]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
netfilter: flowtable: use dev_fill_forward_path() to obtain ingress device
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
bce617ed
PX
73#include <linux/perf_event.h>
74#include <linux/ptrace.h>
e80d3909 75#include <linux/vmalloc.h>
1da177e4 76
b3d1411b
JFG
77#include <trace/events/kmem.h>
78
6952b61d 79#include <asm/io.h>
33a709b2 80#include <asm/mmu_context.h>
1da177e4 81#include <asm/pgalloc.h>
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4
LT
83#include <asm/tlb.h>
84#include <asm/tlbflush.h>
1da177e4 85
e80d3909 86#include "pgalloc-track.h"
42b77728
JB
87#include "internal.h"
88
af27d940 89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
91#endif
92
d41dee36 93#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
94/* use the per-pgdat data instead for discontigmem - mbligh */
95unsigned long max_mapnr;
1da177e4 96EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
97
98struct page *mem_map;
1da177e4
LT
99EXPORT_SYMBOL(mem_map);
100#endif
101
1da177e4
LT
102/*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
166f61b9 109void *high_memory;
1da177e4 110EXPORT_SYMBOL(high_memory);
1da177e4 111
32a93233
IM
112/*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118int randomize_va_space __read_mostly =
119#ifdef CONFIG_COMPAT_BRK
120 1;
121#else
122 2;
123#endif
a62eaf15 124
83d116c5
JH
125#ifndef arch_faults_on_old_pte
126static inline bool arch_faults_on_old_pte(void)
127{
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134}
135#endif
136
46bdb427
WD
137#ifndef arch_wants_old_prefaulted_pte
138static inline bool arch_wants_old_prefaulted_pte(void)
139{
140 /*
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
144 */
145 return false;
146}
147#endif
148
a62eaf15
AK
149static int __init disable_randmaps(char *s)
150{
151 randomize_va_space = 0;
9b41046c 152 return 1;
a62eaf15
AK
153}
154__setup("norandmaps", disable_randmaps);
155
62eede62 156unsigned long zero_pfn __read_mostly;
0b70068e
AB
157EXPORT_SYMBOL(zero_pfn);
158
166f61b9
TH
159unsigned long highest_memmap_pfn __read_mostly;
160
a13ea5b7
HD
161/*
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163 */
164static int __init init_zero_pfn(void)
165{
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 return 0;
168}
169core_initcall(init_zero_pfn);
a62eaf15 170
e4dcad20 171void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 172{
e4dcad20 173 trace_rss_stat(mm, member, count);
b3d1411b 174}
d559db08 175
34e55232
KH
176#if defined(SPLIT_RSS_COUNTING)
177
ea48cf78 178void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
179{
180 int i;
181
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
34e55232
KH
186 }
187 }
05af2e10 188 current->rss_stat.events = 0;
34e55232
KH
189}
190
191static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192{
193 struct task_struct *task = current;
194
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
197 else
198 add_mm_counter(mm, member, val);
199}
200#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203/* sync counter once per 64 page faults */
204#define TASK_RSS_EVENTS_THRESH (64)
205static void check_sync_rss_stat(struct task_struct *task)
206{
207 if (unlikely(task != current))
208 return;
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 210 sync_mm_rss(task->mm);
34e55232 211}
9547d01b 212#else /* SPLIT_RSS_COUNTING */
34e55232
KH
213
214#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217static void check_sync_rss_stat(struct task_struct *task)
218{
219}
220
9547d01b
PZ
221#endif /* SPLIT_RSS_COUNTING */
222
1da177e4
LT
223/*
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
226 */
9e1b32ca
BH
227static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 unsigned long addr)
1da177e4 229{
2f569afd 230 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 231 pmd_clear(pmd);
9e1b32ca 232 pte_free_tlb(tlb, token, addr);
c4812909 233 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
234}
235
e0da382c
HD
236static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
1da177e4
LT
239{
240 pmd_t *pmd;
241 unsigned long next;
e0da382c 242 unsigned long start;
1da177e4 243
e0da382c 244 start = addr;
1da177e4 245 pmd = pmd_offset(pud, addr);
1da177e4
LT
246 do {
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
249 continue;
9e1b32ca 250 free_pte_range(tlb, pmd, addr);
1da177e4
LT
251 } while (pmd++, addr = next, addr != end);
252
e0da382c
HD
253 start &= PUD_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= PUD_MASK;
258 if (!ceiling)
259 return;
1da177e4 260 }
e0da382c
HD
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pmd = pmd_offset(pud, start);
265 pud_clear(pud);
9e1b32ca 266 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 267 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
268}
269
c2febafc 270static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
1da177e4
LT
273{
274 pud_t *pud;
275 unsigned long next;
e0da382c 276 unsigned long start;
1da177e4 277
e0da382c 278 start = addr;
c2febafc 279 pud = pud_offset(p4d, addr);
1da177e4
LT
280 do {
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
283 continue;
e0da382c 284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
285 } while (pud++, addr = next, addr != end);
286
c2febafc
KS
287 start &= P4D_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= P4D_MASK;
292 if (!ceiling)
293 return;
294 }
295 if (end - 1 > ceiling - 1)
296 return;
297
298 pud = pud_offset(p4d, start);
299 p4d_clear(p4d);
300 pud_free_tlb(tlb, pud, start);
b4e98d9a 301 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
302}
303
304static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
307{
308 p4d_t *p4d;
309 unsigned long next;
310 unsigned long start;
311
312 start = addr;
313 p4d = p4d_offset(pgd, addr);
314 do {
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
317 continue;
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
320
e0da382c
HD
321 start &= PGDIR_MASK;
322 if (start < floor)
323 return;
324 if (ceiling) {
325 ceiling &= PGDIR_MASK;
326 if (!ceiling)
327 return;
1da177e4 328 }
e0da382c
HD
329 if (end - 1 > ceiling - 1)
330 return;
331
c2febafc 332 p4d = p4d_offset(pgd, start);
e0da382c 333 pgd_clear(pgd);
c2febafc 334 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
335}
336
337/*
e0da382c 338 * This function frees user-level page tables of a process.
1da177e4 339 */
42b77728 340void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
1da177e4
LT
343{
344 pgd_t *pgd;
345 unsigned long next;
e0da382c
HD
346
347 /*
348 * The next few lines have given us lots of grief...
349 *
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
353 *
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
361 *
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
366 *
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
371 */
1da177e4 372
e0da382c
HD
373 addr &= PMD_MASK;
374 if (addr < floor) {
375 addr += PMD_SIZE;
376 if (!addr)
377 return;
378 }
379 if (ceiling) {
380 ceiling &= PMD_MASK;
381 if (!ceiling)
382 return;
383 }
384 if (end - 1 > ceiling - 1)
385 end -= PMD_SIZE;
386 if (addr > end - 1)
387 return;
07e32661
AK
388 /*
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
391 */
ed6a7935 392 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 393 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
394 do {
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
397 continue;
c2febafc 398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 399 } while (pgd++, addr = next, addr != end);
e0da382c
HD
400}
401
42b77728 402void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 403 unsigned long floor, unsigned long ceiling)
e0da382c
HD
404{
405 while (vma) {
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
408
8f4f8c16 409 /*
25d9e2d1
NP
410 * Hide vma from rmap and truncate_pagecache before freeing
411 * pgtables
8f4f8c16 412 */
5beb4930 413 unlink_anon_vmas(vma);
8f4f8c16
HD
414 unlink_file_vma(vma);
415
9da61aef 416 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 418 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
419 } else {
420 /*
421 * Optimization: gather nearby vmas into one call down
422 */
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 424 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
425 vma = next;
426 next = vma->vm_next;
5beb4930 427 unlink_anon_vmas(vma);
8f4f8c16 428 unlink_file_vma(vma);
3bf5ee95
HD
429 }
430 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 431 floor, next ? next->vm_start : ceiling);
3bf5ee95 432 }
e0da382c
HD
433 vma = next;
434 }
1da177e4
LT
435}
436
4cf58924 437int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 438{
c4088ebd 439 spinlock_t *ptl;
4cf58924 440 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
441 if (!new)
442 return -ENOMEM;
443
362a61ad
NP
444 /*
445 * Ensure all pte setup (eg. pte page lock and page clearing) are
446 * visible before the pte is made visible to other CPUs by being
447 * put into page tables.
448 *
449 * The other side of the story is the pointer chasing in the page
450 * table walking code (when walking the page table without locking;
451 * ie. most of the time). Fortunately, these data accesses consist
452 * of a chain of data-dependent loads, meaning most CPUs (alpha
453 * being the notable exception) will already guarantee loads are
454 * seen in-order. See the alpha page table accessors for the
bb7cdd38 455 * smp_rmb() barriers in page table walking code.
362a61ad
NP
456 */
457 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458
c4088ebd 459 ptl = pmd_lock(mm, pmd);
8ac1f832 460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 461 mm_inc_nr_ptes(mm);
1da177e4 462 pmd_populate(mm, pmd, new);
2f569afd 463 new = NULL;
4b471e88 464 }
c4088ebd 465 spin_unlock(ptl);
2f569afd
MS
466 if (new)
467 pte_free(mm, new);
1bb3630e 468 return 0;
1da177e4
LT
469}
470
4cf58924 471int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 472{
4cf58924 473 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
474 if (!new)
475 return -ENOMEM;
476
362a61ad
NP
477 smp_wmb(); /* See comment in __pte_alloc */
478
1bb3630e 479 spin_lock(&init_mm.page_table_lock);
8ac1f832 480 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 481 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 482 new = NULL;
4b471e88 483 }
1bb3630e 484 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
485 if (new)
486 pte_free_kernel(&init_mm, new);
1bb3630e 487 return 0;
1da177e4
LT
488}
489
d559db08
KH
490static inline void init_rss_vec(int *rss)
491{
492 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
493}
494
495static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 496{
d559db08
KH
497 int i;
498
34e55232 499 if (current->mm == mm)
05af2e10 500 sync_mm_rss(mm);
d559db08
KH
501 for (i = 0; i < NR_MM_COUNTERS; i++)
502 if (rss[i])
503 add_mm_counter(mm, i, rss[i]);
ae859762
HD
504}
505
b5810039 506/*
6aab341e
LT
507 * This function is called to print an error when a bad pte
508 * is found. For example, we might have a PFN-mapped pte in
509 * a region that doesn't allow it.
b5810039
NP
510 *
511 * The calling function must still handle the error.
512 */
3dc14741
HD
513static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
514 pte_t pte, struct page *page)
b5810039 515{
3dc14741 516 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
517 p4d_t *p4d = p4d_offset(pgd, addr);
518 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
519 pmd_t *pmd = pmd_offset(pud, addr);
520 struct address_space *mapping;
521 pgoff_t index;
d936cf9b
HD
522 static unsigned long resume;
523 static unsigned long nr_shown;
524 static unsigned long nr_unshown;
525
526 /*
527 * Allow a burst of 60 reports, then keep quiet for that minute;
528 * or allow a steady drip of one report per second.
529 */
530 if (nr_shown == 60) {
531 if (time_before(jiffies, resume)) {
532 nr_unshown++;
533 return;
534 }
535 if (nr_unshown) {
1170532b
JP
536 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
537 nr_unshown);
d936cf9b
HD
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
3dc14741
HD
544
545 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
546 index = linear_page_index(vma, addr);
547
1170532b
JP
548 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
549 current->comm,
550 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 551 if (page)
f0b791a3 552 dump_page(page, "bad pte");
6aa9b8b2 553 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 554 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 555 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
556 vma->vm_file,
557 vma->vm_ops ? vma->vm_ops->fault : NULL,
558 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
559 mapping ? mapping->a_ops->readpage : NULL);
b5810039 560 dump_stack();
373d4d09 561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
562}
563
ee498ed7 564/*
7e675137 565 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 566 *
7e675137
NP
567 * "Special" mappings do not wish to be associated with a "struct page" (either
568 * it doesn't exist, or it exists but they don't want to touch it). In this
569 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 570 *
7e675137
NP
571 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
572 * pte bit, in which case this function is trivial. Secondly, an architecture
573 * may not have a spare pte bit, which requires a more complicated scheme,
574 * described below.
575 *
576 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
577 * special mapping (even if there are underlying and valid "struct pages").
578 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 579 *
b379d790
JH
580 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
581 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
582 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
583 * mapping will always honor the rule
6aab341e
LT
584 *
585 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
586 *
7e675137
NP
587 * And for normal mappings this is false.
588 *
589 * This restricts such mappings to be a linear translation from virtual address
590 * to pfn. To get around this restriction, we allow arbitrary mappings so long
591 * as the vma is not a COW mapping; in that case, we know that all ptes are
592 * special (because none can have been COWed).
b379d790 593 *
b379d790 594 *
7e675137 595 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
596 *
597 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
598 * page" backing, however the difference is that _all_ pages with a struct
599 * page (that is, those where pfn_valid is true) are refcounted and considered
600 * normal pages by the VM. The disadvantage is that pages are refcounted
601 * (which can be slower and simply not an option for some PFNMAP users). The
602 * advantage is that we don't have to follow the strict linearity rule of
603 * PFNMAP mappings in order to support COWable mappings.
604 *
ee498ed7 605 */
25b2995a
CH
606struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
607 pte_t pte)
ee498ed7 608{
22b31eec 609 unsigned long pfn = pte_pfn(pte);
7e675137 610
00b3a331 611 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 612 if (likely(!pte_special(pte)))
22b31eec 613 goto check_pfn;
667a0a06
DV
614 if (vma->vm_ops && vma->vm_ops->find_special_page)
615 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
616 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
617 return NULL;
df6ad698
JG
618 if (is_zero_pfn(pfn))
619 return NULL;
e1fb4a08
DJ
620 if (pte_devmap(pte))
621 return NULL;
622
df6ad698 623 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
624 return NULL;
625 }
626
00b3a331 627 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 628
b379d790
JH
629 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
630 if (vma->vm_flags & VM_MIXEDMAP) {
631 if (!pfn_valid(pfn))
632 return NULL;
633 goto out;
634 } else {
7e675137
NP
635 unsigned long off;
636 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
637 if (pfn == vma->vm_pgoff + off)
638 return NULL;
639 if (!is_cow_mapping(vma->vm_flags))
640 return NULL;
641 }
6aab341e
LT
642 }
643
b38af472
HD
644 if (is_zero_pfn(pfn))
645 return NULL;
00b3a331 646
22b31eec
HD
647check_pfn:
648 if (unlikely(pfn > highest_memmap_pfn)) {
649 print_bad_pte(vma, addr, pte, NULL);
650 return NULL;
651 }
6aab341e
LT
652
653 /*
7e675137 654 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 655 * eg. VDSO mappings can cause them to exist.
6aab341e 656 */
b379d790 657out:
6aab341e 658 return pfn_to_page(pfn);
ee498ed7
HD
659}
660
28093f9f
GS
661#ifdef CONFIG_TRANSPARENT_HUGEPAGE
662struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
663 pmd_t pmd)
664{
665 unsigned long pfn = pmd_pfn(pmd);
666
667 /*
668 * There is no pmd_special() but there may be special pmds, e.g.
669 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 670 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
671 */
672 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
673 if (vma->vm_flags & VM_MIXEDMAP) {
674 if (!pfn_valid(pfn))
675 return NULL;
676 goto out;
677 } else {
678 unsigned long off;
679 off = (addr - vma->vm_start) >> PAGE_SHIFT;
680 if (pfn == vma->vm_pgoff + off)
681 return NULL;
682 if (!is_cow_mapping(vma->vm_flags))
683 return NULL;
684 }
685 }
686
e1fb4a08
DJ
687 if (pmd_devmap(pmd))
688 return NULL;
3cde287b 689 if (is_huge_zero_pmd(pmd))
28093f9f
GS
690 return NULL;
691 if (unlikely(pfn > highest_memmap_pfn))
692 return NULL;
693
694 /*
695 * NOTE! We still have PageReserved() pages in the page tables.
696 * eg. VDSO mappings can cause them to exist.
697 */
698out:
699 return pfn_to_page(pfn);
700}
701#endif
702
1da177e4
LT
703/*
704 * copy one vm_area from one task to the other. Assumes the page tables
705 * already present in the new task to be cleared in the whole range
706 * covered by this vma.
1da177e4
LT
707 */
708
df3a57d1
LT
709static unsigned long
710copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 711 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 712 unsigned long addr, int *rss)
1da177e4 713{
b5810039 714 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
715 pte_t pte = *src_pte;
716 struct page *page;
df3a57d1
LT
717 swp_entry_t entry = pte_to_swp_entry(pte);
718
719 if (likely(!non_swap_entry(entry))) {
720 if (swap_duplicate(entry) < 0)
721 return entry.val;
722
723 /* make sure dst_mm is on swapoff's mmlist. */
724 if (unlikely(list_empty(&dst_mm->mmlist))) {
725 spin_lock(&mmlist_lock);
726 if (list_empty(&dst_mm->mmlist))
727 list_add(&dst_mm->mmlist,
728 &src_mm->mmlist);
729 spin_unlock(&mmlist_lock);
730 }
731 rss[MM_SWAPENTS]++;
732 } else if (is_migration_entry(entry)) {
733 page = migration_entry_to_page(entry);
1da177e4 734
df3a57d1 735 rss[mm_counter(page)]++;
5042db43 736
df3a57d1
LT
737 if (is_write_migration_entry(entry) &&
738 is_cow_mapping(vm_flags)) {
5042db43 739 /*
df3a57d1
LT
740 * COW mappings require pages in both
741 * parent and child to be set to read.
5042db43 742 */
df3a57d1
LT
743 make_migration_entry_read(&entry);
744 pte = swp_entry_to_pte(entry);
745 if (pte_swp_soft_dirty(*src_pte))
746 pte = pte_swp_mksoft_dirty(pte);
747 if (pte_swp_uffd_wp(*src_pte))
748 pte = pte_swp_mkuffd_wp(pte);
749 set_pte_at(src_mm, addr, src_pte, pte);
750 }
751 } else if (is_device_private_entry(entry)) {
752 page = device_private_entry_to_page(entry);
5042db43 753
df3a57d1
LT
754 /*
755 * Update rss count even for unaddressable pages, as
756 * they should treated just like normal pages in this
757 * respect.
758 *
759 * We will likely want to have some new rss counters
760 * for unaddressable pages, at some point. But for now
761 * keep things as they are.
762 */
763 get_page(page);
764 rss[mm_counter(page)]++;
765 page_dup_rmap(page, false);
766
767 /*
768 * We do not preserve soft-dirty information, because so
769 * far, checkpoint/restore is the only feature that
770 * requires that. And checkpoint/restore does not work
771 * when a device driver is involved (you cannot easily
772 * save and restore device driver state).
773 */
774 if (is_write_device_private_entry(entry) &&
775 is_cow_mapping(vm_flags)) {
776 make_device_private_entry_read(&entry);
777 pte = swp_entry_to_pte(entry);
778 if (pte_swp_uffd_wp(*src_pte))
779 pte = pte_swp_mkuffd_wp(pte);
780 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 781 }
1da177e4 782 }
df3a57d1
LT
783 set_pte_at(dst_mm, addr, dst_pte, pte);
784 return 0;
785}
786
70e806e4
PX
787/*
788 * Copy a present and normal page if necessary.
789 *
790 * NOTE! The usual case is that this doesn't need to do
791 * anything, and can just return a positive value. That
792 * will let the caller know that it can just increase
793 * the page refcount and re-use the pte the traditional
794 * way.
795 *
796 * But _if_ we need to copy it because it needs to be
797 * pinned in the parent (and the child should get its own
798 * copy rather than just a reference to the same page),
799 * we'll do that here and return zero to let the caller
800 * know we're done.
801 *
802 * And if we need a pre-allocated page but don't yet have
803 * one, return a negative error to let the preallocation
804 * code know so that it can do so outside the page table
805 * lock.
806 */
807static inline int
c78f4636
PX
808copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
809 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
810 struct page **prealloc, pte_t pte, struct page *page)
70e806e4 811{
c78f4636 812 struct mm_struct *src_mm = src_vma->vm_mm;
70e806e4
PX
813 struct page *new_page;
814
c78f4636 815 if (!is_cow_mapping(src_vma->vm_flags))
70e806e4
PX
816 return 1;
817
818 /*
70e806e4
PX
819 * What we want to do is to check whether this page may
820 * have been pinned by the parent process. If so,
821 * instead of wrprotect the pte on both sides, we copy
822 * the page immediately so that we'll always guarantee
823 * the pinned page won't be randomly replaced in the
824 * future.
825 *
f3c64eda
LT
826 * The page pinning checks are just "has this mm ever
827 * seen pinning", along with the (inexact) check of
828 * the page count. That might give false positives for
829 * for pinning, but it will work correctly.
70e806e4
PX
830 */
831 if (likely(!atomic_read(&src_mm->has_pinned)))
832 return 1;
833 if (likely(!page_maybe_dma_pinned(page)))
834 return 1;
835
70e806e4
PX
836 new_page = *prealloc;
837 if (!new_page)
838 return -EAGAIN;
839
840 /*
841 * We have a prealloc page, all good! Take it
842 * over and copy the page & arm it.
843 */
844 *prealloc = NULL;
c78f4636 845 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 846 __SetPageUptodate(new_page);
c78f4636
PX
847 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
848 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
849 rss[mm_counter(new_page)]++;
850
851 /* All done, just insert the new page copy in the child */
c78f4636
PX
852 pte = mk_pte(new_page, dst_vma->vm_page_prot);
853 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
854 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
855 return 0;
856}
857
858/*
859 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
860 * is required to copy this pte.
861 */
862static inline int
c78f4636
PX
863copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
864 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
865 struct page **prealloc)
df3a57d1 866{
c78f4636
PX
867 struct mm_struct *src_mm = src_vma->vm_mm;
868 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
869 pte_t pte = *src_pte;
870 struct page *page;
871
c78f4636 872 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
873 if (page) {
874 int retval;
875
c78f4636
PX
876 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
877 addr, rss, prealloc, pte, page);
70e806e4
PX
878 if (retval <= 0)
879 return retval;
880
881 get_page(page);
882 page_dup_rmap(page, false);
883 rss[mm_counter(page)]++;
884 }
885
1da177e4
LT
886 /*
887 * If it's a COW mapping, write protect it both
888 * in the parent and the child
889 */
1b2de5d0 890 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 891 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 892 pte = pte_wrprotect(pte);
1da177e4
LT
893 }
894
895 /*
896 * If it's a shared mapping, mark it clean in
897 * the child
898 */
899 if (vm_flags & VM_SHARED)
900 pte = pte_mkclean(pte);
901 pte = pte_mkold(pte);
6aab341e 902
b569a176
PX
903 /*
904 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
905 * does not have the VM_UFFD_WP, which means that the uffd
906 * fork event is not enabled.
907 */
908 if (!(vm_flags & VM_UFFD_WP))
909 pte = pte_clear_uffd_wp(pte);
910
c78f4636 911 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
912 return 0;
913}
914
915static inline struct page *
916page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
917 unsigned long addr)
918{
919 struct page *new_page;
920
921 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
922 if (!new_page)
923 return NULL;
924
925 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
926 put_page(new_page);
927 return NULL;
6aab341e 928 }
70e806e4 929 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 930
70e806e4 931 return new_page;
1da177e4
LT
932}
933
c78f4636
PX
934static int
935copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
936 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
937 unsigned long end)
1da177e4 938{
c78f4636
PX
939 struct mm_struct *dst_mm = dst_vma->vm_mm;
940 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 941 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 942 pte_t *src_pte, *dst_pte;
c74df32c 943 spinlock_t *src_ptl, *dst_ptl;
70e806e4 944 int progress, ret = 0;
d559db08 945 int rss[NR_MM_COUNTERS];
570a335b 946 swp_entry_t entry = (swp_entry_t){0};
70e806e4 947 struct page *prealloc = NULL;
1da177e4
LT
948
949again:
70e806e4 950 progress = 0;
d559db08
KH
951 init_rss_vec(rss);
952
c74df32c 953 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
954 if (!dst_pte) {
955 ret = -ENOMEM;
956 goto out;
957 }
ece0e2b6 958 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 959 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 960 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
961 orig_src_pte = src_pte;
962 orig_dst_pte = dst_pte;
6606c3e0 963 arch_enter_lazy_mmu_mode();
1da177e4 964
1da177e4
LT
965 do {
966 /*
967 * We are holding two locks at this point - either of them
968 * could generate latencies in another task on another CPU.
969 */
e040f218
HD
970 if (progress >= 32) {
971 progress = 0;
972 if (need_resched() ||
95c354fe 973 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
974 break;
975 }
1da177e4
LT
976 if (pte_none(*src_pte)) {
977 progress++;
978 continue;
979 }
79a1971c
LT
980 if (unlikely(!pte_present(*src_pte))) {
981 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
982 dst_pte, src_pte,
c78f4636 983 src_vma, addr, rss);
79a1971c
LT
984 if (entry.val)
985 break;
986 progress += 8;
987 continue;
988 }
70e806e4 989 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
990 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
991 addr, rss, &prealloc);
70e806e4
PX
992 /*
993 * If we need a pre-allocated page for this pte, drop the
994 * locks, allocate, and try again.
995 */
996 if (unlikely(ret == -EAGAIN))
997 break;
998 if (unlikely(prealloc)) {
999 /*
1000 * pre-alloc page cannot be reused by next time so as
1001 * to strictly follow mempolicy (e.g., alloc_page_vma()
1002 * will allocate page according to address). This
1003 * could only happen if one pinned pte changed.
1004 */
1005 put_page(prealloc);
1006 prealloc = NULL;
1007 }
1da177e4
LT
1008 progress += 8;
1009 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1010
6606c3e0 1011 arch_leave_lazy_mmu_mode();
c74df32c 1012 spin_unlock(src_ptl);
ece0e2b6 1013 pte_unmap(orig_src_pte);
d559db08 1014 add_mm_rss_vec(dst_mm, rss);
c36987e2 1015 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1016 cond_resched();
570a335b
HD
1017
1018 if (entry.val) {
70e806e4
PX
1019 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1020 ret = -ENOMEM;
1021 goto out;
1022 }
1023 entry.val = 0;
1024 } else if (ret) {
1025 WARN_ON_ONCE(ret != -EAGAIN);
c78f4636 1026 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1027 if (!prealloc)
570a335b 1028 return -ENOMEM;
70e806e4
PX
1029 /* We've captured and resolved the error. Reset, try again. */
1030 ret = 0;
570a335b 1031 }
1da177e4
LT
1032 if (addr != end)
1033 goto again;
70e806e4
PX
1034out:
1035 if (unlikely(prealloc))
1036 put_page(prealloc);
1037 return ret;
1da177e4
LT
1038}
1039
c78f4636
PX
1040static inline int
1041copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1042 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1043 unsigned long end)
1da177e4 1044{
c78f4636
PX
1045 struct mm_struct *dst_mm = dst_vma->vm_mm;
1046 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1047 pmd_t *src_pmd, *dst_pmd;
1048 unsigned long next;
1049
1050 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1051 if (!dst_pmd)
1052 return -ENOMEM;
1053 src_pmd = pmd_offset(src_pud, addr);
1054 do {
1055 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1056 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1057 || pmd_devmap(*src_pmd)) {
71e3aac0 1058 int err;
c78f4636 1059 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
71e3aac0 1060 err = copy_huge_pmd(dst_mm, src_mm,
c78f4636 1061 dst_pmd, src_pmd, addr, src_vma);
71e3aac0
AA
1062 if (err == -ENOMEM)
1063 return -ENOMEM;
1064 if (!err)
1065 continue;
1066 /* fall through */
1067 }
1da177e4
LT
1068 if (pmd_none_or_clear_bad(src_pmd))
1069 continue;
c78f4636
PX
1070 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1071 addr, next))
1da177e4
LT
1072 return -ENOMEM;
1073 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1074 return 0;
1075}
1076
c78f4636
PX
1077static inline int
1078copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1080 unsigned long end)
1da177e4 1081{
c78f4636
PX
1082 struct mm_struct *dst_mm = dst_vma->vm_mm;
1083 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1084 pud_t *src_pud, *dst_pud;
1085 unsigned long next;
1086
c2febafc 1087 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1088 if (!dst_pud)
1089 return -ENOMEM;
c2febafc 1090 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1091 do {
1092 next = pud_addr_end(addr, end);
a00cc7d9
MW
1093 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1094 int err;
1095
c78f4636 1096 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1097 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1098 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1099 if (err == -ENOMEM)
1100 return -ENOMEM;
1101 if (!err)
1102 continue;
1103 /* fall through */
1104 }
1da177e4
LT
1105 if (pud_none_or_clear_bad(src_pud))
1106 continue;
c78f4636
PX
1107 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1108 addr, next))
1da177e4
LT
1109 return -ENOMEM;
1110 } while (dst_pud++, src_pud++, addr = next, addr != end);
1111 return 0;
1112}
1113
c78f4636
PX
1114static inline int
1115copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1116 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1117 unsigned long end)
c2febafc 1118{
c78f4636 1119 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1120 p4d_t *src_p4d, *dst_p4d;
1121 unsigned long next;
1122
1123 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1124 if (!dst_p4d)
1125 return -ENOMEM;
1126 src_p4d = p4d_offset(src_pgd, addr);
1127 do {
1128 next = p4d_addr_end(addr, end);
1129 if (p4d_none_or_clear_bad(src_p4d))
1130 continue;
c78f4636
PX
1131 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1132 addr, next))
c2febafc
KS
1133 return -ENOMEM;
1134 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1135 return 0;
1136}
1137
c78f4636
PX
1138int
1139copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1140{
1141 pgd_t *src_pgd, *dst_pgd;
1142 unsigned long next;
c78f4636
PX
1143 unsigned long addr = src_vma->vm_start;
1144 unsigned long end = src_vma->vm_end;
1145 struct mm_struct *dst_mm = dst_vma->vm_mm;
1146 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1147 struct mmu_notifier_range range;
2ec74c3e 1148 bool is_cow;
cddb8a5c 1149 int ret;
1da177e4 1150
d992895b
NP
1151 /*
1152 * Don't copy ptes where a page fault will fill them correctly.
1153 * Fork becomes much lighter when there are big shared or private
1154 * readonly mappings. The tradeoff is that copy_page_range is more
1155 * efficient than faulting.
1156 */
c78f4636
PX
1157 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1158 !src_vma->anon_vma)
0661a336 1159 return 0;
d992895b 1160
c78f4636
PX
1161 if (is_vm_hugetlb_page(src_vma))
1162 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1163
c78f4636 1164 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1165 /*
1166 * We do not free on error cases below as remove_vma
1167 * gets called on error from higher level routine
1168 */
c78f4636 1169 ret = track_pfn_copy(src_vma);
2ab64037 1170 if (ret)
1171 return ret;
1172 }
1173
cddb8a5c
AA
1174 /*
1175 * We need to invalidate the secondary MMU mappings only when
1176 * there could be a permission downgrade on the ptes of the
1177 * parent mm. And a permission downgrade will only happen if
1178 * is_cow_mapping() returns true.
1179 */
c78f4636 1180 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1181
1182 if (is_cow) {
7269f999 1183 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1184 0, src_vma, src_mm, addr, end);
ac46d4f3 1185 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1186 /*
1187 * Disabling preemption is not needed for the write side, as
1188 * the read side doesn't spin, but goes to the mmap_lock.
1189 *
1190 * Use the raw variant of the seqcount_t write API to avoid
1191 * lockdep complaining about preemptibility.
1192 */
1193 mmap_assert_write_locked(src_mm);
1194 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1195 }
cddb8a5c
AA
1196
1197 ret = 0;
1da177e4
LT
1198 dst_pgd = pgd_offset(dst_mm, addr);
1199 src_pgd = pgd_offset(src_mm, addr);
1200 do {
1201 next = pgd_addr_end(addr, end);
1202 if (pgd_none_or_clear_bad(src_pgd))
1203 continue;
c78f4636
PX
1204 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1205 addr, next))) {
cddb8a5c
AA
1206 ret = -ENOMEM;
1207 break;
1208 }
1da177e4 1209 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1210
57efa1fe
JG
1211 if (is_cow) {
1212 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1213 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1214 }
cddb8a5c 1215 return ret;
1da177e4
LT
1216}
1217
51c6f666 1218static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1219 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1220 unsigned long addr, unsigned long end,
97a89413 1221 struct zap_details *details)
1da177e4 1222{
b5810039 1223 struct mm_struct *mm = tlb->mm;
d16dfc55 1224 int force_flush = 0;
d559db08 1225 int rss[NR_MM_COUNTERS];
97a89413 1226 spinlock_t *ptl;
5f1a1907 1227 pte_t *start_pte;
97a89413 1228 pte_t *pte;
8a5f14a2 1229 swp_entry_t entry;
d559db08 1230
ed6a7935 1231 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1232again:
e303297e 1233 init_rss_vec(rss);
5f1a1907
SR
1234 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1235 pte = start_pte;
3ea27719 1236 flush_tlb_batched_pending(mm);
6606c3e0 1237 arch_enter_lazy_mmu_mode();
1da177e4
LT
1238 do {
1239 pte_t ptent = *pte;
166f61b9 1240 if (pte_none(ptent))
1da177e4 1241 continue;
6f5e6b9e 1242
7b167b68
MK
1243 if (need_resched())
1244 break;
1245
1da177e4 1246 if (pte_present(ptent)) {
ee498ed7 1247 struct page *page;
51c6f666 1248
25b2995a 1249 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1250 if (unlikely(details) && page) {
1251 /*
1252 * unmap_shared_mapping_pages() wants to
1253 * invalidate cache without truncating:
1254 * unmap shared but keep private pages.
1255 */
1256 if (details->check_mapping &&
800d8c63 1257 details->check_mapping != page_rmapping(page))
1da177e4 1258 continue;
1da177e4 1259 }
b5810039 1260 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1261 tlb->fullmm);
1da177e4
LT
1262 tlb_remove_tlb_entry(tlb, pte, addr);
1263 if (unlikely(!page))
1264 continue;
eca56ff9
JM
1265
1266 if (!PageAnon(page)) {
1cf35d47
LT
1267 if (pte_dirty(ptent)) {
1268 force_flush = 1;
6237bcd9 1269 set_page_dirty(page);
1cf35d47 1270 }
4917e5d0 1271 if (pte_young(ptent) &&
64363aad 1272 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1273 mark_page_accessed(page);
6237bcd9 1274 }
eca56ff9 1275 rss[mm_counter(page)]--;
d281ee61 1276 page_remove_rmap(page, false);
3dc14741
HD
1277 if (unlikely(page_mapcount(page) < 0))
1278 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1279 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1280 force_flush = 1;
ce9ec37b 1281 addr += PAGE_SIZE;
d16dfc55 1282 break;
1cf35d47 1283 }
1da177e4
LT
1284 continue;
1285 }
5042db43
JG
1286
1287 entry = pte_to_swp_entry(ptent);
463b7a17 1288 if (is_device_private_entry(entry)) {
5042db43
JG
1289 struct page *page = device_private_entry_to_page(entry);
1290
1291 if (unlikely(details && details->check_mapping)) {
1292 /*
1293 * unmap_shared_mapping_pages() wants to
1294 * invalidate cache without truncating:
1295 * unmap shared but keep private pages.
1296 */
1297 if (details->check_mapping !=
1298 page_rmapping(page))
1299 continue;
1300 }
1301
1302 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1303 rss[mm_counter(page)]--;
1304 page_remove_rmap(page, false);
1305 put_page(page);
1306 continue;
1307 }
1308
3e8715fd
KS
1309 /* If details->check_mapping, we leave swap entries. */
1310 if (unlikely(details))
1da177e4 1311 continue;
b084d435 1312
8a5f14a2
KS
1313 if (!non_swap_entry(entry))
1314 rss[MM_SWAPENTS]--;
1315 else if (is_migration_entry(entry)) {
1316 struct page *page;
9f9f1acd 1317
8a5f14a2 1318 page = migration_entry_to_page(entry);
eca56ff9 1319 rss[mm_counter(page)]--;
b084d435 1320 }
8a5f14a2
KS
1321 if (unlikely(!free_swap_and_cache(entry)))
1322 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1323 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1324 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1325
d559db08 1326 add_mm_rss_vec(mm, rss);
6606c3e0 1327 arch_leave_lazy_mmu_mode();
51c6f666 1328
1cf35d47 1329 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1330 if (force_flush)
1cf35d47 1331 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1332 pte_unmap_unlock(start_pte, ptl);
1333
1334 /*
1335 * If we forced a TLB flush (either due to running out of
1336 * batch buffers or because we needed to flush dirty TLB
1337 * entries before releasing the ptl), free the batched
1338 * memory too. Restart if we didn't do everything.
1339 */
1340 if (force_flush) {
1341 force_flush = 0;
fa0aafb8 1342 tlb_flush_mmu(tlb);
7b167b68
MK
1343 }
1344
1345 if (addr != end) {
1346 cond_resched();
1347 goto again;
d16dfc55
PZ
1348 }
1349
51c6f666 1350 return addr;
1da177e4
LT
1351}
1352
51c6f666 1353static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1354 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1355 unsigned long addr, unsigned long end,
97a89413 1356 struct zap_details *details)
1da177e4
LT
1357{
1358 pmd_t *pmd;
1359 unsigned long next;
1360
1361 pmd = pmd_offset(pud, addr);
1362 do {
1363 next = pmd_addr_end(addr, end);
84c3fc4e 1364 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1365 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1366 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1367 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1368 goto next;
71e3aac0
AA
1369 /* fall through */
1370 }
1a5a9906
AA
1371 /*
1372 * Here there can be other concurrent MADV_DONTNEED or
1373 * trans huge page faults running, and if the pmd is
1374 * none or trans huge it can change under us. This is
c1e8d7c6 1375 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1376 * mode.
1377 */
1378 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1379 goto next;
97a89413 1380 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1381next:
97a89413
PZ
1382 cond_resched();
1383 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1384
1385 return addr;
1da177e4
LT
1386}
1387
51c6f666 1388static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1389 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1390 unsigned long addr, unsigned long end,
97a89413 1391 struct zap_details *details)
1da177e4
LT
1392{
1393 pud_t *pud;
1394 unsigned long next;
1395
c2febafc 1396 pud = pud_offset(p4d, addr);
1da177e4
LT
1397 do {
1398 next = pud_addr_end(addr, end);
a00cc7d9
MW
1399 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1400 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1401 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1402 split_huge_pud(vma, pud, addr);
1403 } else if (zap_huge_pud(tlb, vma, pud, addr))
1404 goto next;
1405 /* fall through */
1406 }
97a89413 1407 if (pud_none_or_clear_bad(pud))
1da177e4 1408 continue;
97a89413 1409 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1410next:
1411 cond_resched();
97a89413 1412 } while (pud++, addr = next, addr != end);
51c6f666
RH
1413
1414 return addr;
1da177e4
LT
1415}
1416
c2febafc
KS
1417static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1418 struct vm_area_struct *vma, pgd_t *pgd,
1419 unsigned long addr, unsigned long end,
1420 struct zap_details *details)
1421{
1422 p4d_t *p4d;
1423 unsigned long next;
1424
1425 p4d = p4d_offset(pgd, addr);
1426 do {
1427 next = p4d_addr_end(addr, end);
1428 if (p4d_none_or_clear_bad(p4d))
1429 continue;
1430 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1431 } while (p4d++, addr = next, addr != end);
1432
1433 return addr;
1434}
1435
aac45363 1436void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1437 struct vm_area_struct *vma,
1438 unsigned long addr, unsigned long end,
1439 struct zap_details *details)
1da177e4
LT
1440{
1441 pgd_t *pgd;
1442 unsigned long next;
1443
1da177e4
LT
1444 BUG_ON(addr >= end);
1445 tlb_start_vma(tlb, vma);
1446 pgd = pgd_offset(vma->vm_mm, addr);
1447 do {
1448 next = pgd_addr_end(addr, end);
97a89413 1449 if (pgd_none_or_clear_bad(pgd))
1da177e4 1450 continue;
c2febafc 1451 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1452 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1453 tlb_end_vma(tlb, vma);
1454}
51c6f666 1455
f5cc4eef
AV
1456
1457static void unmap_single_vma(struct mmu_gather *tlb,
1458 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1459 unsigned long end_addr,
f5cc4eef
AV
1460 struct zap_details *details)
1461{
1462 unsigned long start = max(vma->vm_start, start_addr);
1463 unsigned long end;
1464
1465 if (start >= vma->vm_end)
1466 return;
1467 end = min(vma->vm_end, end_addr);
1468 if (end <= vma->vm_start)
1469 return;
1470
cbc91f71
SD
1471 if (vma->vm_file)
1472 uprobe_munmap(vma, start, end);
1473
b3b9c293 1474 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1475 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1476
1477 if (start != end) {
1478 if (unlikely(is_vm_hugetlb_page(vma))) {
1479 /*
1480 * It is undesirable to test vma->vm_file as it
1481 * should be non-null for valid hugetlb area.
1482 * However, vm_file will be NULL in the error
7aa6b4ad 1483 * cleanup path of mmap_region. When
f5cc4eef 1484 * hugetlbfs ->mmap method fails,
7aa6b4ad 1485 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1486 * before calling this function to clean up.
1487 * Since no pte has actually been setup, it is
1488 * safe to do nothing in this case.
1489 */
24669e58 1490 if (vma->vm_file) {
83cde9e8 1491 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1492 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1493 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1494 }
f5cc4eef
AV
1495 } else
1496 unmap_page_range(tlb, vma, start, end, details);
1497 }
1da177e4
LT
1498}
1499
1da177e4
LT
1500/**
1501 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1502 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1503 * @vma: the starting vma
1504 * @start_addr: virtual address at which to start unmapping
1505 * @end_addr: virtual address at which to end unmapping
1da177e4 1506 *
508034a3 1507 * Unmap all pages in the vma list.
1da177e4 1508 *
1da177e4
LT
1509 * Only addresses between `start' and `end' will be unmapped.
1510 *
1511 * The VMA list must be sorted in ascending virtual address order.
1512 *
1513 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1514 * range after unmap_vmas() returns. So the only responsibility here is to
1515 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1516 * drops the lock and schedules.
1517 */
6e8bb019 1518void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1519 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1520 unsigned long end_addr)
1da177e4 1521{
ac46d4f3 1522 struct mmu_notifier_range range;
1da177e4 1523
6f4f13e8
JG
1524 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1525 start_addr, end_addr);
ac46d4f3 1526 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1527 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1528 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1529 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1530}
1531
1532/**
1533 * zap_page_range - remove user pages in a given range
1534 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1535 * @start: starting address of pages to zap
1da177e4 1536 * @size: number of bytes to zap
f5cc4eef
AV
1537 *
1538 * Caller must protect the VMA list
1da177e4 1539 */
7e027b14 1540void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1541 unsigned long size)
1da177e4 1542{
ac46d4f3 1543 struct mmu_notifier_range range;
d16dfc55 1544 struct mmu_gather tlb;
1da177e4 1545
1da177e4 1546 lru_add_drain();
7269f999 1547 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1548 start, start + size);
a72afd87 1549 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1550 update_hiwater_rss(vma->vm_mm);
1551 mmu_notifier_invalidate_range_start(&range);
1552 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1553 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1554 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1555 tlb_finish_mmu(&tlb);
1da177e4
LT
1556}
1557
f5cc4eef
AV
1558/**
1559 * zap_page_range_single - remove user pages in a given range
1560 * @vma: vm_area_struct holding the applicable pages
1561 * @address: starting address of pages to zap
1562 * @size: number of bytes to zap
8a5f14a2 1563 * @details: details of shared cache invalidation
f5cc4eef
AV
1564 *
1565 * The range must fit into one VMA.
1da177e4 1566 */
f5cc4eef 1567static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1568 unsigned long size, struct zap_details *details)
1569{
ac46d4f3 1570 struct mmu_notifier_range range;
d16dfc55 1571 struct mmu_gather tlb;
1da177e4 1572
1da177e4 1573 lru_add_drain();
7269f999 1574 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1575 address, address + size);
a72afd87 1576 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1577 update_hiwater_rss(vma->vm_mm);
1578 mmu_notifier_invalidate_range_start(&range);
1579 unmap_single_vma(&tlb, vma, address, range.end, details);
1580 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1581 tlb_finish_mmu(&tlb);
1da177e4
LT
1582}
1583
c627f9cc
JS
1584/**
1585 * zap_vma_ptes - remove ptes mapping the vma
1586 * @vma: vm_area_struct holding ptes to be zapped
1587 * @address: starting address of pages to zap
1588 * @size: number of bytes to zap
1589 *
1590 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1591 *
1592 * The entire address range must be fully contained within the vma.
1593 *
c627f9cc 1594 */
27d036e3 1595void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1596 unsigned long size)
1597{
1598 if (address < vma->vm_start || address + size > vma->vm_end ||
1599 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1600 return;
1601
f5cc4eef 1602 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1603}
1604EXPORT_SYMBOL_GPL(zap_vma_ptes);
1605
8cd3984d 1606static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1607{
c2febafc
KS
1608 pgd_t *pgd;
1609 p4d_t *p4d;
1610 pud_t *pud;
1611 pmd_t *pmd;
1612
1613 pgd = pgd_offset(mm, addr);
1614 p4d = p4d_alloc(mm, pgd, addr);
1615 if (!p4d)
1616 return NULL;
1617 pud = pud_alloc(mm, p4d, addr);
1618 if (!pud)
1619 return NULL;
1620 pmd = pmd_alloc(mm, pud, addr);
1621 if (!pmd)
1622 return NULL;
1623
1624 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1625 return pmd;
1626}
1627
1628pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1629 spinlock_t **ptl)
1630{
1631 pmd_t *pmd = walk_to_pmd(mm, addr);
1632
1633 if (!pmd)
1634 return NULL;
c2febafc 1635 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1636}
1637
8efd6f5b
AR
1638static int validate_page_before_insert(struct page *page)
1639{
1640 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1641 return -EINVAL;
1642 flush_dcache_page(page);
1643 return 0;
1644}
1645
1646static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1647 unsigned long addr, struct page *page, pgprot_t prot)
1648{
1649 if (!pte_none(*pte))
1650 return -EBUSY;
1651 /* Ok, finally just insert the thing.. */
1652 get_page(page);
1653 inc_mm_counter_fast(mm, mm_counter_file(page));
1654 page_add_file_rmap(page, false);
1655 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1656 return 0;
1657}
1658
238f58d8
LT
1659/*
1660 * This is the old fallback for page remapping.
1661 *
1662 * For historical reasons, it only allows reserved pages. Only
1663 * old drivers should use this, and they needed to mark their
1664 * pages reserved for the old functions anyway.
1665 */
423bad60
NP
1666static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1667 struct page *page, pgprot_t prot)
238f58d8 1668{
423bad60 1669 struct mm_struct *mm = vma->vm_mm;
238f58d8 1670 int retval;
c9cfcddf 1671 pte_t *pte;
8a9f3ccd
BS
1672 spinlock_t *ptl;
1673
8efd6f5b
AR
1674 retval = validate_page_before_insert(page);
1675 if (retval)
5b4e655e 1676 goto out;
238f58d8 1677 retval = -ENOMEM;
c9cfcddf 1678 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1679 if (!pte)
5b4e655e 1680 goto out;
8efd6f5b 1681 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1682 pte_unmap_unlock(pte, ptl);
1683out:
1684 return retval;
1685}
1686
8cd3984d 1687#ifdef pte_index
7f70c2a6 1688static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1689 unsigned long addr, struct page *page, pgprot_t prot)
1690{
1691 int err;
1692
1693 if (!page_count(page))
1694 return -EINVAL;
1695 err = validate_page_before_insert(page);
7f70c2a6
AR
1696 if (err)
1697 return err;
1698 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1699}
1700
1701/* insert_pages() amortizes the cost of spinlock operations
1702 * when inserting pages in a loop. Arch *must* define pte_index.
1703 */
1704static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1705 struct page **pages, unsigned long *num, pgprot_t prot)
1706{
1707 pmd_t *pmd = NULL;
7f70c2a6
AR
1708 pte_t *start_pte, *pte;
1709 spinlock_t *pte_lock;
8cd3984d
AR
1710 struct mm_struct *const mm = vma->vm_mm;
1711 unsigned long curr_page_idx = 0;
1712 unsigned long remaining_pages_total = *num;
1713 unsigned long pages_to_write_in_pmd;
1714 int ret;
1715more:
1716 ret = -EFAULT;
1717 pmd = walk_to_pmd(mm, addr);
1718 if (!pmd)
1719 goto out;
1720
1721 pages_to_write_in_pmd = min_t(unsigned long,
1722 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1723
1724 /* Allocate the PTE if necessary; takes PMD lock once only. */
1725 ret = -ENOMEM;
1726 if (pte_alloc(mm, pmd))
1727 goto out;
8cd3984d
AR
1728
1729 while (pages_to_write_in_pmd) {
1730 int pte_idx = 0;
1731 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1732
7f70c2a6
AR
1733 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1734 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1735 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1736 addr, pages[curr_page_idx], prot);
1737 if (unlikely(err)) {
7f70c2a6 1738 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1739 ret = err;
1740 remaining_pages_total -= pte_idx;
1741 goto out;
1742 }
1743 addr += PAGE_SIZE;
1744 ++curr_page_idx;
1745 }
7f70c2a6 1746 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1747 pages_to_write_in_pmd -= batch_size;
1748 remaining_pages_total -= batch_size;
1749 }
1750 if (remaining_pages_total)
1751 goto more;
1752 ret = 0;
1753out:
1754 *num = remaining_pages_total;
1755 return ret;
1756}
1757#endif /* ifdef pte_index */
1758
1759/**
1760 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1761 * @vma: user vma to map to
1762 * @addr: target start user address of these pages
1763 * @pages: source kernel pages
1764 * @num: in: number of pages to map. out: number of pages that were *not*
1765 * mapped. (0 means all pages were successfully mapped).
1766 *
1767 * Preferred over vm_insert_page() when inserting multiple pages.
1768 *
1769 * In case of error, we may have mapped a subset of the provided
1770 * pages. It is the caller's responsibility to account for this case.
1771 *
1772 * The same restrictions apply as in vm_insert_page().
1773 */
1774int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1775 struct page **pages, unsigned long *num)
1776{
1777#ifdef pte_index
1778 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1779
1780 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1781 return -EFAULT;
1782 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1783 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1784 BUG_ON(vma->vm_flags & VM_PFNMAP);
1785 vma->vm_flags |= VM_MIXEDMAP;
1786 }
1787 /* Defer page refcount checking till we're about to map that page. */
1788 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1789#else
1790 unsigned long idx = 0, pgcount = *num;
45779b03 1791 int err = -EINVAL;
8cd3984d
AR
1792
1793 for (; idx < pgcount; ++idx) {
1794 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1795 if (err)
1796 break;
1797 }
1798 *num = pgcount - idx;
1799 return err;
1800#endif /* ifdef pte_index */
1801}
1802EXPORT_SYMBOL(vm_insert_pages);
1803
bfa5bf6d
REB
1804/**
1805 * vm_insert_page - insert single page into user vma
1806 * @vma: user vma to map to
1807 * @addr: target user address of this page
1808 * @page: source kernel page
1809 *
a145dd41
LT
1810 * This allows drivers to insert individual pages they've allocated
1811 * into a user vma.
1812 *
1813 * The page has to be a nice clean _individual_ kernel allocation.
1814 * If you allocate a compound page, you need to have marked it as
1815 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1816 * (see split_page()).
a145dd41
LT
1817 *
1818 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1819 * took an arbitrary page protection parameter. This doesn't allow
1820 * that. Your vma protection will have to be set up correctly, which
1821 * means that if you want a shared writable mapping, you'd better
1822 * ask for a shared writable mapping!
1823 *
1824 * The page does not need to be reserved.
4b6e1e37
KK
1825 *
1826 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1827 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1828 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1829 * function from other places, for example from page-fault handler.
a862f68a
MR
1830 *
1831 * Return: %0 on success, negative error code otherwise.
a145dd41 1832 */
423bad60
NP
1833int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1834 struct page *page)
a145dd41
LT
1835{
1836 if (addr < vma->vm_start || addr >= vma->vm_end)
1837 return -EFAULT;
1838 if (!page_count(page))
1839 return -EINVAL;
4b6e1e37 1840 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1841 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1842 BUG_ON(vma->vm_flags & VM_PFNMAP);
1843 vma->vm_flags |= VM_MIXEDMAP;
1844 }
423bad60 1845 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1846}
e3c3374f 1847EXPORT_SYMBOL(vm_insert_page);
a145dd41 1848
a667d745
SJ
1849/*
1850 * __vm_map_pages - maps range of kernel pages into user vma
1851 * @vma: user vma to map to
1852 * @pages: pointer to array of source kernel pages
1853 * @num: number of pages in page array
1854 * @offset: user's requested vm_pgoff
1855 *
1856 * This allows drivers to map range of kernel pages into a user vma.
1857 *
1858 * Return: 0 on success and error code otherwise.
1859 */
1860static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1861 unsigned long num, unsigned long offset)
1862{
1863 unsigned long count = vma_pages(vma);
1864 unsigned long uaddr = vma->vm_start;
1865 int ret, i;
1866
1867 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1868 if (offset >= num)
a667d745
SJ
1869 return -ENXIO;
1870
1871 /* Fail if the user requested size exceeds available object size */
1872 if (count > num - offset)
1873 return -ENXIO;
1874
1875 for (i = 0; i < count; i++) {
1876 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1877 if (ret < 0)
1878 return ret;
1879 uaddr += PAGE_SIZE;
1880 }
1881
1882 return 0;
1883}
1884
1885/**
1886 * vm_map_pages - maps range of kernel pages starts with non zero offset
1887 * @vma: user vma to map to
1888 * @pages: pointer to array of source kernel pages
1889 * @num: number of pages in page array
1890 *
1891 * Maps an object consisting of @num pages, catering for the user's
1892 * requested vm_pgoff
1893 *
1894 * If we fail to insert any page into the vma, the function will return
1895 * immediately leaving any previously inserted pages present. Callers
1896 * from the mmap handler may immediately return the error as their caller
1897 * will destroy the vma, removing any successfully inserted pages. Other
1898 * callers should make their own arrangements for calling unmap_region().
1899 *
1900 * Context: Process context. Called by mmap handlers.
1901 * Return: 0 on success and error code otherwise.
1902 */
1903int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1904 unsigned long num)
1905{
1906 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1907}
1908EXPORT_SYMBOL(vm_map_pages);
1909
1910/**
1911 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1912 * @vma: user vma to map to
1913 * @pages: pointer to array of source kernel pages
1914 * @num: number of pages in page array
1915 *
1916 * Similar to vm_map_pages(), except that it explicitly sets the offset
1917 * to 0. This function is intended for the drivers that did not consider
1918 * vm_pgoff.
1919 *
1920 * Context: Process context. Called by mmap handlers.
1921 * Return: 0 on success and error code otherwise.
1922 */
1923int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1924 unsigned long num)
1925{
1926 return __vm_map_pages(vma, pages, num, 0);
1927}
1928EXPORT_SYMBOL(vm_map_pages_zero);
1929
9b5a8e00 1930static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1931 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1932{
1933 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1934 pte_t *pte, entry;
1935 spinlock_t *ptl;
1936
423bad60
NP
1937 pte = get_locked_pte(mm, addr, &ptl);
1938 if (!pte)
9b5a8e00 1939 return VM_FAULT_OOM;
b2770da6
RZ
1940 if (!pte_none(*pte)) {
1941 if (mkwrite) {
1942 /*
1943 * For read faults on private mappings the PFN passed
1944 * in may not match the PFN we have mapped if the
1945 * mapped PFN is a writeable COW page. In the mkwrite
1946 * case we are creating a writable PTE for a shared
f2c57d91
JK
1947 * mapping and we expect the PFNs to match. If they
1948 * don't match, we are likely racing with block
1949 * allocation and mapping invalidation so just skip the
1950 * update.
b2770da6 1951 */
f2c57d91
JK
1952 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1953 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1954 goto out_unlock;
f2c57d91 1955 }
cae85cb8
JK
1956 entry = pte_mkyoung(*pte);
1957 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1958 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1959 update_mmu_cache(vma, addr, pte);
1960 }
1961 goto out_unlock;
b2770da6 1962 }
423bad60
NP
1963
1964 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1965 if (pfn_t_devmap(pfn))
1966 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1967 else
1968 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1969
b2770da6
RZ
1970 if (mkwrite) {
1971 entry = pte_mkyoung(entry);
1972 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1973 }
1974
423bad60 1975 set_pte_at(mm, addr, pte, entry);
4b3073e1 1976 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1977
423bad60
NP
1978out_unlock:
1979 pte_unmap_unlock(pte, ptl);
9b5a8e00 1980 return VM_FAULT_NOPAGE;
423bad60
NP
1981}
1982
f5e6d1d5
MW
1983/**
1984 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1985 * @vma: user vma to map to
1986 * @addr: target user address of this page
1987 * @pfn: source kernel pfn
1988 * @pgprot: pgprot flags for the inserted page
1989 *
a1a0aea5 1990 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
1991 * to override pgprot on a per-page basis.
1992 *
1993 * This only makes sense for IO mappings, and it makes no sense for
1994 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1995 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1996 * impractical.
1997 *
574c5b3d
TH
1998 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1999 * a value of @pgprot different from that of @vma->vm_page_prot.
2000 *
ae2b01f3 2001 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2002 * Return: vm_fault_t value.
2003 */
2004vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2005 unsigned long pfn, pgprot_t pgprot)
2006{
6d958546
MW
2007 /*
2008 * Technically, architectures with pte_special can avoid all these
2009 * restrictions (same for remap_pfn_range). However we would like
2010 * consistency in testing and feature parity among all, so we should
2011 * try to keep these invariants in place for everybody.
2012 */
2013 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2014 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2015 (VM_PFNMAP|VM_MIXEDMAP));
2016 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2017 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2018
2019 if (addr < vma->vm_start || addr >= vma->vm_end)
2020 return VM_FAULT_SIGBUS;
2021
2022 if (!pfn_modify_allowed(pfn, pgprot))
2023 return VM_FAULT_SIGBUS;
2024
2025 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2026
9b5a8e00 2027 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2028 false);
f5e6d1d5
MW
2029}
2030EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2031
ae2b01f3
MW
2032/**
2033 * vmf_insert_pfn - insert single pfn into user vma
2034 * @vma: user vma to map to
2035 * @addr: target user address of this page
2036 * @pfn: source kernel pfn
2037 *
2038 * Similar to vm_insert_page, this allows drivers to insert individual pages
2039 * they've allocated into a user vma. Same comments apply.
2040 *
2041 * This function should only be called from a vm_ops->fault handler, and
2042 * in that case the handler should return the result of this function.
2043 *
2044 * vma cannot be a COW mapping.
2045 *
2046 * As this is called only for pages that do not currently exist, we
2047 * do not need to flush old virtual caches or the TLB.
2048 *
2049 * Context: Process context. May allocate using %GFP_KERNEL.
2050 * Return: vm_fault_t value.
2051 */
2052vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2053 unsigned long pfn)
2054{
2055 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2056}
2057EXPORT_SYMBOL(vmf_insert_pfn);
2058
785a3fab
DW
2059static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2060{
2061 /* these checks mirror the abort conditions in vm_normal_page */
2062 if (vma->vm_flags & VM_MIXEDMAP)
2063 return true;
2064 if (pfn_t_devmap(pfn))
2065 return true;
2066 if (pfn_t_special(pfn))
2067 return true;
2068 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2069 return true;
2070 return false;
2071}
2072
79f3aa5b 2073static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2074 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2075 bool mkwrite)
423bad60 2076{
79f3aa5b 2077 int err;
87744ab3 2078
785a3fab 2079 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2080
423bad60 2081 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2082 return VM_FAULT_SIGBUS;
308a047c
BP
2083
2084 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2085
42e4089c 2086 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2087 return VM_FAULT_SIGBUS;
42e4089c 2088
423bad60
NP
2089 /*
2090 * If we don't have pte special, then we have to use the pfn_valid()
2091 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2092 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2093 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2094 * without pte special, it would there be refcounted as a normal page.
423bad60 2095 */
00b3a331
LD
2096 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2097 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2098 struct page *page;
2099
03fc2da6
DW
2100 /*
2101 * At this point we are committed to insert_page()
2102 * regardless of whether the caller specified flags that
2103 * result in pfn_t_has_page() == false.
2104 */
2105 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2106 err = insert_page(vma, addr, page, pgprot);
2107 } else {
9b5a8e00 2108 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2109 }
b2770da6 2110
5d747637
MW
2111 if (err == -ENOMEM)
2112 return VM_FAULT_OOM;
2113 if (err < 0 && err != -EBUSY)
2114 return VM_FAULT_SIGBUS;
2115
2116 return VM_FAULT_NOPAGE;
e0dc0d8f 2117}
79f3aa5b 2118
574c5b3d
TH
2119/**
2120 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2121 * @vma: user vma to map to
2122 * @addr: target user address of this page
2123 * @pfn: source kernel pfn
2124 * @pgprot: pgprot flags for the inserted page
2125 *
a1a0aea5 2126 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2127 * to override pgprot on a per-page basis.
2128 *
2129 * Typically this function should be used by drivers to set caching- and
2130 * encryption bits different than those of @vma->vm_page_prot, because
2131 * the caching- or encryption mode may not be known at mmap() time.
2132 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2133 * to set caching and encryption bits for those vmas (except for COW pages).
2134 * This is ensured by core vm only modifying these page table entries using
2135 * functions that don't touch caching- or encryption bits, using pte_modify()
2136 * if needed. (See for example mprotect()).
2137 * Also when new page-table entries are created, this is only done using the
2138 * fault() callback, and never using the value of vma->vm_page_prot,
2139 * except for page-table entries that point to anonymous pages as the result
2140 * of COW.
2141 *
2142 * Context: Process context. May allocate using %GFP_KERNEL.
2143 * Return: vm_fault_t value.
2144 */
2145vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2146 pfn_t pfn, pgprot_t pgprot)
2147{
2148 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2149}
5379e4dd 2150EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2151
79f3aa5b
MW
2152vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2153 pfn_t pfn)
2154{
574c5b3d 2155 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2156}
5d747637 2157EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2158
ab77dab4
SJ
2159/*
2160 * If the insertion of PTE failed because someone else already added a
2161 * different entry in the mean time, we treat that as success as we assume
2162 * the same entry was actually inserted.
2163 */
ab77dab4
SJ
2164vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2165 unsigned long addr, pfn_t pfn)
b2770da6 2166{
574c5b3d 2167 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2168}
ab77dab4 2169EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2170
1da177e4
LT
2171/*
2172 * maps a range of physical memory into the requested pages. the old
2173 * mappings are removed. any references to nonexistent pages results
2174 * in null mappings (currently treated as "copy-on-access")
2175 */
2176static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2177 unsigned long addr, unsigned long end,
2178 unsigned long pfn, pgprot_t prot)
2179{
90a3e375 2180 pte_t *pte, *mapped_pte;
c74df32c 2181 spinlock_t *ptl;
42e4089c 2182 int err = 0;
1da177e4 2183
90a3e375 2184 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2185 if (!pte)
2186 return -ENOMEM;
6606c3e0 2187 arch_enter_lazy_mmu_mode();
1da177e4
LT
2188 do {
2189 BUG_ON(!pte_none(*pte));
42e4089c
AK
2190 if (!pfn_modify_allowed(pfn, prot)) {
2191 err = -EACCES;
2192 break;
2193 }
7e675137 2194 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2195 pfn++;
2196 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2197 arch_leave_lazy_mmu_mode();
90a3e375 2198 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2199 return err;
1da177e4
LT
2200}
2201
2202static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2203 unsigned long addr, unsigned long end,
2204 unsigned long pfn, pgprot_t prot)
2205{
2206 pmd_t *pmd;
2207 unsigned long next;
42e4089c 2208 int err;
1da177e4
LT
2209
2210 pfn -= addr >> PAGE_SHIFT;
2211 pmd = pmd_alloc(mm, pud, addr);
2212 if (!pmd)
2213 return -ENOMEM;
f66055ab 2214 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2215 do {
2216 next = pmd_addr_end(addr, end);
42e4089c
AK
2217 err = remap_pte_range(mm, pmd, addr, next,
2218 pfn + (addr >> PAGE_SHIFT), prot);
2219 if (err)
2220 return err;
1da177e4
LT
2221 } while (pmd++, addr = next, addr != end);
2222 return 0;
2223}
2224
c2febafc 2225static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2226 unsigned long addr, unsigned long end,
2227 unsigned long pfn, pgprot_t prot)
2228{
2229 pud_t *pud;
2230 unsigned long next;
42e4089c 2231 int err;
1da177e4
LT
2232
2233 pfn -= addr >> PAGE_SHIFT;
c2febafc 2234 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2235 if (!pud)
2236 return -ENOMEM;
2237 do {
2238 next = pud_addr_end(addr, end);
42e4089c
AK
2239 err = remap_pmd_range(mm, pud, addr, next,
2240 pfn + (addr >> PAGE_SHIFT), prot);
2241 if (err)
2242 return err;
1da177e4
LT
2243 } while (pud++, addr = next, addr != end);
2244 return 0;
2245}
2246
c2febafc
KS
2247static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2248 unsigned long addr, unsigned long end,
2249 unsigned long pfn, pgprot_t prot)
2250{
2251 p4d_t *p4d;
2252 unsigned long next;
42e4089c 2253 int err;
c2febafc
KS
2254
2255 pfn -= addr >> PAGE_SHIFT;
2256 p4d = p4d_alloc(mm, pgd, addr);
2257 if (!p4d)
2258 return -ENOMEM;
2259 do {
2260 next = p4d_addr_end(addr, end);
42e4089c
AK
2261 err = remap_pud_range(mm, p4d, addr, next,
2262 pfn + (addr >> PAGE_SHIFT), prot);
2263 if (err)
2264 return err;
c2febafc
KS
2265 } while (p4d++, addr = next, addr != end);
2266 return 0;
2267}
2268
bfa5bf6d
REB
2269/**
2270 * remap_pfn_range - remap kernel memory to userspace
2271 * @vma: user vma to map to
0c4123e3 2272 * @addr: target page aligned user address to start at
86a76331 2273 * @pfn: page frame number of kernel physical memory address
552657b7 2274 * @size: size of mapping area
bfa5bf6d
REB
2275 * @prot: page protection flags for this mapping
2276 *
a862f68a
MR
2277 * Note: this is only safe if the mm semaphore is held when called.
2278 *
2279 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 2280 */
1da177e4
LT
2281int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2282 unsigned long pfn, unsigned long size, pgprot_t prot)
2283{
2284 pgd_t *pgd;
2285 unsigned long next;
2d15cab8 2286 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2287 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2288 unsigned long remap_pfn = pfn;
1da177e4
LT
2289 int err;
2290
0c4123e3
AZ
2291 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2292 return -EINVAL;
2293
1da177e4
LT
2294 /*
2295 * Physically remapped pages are special. Tell the
2296 * rest of the world about it:
2297 * VM_IO tells people not to look at these pages
2298 * (accesses can have side effects).
6aab341e
LT
2299 * VM_PFNMAP tells the core MM that the base pages are just
2300 * raw PFN mappings, and do not have a "struct page" associated
2301 * with them.
314e51b9
KK
2302 * VM_DONTEXPAND
2303 * Disable vma merging and expanding with mremap().
2304 * VM_DONTDUMP
2305 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2306 *
2307 * There's a horrible special case to handle copy-on-write
2308 * behaviour that some programs depend on. We mark the "original"
2309 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2310 * See vm_normal_page() for details.
1da177e4 2311 */
b3b9c293
KK
2312 if (is_cow_mapping(vma->vm_flags)) {
2313 if (addr != vma->vm_start || end != vma->vm_end)
2314 return -EINVAL;
fb155c16 2315 vma->vm_pgoff = pfn;
b3b9c293
KK
2316 }
2317
d5957d2f 2318 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2319 if (err)
3c8bb73a 2320 return -EINVAL;
fb155c16 2321
314e51b9 2322 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2323
2324 BUG_ON(addr >= end);
2325 pfn -= addr >> PAGE_SHIFT;
2326 pgd = pgd_offset(mm, addr);
2327 flush_cache_range(vma, addr, end);
1da177e4
LT
2328 do {
2329 next = pgd_addr_end(addr, end);
c2febafc 2330 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2331 pfn + (addr >> PAGE_SHIFT), prot);
2332 if (err)
2333 break;
2334 } while (pgd++, addr = next, addr != end);
2ab64037 2335
2336 if (err)
d5957d2f 2337 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2338
1da177e4
LT
2339 return err;
2340}
2341EXPORT_SYMBOL(remap_pfn_range);
2342
b4cbb197
LT
2343/**
2344 * vm_iomap_memory - remap memory to userspace
2345 * @vma: user vma to map to
abd69b9e 2346 * @start: start of the physical memory to be mapped
b4cbb197
LT
2347 * @len: size of area
2348 *
2349 * This is a simplified io_remap_pfn_range() for common driver use. The
2350 * driver just needs to give us the physical memory range to be mapped,
2351 * we'll figure out the rest from the vma information.
2352 *
2353 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2354 * whatever write-combining details or similar.
a862f68a
MR
2355 *
2356 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2357 */
2358int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2359{
2360 unsigned long vm_len, pfn, pages;
2361
2362 /* Check that the physical memory area passed in looks valid */
2363 if (start + len < start)
2364 return -EINVAL;
2365 /*
2366 * You *really* shouldn't map things that aren't page-aligned,
2367 * but we've historically allowed it because IO memory might
2368 * just have smaller alignment.
2369 */
2370 len += start & ~PAGE_MASK;
2371 pfn = start >> PAGE_SHIFT;
2372 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2373 if (pfn + pages < pfn)
2374 return -EINVAL;
2375
2376 /* We start the mapping 'vm_pgoff' pages into the area */
2377 if (vma->vm_pgoff > pages)
2378 return -EINVAL;
2379 pfn += vma->vm_pgoff;
2380 pages -= vma->vm_pgoff;
2381
2382 /* Can we fit all of the mapping? */
2383 vm_len = vma->vm_end - vma->vm_start;
2384 if (vm_len >> PAGE_SHIFT > pages)
2385 return -EINVAL;
2386
2387 /* Ok, let it rip */
2388 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2389}
2390EXPORT_SYMBOL(vm_iomap_memory);
2391
aee16b3c
JF
2392static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2393 unsigned long addr, unsigned long end,
e80d3909
JR
2394 pte_fn_t fn, void *data, bool create,
2395 pgtbl_mod_mask *mask)
aee16b3c 2396{
8abb50c7 2397 pte_t *pte, *mapped_pte;
be1db475 2398 int err = 0;
3f649ab7 2399 spinlock_t *ptl;
aee16b3c 2400
be1db475 2401 if (create) {
8abb50c7 2402 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2403 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2404 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2405 if (!pte)
2406 return -ENOMEM;
2407 } else {
8abb50c7 2408 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2409 pte_offset_kernel(pmd, addr) :
2410 pte_offset_map_lock(mm, pmd, addr, &ptl);
2411 }
aee16b3c
JF
2412
2413 BUG_ON(pmd_huge(*pmd));
2414
38e0edb1
JF
2415 arch_enter_lazy_mmu_mode();
2416
eeb4a05f
CH
2417 if (fn) {
2418 do {
2419 if (create || !pte_none(*pte)) {
2420 err = fn(pte++, addr, data);
2421 if (err)
2422 break;
2423 }
2424 } while (addr += PAGE_SIZE, addr != end);
2425 }
e80d3909 2426 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2427
38e0edb1
JF
2428 arch_leave_lazy_mmu_mode();
2429
aee16b3c 2430 if (mm != &init_mm)
8abb50c7 2431 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2432 return err;
2433}
2434
2435static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2436 unsigned long addr, unsigned long end,
e80d3909
JR
2437 pte_fn_t fn, void *data, bool create,
2438 pgtbl_mod_mask *mask)
aee16b3c
JF
2439{
2440 pmd_t *pmd;
2441 unsigned long next;
be1db475 2442 int err = 0;
aee16b3c 2443
ceb86879
AK
2444 BUG_ON(pud_huge(*pud));
2445
be1db475 2446 if (create) {
e80d3909 2447 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2448 if (!pmd)
2449 return -ENOMEM;
2450 } else {
2451 pmd = pmd_offset(pud, addr);
2452 }
aee16b3c
JF
2453 do {
2454 next = pmd_addr_end(addr, end);
be1db475
DA
2455 if (create || !pmd_none_or_clear_bad(pmd)) {
2456 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
e80d3909 2457 create, mask);
be1db475
DA
2458 if (err)
2459 break;
2460 }
aee16b3c
JF
2461 } while (pmd++, addr = next, addr != end);
2462 return err;
2463}
2464
c2febafc 2465static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2466 unsigned long addr, unsigned long end,
e80d3909
JR
2467 pte_fn_t fn, void *data, bool create,
2468 pgtbl_mod_mask *mask)
aee16b3c
JF
2469{
2470 pud_t *pud;
2471 unsigned long next;
be1db475 2472 int err = 0;
aee16b3c 2473
be1db475 2474 if (create) {
e80d3909 2475 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2476 if (!pud)
2477 return -ENOMEM;
2478 } else {
2479 pud = pud_offset(p4d, addr);
2480 }
aee16b3c
JF
2481 do {
2482 next = pud_addr_end(addr, end);
be1db475
DA
2483 if (create || !pud_none_or_clear_bad(pud)) {
2484 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
e80d3909 2485 create, mask);
be1db475
DA
2486 if (err)
2487 break;
2488 }
aee16b3c
JF
2489 } while (pud++, addr = next, addr != end);
2490 return err;
2491}
2492
c2febafc
KS
2493static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2494 unsigned long addr, unsigned long end,
e80d3909
JR
2495 pte_fn_t fn, void *data, bool create,
2496 pgtbl_mod_mask *mask)
c2febafc
KS
2497{
2498 p4d_t *p4d;
2499 unsigned long next;
be1db475 2500 int err = 0;
c2febafc 2501
be1db475 2502 if (create) {
e80d3909 2503 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2504 if (!p4d)
2505 return -ENOMEM;
2506 } else {
2507 p4d = p4d_offset(pgd, addr);
2508 }
c2febafc
KS
2509 do {
2510 next = p4d_addr_end(addr, end);
be1db475
DA
2511 if (create || !p4d_none_or_clear_bad(p4d)) {
2512 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
e80d3909 2513 create, mask);
be1db475
DA
2514 if (err)
2515 break;
2516 }
c2febafc
KS
2517 } while (p4d++, addr = next, addr != end);
2518 return err;
2519}
2520
be1db475
DA
2521static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2522 unsigned long size, pte_fn_t fn,
2523 void *data, bool create)
aee16b3c
JF
2524{
2525 pgd_t *pgd;
e80d3909 2526 unsigned long start = addr, next;
57250a5b 2527 unsigned long end = addr + size;
e80d3909 2528 pgtbl_mod_mask mask = 0;
be1db475 2529 int err = 0;
aee16b3c 2530
9cb65bc3
MP
2531 if (WARN_ON(addr >= end))
2532 return -EINVAL;
2533
aee16b3c
JF
2534 pgd = pgd_offset(mm, addr);
2535 do {
2536 next = pgd_addr_end(addr, end);
be1db475
DA
2537 if (!create && pgd_none_or_clear_bad(pgd))
2538 continue;
e80d3909 2539 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
aee16b3c
JF
2540 if (err)
2541 break;
2542 } while (pgd++, addr = next, addr != end);
57250a5b 2543
e80d3909
JR
2544 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2545 arch_sync_kernel_mappings(start, start + size);
2546
aee16b3c
JF
2547 return err;
2548}
be1db475
DA
2549
2550/*
2551 * Scan a region of virtual memory, filling in page tables as necessary
2552 * and calling a provided function on each leaf page table.
2553 */
2554int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2555 unsigned long size, pte_fn_t fn, void *data)
2556{
2557 return __apply_to_page_range(mm, addr, size, fn, data, true);
2558}
aee16b3c
JF
2559EXPORT_SYMBOL_GPL(apply_to_page_range);
2560
be1db475
DA
2561/*
2562 * Scan a region of virtual memory, calling a provided function on
2563 * each leaf page table where it exists.
2564 *
2565 * Unlike apply_to_page_range, this does _not_ fill in page tables
2566 * where they are absent.
2567 */
2568int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2569 unsigned long size, pte_fn_t fn, void *data)
2570{
2571 return __apply_to_page_range(mm, addr, size, fn, data, false);
2572}
2573EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2574
8f4e2101 2575/*
9b4bdd2f
KS
2576 * handle_pte_fault chooses page fault handler according to an entry which was
2577 * read non-atomically. Before making any commitment, on those architectures
2578 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2579 * parts, do_swap_page must check under lock before unmapping the pte and
2580 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2581 * and do_anonymous_page can safely check later on).
8f4e2101 2582 */
4c21e2f2 2583static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2584 pte_t *page_table, pte_t orig_pte)
2585{
2586 int same = 1;
923717cb 2587#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2588 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2589 spinlock_t *ptl = pte_lockptr(mm, pmd);
2590 spin_lock(ptl);
8f4e2101 2591 same = pte_same(*page_table, orig_pte);
4c21e2f2 2592 spin_unlock(ptl);
8f4e2101
HD
2593 }
2594#endif
2595 pte_unmap(page_table);
2596 return same;
2597}
2598
83d116c5
JH
2599static inline bool cow_user_page(struct page *dst, struct page *src,
2600 struct vm_fault *vmf)
6aab341e 2601{
83d116c5
JH
2602 bool ret;
2603 void *kaddr;
2604 void __user *uaddr;
c3e5ea6e 2605 bool locked = false;
83d116c5
JH
2606 struct vm_area_struct *vma = vmf->vma;
2607 struct mm_struct *mm = vma->vm_mm;
2608 unsigned long addr = vmf->address;
2609
83d116c5
JH
2610 if (likely(src)) {
2611 copy_user_highpage(dst, src, addr, vma);
2612 return true;
2613 }
2614
6aab341e
LT
2615 /*
2616 * If the source page was a PFN mapping, we don't have
2617 * a "struct page" for it. We do a best-effort copy by
2618 * just copying from the original user address. If that
2619 * fails, we just zero-fill it. Live with it.
2620 */
83d116c5
JH
2621 kaddr = kmap_atomic(dst);
2622 uaddr = (void __user *)(addr & PAGE_MASK);
2623
2624 /*
2625 * On architectures with software "accessed" bits, we would
2626 * take a double page fault, so mark it accessed here.
2627 */
c3e5ea6e 2628 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2629 pte_t entry;
5d2a2dbb 2630
83d116c5 2631 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2632 locked = true;
83d116c5
JH
2633 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2634 /*
2635 * Other thread has already handled the fault
7df67697 2636 * and update local tlb only
83d116c5 2637 */
7df67697 2638 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2639 ret = false;
2640 goto pte_unlock;
2641 }
2642
2643 entry = pte_mkyoung(vmf->orig_pte);
2644 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2645 update_mmu_cache(vma, addr, vmf->pte);
2646 }
2647
2648 /*
2649 * This really shouldn't fail, because the page is there
2650 * in the page tables. But it might just be unreadable,
2651 * in which case we just give up and fill the result with
2652 * zeroes.
2653 */
2654 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2655 if (locked)
2656 goto warn;
2657
2658 /* Re-validate under PTL if the page is still mapped */
2659 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2660 locked = true;
2661 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2662 /* The PTE changed under us, update local tlb */
2663 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2664 ret = false;
2665 goto pte_unlock;
2666 }
2667
5d2a2dbb 2668 /*
985ba004 2669 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2670 * Try to copy again under PTL.
5d2a2dbb 2671 */
c3e5ea6e
KS
2672 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2673 /*
2674 * Give a warn in case there can be some obscure
2675 * use-case
2676 */
2677warn:
2678 WARN_ON_ONCE(1);
2679 clear_page(kaddr);
2680 }
83d116c5
JH
2681 }
2682
2683 ret = true;
2684
2685pte_unlock:
c3e5ea6e 2686 if (locked)
83d116c5
JH
2687 pte_unmap_unlock(vmf->pte, vmf->ptl);
2688 kunmap_atomic(kaddr);
2689 flush_dcache_page(dst);
2690
2691 return ret;
6aab341e
LT
2692}
2693
c20cd45e
MH
2694static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2695{
2696 struct file *vm_file = vma->vm_file;
2697
2698 if (vm_file)
2699 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2700
2701 /*
2702 * Special mappings (e.g. VDSO) do not have any file so fake
2703 * a default GFP_KERNEL for them.
2704 */
2705 return GFP_KERNEL;
2706}
2707
fb09a464
KS
2708/*
2709 * Notify the address space that the page is about to become writable so that
2710 * it can prohibit this or wait for the page to get into an appropriate state.
2711 *
2712 * We do this without the lock held, so that it can sleep if it needs to.
2713 */
2b740303 2714static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2715{
2b740303 2716 vm_fault_t ret;
38b8cb7f
JK
2717 struct page *page = vmf->page;
2718 unsigned int old_flags = vmf->flags;
fb09a464 2719
38b8cb7f 2720 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2721
dc617f29
DW
2722 if (vmf->vma->vm_file &&
2723 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2724 return VM_FAULT_SIGBUS;
2725
11bac800 2726 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2727 /* Restore original flags so that caller is not surprised */
2728 vmf->flags = old_flags;
fb09a464
KS
2729 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2730 return ret;
2731 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2732 lock_page(page);
2733 if (!page->mapping) {
2734 unlock_page(page);
2735 return 0; /* retry */
2736 }
2737 ret |= VM_FAULT_LOCKED;
2738 } else
2739 VM_BUG_ON_PAGE(!PageLocked(page), page);
2740 return ret;
2741}
2742
97ba0c2b
JK
2743/*
2744 * Handle dirtying of a page in shared file mapping on a write fault.
2745 *
2746 * The function expects the page to be locked and unlocks it.
2747 */
89b15332 2748static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2749{
89b15332 2750 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2751 struct address_space *mapping;
89b15332 2752 struct page *page = vmf->page;
97ba0c2b
JK
2753 bool dirtied;
2754 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2755
2756 dirtied = set_page_dirty(page);
2757 VM_BUG_ON_PAGE(PageAnon(page), page);
2758 /*
2759 * Take a local copy of the address_space - page.mapping may be zeroed
2760 * by truncate after unlock_page(). The address_space itself remains
2761 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2762 * release semantics to prevent the compiler from undoing this copying.
2763 */
2764 mapping = page_rmapping(page);
2765 unlock_page(page);
2766
89b15332
JW
2767 if (!page_mkwrite)
2768 file_update_time(vma->vm_file);
2769
2770 /*
2771 * Throttle page dirtying rate down to writeback speed.
2772 *
2773 * mapping may be NULL here because some device drivers do not
2774 * set page.mapping but still dirty their pages
2775 *
c1e8d7c6 2776 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2777 * is pinning the mapping, as per above.
2778 */
97ba0c2b 2779 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2780 struct file *fpin;
2781
2782 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2783 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2784 if (fpin) {
2785 fput(fpin);
2786 return VM_FAULT_RETRY;
2787 }
97ba0c2b
JK
2788 }
2789
89b15332 2790 return 0;
97ba0c2b
JK
2791}
2792
4e047f89
SR
2793/*
2794 * Handle write page faults for pages that can be reused in the current vma
2795 *
2796 * This can happen either due to the mapping being with the VM_SHARED flag,
2797 * or due to us being the last reference standing to the page. In either
2798 * case, all we need to do here is to mark the page as writable and update
2799 * any related book-keeping.
2800 */
997dd98d 2801static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2802 __releases(vmf->ptl)
4e047f89 2803{
82b0f8c3 2804 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2805 struct page *page = vmf->page;
4e047f89
SR
2806 pte_t entry;
2807 /*
2808 * Clear the pages cpupid information as the existing
2809 * information potentially belongs to a now completely
2810 * unrelated process.
2811 */
2812 if (page)
2813 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2814
2994302b
JK
2815 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2816 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2817 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2818 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2819 update_mmu_cache(vma, vmf->address, vmf->pte);
2820 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2821 count_vm_event(PGREUSE);
4e047f89
SR
2822}
2823
2f38ab2c
SR
2824/*
2825 * Handle the case of a page which we actually need to copy to a new page.
2826 *
c1e8d7c6 2827 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2828 * without the ptl held.
2829 *
2830 * High level logic flow:
2831 *
2832 * - Allocate a page, copy the content of the old page to the new one.
2833 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2834 * - Take the PTL. If the pte changed, bail out and release the allocated page
2835 * - If the pte is still the way we remember it, update the page table and all
2836 * relevant references. This includes dropping the reference the page-table
2837 * held to the old page, as well as updating the rmap.
2838 * - In any case, unlock the PTL and drop the reference we took to the old page.
2839 */
2b740303 2840static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2841{
82b0f8c3 2842 struct vm_area_struct *vma = vmf->vma;
bae473a4 2843 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2844 struct page *old_page = vmf->page;
2f38ab2c 2845 struct page *new_page = NULL;
2f38ab2c
SR
2846 pte_t entry;
2847 int page_copied = 0;
ac46d4f3 2848 struct mmu_notifier_range range;
2f38ab2c
SR
2849
2850 if (unlikely(anon_vma_prepare(vma)))
2851 goto oom;
2852
2994302b 2853 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2854 new_page = alloc_zeroed_user_highpage_movable(vma,
2855 vmf->address);
2f38ab2c
SR
2856 if (!new_page)
2857 goto oom;
2858 } else {
bae473a4 2859 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2860 vmf->address);
2f38ab2c
SR
2861 if (!new_page)
2862 goto oom;
83d116c5
JH
2863
2864 if (!cow_user_page(new_page, old_page, vmf)) {
2865 /*
2866 * COW failed, if the fault was solved by other,
2867 * it's fine. If not, userspace would re-fault on
2868 * the same address and we will handle the fault
2869 * from the second attempt.
2870 */
2871 put_page(new_page);
2872 if (old_page)
2873 put_page(old_page);
2874 return 0;
2875 }
2f38ab2c 2876 }
2f38ab2c 2877
d9eb1ea2 2878 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2879 goto oom_free_new;
9d82c694 2880 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2881
eb3c24f3
MG
2882 __SetPageUptodate(new_page);
2883
7269f999 2884 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2885 vmf->address & PAGE_MASK,
ac46d4f3
JG
2886 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2887 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2888
2889 /*
2890 * Re-check the pte - we dropped the lock
2891 */
82b0f8c3 2892 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2893 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2894 if (old_page) {
2895 if (!PageAnon(old_page)) {
eca56ff9
JM
2896 dec_mm_counter_fast(mm,
2897 mm_counter_file(old_page));
2f38ab2c
SR
2898 inc_mm_counter_fast(mm, MM_ANONPAGES);
2899 }
2900 } else {
2901 inc_mm_counter_fast(mm, MM_ANONPAGES);
2902 }
2994302b 2903 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2904 entry = mk_pte(new_page, vma->vm_page_prot);
2905 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 2906
2f38ab2c
SR
2907 /*
2908 * Clear the pte entry and flush it first, before updating the
111fe718
NP
2909 * pte with the new entry, to keep TLBs on different CPUs in
2910 * sync. This code used to set the new PTE then flush TLBs, but
2911 * that left a window where the new PTE could be loaded into
2912 * some TLBs while the old PTE remains in others.
2f38ab2c 2913 */
82b0f8c3
JK
2914 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2915 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 2916 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
2917 /*
2918 * We call the notify macro here because, when using secondary
2919 * mmu page tables (such as kvm shadow page tables), we want the
2920 * new page to be mapped directly into the secondary page table.
2921 */
82b0f8c3
JK
2922 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2923 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2924 if (old_page) {
2925 /*
2926 * Only after switching the pte to the new page may
2927 * we remove the mapcount here. Otherwise another
2928 * process may come and find the rmap count decremented
2929 * before the pte is switched to the new page, and
2930 * "reuse" the old page writing into it while our pte
2931 * here still points into it and can be read by other
2932 * threads.
2933 *
2934 * The critical issue is to order this
2935 * page_remove_rmap with the ptp_clear_flush above.
2936 * Those stores are ordered by (if nothing else,)
2937 * the barrier present in the atomic_add_negative
2938 * in page_remove_rmap.
2939 *
2940 * Then the TLB flush in ptep_clear_flush ensures that
2941 * no process can access the old page before the
2942 * decremented mapcount is visible. And the old page
2943 * cannot be reused until after the decremented
2944 * mapcount is visible. So transitively, TLBs to
2945 * old page will be flushed before it can be reused.
2946 */
d281ee61 2947 page_remove_rmap(old_page, false);
2f38ab2c
SR
2948 }
2949
2950 /* Free the old page.. */
2951 new_page = old_page;
2952 page_copied = 1;
2953 } else {
7df67697 2954 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2955 }
2956
2957 if (new_page)
09cbfeaf 2958 put_page(new_page);
2f38ab2c 2959
82b0f8c3 2960 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2961 /*
2962 * No need to double call mmu_notifier->invalidate_range() callback as
2963 * the above ptep_clear_flush_notify() did already call it.
2964 */
ac46d4f3 2965 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2966 if (old_page) {
2967 /*
2968 * Don't let another task, with possibly unlocked vma,
2969 * keep the mlocked page.
2970 */
2971 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2972 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2973 if (PageMlocked(old_page))
2974 munlock_vma_page(old_page);
2f38ab2c
SR
2975 unlock_page(old_page);
2976 }
09cbfeaf 2977 put_page(old_page);
2f38ab2c
SR
2978 }
2979 return page_copied ? VM_FAULT_WRITE : 0;
2980oom_free_new:
09cbfeaf 2981 put_page(new_page);
2f38ab2c
SR
2982oom:
2983 if (old_page)
09cbfeaf 2984 put_page(old_page);
2f38ab2c
SR
2985 return VM_FAULT_OOM;
2986}
2987
66a6197c
JK
2988/**
2989 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2990 * writeable once the page is prepared
2991 *
2992 * @vmf: structure describing the fault
2993 *
2994 * This function handles all that is needed to finish a write page fault in a
2995 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2996 * It handles locking of PTE and modifying it.
66a6197c
JK
2997 *
2998 * The function expects the page to be locked or other protection against
2999 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
3000 *
3001 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3002 * we acquired PTE lock.
66a6197c 3003 */
2b740303 3004vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3005{
3006 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3007 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3008 &vmf->ptl);
3009 /*
3010 * We might have raced with another page fault while we released the
3011 * pte_offset_map_lock.
3012 */
3013 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3014 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3015 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3016 return VM_FAULT_NOPAGE;
66a6197c
JK
3017 }
3018 wp_page_reuse(vmf);
a19e2553 3019 return 0;
66a6197c
JK
3020}
3021
dd906184
BH
3022/*
3023 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3024 * mapping
3025 */
2b740303 3026static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3027{
82b0f8c3 3028 struct vm_area_struct *vma = vmf->vma;
bae473a4 3029
dd906184 3030 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3031 vm_fault_t ret;
dd906184 3032
82b0f8c3 3033 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3034 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3035 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3036 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3037 return ret;
66a6197c 3038 return finish_mkwrite_fault(vmf);
dd906184 3039 }
997dd98d
JK
3040 wp_page_reuse(vmf);
3041 return VM_FAULT_WRITE;
dd906184
BH
3042}
3043
2b740303 3044static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3045 __releases(vmf->ptl)
93e478d4 3046{
82b0f8c3 3047 struct vm_area_struct *vma = vmf->vma;
89b15332 3048 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3049
a41b70d6 3050 get_page(vmf->page);
93e478d4 3051
93e478d4 3052 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3053 vm_fault_t tmp;
93e478d4 3054
82b0f8c3 3055 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3056 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3057 if (unlikely(!tmp || (tmp &
3058 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3059 put_page(vmf->page);
93e478d4
SR
3060 return tmp;
3061 }
66a6197c 3062 tmp = finish_mkwrite_fault(vmf);
a19e2553 3063 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3064 unlock_page(vmf->page);
a41b70d6 3065 put_page(vmf->page);
66a6197c 3066 return tmp;
93e478d4 3067 }
66a6197c
JK
3068 } else {
3069 wp_page_reuse(vmf);
997dd98d 3070 lock_page(vmf->page);
93e478d4 3071 }
89b15332 3072 ret |= fault_dirty_shared_page(vmf);
997dd98d 3073 put_page(vmf->page);
93e478d4 3074
89b15332 3075 return ret;
93e478d4
SR
3076}
3077
1da177e4
LT
3078/*
3079 * This routine handles present pages, when users try to write
3080 * to a shared page. It is done by copying the page to a new address
3081 * and decrementing the shared-page counter for the old page.
3082 *
1da177e4
LT
3083 * Note that this routine assumes that the protection checks have been
3084 * done by the caller (the low-level page fault routine in most cases).
3085 * Thus we can safely just mark it writable once we've done any necessary
3086 * COW.
3087 *
3088 * We also mark the page dirty at this point even though the page will
3089 * change only once the write actually happens. This avoids a few races,
3090 * and potentially makes it more efficient.
3091 *
c1e8d7c6 3092 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3093 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3094 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3095 */
2b740303 3096static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3097 __releases(vmf->ptl)
1da177e4 3098{
82b0f8c3 3099 struct vm_area_struct *vma = vmf->vma;
1da177e4 3100
292924b2 3101 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3102 pte_unmap_unlock(vmf->pte, vmf->ptl);
3103 return handle_userfault(vmf, VM_UFFD_WP);
3104 }
3105
a41b70d6
JK
3106 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3107 if (!vmf->page) {
251b97f5 3108 /*
64e45507
PF
3109 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3110 * VM_PFNMAP VMA.
251b97f5
PZ
3111 *
3112 * We should not cow pages in a shared writeable mapping.
dd906184 3113 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3114 */
3115 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3116 (VM_WRITE|VM_SHARED))
2994302b 3117 return wp_pfn_shared(vmf);
2f38ab2c 3118
82b0f8c3 3119 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3120 return wp_page_copy(vmf);
251b97f5 3121 }
1da177e4 3122
d08b3851 3123 /*
ee6a6457
PZ
3124 * Take out anonymous pages first, anonymous shared vmas are
3125 * not dirty accountable.
d08b3851 3126 */
52d1e606 3127 if (PageAnon(vmf->page)) {
09854ba9
LT
3128 struct page *page = vmf->page;
3129
3130 /* PageKsm() doesn't necessarily raise the page refcount */
3131 if (PageKsm(page) || page_count(page) != 1)
3132 goto copy;
3133 if (!trylock_page(page))
3134 goto copy;
3135 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3136 unlock_page(page);
52d1e606 3137 goto copy;
b009c024 3138 }
09854ba9
LT
3139 /*
3140 * Ok, we've got the only map reference, and the only
3141 * page count reference, and the page is locked,
3142 * it's dark out, and we're wearing sunglasses. Hit it.
3143 */
09854ba9 3144 unlock_page(page);
be068f29 3145 wp_page_reuse(vmf);
09854ba9 3146 return VM_FAULT_WRITE;
ee6a6457 3147 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3148 (VM_WRITE|VM_SHARED))) {
a41b70d6 3149 return wp_page_shared(vmf);
1da177e4 3150 }
52d1e606 3151copy:
1da177e4
LT
3152 /*
3153 * Ok, we need to copy. Oh, well..
3154 */
a41b70d6 3155 get_page(vmf->page);
28766805 3156
82b0f8c3 3157 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3158 return wp_page_copy(vmf);
1da177e4
LT
3159}
3160
97a89413 3161static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3162 unsigned long start_addr, unsigned long end_addr,
3163 struct zap_details *details)
3164{
f5cc4eef 3165 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3166}
3167
f808c13f 3168static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
3169 struct zap_details *details)
3170{
3171 struct vm_area_struct *vma;
1da177e4
LT
3172 pgoff_t vba, vea, zba, zea;
3173
6b2dbba8 3174 vma_interval_tree_foreach(vma, root,
1da177e4 3175 details->first_index, details->last_index) {
1da177e4
LT
3176
3177 vba = vma->vm_pgoff;
d6e93217 3178 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3179 zba = details->first_index;
3180 if (zba < vba)
3181 zba = vba;
3182 zea = details->last_index;
3183 if (zea > vea)
3184 zea = vea;
3185
97a89413 3186 unmap_mapping_range_vma(vma,
1da177e4
LT
3187 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3188 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3189 details);
1da177e4
LT
3190 }
3191}
3192
977fbdcd
MW
3193/**
3194 * unmap_mapping_pages() - Unmap pages from processes.
3195 * @mapping: The address space containing pages to be unmapped.
3196 * @start: Index of first page to be unmapped.
3197 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3198 * @even_cows: Whether to unmap even private COWed pages.
3199 *
3200 * Unmap the pages in this address space from any userspace process which
3201 * has them mmaped. Generally, you want to remove COWed pages as well when
3202 * a file is being truncated, but not when invalidating pages from the page
3203 * cache.
3204 */
3205void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3206 pgoff_t nr, bool even_cows)
3207{
3208 struct zap_details details = { };
3209
3210 details.check_mapping = even_cows ? NULL : mapping;
3211 details.first_index = start;
3212 details.last_index = start + nr - 1;
3213 if (details.last_index < details.first_index)
3214 details.last_index = ULONG_MAX;
3215
3216 i_mmap_lock_write(mapping);
3217 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3218 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3219 i_mmap_unlock_write(mapping);
3220}
3221
1da177e4 3222/**
8a5f14a2 3223 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3224 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3225 * file.
3226 *
3d41088f 3227 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3228 * @holebegin: byte in first page to unmap, relative to the start of
3229 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3230 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3231 * must keep the partial page. In contrast, we must get rid of
3232 * partial pages.
3233 * @holelen: size of prospective hole in bytes. This will be rounded
3234 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3235 * end of the file.
3236 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3237 * but 0 when invalidating pagecache, don't throw away private data.
3238 */
3239void unmap_mapping_range(struct address_space *mapping,
3240 loff_t const holebegin, loff_t const holelen, int even_cows)
3241{
1da177e4
LT
3242 pgoff_t hba = holebegin >> PAGE_SHIFT;
3243 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3244
3245 /* Check for overflow. */
3246 if (sizeof(holelen) > sizeof(hlen)) {
3247 long long holeend =
3248 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3249 if (holeend & ~(long long)ULONG_MAX)
3250 hlen = ULONG_MAX - hba + 1;
3251 }
3252
977fbdcd 3253 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3254}
3255EXPORT_SYMBOL(unmap_mapping_range);
3256
1da177e4 3257/*
c1e8d7c6 3258 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3259 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3260 * We return with pte unmapped and unlocked.
3261 *
c1e8d7c6 3262 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3263 * as does filemap_fault().
1da177e4 3264 */
2b740303 3265vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3266{
82b0f8c3 3267 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3268 struct page *page = NULL, *swapcache;
65500d23 3269 swp_entry_t entry;
1da177e4 3270 pte_t pte;
d065bd81 3271 int locked;
ad8c2ee8 3272 int exclusive = 0;
2b740303 3273 vm_fault_t ret = 0;
aae466b0 3274 void *shadow = NULL;
1da177e4 3275
eaf649eb 3276 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3277 goto out;
65500d23 3278
2994302b 3279 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3280 if (unlikely(non_swap_entry(entry))) {
3281 if (is_migration_entry(entry)) {
82b0f8c3
JK
3282 migration_entry_wait(vma->vm_mm, vmf->pmd,
3283 vmf->address);
5042db43 3284 } else if (is_device_private_entry(entry)) {
897e6365
CH
3285 vmf->page = device_private_entry_to_page(entry);
3286 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3287 } else if (is_hwpoison_entry(entry)) {
3288 ret = VM_FAULT_HWPOISON;
3289 } else {
2994302b 3290 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3291 ret = VM_FAULT_SIGBUS;
d1737fdb 3292 }
0697212a
CL
3293 goto out;
3294 }
0bcac06f
MK
3295
3296
0ff92245 3297 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3298 page = lookup_swap_cache(entry, vma, vmf->address);
3299 swapcache = page;
f8020772 3300
1da177e4 3301 if (!page) {
0bcac06f
MK
3302 struct swap_info_struct *si = swp_swap_info(entry);
3303
a449bf58
QC
3304 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3305 __swap_count(entry) == 1) {
0bcac06f 3306 /* skip swapcache */
e9e9b7ec
MK
3307 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3308 vmf->address);
0bcac06f 3309 if (page) {
4c6355b2
JW
3310 int err;
3311
0bcac06f
MK
3312 __SetPageLocked(page);
3313 __SetPageSwapBacked(page);
3314 set_page_private(page, entry.val);
4c6355b2
JW
3315
3316 /* Tell memcg to use swap ownership records */
3317 SetPageSwapCache(page);
3318 err = mem_cgroup_charge(page, vma->vm_mm,
d9eb1ea2 3319 GFP_KERNEL);
4c6355b2 3320 ClearPageSwapCache(page);
545b1b07
MH
3321 if (err) {
3322 ret = VM_FAULT_OOM;
4c6355b2 3323 goto out_page;
545b1b07 3324 }
4c6355b2 3325
aae466b0
JK
3326 shadow = get_shadow_from_swap_cache(entry);
3327 if (shadow)
3328 workingset_refault(page, shadow);
0076f029 3329
6058eaec 3330 lru_cache_add(page);
0bcac06f
MK
3331 swap_readpage(page, true);
3332 }
aa8d22a1 3333 } else {
e9e9b7ec
MK
3334 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3335 vmf);
aa8d22a1 3336 swapcache = page;
0bcac06f
MK
3337 }
3338
1da177e4
LT
3339 if (!page) {
3340 /*
8f4e2101
HD
3341 * Back out if somebody else faulted in this pte
3342 * while we released the pte lock.
1da177e4 3343 */
82b0f8c3
JK
3344 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3345 vmf->address, &vmf->ptl);
2994302b 3346 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3347 ret = VM_FAULT_OOM;
0ff92245 3348 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3349 goto unlock;
1da177e4
LT
3350 }
3351
3352 /* Had to read the page from swap area: Major fault */
3353 ret = VM_FAULT_MAJOR;
f8891e5e 3354 count_vm_event(PGMAJFAULT);
2262185c 3355 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3356 } else if (PageHWPoison(page)) {
71f72525
WF
3357 /*
3358 * hwpoisoned dirty swapcache pages are kept for killing
3359 * owner processes (which may be unknown at hwpoison time)
3360 */
d1737fdb
AK
3361 ret = VM_FAULT_HWPOISON;
3362 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3363 goto out_release;
1da177e4
LT
3364 }
3365
82b0f8c3 3366 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3367
073e587e 3368 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3369 if (!locked) {
3370 ret |= VM_FAULT_RETRY;
3371 goto out_release;
3372 }
073e587e 3373
4969c119 3374 /*
31c4a3d3
HD
3375 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3376 * release the swapcache from under us. The page pin, and pte_same
3377 * test below, are not enough to exclude that. Even if it is still
3378 * swapcache, we need to check that the page's swap has not changed.
4969c119 3379 */
0bcac06f
MK
3380 if (unlikely((!PageSwapCache(page) ||
3381 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3382 goto out_page;
3383
82b0f8c3 3384 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3385 if (unlikely(!page)) {
3386 ret = VM_FAULT_OOM;
3387 page = swapcache;
cbf86cfe 3388 goto out_page;
5ad64688
HD
3389 }
3390
9d82c694 3391 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3392
1da177e4 3393 /*
8f4e2101 3394 * Back out if somebody else already faulted in this pte.
1da177e4 3395 */
82b0f8c3
JK
3396 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3397 &vmf->ptl);
2994302b 3398 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3399 goto out_nomap;
b8107480
KK
3400
3401 if (unlikely(!PageUptodate(page))) {
3402 ret = VM_FAULT_SIGBUS;
3403 goto out_nomap;
1da177e4
LT
3404 }
3405
8c7c6e34
KH
3406 /*
3407 * The page isn't present yet, go ahead with the fault.
3408 *
3409 * Be careful about the sequence of operations here.
3410 * To get its accounting right, reuse_swap_page() must be called
3411 * while the page is counted on swap but not yet in mapcount i.e.
3412 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3413 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3414 */
1da177e4 3415
bae473a4
KS
3416 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3417 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3418 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3419 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3420 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3421 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3422 ret |= VM_FAULT_WRITE;
d281ee61 3423 exclusive = RMAP_EXCLUSIVE;
1da177e4 3424 }
1da177e4 3425 flush_icache_page(vma, page);
2994302b 3426 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3427 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3428 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3429 pte = pte_mkuffd_wp(pte);
3430 pte = pte_wrprotect(pte);
3431 }
82b0f8c3 3432 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3433 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3434 vmf->orig_pte = pte;
0bcac06f
MK
3435
3436 /* ksm created a completely new copy */
3437 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3438 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3439 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3440 } else {
3441 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3442 }
1da177e4 3443
c475a8ab 3444 swap_free(entry);
5ccc5aba
VD
3445 if (mem_cgroup_swap_full(page) ||
3446 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3447 try_to_free_swap(page);
c475a8ab 3448 unlock_page(page);
0bcac06f 3449 if (page != swapcache && swapcache) {
4969c119
AA
3450 /*
3451 * Hold the lock to avoid the swap entry to be reused
3452 * until we take the PT lock for the pte_same() check
3453 * (to avoid false positives from pte_same). For
3454 * further safety release the lock after the swap_free
3455 * so that the swap count won't change under a
3456 * parallel locked swapcache.
3457 */
3458 unlock_page(swapcache);
09cbfeaf 3459 put_page(swapcache);
4969c119 3460 }
c475a8ab 3461
82b0f8c3 3462 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3463 ret |= do_wp_page(vmf);
61469f1d
HD
3464 if (ret & VM_FAULT_ERROR)
3465 ret &= VM_FAULT_ERROR;
1da177e4
LT
3466 goto out;
3467 }
3468
3469 /* No need to invalidate - it was non-present before */
82b0f8c3 3470 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3471unlock:
82b0f8c3 3472 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3473out:
3474 return ret;
b8107480 3475out_nomap:
82b0f8c3 3476 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3477out_page:
b8107480 3478 unlock_page(page);
4779cb31 3479out_release:
09cbfeaf 3480 put_page(page);
0bcac06f 3481 if (page != swapcache && swapcache) {
4969c119 3482 unlock_page(swapcache);
09cbfeaf 3483 put_page(swapcache);
4969c119 3484 }
65500d23 3485 return ret;
1da177e4
LT
3486}
3487
3488/*
c1e8d7c6 3489 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3490 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3491 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3492 */
2b740303 3493static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3494{
82b0f8c3 3495 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3496 struct page *page;
2b740303 3497 vm_fault_t ret = 0;
1da177e4 3498 pte_t entry;
1da177e4 3499
6b7339f4
KS
3500 /* File mapping without ->vm_ops ? */
3501 if (vma->vm_flags & VM_SHARED)
3502 return VM_FAULT_SIGBUS;
3503
7267ec00
KS
3504 /*
3505 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3506 * pte_offset_map() on pmds where a huge pmd might be created
3507 * from a different thread.
3508 *
3e4e28c5 3509 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3510 * parallel threads are excluded by other means.
3511 *
3e4e28c5 3512 * Here we only have mmap_read_lock(mm).
7267ec00 3513 */
4cf58924 3514 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3515 return VM_FAULT_OOM;
3516
f9ce0be7 3517 /* See comment in handle_pte_fault() */
82b0f8c3 3518 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3519 return 0;
3520
11ac5524 3521 /* Use the zero-page for reads */
82b0f8c3 3522 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3523 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3524 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3525 vma->vm_page_prot));
82b0f8c3
JK
3526 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3527 vmf->address, &vmf->ptl);
7df67697
BM
3528 if (!pte_none(*vmf->pte)) {
3529 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3530 goto unlock;
7df67697 3531 }
6b31d595
MH
3532 ret = check_stable_address_space(vma->vm_mm);
3533 if (ret)
3534 goto unlock;
6b251fc9
AA
3535 /* Deliver the page fault to userland, check inside PT lock */
3536 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3537 pte_unmap_unlock(vmf->pte, vmf->ptl);
3538 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3539 }
a13ea5b7
HD
3540 goto setpte;
3541 }
3542
557ed1fa 3543 /* Allocate our own private page. */
557ed1fa
NP
3544 if (unlikely(anon_vma_prepare(vma)))
3545 goto oom;
82b0f8c3 3546 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3547 if (!page)
3548 goto oom;
eb3c24f3 3549
d9eb1ea2 3550 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3551 goto oom_free_page;
9d82c694 3552 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3553
52f37629
MK
3554 /*
3555 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3556 * preceding stores to the page contents become visible before
52f37629
MK
3557 * the set_pte_at() write.
3558 */
0ed361de 3559 __SetPageUptodate(page);
8f4e2101 3560
557ed1fa 3561 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3562 if (vma->vm_flags & VM_WRITE)
3563 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3564
82b0f8c3
JK
3565 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3566 &vmf->ptl);
7df67697
BM
3567 if (!pte_none(*vmf->pte)) {
3568 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3569 goto release;
7df67697 3570 }
9ba69294 3571
6b31d595
MH
3572 ret = check_stable_address_space(vma->vm_mm);
3573 if (ret)
3574 goto release;
3575
6b251fc9
AA
3576 /* Deliver the page fault to userland, check inside PT lock */
3577 if (userfaultfd_missing(vma)) {
82b0f8c3 3578 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3579 put_page(page);
82b0f8c3 3580 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3581 }
3582
bae473a4 3583 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3584 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3585 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3586setpte:
82b0f8c3 3587 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3588
3589 /* No need to invalidate - it was non-present before */
82b0f8c3 3590 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3591unlock:
82b0f8c3 3592 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3593 return ret;
8f4e2101 3594release:
09cbfeaf 3595 put_page(page);
8f4e2101 3596 goto unlock;
8a9f3ccd 3597oom_free_page:
09cbfeaf 3598 put_page(page);
65500d23 3599oom:
1da177e4
LT
3600 return VM_FAULT_OOM;
3601}
3602
9a95f3cf 3603/*
c1e8d7c6 3604 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3605 * released depending on flags and vma->vm_ops->fault() return value.
3606 * See filemap_fault() and __lock_page_retry().
3607 */
2b740303 3608static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3609{
82b0f8c3 3610 struct vm_area_struct *vma = vmf->vma;
2b740303 3611 vm_fault_t ret;
7eae74af 3612
63f3655f
MH
3613 /*
3614 * Preallocate pte before we take page_lock because this might lead to
3615 * deadlocks for memcg reclaim which waits for pages under writeback:
3616 * lock_page(A)
3617 * SetPageWriteback(A)
3618 * unlock_page(A)
3619 * lock_page(B)
3620 * lock_page(B)
d383807a 3621 * pte_alloc_one
63f3655f
MH
3622 * shrink_page_list
3623 * wait_on_page_writeback(A)
3624 * SetPageWriteback(B)
3625 * unlock_page(B)
3626 * # flush A, B to clear the writeback
3627 */
3628 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3629 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3630 if (!vmf->prealloc_pte)
3631 return VM_FAULT_OOM;
3632 smp_wmb(); /* See comment in __pte_alloc() */
3633 }
3634
11bac800 3635 ret = vma->vm_ops->fault(vmf);
3917048d 3636 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3637 VM_FAULT_DONE_COW)))
bc2466e4 3638 return ret;
7eae74af 3639
667240e0 3640 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3641 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3642 unlock_page(vmf->page);
3643 put_page(vmf->page);
936ca80d 3644 vmf->page = NULL;
7eae74af
KS
3645 return VM_FAULT_HWPOISON;
3646 }
3647
3648 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3649 lock_page(vmf->page);
7eae74af 3650 else
667240e0 3651 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3652
7eae74af
KS
3653 return ret;
3654}
3655
396bcc52 3656#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3657static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3658{
82b0f8c3 3659 struct vm_area_struct *vma = vmf->vma;
953c66c2 3660
82b0f8c3 3661 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3662 /*
3663 * We are going to consume the prealloc table,
3664 * count that as nr_ptes.
3665 */
c4812909 3666 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3667 vmf->prealloc_pte = NULL;
953c66c2
AK
3668}
3669
f9ce0be7 3670vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3671{
82b0f8c3
JK
3672 struct vm_area_struct *vma = vmf->vma;
3673 bool write = vmf->flags & FAULT_FLAG_WRITE;
3674 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3675 pmd_t entry;
2b740303 3676 int i;
d01ac3c3 3677 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3678
3679 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3680 return ret;
10102459 3681
10102459 3682 page = compound_head(page);
d01ac3c3
MWO
3683 if (compound_order(page) != HPAGE_PMD_ORDER)
3684 return ret;
10102459 3685
953c66c2
AK
3686 /*
3687 * Archs like ppc64 need additonal space to store information
3688 * related to pte entry. Use the preallocated table for that.
3689 */
82b0f8c3 3690 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3691 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3692 if (!vmf->prealloc_pte)
953c66c2
AK
3693 return VM_FAULT_OOM;
3694 smp_wmb(); /* See comment in __pte_alloc() */
3695 }
3696
82b0f8c3
JK
3697 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3698 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3699 goto out;
3700
3701 for (i = 0; i < HPAGE_PMD_NR; i++)
3702 flush_icache_page(vma, page + i);
3703
3704 entry = mk_huge_pmd(page, vma->vm_page_prot);
3705 if (write)
f55e1014 3706 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3707
fadae295 3708 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3709 page_add_file_rmap(page, true);
953c66c2
AK
3710 /*
3711 * deposit and withdraw with pmd lock held
3712 */
3713 if (arch_needs_pgtable_deposit())
82b0f8c3 3714 deposit_prealloc_pte(vmf);
10102459 3715
82b0f8c3 3716 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3717
82b0f8c3 3718 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3719
3720 /* fault is handled */
3721 ret = 0;
95ecedcd 3722 count_vm_event(THP_FILE_MAPPED);
10102459 3723out:
82b0f8c3 3724 spin_unlock(vmf->ptl);
10102459
KS
3725 return ret;
3726}
3727#else
f9ce0be7 3728vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3729{
f9ce0be7 3730 return VM_FAULT_FALLBACK;
10102459
KS
3731}
3732#endif
3733
9d3af4b4 3734void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 3735{
82b0f8c3
JK
3736 struct vm_area_struct *vma = vmf->vma;
3737 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 3738 bool prefault = vmf->address != addr;
3bb97794 3739 pte_t entry;
7267ec00 3740
3bb97794
KS
3741 flush_icache_page(vma, page);
3742 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
3743
3744 if (prefault && arch_wants_old_prefaulted_pte())
3745 entry = pte_mkold(entry);
46bdb427 3746
3bb97794
KS
3747 if (write)
3748 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3749 /* copy-on-write page */
3750 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3751 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
9d3af4b4 3752 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 3753 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3754 } else {
eca56ff9 3755 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3756 page_add_file_rmap(page, false);
3bb97794 3757 }
9d3af4b4 3758 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
3759}
3760
9118c0cb
JK
3761/**
3762 * finish_fault - finish page fault once we have prepared the page to fault
3763 *
3764 * @vmf: structure describing the fault
3765 *
3766 * This function handles all that is needed to finish a page fault once the
3767 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3768 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3769 * addition.
9118c0cb
JK
3770 *
3771 * The function expects the page to be locked and on success it consumes a
3772 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3773 *
3774 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3775 */
2b740303 3776vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 3777{
f9ce0be7 3778 struct vm_area_struct *vma = vmf->vma;
9118c0cb 3779 struct page *page;
f9ce0be7 3780 vm_fault_t ret;
9118c0cb
JK
3781
3782 /* Did we COW the page? */
f9ce0be7 3783 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
3784 page = vmf->cow_page;
3785 else
3786 page = vmf->page;
6b31d595
MH
3787
3788 /*
3789 * check even for read faults because we might have lost our CoWed
3790 * page
3791 */
f9ce0be7
KS
3792 if (!(vma->vm_flags & VM_SHARED)) {
3793 ret = check_stable_address_space(vma->vm_mm);
3794 if (ret)
3795 return ret;
3796 }
3797
3798 if (pmd_none(*vmf->pmd)) {
3799 if (PageTransCompound(page)) {
3800 ret = do_set_pmd(vmf, page);
3801 if (ret != VM_FAULT_FALLBACK)
3802 return ret;
3803 }
3804
3805 if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3806 return VM_FAULT_OOM;
3807 }
3808
3809 /* See comment in handle_pte_fault() */
3810 if (pmd_devmap_trans_unstable(vmf->pmd))
3811 return 0;
3812
3813 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3814 vmf->address, &vmf->ptl);
3815 ret = 0;
3816 /* Re-check under ptl */
3817 if (likely(pte_none(*vmf->pte)))
9d3af4b4 3818 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
3819 else
3820 ret = VM_FAULT_NOPAGE;
3821
3822 update_mmu_tlb(vma, vmf->address, vmf->pte);
3823 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
3824 return ret;
3825}
3826
3a91053a
KS
3827static unsigned long fault_around_bytes __read_mostly =
3828 rounddown_pow_of_two(65536);
a9b0f861 3829
a9b0f861
KS
3830#ifdef CONFIG_DEBUG_FS
3831static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3832{
a9b0f861 3833 *val = fault_around_bytes;
1592eef0
KS
3834 return 0;
3835}
3836
b4903d6e 3837/*
da391d64
WK
3838 * fault_around_bytes must be rounded down to the nearest page order as it's
3839 * what do_fault_around() expects to see.
b4903d6e 3840 */
a9b0f861 3841static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3842{
a9b0f861 3843 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3844 return -EINVAL;
b4903d6e
AR
3845 if (val > PAGE_SIZE)
3846 fault_around_bytes = rounddown_pow_of_two(val);
3847 else
3848 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3849 return 0;
3850}
0a1345f8 3851DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3852 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3853
3854static int __init fault_around_debugfs(void)
3855{
d9f7979c
GKH
3856 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3857 &fault_around_bytes_fops);
1592eef0
KS
3858 return 0;
3859}
3860late_initcall(fault_around_debugfs);
1592eef0 3861#endif
8c6e50b0 3862
1fdb412b
KS
3863/*
3864 * do_fault_around() tries to map few pages around the fault address. The hope
3865 * is that the pages will be needed soon and this will lower the number of
3866 * faults to handle.
3867 *
3868 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3869 * not ready to be mapped: not up-to-date, locked, etc.
3870 *
3871 * This function is called with the page table lock taken. In the split ptlock
3872 * case the page table lock only protects only those entries which belong to
3873 * the page table corresponding to the fault address.
3874 *
3875 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3876 * only once.
3877 *
da391d64
WK
3878 * fault_around_bytes defines how many bytes we'll try to map.
3879 * do_fault_around() expects it to be set to a power of two less than or equal
3880 * to PTRS_PER_PTE.
1fdb412b 3881 *
da391d64
WK
3882 * The virtual address of the area that we map is naturally aligned to
3883 * fault_around_bytes rounded down to the machine page size
3884 * (and therefore to page order). This way it's easier to guarantee
3885 * that we don't cross page table boundaries.
1fdb412b 3886 */
2b740303 3887static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3888{
82b0f8c3 3889 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3890 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3891 pgoff_t end_pgoff;
2b740303 3892 int off;
8c6e50b0 3893
4db0c3c2 3894 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3895 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3896
f9ce0be7
KS
3897 address = max(address & mask, vmf->vma->vm_start);
3898 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3899 start_pgoff -= off;
8c6e50b0
KS
3900
3901 /*
da391d64
WK
3902 * end_pgoff is either the end of the page table, the end of
3903 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3904 */
bae473a4 3905 end_pgoff = start_pgoff -
f9ce0be7 3906 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3907 PTRS_PER_PTE - 1;
82b0f8c3 3908 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3909 start_pgoff + nr_pages - 1);
8c6e50b0 3910
82b0f8c3 3911 if (pmd_none(*vmf->pmd)) {
4cf58924 3912 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3913 if (!vmf->prealloc_pte)
f9ce0be7 3914 return VM_FAULT_OOM;
7267ec00 3915 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3916 }
3917
f9ce0be7 3918 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
3919}
3920
2b740303 3921static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3922{
82b0f8c3 3923 struct vm_area_struct *vma = vmf->vma;
2b740303 3924 vm_fault_t ret = 0;
8c6e50b0
KS
3925
3926 /*
3927 * Let's call ->map_pages() first and use ->fault() as fallback
3928 * if page by the offset is not ready to be mapped (cold cache or
3929 * something).
3930 */
9b4bdd2f 3931 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3932 ret = do_fault_around(vmf);
7267ec00
KS
3933 if (ret)
3934 return ret;
8c6e50b0 3935 }
e655fb29 3936
936ca80d 3937 ret = __do_fault(vmf);
e655fb29
KS
3938 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3939 return ret;
3940
9118c0cb 3941 ret |= finish_fault(vmf);
936ca80d 3942 unlock_page(vmf->page);
7267ec00 3943 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3944 put_page(vmf->page);
e655fb29
KS
3945 return ret;
3946}
3947
2b740303 3948static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3949{
82b0f8c3 3950 struct vm_area_struct *vma = vmf->vma;
2b740303 3951 vm_fault_t ret;
ec47c3b9
KS
3952
3953 if (unlikely(anon_vma_prepare(vma)))
3954 return VM_FAULT_OOM;
3955
936ca80d
JK
3956 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3957 if (!vmf->cow_page)
ec47c3b9
KS
3958 return VM_FAULT_OOM;
3959
d9eb1ea2 3960 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 3961 put_page(vmf->cow_page);
ec47c3b9
KS
3962 return VM_FAULT_OOM;
3963 }
9d82c694 3964 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 3965
936ca80d 3966 ret = __do_fault(vmf);
ec47c3b9
KS
3967 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3968 goto uncharge_out;
3917048d
JK
3969 if (ret & VM_FAULT_DONE_COW)
3970 return ret;
ec47c3b9 3971
b1aa812b 3972 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3973 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3974
9118c0cb 3975 ret |= finish_fault(vmf);
b1aa812b
JK
3976 unlock_page(vmf->page);
3977 put_page(vmf->page);
7267ec00
KS
3978 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3979 goto uncharge_out;
ec47c3b9
KS
3980 return ret;
3981uncharge_out:
936ca80d 3982 put_page(vmf->cow_page);
ec47c3b9
KS
3983 return ret;
3984}
3985
2b740303 3986static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3987{
82b0f8c3 3988 struct vm_area_struct *vma = vmf->vma;
2b740303 3989 vm_fault_t ret, tmp;
1d65f86d 3990
936ca80d 3991 ret = __do_fault(vmf);
7eae74af 3992 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3993 return ret;
1da177e4
LT
3994
3995 /*
f0c6d4d2
KS
3996 * Check if the backing address space wants to know that the page is
3997 * about to become writable
1da177e4 3998 */
fb09a464 3999 if (vma->vm_ops->page_mkwrite) {
936ca80d 4000 unlock_page(vmf->page);
38b8cb7f 4001 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4002 if (unlikely(!tmp ||
4003 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4004 put_page(vmf->page);
fb09a464 4005 return tmp;
4294621f 4006 }
fb09a464
KS
4007 }
4008
9118c0cb 4009 ret |= finish_fault(vmf);
7267ec00
KS
4010 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4011 VM_FAULT_RETRY))) {
936ca80d
JK
4012 unlock_page(vmf->page);
4013 put_page(vmf->page);
f0c6d4d2 4014 return ret;
1da177e4 4015 }
b827e496 4016
89b15332 4017 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4018 return ret;
54cb8821 4019}
d00806b1 4020
9a95f3cf 4021/*
c1e8d7c6 4022 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4023 * but allow concurrent faults).
c1e8d7c6 4024 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4025 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 4026 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4027 * by other thread calling munmap()).
9a95f3cf 4028 */
2b740303 4029static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4030{
82b0f8c3 4031 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4032 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4033 vm_fault_t ret;
54cb8821 4034
ff09d7ec
AK
4035 /*
4036 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4037 */
4038 if (!vma->vm_ops->fault) {
4039 /*
4040 * If we find a migration pmd entry or a none pmd entry, which
4041 * should never happen, return SIGBUS
4042 */
4043 if (unlikely(!pmd_present(*vmf->pmd)))
4044 ret = VM_FAULT_SIGBUS;
4045 else {
4046 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4047 vmf->pmd,
4048 vmf->address,
4049 &vmf->ptl);
4050 /*
4051 * Make sure this is not a temporary clearing of pte
4052 * by holding ptl and checking again. A R/M/W update
4053 * of pte involves: take ptl, clearing the pte so that
4054 * we don't have concurrent modification by hardware
4055 * followed by an update.
4056 */
4057 if (unlikely(pte_none(*vmf->pte)))
4058 ret = VM_FAULT_SIGBUS;
4059 else
4060 ret = VM_FAULT_NOPAGE;
4061
4062 pte_unmap_unlock(vmf->pte, vmf->ptl);
4063 }
4064 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4065 ret = do_read_fault(vmf);
4066 else if (!(vma->vm_flags & VM_SHARED))
4067 ret = do_cow_fault(vmf);
4068 else
4069 ret = do_shared_fault(vmf);
4070
4071 /* preallocated pagetable is unused: free it */
4072 if (vmf->prealloc_pte) {
fc8efd2d 4073 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4074 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4075 }
4076 return ret;
54cb8821
NP
4077}
4078
b19a9939 4079static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
4080 unsigned long addr, int page_nid,
4081 int *flags)
9532fec1
MG
4082{
4083 get_page(page);
4084
4085 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4086 if (page_nid == numa_node_id()) {
9532fec1 4087 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4088 *flags |= TNF_FAULT_LOCAL;
4089 }
9532fec1
MG
4090
4091 return mpol_misplaced(page, vma, addr);
4092}
4093
2b740303 4094static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4095{
82b0f8c3 4096 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4097 struct page *page = NULL;
98fa15f3 4098 int page_nid = NUMA_NO_NODE;
90572890 4099 int last_cpupid;
cbee9f88 4100 int target_nid;
b8593bfd 4101 bool migrated = false;
04a86453 4102 pte_t pte, old_pte;
288bc549 4103 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4104 int flags = 0;
d10e63f2
MG
4105
4106 /*
166f61b9
TH
4107 * The "pte" at this point cannot be used safely without
4108 * validation through pte_unmap_same(). It's of NUMA type but
4109 * the pfn may be screwed if the read is non atomic.
166f61b9 4110 */
82b0f8c3
JK
4111 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4112 spin_lock(vmf->ptl);
cee216a6 4113 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4114 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4115 goto out;
4116 }
4117
cee216a6
AK
4118 /*
4119 * Make it present again, Depending on how arch implementes non
4120 * accessible ptes, some can allow access by kernel mode.
4121 */
04a86453
AK
4122 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4123 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 4124 pte = pte_mkyoung(pte);
b191f9b1
MG
4125 if (was_writable)
4126 pte = pte_mkwrite(pte);
04a86453 4127 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 4128 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 4129
82b0f8c3 4130 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 4131 if (!page) {
82b0f8c3 4132 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
4133 return 0;
4134 }
4135
e81c4802
KS
4136 /* TODO: handle PTE-mapped THP */
4137 if (PageCompound(page)) {
82b0f8c3 4138 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
4139 return 0;
4140 }
4141
6688cc05 4142 /*
bea66fbd
MG
4143 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4144 * much anyway since they can be in shared cache state. This misses
4145 * the case where a mapping is writable but the process never writes
4146 * to it but pte_write gets cleared during protection updates and
4147 * pte_dirty has unpredictable behaviour between PTE scan updates,
4148 * background writeback, dirty balancing and application behaviour.
6688cc05 4149 */
d59dc7bc 4150 if (!pte_write(pte))
6688cc05
PZ
4151 flags |= TNF_NO_GROUP;
4152
dabe1d99
RR
4153 /*
4154 * Flag if the page is shared between multiple address spaces. This
4155 * is later used when determining whether to group tasks together
4156 */
4157 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4158 flags |= TNF_SHARED;
4159
90572890 4160 last_cpupid = page_cpupid_last(page);
8191acbd 4161 page_nid = page_to_nid(page);
82b0f8c3 4162 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4163 &flags);
82b0f8c3 4164 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 4165 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
4166 put_page(page);
4167 goto out;
4168 }
4169
4170 /* Migrate to the requested node */
1bc115d8 4171 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 4172 if (migrated) {
8191acbd 4173 page_nid = target_nid;
6688cc05 4174 flags |= TNF_MIGRATED;
074c2381
MG
4175 } else
4176 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
4177
4178out:
98fa15f3 4179 if (page_nid != NUMA_NO_NODE)
6688cc05 4180 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
4181 return 0;
4182}
4183
2b740303 4184static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4185{
f4200391 4186 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4187 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4188 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4189 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4190 return VM_FAULT_FALLBACK;
4191}
4192
183f24aa 4193/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4194static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4195{
529b930b 4196 if (vma_is_anonymous(vmf->vma)) {
292924b2 4197 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4198 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4199 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4200 }
327e9fd4
THV
4201 if (vmf->vma->vm_ops->huge_fault) {
4202 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4203
4204 if (!(ret & VM_FAULT_FALLBACK))
4205 return ret;
4206 }
af9e4d5f 4207
327e9fd4 4208 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4209 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4210
b96375f7
MW
4211 return VM_FAULT_FALLBACK;
4212}
4213
2b740303 4214static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4215{
327e9fd4
THV
4216#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4217 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4218 /* No support for anonymous transparent PUD pages yet */
4219 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4220 goto split;
4221 if (vmf->vma->vm_ops->huge_fault) {
4222 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4223
4224 if (!(ret & VM_FAULT_FALLBACK))
4225 return ret;
4226 }
4227split:
4228 /* COW or write-notify not handled on PUD level: split pud.*/
4229 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4230#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4231 return VM_FAULT_FALLBACK;
4232}
4233
2b740303 4234static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4235{
4236#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4237 /* No support for anonymous transparent PUD pages yet */
4238 if (vma_is_anonymous(vmf->vma))
4239 return VM_FAULT_FALLBACK;
4240 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4241 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4242#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4243 return VM_FAULT_FALLBACK;
4244}
4245
1da177e4
LT
4246/*
4247 * These routines also need to handle stuff like marking pages dirty
4248 * and/or accessed for architectures that don't do it in hardware (most
4249 * RISC architectures). The early dirtying is also good on the i386.
4250 *
4251 * There is also a hook called "update_mmu_cache()" that architectures
4252 * with external mmu caches can use to update those (ie the Sparc or
4253 * PowerPC hashed page tables that act as extended TLBs).
4254 *
c1e8d7c6 4255 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4256 * concurrent faults).
9a95f3cf 4257 *
c1e8d7c6 4258 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4259 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4260 */
2b740303 4261static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4262{
4263 pte_t entry;
4264
82b0f8c3 4265 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4266 /*
4267 * Leave __pte_alloc() until later: because vm_ops->fault may
4268 * want to allocate huge page, and if we expose page table
4269 * for an instant, it will be difficult to retract from
4270 * concurrent faults and from rmap lookups.
4271 */
82b0f8c3 4272 vmf->pte = NULL;
7267ec00 4273 } else {
f9ce0be7
KS
4274 /*
4275 * If a huge pmd materialized under us just retry later. Use
4276 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4277 * of pmd_trans_huge() to ensure the pmd didn't become
4278 * pmd_trans_huge under us and then back to pmd_none, as a
4279 * result of MADV_DONTNEED running immediately after a huge pmd
4280 * fault in a different thread of this mm, in turn leading to a
4281 * misleading pmd_trans_huge() retval. All we have to ensure is
4282 * that it is a regular pmd that we can walk with
4283 * pte_offset_map() and we can do that through an atomic read
4284 * in C, which is what pmd_trans_unstable() provides.
4285 */
d0f0931d 4286 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4287 return 0;
4288 /*
4289 * A regular pmd is established and it can't morph into a huge
4290 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4291 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4292 * So now it's safe to run pte_offset_map().
4293 */
82b0f8c3 4294 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4295 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4296
4297 /*
4298 * some architectures can have larger ptes than wordsize,
4299 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4300 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4301 * accesses. The code below just needs a consistent view
4302 * for the ifs and we later double check anyway with the
7267ec00
KS
4303 * ptl lock held. So here a barrier will do.
4304 */
4305 barrier();
2994302b 4306 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4307 pte_unmap(vmf->pte);
4308 vmf->pte = NULL;
65500d23 4309 }
1da177e4
LT
4310 }
4311
82b0f8c3
JK
4312 if (!vmf->pte) {
4313 if (vma_is_anonymous(vmf->vma))
4314 return do_anonymous_page(vmf);
7267ec00 4315 else
82b0f8c3 4316 return do_fault(vmf);
7267ec00
KS
4317 }
4318
2994302b
JK
4319 if (!pte_present(vmf->orig_pte))
4320 return do_swap_page(vmf);
7267ec00 4321
2994302b
JK
4322 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4323 return do_numa_page(vmf);
d10e63f2 4324
82b0f8c3
JK
4325 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4326 spin_lock(vmf->ptl);
2994302b 4327 entry = vmf->orig_pte;
7df67697
BM
4328 if (unlikely(!pte_same(*vmf->pte, entry))) {
4329 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4330 goto unlock;
7df67697 4331 }
82b0f8c3 4332 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4333 if (!pte_write(entry))
2994302b 4334 return do_wp_page(vmf);
1da177e4
LT
4335 entry = pte_mkdirty(entry);
4336 }
4337 entry = pte_mkyoung(entry);
82b0f8c3
JK
4338 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4339 vmf->flags & FAULT_FLAG_WRITE)) {
4340 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4341 } else {
b7333b58
YS
4342 /* Skip spurious TLB flush for retried page fault */
4343 if (vmf->flags & FAULT_FLAG_TRIED)
4344 goto unlock;
1a44e149
AA
4345 /*
4346 * This is needed only for protection faults but the arch code
4347 * is not yet telling us if this is a protection fault or not.
4348 * This still avoids useless tlb flushes for .text page faults
4349 * with threads.
4350 */
82b0f8c3
JK
4351 if (vmf->flags & FAULT_FLAG_WRITE)
4352 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4353 }
8f4e2101 4354unlock:
82b0f8c3 4355 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4356 return 0;
1da177e4
LT
4357}
4358
4359/*
4360 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4361 *
c1e8d7c6 4362 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4363 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4364 */
2b740303
SJ
4365static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4366 unsigned long address, unsigned int flags)
1da177e4 4367{
82b0f8c3 4368 struct vm_fault vmf = {
bae473a4 4369 .vma = vma,
1a29d85e 4370 .address = address & PAGE_MASK,
bae473a4 4371 .flags = flags,
0721ec8b 4372 .pgoff = linear_page_index(vma, address),
667240e0 4373 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4374 };
fde26bed 4375 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4376 struct mm_struct *mm = vma->vm_mm;
1da177e4 4377 pgd_t *pgd;
c2febafc 4378 p4d_t *p4d;
2b740303 4379 vm_fault_t ret;
1da177e4 4380
1da177e4 4381 pgd = pgd_offset(mm, address);
c2febafc
KS
4382 p4d = p4d_alloc(mm, pgd, address);
4383 if (!p4d)
4384 return VM_FAULT_OOM;
a00cc7d9 4385
c2febafc 4386 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4387 if (!vmf.pud)
c74df32c 4388 return VM_FAULT_OOM;
625110b5 4389retry_pud:
7635d9cb 4390 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4391 ret = create_huge_pud(&vmf);
4392 if (!(ret & VM_FAULT_FALLBACK))
4393 return ret;
4394 } else {
4395 pud_t orig_pud = *vmf.pud;
4396
4397 barrier();
4398 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4399
a00cc7d9
MW
4400 /* NUMA case for anonymous PUDs would go here */
4401
f6f37321 4402 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4403 ret = wp_huge_pud(&vmf, orig_pud);
4404 if (!(ret & VM_FAULT_FALLBACK))
4405 return ret;
4406 } else {
4407 huge_pud_set_accessed(&vmf, orig_pud);
4408 return 0;
4409 }
4410 }
4411 }
4412
4413 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4414 if (!vmf.pmd)
c74df32c 4415 return VM_FAULT_OOM;
625110b5
TH
4416
4417 /* Huge pud page fault raced with pmd_alloc? */
4418 if (pud_trans_unstable(vmf.pud))
4419 goto retry_pud;
4420
7635d9cb 4421 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4422 ret = create_huge_pmd(&vmf);
c0292554
KS
4423 if (!(ret & VM_FAULT_FALLBACK))
4424 return ret;
71e3aac0 4425 } else {
82b0f8c3 4426 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4427
71e3aac0 4428 barrier();
84c3fc4e
ZY
4429 if (unlikely(is_swap_pmd(orig_pmd))) {
4430 VM_BUG_ON(thp_migration_supported() &&
4431 !is_pmd_migration_entry(orig_pmd));
4432 if (is_pmd_migration_entry(orig_pmd))
4433 pmd_migration_entry_wait(mm, vmf.pmd);
4434 return 0;
4435 }
5c7fb56e 4436 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4437 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4438 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4439
f6f37321 4440 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4441 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4442 if (!(ret & VM_FAULT_FALLBACK))
4443 return ret;
a1dd450b 4444 } else {
82b0f8c3 4445 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4446 return 0;
1f1d06c3 4447 }
71e3aac0
AA
4448 }
4449 }
4450
82b0f8c3 4451 return handle_pte_fault(&vmf);
1da177e4
LT
4452}
4453
bce617ed
PX
4454/**
4455 * mm_account_fault - Do page fault accountings
4456 *
4457 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4458 * of perf event counters, but we'll still do the per-task accounting to
4459 * the task who triggered this page fault.
4460 * @address: the faulted address.
4461 * @flags: the fault flags.
4462 * @ret: the fault retcode.
4463 *
4464 * This will take care of most of the page fault accountings. Meanwhile, it
4465 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4466 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4467 * still be in per-arch page fault handlers at the entry of page fault.
4468 */
4469static inline void mm_account_fault(struct pt_regs *regs,
4470 unsigned long address, unsigned int flags,
4471 vm_fault_t ret)
4472{
4473 bool major;
4474
4475 /*
4476 * We don't do accounting for some specific faults:
4477 *
4478 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4479 * includes arch_vma_access_permitted() failing before reaching here.
4480 * So this is not a "this many hardware page faults" counter. We
4481 * should use the hw profiling for that.
4482 *
4483 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4484 * once they're completed.
4485 */
4486 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4487 return;
4488
4489 /*
4490 * We define the fault as a major fault when the final successful fault
4491 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4492 * handle it immediately previously).
4493 */
4494 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4495
a2beb5f1
PX
4496 if (major)
4497 current->maj_flt++;
4498 else
4499 current->min_flt++;
4500
bce617ed 4501 /*
a2beb5f1
PX
4502 * If the fault is done for GUP, regs will be NULL. We only do the
4503 * accounting for the per thread fault counters who triggered the
4504 * fault, and we skip the perf event updates.
bce617ed
PX
4505 */
4506 if (!regs)
4507 return;
4508
a2beb5f1 4509 if (major)
bce617ed 4510 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4511 else
bce617ed 4512 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4513}
4514
9a95f3cf
PC
4515/*
4516 * By the time we get here, we already hold the mm semaphore
4517 *
c1e8d7c6 4518 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4519 * return value. See filemap_fault() and __lock_page_or_retry().
4520 */
2b740303 4521vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4522 unsigned int flags, struct pt_regs *regs)
519e5247 4523{
2b740303 4524 vm_fault_t ret;
519e5247
JW
4525
4526 __set_current_state(TASK_RUNNING);
4527
4528 count_vm_event(PGFAULT);
2262185c 4529 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4530
4531 /* do counter updates before entering really critical section. */
4532 check_sync_rss_stat(current);
4533
de0c799b
LD
4534 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4535 flags & FAULT_FLAG_INSTRUCTION,
4536 flags & FAULT_FLAG_REMOTE))
4537 return VM_FAULT_SIGSEGV;
4538
519e5247
JW
4539 /*
4540 * Enable the memcg OOM handling for faults triggered in user
4541 * space. Kernel faults are handled more gracefully.
4542 */
4543 if (flags & FAULT_FLAG_USER)
29ef680a 4544 mem_cgroup_enter_user_fault();
519e5247 4545
bae473a4
KS
4546 if (unlikely(is_vm_hugetlb_page(vma)))
4547 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4548 else
4549 ret = __handle_mm_fault(vma, address, flags);
519e5247 4550
49426420 4551 if (flags & FAULT_FLAG_USER) {
29ef680a 4552 mem_cgroup_exit_user_fault();
166f61b9
TH
4553 /*
4554 * The task may have entered a memcg OOM situation but
4555 * if the allocation error was handled gracefully (no
4556 * VM_FAULT_OOM), there is no need to kill anything.
4557 * Just clean up the OOM state peacefully.
4558 */
4559 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4560 mem_cgroup_oom_synchronize(false);
49426420 4561 }
3812c8c8 4562
bce617ed
PX
4563 mm_account_fault(regs, address, flags, ret);
4564
519e5247
JW
4565 return ret;
4566}
e1d6d01a 4567EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4568
90eceff1
KS
4569#ifndef __PAGETABLE_P4D_FOLDED
4570/*
4571 * Allocate p4d page table.
4572 * We've already handled the fast-path in-line.
4573 */
4574int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4575{
4576 p4d_t *new = p4d_alloc_one(mm, address);
4577 if (!new)
4578 return -ENOMEM;
4579
4580 smp_wmb(); /* See comment in __pte_alloc */
4581
4582 spin_lock(&mm->page_table_lock);
4583 if (pgd_present(*pgd)) /* Another has populated it */
4584 p4d_free(mm, new);
4585 else
4586 pgd_populate(mm, pgd, new);
4587 spin_unlock(&mm->page_table_lock);
4588 return 0;
4589}
4590#endif /* __PAGETABLE_P4D_FOLDED */
4591
1da177e4
LT
4592#ifndef __PAGETABLE_PUD_FOLDED
4593/*
4594 * Allocate page upper directory.
872fec16 4595 * We've already handled the fast-path in-line.
1da177e4 4596 */
c2febafc 4597int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4598{
c74df32c
HD
4599 pud_t *new = pud_alloc_one(mm, address);
4600 if (!new)
1bb3630e 4601 return -ENOMEM;
1da177e4 4602
362a61ad
NP
4603 smp_wmb(); /* See comment in __pte_alloc */
4604
872fec16 4605 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4606 if (!p4d_present(*p4d)) {
4607 mm_inc_nr_puds(mm);
c2febafc 4608 p4d_populate(mm, p4d, new);
b4e98d9a 4609 } else /* Another has populated it */
5e541973 4610 pud_free(mm, new);
c74df32c 4611 spin_unlock(&mm->page_table_lock);
1bb3630e 4612 return 0;
1da177e4
LT
4613}
4614#endif /* __PAGETABLE_PUD_FOLDED */
4615
4616#ifndef __PAGETABLE_PMD_FOLDED
4617/*
4618 * Allocate page middle directory.
872fec16 4619 * We've already handled the fast-path in-line.
1da177e4 4620 */
1bb3630e 4621int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4622{
a00cc7d9 4623 spinlock_t *ptl;
c74df32c
HD
4624 pmd_t *new = pmd_alloc_one(mm, address);
4625 if (!new)
1bb3630e 4626 return -ENOMEM;
1da177e4 4627
362a61ad
NP
4628 smp_wmb(); /* See comment in __pte_alloc */
4629
a00cc7d9 4630 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4631 if (!pud_present(*pud)) {
4632 mm_inc_nr_pmds(mm);
1bb3630e 4633 pud_populate(mm, pud, new);
dc6c9a35 4634 } else /* Another has populated it */
5e541973 4635 pmd_free(mm, new);
a00cc7d9 4636 spin_unlock(ptl);
1bb3630e 4637 return 0;
e0f39591 4638}
1da177e4
LT
4639#endif /* __PAGETABLE_PMD_FOLDED */
4640
9fd6dad1
PB
4641int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4642 struct mmu_notifier_range *range, pte_t **ptepp,
4643 pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4644{
4645 pgd_t *pgd;
c2febafc 4646 p4d_t *p4d;
f8ad0f49
JW
4647 pud_t *pud;
4648 pmd_t *pmd;
4649 pte_t *ptep;
4650
4651 pgd = pgd_offset(mm, address);
4652 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4653 goto out;
4654
c2febafc
KS
4655 p4d = p4d_offset(pgd, address);
4656 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4657 goto out;
4658
4659 pud = pud_offset(p4d, address);
f8ad0f49
JW
4660 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4661 goto out;
4662
4663 pmd = pmd_offset(pud, address);
f66055ab 4664 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4665
09796395
RZ
4666 if (pmd_huge(*pmd)) {
4667 if (!pmdpp)
4668 goto out;
4669
ac46d4f3 4670 if (range) {
7269f999 4671 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4672 NULL, mm, address & PMD_MASK,
4673 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4674 mmu_notifier_invalidate_range_start(range);
a4d1a885 4675 }
09796395
RZ
4676 *ptlp = pmd_lock(mm, pmd);
4677 if (pmd_huge(*pmd)) {
4678 *pmdpp = pmd;
4679 return 0;
4680 }
4681 spin_unlock(*ptlp);
ac46d4f3
JG
4682 if (range)
4683 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4684 }
4685
4686 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4687 goto out;
4688
ac46d4f3 4689 if (range) {
7269f999 4690 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4691 address & PAGE_MASK,
4692 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4693 mmu_notifier_invalidate_range_start(range);
a4d1a885 4694 }
f8ad0f49 4695 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4696 if (!pte_present(*ptep))
4697 goto unlock;
4698 *ptepp = ptep;
4699 return 0;
4700unlock:
4701 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4702 if (range)
4703 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4704out:
4705 return -EINVAL;
4706}
4707
9fd6dad1
PB
4708/**
4709 * follow_pte - look up PTE at a user virtual address
4710 * @mm: the mm_struct of the target address space
4711 * @address: user virtual address
4712 * @ptepp: location to store found PTE
4713 * @ptlp: location to store the lock for the PTE
4714 *
4715 * On a successful return, the pointer to the PTE is stored in @ptepp;
4716 * the corresponding lock is taken and its location is stored in @ptlp.
4717 * The contents of the PTE are only stable until @ptlp is released;
4718 * any further use, if any, must be protected against invalidation
4719 * with MMU notifiers.
4720 *
4721 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4722 * should be taken for read.
4723 *
4724 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4725 * it is not a good general-purpose API.
4726 *
4727 * Return: zero on success, -ve otherwise.
4728 */
4729int follow_pte(struct mm_struct *mm, unsigned long address,
4730 pte_t **ptepp, spinlock_t **ptlp)
4731{
4732 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4733}
4734EXPORT_SYMBOL_GPL(follow_pte);
4735
3b6748e2
JW
4736/**
4737 * follow_pfn - look up PFN at a user virtual address
4738 * @vma: memory mapping
4739 * @address: user virtual address
4740 * @pfn: location to store found PFN
4741 *
4742 * Only IO mappings and raw PFN mappings are allowed.
4743 *
9fd6dad1
PB
4744 * This function does not allow the caller to read the permissions
4745 * of the PTE. Do not use it.
4746 *
a862f68a 4747 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4748 */
4749int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4750 unsigned long *pfn)
4751{
4752 int ret = -EINVAL;
4753 spinlock_t *ptl;
4754 pte_t *ptep;
4755
4756 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4757 return ret;
4758
9fd6dad1 4759 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
4760 if (ret)
4761 return ret;
4762 *pfn = pte_pfn(*ptep);
4763 pte_unmap_unlock(ptep, ptl);
4764 return 0;
4765}
4766EXPORT_SYMBOL(follow_pfn);
4767
28b2ee20 4768#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4769int follow_phys(struct vm_area_struct *vma,
4770 unsigned long address, unsigned int flags,
4771 unsigned long *prot, resource_size_t *phys)
28b2ee20 4772{
03668a4d 4773 int ret = -EINVAL;
28b2ee20
RR
4774 pte_t *ptep, pte;
4775 spinlock_t *ptl;
28b2ee20 4776
d87fe660 4777 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4778 goto out;
28b2ee20 4779
9fd6dad1 4780 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4781 goto out;
28b2ee20 4782 pte = *ptep;
03668a4d 4783
f6f37321 4784 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4785 goto unlock;
28b2ee20
RR
4786
4787 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4788 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4789
03668a4d 4790 ret = 0;
28b2ee20
RR
4791unlock:
4792 pte_unmap_unlock(ptep, ptl);
4793out:
d87fe660 4794 return ret;
28b2ee20
RR
4795}
4796
96667f8a
DV
4797/**
4798 * generic_access_phys - generic implementation for iomem mmap access
4799 * @vma: the vma to access
4800 * @addr: userspace addres, not relative offset within @vma
4801 * @buf: buffer to read/write
4802 * @len: length of transfer
4803 * @write: set to FOLL_WRITE when writing, otherwise reading
4804 *
4805 * This is a generic implementation for &vm_operations_struct.access for an
4806 * iomem mapping. This callback is used by access_process_vm() when the @vma is
4807 * not page based.
4808 */
28b2ee20
RR
4809int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4810 void *buf, int len, int write)
4811{
4812 resource_size_t phys_addr;
4813 unsigned long prot = 0;
2bc7273b 4814 void __iomem *maddr;
96667f8a
DV
4815 pte_t *ptep, pte;
4816 spinlock_t *ptl;
4817 int offset = offset_in_page(addr);
4818 int ret = -EINVAL;
4819
4820 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4821 return -EINVAL;
4822
4823retry:
e913a8cd 4824 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
4825 return -EINVAL;
4826 pte = *ptep;
4827 pte_unmap_unlock(ptep, ptl);
28b2ee20 4828
96667f8a
DV
4829 prot = pgprot_val(pte_pgprot(pte));
4830 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4831
4832 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
4833 return -EINVAL;
4834
9cb12d7b 4835 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4836 if (!maddr)
4837 return -ENOMEM;
4838
e913a8cd 4839 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
4840 goto out_unmap;
4841
4842 if (!pte_same(pte, *ptep)) {
4843 pte_unmap_unlock(ptep, ptl);
4844 iounmap(maddr);
4845
4846 goto retry;
4847 }
4848
28b2ee20
RR
4849 if (write)
4850 memcpy_toio(maddr + offset, buf, len);
4851 else
4852 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
4853 ret = len;
4854 pte_unmap_unlock(ptep, ptl);
4855out_unmap:
28b2ee20
RR
4856 iounmap(maddr);
4857
96667f8a 4858 return ret;
28b2ee20 4859}
5a73633e 4860EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4861#endif
4862
0ec76a11 4863/*
d3f5ffca 4864 * Access another process' address space as given in mm.
0ec76a11 4865 */
d3f5ffca
JH
4866int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4867 int len, unsigned int gup_flags)
0ec76a11 4868{
0ec76a11 4869 struct vm_area_struct *vma;
0ec76a11 4870 void *old_buf = buf;
442486ec 4871 int write = gup_flags & FOLL_WRITE;
0ec76a11 4872
d8ed45c5 4873 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4874 return 0;
4875
183ff22b 4876 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4877 while (len) {
4878 int bytes, ret, offset;
4879 void *maddr;
28b2ee20 4880 struct page *page = NULL;
0ec76a11 4881
64019a2e 4882 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 4883 gup_flags, &page, &vma, NULL);
28b2ee20 4884 if (ret <= 0) {
dbffcd03
RR
4885#ifndef CONFIG_HAVE_IOREMAP_PROT
4886 break;
4887#else
28b2ee20
RR
4888 /*
4889 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4890 * we can access using slightly different code.
4891 */
28b2ee20 4892 vma = find_vma(mm, addr);
fe936dfc 4893 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4894 break;
4895 if (vma->vm_ops && vma->vm_ops->access)
4896 ret = vma->vm_ops->access(vma, addr, buf,
4897 len, write);
4898 if (ret <= 0)
28b2ee20
RR
4899 break;
4900 bytes = ret;
dbffcd03 4901#endif
0ec76a11 4902 } else {
28b2ee20
RR
4903 bytes = len;
4904 offset = addr & (PAGE_SIZE-1);
4905 if (bytes > PAGE_SIZE-offset)
4906 bytes = PAGE_SIZE-offset;
4907
4908 maddr = kmap(page);
4909 if (write) {
4910 copy_to_user_page(vma, page, addr,
4911 maddr + offset, buf, bytes);
4912 set_page_dirty_lock(page);
4913 } else {
4914 copy_from_user_page(vma, page, addr,
4915 buf, maddr + offset, bytes);
4916 }
4917 kunmap(page);
09cbfeaf 4918 put_page(page);
0ec76a11 4919 }
0ec76a11
DH
4920 len -= bytes;
4921 buf += bytes;
4922 addr += bytes;
4923 }
d8ed45c5 4924 mmap_read_unlock(mm);
0ec76a11
DH
4925
4926 return buf - old_buf;
4927}
03252919 4928
5ddd36b9 4929/**
ae91dbfc 4930 * access_remote_vm - access another process' address space
5ddd36b9
SW
4931 * @mm: the mm_struct of the target address space
4932 * @addr: start address to access
4933 * @buf: source or destination buffer
4934 * @len: number of bytes to transfer
6347e8d5 4935 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4936 *
4937 * The caller must hold a reference on @mm.
a862f68a
MR
4938 *
4939 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4940 */
4941int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4942 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4943{
d3f5ffca 4944 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4945}
4946
206cb636
SW
4947/*
4948 * Access another process' address space.
4949 * Source/target buffer must be kernel space,
4950 * Do not walk the page table directly, use get_user_pages
4951 */
4952int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4953 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4954{
4955 struct mm_struct *mm;
4956 int ret;
4957
4958 mm = get_task_mm(tsk);
4959 if (!mm)
4960 return 0;
4961
d3f5ffca 4962 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 4963
206cb636
SW
4964 mmput(mm);
4965
4966 return ret;
4967}
fcd35857 4968EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4969
03252919
AK
4970/*
4971 * Print the name of a VMA.
4972 */
4973void print_vma_addr(char *prefix, unsigned long ip)
4974{
4975 struct mm_struct *mm = current->mm;
4976 struct vm_area_struct *vma;
4977
e8bff74a 4978 /*
0a7f682d 4979 * we might be running from an atomic context so we cannot sleep
e8bff74a 4980 */
d8ed45c5 4981 if (!mmap_read_trylock(mm))
e8bff74a
IM
4982 return;
4983
03252919
AK
4984 vma = find_vma(mm, ip);
4985 if (vma && vma->vm_file) {
4986 struct file *f = vma->vm_file;
0a7f682d 4987 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4988 if (buf) {
2fbc57c5 4989 char *p;
03252919 4990
9bf39ab2 4991 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4992 if (IS_ERR(p))
4993 p = "?";
2fbc57c5 4994 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4995 vma->vm_start,
4996 vma->vm_end - vma->vm_start);
4997 free_page((unsigned long)buf);
4998 }
4999 }
d8ed45c5 5000 mmap_read_unlock(mm);
03252919 5001}
3ee1afa3 5002
662bbcb2 5003#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5004void __might_fault(const char *file, int line)
3ee1afa3 5005{
95156f00
PZ
5006 /*
5007 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5008 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5009 * get paged out, therefore we'll never actually fault, and the
5010 * below annotations will generate false positives.
5011 */
db68ce10 5012 if (uaccess_kernel())
95156f00 5013 return;
9ec23531 5014 if (pagefault_disabled())
662bbcb2 5015 return;
9ec23531
DH
5016 __might_sleep(file, line, 0);
5017#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5018 if (current->mm)
da1c55f1 5019 might_lock_read(&current->mm->mmap_lock);
9ec23531 5020#endif
3ee1afa3 5021}
9ec23531 5022EXPORT_SYMBOL(__might_fault);
3ee1afa3 5023#endif
47ad8475
AA
5024
5025#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5026/*
5027 * Process all subpages of the specified huge page with the specified
5028 * operation. The target subpage will be processed last to keep its
5029 * cache lines hot.
5030 */
5031static inline void process_huge_page(
5032 unsigned long addr_hint, unsigned int pages_per_huge_page,
5033 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5034 void *arg)
47ad8475 5035{
c79b57e4
HY
5036 int i, n, base, l;
5037 unsigned long addr = addr_hint &
5038 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5039
c6ddfb6c 5040 /* Process target subpage last to keep its cache lines hot */
47ad8475 5041 might_sleep();
c79b57e4
HY
5042 n = (addr_hint - addr) / PAGE_SIZE;
5043 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5044 /* If target subpage in first half of huge page */
c79b57e4
HY
5045 base = 0;
5046 l = n;
c6ddfb6c 5047 /* Process subpages at the end of huge page */
c79b57e4
HY
5048 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5049 cond_resched();
c6ddfb6c 5050 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5051 }
5052 } else {
c6ddfb6c 5053 /* If target subpage in second half of huge page */
c79b57e4
HY
5054 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5055 l = pages_per_huge_page - n;
c6ddfb6c 5056 /* Process subpages at the begin of huge page */
c79b57e4
HY
5057 for (i = 0; i < base; i++) {
5058 cond_resched();
c6ddfb6c 5059 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5060 }
5061 }
5062 /*
c6ddfb6c
HY
5063 * Process remaining subpages in left-right-left-right pattern
5064 * towards the target subpage
c79b57e4
HY
5065 */
5066 for (i = 0; i < l; i++) {
5067 int left_idx = base + i;
5068 int right_idx = base + 2 * l - 1 - i;
5069
5070 cond_resched();
c6ddfb6c 5071 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5072 cond_resched();
c6ddfb6c 5073 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5074 }
5075}
5076
c6ddfb6c
HY
5077static void clear_gigantic_page(struct page *page,
5078 unsigned long addr,
5079 unsigned int pages_per_huge_page)
5080{
5081 int i;
5082 struct page *p = page;
5083
5084 might_sleep();
5085 for (i = 0; i < pages_per_huge_page;
5086 i++, p = mem_map_next(p, page, i)) {
5087 cond_resched();
5088 clear_user_highpage(p, addr + i * PAGE_SIZE);
5089 }
5090}
5091
5092static void clear_subpage(unsigned long addr, int idx, void *arg)
5093{
5094 struct page *page = arg;
5095
5096 clear_user_highpage(page + idx, addr);
5097}
5098
5099void clear_huge_page(struct page *page,
5100 unsigned long addr_hint, unsigned int pages_per_huge_page)
5101{
5102 unsigned long addr = addr_hint &
5103 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5104
5105 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5106 clear_gigantic_page(page, addr, pages_per_huge_page);
5107 return;
5108 }
5109
5110 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5111}
5112
47ad8475
AA
5113static void copy_user_gigantic_page(struct page *dst, struct page *src,
5114 unsigned long addr,
5115 struct vm_area_struct *vma,
5116 unsigned int pages_per_huge_page)
5117{
5118 int i;
5119 struct page *dst_base = dst;
5120 struct page *src_base = src;
5121
5122 for (i = 0; i < pages_per_huge_page; ) {
5123 cond_resched();
5124 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5125
5126 i++;
5127 dst = mem_map_next(dst, dst_base, i);
5128 src = mem_map_next(src, src_base, i);
5129 }
5130}
5131
c9f4cd71
HY
5132struct copy_subpage_arg {
5133 struct page *dst;
5134 struct page *src;
5135 struct vm_area_struct *vma;
5136};
5137
5138static void copy_subpage(unsigned long addr, int idx, void *arg)
5139{
5140 struct copy_subpage_arg *copy_arg = arg;
5141
5142 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5143 addr, copy_arg->vma);
5144}
5145
47ad8475 5146void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5147 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5148 unsigned int pages_per_huge_page)
5149{
c9f4cd71
HY
5150 unsigned long addr = addr_hint &
5151 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5152 struct copy_subpage_arg arg = {
5153 .dst = dst,
5154 .src = src,
5155 .vma = vma,
5156 };
47ad8475
AA
5157
5158 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5159 copy_user_gigantic_page(dst, src, addr, vma,
5160 pages_per_huge_page);
5161 return;
5162 }
5163
c9f4cd71 5164 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5165}
fa4d75c1
MK
5166
5167long copy_huge_page_from_user(struct page *dst_page,
5168 const void __user *usr_src,
810a56b9
MK
5169 unsigned int pages_per_huge_page,
5170 bool allow_pagefault)
fa4d75c1
MK
5171{
5172 void *src = (void *)usr_src;
5173 void *page_kaddr;
5174 unsigned long i, rc = 0;
5175 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5176 struct page *subpage = dst_page;
fa4d75c1 5177
3272cfc2
MK
5178 for (i = 0; i < pages_per_huge_page;
5179 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5180 if (allow_pagefault)
3272cfc2 5181 page_kaddr = kmap(subpage);
810a56b9 5182 else
3272cfc2 5183 page_kaddr = kmap_atomic(subpage);
fa4d75c1
MK
5184 rc = copy_from_user(page_kaddr,
5185 (const void __user *)(src + i * PAGE_SIZE),
5186 PAGE_SIZE);
810a56b9 5187 if (allow_pagefault)
3272cfc2 5188 kunmap(subpage);
810a56b9
MK
5189 else
5190 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5191
5192 ret_val -= (PAGE_SIZE - rc);
5193 if (rc)
5194 break;
5195
5196 cond_resched();
5197 }
5198 return ret_val;
5199}
47ad8475 5200#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5201
40b64acd 5202#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5203
5204static struct kmem_cache *page_ptl_cachep;
5205
5206void __init ptlock_cache_init(void)
5207{
5208 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5209 SLAB_PANIC, NULL);
5210}
5211
539edb58 5212bool ptlock_alloc(struct page *page)
49076ec2
KS
5213{
5214 spinlock_t *ptl;
5215
b35f1819 5216 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5217 if (!ptl)
5218 return false;
539edb58 5219 page->ptl = ptl;
49076ec2
KS
5220 return true;
5221}
5222
539edb58 5223void ptlock_free(struct page *page)
49076ec2 5224{
b35f1819 5225 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5226}
5227#endif