]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/memory.c
Merge remote-tracking branch 'asoc/for-5.9' into asoc-linus
[mirror_ubuntu-hirsute-kernel.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
bce617ed
PX
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
e80d3909 76#include <linux/vmalloc.h>
1da177e4 77
b3d1411b
JFG
78#include <trace/events/kmem.h>
79
6952b61d 80#include <asm/io.h>
33a709b2 81#include <asm/mmu_context.h>
1da177e4 82#include <asm/pgalloc.h>
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4
LT
84#include <asm/tlb.h>
85#include <asm/tlbflush.h>
1da177e4 86
e80d3909 87#include "pgalloc-track.h"
42b77728
JB
88#include "internal.h"
89
af27d940 90#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 91#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
92#endif
93
d41dee36 94#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
95/* use the per-pgdat data instead for discontigmem - mbligh */
96unsigned long max_mapnr;
1da177e4 97EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
98
99struct page *mem_map;
1da177e4
LT
100EXPORT_SYMBOL(mem_map);
101#endif
102
1da177e4
LT
103/*
104 * A number of key systems in x86 including ioremap() rely on the assumption
105 * that high_memory defines the upper bound on direct map memory, then end
106 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
107 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108 * and ZONE_HIGHMEM.
109 */
166f61b9 110void *high_memory;
1da177e4 111EXPORT_SYMBOL(high_memory);
1da177e4 112
32a93233
IM
113/*
114 * Randomize the address space (stacks, mmaps, brk, etc.).
115 *
116 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117 * as ancient (libc5 based) binaries can segfault. )
118 */
119int randomize_va_space __read_mostly =
120#ifdef CONFIG_COMPAT_BRK
121 1;
122#else
123 2;
124#endif
a62eaf15 125
83d116c5
JH
126#ifndef arch_faults_on_old_pte
127static inline bool arch_faults_on_old_pte(void)
128{
129 /*
130 * Those arches which don't have hw access flag feature need to
131 * implement their own helper. By default, "true" means pagefault
132 * will be hit on old pte.
133 */
134 return true;
135}
136#endif
137
a62eaf15
AK
138static int __init disable_randmaps(char *s)
139{
140 randomize_va_space = 0;
9b41046c 141 return 1;
a62eaf15
AK
142}
143__setup("norandmaps", disable_randmaps);
144
62eede62 145unsigned long zero_pfn __read_mostly;
0b70068e
AB
146EXPORT_SYMBOL(zero_pfn);
147
166f61b9
TH
148unsigned long highest_memmap_pfn __read_mostly;
149
a13ea5b7
HD
150/*
151 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152 */
153static int __init init_zero_pfn(void)
154{
155 zero_pfn = page_to_pfn(ZERO_PAGE(0));
156 return 0;
157}
158core_initcall(init_zero_pfn);
a62eaf15 159
e4dcad20 160void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 161{
e4dcad20 162 trace_rss_stat(mm, member, count);
b3d1411b 163}
d559db08 164
34e55232
KH
165#if defined(SPLIT_RSS_COUNTING)
166
ea48cf78 167void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
168{
169 int i;
170
171 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
172 if (current->rss_stat.count[i]) {
173 add_mm_counter(mm, i, current->rss_stat.count[i]);
174 current->rss_stat.count[i] = 0;
34e55232
KH
175 }
176 }
05af2e10 177 current->rss_stat.events = 0;
34e55232
KH
178}
179
180static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181{
182 struct task_struct *task = current;
183
184 if (likely(task->mm == mm))
185 task->rss_stat.count[member] += val;
186 else
187 add_mm_counter(mm, member, val);
188}
189#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191
192/* sync counter once per 64 page faults */
193#define TASK_RSS_EVENTS_THRESH (64)
194static void check_sync_rss_stat(struct task_struct *task)
195{
196 if (unlikely(task != current))
197 return;
198 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 199 sync_mm_rss(task->mm);
34e55232 200}
9547d01b 201#else /* SPLIT_RSS_COUNTING */
34e55232
KH
202
203#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205
206static void check_sync_rss_stat(struct task_struct *task)
207{
208}
209
9547d01b
PZ
210#endif /* SPLIT_RSS_COUNTING */
211
1da177e4
LT
212/*
213 * Note: this doesn't free the actual pages themselves. That
214 * has been handled earlier when unmapping all the memory regions.
215 */
9e1b32ca
BH
216static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217 unsigned long addr)
1da177e4 218{
2f569afd 219 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 220 pmd_clear(pmd);
9e1b32ca 221 pte_free_tlb(tlb, token, addr);
c4812909 222 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
223}
224
e0da382c
HD
225static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226 unsigned long addr, unsigned long end,
227 unsigned long floor, unsigned long ceiling)
1da177e4
LT
228{
229 pmd_t *pmd;
230 unsigned long next;
e0da382c 231 unsigned long start;
1da177e4 232
e0da382c 233 start = addr;
1da177e4 234 pmd = pmd_offset(pud, addr);
1da177e4
LT
235 do {
236 next = pmd_addr_end(addr, end);
237 if (pmd_none_or_clear_bad(pmd))
238 continue;
9e1b32ca 239 free_pte_range(tlb, pmd, addr);
1da177e4
LT
240 } while (pmd++, addr = next, addr != end);
241
e0da382c
HD
242 start &= PUD_MASK;
243 if (start < floor)
244 return;
245 if (ceiling) {
246 ceiling &= PUD_MASK;
247 if (!ceiling)
248 return;
1da177e4 249 }
e0da382c
HD
250 if (end - 1 > ceiling - 1)
251 return;
252
253 pmd = pmd_offset(pud, start);
254 pud_clear(pud);
9e1b32ca 255 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 256 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
257}
258
c2febafc 259static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
260 unsigned long addr, unsigned long end,
261 unsigned long floor, unsigned long ceiling)
1da177e4
LT
262{
263 pud_t *pud;
264 unsigned long next;
e0da382c 265 unsigned long start;
1da177e4 266
e0da382c 267 start = addr;
c2febafc 268 pud = pud_offset(p4d, addr);
1da177e4
LT
269 do {
270 next = pud_addr_end(addr, end);
271 if (pud_none_or_clear_bad(pud))
272 continue;
e0da382c 273 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
274 } while (pud++, addr = next, addr != end);
275
c2febafc
KS
276 start &= P4D_MASK;
277 if (start < floor)
278 return;
279 if (ceiling) {
280 ceiling &= P4D_MASK;
281 if (!ceiling)
282 return;
283 }
284 if (end - 1 > ceiling - 1)
285 return;
286
287 pud = pud_offset(p4d, start);
288 p4d_clear(p4d);
289 pud_free_tlb(tlb, pud, start);
b4e98d9a 290 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
291}
292
293static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294 unsigned long addr, unsigned long end,
295 unsigned long floor, unsigned long ceiling)
296{
297 p4d_t *p4d;
298 unsigned long next;
299 unsigned long start;
300
301 start = addr;
302 p4d = p4d_offset(pgd, addr);
303 do {
304 next = p4d_addr_end(addr, end);
305 if (p4d_none_or_clear_bad(p4d))
306 continue;
307 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308 } while (p4d++, addr = next, addr != end);
309
e0da382c
HD
310 start &= PGDIR_MASK;
311 if (start < floor)
312 return;
313 if (ceiling) {
314 ceiling &= PGDIR_MASK;
315 if (!ceiling)
316 return;
1da177e4 317 }
e0da382c
HD
318 if (end - 1 > ceiling - 1)
319 return;
320
c2febafc 321 p4d = p4d_offset(pgd, start);
e0da382c 322 pgd_clear(pgd);
c2febafc 323 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
324}
325
326/*
e0da382c 327 * This function frees user-level page tables of a process.
1da177e4 328 */
42b77728 329void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
330 unsigned long addr, unsigned long end,
331 unsigned long floor, unsigned long ceiling)
1da177e4
LT
332{
333 pgd_t *pgd;
334 unsigned long next;
e0da382c
HD
335
336 /*
337 * The next few lines have given us lots of grief...
338 *
339 * Why are we testing PMD* at this top level? Because often
340 * there will be no work to do at all, and we'd prefer not to
341 * go all the way down to the bottom just to discover that.
342 *
343 * Why all these "- 1"s? Because 0 represents both the bottom
344 * of the address space and the top of it (using -1 for the
345 * top wouldn't help much: the masks would do the wrong thing).
346 * The rule is that addr 0 and floor 0 refer to the bottom of
347 * the address space, but end 0 and ceiling 0 refer to the top
348 * Comparisons need to use "end - 1" and "ceiling - 1" (though
349 * that end 0 case should be mythical).
350 *
351 * Wherever addr is brought up or ceiling brought down, we must
352 * be careful to reject "the opposite 0" before it confuses the
353 * subsequent tests. But what about where end is brought down
354 * by PMD_SIZE below? no, end can't go down to 0 there.
355 *
356 * Whereas we round start (addr) and ceiling down, by different
357 * masks at different levels, in order to test whether a table
358 * now has no other vmas using it, so can be freed, we don't
359 * bother to round floor or end up - the tests don't need that.
360 */
1da177e4 361
e0da382c
HD
362 addr &= PMD_MASK;
363 if (addr < floor) {
364 addr += PMD_SIZE;
365 if (!addr)
366 return;
367 }
368 if (ceiling) {
369 ceiling &= PMD_MASK;
370 if (!ceiling)
371 return;
372 }
373 if (end - 1 > ceiling - 1)
374 end -= PMD_SIZE;
375 if (addr > end - 1)
376 return;
07e32661
AK
377 /*
378 * We add page table cache pages with PAGE_SIZE,
379 * (see pte_free_tlb()), flush the tlb if we need
380 */
ed6a7935 381 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 382 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
383 do {
384 next = pgd_addr_end(addr, end);
385 if (pgd_none_or_clear_bad(pgd))
386 continue;
c2febafc 387 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 388 } while (pgd++, addr = next, addr != end);
e0da382c
HD
389}
390
42b77728 391void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 392 unsigned long floor, unsigned long ceiling)
e0da382c
HD
393{
394 while (vma) {
395 struct vm_area_struct *next = vma->vm_next;
396 unsigned long addr = vma->vm_start;
397
8f4f8c16 398 /*
25d9e2d1 399 * Hide vma from rmap and truncate_pagecache before freeing
400 * pgtables
8f4f8c16 401 */
5beb4930 402 unlink_anon_vmas(vma);
8f4f8c16
HD
403 unlink_file_vma(vma);
404
9da61aef 405 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 406 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 407 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
408 } else {
409 /*
410 * Optimization: gather nearby vmas into one call down
411 */
412 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 413 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
414 vma = next;
415 next = vma->vm_next;
5beb4930 416 unlink_anon_vmas(vma);
8f4f8c16 417 unlink_file_vma(vma);
3bf5ee95
HD
418 }
419 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 420 floor, next ? next->vm_start : ceiling);
3bf5ee95 421 }
e0da382c
HD
422 vma = next;
423 }
1da177e4
LT
424}
425
4cf58924 426int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 427{
c4088ebd 428 spinlock_t *ptl;
4cf58924 429 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
430 if (!new)
431 return -ENOMEM;
432
362a61ad
NP
433 /*
434 * Ensure all pte setup (eg. pte page lock and page clearing) are
435 * visible before the pte is made visible to other CPUs by being
436 * put into page tables.
437 *
438 * The other side of the story is the pointer chasing in the page
439 * table walking code (when walking the page table without locking;
440 * ie. most of the time). Fortunately, these data accesses consist
441 * of a chain of data-dependent loads, meaning most CPUs (alpha
442 * being the notable exception) will already guarantee loads are
443 * seen in-order. See the alpha page table accessors for the
bb7cdd38 444 * smp_rmb() barriers in page table walking code.
362a61ad
NP
445 */
446 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447
c4088ebd 448 ptl = pmd_lock(mm, pmd);
8ac1f832 449 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 450 mm_inc_nr_ptes(mm);
1da177e4 451 pmd_populate(mm, pmd, new);
2f569afd 452 new = NULL;
4b471e88 453 }
c4088ebd 454 spin_unlock(ptl);
2f569afd
MS
455 if (new)
456 pte_free(mm, new);
1bb3630e 457 return 0;
1da177e4
LT
458}
459
4cf58924 460int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 461{
4cf58924 462 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
463 if (!new)
464 return -ENOMEM;
465
362a61ad
NP
466 smp_wmb(); /* See comment in __pte_alloc */
467
1bb3630e 468 spin_lock(&init_mm.page_table_lock);
8ac1f832 469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 470 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 471 new = NULL;
4b471e88 472 }
1bb3630e 473 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
474 if (new)
475 pte_free_kernel(&init_mm, new);
1bb3630e 476 return 0;
1da177e4
LT
477}
478
d559db08
KH
479static inline void init_rss_vec(int *rss)
480{
481 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482}
483
484static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 485{
d559db08
KH
486 int i;
487
34e55232 488 if (current->mm == mm)
05af2e10 489 sync_mm_rss(mm);
d559db08
KH
490 for (i = 0; i < NR_MM_COUNTERS; i++)
491 if (rss[i])
492 add_mm_counter(mm, i, rss[i]);
ae859762
HD
493}
494
b5810039 495/*
6aab341e
LT
496 * This function is called to print an error when a bad pte
497 * is found. For example, we might have a PFN-mapped pte in
498 * a region that doesn't allow it.
b5810039
NP
499 *
500 * The calling function must still handle the error.
501 */
3dc14741
HD
502static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503 pte_t pte, struct page *page)
b5810039 504{
3dc14741 505 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
506 p4d_t *p4d = p4d_offset(pgd, addr);
507 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
508 pmd_t *pmd = pmd_offset(pud, addr);
509 struct address_space *mapping;
510 pgoff_t index;
d936cf9b
HD
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 return;
523 }
524 if (nr_unshown) {
1170532b
JP
525 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526 nr_unshown);
d936cf9b
HD
527 nr_unshown = 0;
528 }
529 nr_shown = 0;
530 }
531 if (nr_shown++ == 0)
532 resume = jiffies + 60 * HZ;
3dc14741
HD
533
534 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535 index = linear_page_index(vma, addr);
536
1170532b
JP
537 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
538 current->comm,
539 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 540 if (page)
f0b791a3 541 dump_page(page, "bad pte");
6aa9b8b2 542 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 543 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 544 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
545 vma->vm_file,
546 vma->vm_ops ? vma->vm_ops->fault : NULL,
547 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548 mapping ? mapping->a_ops->readpage : NULL);
b5810039 549 dump_stack();
373d4d09 550 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
551}
552
ee498ed7 553/*
7e675137 554 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 555 *
7e675137
NP
556 * "Special" mappings do not wish to be associated with a "struct page" (either
557 * it doesn't exist, or it exists but they don't want to touch it). In this
558 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 559 *
7e675137
NP
560 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561 * pte bit, in which case this function is trivial. Secondly, an architecture
562 * may not have a spare pte bit, which requires a more complicated scheme,
563 * described below.
564 *
565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566 * special mapping (even if there are underlying and valid "struct pages").
567 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 568 *
b379d790
JH
569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572 * mapping will always honor the rule
6aab341e
LT
573 *
574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575 *
7e675137
NP
576 * And for normal mappings this is false.
577 *
578 * This restricts such mappings to be a linear translation from virtual address
579 * to pfn. To get around this restriction, we allow arbitrary mappings so long
580 * as the vma is not a COW mapping; in that case, we know that all ptes are
581 * special (because none can have been COWed).
b379d790 582 *
b379d790 583 *
7e675137 584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
585 *
586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587 * page" backing, however the difference is that _all_ pages with a struct
588 * page (that is, those where pfn_valid is true) are refcounted and considered
589 * normal pages by the VM. The disadvantage is that pages are refcounted
590 * (which can be slower and simply not an option for some PFNMAP users). The
591 * advantage is that we don't have to follow the strict linearity rule of
592 * PFNMAP mappings in order to support COWable mappings.
593 *
ee498ed7 594 */
25b2995a
CH
595struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 pte_t pte)
ee498ed7 597{
22b31eec 598 unsigned long pfn = pte_pfn(pte);
7e675137 599
00b3a331 600 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 601 if (likely(!pte_special(pte)))
22b31eec 602 goto check_pfn;
667a0a06
DV
603 if (vma->vm_ops && vma->vm_ops->find_special_page)
604 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 return NULL;
df6ad698
JG
607 if (is_zero_pfn(pfn))
608 return NULL;
e1fb4a08
DJ
609 if (pte_devmap(pte))
610 return NULL;
611
df6ad698 612 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
613 return NULL;
614 }
615
00b3a331 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 617
b379d790
JH
618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 if (vma->vm_flags & VM_MIXEDMAP) {
620 if (!pfn_valid(pfn))
621 return NULL;
622 goto out;
623 } else {
7e675137
NP
624 unsigned long off;
625 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
626 if (pfn == vma->vm_pgoff + off)
627 return NULL;
628 if (!is_cow_mapping(vma->vm_flags))
629 return NULL;
630 }
6aab341e
LT
631 }
632
b38af472
HD
633 if (is_zero_pfn(pfn))
634 return NULL;
00b3a331 635
22b31eec
HD
636check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
640 }
6aab341e
LT
641
642 /*
7e675137 643 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 644 * eg. VDSO mappings can cause them to exist.
6aab341e 645 */
b379d790 646out:
6aab341e 647 return pfn_to_page(pfn);
ee498ed7
HD
648}
649
28093f9f
GS
650#ifdef CONFIG_TRANSPARENT_HUGEPAGE
651struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 pmd_t pmd)
653{
654 unsigned long pfn = pmd_pfn(pmd);
655
656 /*
657 * There is no pmd_special() but there may be special pmds, e.g.
658 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
660 */
661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 if (vma->vm_flags & VM_MIXEDMAP) {
663 if (!pfn_valid(pfn))
664 return NULL;
665 goto out;
666 } else {
667 unsigned long off;
668 off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 if (pfn == vma->vm_pgoff + off)
670 return NULL;
671 if (!is_cow_mapping(vma->vm_flags))
672 return NULL;
673 }
674 }
675
e1fb4a08
DJ
676 if (pmd_devmap(pmd))
677 return NULL;
3cde287b 678 if (is_huge_zero_pmd(pmd))
28093f9f
GS
679 return NULL;
680 if (unlikely(pfn > highest_memmap_pfn))
681 return NULL;
682
683 /*
684 * NOTE! We still have PageReserved() pages in the page tables.
685 * eg. VDSO mappings can cause them to exist.
686 */
687out:
688 return pfn_to_page(pfn);
689}
690#endif
691
1da177e4
LT
692/*
693 * copy one vm_area from one task to the other. Assumes the page tables
694 * already present in the new task to be cleared in the whole range
695 * covered by this vma.
1da177e4
LT
696 */
697
df3a57d1
LT
698static unsigned long
699copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 701 unsigned long addr, int *rss)
1da177e4 702{
b5810039 703 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
704 pte_t pte = *src_pte;
705 struct page *page;
df3a57d1
LT
706 swp_entry_t entry = pte_to_swp_entry(pte);
707
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
710 return entry.val;
711
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
717 &src_mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 rss[MM_SWAPENTS]++;
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
1da177e4 723
df3a57d1 724 rss[mm_counter(page)]++;
5042db43 725
df3a57d1
LT
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
5042db43 728 /*
df3a57d1
LT
729 * COW mappings require pages in both
730 * parent and child to be set to read.
5042db43 731 */
df3a57d1
LT
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
736 if (pte_swp_uffd_wp(*src_pte))
737 pte = pte_swp_mkuffd_wp(pte);
738 set_pte_at(src_mm, addr, src_pte, pte);
739 }
740 } else if (is_device_private_entry(entry)) {
741 page = device_private_entry_to_page(entry);
5042db43 742
df3a57d1
LT
743 /*
744 * Update rss count even for unaddressable pages, as
745 * they should treated just like normal pages in this
746 * respect.
747 *
748 * We will likely want to have some new rss counters
749 * for unaddressable pages, at some point. But for now
750 * keep things as they are.
751 */
752 get_page(page);
753 rss[mm_counter(page)]++;
754 page_dup_rmap(page, false);
755
756 /*
757 * We do not preserve soft-dirty information, because so
758 * far, checkpoint/restore is the only feature that
759 * requires that. And checkpoint/restore does not work
760 * when a device driver is involved (you cannot easily
761 * save and restore device driver state).
762 */
763 if (is_write_device_private_entry(entry) &&
764 is_cow_mapping(vm_flags)) {
765 make_device_private_entry_read(&entry);
766 pte = swp_entry_to_pte(entry);
767 if (pte_swp_uffd_wp(*src_pte))
768 pte = pte_swp_mkuffd_wp(pte);
769 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 770 }
1da177e4 771 }
df3a57d1
LT
772 set_pte_at(dst_mm, addr, dst_pte, pte);
773 return 0;
774}
775
70e806e4
PX
776/*
777 * Copy a present and normal page if necessary.
778 *
779 * NOTE! The usual case is that this doesn't need to do
780 * anything, and can just return a positive value. That
781 * will let the caller know that it can just increase
782 * the page refcount and re-use the pte the traditional
783 * way.
784 *
785 * But _if_ we need to copy it because it needs to be
786 * pinned in the parent (and the child should get its own
787 * copy rather than just a reference to the same page),
788 * we'll do that here and return zero to let the caller
789 * know we're done.
790 *
791 * And if we need a pre-allocated page but don't yet have
792 * one, return a negative error to let the preallocation
793 * code know so that it can do so outside the page table
794 * lock.
795 */
796static inline int
797copy_present_page(struct mm_struct *dst_mm, struct mm_struct *src_mm,
798 pte_t *dst_pte, pte_t *src_pte,
799 struct vm_area_struct *vma, struct vm_area_struct *new,
800 unsigned long addr, int *rss, struct page **prealloc,
801 pte_t pte, struct page *page)
802{
803 struct page *new_page;
804
805 if (!is_cow_mapping(vma->vm_flags))
806 return 1;
807
808 /*
70e806e4
PX
809 * What we want to do is to check whether this page may
810 * have been pinned by the parent process. If so,
811 * instead of wrprotect the pte on both sides, we copy
812 * the page immediately so that we'll always guarantee
813 * the pinned page won't be randomly replaced in the
814 * future.
815 *
f3c64eda
LT
816 * The page pinning checks are just "has this mm ever
817 * seen pinning", along with the (inexact) check of
818 * the page count. That might give false positives for
819 * for pinning, but it will work correctly.
70e806e4
PX
820 */
821 if (likely(!atomic_read(&src_mm->has_pinned)))
822 return 1;
823 if (likely(!page_maybe_dma_pinned(page)))
824 return 1;
825
70e806e4
PX
826 new_page = *prealloc;
827 if (!new_page)
828 return -EAGAIN;
829
830 /*
831 * We have a prealloc page, all good! Take it
832 * over and copy the page & arm it.
833 */
834 *prealloc = NULL;
835 copy_user_highpage(new_page, page, addr, vma);
836 __SetPageUptodate(new_page);
837 page_add_new_anon_rmap(new_page, new, addr, false);
838 lru_cache_add_inactive_or_unevictable(new_page, new);
839 rss[mm_counter(new_page)]++;
840
841 /* All done, just insert the new page copy in the child */
842 pte = mk_pte(new_page, new->vm_page_prot);
843 pte = maybe_mkwrite(pte_mkdirty(pte), new);
844 set_pte_at(dst_mm, addr, dst_pte, pte);
845 return 0;
846}
847
848/*
849 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
850 * is required to copy this pte.
851 */
852static inline int
79a1971c 853copy_present_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
df3a57d1 854 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
70e806e4
PX
855 struct vm_area_struct *new,
856 unsigned long addr, int *rss, struct page **prealloc)
df3a57d1
LT
857{
858 unsigned long vm_flags = vma->vm_flags;
859 pte_t pte = *src_pte;
860 struct page *page;
861
70e806e4
PX
862 page = vm_normal_page(vma, addr, pte);
863 if (page) {
864 int retval;
865
866 retval = copy_present_page(dst_mm, src_mm,
867 dst_pte, src_pte,
868 vma, new,
869 addr, rss, prealloc,
870 pte, page);
871 if (retval <= 0)
872 return retval;
873
874 get_page(page);
875 page_dup_rmap(page, false);
876 rss[mm_counter(page)]++;
877 }
878
1da177e4
LT
879 /*
880 * If it's a COW mapping, write protect it both
881 * in the parent and the child
882 */
1b2de5d0 883 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 884 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 885 pte = pte_wrprotect(pte);
1da177e4
LT
886 }
887
888 /*
889 * If it's a shared mapping, mark it clean in
890 * the child
891 */
892 if (vm_flags & VM_SHARED)
893 pte = pte_mkclean(pte);
894 pte = pte_mkold(pte);
6aab341e 895
b569a176
PX
896 /*
897 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
898 * does not have the VM_UFFD_WP, which means that the uffd
899 * fork event is not enabled.
900 */
901 if (!(vm_flags & VM_UFFD_WP))
902 pte = pte_clear_uffd_wp(pte);
903
70e806e4
PX
904 set_pte_at(dst_mm, addr, dst_pte, pte);
905 return 0;
906}
907
908static inline struct page *
909page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
910 unsigned long addr)
911{
912 struct page *new_page;
913
914 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
915 if (!new_page)
916 return NULL;
917
918 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
919 put_page(new_page);
920 return NULL;
6aab341e 921 }
70e806e4 922 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 923
70e806e4 924 return new_page;
1da177e4
LT
925}
926
21bda264 927static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0 928 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
7a4830c3 929 struct vm_area_struct *new,
71e3aac0 930 unsigned long addr, unsigned long end)
1da177e4 931{
c36987e2 932 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 933 pte_t *src_pte, *dst_pte;
c74df32c 934 spinlock_t *src_ptl, *dst_ptl;
70e806e4 935 int progress, ret = 0;
d559db08 936 int rss[NR_MM_COUNTERS];
570a335b 937 swp_entry_t entry = (swp_entry_t){0};
70e806e4 938 struct page *prealloc = NULL;
1da177e4
LT
939
940again:
70e806e4 941 progress = 0;
d559db08
KH
942 init_rss_vec(rss);
943
c74df32c 944 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
945 if (!dst_pte) {
946 ret = -ENOMEM;
947 goto out;
948 }
ece0e2b6 949 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 950 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 951 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
952 orig_src_pte = src_pte;
953 orig_dst_pte = dst_pte;
6606c3e0 954 arch_enter_lazy_mmu_mode();
1da177e4 955
1da177e4
LT
956 do {
957 /*
958 * We are holding two locks at this point - either of them
959 * could generate latencies in another task on another CPU.
960 */
e040f218
HD
961 if (progress >= 32) {
962 progress = 0;
963 if (need_resched() ||
95c354fe 964 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
965 break;
966 }
1da177e4
LT
967 if (pte_none(*src_pte)) {
968 progress++;
969 continue;
970 }
79a1971c
LT
971 if (unlikely(!pte_present(*src_pte))) {
972 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
973 dst_pte, src_pte,
570a335b 974 vma, addr, rss);
79a1971c
LT
975 if (entry.val)
976 break;
977 progress += 8;
978 continue;
979 }
70e806e4
PX
980 /* copy_present_pte() will clear `*prealloc' if consumed */
981 ret = copy_present_pte(dst_mm, src_mm, dst_pte, src_pte,
982 vma, new, addr, rss, &prealloc);
983 /*
984 * If we need a pre-allocated page for this pte, drop the
985 * locks, allocate, and try again.
986 */
987 if (unlikely(ret == -EAGAIN))
988 break;
989 if (unlikely(prealloc)) {
990 /*
991 * pre-alloc page cannot be reused by next time so as
992 * to strictly follow mempolicy (e.g., alloc_page_vma()
993 * will allocate page according to address). This
994 * could only happen if one pinned pte changed.
995 */
996 put_page(prealloc);
997 prealloc = NULL;
998 }
1da177e4
LT
999 progress += 8;
1000 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1001
6606c3e0 1002 arch_leave_lazy_mmu_mode();
c74df32c 1003 spin_unlock(src_ptl);
ece0e2b6 1004 pte_unmap(orig_src_pte);
d559db08 1005 add_mm_rss_vec(dst_mm, rss);
c36987e2 1006 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1007 cond_resched();
570a335b
HD
1008
1009 if (entry.val) {
70e806e4
PX
1010 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1011 ret = -ENOMEM;
1012 goto out;
1013 }
1014 entry.val = 0;
1015 } else if (ret) {
1016 WARN_ON_ONCE(ret != -EAGAIN);
1017 prealloc = page_copy_prealloc(src_mm, vma, addr);
1018 if (!prealloc)
570a335b 1019 return -ENOMEM;
70e806e4
PX
1020 /* We've captured and resolved the error. Reset, try again. */
1021 ret = 0;
570a335b 1022 }
1da177e4
LT
1023 if (addr != end)
1024 goto again;
70e806e4
PX
1025out:
1026 if (unlikely(prealloc))
1027 put_page(prealloc);
1028 return ret;
1da177e4
LT
1029}
1030
1031static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
7a4830c3 1033 struct vm_area_struct *new,
1da177e4
LT
1034 unsigned long addr, unsigned long end)
1035{
1036 pmd_t *src_pmd, *dst_pmd;
1037 unsigned long next;
1038
1039 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1040 if (!dst_pmd)
1041 return -ENOMEM;
1042 src_pmd = pmd_offset(src_pud, addr);
1043 do {
1044 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1045 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1046 || pmd_devmap(*src_pmd)) {
71e3aac0 1047 int err;
a00cc7d9 1048 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
1049 err = copy_huge_pmd(dst_mm, src_mm,
1050 dst_pmd, src_pmd, addr, vma);
1051 if (err == -ENOMEM)
1052 return -ENOMEM;
1053 if (!err)
1054 continue;
1055 /* fall through */
1056 }
1da177e4
LT
1057 if (pmd_none_or_clear_bad(src_pmd))
1058 continue;
1059 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
7a4830c3 1060 vma, new, addr, next))
1da177e4
LT
1061 return -ENOMEM;
1062 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1063 return 0;
1064}
1065
1066static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 1067 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
7a4830c3 1068 struct vm_area_struct *new,
1da177e4
LT
1069 unsigned long addr, unsigned long end)
1070{
1071 pud_t *src_pud, *dst_pud;
1072 unsigned long next;
1073
c2febafc 1074 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1075 if (!dst_pud)
1076 return -ENOMEM;
c2febafc 1077 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1078 do {
1079 next = pud_addr_end(addr, end);
a00cc7d9
MW
1080 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1081 int err;
1082
1083 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1084 err = copy_huge_pud(dst_mm, src_mm,
1085 dst_pud, src_pud, addr, vma);
1086 if (err == -ENOMEM)
1087 return -ENOMEM;
1088 if (!err)
1089 continue;
1090 /* fall through */
1091 }
1da177e4
LT
1092 if (pud_none_or_clear_bad(src_pud))
1093 continue;
1094 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
7a4830c3 1095 vma, new, addr, next))
1da177e4
LT
1096 return -ENOMEM;
1097 } while (dst_pud++, src_pud++, addr = next, addr != end);
1098 return 0;
1099}
1100
c2febafc
KS
1101static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1102 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
7a4830c3 1103 struct vm_area_struct *new,
c2febafc
KS
1104 unsigned long addr, unsigned long end)
1105{
1106 p4d_t *src_p4d, *dst_p4d;
1107 unsigned long next;
1108
1109 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1110 if (!dst_p4d)
1111 return -ENOMEM;
1112 src_p4d = p4d_offset(src_pgd, addr);
1113 do {
1114 next = p4d_addr_end(addr, end);
1115 if (p4d_none_or_clear_bad(src_p4d))
1116 continue;
1117 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
7a4830c3 1118 vma, new, addr, next))
c2febafc
KS
1119 return -ENOMEM;
1120 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1121 return 0;
1122}
1123
1da177e4 1124int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
7a4830c3 1125 struct vm_area_struct *vma, struct vm_area_struct *new)
1da177e4
LT
1126{
1127 pgd_t *src_pgd, *dst_pgd;
1128 unsigned long next;
1129 unsigned long addr = vma->vm_start;
1130 unsigned long end = vma->vm_end;
ac46d4f3 1131 struct mmu_notifier_range range;
2ec74c3e 1132 bool is_cow;
cddb8a5c 1133 int ret;
1da177e4 1134
d992895b
NP
1135 /*
1136 * Don't copy ptes where a page fault will fill them correctly.
1137 * Fork becomes much lighter when there are big shared or private
1138 * readonly mappings. The tradeoff is that copy_page_range is more
1139 * efficient than faulting.
1140 */
0661a336
KS
1141 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1142 !vma->anon_vma)
1143 return 0;
d992895b 1144
1da177e4
LT
1145 if (is_vm_hugetlb_page(vma))
1146 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1147
b3b9c293 1148 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1149 /*
1150 * We do not free on error cases below as remove_vma
1151 * gets called on error from higher level routine
1152 */
5180da41 1153 ret = track_pfn_copy(vma);
2ab64037 1154 if (ret)
1155 return ret;
1156 }
1157
cddb8a5c
AA
1158 /*
1159 * We need to invalidate the secondary MMU mappings only when
1160 * there could be a permission downgrade on the ptes of the
1161 * parent mm. And a permission downgrade will only happen if
1162 * is_cow_mapping() returns true.
1163 */
2ec74c3e 1164 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
1165
1166 if (is_cow) {
7269f999
JG
1167 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1168 0, vma, src_mm, addr, end);
ac46d4f3
JG
1169 mmu_notifier_invalidate_range_start(&range);
1170 }
cddb8a5c
AA
1171
1172 ret = 0;
1da177e4
LT
1173 dst_pgd = pgd_offset(dst_mm, addr);
1174 src_pgd = pgd_offset(src_mm, addr);
1175 do {
1176 next = pgd_addr_end(addr, end);
1177 if (pgd_none_or_clear_bad(src_pgd))
1178 continue;
c2febafc 1179 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
7a4830c3 1180 vma, new, addr, next))) {
cddb8a5c
AA
1181 ret = -ENOMEM;
1182 break;
1183 }
1da177e4 1184 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1185
2ec74c3e 1186 if (is_cow)
ac46d4f3 1187 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1188 return ret;
1da177e4
LT
1189}
1190
51c6f666 1191static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1192 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1193 unsigned long addr, unsigned long end,
97a89413 1194 struct zap_details *details)
1da177e4 1195{
b5810039 1196 struct mm_struct *mm = tlb->mm;
d16dfc55 1197 int force_flush = 0;
d559db08 1198 int rss[NR_MM_COUNTERS];
97a89413 1199 spinlock_t *ptl;
5f1a1907 1200 pte_t *start_pte;
97a89413 1201 pte_t *pte;
8a5f14a2 1202 swp_entry_t entry;
d559db08 1203
ed6a7935 1204 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1205again:
e303297e 1206 init_rss_vec(rss);
5f1a1907
SR
1207 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1208 pte = start_pte;
3ea27719 1209 flush_tlb_batched_pending(mm);
6606c3e0 1210 arch_enter_lazy_mmu_mode();
1da177e4
LT
1211 do {
1212 pte_t ptent = *pte;
166f61b9 1213 if (pte_none(ptent))
1da177e4 1214 continue;
6f5e6b9e 1215
7b167b68
MK
1216 if (need_resched())
1217 break;
1218
1da177e4 1219 if (pte_present(ptent)) {
ee498ed7 1220 struct page *page;
51c6f666 1221
25b2995a 1222 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1223 if (unlikely(details) && page) {
1224 /*
1225 * unmap_shared_mapping_pages() wants to
1226 * invalidate cache without truncating:
1227 * unmap shared but keep private pages.
1228 */
1229 if (details->check_mapping &&
800d8c63 1230 details->check_mapping != page_rmapping(page))
1da177e4 1231 continue;
1da177e4 1232 }
b5810039 1233 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1234 tlb->fullmm);
1da177e4
LT
1235 tlb_remove_tlb_entry(tlb, pte, addr);
1236 if (unlikely(!page))
1237 continue;
eca56ff9
JM
1238
1239 if (!PageAnon(page)) {
1cf35d47
LT
1240 if (pte_dirty(ptent)) {
1241 force_flush = 1;
6237bcd9 1242 set_page_dirty(page);
1cf35d47 1243 }
4917e5d0 1244 if (pte_young(ptent) &&
64363aad 1245 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1246 mark_page_accessed(page);
6237bcd9 1247 }
eca56ff9 1248 rss[mm_counter(page)]--;
d281ee61 1249 page_remove_rmap(page, false);
3dc14741
HD
1250 if (unlikely(page_mapcount(page) < 0))
1251 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1252 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1253 force_flush = 1;
ce9ec37b 1254 addr += PAGE_SIZE;
d16dfc55 1255 break;
1cf35d47 1256 }
1da177e4
LT
1257 continue;
1258 }
5042db43
JG
1259
1260 entry = pte_to_swp_entry(ptent);
463b7a17 1261 if (is_device_private_entry(entry)) {
5042db43
JG
1262 struct page *page = device_private_entry_to_page(entry);
1263
1264 if (unlikely(details && details->check_mapping)) {
1265 /*
1266 * unmap_shared_mapping_pages() wants to
1267 * invalidate cache without truncating:
1268 * unmap shared but keep private pages.
1269 */
1270 if (details->check_mapping !=
1271 page_rmapping(page))
1272 continue;
1273 }
1274
1275 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1276 rss[mm_counter(page)]--;
1277 page_remove_rmap(page, false);
1278 put_page(page);
1279 continue;
1280 }
1281
3e8715fd
KS
1282 /* If details->check_mapping, we leave swap entries. */
1283 if (unlikely(details))
1da177e4 1284 continue;
b084d435 1285
8a5f14a2
KS
1286 if (!non_swap_entry(entry))
1287 rss[MM_SWAPENTS]--;
1288 else if (is_migration_entry(entry)) {
1289 struct page *page;
9f9f1acd 1290
8a5f14a2 1291 page = migration_entry_to_page(entry);
eca56ff9 1292 rss[mm_counter(page)]--;
b084d435 1293 }
8a5f14a2
KS
1294 if (unlikely(!free_swap_and_cache(entry)))
1295 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1296 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1297 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1298
d559db08 1299 add_mm_rss_vec(mm, rss);
6606c3e0 1300 arch_leave_lazy_mmu_mode();
51c6f666 1301
1cf35d47 1302 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1303 if (force_flush)
1cf35d47 1304 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1305 pte_unmap_unlock(start_pte, ptl);
1306
1307 /*
1308 * If we forced a TLB flush (either due to running out of
1309 * batch buffers or because we needed to flush dirty TLB
1310 * entries before releasing the ptl), free the batched
1311 * memory too. Restart if we didn't do everything.
1312 */
1313 if (force_flush) {
1314 force_flush = 0;
fa0aafb8 1315 tlb_flush_mmu(tlb);
7b167b68
MK
1316 }
1317
1318 if (addr != end) {
1319 cond_resched();
1320 goto again;
d16dfc55
PZ
1321 }
1322
51c6f666 1323 return addr;
1da177e4
LT
1324}
1325
51c6f666 1326static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1327 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1328 unsigned long addr, unsigned long end,
97a89413 1329 struct zap_details *details)
1da177e4
LT
1330{
1331 pmd_t *pmd;
1332 unsigned long next;
1333
1334 pmd = pmd_offset(pud, addr);
1335 do {
1336 next = pmd_addr_end(addr, end);
84c3fc4e 1337 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1338 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1339 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1340 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1341 goto next;
71e3aac0
AA
1342 /* fall through */
1343 }
1a5a9906
AA
1344 /*
1345 * Here there can be other concurrent MADV_DONTNEED or
1346 * trans huge page faults running, and if the pmd is
1347 * none or trans huge it can change under us. This is
c1e8d7c6 1348 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1349 * mode.
1350 */
1351 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1352 goto next;
97a89413 1353 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1354next:
97a89413
PZ
1355 cond_resched();
1356 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1357
1358 return addr;
1da177e4
LT
1359}
1360
51c6f666 1361static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1362 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1363 unsigned long addr, unsigned long end,
97a89413 1364 struct zap_details *details)
1da177e4
LT
1365{
1366 pud_t *pud;
1367 unsigned long next;
1368
c2febafc 1369 pud = pud_offset(p4d, addr);
1da177e4
LT
1370 do {
1371 next = pud_addr_end(addr, end);
a00cc7d9
MW
1372 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1373 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1374 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1375 split_huge_pud(vma, pud, addr);
1376 } else if (zap_huge_pud(tlb, vma, pud, addr))
1377 goto next;
1378 /* fall through */
1379 }
97a89413 1380 if (pud_none_or_clear_bad(pud))
1da177e4 1381 continue;
97a89413 1382 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1383next:
1384 cond_resched();
97a89413 1385 } while (pud++, addr = next, addr != end);
51c6f666
RH
1386
1387 return addr;
1da177e4
LT
1388}
1389
c2febafc
KS
1390static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1391 struct vm_area_struct *vma, pgd_t *pgd,
1392 unsigned long addr, unsigned long end,
1393 struct zap_details *details)
1394{
1395 p4d_t *p4d;
1396 unsigned long next;
1397
1398 p4d = p4d_offset(pgd, addr);
1399 do {
1400 next = p4d_addr_end(addr, end);
1401 if (p4d_none_or_clear_bad(p4d))
1402 continue;
1403 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1404 } while (p4d++, addr = next, addr != end);
1405
1406 return addr;
1407}
1408
aac45363 1409void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1410 struct vm_area_struct *vma,
1411 unsigned long addr, unsigned long end,
1412 struct zap_details *details)
1da177e4
LT
1413{
1414 pgd_t *pgd;
1415 unsigned long next;
1416
1da177e4
LT
1417 BUG_ON(addr >= end);
1418 tlb_start_vma(tlb, vma);
1419 pgd = pgd_offset(vma->vm_mm, addr);
1420 do {
1421 next = pgd_addr_end(addr, end);
97a89413 1422 if (pgd_none_or_clear_bad(pgd))
1da177e4 1423 continue;
c2febafc 1424 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1425 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1426 tlb_end_vma(tlb, vma);
1427}
51c6f666 1428
f5cc4eef
AV
1429
1430static void unmap_single_vma(struct mmu_gather *tlb,
1431 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1432 unsigned long end_addr,
f5cc4eef
AV
1433 struct zap_details *details)
1434{
1435 unsigned long start = max(vma->vm_start, start_addr);
1436 unsigned long end;
1437
1438 if (start >= vma->vm_end)
1439 return;
1440 end = min(vma->vm_end, end_addr);
1441 if (end <= vma->vm_start)
1442 return;
1443
cbc91f71
SD
1444 if (vma->vm_file)
1445 uprobe_munmap(vma, start, end);
1446
b3b9c293 1447 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1448 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1449
1450 if (start != end) {
1451 if (unlikely(is_vm_hugetlb_page(vma))) {
1452 /*
1453 * It is undesirable to test vma->vm_file as it
1454 * should be non-null for valid hugetlb area.
1455 * However, vm_file will be NULL in the error
7aa6b4ad 1456 * cleanup path of mmap_region. When
f5cc4eef 1457 * hugetlbfs ->mmap method fails,
7aa6b4ad 1458 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1459 * before calling this function to clean up.
1460 * Since no pte has actually been setup, it is
1461 * safe to do nothing in this case.
1462 */
24669e58 1463 if (vma->vm_file) {
83cde9e8 1464 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1465 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1466 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1467 }
f5cc4eef
AV
1468 } else
1469 unmap_page_range(tlb, vma, start, end, details);
1470 }
1da177e4
LT
1471}
1472
1da177e4
LT
1473/**
1474 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1475 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1476 * @vma: the starting vma
1477 * @start_addr: virtual address at which to start unmapping
1478 * @end_addr: virtual address at which to end unmapping
1da177e4 1479 *
508034a3 1480 * Unmap all pages in the vma list.
1da177e4 1481 *
1da177e4
LT
1482 * Only addresses between `start' and `end' will be unmapped.
1483 *
1484 * The VMA list must be sorted in ascending virtual address order.
1485 *
1486 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1487 * range after unmap_vmas() returns. So the only responsibility here is to
1488 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1489 * drops the lock and schedules.
1490 */
6e8bb019 1491void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1492 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1493 unsigned long end_addr)
1da177e4 1494{
ac46d4f3 1495 struct mmu_notifier_range range;
1da177e4 1496
6f4f13e8
JG
1497 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1498 start_addr, end_addr);
ac46d4f3 1499 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1500 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1501 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1502 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1503}
1504
1505/**
1506 * zap_page_range - remove user pages in a given range
1507 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1508 * @start: starting address of pages to zap
1da177e4 1509 * @size: number of bytes to zap
f5cc4eef
AV
1510 *
1511 * Caller must protect the VMA list
1da177e4 1512 */
7e027b14 1513void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1514 unsigned long size)
1da177e4 1515{
ac46d4f3 1516 struct mmu_notifier_range range;
d16dfc55 1517 struct mmu_gather tlb;
1da177e4 1518
1da177e4 1519 lru_add_drain();
7269f999 1520 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1521 start, start + size);
ac46d4f3
JG
1522 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1523 update_hiwater_rss(vma->vm_mm);
1524 mmu_notifier_invalidate_range_start(&range);
1525 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1526 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1527 mmu_notifier_invalidate_range_end(&range);
1528 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1529}
1530
f5cc4eef
AV
1531/**
1532 * zap_page_range_single - remove user pages in a given range
1533 * @vma: vm_area_struct holding the applicable pages
1534 * @address: starting address of pages to zap
1535 * @size: number of bytes to zap
8a5f14a2 1536 * @details: details of shared cache invalidation
f5cc4eef
AV
1537 *
1538 * The range must fit into one VMA.
1da177e4 1539 */
f5cc4eef 1540static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1541 unsigned long size, struct zap_details *details)
1542{
ac46d4f3 1543 struct mmu_notifier_range range;
d16dfc55 1544 struct mmu_gather tlb;
1da177e4 1545
1da177e4 1546 lru_add_drain();
7269f999 1547 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1548 address, address + size);
ac46d4f3
JG
1549 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1550 update_hiwater_rss(vma->vm_mm);
1551 mmu_notifier_invalidate_range_start(&range);
1552 unmap_single_vma(&tlb, vma, address, range.end, details);
1553 mmu_notifier_invalidate_range_end(&range);
1554 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1555}
1556
c627f9cc
JS
1557/**
1558 * zap_vma_ptes - remove ptes mapping the vma
1559 * @vma: vm_area_struct holding ptes to be zapped
1560 * @address: starting address of pages to zap
1561 * @size: number of bytes to zap
1562 *
1563 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1564 *
1565 * The entire address range must be fully contained within the vma.
1566 *
c627f9cc 1567 */
27d036e3 1568void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1569 unsigned long size)
1570{
1571 if (address < vma->vm_start || address + size > vma->vm_end ||
1572 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1573 return;
1574
f5cc4eef 1575 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1576}
1577EXPORT_SYMBOL_GPL(zap_vma_ptes);
1578
8cd3984d 1579static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1580{
c2febafc
KS
1581 pgd_t *pgd;
1582 p4d_t *p4d;
1583 pud_t *pud;
1584 pmd_t *pmd;
1585
1586 pgd = pgd_offset(mm, addr);
1587 p4d = p4d_alloc(mm, pgd, addr);
1588 if (!p4d)
1589 return NULL;
1590 pud = pud_alloc(mm, p4d, addr);
1591 if (!pud)
1592 return NULL;
1593 pmd = pmd_alloc(mm, pud, addr);
1594 if (!pmd)
1595 return NULL;
1596
1597 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1598 return pmd;
1599}
1600
1601pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1602 spinlock_t **ptl)
1603{
1604 pmd_t *pmd = walk_to_pmd(mm, addr);
1605
1606 if (!pmd)
1607 return NULL;
c2febafc 1608 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1609}
1610
8efd6f5b
AR
1611static int validate_page_before_insert(struct page *page)
1612{
1613 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1614 return -EINVAL;
1615 flush_dcache_page(page);
1616 return 0;
1617}
1618
1619static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1620 unsigned long addr, struct page *page, pgprot_t prot)
1621{
1622 if (!pte_none(*pte))
1623 return -EBUSY;
1624 /* Ok, finally just insert the thing.. */
1625 get_page(page);
1626 inc_mm_counter_fast(mm, mm_counter_file(page));
1627 page_add_file_rmap(page, false);
1628 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1629 return 0;
1630}
1631
238f58d8
LT
1632/*
1633 * This is the old fallback for page remapping.
1634 *
1635 * For historical reasons, it only allows reserved pages. Only
1636 * old drivers should use this, and they needed to mark their
1637 * pages reserved for the old functions anyway.
1638 */
423bad60
NP
1639static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1640 struct page *page, pgprot_t prot)
238f58d8 1641{
423bad60 1642 struct mm_struct *mm = vma->vm_mm;
238f58d8 1643 int retval;
c9cfcddf 1644 pte_t *pte;
8a9f3ccd
BS
1645 spinlock_t *ptl;
1646
8efd6f5b
AR
1647 retval = validate_page_before_insert(page);
1648 if (retval)
5b4e655e 1649 goto out;
238f58d8 1650 retval = -ENOMEM;
c9cfcddf 1651 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1652 if (!pte)
5b4e655e 1653 goto out;
8efd6f5b 1654 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1655 pte_unmap_unlock(pte, ptl);
1656out:
1657 return retval;
1658}
1659
8cd3984d 1660#ifdef pte_index
7f70c2a6 1661static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1662 unsigned long addr, struct page *page, pgprot_t prot)
1663{
1664 int err;
1665
1666 if (!page_count(page))
1667 return -EINVAL;
1668 err = validate_page_before_insert(page);
7f70c2a6
AR
1669 if (err)
1670 return err;
1671 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1672}
1673
1674/* insert_pages() amortizes the cost of spinlock operations
1675 * when inserting pages in a loop. Arch *must* define pte_index.
1676 */
1677static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1678 struct page **pages, unsigned long *num, pgprot_t prot)
1679{
1680 pmd_t *pmd = NULL;
7f70c2a6
AR
1681 pte_t *start_pte, *pte;
1682 spinlock_t *pte_lock;
8cd3984d
AR
1683 struct mm_struct *const mm = vma->vm_mm;
1684 unsigned long curr_page_idx = 0;
1685 unsigned long remaining_pages_total = *num;
1686 unsigned long pages_to_write_in_pmd;
1687 int ret;
1688more:
1689 ret = -EFAULT;
1690 pmd = walk_to_pmd(mm, addr);
1691 if (!pmd)
1692 goto out;
1693
1694 pages_to_write_in_pmd = min_t(unsigned long,
1695 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1696
1697 /* Allocate the PTE if necessary; takes PMD lock once only. */
1698 ret = -ENOMEM;
1699 if (pte_alloc(mm, pmd))
1700 goto out;
8cd3984d
AR
1701
1702 while (pages_to_write_in_pmd) {
1703 int pte_idx = 0;
1704 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1705
7f70c2a6
AR
1706 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1707 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1708 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1709 addr, pages[curr_page_idx], prot);
1710 if (unlikely(err)) {
7f70c2a6 1711 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1712 ret = err;
1713 remaining_pages_total -= pte_idx;
1714 goto out;
1715 }
1716 addr += PAGE_SIZE;
1717 ++curr_page_idx;
1718 }
7f70c2a6 1719 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1720 pages_to_write_in_pmd -= batch_size;
1721 remaining_pages_total -= batch_size;
1722 }
1723 if (remaining_pages_total)
1724 goto more;
1725 ret = 0;
1726out:
1727 *num = remaining_pages_total;
1728 return ret;
1729}
1730#endif /* ifdef pte_index */
1731
1732/**
1733 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1734 * @vma: user vma to map to
1735 * @addr: target start user address of these pages
1736 * @pages: source kernel pages
1737 * @num: in: number of pages to map. out: number of pages that were *not*
1738 * mapped. (0 means all pages were successfully mapped).
1739 *
1740 * Preferred over vm_insert_page() when inserting multiple pages.
1741 *
1742 * In case of error, we may have mapped a subset of the provided
1743 * pages. It is the caller's responsibility to account for this case.
1744 *
1745 * The same restrictions apply as in vm_insert_page().
1746 */
1747int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1748 struct page **pages, unsigned long *num)
1749{
1750#ifdef pte_index
1751 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1752
1753 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1754 return -EFAULT;
1755 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1756 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1757 BUG_ON(vma->vm_flags & VM_PFNMAP);
1758 vma->vm_flags |= VM_MIXEDMAP;
1759 }
1760 /* Defer page refcount checking till we're about to map that page. */
1761 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1762#else
1763 unsigned long idx = 0, pgcount = *num;
45779b03 1764 int err = -EINVAL;
8cd3984d
AR
1765
1766 for (; idx < pgcount; ++idx) {
1767 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1768 if (err)
1769 break;
1770 }
1771 *num = pgcount - idx;
1772 return err;
1773#endif /* ifdef pte_index */
1774}
1775EXPORT_SYMBOL(vm_insert_pages);
1776
bfa5bf6d
REB
1777/**
1778 * vm_insert_page - insert single page into user vma
1779 * @vma: user vma to map to
1780 * @addr: target user address of this page
1781 * @page: source kernel page
1782 *
a145dd41
LT
1783 * This allows drivers to insert individual pages they've allocated
1784 * into a user vma.
1785 *
1786 * The page has to be a nice clean _individual_ kernel allocation.
1787 * If you allocate a compound page, you need to have marked it as
1788 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1789 * (see split_page()).
a145dd41
LT
1790 *
1791 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1792 * took an arbitrary page protection parameter. This doesn't allow
1793 * that. Your vma protection will have to be set up correctly, which
1794 * means that if you want a shared writable mapping, you'd better
1795 * ask for a shared writable mapping!
1796 *
1797 * The page does not need to be reserved.
4b6e1e37
KK
1798 *
1799 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1800 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1801 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1802 * function from other places, for example from page-fault handler.
a862f68a
MR
1803 *
1804 * Return: %0 on success, negative error code otherwise.
a145dd41 1805 */
423bad60
NP
1806int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1807 struct page *page)
a145dd41
LT
1808{
1809 if (addr < vma->vm_start || addr >= vma->vm_end)
1810 return -EFAULT;
1811 if (!page_count(page))
1812 return -EINVAL;
4b6e1e37 1813 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1814 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1815 BUG_ON(vma->vm_flags & VM_PFNMAP);
1816 vma->vm_flags |= VM_MIXEDMAP;
1817 }
423bad60 1818 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1819}
e3c3374f 1820EXPORT_SYMBOL(vm_insert_page);
a145dd41 1821
a667d745
SJ
1822/*
1823 * __vm_map_pages - maps range of kernel pages into user vma
1824 * @vma: user vma to map to
1825 * @pages: pointer to array of source kernel pages
1826 * @num: number of pages in page array
1827 * @offset: user's requested vm_pgoff
1828 *
1829 * This allows drivers to map range of kernel pages into a user vma.
1830 *
1831 * Return: 0 on success and error code otherwise.
1832 */
1833static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1834 unsigned long num, unsigned long offset)
1835{
1836 unsigned long count = vma_pages(vma);
1837 unsigned long uaddr = vma->vm_start;
1838 int ret, i;
1839
1840 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1841 if (offset >= num)
a667d745
SJ
1842 return -ENXIO;
1843
1844 /* Fail if the user requested size exceeds available object size */
1845 if (count > num - offset)
1846 return -ENXIO;
1847
1848 for (i = 0; i < count; i++) {
1849 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1850 if (ret < 0)
1851 return ret;
1852 uaddr += PAGE_SIZE;
1853 }
1854
1855 return 0;
1856}
1857
1858/**
1859 * vm_map_pages - maps range of kernel pages starts with non zero offset
1860 * @vma: user vma to map to
1861 * @pages: pointer to array of source kernel pages
1862 * @num: number of pages in page array
1863 *
1864 * Maps an object consisting of @num pages, catering for the user's
1865 * requested vm_pgoff
1866 *
1867 * If we fail to insert any page into the vma, the function will return
1868 * immediately leaving any previously inserted pages present. Callers
1869 * from the mmap handler may immediately return the error as their caller
1870 * will destroy the vma, removing any successfully inserted pages. Other
1871 * callers should make their own arrangements for calling unmap_region().
1872 *
1873 * Context: Process context. Called by mmap handlers.
1874 * Return: 0 on success and error code otherwise.
1875 */
1876int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1877 unsigned long num)
1878{
1879 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1880}
1881EXPORT_SYMBOL(vm_map_pages);
1882
1883/**
1884 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1885 * @vma: user vma to map to
1886 * @pages: pointer to array of source kernel pages
1887 * @num: number of pages in page array
1888 *
1889 * Similar to vm_map_pages(), except that it explicitly sets the offset
1890 * to 0. This function is intended for the drivers that did not consider
1891 * vm_pgoff.
1892 *
1893 * Context: Process context. Called by mmap handlers.
1894 * Return: 0 on success and error code otherwise.
1895 */
1896int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1897 unsigned long num)
1898{
1899 return __vm_map_pages(vma, pages, num, 0);
1900}
1901EXPORT_SYMBOL(vm_map_pages_zero);
1902
9b5a8e00 1903static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1904 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1905{
1906 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1907 pte_t *pte, entry;
1908 spinlock_t *ptl;
1909
423bad60
NP
1910 pte = get_locked_pte(mm, addr, &ptl);
1911 if (!pte)
9b5a8e00 1912 return VM_FAULT_OOM;
b2770da6
RZ
1913 if (!pte_none(*pte)) {
1914 if (mkwrite) {
1915 /*
1916 * For read faults on private mappings the PFN passed
1917 * in may not match the PFN we have mapped if the
1918 * mapped PFN is a writeable COW page. In the mkwrite
1919 * case we are creating a writable PTE for a shared
f2c57d91
JK
1920 * mapping and we expect the PFNs to match. If they
1921 * don't match, we are likely racing with block
1922 * allocation and mapping invalidation so just skip the
1923 * update.
b2770da6 1924 */
f2c57d91
JK
1925 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1926 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1927 goto out_unlock;
f2c57d91 1928 }
cae85cb8
JK
1929 entry = pte_mkyoung(*pte);
1930 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1931 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1932 update_mmu_cache(vma, addr, pte);
1933 }
1934 goto out_unlock;
b2770da6 1935 }
423bad60
NP
1936
1937 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1938 if (pfn_t_devmap(pfn))
1939 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1940 else
1941 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1942
b2770da6
RZ
1943 if (mkwrite) {
1944 entry = pte_mkyoung(entry);
1945 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1946 }
1947
423bad60 1948 set_pte_at(mm, addr, pte, entry);
4b3073e1 1949 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1950
423bad60
NP
1951out_unlock:
1952 pte_unmap_unlock(pte, ptl);
9b5a8e00 1953 return VM_FAULT_NOPAGE;
423bad60
NP
1954}
1955
f5e6d1d5
MW
1956/**
1957 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1958 * @vma: user vma to map to
1959 * @addr: target user address of this page
1960 * @pfn: source kernel pfn
1961 * @pgprot: pgprot flags for the inserted page
1962 *
a1a0aea5 1963 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
1964 * to override pgprot on a per-page basis.
1965 *
1966 * This only makes sense for IO mappings, and it makes no sense for
1967 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1968 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1969 * impractical.
1970 *
574c5b3d
TH
1971 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1972 * a value of @pgprot different from that of @vma->vm_page_prot.
1973 *
ae2b01f3 1974 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1975 * Return: vm_fault_t value.
1976 */
1977vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1978 unsigned long pfn, pgprot_t pgprot)
1979{
6d958546
MW
1980 /*
1981 * Technically, architectures with pte_special can avoid all these
1982 * restrictions (same for remap_pfn_range). However we would like
1983 * consistency in testing and feature parity among all, so we should
1984 * try to keep these invariants in place for everybody.
1985 */
1986 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1987 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1988 (VM_PFNMAP|VM_MIXEDMAP));
1989 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1990 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1991
1992 if (addr < vma->vm_start || addr >= vma->vm_end)
1993 return VM_FAULT_SIGBUS;
1994
1995 if (!pfn_modify_allowed(pfn, pgprot))
1996 return VM_FAULT_SIGBUS;
1997
1998 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1999
9b5a8e00 2000 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2001 false);
f5e6d1d5
MW
2002}
2003EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2004
ae2b01f3
MW
2005/**
2006 * vmf_insert_pfn - insert single pfn into user vma
2007 * @vma: user vma to map to
2008 * @addr: target user address of this page
2009 * @pfn: source kernel pfn
2010 *
2011 * Similar to vm_insert_page, this allows drivers to insert individual pages
2012 * they've allocated into a user vma. Same comments apply.
2013 *
2014 * This function should only be called from a vm_ops->fault handler, and
2015 * in that case the handler should return the result of this function.
2016 *
2017 * vma cannot be a COW mapping.
2018 *
2019 * As this is called only for pages that do not currently exist, we
2020 * do not need to flush old virtual caches or the TLB.
2021 *
2022 * Context: Process context. May allocate using %GFP_KERNEL.
2023 * Return: vm_fault_t value.
2024 */
2025vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2026 unsigned long pfn)
2027{
2028 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2029}
2030EXPORT_SYMBOL(vmf_insert_pfn);
2031
785a3fab
DW
2032static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2033{
2034 /* these checks mirror the abort conditions in vm_normal_page */
2035 if (vma->vm_flags & VM_MIXEDMAP)
2036 return true;
2037 if (pfn_t_devmap(pfn))
2038 return true;
2039 if (pfn_t_special(pfn))
2040 return true;
2041 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2042 return true;
2043 return false;
2044}
2045
79f3aa5b 2046static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2047 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2048 bool mkwrite)
423bad60 2049{
79f3aa5b 2050 int err;
87744ab3 2051
785a3fab 2052 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2053
423bad60 2054 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2055 return VM_FAULT_SIGBUS;
308a047c
BP
2056
2057 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2058
42e4089c 2059 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2060 return VM_FAULT_SIGBUS;
42e4089c 2061
423bad60
NP
2062 /*
2063 * If we don't have pte special, then we have to use the pfn_valid()
2064 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2065 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2066 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2067 * without pte special, it would there be refcounted as a normal page.
423bad60 2068 */
00b3a331
LD
2069 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2070 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2071 struct page *page;
2072
03fc2da6
DW
2073 /*
2074 * At this point we are committed to insert_page()
2075 * regardless of whether the caller specified flags that
2076 * result in pfn_t_has_page() == false.
2077 */
2078 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2079 err = insert_page(vma, addr, page, pgprot);
2080 } else {
9b5a8e00 2081 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2082 }
b2770da6 2083
5d747637
MW
2084 if (err == -ENOMEM)
2085 return VM_FAULT_OOM;
2086 if (err < 0 && err != -EBUSY)
2087 return VM_FAULT_SIGBUS;
2088
2089 return VM_FAULT_NOPAGE;
e0dc0d8f 2090}
79f3aa5b 2091
574c5b3d
TH
2092/**
2093 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2094 * @vma: user vma to map to
2095 * @addr: target user address of this page
2096 * @pfn: source kernel pfn
2097 * @pgprot: pgprot flags for the inserted page
2098 *
a1a0aea5 2099 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2100 * to override pgprot on a per-page basis.
2101 *
2102 * Typically this function should be used by drivers to set caching- and
2103 * encryption bits different than those of @vma->vm_page_prot, because
2104 * the caching- or encryption mode may not be known at mmap() time.
2105 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2106 * to set caching and encryption bits for those vmas (except for COW pages).
2107 * This is ensured by core vm only modifying these page table entries using
2108 * functions that don't touch caching- or encryption bits, using pte_modify()
2109 * if needed. (See for example mprotect()).
2110 * Also when new page-table entries are created, this is only done using the
2111 * fault() callback, and never using the value of vma->vm_page_prot,
2112 * except for page-table entries that point to anonymous pages as the result
2113 * of COW.
2114 *
2115 * Context: Process context. May allocate using %GFP_KERNEL.
2116 * Return: vm_fault_t value.
2117 */
2118vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2119 pfn_t pfn, pgprot_t pgprot)
2120{
2121 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2122}
5379e4dd 2123EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2124
79f3aa5b
MW
2125vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2126 pfn_t pfn)
2127{
574c5b3d 2128 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2129}
5d747637 2130EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2131
ab77dab4
SJ
2132/*
2133 * If the insertion of PTE failed because someone else already added a
2134 * different entry in the mean time, we treat that as success as we assume
2135 * the same entry was actually inserted.
2136 */
ab77dab4
SJ
2137vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2138 unsigned long addr, pfn_t pfn)
b2770da6 2139{
574c5b3d 2140 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2141}
ab77dab4 2142EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2143
1da177e4
LT
2144/*
2145 * maps a range of physical memory into the requested pages. the old
2146 * mappings are removed. any references to nonexistent pages results
2147 * in null mappings (currently treated as "copy-on-access")
2148 */
2149static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2150 unsigned long addr, unsigned long end,
2151 unsigned long pfn, pgprot_t prot)
2152{
2153 pte_t *pte;
c74df32c 2154 spinlock_t *ptl;
42e4089c 2155 int err = 0;
1da177e4 2156
c74df32c 2157 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2158 if (!pte)
2159 return -ENOMEM;
6606c3e0 2160 arch_enter_lazy_mmu_mode();
1da177e4
LT
2161 do {
2162 BUG_ON(!pte_none(*pte));
42e4089c
AK
2163 if (!pfn_modify_allowed(pfn, prot)) {
2164 err = -EACCES;
2165 break;
2166 }
7e675137 2167 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2168 pfn++;
2169 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2170 arch_leave_lazy_mmu_mode();
c74df32c 2171 pte_unmap_unlock(pte - 1, ptl);
42e4089c 2172 return err;
1da177e4
LT
2173}
2174
2175static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2176 unsigned long addr, unsigned long end,
2177 unsigned long pfn, pgprot_t prot)
2178{
2179 pmd_t *pmd;
2180 unsigned long next;
42e4089c 2181 int err;
1da177e4
LT
2182
2183 pfn -= addr >> PAGE_SHIFT;
2184 pmd = pmd_alloc(mm, pud, addr);
2185 if (!pmd)
2186 return -ENOMEM;
f66055ab 2187 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2188 do {
2189 next = pmd_addr_end(addr, end);
42e4089c
AK
2190 err = remap_pte_range(mm, pmd, addr, next,
2191 pfn + (addr >> PAGE_SHIFT), prot);
2192 if (err)
2193 return err;
1da177e4
LT
2194 } while (pmd++, addr = next, addr != end);
2195 return 0;
2196}
2197
c2febafc 2198static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2199 unsigned long addr, unsigned long end,
2200 unsigned long pfn, pgprot_t prot)
2201{
2202 pud_t *pud;
2203 unsigned long next;
42e4089c 2204 int err;
1da177e4
LT
2205
2206 pfn -= addr >> PAGE_SHIFT;
c2febafc 2207 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2208 if (!pud)
2209 return -ENOMEM;
2210 do {
2211 next = pud_addr_end(addr, end);
42e4089c
AK
2212 err = remap_pmd_range(mm, pud, addr, next,
2213 pfn + (addr >> PAGE_SHIFT), prot);
2214 if (err)
2215 return err;
1da177e4
LT
2216 } while (pud++, addr = next, addr != end);
2217 return 0;
2218}
2219
c2febafc
KS
2220static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2221 unsigned long addr, unsigned long end,
2222 unsigned long pfn, pgprot_t prot)
2223{
2224 p4d_t *p4d;
2225 unsigned long next;
42e4089c 2226 int err;
c2febafc
KS
2227
2228 pfn -= addr >> PAGE_SHIFT;
2229 p4d = p4d_alloc(mm, pgd, addr);
2230 if (!p4d)
2231 return -ENOMEM;
2232 do {
2233 next = p4d_addr_end(addr, end);
42e4089c
AK
2234 err = remap_pud_range(mm, p4d, addr, next,
2235 pfn + (addr >> PAGE_SHIFT), prot);
2236 if (err)
2237 return err;
c2febafc
KS
2238 } while (p4d++, addr = next, addr != end);
2239 return 0;
2240}
2241
bfa5bf6d
REB
2242/**
2243 * remap_pfn_range - remap kernel memory to userspace
2244 * @vma: user vma to map to
0c4123e3 2245 * @addr: target page aligned user address to start at
86a76331 2246 * @pfn: page frame number of kernel physical memory address
552657b7 2247 * @size: size of mapping area
bfa5bf6d
REB
2248 * @prot: page protection flags for this mapping
2249 *
a862f68a
MR
2250 * Note: this is only safe if the mm semaphore is held when called.
2251 *
2252 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 2253 */
1da177e4
LT
2254int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2255 unsigned long pfn, unsigned long size, pgprot_t prot)
2256{
2257 pgd_t *pgd;
2258 unsigned long next;
2d15cab8 2259 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2260 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2261 unsigned long remap_pfn = pfn;
1da177e4
LT
2262 int err;
2263
0c4123e3
AZ
2264 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2265 return -EINVAL;
2266
1da177e4
LT
2267 /*
2268 * Physically remapped pages are special. Tell the
2269 * rest of the world about it:
2270 * VM_IO tells people not to look at these pages
2271 * (accesses can have side effects).
6aab341e
LT
2272 * VM_PFNMAP tells the core MM that the base pages are just
2273 * raw PFN mappings, and do not have a "struct page" associated
2274 * with them.
314e51b9
KK
2275 * VM_DONTEXPAND
2276 * Disable vma merging and expanding with mremap().
2277 * VM_DONTDUMP
2278 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2279 *
2280 * There's a horrible special case to handle copy-on-write
2281 * behaviour that some programs depend on. We mark the "original"
2282 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2283 * See vm_normal_page() for details.
1da177e4 2284 */
b3b9c293
KK
2285 if (is_cow_mapping(vma->vm_flags)) {
2286 if (addr != vma->vm_start || end != vma->vm_end)
2287 return -EINVAL;
fb155c16 2288 vma->vm_pgoff = pfn;
b3b9c293
KK
2289 }
2290
d5957d2f 2291 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2292 if (err)
3c8bb73a 2293 return -EINVAL;
fb155c16 2294
314e51b9 2295 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2296
2297 BUG_ON(addr >= end);
2298 pfn -= addr >> PAGE_SHIFT;
2299 pgd = pgd_offset(mm, addr);
2300 flush_cache_range(vma, addr, end);
1da177e4
LT
2301 do {
2302 next = pgd_addr_end(addr, end);
c2febafc 2303 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2304 pfn + (addr >> PAGE_SHIFT), prot);
2305 if (err)
2306 break;
2307 } while (pgd++, addr = next, addr != end);
2ab64037 2308
2309 if (err)
d5957d2f 2310 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2311
1da177e4
LT
2312 return err;
2313}
2314EXPORT_SYMBOL(remap_pfn_range);
2315
b4cbb197
LT
2316/**
2317 * vm_iomap_memory - remap memory to userspace
2318 * @vma: user vma to map to
abd69b9e 2319 * @start: start of the physical memory to be mapped
b4cbb197
LT
2320 * @len: size of area
2321 *
2322 * This is a simplified io_remap_pfn_range() for common driver use. The
2323 * driver just needs to give us the physical memory range to be mapped,
2324 * we'll figure out the rest from the vma information.
2325 *
2326 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2327 * whatever write-combining details or similar.
a862f68a
MR
2328 *
2329 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2330 */
2331int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2332{
2333 unsigned long vm_len, pfn, pages;
2334
2335 /* Check that the physical memory area passed in looks valid */
2336 if (start + len < start)
2337 return -EINVAL;
2338 /*
2339 * You *really* shouldn't map things that aren't page-aligned,
2340 * but we've historically allowed it because IO memory might
2341 * just have smaller alignment.
2342 */
2343 len += start & ~PAGE_MASK;
2344 pfn = start >> PAGE_SHIFT;
2345 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2346 if (pfn + pages < pfn)
2347 return -EINVAL;
2348
2349 /* We start the mapping 'vm_pgoff' pages into the area */
2350 if (vma->vm_pgoff > pages)
2351 return -EINVAL;
2352 pfn += vma->vm_pgoff;
2353 pages -= vma->vm_pgoff;
2354
2355 /* Can we fit all of the mapping? */
2356 vm_len = vma->vm_end - vma->vm_start;
2357 if (vm_len >> PAGE_SHIFT > pages)
2358 return -EINVAL;
2359
2360 /* Ok, let it rip */
2361 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2362}
2363EXPORT_SYMBOL(vm_iomap_memory);
2364
aee16b3c
JF
2365static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2366 unsigned long addr, unsigned long end,
e80d3909
JR
2367 pte_fn_t fn, void *data, bool create,
2368 pgtbl_mod_mask *mask)
aee16b3c
JF
2369{
2370 pte_t *pte;
be1db475 2371 int err = 0;
3f649ab7 2372 spinlock_t *ptl;
aee16b3c 2373
be1db475
DA
2374 if (create) {
2375 pte = (mm == &init_mm) ?
e80d3909 2376 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2377 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2378 if (!pte)
2379 return -ENOMEM;
2380 } else {
2381 pte = (mm == &init_mm) ?
2382 pte_offset_kernel(pmd, addr) :
2383 pte_offset_map_lock(mm, pmd, addr, &ptl);
2384 }
aee16b3c
JF
2385
2386 BUG_ON(pmd_huge(*pmd));
2387
38e0edb1
JF
2388 arch_enter_lazy_mmu_mode();
2389
aee16b3c 2390 do {
be1db475
DA
2391 if (create || !pte_none(*pte)) {
2392 err = fn(pte++, addr, data);
2393 if (err)
2394 break;
2395 }
c36987e2 2396 } while (addr += PAGE_SIZE, addr != end);
e80d3909 2397 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2398
38e0edb1
JF
2399 arch_leave_lazy_mmu_mode();
2400
aee16b3c
JF
2401 if (mm != &init_mm)
2402 pte_unmap_unlock(pte-1, ptl);
2403 return err;
2404}
2405
2406static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2407 unsigned long addr, unsigned long end,
e80d3909
JR
2408 pte_fn_t fn, void *data, bool create,
2409 pgtbl_mod_mask *mask)
aee16b3c
JF
2410{
2411 pmd_t *pmd;
2412 unsigned long next;
be1db475 2413 int err = 0;
aee16b3c 2414
ceb86879
AK
2415 BUG_ON(pud_huge(*pud));
2416
be1db475 2417 if (create) {
e80d3909 2418 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2419 if (!pmd)
2420 return -ENOMEM;
2421 } else {
2422 pmd = pmd_offset(pud, addr);
2423 }
aee16b3c
JF
2424 do {
2425 next = pmd_addr_end(addr, end);
be1db475
DA
2426 if (create || !pmd_none_or_clear_bad(pmd)) {
2427 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
e80d3909 2428 create, mask);
be1db475
DA
2429 if (err)
2430 break;
2431 }
aee16b3c
JF
2432 } while (pmd++, addr = next, addr != end);
2433 return err;
2434}
2435
c2febafc 2436static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2437 unsigned long addr, unsigned long end,
e80d3909
JR
2438 pte_fn_t fn, void *data, bool create,
2439 pgtbl_mod_mask *mask)
aee16b3c
JF
2440{
2441 pud_t *pud;
2442 unsigned long next;
be1db475 2443 int err = 0;
aee16b3c 2444
be1db475 2445 if (create) {
e80d3909 2446 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2447 if (!pud)
2448 return -ENOMEM;
2449 } else {
2450 pud = pud_offset(p4d, addr);
2451 }
aee16b3c
JF
2452 do {
2453 next = pud_addr_end(addr, end);
be1db475
DA
2454 if (create || !pud_none_or_clear_bad(pud)) {
2455 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
e80d3909 2456 create, mask);
be1db475
DA
2457 if (err)
2458 break;
2459 }
aee16b3c
JF
2460 } while (pud++, addr = next, addr != end);
2461 return err;
2462}
2463
c2febafc
KS
2464static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2465 unsigned long addr, unsigned long end,
e80d3909
JR
2466 pte_fn_t fn, void *data, bool create,
2467 pgtbl_mod_mask *mask)
c2febafc
KS
2468{
2469 p4d_t *p4d;
2470 unsigned long next;
be1db475 2471 int err = 0;
c2febafc 2472
be1db475 2473 if (create) {
e80d3909 2474 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2475 if (!p4d)
2476 return -ENOMEM;
2477 } else {
2478 p4d = p4d_offset(pgd, addr);
2479 }
c2febafc
KS
2480 do {
2481 next = p4d_addr_end(addr, end);
be1db475
DA
2482 if (create || !p4d_none_or_clear_bad(p4d)) {
2483 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
e80d3909 2484 create, mask);
be1db475
DA
2485 if (err)
2486 break;
2487 }
c2febafc
KS
2488 } while (p4d++, addr = next, addr != end);
2489 return err;
2490}
2491
be1db475
DA
2492static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2493 unsigned long size, pte_fn_t fn,
2494 void *data, bool create)
aee16b3c
JF
2495{
2496 pgd_t *pgd;
e80d3909 2497 unsigned long start = addr, next;
57250a5b 2498 unsigned long end = addr + size;
e80d3909 2499 pgtbl_mod_mask mask = 0;
be1db475 2500 int err = 0;
aee16b3c 2501
9cb65bc3
MP
2502 if (WARN_ON(addr >= end))
2503 return -EINVAL;
2504
aee16b3c
JF
2505 pgd = pgd_offset(mm, addr);
2506 do {
2507 next = pgd_addr_end(addr, end);
be1db475
DA
2508 if (!create && pgd_none_or_clear_bad(pgd))
2509 continue;
e80d3909 2510 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
aee16b3c
JF
2511 if (err)
2512 break;
2513 } while (pgd++, addr = next, addr != end);
57250a5b 2514
e80d3909
JR
2515 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2516 arch_sync_kernel_mappings(start, start + size);
2517
aee16b3c
JF
2518 return err;
2519}
be1db475
DA
2520
2521/*
2522 * Scan a region of virtual memory, filling in page tables as necessary
2523 * and calling a provided function on each leaf page table.
2524 */
2525int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2526 unsigned long size, pte_fn_t fn, void *data)
2527{
2528 return __apply_to_page_range(mm, addr, size, fn, data, true);
2529}
aee16b3c
JF
2530EXPORT_SYMBOL_GPL(apply_to_page_range);
2531
be1db475
DA
2532/*
2533 * Scan a region of virtual memory, calling a provided function on
2534 * each leaf page table where it exists.
2535 *
2536 * Unlike apply_to_page_range, this does _not_ fill in page tables
2537 * where they are absent.
2538 */
2539int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2540 unsigned long size, pte_fn_t fn, void *data)
2541{
2542 return __apply_to_page_range(mm, addr, size, fn, data, false);
2543}
2544EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2545
8f4e2101 2546/*
9b4bdd2f
KS
2547 * handle_pte_fault chooses page fault handler according to an entry which was
2548 * read non-atomically. Before making any commitment, on those architectures
2549 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2550 * parts, do_swap_page must check under lock before unmapping the pte and
2551 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2552 * and do_anonymous_page can safely check later on).
8f4e2101 2553 */
4c21e2f2 2554static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2555 pte_t *page_table, pte_t orig_pte)
2556{
2557 int same = 1;
923717cb 2558#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2559 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2560 spinlock_t *ptl = pte_lockptr(mm, pmd);
2561 spin_lock(ptl);
8f4e2101 2562 same = pte_same(*page_table, orig_pte);
4c21e2f2 2563 spin_unlock(ptl);
8f4e2101
HD
2564 }
2565#endif
2566 pte_unmap(page_table);
2567 return same;
2568}
2569
83d116c5
JH
2570static inline bool cow_user_page(struct page *dst, struct page *src,
2571 struct vm_fault *vmf)
6aab341e 2572{
83d116c5
JH
2573 bool ret;
2574 void *kaddr;
2575 void __user *uaddr;
c3e5ea6e 2576 bool locked = false;
83d116c5
JH
2577 struct vm_area_struct *vma = vmf->vma;
2578 struct mm_struct *mm = vma->vm_mm;
2579 unsigned long addr = vmf->address;
2580
83d116c5
JH
2581 if (likely(src)) {
2582 copy_user_highpage(dst, src, addr, vma);
2583 return true;
2584 }
2585
6aab341e
LT
2586 /*
2587 * If the source page was a PFN mapping, we don't have
2588 * a "struct page" for it. We do a best-effort copy by
2589 * just copying from the original user address. If that
2590 * fails, we just zero-fill it. Live with it.
2591 */
83d116c5
JH
2592 kaddr = kmap_atomic(dst);
2593 uaddr = (void __user *)(addr & PAGE_MASK);
2594
2595 /*
2596 * On architectures with software "accessed" bits, we would
2597 * take a double page fault, so mark it accessed here.
2598 */
c3e5ea6e 2599 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2600 pte_t entry;
5d2a2dbb 2601
83d116c5 2602 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2603 locked = true;
83d116c5
JH
2604 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2605 /*
2606 * Other thread has already handled the fault
7df67697 2607 * and update local tlb only
83d116c5 2608 */
7df67697 2609 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2610 ret = false;
2611 goto pte_unlock;
2612 }
2613
2614 entry = pte_mkyoung(vmf->orig_pte);
2615 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2616 update_mmu_cache(vma, addr, vmf->pte);
2617 }
2618
2619 /*
2620 * This really shouldn't fail, because the page is there
2621 * in the page tables. But it might just be unreadable,
2622 * in which case we just give up and fill the result with
2623 * zeroes.
2624 */
2625 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2626 if (locked)
2627 goto warn;
2628
2629 /* Re-validate under PTL if the page is still mapped */
2630 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2631 locked = true;
2632 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2633 /* The PTE changed under us, update local tlb */
2634 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2635 ret = false;
2636 goto pte_unlock;
2637 }
2638
5d2a2dbb 2639 /*
985ba004 2640 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2641 * Try to copy again under PTL.
5d2a2dbb 2642 */
c3e5ea6e
KS
2643 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2644 /*
2645 * Give a warn in case there can be some obscure
2646 * use-case
2647 */
2648warn:
2649 WARN_ON_ONCE(1);
2650 clear_page(kaddr);
2651 }
83d116c5
JH
2652 }
2653
2654 ret = true;
2655
2656pte_unlock:
c3e5ea6e 2657 if (locked)
83d116c5
JH
2658 pte_unmap_unlock(vmf->pte, vmf->ptl);
2659 kunmap_atomic(kaddr);
2660 flush_dcache_page(dst);
2661
2662 return ret;
6aab341e
LT
2663}
2664
c20cd45e
MH
2665static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2666{
2667 struct file *vm_file = vma->vm_file;
2668
2669 if (vm_file)
2670 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2671
2672 /*
2673 * Special mappings (e.g. VDSO) do not have any file so fake
2674 * a default GFP_KERNEL for them.
2675 */
2676 return GFP_KERNEL;
2677}
2678
fb09a464
KS
2679/*
2680 * Notify the address space that the page is about to become writable so that
2681 * it can prohibit this or wait for the page to get into an appropriate state.
2682 *
2683 * We do this without the lock held, so that it can sleep if it needs to.
2684 */
2b740303 2685static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2686{
2b740303 2687 vm_fault_t ret;
38b8cb7f
JK
2688 struct page *page = vmf->page;
2689 unsigned int old_flags = vmf->flags;
fb09a464 2690
38b8cb7f 2691 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2692
dc617f29
DW
2693 if (vmf->vma->vm_file &&
2694 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2695 return VM_FAULT_SIGBUS;
2696
11bac800 2697 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2698 /* Restore original flags so that caller is not surprised */
2699 vmf->flags = old_flags;
fb09a464
KS
2700 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2701 return ret;
2702 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2703 lock_page(page);
2704 if (!page->mapping) {
2705 unlock_page(page);
2706 return 0; /* retry */
2707 }
2708 ret |= VM_FAULT_LOCKED;
2709 } else
2710 VM_BUG_ON_PAGE(!PageLocked(page), page);
2711 return ret;
2712}
2713
97ba0c2b
JK
2714/*
2715 * Handle dirtying of a page in shared file mapping on a write fault.
2716 *
2717 * The function expects the page to be locked and unlocks it.
2718 */
89b15332 2719static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2720{
89b15332 2721 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2722 struct address_space *mapping;
89b15332 2723 struct page *page = vmf->page;
97ba0c2b
JK
2724 bool dirtied;
2725 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2726
2727 dirtied = set_page_dirty(page);
2728 VM_BUG_ON_PAGE(PageAnon(page), page);
2729 /*
2730 * Take a local copy of the address_space - page.mapping may be zeroed
2731 * by truncate after unlock_page(). The address_space itself remains
2732 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2733 * release semantics to prevent the compiler from undoing this copying.
2734 */
2735 mapping = page_rmapping(page);
2736 unlock_page(page);
2737
89b15332
JW
2738 if (!page_mkwrite)
2739 file_update_time(vma->vm_file);
2740
2741 /*
2742 * Throttle page dirtying rate down to writeback speed.
2743 *
2744 * mapping may be NULL here because some device drivers do not
2745 * set page.mapping but still dirty their pages
2746 *
c1e8d7c6 2747 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2748 * is pinning the mapping, as per above.
2749 */
97ba0c2b 2750 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2751 struct file *fpin;
2752
2753 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2754 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2755 if (fpin) {
2756 fput(fpin);
2757 return VM_FAULT_RETRY;
2758 }
97ba0c2b
JK
2759 }
2760
89b15332 2761 return 0;
97ba0c2b
JK
2762}
2763
4e047f89
SR
2764/*
2765 * Handle write page faults for pages that can be reused in the current vma
2766 *
2767 * This can happen either due to the mapping being with the VM_SHARED flag,
2768 * or due to us being the last reference standing to the page. In either
2769 * case, all we need to do here is to mark the page as writable and update
2770 * any related book-keeping.
2771 */
997dd98d 2772static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2773 __releases(vmf->ptl)
4e047f89 2774{
82b0f8c3 2775 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2776 struct page *page = vmf->page;
4e047f89
SR
2777 pte_t entry;
2778 /*
2779 * Clear the pages cpupid information as the existing
2780 * information potentially belongs to a now completely
2781 * unrelated process.
2782 */
2783 if (page)
2784 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2785
2994302b
JK
2786 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2787 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2788 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2789 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2790 update_mmu_cache(vma, vmf->address, vmf->pte);
2791 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2792 count_vm_event(PGREUSE);
4e047f89
SR
2793}
2794
2f38ab2c
SR
2795/*
2796 * Handle the case of a page which we actually need to copy to a new page.
2797 *
c1e8d7c6 2798 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2799 * without the ptl held.
2800 *
2801 * High level logic flow:
2802 *
2803 * - Allocate a page, copy the content of the old page to the new one.
2804 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2805 * - Take the PTL. If the pte changed, bail out and release the allocated page
2806 * - If the pte is still the way we remember it, update the page table and all
2807 * relevant references. This includes dropping the reference the page-table
2808 * held to the old page, as well as updating the rmap.
2809 * - In any case, unlock the PTL and drop the reference we took to the old page.
2810 */
2b740303 2811static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2812{
82b0f8c3 2813 struct vm_area_struct *vma = vmf->vma;
bae473a4 2814 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2815 struct page *old_page = vmf->page;
2f38ab2c 2816 struct page *new_page = NULL;
2f38ab2c
SR
2817 pte_t entry;
2818 int page_copied = 0;
ac46d4f3 2819 struct mmu_notifier_range range;
2f38ab2c
SR
2820
2821 if (unlikely(anon_vma_prepare(vma)))
2822 goto oom;
2823
2994302b 2824 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2825 new_page = alloc_zeroed_user_highpage_movable(vma,
2826 vmf->address);
2f38ab2c
SR
2827 if (!new_page)
2828 goto oom;
2829 } else {
bae473a4 2830 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2831 vmf->address);
2f38ab2c
SR
2832 if (!new_page)
2833 goto oom;
83d116c5
JH
2834
2835 if (!cow_user_page(new_page, old_page, vmf)) {
2836 /*
2837 * COW failed, if the fault was solved by other,
2838 * it's fine. If not, userspace would re-fault on
2839 * the same address and we will handle the fault
2840 * from the second attempt.
2841 */
2842 put_page(new_page);
2843 if (old_page)
2844 put_page(old_page);
2845 return 0;
2846 }
2f38ab2c 2847 }
2f38ab2c 2848
d9eb1ea2 2849 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2850 goto oom_free_new;
9d82c694 2851 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2852
eb3c24f3
MG
2853 __SetPageUptodate(new_page);
2854
7269f999 2855 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2856 vmf->address & PAGE_MASK,
ac46d4f3
JG
2857 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2858 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2859
2860 /*
2861 * Re-check the pte - we dropped the lock
2862 */
82b0f8c3 2863 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2864 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2865 if (old_page) {
2866 if (!PageAnon(old_page)) {
eca56ff9
JM
2867 dec_mm_counter_fast(mm,
2868 mm_counter_file(old_page));
2f38ab2c
SR
2869 inc_mm_counter_fast(mm, MM_ANONPAGES);
2870 }
2871 } else {
2872 inc_mm_counter_fast(mm, MM_ANONPAGES);
2873 }
2994302b 2874 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 2875 entry = mk_pte(new_page, vma->vm_page_prot);
44bf431b 2876 entry = pte_sw_mkyoung(entry);
2f38ab2c
SR
2877 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2878 /*
2879 * Clear the pte entry and flush it first, before updating the
2880 * pte with the new entry. This will avoid a race condition
2881 * seen in the presence of one thread doing SMC and another
2882 * thread doing COW.
2883 */
82b0f8c3
JK
2884 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2885 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 2886 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
2887 /*
2888 * We call the notify macro here because, when using secondary
2889 * mmu page tables (such as kvm shadow page tables), we want the
2890 * new page to be mapped directly into the secondary page table.
2891 */
82b0f8c3
JK
2892 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2893 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2894 if (old_page) {
2895 /*
2896 * Only after switching the pte to the new page may
2897 * we remove the mapcount here. Otherwise another
2898 * process may come and find the rmap count decremented
2899 * before the pte is switched to the new page, and
2900 * "reuse" the old page writing into it while our pte
2901 * here still points into it and can be read by other
2902 * threads.
2903 *
2904 * The critical issue is to order this
2905 * page_remove_rmap with the ptp_clear_flush above.
2906 * Those stores are ordered by (if nothing else,)
2907 * the barrier present in the atomic_add_negative
2908 * in page_remove_rmap.
2909 *
2910 * Then the TLB flush in ptep_clear_flush ensures that
2911 * no process can access the old page before the
2912 * decremented mapcount is visible. And the old page
2913 * cannot be reused until after the decremented
2914 * mapcount is visible. So transitively, TLBs to
2915 * old page will be flushed before it can be reused.
2916 */
d281ee61 2917 page_remove_rmap(old_page, false);
2f38ab2c
SR
2918 }
2919
2920 /* Free the old page.. */
2921 new_page = old_page;
2922 page_copied = 1;
2923 } else {
7df67697 2924 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2925 }
2926
2927 if (new_page)
09cbfeaf 2928 put_page(new_page);
2f38ab2c 2929
82b0f8c3 2930 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2931 /*
2932 * No need to double call mmu_notifier->invalidate_range() callback as
2933 * the above ptep_clear_flush_notify() did already call it.
2934 */
ac46d4f3 2935 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2936 if (old_page) {
2937 /*
2938 * Don't let another task, with possibly unlocked vma,
2939 * keep the mlocked page.
2940 */
2941 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2942 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2943 if (PageMlocked(old_page))
2944 munlock_vma_page(old_page);
2f38ab2c
SR
2945 unlock_page(old_page);
2946 }
09cbfeaf 2947 put_page(old_page);
2f38ab2c
SR
2948 }
2949 return page_copied ? VM_FAULT_WRITE : 0;
2950oom_free_new:
09cbfeaf 2951 put_page(new_page);
2f38ab2c
SR
2952oom:
2953 if (old_page)
09cbfeaf 2954 put_page(old_page);
2f38ab2c
SR
2955 return VM_FAULT_OOM;
2956}
2957
66a6197c
JK
2958/**
2959 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2960 * writeable once the page is prepared
2961 *
2962 * @vmf: structure describing the fault
2963 *
2964 * This function handles all that is needed to finish a write page fault in a
2965 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2966 * It handles locking of PTE and modifying it.
66a6197c
JK
2967 *
2968 * The function expects the page to be locked or other protection against
2969 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2970 *
2971 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2972 * we acquired PTE lock.
66a6197c 2973 */
2b740303 2974vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2975{
2976 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2977 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2978 &vmf->ptl);
2979 /*
2980 * We might have raced with another page fault while we released the
2981 * pte_offset_map_lock.
2982 */
2983 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 2984 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 2985 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2986 return VM_FAULT_NOPAGE;
66a6197c
JK
2987 }
2988 wp_page_reuse(vmf);
a19e2553 2989 return 0;
66a6197c
JK
2990}
2991
dd906184
BH
2992/*
2993 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2994 * mapping
2995 */
2b740303 2996static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2997{
82b0f8c3 2998 struct vm_area_struct *vma = vmf->vma;
bae473a4 2999
dd906184 3000 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3001 vm_fault_t ret;
dd906184 3002
82b0f8c3 3003 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3004 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3005 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3006 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3007 return ret;
66a6197c 3008 return finish_mkwrite_fault(vmf);
dd906184 3009 }
997dd98d
JK
3010 wp_page_reuse(vmf);
3011 return VM_FAULT_WRITE;
dd906184
BH
3012}
3013
2b740303 3014static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3015 __releases(vmf->ptl)
93e478d4 3016{
82b0f8c3 3017 struct vm_area_struct *vma = vmf->vma;
89b15332 3018 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3019
a41b70d6 3020 get_page(vmf->page);
93e478d4 3021
93e478d4 3022 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3023 vm_fault_t tmp;
93e478d4 3024
82b0f8c3 3025 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3026 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3027 if (unlikely(!tmp || (tmp &
3028 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3029 put_page(vmf->page);
93e478d4
SR
3030 return tmp;
3031 }
66a6197c 3032 tmp = finish_mkwrite_fault(vmf);
a19e2553 3033 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3034 unlock_page(vmf->page);
a41b70d6 3035 put_page(vmf->page);
66a6197c 3036 return tmp;
93e478d4 3037 }
66a6197c
JK
3038 } else {
3039 wp_page_reuse(vmf);
997dd98d 3040 lock_page(vmf->page);
93e478d4 3041 }
89b15332 3042 ret |= fault_dirty_shared_page(vmf);
997dd98d 3043 put_page(vmf->page);
93e478d4 3044
89b15332 3045 return ret;
93e478d4
SR
3046}
3047
1da177e4
LT
3048/*
3049 * This routine handles present pages, when users try to write
3050 * to a shared page. It is done by copying the page to a new address
3051 * and decrementing the shared-page counter for the old page.
3052 *
1da177e4
LT
3053 * Note that this routine assumes that the protection checks have been
3054 * done by the caller (the low-level page fault routine in most cases).
3055 * Thus we can safely just mark it writable once we've done any necessary
3056 * COW.
3057 *
3058 * We also mark the page dirty at this point even though the page will
3059 * change only once the write actually happens. This avoids a few races,
3060 * and potentially makes it more efficient.
3061 *
c1e8d7c6 3062 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3063 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3064 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3065 */
2b740303 3066static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3067 __releases(vmf->ptl)
1da177e4 3068{
82b0f8c3 3069 struct vm_area_struct *vma = vmf->vma;
1da177e4 3070
292924b2 3071 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3072 pte_unmap_unlock(vmf->pte, vmf->ptl);
3073 return handle_userfault(vmf, VM_UFFD_WP);
3074 }
3075
a41b70d6
JK
3076 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3077 if (!vmf->page) {
251b97f5 3078 /*
64e45507
PF
3079 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3080 * VM_PFNMAP VMA.
251b97f5
PZ
3081 *
3082 * We should not cow pages in a shared writeable mapping.
dd906184 3083 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3084 */
3085 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3086 (VM_WRITE|VM_SHARED))
2994302b 3087 return wp_pfn_shared(vmf);
2f38ab2c 3088
82b0f8c3 3089 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3090 return wp_page_copy(vmf);
251b97f5 3091 }
1da177e4 3092
d08b3851 3093 /*
ee6a6457
PZ
3094 * Take out anonymous pages first, anonymous shared vmas are
3095 * not dirty accountable.
d08b3851 3096 */
52d1e606 3097 if (PageAnon(vmf->page)) {
09854ba9
LT
3098 struct page *page = vmf->page;
3099
3100 /* PageKsm() doesn't necessarily raise the page refcount */
3101 if (PageKsm(page) || page_count(page) != 1)
3102 goto copy;
3103 if (!trylock_page(page))
3104 goto copy;
3105 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3106 unlock_page(page);
52d1e606 3107 goto copy;
b009c024 3108 }
09854ba9
LT
3109 /*
3110 * Ok, we've got the only map reference, and the only
3111 * page count reference, and the page is locked,
3112 * it's dark out, and we're wearing sunglasses. Hit it.
3113 */
09854ba9 3114 unlock_page(page);
be068f29 3115 wp_page_reuse(vmf);
09854ba9 3116 return VM_FAULT_WRITE;
ee6a6457 3117 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3118 (VM_WRITE|VM_SHARED))) {
a41b70d6 3119 return wp_page_shared(vmf);
1da177e4 3120 }
52d1e606 3121copy:
1da177e4
LT
3122 /*
3123 * Ok, we need to copy. Oh, well..
3124 */
a41b70d6 3125 get_page(vmf->page);
28766805 3126
82b0f8c3 3127 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3128 return wp_page_copy(vmf);
1da177e4
LT
3129}
3130
97a89413 3131static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3132 unsigned long start_addr, unsigned long end_addr,
3133 struct zap_details *details)
3134{
f5cc4eef 3135 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3136}
3137
f808c13f 3138static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
3139 struct zap_details *details)
3140{
3141 struct vm_area_struct *vma;
1da177e4
LT
3142 pgoff_t vba, vea, zba, zea;
3143
6b2dbba8 3144 vma_interval_tree_foreach(vma, root,
1da177e4 3145 details->first_index, details->last_index) {
1da177e4
LT
3146
3147 vba = vma->vm_pgoff;
d6e93217 3148 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3149 zba = details->first_index;
3150 if (zba < vba)
3151 zba = vba;
3152 zea = details->last_index;
3153 if (zea > vea)
3154 zea = vea;
3155
97a89413 3156 unmap_mapping_range_vma(vma,
1da177e4
LT
3157 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3158 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3159 details);
1da177e4
LT
3160 }
3161}
3162
977fbdcd
MW
3163/**
3164 * unmap_mapping_pages() - Unmap pages from processes.
3165 * @mapping: The address space containing pages to be unmapped.
3166 * @start: Index of first page to be unmapped.
3167 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3168 * @even_cows: Whether to unmap even private COWed pages.
3169 *
3170 * Unmap the pages in this address space from any userspace process which
3171 * has them mmaped. Generally, you want to remove COWed pages as well when
3172 * a file is being truncated, but not when invalidating pages from the page
3173 * cache.
3174 */
3175void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3176 pgoff_t nr, bool even_cows)
3177{
3178 struct zap_details details = { };
3179
3180 details.check_mapping = even_cows ? NULL : mapping;
3181 details.first_index = start;
3182 details.last_index = start + nr - 1;
3183 if (details.last_index < details.first_index)
3184 details.last_index = ULONG_MAX;
3185
3186 i_mmap_lock_write(mapping);
3187 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3188 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3189 i_mmap_unlock_write(mapping);
3190}
3191
1da177e4 3192/**
8a5f14a2 3193 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3194 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3195 * file.
3196 *
3d41088f 3197 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3198 * @holebegin: byte in first page to unmap, relative to the start of
3199 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3200 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3201 * must keep the partial page. In contrast, we must get rid of
3202 * partial pages.
3203 * @holelen: size of prospective hole in bytes. This will be rounded
3204 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3205 * end of the file.
3206 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3207 * but 0 when invalidating pagecache, don't throw away private data.
3208 */
3209void unmap_mapping_range(struct address_space *mapping,
3210 loff_t const holebegin, loff_t const holelen, int even_cows)
3211{
1da177e4
LT
3212 pgoff_t hba = holebegin >> PAGE_SHIFT;
3213 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3214
3215 /* Check for overflow. */
3216 if (sizeof(holelen) > sizeof(hlen)) {
3217 long long holeend =
3218 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3219 if (holeend & ~(long long)ULONG_MAX)
3220 hlen = ULONG_MAX - hba + 1;
3221 }
3222
977fbdcd 3223 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3224}
3225EXPORT_SYMBOL(unmap_mapping_range);
3226
1da177e4 3227/*
c1e8d7c6 3228 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3229 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3230 * We return with pte unmapped and unlocked.
3231 *
c1e8d7c6 3232 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3233 * as does filemap_fault().
1da177e4 3234 */
2b740303 3235vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3236{
82b0f8c3 3237 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3238 struct page *page = NULL, *swapcache;
65500d23 3239 swp_entry_t entry;
1da177e4 3240 pte_t pte;
d065bd81 3241 int locked;
ad8c2ee8 3242 int exclusive = 0;
2b740303 3243 vm_fault_t ret = 0;
aae466b0 3244 void *shadow = NULL;
1da177e4 3245
eaf649eb 3246 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3247 goto out;
65500d23 3248
2994302b 3249 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3250 if (unlikely(non_swap_entry(entry))) {
3251 if (is_migration_entry(entry)) {
82b0f8c3
JK
3252 migration_entry_wait(vma->vm_mm, vmf->pmd,
3253 vmf->address);
5042db43 3254 } else if (is_device_private_entry(entry)) {
897e6365
CH
3255 vmf->page = device_private_entry_to_page(entry);
3256 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3257 } else if (is_hwpoison_entry(entry)) {
3258 ret = VM_FAULT_HWPOISON;
3259 } else {
2994302b 3260 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3261 ret = VM_FAULT_SIGBUS;
d1737fdb 3262 }
0697212a
CL
3263 goto out;
3264 }
0bcac06f
MK
3265
3266
0ff92245 3267 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3268 page = lookup_swap_cache(entry, vma, vmf->address);
3269 swapcache = page;
f8020772 3270
1da177e4 3271 if (!page) {
0bcac06f
MK
3272 struct swap_info_struct *si = swp_swap_info(entry);
3273
a449bf58
QC
3274 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3275 __swap_count(entry) == 1) {
0bcac06f 3276 /* skip swapcache */
e9e9b7ec
MK
3277 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3278 vmf->address);
0bcac06f 3279 if (page) {
4c6355b2
JW
3280 int err;
3281
0bcac06f
MK
3282 __SetPageLocked(page);
3283 __SetPageSwapBacked(page);
3284 set_page_private(page, entry.val);
4c6355b2
JW
3285
3286 /* Tell memcg to use swap ownership records */
3287 SetPageSwapCache(page);
3288 err = mem_cgroup_charge(page, vma->vm_mm,
d9eb1ea2 3289 GFP_KERNEL);
4c6355b2 3290 ClearPageSwapCache(page);
545b1b07
MH
3291 if (err) {
3292 ret = VM_FAULT_OOM;
4c6355b2 3293 goto out_page;
545b1b07 3294 }
4c6355b2 3295
aae466b0
JK
3296 shadow = get_shadow_from_swap_cache(entry);
3297 if (shadow)
3298 workingset_refault(page, shadow);
0076f029 3299
6058eaec 3300 lru_cache_add(page);
0bcac06f
MK
3301 swap_readpage(page, true);
3302 }
aa8d22a1 3303 } else {
e9e9b7ec
MK
3304 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3305 vmf);
aa8d22a1 3306 swapcache = page;
0bcac06f
MK
3307 }
3308
1da177e4
LT
3309 if (!page) {
3310 /*
8f4e2101
HD
3311 * Back out if somebody else faulted in this pte
3312 * while we released the pte lock.
1da177e4 3313 */
82b0f8c3
JK
3314 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3315 vmf->address, &vmf->ptl);
2994302b 3316 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3317 ret = VM_FAULT_OOM;
0ff92245 3318 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3319 goto unlock;
1da177e4
LT
3320 }
3321
3322 /* Had to read the page from swap area: Major fault */
3323 ret = VM_FAULT_MAJOR;
f8891e5e 3324 count_vm_event(PGMAJFAULT);
2262185c 3325 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3326 } else if (PageHWPoison(page)) {
71f72525
WF
3327 /*
3328 * hwpoisoned dirty swapcache pages are kept for killing
3329 * owner processes (which may be unknown at hwpoison time)
3330 */
d1737fdb
AK
3331 ret = VM_FAULT_HWPOISON;
3332 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3333 goto out_release;
1da177e4
LT
3334 }
3335
82b0f8c3 3336 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3337
073e587e 3338 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3339 if (!locked) {
3340 ret |= VM_FAULT_RETRY;
3341 goto out_release;
3342 }
073e587e 3343
4969c119 3344 /*
31c4a3d3
HD
3345 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3346 * release the swapcache from under us. The page pin, and pte_same
3347 * test below, are not enough to exclude that. Even if it is still
3348 * swapcache, we need to check that the page's swap has not changed.
4969c119 3349 */
0bcac06f
MK
3350 if (unlikely((!PageSwapCache(page) ||
3351 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3352 goto out_page;
3353
82b0f8c3 3354 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3355 if (unlikely(!page)) {
3356 ret = VM_FAULT_OOM;
3357 page = swapcache;
cbf86cfe 3358 goto out_page;
5ad64688
HD
3359 }
3360
9d82c694 3361 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3362
1da177e4 3363 /*
8f4e2101 3364 * Back out if somebody else already faulted in this pte.
1da177e4 3365 */
82b0f8c3
JK
3366 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3367 &vmf->ptl);
2994302b 3368 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3369 goto out_nomap;
b8107480
KK
3370
3371 if (unlikely(!PageUptodate(page))) {
3372 ret = VM_FAULT_SIGBUS;
3373 goto out_nomap;
1da177e4
LT
3374 }
3375
8c7c6e34
KH
3376 /*
3377 * The page isn't present yet, go ahead with the fault.
3378 *
3379 * Be careful about the sequence of operations here.
3380 * To get its accounting right, reuse_swap_page() must be called
3381 * while the page is counted on swap but not yet in mapcount i.e.
3382 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3383 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3384 */
1da177e4 3385
bae473a4
KS
3386 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3387 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3388 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3389 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3390 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3391 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3392 ret |= VM_FAULT_WRITE;
d281ee61 3393 exclusive = RMAP_EXCLUSIVE;
1da177e4 3394 }
1da177e4 3395 flush_icache_page(vma, page);
2994302b 3396 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3397 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3398 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3399 pte = pte_mkuffd_wp(pte);
3400 pte = pte_wrprotect(pte);
3401 }
82b0f8c3 3402 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3403 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3404 vmf->orig_pte = pte;
0bcac06f
MK
3405
3406 /* ksm created a completely new copy */
3407 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3408 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3409 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3410 } else {
3411 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3412 }
1da177e4 3413
c475a8ab 3414 swap_free(entry);
5ccc5aba
VD
3415 if (mem_cgroup_swap_full(page) ||
3416 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3417 try_to_free_swap(page);
c475a8ab 3418 unlock_page(page);
0bcac06f 3419 if (page != swapcache && swapcache) {
4969c119
AA
3420 /*
3421 * Hold the lock to avoid the swap entry to be reused
3422 * until we take the PT lock for the pte_same() check
3423 * (to avoid false positives from pte_same). For
3424 * further safety release the lock after the swap_free
3425 * so that the swap count won't change under a
3426 * parallel locked swapcache.
3427 */
3428 unlock_page(swapcache);
09cbfeaf 3429 put_page(swapcache);
4969c119 3430 }
c475a8ab 3431
82b0f8c3 3432 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3433 ret |= do_wp_page(vmf);
61469f1d
HD
3434 if (ret & VM_FAULT_ERROR)
3435 ret &= VM_FAULT_ERROR;
1da177e4
LT
3436 goto out;
3437 }
3438
3439 /* No need to invalidate - it was non-present before */
82b0f8c3 3440 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3441unlock:
82b0f8c3 3442 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3443out:
3444 return ret;
b8107480 3445out_nomap:
82b0f8c3 3446 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3447out_page:
b8107480 3448 unlock_page(page);
4779cb31 3449out_release:
09cbfeaf 3450 put_page(page);
0bcac06f 3451 if (page != swapcache && swapcache) {
4969c119 3452 unlock_page(swapcache);
09cbfeaf 3453 put_page(swapcache);
4969c119 3454 }
65500d23 3455 return ret;
1da177e4
LT
3456}
3457
3458/*
c1e8d7c6 3459 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3460 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3461 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3462 */
2b740303 3463static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3464{
82b0f8c3 3465 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3466 struct page *page;
2b740303 3467 vm_fault_t ret = 0;
1da177e4 3468 pte_t entry;
1da177e4 3469
6b7339f4
KS
3470 /* File mapping without ->vm_ops ? */
3471 if (vma->vm_flags & VM_SHARED)
3472 return VM_FAULT_SIGBUS;
3473
7267ec00
KS
3474 /*
3475 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3476 * pte_offset_map() on pmds where a huge pmd might be created
3477 * from a different thread.
3478 *
3e4e28c5 3479 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3480 * parallel threads are excluded by other means.
3481 *
3e4e28c5 3482 * Here we only have mmap_read_lock(mm).
7267ec00 3483 */
4cf58924 3484 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3485 return VM_FAULT_OOM;
3486
3487 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3488 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3489 return 0;
3490
11ac5524 3491 /* Use the zero-page for reads */
82b0f8c3 3492 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3493 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3494 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3495 vma->vm_page_prot));
82b0f8c3
JK
3496 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3497 vmf->address, &vmf->ptl);
7df67697
BM
3498 if (!pte_none(*vmf->pte)) {
3499 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3500 goto unlock;
7df67697 3501 }
6b31d595
MH
3502 ret = check_stable_address_space(vma->vm_mm);
3503 if (ret)
3504 goto unlock;
6b251fc9
AA
3505 /* Deliver the page fault to userland, check inside PT lock */
3506 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3507 pte_unmap_unlock(vmf->pte, vmf->ptl);
3508 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3509 }
a13ea5b7
HD
3510 goto setpte;
3511 }
3512
557ed1fa 3513 /* Allocate our own private page. */
557ed1fa
NP
3514 if (unlikely(anon_vma_prepare(vma)))
3515 goto oom;
82b0f8c3 3516 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3517 if (!page)
3518 goto oom;
eb3c24f3 3519
d9eb1ea2 3520 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3521 goto oom_free_page;
9d82c694 3522 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3523
52f37629
MK
3524 /*
3525 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3526 * preceding stores to the page contents become visible before
52f37629
MK
3527 * the set_pte_at() write.
3528 */
0ed361de 3529 __SetPageUptodate(page);
8f4e2101 3530
557ed1fa 3531 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3532 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3533 if (vma->vm_flags & VM_WRITE)
3534 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3535
82b0f8c3
JK
3536 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3537 &vmf->ptl);
7df67697
BM
3538 if (!pte_none(*vmf->pte)) {
3539 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3540 goto release;
7df67697 3541 }
9ba69294 3542
6b31d595
MH
3543 ret = check_stable_address_space(vma->vm_mm);
3544 if (ret)
3545 goto release;
3546
6b251fc9
AA
3547 /* Deliver the page fault to userland, check inside PT lock */
3548 if (userfaultfd_missing(vma)) {
82b0f8c3 3549 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3550 put_page(page);
82b0f8c3 3551 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3552 }
3553
bae473a4 3554 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3555 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3556 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3557setpte:
82b0f8c3 3558 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3559
3560 /* No need to invalidate - it was non-present before */
82b0f8c3 3561 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3562unlock:
82b0f8c3 3563 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3564 return ret;
8f4e2101 3565release:
09cbfeaf 3566 put_page(page);
8f4e2101 3567 goto unlock;
8a9f3ccd 3568oom_free_page:
09cbfeaf 3569 put_page(page);
65500d23 3570oom:
1da177e4
LT
3571 return VM_FAULT_OOM;
3572}
3573
9a95f3cf 3574/*
c1e8d7c6 3575 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3576 * released depending on flags and vma->vm_ops->fault() return value.
3577 * See filemap_fault() and __lock_page_retry().
3578 */
2b740303 3579static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3580{
82b0f8c3 3581 struct vm_area_struct *vma = vmf->vma;
2b740303 3582 vm_fault_t ret;
7eae74af 3583
63f3655f
MH
3584 /*
3585 * Preallocate pte before we take page_lock because this might lead to
3586 * deadlocks for memcg reclaim which waits for pages under writeback:
3587 * lock_page(A)
3588 * SetPageWriteback(A)
3589 * unlock_page(A)
3590 * lock_page(B)
3591 * lock_page(B)
3592 * pte_alloc_pne
3593 * shrink_page_list
3594 * wait_on_page_writeback(A)
3595 * SetPageWriteback(B)
3596 * unlock_page(B)
3597 * # flush A, B to clear the writeback
3598 */
3599 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3600 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3601 if (!vmf->prealloc_pte)
3602 return VM_FAULT_OOM;
3603 smp_wmb(); /* See comment in __pte_alloc() */
3604 }
3605
11bac800 3606 ret = vma->vm_ops->fault(vmf);
3917048d 3607 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3608 VM_FAULT_DONE_COW)))
bc2466e4 3609 return ret;
7eae74af 3610
667240e0 3611 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3612 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3613 unlock_page(vmf->page);
3614 put_page(vmf->page);
936ca80d 3615 vmf->page = NULL;
7eae74af
KS
3616 return VM_FAULT_HWPOISON;
3617 }
3618
3619 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3620 lock_page(vmf->page);
7eae74af 3621 else
667240e0 3622 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3623
7eae74af
KS
3624 return ret;
3625}
3626
d0f0931d
RZ
3627/*
3628 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3629 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3630 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3631 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3632 */
3633static int pmd_devmap_trans_unstable(pmd_t *pmd)
3634{
3635 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3636}
3637
2b740303 3638static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3639{
82b0f8c3 3640 struct vm_area_struct *vma = vmf->vma;
7267ec00 3641
82b0f8c3 3642 if (!pmd_none(*vmf->pmd))
7267ec00 3643 goto map_pte;
82b0f8c3
JK
3644 if (vmf->prealloc_pte) {
3645 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3646 if (unlikely(!pmd_none(*vmf->pmd))) {
3647 spin_unlock(vmf->ptl);
7267ec00
KS
3648 goto map_pte;
3649 }
3650
c4812909 3651 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3652 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3653 spin_unlock(vmf->ptl);
7f2b6ce8 3654 vmf->prealloc_pte = NULL;
4cf58924 3655 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3656 return VM_FAULT_OOM;
3657 }
3658map_pte:
3659 /*
3660 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3661 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3662 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3663 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3664 * running immediately after a huge pmd fault in a different thread of
3665 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3666 * All we have to ensure is that it is a regular pmd that we can walk
3667 * with pte_offset_map() and we can do that through an atomic read in
3668 * C, which is what pmd_trans_unstable() provides.
7267ec00 3669 */
d0f0931d 3670 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3671 return VM_FAULT_NOPAGE;
3672
d0f0931d
RZ
3673 /*
3674 * At this point we know that our vmf->pmd points to a page of ptes
3675 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3676 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3677 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3678 * be valid and we will re-check to make sure the vmf->pte isn't
3679 * pte_none() under vmf->ptl protection when we return to
3680 * alloc_set_pte().
3681 */
82b0f8c3
JK
3682 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3683 &vmf->ptl);
7267ec00
KS
3684 return 0;
3685}
3686
396bcc52 3687#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3688static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3689{
82b0f8c3 3690 struct vm_area_struct *vma = vmf->vma;
953c66c2 3691
82b0f8c3 3692 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3693 /*
3694 * We are going to consume the prealloc table,
3695 * count that as nr_ptes.
3696 */
c4812909 3697 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3698 vmf->prealloc_pte = NULL;
953c66c2
AK
3699}
3700
2b740303 3701static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3702{
82b0f8c3
JK
3703 struct vm_area_struct *vma = vmf->vma;
3704 bool write = vmf->flags & FAULT_FLAG_WRITE;
3705 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3706 pmd_t entry;
2b740303
SJ
3707 int i;
3708 vm_fault_t ret;
10102459
KS
3709
3710 if (!transhuge_vma_suitable(vma, haddr))
3711 return VM_FAULT_FALLBACK;
3712
3713 ret = VM_FAULT_FALLBACK;
3714 page = compound_head(page);
3715
953c66c2
AK
3716 /*
3717 * Archs like ppc64 need additonal space to store information
3718 * related to pte entry. Use the preallocated table for that.
3719 */
82b0f8c3 3720 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3721 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3722 if (!vmf->prealloc_pte)
953c66c2
AK
3723 return VM_FAULT_OOM;
3724 smp_wmb(); /* See comment in __pte_alloc() */
3725 }
3726
82b0f8c3
JK
3727 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3728 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3729 goto out;
3730
3731 for (i = 0; i < HPAGE_PMD_NR; i++)
3732 flush_icache_page(vma, page + i);
3733
3734 entry = mk_huge_pmd(page, vma->vm_page_prot);
3735 if (write)
f55e1014 3736 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3737
fadae295 3738 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3739 page_add_file_rmap(page, true);
953c66c2
AK
3740 /*
3741 * deposit and withdraw with pmd lock held
3742 */
3743 if (arch_needs_pgtable_deposit())
82b0f8c3 3744 deposit_prealloc_pte(vmf);
10102459 3745
82b0f8c3 3746 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3747
82b0f8c3 3748 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3749
3750 /* fault is handled */
3751 ret = 0;
95ecedcd 3752 count_vm_event(THP_FILE_MAPPED);
10102459 3753out:
82b0f8c3 3754 spin_unlock(vmf->ptl);
10102459
KS
3755 return ret;
3756}
3757#else
2b740303 3758static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3759{
3760 BUILD_BUG();
3761 return 0;
3762}
3763#endif
3764
8c6e50b0 3765/**
7267ec00
KS
3766 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3767 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3768 *
82b0f8c3 3769 * @vmf: fault environment
8c6e50b0 3770 * @page: page to map
8c6e50b0 3771 *
82b0f8c3
JK
3772 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3773 * return.
8c6e50b0
KS
3774 *
3775 * Target users are page handler itself and implementations of
3776 * vm_ops->map_pages.
a862f68a
MR
3777 *
3778 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3779 */
9d82c694 3780vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3bb97794 3781{
82b0f8c3
JK
3782 struct vm_area_struct *vma = vmf->vma;
3783 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3784 pte_t entry;
2b740303 3785 vm_fault_t ret;
10102459 3786
396bcc52 3787 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
82b0f8c3 3788 ret = do_set_pmd(vmf, page);
10102459 3789 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3790 return ret;
10102459 3791 }
3bb97794 3792
82b0f8c3
JK
3793 if (!vmf->pte) {
3794 ret = pte_alloc_one_map(vmf);
7267ec00 3795 if (ret)
b0b9b3df 3796 return ret;
7267ec00
KS
3797 }
3798
3799 /* Re-check under ptl */
7df67697
BM
3800 if (unlikely(!pte_none(*vmf->pte))) {
3801 update_mmu_tlb(vma, vmf->address, vmf->pte);
b0b9b3df 3802 return VM_FAULT_NOPAGE;
7df67697 3803 }
7267ec00 3804
3bb97794
KS
3805 flush_icache_page(vma, page);
3806 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3807 entry = pte_sw_mkyoung(entry);
3bb97794
KS
3808 if (write)
3809 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3810 /* copy-on-write page */
3811 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3812 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3813 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3814 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3815 } else {
eca56ff9 3816 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3817 page_add_file_rmap(page, false);
3bb97794 3818 }
82b0f8c3 3819 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3820
3821 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3822 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3823
b0b9b3df 3824 return 0;
3bb97794
KS
3825}
3826
9118c0cb
JK
3827
3828/**
3829 * finish_fault - finish page fault once we have prepared the page to fault
3830 *
3831 * @vmf: structure describing the fault
3832 *
3833 * This function handles all that is needed to finish a page fault once the
3834 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3835 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3836 * addition.
9118c0cb
JK
3837 *
3838 * The function expects the page to be locked and on success it consumes a
3839 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3840 *
3841 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3842 */
2b740303 3843vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3844{
3845 struct page *page;
2b740303 3846 vm_fault_t ret = 0;
9118c0cb
JK
3847
3848 /* Did we COW the page? */
3849 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3850 !(vmf->vma->vm_flags & VM_SHARED))
3851 page = vmf->cow_page;
3852 else
3853 page = vmf->page;
6b31d595
MH
3854
3855 /*
3856 * check even for read faults because we might have lost our CoWed
3857 * page
3858 */
3859 if (!(vmf->vma->vm_flags & VM_SHARED))
3860 ret = check_stable_address_space(vmf->vma->vm_mm);
3861 if (!ret)
9d82c694 3862 ret = alloc_set_pte(vmf, page);
9118c0cb
JK
3863 if (vmf->pte)
3864 pte_unmap_unlock(vmf->pte, vmf->ptl);
3865 return ret;
3866}
3867
3a91053a
KS
3868static unsigned long fault_around_bytes __read_mostly =
3869 rounddown_pow_of_two(65536);
a9b0f861 3870
a9b0f861
KS
3871#ifdef CONFIG_DEBUG_FS
3872static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3873{
a9b0f861 3874 *val = fault_around_bytes;
1592eef0
KS
3875 return 0;
3876}
3877
b4903d6e 3878/*
da391d64
WK
3879 * fault_around_bytes must be rounded down to the nearest page order as it's
3880 * what do_fault_around() expects to see.
b4903d6e 3881 */
a9b0f861 3882static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3883{
a9b0f861 3884 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3885 return -EINVAL;
b4903d6e
AR
3886 if (val > PAGE_SIZE)
3887 fault_around_bytes = rounddown_pow_of_two(val);
3888 else
3889 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3890 return 0;
3891}
0a1345f8 3892DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3893 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3894
3895static int __init fault_around_debugfs(void)
3896{
d9f7979c
GKH
3897 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3898 &fault_around_bytes_fops);
1592eef0
KS
3899 return 0;
3900}
3901late_initcall(fault_around_debugfs);
1592eef0 3902#endif
8c6e50b0 3903
1fdb412b
KS
3904/*
3905 * do_fault_around() tries to map few pages around the fault address. The hope
3906 * is that the pages will be needed soon and this will lower the number of
3907 * faults to handle.
3908 *
3909 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3910 * not ready to be mapped: not up-to-date, locked, etc.
3911 *
3912 * This function is called with the page table lock taken. In the split ptlock
3913 * case the page table lock only protects only those entries which belong to
3914 * the page table corresponding to the fault address.
3915 *
3916 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3917 * only once.
3918 *
da391d64
WK
3919 * fault_around_bytes defines how many bytes we'll try to map.
3920 * do_fault_around() expects it to be set to a power of two less than or equal
3921 * to PTRS_PER_PTE.
1fdb412b 3922 *
da391d64
WK
3923 * The virtual address of the area that we map is naturally aligned to
3924 * fault_around_bytes rounded down to the machine page size
3925 * (and therefore to page order). This way it's easier to guarantee
3926 * that we don't cross page table boundaries.
1fdb412b 3927 */
2b740303 3928static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3929{
82b0f8c3 3930 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3931 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3932 pgoff_t end_pgoff;
2b740303
SJ
3933 int off;
3934 vm_fault_t ret = 0;
8c6e50b0 3935
4db0c3c2 3936 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3937 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3938
82b0f8c3
JK
3939 vmf->address = max(address & mask, vmf->vma->vm_start);
3940 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3941 start_pgoff -= off;
8c6e50b0
KS
3942
3943 /*
da391d64
WK
3944 * end_pgoff is either the end of the page table, the end of
3945 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3946 */
bae473a4 3947 end_pgoff = start_pgoff -
82b0f8c3 3948 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3949 PTRS_PER_PTE - 1;
82b0f8c3 3950 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3951 start_pgoff + nr_pages - 1);
8c6e50b0 3952
82b0f8c3 3953 if (pmd_none(*vmf->pmd)) {
4cf58924 3954 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3955 if (!vmf->prealloc_pte)
c5f88bd2 3956 goto out;
7267ec00 3957 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3958 }
3959
82b0f8c3 3960 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3961
7267ec00 3962 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3963 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3964 ret = VM_FAULT_NOPAGE;
3965 goto out;
3966 }
3967
3968 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3969 if (!vmf->pte)
7267ec00
KS
3970 goto out;
3971
3972 /* check if the page fault is solved */
82b0f8c3
JK
3973 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3974 if (!pte_none(*vmf->pte))
7267ec00 3975 ret = VM_FAULT_NOPAGE;
82b0f8c3 3976 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3977out:
82b0f8c3
JK
3978 vmf->address = address;
3979 vmf->pte = NULL;
7267ec00 3980 return ret;
8c6e50b0
KS
3981}
3982
2b740303 3983static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3984{
82b0f8c3 3985 struct vm_area_struct *vma = vmf->vma;
2b740303 3986 vm_fault_t ret = 0;
8c6e50b0
KS
3987
3988 /*
3989 * Let's call ->map_pages() first and use ->fault() as fallback
3990 * if page by the offset is not ready to be mapped (cold cache or
3991 * something).
3992 */
9b4bdd2f 3993 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3994 ret = do_fault_around(vmf);
7267ec00
KS
3995 if (ret)
3996 return ret;
8c6e50b0 3997 }
e655fb29 3998
936ca80d 3999 ret = __do_fault(vmf);
e655fb29
KS
4000 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4001 return ret;
4002
9118c0cb 4003 ret |= finish_fault(vmf);
936ca80d 4004 unlock_page(vmf->page);
7267ec00 4005 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4006 put_page(vmf->page);
e655fb29
KS
4007 return ret;
4008}
4009
2b740303 4010static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4011{
82b0f8c3 4012 struct vm_area_struct *vma = vmf->vma;
2b740303 4013 vm_fault_t ret;
ec47c3b9
KS
4014
4015 if (unlikely(anon_vma_prepare(vma)))
4016 return VM_FAULT_OOM;
4017
936ca80d
JK
4018 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4019 if (!vmf->cow_page)
ec47c3b9
KS
4020 return VM_FAULT_OOM;
4021
d9eb1ea2 4022 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 4023 put_page(vmf->cow_page);
ec47c3b9
KS
4024 return VM_FAULT_OOM;
4025 }
9d82c694 4026 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4027
936ca80d 4028 ret = __do_fault(vmf);
ec47c3b9
KS
4029 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4030 goto uncharge_out;
3917048d
JK
4031 if (ret & VM_FAULT_DONE_COW)
4032 return ret;
ec47c3b9 4033
b1aa812b 4034 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4035 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4036
9118c0cb 4037 ret |= finish_fault(vmf);
b1aa812b
JK
4038 unlock_page(vmf->page);
4039 put_page(vmf->page);
7267ec00
KS
4040 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4041 goto uncharge_out;
ec47c3b9
KS
4042 return ret;
4043uncharge_out:
936ca80d 4044 put_page(vmf->cow_page);
ec47c3b9
KS
4045 return ret;
4046}
4047
2b740303 4048static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4049{
82b0f8c3 4050 struct vm_area_struct *vma = vmf->vma;
2b740303 4051 vm_fault_t ret, tmp;
1d65f86d 4052
936ca80d 4053 ret = __do_fault(vmf);
7eae74af 4054 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4055 return ret;
1da177e4
LT
4056
4057 /*
f0c6d4d2
KS
4058 * Check if the backing address space wants to know that the page is
4059 * about to become writable
1da177e4 4060 */
fb09a464 4061 if (vma->vm_ops->page_mkwrite) {
936ca80d 4062 unlock_page(vmf->page);
38b8cb7f 4063 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4064 if (unlikely(!tmp ||
4065 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4066 put_page(vmf->page);
fb09a464 4067 return tmp;
4294621f 4068 }
fb09a464
KS
4069 }
4070
9118c0cb 4071 ret |= finish_fault(vmf);
7267ec00
KS
4072 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4073 VM_FAULT_RETRY))) {
936ca80d
JK
4074 unlock_page(vmf->page);
4075 put_page(vmf->page);
f0c6d4d2 4076 return ret;
1da177e4 4077 }
b827e496 4078
89b15332 4079 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4080 return ret;
54cb8821 4081}
d00806b1 4082
9a95f3cf 4083/*
c1e8d7c6 4084 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4085 * but allow concurrent faults).
c1e8d7c6 4086 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4087 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 4088 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4089 * by other thread calling munmap()).
9a95f3cf 4090 */
2b740303 4091static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4092{
82b0f8c3 4093 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4094 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4095 vm_fault_t ret;
54cb8821 4096
ff09d7ec
AK
4097 /*
4098 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4099 */
4100 if (!vma->vm_ops->fault) {
4101 /*
4102 * If we find a migration pmd entry or a none pmd entry, which
4103 * should never happen, return SIGBUS
4104 */
4105 if (unlikely(!pmd_present(*vmf->pmd)))
4106 ret = VM_FAULT_SIGBUS;
4107 else {
4108 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4109 vmf->pmd,
4110 vmf->address,
4111 &vmf->ptl);
4112 /*
4113 * Make sure this is not a temporary clearing of pte
4114 * by holding ptl and checking again. A R/M/W update
4115 * of pte involves: take ptl, clearing the pte so that
4116 * we don't have concurrent modification by hardware
4117 * followed by an update.
4118 */
4119 if (unlikely(pte_none(*vmf->pte)))
4120 ret = VM_FAULT_SIGBUS;
4121 else
4122 ret = VM_FAULT_NOPAGE;
4123
4124 pte_unmap_unlock(vmf->pte, vmf->ptl);
4125 }
4126 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4127 ret = do_read_fault(vmf);
4128 else if (!(vma->vm_flags & VM_SHARED))
4129 ret = do_cow_fault(vmf);
4130 else
4131 ret = do_shared_fault(vmf);
4132
4133 /* preallocated pagetable is unused: free it */
4134 if (vmf->prealloc_pte) {
fc8efd2d 4135 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4136 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4137 }
4138 return ret;
54cb8821
NP
4139}
4140
b19a9939 4141static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
4142 unsigned long addr, int page_nid,
4143 int *flags)
9532fec1
MG
4144{
4145 get_page(page);
4146
4147 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4148 if (page_nid == numa_node_id()) {
9532fec1 4149 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4150 *flags |= TNF_FAULT_LOCAL;
4151 }
9532fec1
MG
4152
4153 return mpol_misplaced(page, vma, addr);
4154}
4155
2b740303 4156static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4157{
82b0f8c3 4158 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4159 struct page *page = NULL;
98fa15f3 4160 int page_nid = NUMA_NO_NODE;
90572890 4161 int last_cpupid;
cbee9f88 4162 int target_nid;
b8593bfd 4163 bool migrated = false;
04a86453 4164 pte_t pte, old_pte;
288bc549 4165 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4166 int flags = 0;
d10e63f2
MG
4167
4168 /*
166f61b9
TH
4169 * The "pte" at this point cannot be used safely without
4170 * validation through pte_unmap_same(). It's of NUMA type but
4171 * the pfn may be screwed if the read is non atomic.
166f61b9 4172 */
82b0f8c3
JK
4173 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4174 spin_lock(vmf->ptl);
cee216a6 4175 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4176 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4177 goto out;
4178 }
4179
cee216a6
AK
4180 /*
4181 * Make it present again, Depending on how arch implementes non
4182 * accessible ptes, some can allow access by kernel mode.
4183 */
04a86453
AK
4184 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4185 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 4186 pte = pte_mkyoung(pte);
b191f9b1
MG
4187 if (was_writable)
4188 pte = pte_mkwrite(pte);
04a86453 4189 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 4190 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 4191
82b0f8c3 4192 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 4193 if (!page) {
82b0f8c3 4194 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
4195 return 0;
4196 }
4197
e81c4802
KS
4198 /* TODO: handle PTE-mapped THP */
4199 if (PageCompound(page)) {
82b0f8c3 4200 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
4201 return 0;
4202 }
4203
6688cc05 4204 /*
bea66fbd
MG
4205 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4206 * much anyway since they can be in shared cache state. This misses
4207 * the case where a mapping is writable but the process never writes
4208 * to it but pte_write gets cleared during protection updates and
4209 * pte_dirty has unpredictable behaviour between PTE scan updates,
4210 * background writeback, dirty balancing and application behaviour.
6688cc05 4211 */
d59dc7bc 4212 if (!pte_write(pte))
6688cc05
PZ
4213 flags |= TNF_NO_GROUP;
4214
dabe1d99
RR
4215 /*
4216 * Flag if the page is shared between multiple address spaces. This
4217 * is later used when determining whether to group tasks together
4218 */
4219 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4220 flags |= TNF_SHARED;
4221
90572890 4222 last_cpupid = page_cpupid_last(page);
8191acbd 4223 page_nid = page_to_nid(page);
82b0f8c3 4224 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4225 &flags);
82b0f8c3 4226 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 4227 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
4228 put_page(page);
4229 goto out;
4230 }
4231
4232 /* Migrate to the requested node */
1bc115d8 4233 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 4234 if (migrated) {
8191acbd 4235 page_nid = target_nid;
6688cc05 4236 flags |= TNF_MIGRATED;
074c2381
MG
4237 } else
4238 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
4239
4240out:
98fa15f3 4241 if (page_nid != NUMA_NO_NODE)
6688cc05 4242 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
4243 return 0;
4244}
4245
2b740303 4246static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4247{
f4200391 4248 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4249 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4250 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4251 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4252 return VM_FAULT_FALLBACK;
4253}
4254
183f24aa 4255/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4256static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4257{
529b930b 4258 if (vma_is_anonymous(vmf->vma)) {
292924b2 4259 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4260 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4261 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4262 }
327e9fd4
THV
4263 if (vmf->vma->vm_ops->huge_fault) {
4264 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4265
4266 if (!(ret & VM_FAULT_FALLBACK))
4267 return ret;
4268 }
af9e4d5f 4269
327e9fd4 4270 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4271 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4272
b96375f7
MW
4273 return VM_FAULT_FALLBACK;
4274}
4275
2b740303 4276static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4277{
327e9fd4
THV
4278#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4279 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4280 /* No support for anonymous transparent PUD pages yet */
4281 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4282 goto split;
4283 if (vmf->vma->vm_ops->huge_fault) {
4284 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4285
4286 if (!(ret & VM_FAULT_FALLBACK))
4287 return ret;
4288 }
4289split:
4290 /* COW or write-notify not handled on PUD level: split pud.*/
4291 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4292#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4293 return VM_FAULT_FALLBACK;
4294}
4295
2b740303 4296static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4297{
4298#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4299 /* No support for anonymous transparent PUD pages yet */
4300 if (vma_is_anonymous(vmf->vma))
4301 return VM_FAULT_FALLBACK;
4302 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4303 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4304#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4305 return VM_FAULT_FALLBACK;
4306}
4307
1da177e4
LT
4308/*
4309 * These routines also need to handle stuff like marking pages dirty
4310 * and/or accessed for architectures that don't do it in hardware (most
4311 * RISC architectures). The early dirtying is also good on the i386.
4312 *
4313 * There is also a hook called "update_mmu_cache()" that architectures
4314 * with external mmu caches can use to update those (ie the Sparc or
4315 * PowerPC hashed page tables that act as extended TLBs).
4316 *
c1e8d7c6 4317 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4318 * concurrent faults).
9a95f3cf 4319 *
c1e8d7c6 4320 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4321 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4322 */
2b740303 4323static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4324{
4325 pte_t entry;
4326
82b0f8c3 4327 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4328 /*
4329 * Leave __pte_alloc() until later: because vm_ops->fault may
4330 * want to allocate huge page, and if we expose page table
4331 * for an instant, it will be difficult to retract from
4332 * concurrent faults and from rmap lookups.
4333 */
82b0f8c3 4334 vmf->pte = NULL;
7267ec00
KS
4335 } else {
4336 /* See comment in pte_alloc_one_map() */
d0f0931d 4337 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4338 return 0;
4339 /*
4340 * A regular pmd is established and it can't morph into a huge
4341 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4342 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4343 * So now it's safe to run pte_offset_map().
4344 */
82b0f8c3 4345 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4346 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4347
4348 /*
4349 * some architectures can have larger ptes than wordsize,
4350 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4351 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4352 * accesses. The code below just needs a consistent view
4353 * for the ifs and we later double check anyway with the
7267ec00
KS
4354 * ptl lock held. So here a barrier will do.
4355 */
4356 barrier();
2994302b 4357 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4358 pte_unmap(vmf->pte);
4359 vmf->pte = NULL;
65500d23 4360 }
1da177e4
LT
4361 }
4362
82b0f8c3
JK
4363 if (!vmf->pte) {
4364 if (vma_is_anonymous(vmf->vma))
4365 return do_anonymous_page(vmf);
7267ec00 4366 else
82b0f8c3 4367 return do_fault(vmf);
7267ec00
KS
4368 }
4369
2994302b
JK
4370 if (!pte_present(vmf->orig_pte))
4371 return do_swap_page(vmf);
7267ec00 4372
2994302b
JK
4373 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4374 return do_numa_page(vmf);
d10e63f2 4375
82b0f8c3
JK
4376 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4377 spin_lock(vmf->ptl);
2994302b 4378 entry = vmf->orig_pte;
7df67697
BM
4379 if (unlikely(!pte_same(*vmf->pte, entry))) {
4380 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4381 goto unlock;
7df67697 4382 }
82b0f8c3 4383 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4384 if (!pte_write(entry))
2994302b 4385 return do_wp_page(vmf);
1da177e4
LT
4386 entry = pte_mkdirty(entry);
4387 }
4388 entry = pte_mkyoung(entry);
82b0f8c3
JK
4389 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4390 vmf->flags & FAULT_FLAG_WRITE)) {
4391 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4392 } else {
b7333b58
YS
4393 /* Skip spurious TLB flush for retried page fault */
4394 if (vmf->flags & FAULT_FLAG_TRIED)
4395 goto unlock;
1a44e149
AA
4396 /*
4397 * This is needed only for protection faults but the arch code
4398 * is not yet telling us if this is a protection fault or not.
4399 * This still avoids useless tlb flushes for .text page faults
4400 * with threads.
4401 */
82b0f8c3
JK
4402 if (vmf->flags & FAULT_FLAG_WRITE)
4403 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4404 }
8f4e2101 4405unlock:
82b0f8c3 4406 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4407 return 0;
1da177e4
LT
4408}
4409
4410/*
4411 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4412 *
c1e8d7c6 4413 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4414 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4415 */
2b740303
SJ
4416static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4417 unsigned long address, unsigned int flags)
1da177e4 4418{
82b0f8c3 4419 struct vm_fault vmf = {
bae473a4 4420 .vma = vma,
1a29d85e 4421 .address = address & PAGE_MASK,
bae473a4 4422 .flags = flags,
0721ec8b 4423 .pgoff = linear_page_index(vma, address),
667240e0 4424 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4425 };
fde26bed 4426 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4427 struct mm_struct *mm = vma->vm_mm;
1da177e4 4428 pgd_t *pgd;
c2febafc 4429 p4d_t *p4d;
2b740303 4430 vm_fault_t ret;
1da177e4 4431
1da177e4 4432 pgd = pgd_offset(mm, address);
c2febafc
KS
4433 p4d = p4d_alloc(mm, pgd, address);
4434 if (!p4d)
4435 return VM_FAULT_OOM;
a00cc7d9 4436
c2febafc 4437 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4438 if (!vmf.pud)
c74df32c 4439 return VM_FAULT_OOM;
625110b5 4440retry_pud:
7635d9cb 4441 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4442 ret = create_huge_pud(&vmf);
4443 if (!(ret & VM_FAULT_FALLBACK))
4444 return ret;
4445 } else {
4446 pud_t orig_pud = *vmf.pud;
4447
4448 barrier();
4449 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4450
a00cc7d9
MW
4451 /* NUMA case for anonymous PUDs would go here */
4452
f6f37321 4453 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4454 ret = wp_huge_pud(&vmf, orig_pud);
4455 if (!(ret & VM_FAULT_FALLBACK))
4456 return ret;
4457 } else {
4458 huge_pud_set_accessed(&vmf, orig_pud);
4459 return 0;
4460 }
4461 }
4462 }
4463
4464 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4465 if (!vmf.pmd)
c74df32c 4466 return VM_FAULT_OOM;
625110b5
TH
4467
4468 /* Huge pud page fault raced with pmd_alloc? */
4469 if (pud_trans_unstable(vmf.pud))
4470 goto retry_pud;
4471
7635d9cb 4472 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4473 ret = create_huge_pmd(&vmf);
c0292554
KS
4474 if (!(ret & VM_FAULT_FALLBACK))
4475 return ret;
71e3aac0 4476 } else {
82b0f8c3 4477 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4478
71e3aac0 4479 barrier();
84c3fc4e
ZY
4480 if (unlikely(is_swap_pmd(orig_pmd))) {
4481 VM_BUG_ON(thp_migration_supported() &&
4482 !is_pmd_migration_entry(orig_pmd));
4483 if (is_pmd_migration_entry(orig_pmd))
4484 pmd_migration_entry_wait(mm, vmf.pmd);
4485 return 0;
4486 }
5c7fb56e 4487 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4488 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4489 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4490
f6f37321 4491 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4492 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4493 if (!(ret & VM_FAULT_FALLBACK))
4494 return ret;
a1dd450b 4495 } else {
82b0f8c3 4496 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4497 return 0;
1f1d06c3 4498 }
71e3aac0
AA
4499 }
4500 }
4501
82b0f8c3 4502 return handle_pte_fault(&vmf);
1da177e4
LT
4503}
4504
bce617ed
PX
4505/**
4506 * mm_account_fault - Do page fault accountings
4507 *
4508 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4509 * of perf event counters, but we'll still do the per-task accounting to
4510 * the task who triggered this page fault.
4511 * @address: the faulted address.
4512 * @flags: the fault flags.
4513 * @ret: the fault retcode.
4514 *
4515 * This will take care of most of the page fault accountings. Meanwhile, it
4516 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4517 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4518 * still be in per-arch page fault handlers at the entry of page fault.
4519 */
4520static inline void mm_account_fault(struct pt_regs *regs,
4521 unsigned long address, unsigned int flags,
4522 vm_fault_t ret)
4523{
4524 bool major;
4525
4526 /*
4527 * We don't do accounting for some specific faults:
4528 *
4529 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4530 * includes arch_vma_access_permitted() failing before reaching here.
4531 * So this is not a "this many hardware page faults" counter. We
4532 * should use the hw profiling for that.
4533 *
4534 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4535 * once they're completed.
4536 */
4537 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4538 return;
4539
4540 /*
4541 * We define the fault as a major fault when the final successful fault
4542 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4543 * handle it immediately previously).
4544 */
4545 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4546
a2beb5f1
PX
4547 if (major)
4548 current->maj_flt++;
4549 else
4550 current->min_flt++;
4551
bce617ed 4552 /*
a2beb5f1
PX
4553 * If the fault is done for GUP, regs will be NULL. We only do the
4554 * accounting for the per thread fault counters who triggered the
4555 * fault, and we skip the perf event updates.
bce617ed
PX
4556 */
4557 if (!regs)
4558 return;
4559
a2beb5f1 4560 if (major)
bce617ed 4561 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4562 else
bce617ed 4563 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4564}
4565
9a95f3cf
PC
4566/*
4567 * By the time we get here, we already hold the mm semaphore
4568 *
c1e8d7c6 4569 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4570 * return value. See filemap_fault() and __lock_page_or_retry().
4571 */
2b740303 4572vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4573 unsigned int flags, struct pt_regs *regs)
519e5247 4574{
2b740303 4575 vm_fault_t ret;
519e5247
JW
4576
4577 __set_current_state(TASK_RUNNING);
4578
4579 count_vm_event(PGFAULT);
2262185c 4580 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4581
4582 /* do counter updates before entering really critical section. */
4583 check_sync_rss_stat(current);
4584
de0c799b
LD
4585 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4586 flags & FAULT_FLAG_INSTRUCTION,
4587 flags & FAULT_FLAG_REMOTE))
4588 return VM_FAULT_SIGSEGV;
4589
519e5247
JW
4590 /*
4591 * Enable the memcg OOM handling for faults triggered in user
4592 * space. Kernel faults are handled more gracefully.
4593 */
4594 if (flags & FAULT_FLAG_USER)
29ef680a 4595 mem_cgroup_enter_user_fault();
519e5247 4596
bae473a4
KS
4597 if (unlikely(is_vm_hugetlb_page(vma)))
4598 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4599 else
4600 ret = __handle_mm_fault(vma, address, flags);
519e5247 4601
49426420 4602 if (flags & FAULT_FLAG_USER) {
29ef680a 4603 mem_cgroup_exit_user_fault();
166f61b9
TH
4604 /*
4605 * The task may have entered a memcg OOM situation but
4606 * if the allocation error was handled gracefully (no
4607 * VM_FAULT_OOM), there is no need to kill anything.
4608 * Just clean up the OOM state peacefully.
4609 */
4610 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4611 mem_cgroup_oom_synchronize(false);
49426420 4612 }
3812c8c8 4613
bce617ed
PX
4614 mm_account_fault(regs, address, flags, ret);
4615
519e5247
JW
4616 return ret;
4617}
e1d6d01a 4618EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4619
90eceff1
KS
4620#ifndef __PAGETABLE_P4D_FOLDED
4621/*
4622 * Allocate p4d page table.
4623 * We've already handled the fast-path in-line.
4624 */
4625int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4626{
4627 p4d_t *new = p4d_alloc_one(mm, address);
4628 if (!new)
4629 return -ENOMEM;
4630
4631 smp_wmb(); /* See comment in __pte_alloc */
4632
4633 spin_lock(&mm->page_table_lock);
4634 if (pgd_present(*pgd)) /* Another has populated it */
4635 p4d_free(mm, new);
4636 else
4637 pgd_populate(mm, pgd, new);
4638 spin_unlock(&mm->page_table_lock);
4639 return 0;
4640}
4641#endif /* __PAGETABLE_P4D_FOLDED */
4642
1da177e4
LT
4643#ifndef __PAGETABLE_PUD_FOLDED
4644/*
4645 * Allocate page upper directory.
872fec16 4646 * We've already handled the fast-path in-line.
1da177e4 4647 */
c2febafc 4648int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4649{
c74df32c
HD
4650 pud_t *new = pud_alloc_one(mm, address);
4651 if (!new)
1bb3630e 4652 return -ENOMEM;
1da177e4 4653
362a61ad
NP
4654 smp_wmb(); /* See comment in __pte_alloc */
4655
872fec16 4656 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4657 if (!p4d_present(*p4d)) {
4658 mm_inc_nr_puds(mm);
c2febafc 4659 p4d_populate(mm, p4d, new);
b4e98d9a 4660 } else /* Another has populated it */
5e541973 4661 pud_free(mm, new);
c74df32c 4662 spin_unlock(&mm->page_table_lock);
1bb3630e 4663 return 0;
1da177e4
LT
4664}
4665#endif /* __PAGETABLE_PUD_FOLDED */
4666
4667#ifndef __PAGETABLE_PMD_FOLDED
4668/*
4669 * Allocate page middle directory.
872fec16 4670 * We've already handled the fast-path in-line.
1da177e4 4671 */
1bb3630e 4672int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4673{
a00cc7d9 4674 spinlock_t *ptl;
c74df32c
HD
4675 pmd_t *new = pmd_alloc_one(mm, address);
4676 if (!new)
1bb3630e 4677 return -ENOMEM;
1da177e4 4678
362a61ad
NP
4679 smp_wmb(); /* See comment in __pte_alloc */
4680
a00cc7d9 4681 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4682 if (!pud_present(*pud)) {
4683 mm_inc_nr_pmds(mm);
1bb3630e 4684 pud_populate(mm, pud, new);
dc6c9a35 4685 } else /* Another has populated it */
5e541973 4686 pmd_free(mm, new);
a00cc7d9 4687 spin_unlock(ptl);
1bb3630e 4688 return 0;
e0f39591 4689}
1da177e4
LT
4690#endif /* __PAGETABLE_PMD_FOLDED */
4691
09796395 4692static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4693 struct mmu_notifier_range *range,
a4d1a885 4694 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4695{
4696 pgd_t *pgd;
c2febafc 4697 p4d_t *p4d;
f8ad0f49
JW
4698 pud_t *pud;
4699 pmd_t *pmd;
4700 pte_t *ptep;
4701
4702 pgd = pgd_offset(mm, address);
4703 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4704 goto out;
4705
c2febafc
KS
4706 p4d = p4d_offset(pgd, address);
4707 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4708 goto out;
4709
4710 pud = pud_offset(p4d, address);
f8ad0f49
JW
4711 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4712 goto out;
4713
4714 pmd = pmd_offset(pud, address);
f66055ab 4715 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4716
09796395
RZ
4717 if (pmd_huge(*pmd)) {
4718 if (!pmdpp)
4719 goto out;
4720
ac46d4f3 4721 if (range) {
7269f999 4722 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4723 NULL, mm, address & PMD_MASK,
4724 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4725 mmu_notifier_invalidate_range_start(range);
a4d1a885 4726 }
09796395
RZ
4727 *ptlp = pmd_lock(mm, pmd);
4728 if (pmd_huge(*pmd)) {
4729 *pmdpp = pmd;
4730 return 0;
4731 }
4732 spin_unlock(*ptlp);
ac46d4f3
JG
4733 if (range)
4734 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4735 }
4736
4737 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4738 goto out;
4739
ac46d4f3 4740 if (range) {
7269f999 4741 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4742 address & PAGE_MASK,
4743 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4744 mmu_notifier_invalidate_range_start(range);
a4d1a885 4745 }
f8ad0f49 4746 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4747 if (!pte_present(*ptep))
4748 goto unlock;
4749 *ptepp = ptep;
4750 return 0;
4751unlock:
4752 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4753 if (range)
4754 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4755out:
4756 return -EINVAL;
4757}
4758
f729c8c9
RZ
4759static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4760 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4761{
4762 int res;
4763
4764 /* (void) is needed to make gcc happy */
4765 (void) __cond_lock(*ptlp,
ac46d4f3 4766 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4767 ptepp, NULL, ptlp)));
09796395
RZ
4768 return res;
4769}
4770
4771int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4772 struct mmu_notifier_range *range,
4773 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4774{
4775 int res;
4776
4777 /* (void) is needed to make gcc happy */
4778 (void) __cond_lock(*ptlp,
ac46d4f3 4779 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4780 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4781 return res;
4782}
09796395 4783EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4784
3b6748e2
JW
4785/**
4786 * follow_pfn - look up PFN at a user virtual address
4787 * @vma: memory mapping
4788 * @address: user virtual address
4789 * @pfn: location to store found PFN
4790 *
4791 * Only IO mappings and raw PFN mappings are allowed.
4792 *
a862f68a 4793 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4794 */
4795int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4796 unsigned long *pfn)
4797{
4798 int ret = -EINVAL;
4799 spinlock_t *ptl;
4800 pte_t *ptep;
4801
4802 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4803 return ret;
4804
4805 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4806 if (ret)
4807 return ret;
4808 *pfn = pte_pfn(*ptep);
4809 pte_unmap_unlock(ptep, ptl);
4810 return 0;
4811}
4812EXPORT_SYMBOL(follow_pfn);
4813
28b2ee20 4814#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4815int follow_phys(struct vm_area_struct *vma,
4816 unsigned long address, unsigned int flags,
4817 unsigned long *prot, resource_size_t *phys)
28b2ee20 4818{
03668a4d 4819 int ret = -EINVAL;
28b2ee20
RR
4820 pte_t *ptep, pte;
4821 spinlock_t *ptl;
28b2ee20 4822
d87fe660 4823 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4824 goto out;
28b2ee20 4825
03668a4d 4826 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4827 goto out;
28b2ee20 4828 pte = *ptep;
03668a4d 4829
f6f37321 4830 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4831 goto unlock;
28b2ee20
RR
4832
4833 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4834 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4835
03668a4d 4836 ret = 0;
28b2ee20
RR
4837unlock:
4838 pte_unmap_unlock(ptep, ptl);
4839out:
d87fe660 4840 return ret;
28b2ee20
RR
4841}
4842
4843int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4844 void *buf, int len, int write)
4845{
4846 resource_size_t phys_addr;
4847 unsigned long prot = 0;
2bc7273b 4848 void __iomem *maddr;
28b2ee20
RR
4849 int offset = addr & (PAGE_SIZE-1);
4850
d87fe660 4851 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4852 return -EINVAL;
4853
9cb12d7b 4854 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4855 if (!maddr)
4856 return -ENOMEM;
4857
28b2ee20
RR
4858 if (write)
4859 memcpy_toio(maddr + offset, buf, len);
4860 else
4861 memcpy_fromio(buf, maddr + offset, len);
4862 iounmap(maddr);
4863
4864 return len;
4865}
5a73633e 4866EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4867#endif
4868
0ec76a11 4869/*
206cb636
SW
4870 * Access another process' address space as given in mm. If non-NULL, use the
4871 * given task for page fault accounting.
0ec76a11 4872 */
84d77d3f 4873int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4874 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4875{
0ec76a11 4876 struct vm_area_struct *vma;
0ec76a11 4877 void *old_buf = buf;
442486ec 4878 int write = gup_flags & FOLL_WRITE;
0ec76a11 4879
d8ed45c5 4880 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4881 return 0;
4882
183ff22b 4883 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4884 while (len) {
4885 int bytes, ret, offset;
4886 void *maddr;
28b2ee20 4887 struct page *page = NULL;
0ec76a11 4888
64019a2e 4889 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 4890 gup_flags, &page, &vma, NULL);
28b2ee20 4891 if (ret <= 0) {
dbffcd03
RR
4892#ifndef CONFIG_HAVE_IOREMAP_PROT
4893 break;
4894#else
28b2ee20
RR
4895 /*
4896 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4897 * we can access using slightly different code.
4898 */
28b2ee20 4899 vma = find_vma(mm, addr);
fe936dfc 4900 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4901 break;
4902 if (vma->vm_ops && vma->vm_ops->access)
4903 ret = vma->vm_ops->access(vma, addr, buf,
4904 len, write);
4905 if (ret <= 0)
28b2ee20
RR
4906 break;
4907 bytes = ret;
dbffcd03 4908#endif
0ec76a11 4909 } else {
28b2ee20
RR
4910 bytes = len;
4911 offset = addr & (PAGE_SIZE-1);
4912 if (bytes > PAGE_SIZE-offset)
4913 bytes = PAGE_SIZE-offset;
4914
4915 maddr = kmap(page);
4916 if (write) {
4917 copy_to_user_page(vma, page, addr,
4918 maddr + offset, buf, bytes);
4919 set_page_dirty_lock(page);
4920 } else {
4921 copy_from_user_page(vma, page, addr,
4922 buf, maddr + offset, bytes);
4923 }
4924 kunmap(page);
09cbfeaf 4925 put_page(page);
0ec76a11 4926 }
0ec76a11
DH
4927 len -= bytes;
4928 buf += bytes;
4929 addr += bytes;
4930 }
d8ed45c5 4931 mmap_read_unlock(mm);
0ec76a11
DH
4932
4933 return buf - old_buf;
4934}
03252919 4935
5ddd36b9 4936/**
ae91dbfc 4937 * access_remote_vm - access another process' address space
5ddd36b9
SW
4938 * @mm: the mm_struct of the target address space
4939 * @addr: start address to access
4940 * @buf: source or destination buffer
4941 * @len: number of bytes to transfer
6347e8d5 4942 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4943 *
4944 * The caller must hold a reference on @mm.
a862f68a
MR
4945 *
4946 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4947 */
4948int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4949 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4950{
6347e8d5 4951 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4952}
4953
206cb636
SW
4954/*
4955 * Access another process' address space.
4956 * Source/target buffer must be kernel space,
4957 * Do not walk the page table directly, use get_user_pages
4958 */
4959int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4960 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4961{
4962 struct mm_struct *mm;
4963 int ret;
4964
4965 mm = get_task_mm(tsk);
4966 if (!mm)
4967 return 0;
4968
f307ab6d 4969 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4970
206cb636
SW
4971 mmput(mm);
4972
4973 return ret;
4974}
fcd35857 4975EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4976
03252919
AK
4977/*
4978 * Print the name of a VMA.
4979 */
4980void print_vma_addr(char *prefix, unsigned long ip)
4981{
4982 struct mm_struct *mm = current->mm;
4983 struct vm_area_struct *vma;
4984
e8bff74a 4985 /*
0a7f682d 4986 * we might be running from an atomic context so we cannot sleep
e8bff74a 4987 */
d8ed45c5 4988 if (!mmap_read_trylock(mm))
e8bff74a
IM
4989 return;
4990
03252919
AK
4991 vma = find_vma(mm, ip);
4992 if (vma && vma->vm_file) {
4993 struct file *f = vma->vm_file;
0a7f682d 4994 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4995 if (buf) {
2fbc57c5 4996 char *p;
03252919 4997
9bf39ab2 4998 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4999 if (IS_ERR(p))
5000 p = "?";
2fbc57c5 5001 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5002 vma->vm_start,
5003 vma->vm_end - vma->vm_start);
5004 free_page((unsigned long)buf);
5005 }
5006 }
d8ed45c5 5007 mmap_read_unlock(mm);
03252919 5008}
3ee1afa3 5009
662bbcb2 5010#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5011void __might_fault(const char *file, int line)
3ee1afa3 5012{
95156f00
PZ
5013 /*
5014 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5015 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5016 * get paged out, therefore we'll never actually fault, and the
5017 * below annotations will generate false positives.
5018 */
db68ce10 5019 if (uaccess_kernel())
95156f00 5020 return;
9ec23531 5021 if (pagefault_disabled())
662bbcb2 5022 return;
9ec23531
DH
5023 __might_sleep(file, line, 0);
5024#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5025 if (current->mm)
da1c55f1 5026 might_lock_read(&current->mm->mmap_lock);
9ec23531 5027#endif
3ee1afa3 5028}
9ec23531 5029EXPORT_SYMBOL(__might_fault);
3ee1afa3 5030#endif
47ad8475
AA
5031
5032#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5033/*
5034 * Process all subpages of the specified huge page with the specified
5035 * operation. The target subpage will be processed last to keep its
5036 * cache lines hot.
5037 */
5038static inline void process_huge_page(
5039 unsigned long addr_hint, unsigned int pages_per_huge_page,
5040 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5041 void *arg)
47ad8475 5042{
c79b57e4
HY
5043 int i, n, base, l;
5044 unsigned long addr = addr_hint &
5045 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5046
c6ddfb6c 5047 /* Process target subpage last to keep its cache lines hot */
47ad8475 5048 might_sleep();
c79b57e4
HY
5049 n = (addr_hint - addr) / PAGE_SIZE;
5050 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5051 /* If target subpage in first half of huge page */
c79b57e4
HY
5052 base = 0;
5053 l = n;
c6ddfb6c 5054 /* Process subpages at the end of huge page */
c79b57e4
HY
5055 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5056 cond_resched();
c6ddfb6c 5057 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5058 }
5059 } else {
c6ddfb6c 5060 /* If target subpage in second half of huge page */
c79b57e4
HY
5061 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5062 l = pages_per_huge_page - n;
c6ddfb6c 5063 /* Process subpages at the begin of huge page */
c79b57e4
HY
5064 for (i = 0; i < base; i++) {
5065 cond_resched();
c6ddfb6c 5066 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5067 }
5068 }
5069 /*
c6ddfb6c
HY
5070 * Process remaining subpages in left-right-left-right pattern
5071 * towards the target subpage
c79b57e4
HY
5072 */
5073 for (i = 0; i < l; i++) {
5074 int left_idx = base + i;
5075 int right_idx = base + 2 * l - 1 - i;
5076
5077 cond_resched();
c6ddfb6c 5078 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5079 cond_resched();
c6ddfb6c 5080 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5081 }
5082}
5083
c6ddfb6c
HY
5084static void clear_gigantic_page(struct page *page,
5085 unsigned long addr,
5086 unsigned int pages_per_huge_page)
5087{
5088 int i;
5089 struct page *p = page;
5090
5091 might_sleep();
5092 for (i = 0; i < pages_per_huge_page;
5093 i++, p = mem_map_next(p, page, i)) {
5094 cond_resched();
5095 clear_user_highpage(p, addr + i * PAGE_SIZE);
5096 }
5097}
5098
5099static void clear_subpage(unsigned long addr, int idx, void *arg)
5100{
5101 struct page *page = arg;
5102
5103 clear_user_highpage(page + idx, addr);
5104}
5105
5106void clear_huge_page(struct page *page,
5107 unsigned long addr_hint, unsigned int pages_per_huge_page)
5108{
5109 unsigned long addr = addr_hint &
5110 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5111
5112 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5113 clear_gigantic_page(page, addr, pages_per_huge_page);
5114 return;
5115 }
5116
5117 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5118}
5119
47ad8475
AA
5120static void copy_user_gigantic_page(struct page *dst, struct page *src,
5121 unsigned long addr,
5122 struct vm_area_struct *vma,
5123 unsigned int pages_per_huge_page)
5124{
5125 int i;
5126 struct page *dst_base = dst;
5127 struct page *src_base = src;
5128
5129 for (i = 0; i < pages_per_huge_page; ) {
5130 cond_resched();
5131 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5132
5133 i++;
5134 dst = mem_map_next(dst, dst_base, i);
5135 src = mem_map_next(src, src_base, i);
5136 }
5137}
5138
c9f4cd71
HY
5139struct copy_subpage_arg {
5140 struct page *dst;
5141 struct page *src;
5142 struct vm_area_struct *vma;
5143};
5144
5145static void copy_subpage(unsigned long addr, int idx, void *arg)
5146{
5147 struct copy_subpage_arg *copy_arg = arg;
5148
5149 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5150 addr, copy_arg->vma);
5151}
5152
47ad8475 5153void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5154 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5155 unsigned int pages_per_huge_page)
5156{
c9f4cd71
HY
5157 unsigned long addr = addr_hint &
5158 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5159 struct copy_subpage_arg arg = {
5160 .dst = dst,
5161 .src = src,
5162 .vma = vma,
5163 };
47ad8475
AA
5164
5165 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5166 copy_user_gigantic_page(dst, src, addr, vma,
5167 pages_per_huge_page);
5168 return;
5169 }
5170
c9f4cd71 5171 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5172}
fa4d75c1
MK
5173
5174long copy_huge_page_from_user(struct page *dst_page,
5175 const void __user *usr_src,
810a56b9
MK
5176 unsigned int pages_per_huge_page,
5177 bool allow_pagefault)
fa4d75c1
MK
5178{
5179 void *src = (void *)usr_src;
5180 void *page_kaddr;
5181 unsigned long i, rc = 0;
5182 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5183
5184 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
5185 if (allow_pagefault)
5186 page_kaddr = kmap(dst_page + i);
5187 else
5188 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
5189 rc = copy_from_user(page_kaddr,
5190 (const void __user *)(src + i * PAGE_SIZE),
5191 PAGE_SIZE);
810a56b9
MK
5192 if (allow_pagefault)
5193 kunmap(dst_page + i);
5194 else
5195 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5196
5197 ret_val -= (PAGE_SIZE - rc);
5198 if (rc)
5199 break;
5200
5201 cond_resched();
5202 }
5203 return ret_val;
5204}
47ad8475 5205#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5206
40b64acd 5207#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5208
5209static struct kmem_cache *page_ptl_cachep;
5210
5211void __init ptlock_cache_init(void)
5212{
5213 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5214 SLAB_PANIC, NULL);
5215}
5216
539edb58 5217bool ptlock_alloc(struct page *page)
49076ec2
KS
5218{
5219 spinlock_t *ptl;
5220
b35f1819 5221 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5222 if (!ptl)
5223 return false;
539edb58 5224 page->ptl = ptl;
49076ec2
KS
5225 return true;
5226}
5227
539edb58 5228void ptlock_free(struct page *page)
49076ec2 5229{
b35f1819 5230 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5231}
5232#endif