4435 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4436 * we can access using slightly different code.
4437 */
28b2ee20 4438 vma = find_vma(mm, addr);
fe936dfc 4439 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4440 break;
4441 if (vma->vm_ops && vma->vm_ops->access)
4442 ret = vma->vm_ops->access(vma, addr, buf,
4443 len, write);
4444 if (ret <= 0)
28b2ee20
RR
4445 break;
4446 bytes = ret;
dbffcd03 4447#endif
0ec76a11 4448 } else {
28b2ee20
RR
4449 bytes = len;
4450 offset = addr & (PAGE_SIZE-1);
4451 if (bytes > PAGE_SIZE-offset)
4452 bytes = PAGE_SIZE-offset;
4453
4454 maddr = kmap(page);
4455 if (write) {
4456 copy_to_user_page(vma, page, addr,
4457 maddr + offset, buf, bytes);
4458 set_page_dirty_lock(page);
4459 } else {
4460 copy_from_user_page(vma, page, addr,
4461 buf, maddr + offset, bytes);
4462 }
4463 kunmap(page);
09cbfeaf 4464 put_page(page);
0ec76a11 4465 }
0ec76a11
DH
4466 len -= bytes;
4467 buf += bytes;
4468 addr += bytes;
4469 }
4470 up_read(&mm->mmap_sem);
0ec76a11
DH
4471
4472 return buf - old_buf;
4473}
03252919 4474
5ddd36b9 4475/**
ae91dbfc 4476 * access_remote_vm - access another process' address space
5ddd36b9
SW
4477 * @mm: the mm_struct of the target address space
4478 * @addr: start address to access
4479 * @buf: source or destination buffer
4480 * @len: number of bytes to transfer
6347e8d5 4481 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4482 *
4483 * The caller must hold a reference on @mm.
a862f68a
MR
4484 *
4485 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4486 */
4487int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4488 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4489{
6347e8d5 4490 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4491}
4492
206cb636
SW
4493/*
4494 * Access another process' address space.
4495 * Source/target buffer must be kernel space,
4496 * Do not walk the page table directly, use get_user_pages
4497 */
4498int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4499 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4500{
4501 struct mm_struct *mm;
4502 int ret;
4503
4504 mm = get_task_mm(tsk);
4505 if (!mm)
4506 return 0;
4507
f307ab6d 4508 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4509
206cb636
SW
4510 mmput(mm);
4511
4512 return ret;
4513}
fcd35857 4514EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4515
03252919
AK
4516/*
4517 * Print the name of a VMA.
4518 */
4519void print_vma_addr(char *prefix, unsigned long ip)
4520{
4521 struct mm_struct *mm = current->mm;
4522 struct vm_area_struct *vma;
4523
e8bff74a 4524 /*
0a7f682d 4525 * we might be running from an atomic context so we cannot sleep
e8bff74a 4526 */
0a7f682d 4527 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4528 return;
4529
03252919
AK
4530 vma = find_vma(mm, ip);
4531 if (vma && vma->vm_file) {
4532 struct file *f = vma->vm_file;
0a7f682d 4533 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4534 if (buf) {
2fbc57c5 4535 char *p;
03252919 4536
9bf39ab2 4537 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4538 if (IS_ERR(p))
4539 p = "?";
2fbc57c5 4540 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4541 vma->vm_start,
4542 vma->vm_end - vma->vm_start);
4543 free_page((unsigned long)buf);
4544 }
4545 }
51a07e50 4546 up_read(&mm->mmap_sem);
03252919 4547}
3ee1afa3 4548
662bbcb2 4549#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4550void __might_fault(const char *file, int line)
3ee1afa3 4551{
95156f00
PZ
4552 /*
4553 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4554 * holding the mmap_sem, this is safe because kernel memory doesn't
4555 * get paged out, therefore we'll never actually fault, and the
4556 * below annotations will generate false positives.
4557 */
db68ce10 4558 if (uaccess_kernel())
95156f00 4559 return;
9ec23531 4560 if (pagefault_disabled())
662bbcb2 4561 return;
9ec23531
DH
4562 __might_sleep(file, line, 0);
4563#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4564 if (current->mm)
3ee1afa3 4565 might_lock_read(&current->mm->mmap_sem);
9ec23531 4566#endif
3ee1afa3 4567}
9ec23531 4568EXPORT_SYMBOL(__might_fault);
3ee1afa3 4569#endif
47ad8475
AA
4570
4571#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4572/*
4573 * Process all subpages of the specified huge page with the specified
4574 * operation. The target subpage will be processed last to keep its
4575 * cache lines hot.
4576 */
4577static inline void process_huge_page(
4578 unsigned long addr_hint, unsigned int pages_per_huge_page,
4579 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4580 void *arg)
47ad8475 4581{
c79b57e4
HY
4582 int i, n, base, l;
4583 unsigned long addr = addr_hint &
4584 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4585
c6ddfb6c 4586 /* Process target subpage last to keep its cache lines hot */
47ad8475 4587 might_sleep();
c79b57e4
HY
4588 n = (addr_hint - addr) / PAGE_SIZE;
4589 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4590 /* If target subpage in first half of huge page */
c79b57e4
HY
4591 base = 0;
4592 l = n;
c6ddfb6c 4593 /* Process subpages at the end of huge page */
c79b57e4
HY
4594 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4595 cond_resched();
c6ddfb6c 4596 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4597 }
4598 } else {
c6ddfb6c 4599 /* If target subpage in second half of huge page */
c79b57e4
HY
4600 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4601 l = pages_per_huge_page - n;
c6ddfb6c 4602 /* Process subpages at the begin of huge page */
c79b57e4
HY
4603 for (i = 0; i < base; i++) {
4604 cond_resched();
c6ddfb6c 4605 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4606 }
4607 }
4608 /*
c6ddfb6c
HY
4609 * Process remaining subpages in left-right-left-right pattern
4610 * towards the target subpage
c79b57e4
HY
4611 */
4612 for (i = 0; i < l; i++) {
4613 int left_idx = base + i;
4614 int right_idx = base + 2 * l - 1 - i;
4615
4616 cond_resched();
c6ddfb6c 4617 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4618 cond_resched();
c6ddfb6c 4619 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4620 }
4621}
4622
c6ddfb6c
HY
4623static void clear_gigantic_page(struct page *page,
4624 unsigned long addr,
4625 unsigned int pages_per_huge_page)
4626{
4627 int i;
4628 struct page *p = page;
4629
4630 might_sleep();
4631 for (i = 0; i < pages_per_huge_page;
4632 i++, p = mem_map_next(p, page, i)) {
4633 cond_resched();
4634 clear_user_highpage(p, addr + i * PAGE_SIZE);
4635 }
4636}
4637
4638static void clear_subpage(unsigned long addr, int idx, void *arg)
4639{
4640 struct page *page = arg;
4641
4642 clear_user_highpage(page + idx, addr);
4643}
4644
4645void clear_huge_page(struct page *page,
4646 unsigned long addr_hint, unsigned int pages_per_huge_page)
4647{
4648 unsigned long addr = addr_hint &
4649 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4650
4651 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4652 clear_gigantic_page(page, addr, pages_per_huge_page);
4653 return;
4654 }
4655
4656 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4657}
4658
47ad8475
AA
4659static void copy_user_gigantic_page(struct page *dst, struct page *src,
4660 unsigned long addr,
4661 struct vm_area_struct *vma,
4662 unsigned int pages_per_huge_page)
4663{
4664 int i;
4665 struct page *dst_base = dst;
4666 struct page *src_base = src;
4667
4668 for (i = 0; i < pages_per_huge_page; ) {
4669 cond_resched();
4670 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4671
4672 i++;
4673 dst = mem_map_next(dst, dst_base, i);
4674 src = mem_map_next(src, src_base, i);
4675 }
4676}
4677
c9f4cd71
HY
4678struct copy_subpage_arg {
4679 struct page *dst;
4680 struct page *src;
4681 struct vm_area_struct *vma;
4682};
4683
4684static void copy_subpage(unsigned long addr, int idx, void *arg)
4685{
4686 struct copy_subpage_arg *copy_arg = arg;
4687
4688 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4689 addr, copy_arg->vma);
4690}
4691
47ad8475 4692void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4693 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4694 unsigned int pages_per_huge_page)
4695{
c9f4cd71
HY
4696 unsigned long addr = addr_hint &
4697 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4698 struct copy_subpage_arg arg = {
4699 .dst = dst,
4700 .src = src,
4701 .vma = vma,
4702 };
47ad8475
AA
4703
4704 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4705 copy_user_gigantic_page(dst, src, addr, vma,
4706 pages_per_huge_page);
4707 return;
4708 }
4709
c9f4cd71 4710 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4711}
fa4d75c1
MK
4712
4713long copy_huge_page_from_user(struct page *dst_page,
4714 const void __user *usr_src,
810a56b9
MK
4715 unsigned int pages_per_huge_page,
4716 bool allow_pagefault)
fa4d75c1
MK
4717{
4718 void *src = (void *)usr_src;
4719 void *page_kaddr;
4720 unsigned long i, rc = 0;
4721 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
ca23cbbe 4722 struct page *subpage = dst_page;
fa4d75c1 4723
ca23cbbe
MK
4724 for (i = 0; i < pages_per_huge_page;
4725 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 4726 if (allow_pagefault)
ca23cbbe 4727 page_kaddr = kmap(subpage);
810a56b9 4728 else
ca23cbbe 4729 page_kaddr = kmap_atomic(subpage);
fa4d75c1
MK
4730 rc = copy_from_user(page_kaddr,
4731 (const void __user *)(src + i * PAGE_SIZE),
4732 PAGE_SIZE);
810a56b9 4733 if (allow_pagefault)
ca23cbbe 4734 kunmap(subpage);
810a56b9
MK
4735 else
4736 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4737
4738 ret_val -= (PAGE_SIZE - rc);
4739 if (rc)
4740 break;
4741
4742 cond_resched();
4743 }
4744 return ret_val;
4745}
47ad8475 4746#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4747
40b64acd 4748#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4749
4750static struct kmem_cache *page_ptl_cachep;
4751
4752void __init ptlock_cache_init(void)
4753{
4754 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4755 SLAB_PANIC, NULL);
4756}
4757
539edb58 4758bool ptlock_alloc(struct page *page)
49076ec2
KS
4759{
4760 spinlock_t *ptl;
4761
b35f1819 4762 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4763 if (!ptl)
4764 return false;
539edb58 4765 page->ptl = ptl;
49076ec2
KS
4766 return true;
4767}
4768
539edb58 4769void ptlock_free(struct page *page)
49076ec2 4770{
b35f1819 4771 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4772}
4773#endif