]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memory.c
Merge branch 'for-4.13-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[mirror_ubuntu-artful-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
9a840895 52#include <linux/ksm.h>
1da177e4 53#include <linux/rmap.h>
b95f1b31 54#include <linux/export.h>
0ff92245 55#include <linux/delayacct.h>
1da177e4 56#include <linux/init.h>
01c8f1c4 57#include <linux/pfn_t.h>
edc79b2a 58#include <linux/writeback.h>
8a9f3ccd 59#include <linux/memcontrol.h>
cddb8a5c 60#include <linux/mmu_notifier.h>
3dc14741
HD
61#include <linux/kallsyms.h>
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
1da177e4 72
6952b61d 73#include <asm/io.h>
33a709b2 74#include <asm/mmu_context.h>
1da177e4 75#include <asm/pgalloc.h>
7c0f6ba6 76#include <linux/uaccess.h>
1da177e4
LT
77#include <asm/tlb.h>
78#include <asm/tlbflush.h>
79#include <asm/pgtable.h>
80
42b77728
JB
81#include "internal.h"
82
90572890
PZ
83#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
85#endif
86
d41dee36 87#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
88/* use the per-pgdat data instead for discontigmem - mbligh */
89unsigned long max_mapnr;
1da177e4 90EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
91
92struct page *mem_map;
1da177e4
LT
93EXPORT_SYMBOL(mem_map);
94#endif
95
1da177e4
LT
96/*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
166f61b9 103void *high_memory;
1da177e4 104EXPORT_SYMBOL(high_memory);
1da177e4 105
32a93233
IM
106/*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112int randomize_va_space __read_mostly =
113#ifdef CONFIG_COMPAT_BRK
114 1;
115#else
116 2;
117#endif
a62eaf15
AK
118
119static int __init disable_randmaps(char *s)
120{
121 randomize_va_space = 0;
9b41046c 122 return 1;
a62eaf15
AK
123}
124__setup("norandmaps", disable_randmaps);
125
62eede62 126unsigned long zero_pfn __read_mostly;
0b70068e
AB
127EXPORT_SYMBOL(zero_pfn);
128
166f61b9
TH
129unsigned long highest_memmap_pfn __read_mostly;
130
a13ea5b7
HD
131/*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134static int __init init_zero_pfn(void)
135{
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138}
139core_initcall(init_zero_pfn);
a62eaf15 140
d559db08 141
34e55232
KH
142#if defined(SPLIT_RSS_COUNTING)
143
ea48cf78 144void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
145{
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
34e55232
KH
152 }
153 }
05af2e10 154 current->rss_stat.events = 0;
34e55232
KH
155}
156
157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158{
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165}
166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169/* sync counter once per 64 page faults */
170#define TASK_RSS_EVENTS_THRESH (64)
171static void check_sync_rss_stat(struct task_struct *task)
172{
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 176 sync_mm_rss(task->mm);
34e55232 177}
9547d01b 178#else /* SPLIT_RSS_COUNTING */
34e55232
KH
179
180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183static void check_sync_rss_stat(struct task_struct *task)
184{
185}
186
9547d01b
PZ
187#endif /* SPLIT_RSS_COUNTING */
188
189#ifdef HAVE_GENERIC_MMU_GATHER
190
ca1d6c7d 191static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
192{
193 struct mmu_gather_batch *batch;
194
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
ca1d6c7d 198 return true;
9547d01b
PZ
199 }
200
53a59fc6 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 202 return false;
53a59fc6 203
9547d01b
PZ
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
ca1d6c7d 206 return false;
9547d01b 207
53a59fc6 208 tlb->batch_count++;
9547d01b
PZ
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
212
213 tlb->active->next = batch;
214 tlb->active = batch;
215
ca1d6c7d 216 return true;
9547d01b
PZ
217}
218
56236a59
MK
219void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
9547d01b
PZ
221{
222 tlb->mm = mm;
223
2b047252
LT
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
1de14c3c 226 tlb->need_flush_all = 0;
9547d01b
PZ
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
53a59fc6 231 tlb->batch_count = 0;
9547d01b
PZ
232
233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235#endif
e77b0852 236 tlb->page_size = 0;
fb7332a9
WD
237
238 __tlb_reset_range(tlb);
9547d01b
PZ
239}
240
1cf35d47 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 242{
721c21c1
WD
243 if (!tlb->end)
244 return;
245
9547d01b 246 tlb_flush(tlb);
34ee645e 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
34e55232 250#endif
fb7332a9 251 __tlb_reset_range(tlb);
1cf35d47
LT
252}
253
254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255{
256 struct mmu_gather_batch *batch;
34e55232 257
721c21c1 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263}
264
1cf35d47
LT
265void tlb_flush_mmu(struct mmu_gather *tlb)
266{
1cf35d47
LT
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269}
270
9547d01b
PZ
271/* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
56236a59 275void arch_tlb_finish_mmu(struct mmu_gather *tlb,
99baac21 276 unsigned long start, unsigned long end, bool force)
9547d01b
PZ
277{
278 struct mmu_gather_batch *batch, *next;
279
99baac21
MK
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
282
9547d01b
PZ
283 tlb_flush_mmu(tlb);
284
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
287
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
291 }
292 tlb->local.next = NULL;
293}
294
295/* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 300 *returns true if the caller should flush.
9547d01b 301 */
e77b0852 302bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
9547d01b
PZ
303{
304 struct mmu_gather_batch *batch;
305
fb7332a9 306 VM_BUG_ON(!tlb->end);
692a68c1 307 VM_WARN_ON(tlb->page_size != page_size);
e77b0852 308
9547d01b 309 batch = tlb->active;
692a68c1
AK
310 /*
311 * Add the page and check if we are full. If so
312 * force a flush.
313 */
314 batch->pages[batch->nr++] = page;
9547d01b
PZ
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
e9d55e15 317 return true;
0b43c3aa 318 batch = tlb->active;
9547d01b 319 }
309381fe 320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 321
e9d55e15 322 return false;
9547d01b
PZ
323}
324
325#endif /* HAVE_GENERIC_MMU_GATHER */
326
26723911
PZ
327#ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329/*
330 * See the comment near struct mmu_table_batch.
331 */
332
333static void tlb_remove_table_smp_sync(void *arg)
334{
335 /* Simply deliver the interrupt */
336}
337
338static void tlb_remove_table_one(void *table)
339{
340 /*
341 * This isn't an RCU grace period and hence the page-tables cannot be
342 * assumed to be actually RCU-freed.
343 *
344 * It is however sufficient for software page-table walkers that rely on
345 * IRQ disabling. See the comment near struct mmu_table_batch.
346 */
347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 __tlb_remove_table(table);
349}
350
351static void tlb_remove_table_rcu(struct rcu_head *head)
352{
353 struct mmu_table_batch *batch;
354 int i;
355
356 batch = container_of(head, struct mmu_table_batch, rcu);
357
358 for (i = 0; i < batch->nr; i++)
359 __tlb_remove_table(batch->tables[i]);
360
361 free_page((unsigned long)batch);
362}
363
364void tlb_table_flush(struct mmu_gather *tlb)
365{
366 struct mmu_table_batch **batch = &tlb->batch;
367
368 if (*batch) {
369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 *batch = NULL;
371 }
372}
373
374void tlb_remove_table(struct mmu_gather *tlb, void *table)
375{
376 struct mmu_table_batch **batch = &tlb->batch;
377
26723911
PZ
378 /*
379 * When there's less then two users of this mm there cannot be a
380 * concurrent page-table walk.
381 */
382 if (atomic_read(&tlb->mm->mm_users) < 2) {
383 __tlb_remove_table(table);
384 return;
385 }
386
387 if (*batch == NULL) {
388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 if (*batch == NULL) {
390 tlb_remove_table_one(table);
391 return;
392 }
393 (*batch)->nr = 0;
394 }
395 (*batch)->tables[(*batch)->nr++] = table;
396 if ((*batch)->nr == MAX_TABLE_BATCH)
397 tlb_table_flush(tlb);
398}
399
9547d01b 400#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 401
56236a59
MK
402/* tlb_gather_mmu
403 * Called to initialize an (on-stack) mmu_gather structure for page-table
404 * tear-down from @mm. The @fullmm argument is used when @mm is without
405 * users and we're going to destroy the full address space (exit/execve).
406 */
407void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
408 unsigned long start, unsigned long end)
409{
410 arch_tlb_gather_mmu(tlb, mm, start, end);
99baac21 411 inc_tlb_flush_pending(tlb->mm);
56236a59
MK
412}
413
414void tlb_finish_mmu(struct mmu_gather *tlb,
415 unsigned long start, unsigned long end)
416{
99baac21
MK
417 /*
418 * If there are parallel threads are doing PTE changes on same range
419 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
420 * flush by batching, a thread has stable TLB entry can fail to flush
421 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
422 * forcefully if we detect parallel PTE batching threads.
423 */
424 bool force = mm_tlb_flush_nested(tlb->mm);
425
426 arch_tlb_finish_mmu(tlb, start, end, force);
427 dec_tlb_flush_pending(tlb->mm);
56236a59
MK
428}
429
1da177e4
LT
430/*
431 * Note: this doesn't free the actual pages themselves. That
432 * has been handled earlier when unmapping all the memory regions.
433 */
9e1b32ca
BH
434static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
435 unsigned long addr)
1da177e4 436{
2f569afd 437 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 438 pmd_clear(pmd);
9e1b32ca 439 pte_free_tlb(tlb, token, addr);
e1f56c89 440 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
441}
442
e0da382c
HD
443static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
444 unsigned long addr, unsigned long end,
445 unsigned long floor, unsigned long ceiling)
1da177e4
LT
446{
447 pmd_t *pmd;
448 unsigned long next;
e0da382c 449 unsigned long start;
1da177e4 450
e0da382c 451 start = addr;
1da177e4 452 pmd = pmd_offset(pud, addr);
1da177e4
LT
453 do {
454 next = pmd_addr_end(addr, end);
455 if (pmd_none_or_clear_bad(pmd))
456 continue;
9e1b32ca 457 free_pte_range(tlb, pmd, addr);
1da177e4
LT
458 } while (pmd++, addr = next, addr != end);
459
e0da382c
HD
460 start &= PUD_MASK;
461 if (start < floor)
462 return;
463 if (ceiling) {
464 ceiling &= PUD_MASK;
465 if (!ceiling)
466 return;
1da177e4 467 }
e0da382c
HD
468 if (end - 1 > ceiling - 1)
469 return;
470
471 pmd = pmd_offset(pud, start);
472 pud_clear(pud);
9e1b32ca 473 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 474 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
475}
476
c2febafc 477static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
478 unsigned long addr, unsigned long end,
479 unsigned long floor, unsigned long ceiling)
1da177e4
LT
480{
481 pud_t *pud;
482 unsigned long next;
e0da382c 483 unsigned long start;
1da177e4 484
e0da382c 485 start = addr;
c2febafc 486 pud = pud_offset(p4d, addr);
1da177e4
LT
487 do {
488 next = pud_addr_end(addr, end);
489 if (pud_none_or_clear_bad(pud))
490 continue;
e0da382c 491 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
492 } while (pud++, addr = next, addr != end);
493
c2febafc
KS
494 start &= P4D_MASK;
495 if (start < floor)
496 return;
497 if (ceiling) {
498 ceiling &= P4D_MASK;
499 if (!ceiling)
500 return;
501 }
502 if (end - 1 > ceiling - 1)
503 return;
504
505 pud = pud_offset(p4d, start);
506 p4d_clear(p4d);
507 pud_free_tlb(tlb, pud, start);
508}
509
510static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
511 unsigned long addr, unsigned long end,
512 unsigned long floor, unsigned long ceiling)
513{
514 p4d_t *p4d;
515 unsigned long next;
516 unsigned long start;
517
518 start = addr;
519 p4d = p4d_offset(pgd, addr);
520 do {
521 next = p4d_addr_end(addr, end);
522 if (p4d_none_or_clear_bad(p4d))
523 continue;
524 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
525 } while (p4d++, addr = next, addr != end);
526
e0da382c
HD
527 start &= PGDIR_MASK;
528 if (start < floor)
529 return;
530 if (ceiling) {
531 ceiling &= PGDIR_MASK;
532 if (!ceiling)
533 return;
1da177e4 534 }
e0da382c
HD
535 if (end - 1 > ceiling - 1)
536 return;
537
c2febafc 538 p4d = p4d_offset(pgd, start);
e0da382c 539 pgd_clear(pgd);
c2febafc 540 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
541}
542
543/*
e0da382c 544 * This function frees user-level page tables of a process.
1da177e4 545 */
42b77728 546void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
547 unsigned long addr, unsigned long end,
548 unsigned long floor, unsigned long ceiling)
1da177e4
LT
549{
550 pgd_t *pgd;
551 unsigned long next;
e0da382c
HD
552
553 /*
554 * The next few lines have given us lots of grief...
555 *
556 * Why are we testing PMD* at this top level? Because often
557 * there will be no work to do at all, and we'd prefer not to
558 * go all the way down to the bottom just to discover that.
559 *
560 * Why all these "- 1"s? Because 0 represents both the bottom
561 * of the address space and the top of it (using -1 for the
562 * top wouldn't help much: the masks would do the wrong thing).
563 * The rule is that addr 0 and floor 0 refer to the bottom of
564 * the address space, but end 0 and ceiling 0 refer to the top
565 * Comparisons need to use "end - 1" and "ceiling - 1" (though
566 * that end 0 case should be mythical).
567 *
568 * Wherever addr is brought up or ceiling brought down, we must
569 * be careful to reject "the opposite 0" before it confuses the
570 * subsequent tests. But what about where end is brought down
571 * by PMD_SIZE below? no, end can't go down to 0 there.
572 *
573 * Whereas we round start (addr) and ceiling down, by different
574 * masks at different levels, in order to test whether a table
575 * now has no other vmas using it, so can be freed, we don't
576 * bother to round floor or end up - the tests don't need that.
577 */
1da177e4 578
e0da382c
HD
579 addr &= PMD_MASK;
580 if (addr < floor) {
581 addr += PMD_SIZE;
582 if (!addr)
583 return;
584 }
585 if (ceiling) {
586 ceiling &= PMD_MASK;
587 if (!ceiling)
588 return;
589 }
590 if (end - 1 > ceiling - 1)
591 end -= PMD_SIZE;
592 if (addr > end - 1)
593 return;
07e32661
AK
594 /*
595 * We add page table cache pages with PAGE_SIZE,
596 * (see pte_free_tlb()), flush the tlb if we need
597 */
598 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 599 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
600 do {
601 next = pgd_addr_end(addr, end);
602 if (pgd_none_or_clear_bad(pgd))
603 continue;
c2febafc 604 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 605 } while (pgd++, addr = next, addr != end);
e0da382c
HD
606}
607
42b77728 608void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 609 unsigned long floor, unsigned long ceiling)
e0da382c
HD
610{
611 while (vma) {
612 struct vm_area_struct *next = vma->vm_next;
613 unsigned long addr = vma->vm_start;
614
8f4f8c16 615 /*
25d9e2d1 616 * Hide vma from rmap and truncate_pagecache before freeing
617 * pgtables
8f4f8c16 618 */
5beb4930 619 unlink_anon_vmas(vma);
8f4f8c16
HD
620 unlink_file_vma(vma);
621
9da61aef 622 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 623 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 624 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
625 } else {
626 /*
627 * Optimization: gather nearby vmas into one call down
628 */
629 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 630 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
631 vma = next;
632 next = vma->vm_next;
5beb4930 633 unlink_anon_vmas(vma);
8f4f8c16 634 unlink_file_vma(vma);
3bf5ee95
HD
635 }
636 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 637 floor, next ? next->vm_start : ceiling);
3bf5ee95 638 }
e0da382c
HD
639 vma = next;
640 }
1da177e4
LT
641}
642
3ed3a4f0 643int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 644{
c4088ebd 645 spinlock_t *ptl;
2f569afd 646 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
647 if (!new)
648 return -ENOMEM;
649
362a61ad
NP
650 /*
651 * Ensure all pte setup (eg. pte page lock and page clearing) are
652 * visible before the pte is made visible to other CPUs by being
653 * put into page tables.
654 *
655 * The other side of the story is the pointer chasing in the page
656 * table walking code (when walking the page table without locking;
657 * ie. most of the time). Fortunately, these data accesses consist
658 * of a chain of data-dependent loads, meaning most CPUs (alpha
659 * being the notable exception) will already guarantee loads are
660 * seen in-order. See the alpha page table accessors for the
661 * smp_read_barrier_depends() barriers in page table walking code.
662 */
663 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
664
c4088ebd 665 ptl = pmd_lock(mm, pmd);
8ac1f832 666 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 667 atomic_long_inc(&mm->nr_ptes);
1da177e4 668 pmd_populate(mm, pmd, new);
2f569afd 669 new = NULL;
4b471e88 670 }
c4088ebd 671 spin_unlock(ptl);
2f569afd
MS
672 if (new)
673 pte_free(mm, new);
1bb3630e 674 return 0;
1da177e4
LT
675}
676
1bb3630e 677int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 678{
1bb3630e
HD
679 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
680 if (!new)
681 return -ENOMEM;
682
362a61ad
NP
683 smp_wmb(); /* See comment in __pte_alloc */
684
1bb3630e 685 spin_lock(&init_mm.page_table_lock);
8ac1f832 686 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 687 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 688 new = NULL;
4b471e88 689 }
1bb3630e 690 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
691 if (new)
692 pte_free_kernel(&init_mm, new);
1bb3630e 693 return 0;
1da177e4
LT
694}
695
d559db08
KH
696static inline void init_rss_vec(int *rss)
697{
698 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
699}
700
701static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 702{
d559db08
KH
703 int i;
704
34e55232 705 if (current->mm == mm)
05af2e10 706 sync_mm_rss(mm);
d559db08
KH
707 for (i = 0; i < NR_MM_COUNTERS; i++)
708 if (rss[i])
709 add_mm_counter(mm, i, rss[i]);
ae859762
HD
710}
711
b5810039 712/*
6aab341e
LT
713 * This function is called to print an error when a bad pte
714 * is found. For example, we might have a PFN-mapped pte in
715 * a region that doesn't allow it.
b5810039
NP
716 *
717 * The calling function must still handle the error.
718 */
3dc14741
HD
719static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
720 pte_t pte, struct page *page)
b5810039 721{
3dc14741 722 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
723 p4d_t *p4d = p4d_offset(pgd, addr);
724 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
725 pmd_t *pmd = pmd_offset(pud, addr);
726 struct address_space *mapping;
727 pgoff_t index;
d936cf9b
HD
728 static unsigned long resume;
729 static unsigned long nr_shown;
730 static unsigned long nr_unshown;
731
732 /*
733 * Allow a burst of 60 reports, then keep quiet for that minute;
734 * or allow a steady drip of one report per second.
735 */
736 if (nr_shown == 60) {
737 if (time_before(jiffies, resume)) {
738 nr_unshown++;
739 return;
740 }
741 if (nr_unshown) {
1170532b
JP
742 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
743 nr_unshown);
d936cf9b
HD
744 nr_unshown = 0;
745 }
746 nr_shown = 0;
747 }
748 if (nr_shown++ == 0)
749 resume = jiffies + 60 * HZ;
3dc14741
HD
750
751 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
752 index = linear_page_index(vma, addr);
753
1170532b
JP
754 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
755 current->comm,
756 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 757 if (page)
f0b791a3 758 dump_page(page, "bad pte");
1170532b
JP
759 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
760 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
3dc14741
HD
761 /*
762 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
763 */
2682582a
KK
764 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
765 vma->vm_file,
766 vma->vm_ops ? vma->vm_ops->fault : NULL,
767 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
768 mapping ? mapping->a_ops->readpage : NULL);
b5810039 769 dump_stack();
373d4d09 770 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
771}
772
ee498ed7 773/*
7e675137 774 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 775 *
7e675137
NP
776 * "Special" mappings do not wish to be associated with a "struct page" (either
777 * it doesn't exist, or it exists but they don't want to touch it). In this
778 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 779 *
7e675137
NP
780 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
781 * pte bit, in which case this function is trivial. Secondly, an architecture
782 * may not have a spare pte bit, which requires a more complicated scheme,
783 * described below.
784 *
785 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
786 * special mapping (even if there are underlying and valid "struct pages").
787 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 788 *
b379d790
JH
789 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
790 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
791 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
792 * mapping will always honor the rule
6aab341e
LT
793 *
794 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
795 *
7e675137
NP
796 * And for normal mappings this is false.
797 *
798 * This restricts such mappings to be a linear translation from virtual address
799 * to pfn. To get around this restriction, we allow arbitrary mappings so long
800 * as the vma is not a COW mapping; in that case, we know that all ptes are
801 * special (because none can have been COWed).
b379d790 802 *
b379d790 803 *
7e675137 804 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
805 *
806 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
807 * page" backing, however the difference is that _all_ pages with a struct
808 * page (that is, those where pfn_valid is true) are refcounted and considered
809 * normal pages by the VM. The disadvantage is that pages are refcounted
810 * (which can be slower and simply not an option for some PFNMAP users). The
811 * advantage is that we don't have to follow the strict linearity rule of
812 * PFNMAP mappings in order to support COWable mappings.
813 *
ee498ed7 814 */
7e675137
NP
815#ifdef __HAVE_ARCH_PTE_SPECIAL
816# define HAVE_PTE_SPECIAL 1
817#else
818# define HAVE_PTE_SPECIAL 0
819#endif
820struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821 pte_t pte)
ee498ed7 822{
22b31eec 823 unsigned long pfn = pte_pfn(pte);
7e675137
NP
824
825 if (HAVE_PTE_SPECIAL) {
b38af472 826 if (likely(!pte_special(pte)))
22b31eec 827 goto check_pfn;
667a0a06
DV
828 if (vma->vm_ops && vma->vm_ops->find_special_page)
829 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
830 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831 return NULL;
62eede62 832 if (!is_zero_pfn(pfn))
22b31eec 833 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
834 return NULL;
835 }
836
837 /* !HAVE_PTE_SPECIAL case follows: */
838
b379d790
JH
839 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
840 if (vma->vm_flags & VM_MIXEDMAP) {
841 if (!pfn_valid(pfn))
842 return NULL;
843 goto out;
844 } else {
7e675137
NP
845 unsigned long off;
846 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
847 if (pfn == vma->vm_pgoff + off)
848 return NULL;
849 if (!is_cow_mapping(vma->vm_flags))
850 return NULL;
851 }
6aab341e
LT
852 }
853
b38af472
HD
854 if (is_zero_pfn(pfn))
855 return NULL;
22b31eec
HD
856check_pfn:
857 if (unlikely(pfn > highest_memmap_pfn)) {
858 print_bad_pte(vma, addr, pte, NULL);
859 return NULL;
860 }
6aab341e
LT
861
862 /*
7e675137 863 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 864 * eg. VDSO mappings can cause them to exist.
6aab341e 865 */
b379d790 866out:
6aab341e 867 return pfn_to_page(pfn);
ee498ed7
HD
868}
869
28093f9f
GS
870#ifdef CONFIG_TRANSPARENT_HUGEPAGE
871struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
872 pmd_t pmd)
873{
874 unsigned long pfn = pmd_pfn(pmd);
875
876 /*
877 * There is no pmd_special() but there may be special pmds, e.g.
878 * in a direct-access (dax) mapping, so let's just replicate the
879 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
880 */
881 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
882 if (vma->vm_flags & VM_MIXEDMAP) {
883 if (!pfn_valid(pfn))
884 return NULL;
885 goto out;
886 } else {
887 unsigned long off;
888 off = (addr - vma->vm_start) >> PAGE_SHIFT;
889 if (pfn == vma->vm_pgoff + off)
890 return NULL;
891 if (!is_cow_mapping(vma->vm_flags))
892 return NULL;
893 }
894 }
895
896 if (is_zero_pfn(pfn))
897 return NULL;
898 if (unlikely(pfn > highest_memmap_pfn))
899 return NULL;
900
901 /*
902 * NOTE! We still have PageReserved() pages in the page tables.
903 * eg. VDSO mappings can cause them to exist.
904 */
905out:
906 return pfn_to_page(pfn);
907}
908#endif
909
1da177e4
LT
910/*
911 * copy one vm_area from one task to the other. Assumes the page tables
912 * already present in the new task to be cleared in the whole range
913 * covered by this vma.
1da177e4
LT
914 */
915
570a335b 916static inline unsigned long
1da177e4 917copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 918 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 919 unsigned long addr, int *rss)
1da177e4 920{
b5810039 921 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
922 pte_t pte = *src_pte;
923 struct page *page;
1da177e4
LT
924
925 /* pte contains position in swap or file, so copy. */
926 if (unlikely(!pte_present(pte))) {
0661a336
KS
927 swp_entry_t entry = pte_to_swp_entry(pte);
928
929 if (likely(!non_swap_entry(entry))) {
930 if (swap_duplicate(entry) < 0)
931 return entry.val;
932
933 /* make sure dst_mm is on swapoff's mmlist. */
934 if (unlikely(list_empty(&dst_mm->mmlist))) {
935 spin_lock(&mmlist_lock);
936 if (list_empty(&dst_mm->mmlist))
937 list_add(&dst_mm->mmlist,
938 &src_mm->mmlist);
939 spin_unlock(&mmlist_lock);
940 }
941 rss[MM_SWAPENTS]++;
942 } else if (is_migration_entry(entry)) {
943 page = migration_entry_to_page(entry);
944
eca56ff9 945 rss[mm_counter(page)]++;
0661a336
KS
946
947 if (is_write_migration_entry(entry) &&
948 is_cow_mapping(vm_flags)) {
949 /*
950 * COW mappings require pages in both
951 * parent and child to be set to read.
952 */
953 make_migration_entry_read(&entry);
954 pte = swp_entry_to_pte(entry);
955 if (pte_swp_soft_dirty(*src_pte))
956 pte = pte_swp_mksoft_dirty(pte);
957 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 958 }
1da177e4 959 }
ae859762 960 goto out_set_pte;
1da177e4
LT
961 }
962
1da177e4
LT
963 /*
964 * If it's a COW mapping, write protect it both
965 * in the parent and the child
966 */
67121172 967 if (is_cow_mapping(vm_flags)) {
1da177e4 968 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 969 pte = pte_wrprotect(pte);
1da177e4
LT
970 }
971
972 /*
973 * If it's a shared mapping, mark it clean in
974 * the child
975 */
976 if (vm_flags & VM_SHARED)
977 pte = pte_mkclean(pte);
978 pte = pte_mkold(pte);
6aab341e
LT
979
980 page = vm_normal_page(vma, addr, pte);
981 if (page) {
982 get_page(page);
53f9263b 983 page_dup_rmap(page, false);
eca56ff9 984 rss[mm_counter(page)]++;
6aab341e 985 }
ae859762
HD
986
987out_set_pte:
988 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 989 return 0;
1da177e4
LT
990}
991
21bda264 992static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
993 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
994 unsigned long addr, unsigned long end)
1da177e4 995{
c36987e2 996 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 997 pte_t *src_pte, *dst_pte;
c74df32c 998 spinlock_t *src_ptl, *dst_ptl;
e040f218 999 int progress = 0;
d559db08 1000 int rss[NR_MM_COUNTERS];
570a335b 1001 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
1002
1003again:
d559db08
KH
1004 init_rss_vec(rss);
1005
c74df32c 1006 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
1007 if (!dst_pte)
1008 return -ENOMEM;
ece0e2b6 1009 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1010 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1011 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1012 orig_src_pte = src_pte;
1013 orig_dst_pte = dst_pte;
6606c3e0 1014 arch_enter_lazy_mmu_mode();
1da177e4 1015
1da177e4
LT
1016 do {
1017 /*
1018 * We are holding two locks at this point - either of them
1019 * could generate latencies in another task on another CPU.
1020 */
e040f218
HD
1021 if (progress >= 32) {
1022 progress = 0;
1023 if (need_resched() ||
95c354fe 1024 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1025 break;
1026 }
1da177e4
LT
1027 if (pte_none(*src_pte)) {
1028 progress++;
1029 continue;
1030 }
570a335b
HD
1031 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1032 vma, addr, rss);
1033 if (entry.val)
1034 break;
1da177e4
LT
1035 progress += 8;
1036 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1037
6606c3e0 1038 arch_leave_lazy_mmu_mode();
c74df32c 1039 spin_unlock(src_ptl);
ece0e2b6 1040 pte_unmap(orig_src_pte);
d559db08 1041 add_mm_rss_vec(dst_mm, rss);
c36987e2 1042 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1043 cond_resched();
570a335b
HD
1044
1045 if (entry.val) {
1046 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1047 return -ENOMEM;
1048 progress = 0;
1049 }
1da177e4
LT
1050 if (addr != end)
1051 goto again;
1052 return 0;
1053}
1054
1055static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1056 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1057 unsigned long addr, unsigned long end)
1058{
1059 pmd_t *src_pmd, *dst_pmd;
1060 unsigned long next;
1061
1062 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1063 if (!dst_pmd)
1064 return -ENOMEM;
1065 src_pmd = pmd_offset(src_pud, addr);
1066 do {
1067 next = pmd_addr_end(addr, end);
5c7fb56e 1068 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 1069 int err;
a00cc7d9 1070 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
1071 err = copy_huge_pmd(dst_mm, src_mm,
1072 dst_pmd, src_pmd, addr, vma);
1073 if (err == -ENOMEM)
1074 return -ENOMEM;
1075 if (!err)
1076 continue;
1077 /* fall through */
1078 }
1da177e4
LT
1079 if (pmd_none_or_clear_bad(src_pmd))
1080 continue;
1081 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1082 vma, addr, next))
1083 return -ENOMEM;
1084 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1085 return 0;
1086}
1087
1088static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 1089 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
1090 unsigned long addr, unsigned long end)
1091{
1092 pud_t *src_pud, *dst_pud;
1093 unsigned long next;
1094
c2febafc 1095 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1096 if (!dst_pud)
1097 return -ENOMEM;
c2febafc 1098 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1099 do {
1100 next = pud_addr_end(addr, end);
a00cc7d9
MW
1101 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1102 int err;
1103
1104 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1105 err = copy_huge_pud(dst_mm, src_mm,
1106 dst_pud, src_pud, addr, vma);
1107 if (err == -ENOMEM)
1108 return -ENOMEM;
1109 if (!err)
1110 continue;
1111 /* fall through */
1112 }
1da177e4
LT
1113 if (pud_none_or_clear_bad(src_pud))
1114 continue;
1115 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1116 vma, addr, next))
1117 return -ENOMEM;
1118 } while (dst_pud++, src_pud++, addr = next, addr != end);
1119 return 0;
1120}
1121
c2febafc
KS
1122static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1123 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1124 unsigned long addr, unsigned long end)
1125{
1126 p4d_t *src_p4d, *dst_p4d;
1127 unsigned long next;
1128
1129 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1130 if (!dst_p4d)
1131 return -ENOMEM;
1132 src_p4d = p4d_offset(src_pgd, addr);
1133 do {
1134 next = p4d_addr_end(addr, end);
1135 if (p4d_none_or_clear_bad(src_p4d))
1136 continue;
1137 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1138 vma, addr, next))
1139 return -ENOMEM;
1140 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1141 return 0;
1142}
1143
1da177e4
LT
1144int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1145 struct vm_area_struct *vma)
1146{
1147 pgd_t *src_pgd, *dst_pgd;
1148 unsigned long next;
1149 unsigned long addr = vma->vm_start;
1150 unsigned long end = vma->vm_end;
2ec74c3e
SG
1151 unsigned long mmun_start; /* For mmu_notifiers */
1152 unsigned long mmun_end; /* For mmu_notifiers */
1153 bool is_cow;
cddb8a5c 1154 int ret;
1da177e4 1155
d992895b
NP
1156 /*
1157 * Don't copy ptes where a page fault will fill them correctly.
1158 * Fork becomes much lighter when there are big shared or private
1159 * readonly mappings. The tradeoff is that copy_page_range is more
1160 * efficient than faulting.
1161 */
0661a336
KS
1162 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1163 !vma->anon_vma)
1164 return 0;
d992895b 1165
1da177e4
LT
1166 if (is_vm_hugetlb_page(vma))
1167 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1168
b3b9c293 1169 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1170 /*
1171 * We do not free on error cases below as remove_vma
1172 * gets called on error from higher level routine
1173 */
5180da41 1174 ret = track_pfn_copy(vma);
2ab64037 1175 if (ret)
1176 return ret;
1177 }
1178
cddb8a5c
AA
1179 /*
1180 * We need to invalidate the secondary MMU mappings only when
1181 * there could be a permission downgrade on the ptes of the
1182 * parent mm. And a permission downgrade will only happen if
1183 * is_cow_mapping() returns true.
1184 */
2ec74c3e
SG
1185 is_cow = is_cow_mapping(vma->vm_flags);
1186 mmun_start = addr;
1187 mmun_end = end;
1188 if (is_cow)
1189 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1190 mmun_end);
cddb8a5c
AA
1191
1192 ret = 0;
1da177e4
LT
1193 dst_pgd = pgd_offset(dst_mm, addr);
1194 src_pgd = pgd_offset(src_mm, addr);
1195 do {
1196 next = pgd_addr_end(addr, end);
1197 if (pgd_none_or_clear_bad(src_pgd))
1198 continue;
c2febafc 1199 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1200 vma, addr, next))) {
1201 ret = -ENOMEM;
1202 break;
1203 }
1da177e4 1204 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1205
2ec74c3e
SG
1206 if (is_cow)
1207 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1208 return ret;
1da177e4
LT
1209}
1210
51c6f666 1211static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1212 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1213 unsigned long addr, unsigned long end,
97a89413 1214 struct zap_details *details)
1da177e4 1215{
b5810039 1216 struct mm_struct *mm = tlb->mm;
d16dfc55 1217 int force_flush = 0;
d559db08 1218 int rss[NR_MM_COUNTERS];
97a89413 1219 spinlock_t *ptl;
5f1a1907 1220 pte_t *start_pte;
97a89413 1221 pte_t *pte;
8a5f14a2 1222 swp_entry_t entry;
d559db08 1223
07e32661 1224 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1225again:
e303297e 1226 init_rss_vec(rss);
5f1a1907
SR
1227 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1228 pte = start_pte;
3ea27719 1229 flush_tlb_batched_pending(mm);
6606c3e0 1230 arch_enter_lazy_mmu_mode();
1da177e4
LT
1231 do {
1232 pte_t ptent = *pte;
166f61b9 1233 if (pte_none(ptent))
1da177e4 1234 continue;
6f5e6b9e 1235
1da177e4 1236 if (pte_present(ptent)) {
ee498ed7 1237 struct page *page;
51c6f666 1238
6aab341e 1239 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1240 if (unlikely(details) && page) {
1241 /*
1242 * unmap_shared_mapping_pages() wants to
1243 * invalidate cache without truncating:
1244 * unmap shared but keep private pages.
1245 */
1246 if (details->check_mapping &&
800d8c63 1247 details->check_mapping != page_rmapping(page))
1da177e4 1248 continue;
1da177e4 1249 }
b5810039 1250 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1251 tlb->fullmm);
1da177e4
LT
1252 tlb_remove_tlb_entry(tlb, pte, addr);
1253 if (unlikely(!page))
1254 continue;
eca56ff9
JM
1255
1256 if (!PageAnon(page)) {
1cf35d47
LT
1257 if (pte_dirty(ptent)) {
1258 force_flush = 1;
6237bcd9 1259 set_page_dirty(page);
1cf35d47 1260 }
4917e5d0 1261 if (pte_young(ptent) &&
64363aad 1262 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1263 mark_page_accessed(page);
6237bcd9 1264 }
eca56ff9 1265 rss[mm_counter(page)]--;
d281ee61 1266 page_remove_rmap(page, false);
3dc14741
HD
1267 if (unlikely(page_mapcount(page) < 0))
1268 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1269 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1270 force_flush = 1;
ce9ec37b 1271 addr += PAGE_SIZE;
d16dfc55 1272 break;
1cf35d47 1273 }
1da177e4
LT
1274 continue;
1275 }
3e8715fd
KS
1276 /* If details->check_mapping, we leave swap entries. */
1277 if (unlikely(details))
1da177e4 1278 continue;
b084d435 1279
8a5f14a2
KS
1280 entry = pte_to_swp_entry(ptent);
1281 if (!non_swap_entry(entry))
1282 rss[MM_SWAPENTS]--;
1283 else if (is_migration_entry(entry)) {
1284 struct page *page;
9f9f1acd 1285
8a5f14a2 1286 page = migration_entry_to_page(entry);
eca56ff9 1287 rss[mm_counter(page)]--;
b084d435 1288 }
8a5f14a2
KS
1289 if (unlikely(!free_swap_and_cache(entry)))
1290 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1291 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1292 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1293
d559db08 1294 add_mm_rss_vec(mm, rss);
6606c3e0 1295 arch_leave_lazy_mmu_mode();
51c6f666 1296
1cf35d47 1297 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1298 if (force_flush)
1cf35d47 1299 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1300 pte_unmap_unlock(start_pte, ptl);
1301
1302 /*
1303 * If we forced a TLB flush (either due to running out of
1304 * batch buffers or because we needed to flush dirty TLB
1305 * entries before releasing the ptl), free the batched
1306 * memory too. Restart if we didn't do everything.
1307 */
1308 if (force_flush) {
1309 force_flush = 0;
1310 tlb_flush_mmu_free(tlb);
2b047252 1311 if (addr != end)
d16dfc55
PZ
1312 goto again;
1313 }
1314
51c6f666 1315 return addr;
1da177e4
LT
1316}
1317
51c6f666 1318static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1319 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1320 unsigned long addr, unsigned long end,
97a89413 1321 struct zap_details *details)
1da177e4
LT
1322{
1323 pmd_t *pmd;
1324 unsigned long next;
1325
1326 pmd = pmd_offset(pud, addr);
1327 do {
1328 next = pmd_addr_end(addr, end);
5c7fb56e 1329 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1330 if (next - addr != HPAGE_PMD_SIZE) {
68428398
HD
1331 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1332 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
fd60775a 1333 __split_huge_pmd(vma, pmd, addr, false, NULL);
f21760b1 1334 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1335 goto next;
71e3aac0
AA
1336 /* fall through */
1337 }
1a5a9906
AA
1338 /*
1339 * Here there can be other concurrent MADV_DONTNEED or
1340 * trans huge page faults running, and if the pmd is
1341 * none or trans huge it can change under us. This is
1342 * because MADV_DONTNEED holds the mmap_sem in read
1343 * mode.
1344 */
1345 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1346 goto next;
97a89413 1347 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1348next:
97a89413
PZ
1349 cond_resched();
1350 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1351
1352 return addr;
1da177e4
LT
1353}
1354
51c6f666 1355static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1356 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1357 unsigned long addr, unsigned long end,
97a89413 1358 struct zap_details *details)
1da177e4
LT
1359{
1360 pud_t *pud;
1361 unsigned long next;
1362
c2febafc 1363 pud = pud_offset(p4d, addr);
1da177e4
LT
1364 do {
1365 next = pud_addr_end(addr, end);
a00cc7d9
MW
1366 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1367 if (next - addr != HPAGE_PUD_SIZE) {
1368 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1369 split_huge_pud(vma, pud, addr);
1370 } else if (zap_huge_pud(tlb, vma, pud, addr))
1371 goto next;
1372 /* fall through */
1373 }
97a89413 1374 if (pud_none_or_clear_bad(pud))
1da177e4 1375 continue;
97a89413 1376 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1377next:
1378 cond_resched();
97a89413 1379 } while (pud++, addr = next, addr != end);
51c6f666
RH
1380
1381 return addr;
1da177e4
LT
1382}
1383
c2febafc
KS
1384static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1385 struct vm_area_struct *vma, pgd_t *pgd,
1386 unsigned long addr, unsigned long end,
1387 struct zap_details *details)
1388{
1389 p4d_t *p4d;
1390 unsigned long next;
1391
1392 p4d = p4d_offset(pgd, addr);
1393 do {
1394 next = p4d_addr_end(addr, end);
1395 if (p4d_none_or_clear_bad(p4d))
1396 continue;
1397 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1398 } while (p4d++, addr = next, addr != end);
1399
1400 return addr;
1401}
1402
aac45363 1403void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1404 struct vm_area_struct *vma,
1405 unsigned long addr, unsigned long end,
1406 struct zap_details *details)
1da177e4
LT
1407{
1408 pgd_t *pgd;
1409 unsigned long next;
1410
1da177e4
LT
1411 BUG_ON(addr >= end);
1412 tlb_start_vma(tlb, vma);
1413 pgd = pgd_offset(vma->vm_mm, addr);
1414 do {
1415 next = pgd_addr_end(addr, end);
97a89413 1416 if (pgd_none_or_clear_bad(pgd))
1da177e4 1417 continue;
c2febafc 1418 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1419 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1420 tlb_end_vma(tlb, vma);
1421}
51c6f666 1422
f5cc4eef
AV
1423
1424static void unmap_single_vma(struct mmu_gather *tlb,
1425 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1426 unsigned long end_addr,
f5cc4eef
AV
1427 struct zap_details *details)
1428{
1429 unsigned long start = max(vma->vm_start, start_addr);
1430 unsigned long end;
1431
1432 if (start >= vma->vm_end)
1433 return;
1434 end = min(vma->vm_end, end_addr);
1435 if (end <= vma->vm_start)
1436 return;
1437
cbc91f71
SD
1438 if (vma->vm_file)
1439 uprobe_munmap(vma, start, end);
1440
b3b9c293 1441 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1442 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1443
1444 if (start != end) {
1445 if (unlikely(is_vm_hugetlb_page(vma))) {
1446 /*
1447 * It is undesirable to test vma->vm_file as it
1448 * should be non-null for valid hugetlb area.
1449 * However, vm_file will be NULL in the error
7aa6b4ad 1450 * cleanup path of mmap_region. When
f5cc4eef 1451 * hugetlbfs ->mmap method fails,
7aa6b4ad 1452 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1453 * before calling this function to clean up.
1454 * Since no pte has actually been setup, it is
1455 * safe to do nothing in this case.
1456 */
24669e58 1457 if (vma->vm_file) {
83cde9e8 1458 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1459 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1460 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1461 }
f5cc4eef
AV
1462 } else
1463 unmap_page_range(tlb, vma, start, end, details);
1464 }
1da177e4
LT
1465}
1466
1da177e4
LT
1467/**
1468 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1469 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1470 * @vma: the starting vma
1471 * @start_addr: virtual address at which to start unmapping
1472 * @end_addr: virtual address at which to end unmapping
1da177e4 1473 *
508034a3 1474 * Unmap all pages in the vma list.
1da177e4 1475 *
1da177e4
LT
1476 * Only addresses between `start' and `end' will be unmapped.
1477 *
1478 * The VMA list must be sorted in ascending virtual address order.
1479 *
1480 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1481 * range after unmap_vmas() returns. So the only responsibility here is to
1482 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1483 * drops the lock and schedules.
1484 */
6e8bb019 1485void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1486 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1487 unsigned long end_addr)
1da177e4 1488{
cddb8a5c 1489 struct mm_struct *mm = vma->vm_mm;
1da177e4 1490
cddb8a5c 1491 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1492 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1493 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1494 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1495}
1496
1497/**
1498 * zap_page_range - remove user pages in a given range
1499 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1500 * @start: starting address of pages to zap
1da177e4 1501 * @size: number of bytes to zap
f5cc4eef
AV
1502 *
1503 * Caller must protect the VMA list
1da177e4 1504 */
7e027b14 1505void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1506 unsigned long size)
1da177e4
LT
1507{
1508 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1509 struct mmu_gather tlb;
7e027b14 1510 unsigned long end = start + size;
1da177e4 1511
1da177e4 1512 lru_add_drain();
2b047252 1513 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1514 update_hiwater_rss(mm);
7e027b14
LT
1515 mmu_notifier_invalidate_range_start(mm, start, end);
1516 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
ecf1385d 1517 unmap_single_vma(&tlb, vma, start, end, NULL);
7e027b14
LT
1518 mmu_notifier_invalidate_range_end(mm, start, end);
1519 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1520}
1521
f5cc4eef
AV
1522/**
1523 * zap_page_range_single - remove user pages in a given range
1524 * @vma: vm_area_struct holding the applicable pages
1525 * @address: starting address of pages to zap
1526 * @size: number of bytes to zap
8a5f14a2 1527 * @details: details of shared cache invalidation
f5cc4eef
AV
1528 *
1529 * The range must fit into one VMA.
1da177e4 1530 */
f5cc4eef 1531static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1532 unsigned long size, struct zap_details *details)
1533{
1534 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1535 struct mmu_gather tlb;
1da177e4 1536 unsigned long end = address + size;
1da177e4 1537
1da177e4 1538 lru_add_drain();
2b047252 1539 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1540 update_hiwater_rss(mm);
f5cc4eef 1541 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1542 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1543 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1544 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1545}
1546
c627f9cc
JS
1547/**
1548 * zap_vma_ptes - remove ptes mapping the vma
1549 * @vma: vm_area_struct holding ptes to be zapped
1550 * @address: starting address of pages to zap
1551 * @size: number of bytes to zap
1552 *
1553 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1554 *
1555 * The entire address range must be fully contained within the vma.
1556 *
1557 * Returns 0 if successful.
1558 */
1559int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1560 unsigned long size)
1561{
1562 if (address < vma->vm_start || address + size > vma->vm_end ||
1563 !(vma->vm_flags & VM_PFNMAP))
1564 return -1;
f5cc4eef 1565 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1566 return 0;
1567}
1568EXPORT_SYMBOL_GPL(zap_vma_ptes);
1569
25ca1d6c 1570pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1571 spinlock_t **ptl)
c9cfcddf 1572{
c2febafc
KS
1573 pgd_t *pgd;
1574 p4d_t *p4d;
1575 pud_t *pud;
1576 pmd_t *pmd;
1577
1578 pgd = pgd_offset(mm, addr);
1579 p4d = p4d_alloc(mm, pgd, addr);
1580 if (!p4d)
1581 return NULL;
1582 pud = pud_alloc(mm, p4d, addr);
1583 if (!pud)
1584 return NULL;
1585 pmd = pmd_alloc(mm, pud, addr);
1586 if (!pmd)
1587 return NULL;
1588
1589 VM_BUG_ON(pmd_trans_huge(*pmd));
1590 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1591}
1592
238f58d8
LT
1593/*
1594 * This is the old fallback for page remapping.
1595 *
1596 * For historical reasons, it only allows reserved pages. Only
1597 * old drivers should use this, and they needed to mark their
1598 * pages reserved for the old functions anyway.
1599 */
423bad60
NP
1600static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1601 struct page *page, pgprot_t prot)
238f58d8 1602{
423bad60 1603 struct mm_struct *mm = vma->vm_mm;
238f58d8 1604 int retval;
c9cfcddf 1605 pte_t *pte;
8a9f3ccd
BS
1606 spinlock_t *ptl;
1607
238f58d8 1608 retval = -EINVAL;
a145dd41 1609 if (PageAnon(page))
5b4e655e 1610 goto out;
238f58d8
LT
1611 retval = -ENOMEM;
1612 flush_dcache_page(page);
c9cfcddf 1613 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1614 if (!pte)
5b4e655e 1615 goto out;
238f58d8
LT
1616 retval = -EBUSY;
1617 if (!pte_none(*pte))
1618 goto out_unlock;
1619
1620 /* Ok, finally just insert the thing.. */
1621 get_page(page);
eca56ff9 1622 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1623 page_add_file_rmap(page, false);
238f58d8
LT
1624 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1625
1626 retval = 0;
8a9f3ccd
BS
1627 pte_unmap_unlock(pte, ptl);
1628 return retval;
238f58d8
LT
1629out_unlock:
1630 pte_unmap_unlock(pte, ptl);
1631out:
1632 return retval;
1633}
1634
bfa5bf6d
REB
1635/**
1636 * vm_insert_page - insert single page into user vma
1637 * @vma: user vma to map to
1638 * @addr: target user address of this page
1639 * @page: source kernel page
1640 *
a145dd41
LT
1641 * This allows drivers to insert individual pages they've allocated
1642 * into a user vma.
1643 *
1644 * The page has to be a nice clean _individual_ kernel allocation.
1645 * If you allocate a compound page, you need to have marked it as
1646 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1647 * (see split_page()).
a145dd41
LT
1648 *
1649 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1650 * took an arbitrary page protection parameter. This doesn't allow
1651 * that. Your vma protection will have to be set up correctly, which
1652 * means that if you want a shared writable mapping, you'd better
1653 * ask for a shared writable mapping!
1654 *
1655 * The page does not need to be reserved.
4b6e1e37
KK
1656 *
1657 * Usually this function is called from f_op->mmap() handler
1658 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1659 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1660 * function from other places, for example from page-fault handler.
a145dd41 1661 */
423bad60
NP
1662int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1663 struct page *page)
a145dd41
LT
1664{
1665 if (addr < vma->vm_start || addr >= vma->vm_end)
1666 return -EFAULT;
1667 if (!page_count(page))
1668 return -EINVAL;
4b6e1e37
KK
1669 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1670 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1671 BUG_ON(vma->vm_flags & VM_PFNMAP);
1672 vma->vm_flags |= VM_MIXEDMAP;
1673 }
423bad60 1674 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1675}
e3c3374f 1676EXPORT_SYMBOL(vm_insert_page);
a145dd41 1677
423bad60 1678static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1679 pfn_t pfn, pgprot_t prot)
423bad60
NP
1680{
1681 struct mm_struct *mm = vma->vm_mm;
1682 int retval;
1683 pte_t *pte, entry;
1684 spinlock_t *ptl;
1685
1686 retval = -ENOMEM;
1687 pte = get_locked_pte(mm, addr, &ptl);
1688 if (!pte)
1689 goto out;
1690 retval = -EBUSY;
1691 if (!pte_none(*pte))
1692 goto out_unlock;
1693
1694 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1695 if (pfn_t_devmap(pfn))
1696 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1697 else
1698 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
423bad60 1699 set_pte_at(mm, addr, pte, entry);
4b3073e1 1700 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1701
1702 retval = 0;
1703out_unlock:
1704 pte_unmap_unlock(pte, ptl);
1705out:
1706 return retval;
1707}
1708
e0dc0d8f
NP
1709/**
1710 * vm_insert_pfn - insert single pfn into user vma
1711 * @vma: user vma to map to
1712 * @addr: target user address of this page
1713 * @pfn: source kernel pfn
1714 *
c462f179 1715 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1716 * they've allocated into a user vma. Same comments apply.
1717 *
1718 * This function should only be called from a vm_ops->fault handler, and
1719 * in that case the handler should return NULL.
0d71d10a
NP
1720 *
1721 * vma cannot be a COW mapping.
1722 *
1723 * As this is called only for pages that do not currently exist, we
1724 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1725 */
1726int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1727 unsigned long pfn)
1745cbc5
AL
1728{
1729 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1730}
1731EXPORT_SYMBOL(vm_insert_pfn);
1732
1733/**
1734 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1735 * @vma: user vma to map to
1736 * @addr: target user address of this page
1737 * @pfn: source kernel pfn
1738 * @pgprot: pgprot flags for the inserted page
1739 *
1740 * This is exactly like vm_insert_pfn, except that it allows drivers to
1741 * to override pgprot on a per-page basis.
1742 *
1743 * This only makes sense for IO mappings, and it makes no sense for
1744 * cow mappings. In general, using multiple vmas is preferable;
1745 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1746 * impractical.
1747 */
1748int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1749 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1750{
2ab64037 1751 int ret;
7e675137
NP
1752 /*
1753 * Technically, architectures with pte_special can avoid all these
1754 * restrictions (same for remap_pfn_range). However we would like
1755 * consistency in testing and feature parity among all, so we should
1756 * try to keep these invariants in place for everybody.
1757 */
b379d790
JH
1758 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1759 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1760 (VM_PFNMAP|VM_MIXEDMAP));
1761 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1762 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1763
423bad60
NP
1764 if (addr < vma->vm_start || addr >= vma->vm_end)
1765 return -EFAULT;
308a047c
BP
1766
1767 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1768
01c8f1c4 1769 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
2ab64037 1770
2ab64037 1771 return ret;
423bad60 1772}
1745cbc5 1773EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1774
423bad60 1775int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1776 pfn_t pfn)
423bad60 1777{
87744ab3
DW
1778 pgprot_t pgprot = vma->vm_page_prot;
1779
423bad60 1780 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1781
423bad60
NP
1782 if (addr < vma->vm_start || addr >= vma->vm_end)
1783 return -EFAULT;
308a047c
BP
1784
1785 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1786
423bad60
NP
1787 /*
1788 * If we don't have pte special, then we have to use the pfn_valid()
1789 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1790 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1791 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1792 * without pte special, it would there be refcounted as a normal page.
423bad60 1793 */
03fc2da6 1794 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1795 struct page *page;
1796
03fc2da6
DW
1797 /*
1798 * At this point we are committed to insert_page()
1799 * regardless of whether the caller specified flags that
1800 * result in pfn_t_has_page() == false.
1801 */
1802 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1803 return insert_page(vma, addr, page, pgprot);
423bad60 1804 }
87744ab3 1805 return insert_pfn(vma, addr, pfn, pgprot);
e0dc0d8f 1806}
423bad60 1807EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1808
1da177e4
LT
1809/*
1810 * maps a range of physical memory into the requested pages. the old
1811 * mappings are removed. any references to nonexistent pages results
1812 * in null mappings (currently treated as "copy-on-access")
1813 */
1814static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1815 unsigned long addr, unsigned long end,
1816 unsigned long pfn, pgprot_t prot)
1817{
1818 pte_t *pte;
c74df32c 1819 spinlock_t *ptl;
1da177e4 1820
c74df32c 1821 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1822 if (!pte)
1823 return -ENOMEM;
6606c3e0 1824 arch_enter_lazy_mmu_mode();
1da177e4
LT
1825 do {
1826 BUG_ON(!pte_none(*pte));
7e675137 1827 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1828 pfn++;
1829 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1830 arch_leave_lazy_mmu_mode();
c74df32c 1831 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1832 return 0;
1833}
1834
1835static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1836 unsigned long addr, unsigned long end,
1837 unsigned long pfn, pgprot_t prot)
1838{
1839 pmd_t *pmd;
1840 unsigned long next;
1841
1842 pfn -= addr >> PAGE_SHIFT;
1843 pmd = pmd_alloc(mm, pud, addr);
1844 if (!pmd)
1845 return -ENOMEM;
f66055ab 1846 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1847 do {
1848 next = pmd_addr_end(addr, end);
1849 if (remap_pte_range(mm, pmd, addr, next,
1850 pfn + (addr >> PAGE_SHIFT), prot))
1851 return -ENOMEM;
1852 } while (pmd++, addr = next, addr != end);
1853 return 0;
1854}
1855
c2febafc 1856static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1857 unsigned long addr, unsigned long end,
1858 unsigned long pfn, pgprot_t prot)
1859{
1860 pud_t *pud;
1861 unsigned long next;
1862
1863 pfn -= addr >> PAGE_SHIFT;
c2febafc 1864 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1865 if (!pud)
1866 return -ENOMEM;
1867 do {
1868 next = pud_addr_end(addr, end);
1869 if (remap_pmd_range(mm, pud, addr, next,
1870 pfn + (addr >> PAGE_SHIFT), prot))
1871 return -ENOMEM;
1872 } while (pud++, addr = next, addr != end);
1873 return 0;
1874}
1875
c2febafc
KS
1876static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1877 unsigned long addr, unsigned long end,
1878 unsigned long pfn, pgprot_t prot)
1879{
1880 p4d_t *p4d;
1881 unsigned long next;
1882
1883 pfn -= addr >> PAGE_SHIFT;
1884 p4d = p4d_alloc(mm, pgd, addr);
1885 if (!p4d)
1886 return -ENOMEM;
1887 do {
1888 next = p4d_addr_end(addr, end);
1889 if (remap_pud_range(mm, p4d, addr, next,
1890 pfn + (addr >> PAGE_SHIFT), prot))
1891 return -ENOMEM;
1892 } while (p4d++, addr = next, addr != end);
1893 return 0;
1894}
1895
bfa5bf6d
REB
1896/**
1897 * remap_pfn_range - remap kernel memory to userspace
1898 * @vma: user vma to map to
1899 * @addr: target user address to start at
1900 * @pfn: physical address of kernel memory
1901 * @size: size of map area
1902 * @prot: page protection flags for this mapping
1903 *
1904 * Note: this is only safe if the mm semaphore is held when called.
1905 */
1da177e4
LT
1906int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1907 unsigned long pfn, unsigned long size, pgprot_t prot)
1908{
1909 pgd_t *pgd;
1910 unsigned long next;
2d15cab8 1911 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1912 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1913 unsigned long remap_pfn = pfn;
1da177e4
LT
1914 int err;
1915
1916 /*
1917 * Physically remapped pages are special. Tell the
1918 * rest of the world about it:
1919 * VM_IO tells people not to look at these pages
1920 * (accesses can have side effects).
6aab341e
LT
1921 * VM_PFNMAP tells the core MM that the base pages are just
1922 * raw PFN mappings, and do not have a "struct page" associated
1923 * with them.
314e51b9
KK
1924 * VM_DONTEXPAND
1925 * Disable vma merging and expanding with mremap().
1926 * VM_DONTDUMP
1927 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1928 *
1929 * There's a horrible special case to handle copy-on-write
1930 * behaviour that some programs depend on. We mark the "original"
1931 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1932 * See vm_normal_page() for details.
1da177e4 1933 */
b3b9c293
KK
1934 if (is_cow_mapping(vma->vm_flags)) {
1935 if (addr != vma->vm_start || end != vma->vm_end)
1936 return -EINVAL;
fb155c16 1937 vma->vm_pgoff = pfn;
b3b9c293
KK
1938 }
1939
d5957d2f 1940 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1941 if (err)
3c8bb73a 1942 return -EINVAL;
fb155c16 1943
314e51b9 1944 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1945
1946 BUG_ON(addr >= end);
1947 pfn -= addr >> PAGE_SHIFT;
1948 pgd = pgd_offset(mm, addr);
1949 flush_cache_range(vma, addr, end);
1da177e4
LT
1950 do {
1951 next = pgd_addr_end(addr, end);
c2febafc 1952 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1953 pfn + (addr >> PAGE_SHIFT), prot);
1954 if (err)
1955 break;
1956 } while (pgd++, addr = next, addr != end);
2ab64037 1957
1958 if (err)
d5957d2f 1959 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1960
1da177e4
LT
1961 return err;
1962}
1963EXPORT_SYMBOL(remap_pfn_range);
1964
b4cbb197
LT
1965/**
1966 * vm_iomap_memory - remap memory to userspace
1967 * @vma: user vma to map to
1968 * @start: start of area
1969 * @len: size of area
1970 *
1971 * This is a simplified io_remap_pfn_range() for common driver use. The
1972 * driver just needs to give us the physical memory range to be mapped,
1973 * we'll figure out the rest from the vma information.
1974 *
1975 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1976 * whatever write-combining details or similar.
1977 */
1978int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1979{
1980 unsigned long vm_len, pfn, pages;
1981
1982 /* Check that the physical memory area passed in looks valid */
1983 if (start + len < start)
1984 return -EINVAL;
1985 /*
1986 * You *really* shouldn't map things that aren't page-aligned,
1987 * but we've historically allowed it because IO memory might
1988 * just have smaller alignment.
1989 */
1990 len += start & ~PAGE_MASK;
1991 pfn = start >> PAGE_SHIFT;
1992 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1993 if (pfn + pages < pfn)
1994 return -EINVAL;
1995
1996 /* We start the mapping 'vm_pgoff' pages into the area */
1997 if (vma->vm_pgoff > pages)
1998 return -EINVAL;
1999 pfn += vma->vm_pgoff;
2000 pages -= vma->vm_pgoff;
2001
2002 /* Can we fit all of the mapping? */
2003 vm_len = vma->vm_end - vma->vm_start;
2004 if (vm_len >> PAGE_SHIFT > pages)
2005 return -EINVAL;
2006
2007 /* Ok, let it rip */
2008 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2009}
2010EXPORT_SYMBOL(vm_iomap_memory);
2011
aee16b3c
JF
2012static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2013 unsigned long addr, unsigned long end,
2014 pte_fn_t fn, void *data)
2015{
2016 pte_t *pte;
2017 int err;
2f569afd 2018 pgtable_t token;
94909914 2019 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2020
2021 pte = (mm == &init_mm) ?
2022 pte_alloc_kernel(pmd, addr) :
2023 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2024 if (!pte)
2025 return -ENOMEM;
2026
2027 BUG_ON(pmd_huge(*pmd));
2028
38e0edb1
JF
2029 arch_enter_lazy_mmu_mode();
2030
2f569afd 2031 token = pmd_pgtable(*pmd);
aee16b3c
JF
2032
2033 do {
c36987e2 2034 err = fn(pte++, token, addr, data);
aee16b3c
JF
2035 if (err)
2036 break;
c36987e2 2037 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2038
38e0edb1
JF
2039 arch_leave_lazy_mmu_mode();
2040
aee16b3c
JF
2041 if (mm != &init_mm)
2042 pte_unmap_unlock(pte-1, ptl);
2043 return err;
2044}
2045
2046static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2047 unsigned long addr, unsigned long end,
2048 pte_fn_t fn, void *data)
2049{
2050 pmd_t *pmd;
2051 unsigned long next;
2052 int err;
2053
ceb86879
AK
2054 BUG_ON(pud_huge(*pud));
2055
aee16b3c
JF
2056 pmd = pmd_alloc(mm, pud, addr);
2057 if (!pmd)
2058 return -ENOMEM;
2059 do {
2060 next = pmd_addr_end(addr, end);
2061 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2062 if (err)
2063 break;
2064 } while (pmd++, addr = next, addr != end);
2065 return err;
2066}
2067
c2febafc 2068static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2069 unsigned long addr, unsigned long end,
2070 pte_fn_t fn, void *data)
2071{
2072 pud_t *pud;
2073 unsigned long next;
2074 int err;
2075
c2febafc 2076 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2077 if (!pud)
2078 return -ENOMEM;
2079 do {
2080 next = pud_addr_end(addr, end);
2081 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2082 if (err)
2083 break;
2084 } while (pud++, addr = next, addr != end);
2085 return err;
2086}
2087
c2febafc
KS
2088static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2089 unsigned long addr, unsigned long end,
2090 pte_fn_t fn, void *data)
2091{
2092 p4d_t *p4d;
2093 unsigned long next;
2094 int err;
2095
2096 p4d = p4d_alloc(mm, pgd, addr);
2097 if (!p4d)
2098 return -ENOMEM;
2099 do {
2100 next = p4d_addr_end(addr, end);
2101 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2102 if (err)
2103 break;
2104 } while (p4d++, addr = next, addr != end);
2105 return err;
2106}
2107
aee16b3c
JF
2108/*
2109 * Scan a region of virtual memory, filling in page tables as necessary
2110 * and calling a provided function on each leaf page table.
2111 */
2112int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2113 unsigned long size, pte_fn_t fn, void *data)
2114{
2115 pgd_t *pgd;
2116 unsigned long next;
57250a5b 2117 unsigned long end = addr + size;
aee16b3c
JF
2118 int err;
2119
9cb65bc3
MP
2120 if (WARN_ON(addr >= end))
2121 return -EINVAL;
2122
aee16b3c
JF
2123 pgd = pgd_offset(mm, addr);
2124 do {
2125 next = pgd_addr_end(addr, end);
c2febafc 2126 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2127 if (err)
2128 break;
2129 } while (pgd++, addr = next, addr != end);
57250a5b 2130
aee16b3c
JF
2131 return err;
2132}
2133EXPORT_SYMBOL_GPL(apply_to_page_range);
2134
8f4e2101 2135/*
9b4bdd2f
KS
2136 * handle_pte_fault chooses page fault handler according to an entry which was
2137 * read non-atomically. Before making any commitment, on those architectures
2138 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2139 * parts, do_swap_page must check under lock before unmapping the pte and
2140 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2141 * and do_anonymous_page can safely check later on).
8f4e2101 2142 */
4c21e2f2 2143static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2144 pte_t *page_table, pte_t orig_pte)
2145{
2146 int same = 1;
2147#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2148 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2149 spinlock_t *ptl = pte_lockptr(mm, pmd);
2150 spin_lock(ptl);
8f4e2101 2151 same = pte_same(*page_table, orig_pte);
4c21e2f2 2152 spin_unlock(ptl);
8f4e2101
HD
2153 }
2154#endif
2155 pte_unmap(page_table);
2156 return same;
2157}
2158
9de455b2 2159static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2160{
0abdd7a8
DW
2161 debug_dma_assert_idle(src);
2162
6aab341e
LT
2163 /*
2164 * If the source page was a PFN mapping, we don't have
2165 * a "struct page" for it. We do a best-effort copy by
2166 * just copying from the original user address. If that
2167 * fails, we just zero-fill it. Live with it.
2168 */
2169 if (unlikely(!src)) {
9b04c5fe 2170 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2171 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2172
2173 /*
2174 * This really shouldn't fail, because the page is there
2175 * in the page tables. But it might just be unreadable,
2176 * in which case we just give up and fill the result with
2177 * zeroes.
2178 */
2179 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2180 clear_page(kaddr);
9b04c5fe 2181 kunmap_atomic(kaddr);
c4ec7b0d 2182 flush_dcache_page(dst);
0ed361de
NP
2183 } else
2184 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2185}
2186
c20cd45e
MH
2187static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2188{
2189 struct file *vm_file = vma->vm_file;
2190
2191 if (vm_file)
2192 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2193
2194 /*
2195 * Special mappings (e.g. VDSO) do not have any file so fake
2196 * a default GFP_KERNEL for them.
2197 */
2198 return GFP_KERNEL;
2199}
2200
fb09a464
KS
2201/*
2202 * Notify the address space that the page is about to become writable so that
2203 * it can prohibit this or wait for the page to get into an appropriate state.
2204 *
2205 * We do this without the lock held, so that it can sleep if it needs to.
2206 */
38b8cb7f 2207static int do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2208{
fb09a464 2209 int ret;
38b8cb7f
JK
2210 struct page *page = vmf->page;
2211 unsigned int old_flags = vmf->flags;
fb09a464 2212
38b8cb7f 2213 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2214
11bac800 2215 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2216 /* Restore original flags so that caller is not surprised */
2217 vmf->flags = old_flags;
fb09a464
KS
2218 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2219 return ret;
2220 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2221 lock_page(page);
2222 if (!page->mapping) {
2223 unlock_page(page);
2224 return 0; /* retry */
2225 }
2226 ret |= VM_FAULT_LOCKED;
2227 } else
2228 VM_BUG_ON_PAGE(!PageLocked(page), page);
2229 return ret;
2230}
2231
97ba0c2b
JK
2232/*
2233 * Handle dirtying of a page in shared file mapping on a write fault.
2234 *
2235 * The function expects the page to be locked and unlocks it.
2236 */
2237static void fault_dirty_shared_page(struct vm_area_struct *vma,
2238 struct page *page)
2239{
2240 struct address_space *mapping;
2241 bool dirtied;
2242 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2243
2244 dirtied = set_page_dirty(page);
2245 VM_BUG_ON_PAGE(PageAnon(page), page);
2246 /*
2247 * Take a local copy of the address_space - page.mapping may be zeroed
2248 * by truncate after unlock_page(). The address_space itself remains
2249 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2250 * release semantics to prevent the compiler from undoing this copying.
2251 */
2252 mapping = page_rmapping(page);
2253 unlock_page(page);
2254
2255 if ((dirtied || page_mkwrite) && mapping) {
2256 /*
2257 * Some device drivers do not set page.mapping
2258 * but still dirty their pages
2259 */
2260 balance_dirty_pages_ratelimited(mapping);
2261 }
2262
2263 if (!page_mkwrite)
2264 file_update_time(vma->vm_file);
2265}
2266
4e047f89
SR
2267/*
2268 * Handle write page faults for pages that can be reused in the current vma
2269 *
2270 * This can happen either due to the mapping being with the VM_SHARED flag,
2271 * or due to us being the last reference standing to the page. In either
2272 * case, all we need to do here is to mark the page as writable and update
2273 * any related book-keeping.
2274 */
997dd98d 2275static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2276 __releases(vmf->ptl)
4e047f89 2277{
82b0f8c3 2278 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2279 struct page *page = vmf->page;
4e047f89
SR
2280 pte_t entry;
2281 /*
2282 * Clear the pages cpupid information as the existing
2283 * information potentially belongs to a now completely
2284 * unrelated process.
2285 */
2286 if (page)
2287 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2288
2994302b
JK
2289 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2290 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2291 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2292 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2293 update_mmu_cache(vma, vmf->address, vmf->pte);
2294 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2295}
2296
2f38ab2c
SR
2297/*
2298 * Handle the case of a page which we actually need to copy to a new page.
2299 *
2300 * Called with mmap_sem locked and the old page referenced, but
2301 * without the ptl held.
2302 *
2303 * High level logic flow:
2304 *
2305 * - Allocate a page, copy the content of the old page to the new one.
2306 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2307 * - Take the PTL. If the pte changed, bail out and release the allocated page
2308 * - If the pte is still the way we remember it, update the page table and all
2309 * relevant references. This includes dropping the reference the page-table
2310 * held to the old page, as well as updating the rmap.
2311 * - In any case, unlock the PTL and drop the reference we took to the old page.
2312 */
a41b70d6 2313static int wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2314{
82b0f8c3 2315 struct vm_area_struct *vma = vmf->vma;
bae473a4 2316 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2317 struct page *old_page = vmf->page;
2f38ab2c 2318 struct page *new_page = NULL;
2f38ab2c
SR
2319 pte_t entry;
2320 int page_copied = 0;
82b0f8c3 2321 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2322 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2323 struct mem_cgroup *memcg;
2324
2325 if (unlikely(anon_vma_prepare(vma)))
2326 goto oom;
2327
2994302b 2328 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2329 new_page = alloc_zeroed_user_highpage_movable(vma,
2330 vmf->address);
2f38ab2c
SR
2331 if (!new_page)
2332 goto oom;
2333 } else {
bae473a4 2334 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2335 vmf->address);
2f38ab2c
SR
2336 if (!new_page)
2337 goto oom;
82b0f8c3 2338 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2339 }
2f38ab2c 2340
f627c2f5 2341 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2342 goto oom_free_new;
2343
eb3c24f3
MG
2344 __SetPageUptodate(new_page);
2345
2f38ab2c
SR
2346 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2347
2348 /*
2349 * Re-check the pte - we dropped the lock
2350 */
82b0f8c3 2351 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2352 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2353 if (old_page) {
2354 if (!PageAnon(old_page)) {
eca56ff9
JM
2355 dec_mm_counter_fast(mm,
2356 mm_counter_file(old_page));
2f38ab2c
SR
2357 inc_mm_counter_fast(mm, MM_ANONPAGES);
2358 }
2359 } else {
2360 inc_mm_counter_fast(mm, MM_ANONPAGES);
2361 }
2994302b 2362 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2363 entry = mk_pte(new_page, vma->vm_page_prot);
2364 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2365 /*
2366 * Clear the pte entry and flush it first, before updating the
2367 * pte with the new entry. This will avoid a race condition
2368 * seen in the presence of one thread doing SMC and another
2369 * thread doing COW.
2370 */
82b0f8c3
JK
2371 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2372 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2373 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2374 lru_cache_add_active_or_unevictable(new_page, vma);
2375 /*
2376 * We call the notify macro here because, when using secondary
2377 * mmu page tables (such as kvm shadow page tables), we want the
2378 * new page to be mapped directly into the secondary page table.
2379 */
82b0f8c3
JK
2380 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2381 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2382 if (old_page) {
2383 /*
2384 * Only after switching the pte to the new page may
2385 * we remove the mapcount here. Otherwise another
2386 * process may come and find the rmap count decremented
2387 * before the pte is switched to the new page, and
2388 * "reuse" the old page writing into it while our pte
2389 * here still points into it and can be read by other
2390 * threads.
2391 *
2392 * The critical issue is to order this
2393 * page_remove_rmap with the ptp_clear_flush above.
2394 * Those stores are ordered by (if nothing else,)
2395 * the barrier present in the atomic_add_negative
2396 * in page_remove_rmap.
2397 *
2398 * Then the TLB flush in ptep_clear_flush ensures that
2399 * no process can access the old page before the
2400 * decremented mapcount is visible. And the old page
2401 * cannot be reused until after the decremented
2402 * mapcount is visible. So transitively, TLBs to
2403 * old page will be flushed before it can be reused.
2404 */
d281ee61 2405 page_remove_rmap(old_page, false);
2f38ab2c
SR
2406 }
2407
2408 /* Free the old page.. */
2409 new_page = old_page;
2410 page_copied = 1;
2411 } else {
f627c2f5 2412 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2413 }
2414
2415 if (new_page)
09cbfeaf 2416 put_page(new_page);
2f38ab2c 2417
82b0f8c3 2418 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
2419 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2420 if (old_page) {
2421 /*
2422 * Don't let another task, with possibly unlocked vma,
2423 * keep the mlocked page.
2424 */
2425 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2426 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2427 if (PageMlocked(old_page))
2428 munlock_vma_page(old_page);
2f38ab2c
SR
2429 unlock_page(old_page);
2430 }
09cbfeaf 2431 put_page(old_page);
2f38ab2c
SR
2432 }
2433 return page_copied ? VM_FAULT_WRITE : 0;
2434oom_free_new:
09cbfeaf 2435 put_page(new_page);
2f38ab2c
SR
2436oom:
2437 if (old_page)
09cbfeaf 2438 put_page(old_page);
2f38ab2c
SR
2439 return VM_FAULT_OOM;
2440}
2441
66a6197c
JK
2442/**
2443 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2444 * writeable once the page is prepared
2445 *
2446 * @vmf: structure describing the fault
2447 *
2448 * This function handles all that is needed to finish a write page fault in a
2449 * shared mapping due to PTE being read-only once the mapped page is prepared.
2450 * It handles locking of PTE and modifying it. The function returns
2451 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2452 * lock.
2453 *
2454 * The function expects the page to be locked or other protection against
2455 * concurrent faults / writeback (such as DAX radix tree locks).
2456 */
2457int finish_mkwrite_fault(struct vm_fault *vmf)
2458{
2459 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2460 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2461 &vmf->ptl);
2462 /*
2463 * We might have raced with another page fault while we released the
2464 * pte_offset_map_lock.
2465 */
2466 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2467 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2468 return VM_FAULT_NOPAGE;
66a6197c
JK
2469 }
2470 wp_page_reuse(vmf);
a19e2553 2471 return 0;
66a6197c
JK
2472}
2473
dd906184
BH
2474/*
2475 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2476 * mapping
2477 */
2994302b 2478static int wp_pfn_shared(struct vm_fault *vmf)
dd906184 2479{
82b0f8c3 2480 struct vm_area_struct *vma = vmf->vma;
bae473a4 2481
dd906184 2482 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
dd906184
BH
2483 int ret;
2484
82b0f8c3 2485 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2486 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2487 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2488 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2489 return ret;
66a6197c 2490 return finish_mkwrite_fault(vmf);
dd906184 2491 }
997dd98d
JK
2492 wp_page_reuse(vmf);
2493 return VM_FAULT_WRITE;
dd906184
BH
2494}
2495
a41b70d6 2496static int wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2497 __releases(vmf->ptl)
93e478d4 2498{
82b0f8c3 2499 struct vm_area_struct *vma = vmf->vma;
93e478d4 2500
a41b70d6 2501 get_page(vmf->page);
93e478d4 2502
93e478d4
SR
2503 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2504 int tmp;
2505
82b0f8c3 2506 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2507 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2508 if (unlikely(!tmp || (tmp &
2509 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2510 put_page(vmf->page);
93e478d4
SR
2511 return tmp;
2512 }
66a6197c 2513 tmp = finish_mkwrite_fault(vmf);
a19e2553 2514 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2515 unlock_page(vmf->page);
a41b70d6 2516 put_page(vmf->page);
66a6197c 2517 return tmp;
93e478d4 2518 }
66a6197c
JK
2519 } else {
2520 wp_page_reuse(vmf);
997dd98d 2521 lock_page(vmf->page);
93e478d4 2522 }
997dd98d
JK
2523 fault_dirty_shared_page(vma, vmf->page);
2524 put_page(vmf->page);
93e478d4 2525
997dd98d 2526 return VM_FAULT_WRITE;
93e478d4
SR
2527}
2528
1da177e4
LT
2529/*
2530 * This routine handles present pages, when users try to write
2531 * to a shared page. It is done by copying the page to a new address
2532 * and decrementing the shared-page counter for the old page.
2533 *
1da177e4
LT
2534 * Note that this routine assumes that the protection checks have been
2535 * done by the caller (the low-level page fault routine in most cases).
2536 * Thus we can safely just mark it writable once we've done any necessary
2537 * COW.
2538 *
2539 * We also mark the page dirty at this point even though the page will
2540 * change only once the write actually happens. This avoids a few races,
2541 * and potentially makes it more efficient.
2542 *
8f4e2101
HD
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), with pte both mapped and locked.
2545 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2546 */
2994302b 2547static int do_wp_page(struct vm_fault *vmf)
82b0f8c3 2548 __releases(vmf->ptl)
1da177e4 2549{
82b0f8c3 2550 struct vm_area_struct *vma = vmf->vma;
1da177e4 2551
a41b70d6
JK
2552 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2553 if (!vmf->page) {
251b97f5 2554 /*
64e45507
PF
2555 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2556 * VM_PFNMAP VMA.
251b97f5
PZ
2557 *
2558 * We should not cow pages in a shared writeable mapping.
dd906184 2559 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2560 */
2561 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2562 (VM_WRITE|VM_SHARED))
2994302b 2563 return wp_pfn_shared(vmf);
2f38ab2c 2564
82b0f8c3 2565 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2566 return wp_page_copy(vmf);
251b97f5 2567 }
1da177e4 2568
d08b3851 2569 /*
ee6a6457
PZ
2570 * Take out anonymous pages first, anonymous shared vmas are
2571 * not dirty accountable.
d08b3851 2572 */
a41b70d6 2573 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
6d0a07ed 2574 int total_mapcount;
a41b70d6
JK
2575 if (!trylock_page(vmf->page)) {
2576 get_page(vmf->page);
82b0f8c3 2577 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2578 lock_page(vmf->page);
82b0f8c3
JK
2579 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2580 vmf->address, &vmf->ptl);
2994302b 2581 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2582 unlock_page(vmf->page);
82b0f8c3 2583 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2584 put_page(vmf->page);
28766805 2585 return 0;
ab967d86 2586 }
a41b70d6 2587 put_page(vmf->page);
ee6a6457 2588 }
a41b70d6 2589 if (reuse_swap_page(vmf->page, &total_mapcount)) {
6d0a07ed
AA
2590 if (total_mapcount == 1) {
2591 /*
2592 * The page is all ours. Move it to
2593 * our anon_vma so the rmap code will
2594 * not search our parent or siblings.
2595 * Protected against the rmap code by
2596 * the page lock.
2597 */
a41b70d6 2598 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2599 }
a41b70d6 2600 unlock_page(vmf->page);
997dd98d
JK
2601 wp_page_reuse(vmf);
2602 return VM_FAULT_WRITE;
b009c024 2603 }
a41b70d6 2604 unlock_page(vmf->page);
ee6a6457 2605 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2606 (VM_WRITE|VM_SHARED))) {
a41b70d6 2607 return wp_page_shared(vmf);
1da177e4 2608 }
1da177e4
LT
2609
2610 /*
2611 * Ok, we need to copy. Oh, well..
2612 */
a41b70d6 2613 get_page(vmf->page);
28766805 2614
82b0f8c3 2615 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2616 return wp_page_copy(vmf);
1da177e4
LT
2617}
2618
97a89413 2619static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2620 unsigned long start_addr, unsigned long end_addr,
2621 struct zap_details *details)
2622{
f5cc4eef 2623 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2624}
2625
6b2dbba8 2626static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2627 struct zap_details *details)
2628{
2629 struct vm_area_struct *vma;
1da177e4
LT
2630 pgoff_t vba, vea, zba, zea;
2631
6b2dbba8 2632 vma_interval_tree_foreach(vma, root,
1da177e4 2633 details->first_index, details->last_index) {
1da177e4
LT
2634
2635 vba = vma->vm_pgoff;
d6e93217 2636 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2637 zba = details->first_index;
2638 if (zba < vba)
2639 zba = vba;
2640 zea = details->last_index;
2641 if (zea > vea)
2642 zea = vea;
2643
97a89413 2644 unmap_mapping_range_vma(vma,
1da177e4
LT
2645 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2646 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2647 details);
1da177e4
LT
2648 }
2649}
2650
1da177e4 2651/**
8a5f14a2
KS
2652 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2653 * address_space corresponding to the specified page range in the underlying
2654 * file.
2655 *
3d41088f 2656 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2657 * @holebegin: byte in first page to unmap, relative to the start of
2658 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2659 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2660 * must keep the partial page. In contrast, we must get rid of
2661 * partial pages.
2662 * @holelen: size of prospective hole in bytes. This will be rounded
2663 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2664 * end of the file.
2665 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2666 * but 0 when invalidating pagecache, don't throw away private data.
2667 */
2668void unmap_mapping_range(struct address_space *mapping,
2669 loff_t const holebegin, loff_t const holelen, int even_cows)
2670{
aac45363 2671 struct zap_details details = { };
1da177e4
LT
2672 pgoff_t hba = holebegin >> PAGE_SHIFT;
2673 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2674
2675 /* Check for overflow. */
2676 if (sizeof(holelen) > sizeof(hlen)) {
2677 long long holeend =
2678 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2679 if (holeend & ~(long long)ULONG_MAX)
2680 hlen = ULONG_MAX - hba + 1;
2681 }
2682
166f61b9 2683 details.check_mapping = even_cows ? NULL : mapping;
1da177e4
LT
2684 details.first_index = hba;
2685 details.last_index = hba + hlen - 1;
2686 if (details.last_index < details.first_index)
2687 details.last_index = ULONG_MAX;
1da177e4 2688
46c043ed 2689 i_mmap_lock_write(mapping);
6b2dbba8 2690 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2691 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2692 i_mmap_unlock_write(mapping);
1da177e4
LT
2693}
2694EXPORT_SYMBOL(unmap_mapping_range);
2695
1da177e4 2696/*
8f4e2101
HD
2697 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2698 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2699 * We return with pte unmapped and unlocked.
2700 *
2701 * We return with the mmap_sem locked or unlocked in the same cases
2702 * as does filemap_fault().
1da177e4 2703 */
2994302b 2704int do_swap_page(struct vm_fault *vmf)
1da177e4 2705{
82b0f8c3 2706 struct vm_area_struct *vma = vmf->vma;
56f31801 2707 struct page *page, *swapcache;
00501b53 2708 struct mem_cgroup *memcg;
65500d23 2709 swp_entry_t entry;
1da177e4 2710 pte_t pte;
d065bd81 2711 int locked;
ad8c2ee8 2712 int exclusive = 0;
83c54070 2713 int ret = 0;
1da177e4 2714
2994302b 2715 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2716 goto out;
65500d23 2717
2994302b 2718 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2719 if (unlikely(non_swap_entry(entry))) {
2720 if (is_migration_entry(entry)) {
82b0f8c3
JK
2721 migration_entry_wait(vma->vm_mm, vmf->pmd,
2722 vmf->address);
d1737fdb
AK
2723 } else if (is_hwpoison_entry(entry)) {
2724 ret = VM_FAULT_HWPOISON;
2725 } else {
2994302b 2726 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2727 ret = VM_FAULT_SIGBUS;
d1737fdb 2728 }
0697212a
CL
2729 goto out;
2730 }
0ff92245 2731 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2732 page = lookup_swap_cache(entry);
2733 if (!page) {
82b0f8c3
JK
2734 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2735 vmf->address);
1da177e4
LT
2736 if (!page) {
2737 /*
8f4e2101
HD
2738 * Back out if somebody else faulted in this pte
2739 * while we released the pte lock.
1da177e4 2740 */
82b0f8c3
JK
2741 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2742 vmf->address, &vmf->ptl);
2994302b 2743 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2744 ret = VM_FAULT_OOM;
0ff92245 2745 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2746 goto unlock;
1da177e4
LT
2747 }
2748
2749 /* Had to read the page from swap area: Major fault */
2750 ret = VM_FAULT_MAJOR;
f8891e5e 2751 count_vm_event(PGMAJFAULT);
2262185c 2752 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2753 } else if (PageHWPoison(page)) {
71f72525
WF
2754 /*
2755 * hwpoisoned dirty swapcache pages are kept for killing
2756 * owner processes (which may be unknown at hwpoison time)
2757 */
d1737fdb
AK
2758 ret = VM_FAULT_HWPOISON;
2759 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2760 swapcache = page;
4779cb31 2761 goto out_release;
1da177e4
LT
2762 }
2763
56f31801 2764 swapcache = page;
82b0f8c3 2765 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2766
073e587e 2767 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2768 if (!locked) {
2769 ret |= VM_FAULT_RETRY;
2770 goto out_release;
2771 }
073e587e 2772
4969c119 2773 /*
31c4a3d3
HD
2774 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2775 * release the swapcache from under us. The page pin, and pte_same
2776 * test below, are not enough to exclude that. Even if it is still
2777 * swapcache, we need to check that the page's swap has not changed.
4969c119 2778 */
31c4a3d3 2779 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2780 goto out_page;
2781
82b0f8c3 2782 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2783 if (unlikely(!page)) {
2784 ret = VM_FAULT_OOM;
2785 page = swapcache;
cbf86cfe 2786 goto out_page;
5ad64688
HD
2787 }
2788
bae473a4
KS
2789 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2790 &memcg, false)) {
8a9f3ccd 2791 ret = VM_FAULT_OOM;
bc43f75c 2792 goto out_page;
8a9f3ccd
BS
2793 }
2794
1da177e4 2795 /*
8f4e2101 2796 * Back out if somebody else already faulted in this pte.
1da177e4 2797 */
82b0f8c3
JK
2798 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2799 &vmf->ptl);
2994302b 2800 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2801 goto out_nomap;
b8107480
KK
2802
2803 if (unlikely(!PageUptodate(page))) {
2804 ret = VM_FAULT_SIGBUS;
2805 goto out_nomap;
1da177e4
LT
2806 }
2807
8c7c6e34
KH
2808 /*
2809 * The page isn't present yet, go ahead with the fault.
2810 *
2811 * Be careful about the sequence of operations here.
2812 * To get its accounting right, reuse_swap_page() must be called
2813 * while the page is counted on swap but not yet in mapcount i.e.
2814 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2815 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2816 */
1da177e4 2817
bae473a4
KS
2818 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2819 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2820 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2821 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2822 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2823 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2824 ret |= VM_FAULT_WRITE;
d281ee61 2825 exclusive = RMAP_EXCLUSIVE;
1da177e4 2826 }
1da177e4 2827 flush_icache_page(vma, page);
2994302b 2828 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2829 pte = pte_mksoft_dirty(pte);
82b0f8c3 2830 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2994302b 2831 vmf->orig_pte = pte;
00501b53 2832 if (page == swapcache) {
82b0f8c3 2833 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
f627c2f5 2834 mem_cgroup_commit_charge(page, memcg, true, false);
1a8018fb 2835 activate_page(page);
00501b53 2836 } else { /* ksm created a completely new copy */
82b0f8c3 2837 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2838 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2839 lru_cache_add_active_or_unevictable(page, vma);
2840 }
1da177e4 2841
c475a8ab 2842 swap_free(entry);
5ccc5aba
VD
2843 if (mem_cgroup_swap_full(page) ||
2844 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2845 try_to_free_swap(page);
c475a8ab 2846 unlock_page(page);
56f31801 2847 if (page != swapcache) {
4969c119
AA
2848 /*
2849 * Hold the lock to avoid the swap entry to be reused
2850 * until we take the PT lock for the pte_same() check
2851 * (to avoid false positives from pte_same). For
2852 * further safety release the lock after the swap_free
2853 * so that the swap count won't change under a
2854 * parallel locked swapcache.
2855 */
2856 unlock_page(swapcache);
09cbfeaf 2857 put_page(swapcache);
4969c119 2858 }
c475a8ab 2859
82b0f8c3 2860 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2861 ret |= do_wp_page(vmf);
61469f1d
HD
2862 if (ret & VM_FAULT_ERROR)
2863 ret &= VM_FAULT_ERROR;
1da177e4
LT
2864 goto out;
2865 }
2866
2867 /* No need to invalidate - it was non-present before */
82b0f8c3 2868 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2869unlock:
82b0f8c3 2870 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2871out:
2872 return ret;
b8107480 2873out_nomap:
f627c2f5 2874 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2875 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2876out_page:
b8107480 2877 unlock_page(page);
4779cb31 2878out_release:
09cbfeaf 2879 put_page(page);
56f31801 2880 if (page != swapcache) {
4969c119 2881 unlock_page(swapcache);
09cbfeaf 2882 put_page(swapcache);
4969c119 2883 }
65500d23 2884 return ret;
1da177e4
LT
2885}
2886
2887/*
8f4e2101
HD
2888 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2889 * but allow concurrent faults), and pte mapped but not yet locked.
2890 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2891 */
82b0f8c3 2892static int do_anonymous_page(struct vm_fault *vmf)
1da177e4 2893{
82b0f8c3 2894 struct vm_area_struct *vma = vmf->vma;
00501b53 2895 struct mem_cgroup *memcg;
8f4e2101 2896 struct page *page;
6b31d595 2897 int ret = 0;
1da177e4 2898 pte_t entry;
1da177e4 2899
6b7339f4
KS
2900 /* File mapping without ->vm_ops ? */
2901 if (vma->vm_flags & VM_SHARED)
2902 return VM_FAULT_SIGBUS;
2903
7267ec00
KS
2904 /*
2905 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2906 * pte_offset_map() on pmds where a huge pmd might be created
2907 * from a different thread.
2908 *
2909 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2910 * parallel threads are excluded by other means.
2911 *
2912 * Here we only have down_read(mmap_sem).
2913 */
82b0f8c3 2914 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
2915 return VM_FAULT_OOM;
2916
2917 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2918 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2919 return 0;
2920
11ac5524 2921 /* Use the zero-page for reads */
82b0f8c3 2922 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2923 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2924 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2925 vma->vm_page_prot));
82b0f8c3
JK
2926 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2927 vmf->address, &vmf->ptl);
2928 if (!pte_none(*vmf->pte))
a13ea5b7 2929 goto unlock;
6b31d595
MH
2930 ret = check_stable_address_space(vma->vm_mm);
2931 if (ret)
2932 goto unlock;
6b251fc9
AA
2933 /* Deliver the page fault to userland, check inside PT lock */
2934 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2935 pte_unmap_unlock(vmf->pte, vmf->ptl);
2936 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2937 }
a13ea5b7
HD
2938 goto setpte;
2939 }
2940
557ed1fa 2941 /* Allocate our own private page. */
557ed1fa
NP
2942 if (unlikely(anon_vma_prepare(vma)))
2943 goto oom;
82b0f8c3 2944 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2945 if (!page)
2946 goto oom;
eb3c24f3 2947
bae473a4 2948 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2949 goto oom_free_page;
2950
52f37629
MK
2951 /*
2952 * The memory barrier inside __SetPageUptodate makes sure that
2953 * preceeding stores to the page contents become visible before
2954 * the set_pte_at() write.
2955 */
0ed361de 2956 __SetPageUptodate(page);
8f4e2101 2957
557ed1fa 2958 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2959 if (vma->vm_flags & VM_WRITE)
2960 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2961
82b0f8c3
JK
2962 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2963 &vmf->ptl);
2964 if (!pte_none(*vmf->pte))
557ed1fa 2965 goto release;
9ba69294 2966
6b31d595
MH
2967 ret = check_stable_address_space(vma->vm_mm);
2968 if (ret)
2969 goto release;
2970
6b251fc9
AA
2971 /* Deliver the page fault to userland, check inside PT lock */
2972 if (userfaultfd_missing(vma)) {
82b0f8c3 2973 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 2974 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2975 put_page(page);
82b0f8c3 2976 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
2977 }
2978
bae473a4 2979 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 2980 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2981 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2982 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2983setpte:
82b0f8c3 2984 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
2985
2986 /* No need to invalidate - it was non-present before */
82b0f8c3 2987 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2988unlock:
82b0f8c3 2989 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 2990 return ret;
8f4e2101 2991release:
f627c2f5 2992 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2993 put_page(page);
8f4e2101 2994 goto unlock;
8a9f3ccd 2995oom_free_page:
09cbfeaf 2996 put_page(page);
65500d23 2997oom:
1da177e4
LT
2998 return VM_FAULT_OOM;
2999}
3000
9a95f3cf
PC
3001/*
3002 * The mmap_sem must have been held on entry, and may have been
3003 * released depending on flags and vma->vm_ops->fault() return value.
3004 * See filemap_fault() and __lock_page_retry().
3005 */
936ca80d 3006static int __do_fault(struct vm_fault *vmf)
7eae74af 3007{
82b0f8c3 3008 struct vm_area_struct *vma = vmf->vma;
7eae74af
KS
3009 int ret;
3010
11bac800 3011 ret = vma->vm_ops->fault(vmf);
3917048d 3012 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3013 VM_FAULT_DONE_COW)))
bc2466e4 3014 return ret;
7eae74af 3015
667240e0 3016 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3017 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3018 unlock_page(vmf->page);
3019 put_page(vmf->page);
936ca80d 3020 vmf->page = NULL;
7eae74af
KS
3021 return VM_FAULT_HWPOISON;
3022 }
3023
3024 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3025 lock_page(vmf->page);
7eae74af 3026 else
667240e0 3027 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3028
7eae74af
KS
3029 return ret;
3030}
3031
d0f0931d
RZ
3032/*
3033 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3034 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3035 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3036 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3037 */
3038static int pmd_devmap_trans_unstable(pmd_t *pmd)
3039{
3040 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3041}
3042
82b0f8c3 3043static int pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3044{
82b0f8c3 3045 struct vm_area_struct *vma = vmf->vma;
7267ec00 3046
82b0f8c3 3047 if (!pmd_none(*vmf->pmd))
7267ec00 3048 goto map_pte;
82b0f8c3
JK
3049 if (vmf->prealloc_pte) {
3050 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3051 if (unlikely(!pmd_none(*vmf->pmd))) {
3052 spin_unlock(vmf->ptl);
7267ec00
KS
3053 goto map_pte;
3054 }
3055
3056 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3
JK
3057 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3058 spin_unlock(vmf->ptl);
7f2b6ce8 3059 vmf->prealloc_pte = NULL;
82b0f8c3 3060 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
3061 return VM_FAULT_OOM;
3062 }
3063map_pte:
3064 /*
3065 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3066 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3067 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3068 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3069 * running immediately after a huge pmd fault in a different thread of
3070 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3071 * All we have to ensure is that it is a regular pmd that we can walk
3072 * with pte_offset_map() and we can do that through an atomic read in
3073 * C, which is what pmd_trans_unstable() provides.
7267ec00 3074 */
d0f0931d 3075 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3076 return VM_FAULT_NOPAGE;
3077
d0f0931d
RZ
3078 /*
3079 * At this point we know that our vmf->pmd points to a page of ptes
3080 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3081 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3082 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3083 * be valid and we will re-check to make sure the vmf->pte isn't
3084 * pte_none() under vmf->ptl protection when we return to
3085 * alloc_set_pte().
3086 */
82b0f8c3
JK
3087 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3088 &vmf->ptl);
7267ec00
KS
3089 return 0;
3090}
3091
e496cf3d 3092#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3093
3094#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3095static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3096 unsigned long haddr)
3097{
3098 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3099 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3100 return false;
3101 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3102 return false;
3103 return true;
3104}
3105
82b0f8c3 3106static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3107{
82b0f8c3 3108 struct vm_area_struct *vma = vmf->vma;
953c66c2 3109
82b0f8c3 3110 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3111 /*
3112 * We are going to consume the prealloc table,
3113 * count that as nr_ptes.
3114 */
3115 atomic_long_inc(&vma->vm_mm->nr_ptes);
7f2b6ce8 3116 vmf->prealloc_pte = NULL;
953c66c2
AK
3117}
3118
82b0f8c3 3119static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3120{
82b0f8c3
JK
3121 struct vm_area_struct *vma = vmf->vma;
3122 bool write = vmf->flags & FAULT_FLAG_WRITE;
3123 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459
KS
3124 pmd_t entry;
3125 int i, ret;
3126
3127 if (!transhuge_vma_suitable(vma, haddr))
3128 return VM_FAULT_FALLBACK;
3129
3130 ret = VM_FAULT_FALLBACK;
3131 page = compound_head(page);
3132
953c66c2
AK
3133 /*
3134 * Archs like ppc64 need additonal space to store information
3135 * related to pte entry. Use the preallocated table for that.
3136 */
82b0f8c3
JK
3137 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3138 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3139 if (!vmf->prealloc_pte)
953c66c2
AK
3140 return VM_FAULT_OOM;
3141 smp_wmb(); /* See comment in __pte_alloc() */
3142 }
3143
82b0f8c3
JK
3144 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3145 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3146 goto out;
3147
3148 for (i = 0; i < HPAGE_PMD_NR; i++)
3149 flush_icache_page(vma, page + i);
3150
3151 entry = mk_huge_pmd(page, vma->vm_page_prot);
3152 if (write)
3153 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3154
3155 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3156 page_add_file_rmap(page, true);
953c66c2
AK
3157 /*
3158 * deposit and withdraw with pmd lock held
3159 */
3160 if (arch_needs_pgtable_deposit())
82b0f8c3 3161 deposit_prealloc_pte(vmf);
10102459 3162
82b0f8c3 3163 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3164
82b0f8c3 3165 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3166
3167 /* fault is handled */
3168 ret = 0;
95ecedcd 3169 count_vm_event(THP_FILE_MAPPED);
10102459 3170out:
82b0f8c3 3171 spin_unlock(vmf->ptl);
10102459
KS
3172 return ret;
3173}
3174#else
82b0f8c3 3175static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3176{
3177 BUILD_BUG();
3178 return 0;
3179}
3180#endif
3181
8c6e50b0 3182/**
7267ec00
KS
3183 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3184 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3185 *
82b0f8c3 3186 * @vmf: fault environment
7267ec00 3187 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3188 * @page: page to map
8c6e50b0 3189 *
82b0f8c3
JK
3190 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3191 * return.
8c6e50b0
KS
3192 *
3193 * Target users are page handler itself and implementations of
3194 * vm_ops->map_pages.
3195 */
82b0f8c3 3196int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3197 struct page *page)
3bb97794 3198{
82b0f8c3
JK
3199 struct vm_area_struct *vma = vmf->vma;
3200 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3201 pte_t entry;
10102459
KS
3202 int ret;
3203
82b0f8c3 3204 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3205 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3206 /* THP on COW? */
3207 VM_BUG_ON_PAGE(memcg, page);
3208
82b0f8c3 3209 ret = do_set_pmd(vmf, page);
10102459 3210 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3211 return ret;
10102459 3212 }
3bb97794 3213
82b0f8c3
JK
3214 if (!vmf->pte) {
3215 ret = pte_alloc_one_map(vmf);
7267ec00 3216 if (ret)
b0b9b3df 3217 return ret;
7267ec00
KS
3218 }
3219
3220 /* Re-check under ptl */
b0b9b3df
HD
3221 if (unlikely(!pte_none(*vmf->pte)))
3222 return VM_FAULT_NOPAGE;
7267ec00 3223
3bb97794
KS
3224 flush_icache_page(vma, page);
3225 entry = mk_pte(page, vma->vm_page_prot);
3226 if (write)
3227 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3228 /* copy-on-write page */
3229 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3230 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3231 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3232 mem_cgroup_commit_charge(page, memcg, false, false);
3233 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3234 } else {
eca56ff9 3235 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3236 page_add_file_rmap(page, false);
3bb97794 3237 }
82b0f8c3 3238 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3239
3240 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3241 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3242
b0b9b3df 3243 return 0;
3bb97794
KS
3244}
3245
9118c0cb
JK
3246
3247/**
3248 * finish_fault - finish page fault once we have prepared the page to fault
3249 *
3250 * @vmf: structure describing the fault
3251 *
3252 * This function handles all that is needed to finish a page fault once the
3253 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3254 * given page, adds reverse page mapping, handles memcg charges and LRU
3255 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3256 * error.
3257 *
3258 * The function expects the page to be locked and on success it consumes a
3259 * reference of a page being mapped (for the PTE which maps it).
3260 */
3261int finish_fault(struct vm_fault *vmf)
3262{
3263 struct page *page;
6b31d595 3264 int ret = 0;
9118c0cb
JK
3265
3266 /* Did we COW the page? */
3267 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3268 !(vmf->vma->vm_flags & VM_SHARED))
3269 page = vmf->cow_page;
3270 else
3271 page = vmf->page;
6b31d595
MH
3272
3273 /*
3274 * check even for read faults because we might have lost our CoWed
3275 * page
3276 */
3277 if (!(vmf->vma->vm_flags & VM_SHARED))
3278 ret = check_stable_address_space(vmf->vma->vm_mm);
3279 if (!ret)
3280 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3281 if (vmf->pte)
3282 pte_unmap_unlock(vmf->pte, vmf->ptl);
3283 return ret;
3284}
3285
3a91053a
KS
3286static unsigned long fault_around_bytes __read_mostly =
3287 rounddown_pow_of_two(65536);
a9b0f861 3288
a9b0f861
KS
3289#ifdef CONFIG_DEBUG_FS
3290static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3291{
a9b0f861 3292 *val = fault_around_bytes;
1592eef0
KS
3293 return 0;
3294}
3295
b4903d6e
AR
3296/*
3297 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3298 * rounded down to nearest page order. It's what do_fault_around() expects to
3299 * see.
3300 */
a9b0f861 3301static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3302{
a9b0f861 3303 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3304 return -EINVAL;
b4903d6e
AR
3305 if (val > PAGE_SIZE)
3306 fault_around_bytes = rounddown_pow_of_two(val);
3307 else
3308 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3309 return 0;
3310}
0a1345f8 3311DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3312 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3313
3314static int __init fault_around_debugfs(void)
3315{
3316 void *ret;
3317
0a1345f8 3318 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
a9b0f861 3319 &fault_around_bytes_fops);
1592eef0 3320 if (!ret)
a9b0f861 3321 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3322 return 0;
3323}
3324late_initcall(fault_around_debugfs);
1592eef0 3325#endif
8c6e50b0 3326
1fdb412b
KS
3327/*
3328 * do_fault_around() tries to map few pages around the fault address. The hope
3329 * is that the pages will be needed soon and this will lower the number of
3330 * faults to handle.
3331 *
3332 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3333 * not ready to be mapped: not up-to-date, locked, etc.
3334 *
3335 * This function is called with the page table lock taken. In the split ptlock
3336 * case the page table lock only protects only those entries which belong to
3337 * the page table corresponding to the fault address.
3338 *
3339 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3340 * only once.
3341 *
3342 * fault_around_pages() defines how many pages we'll try to map.
3343 * do_fault_around() expects it to return a power of two less than or equal to
3344 * PTRS_PER_PTE.
3345 *
3346 * The virtual address of the area that we map is naturally aligned to the
3347 * fault_around_pages() value (and therefore to page order). This way it's
3348 * easier to guarantee that we don't cross page table boundaries.
3349 */
0721ec8b 3350static int do_fault_around(struct vm_fault *vmf)
8c6e50b0 3351{
82b0f8c3 3352 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3353 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3354 pgoff_t end_pgoff;
7267ec00 3355 int off, ret = 0;
8c6e50b0 3356
4db0c3c2 3357 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3358 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3359
82b0f8c3
JK
3360 vmf->address = max(address & mask, vmf->vma->vm_start);
3361 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3362 start_pgoff -= off;
8c6e50b0
KS
3363
3364 /*
bae473a4
KS
3365 * end_pgoff is either end of page table or end of vma
3366 * or fault_around_pages() from start_pgoff, depending what is nearest.
8c6e50b0 3367 */
bae473a4 3368 end_pgoff = start_pgoff -
82b0f8c3 3369 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3370 PTRS_PER_PTE - 1;
82b0f8c3 3371 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3372 start_pgoff + nr_pages - 1);
8c6e50b0 3373
82b0f8c3
JK
3374 if (pmd_none(*vmf->pmd)) {
3375 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3376 vmf->address);
3377 if (!vmf->prealloc_pte)
c5f88bd2 3378 goto out;
7267ec00 3379 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3380 }
3381
82b0f8c3 3382 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3383
7267ec00 3384 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3385 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3386 ret = VM_FAULT_NOPAGE;
3387 goto out;
3388 }
3389
3390 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3391 if (!vmf->pte)
7267ec00
KS
3392 goto out;
3393
3394 /* check if the page fault is solved */
82b0f8c3
JK
3395 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3396 if (!pte_none(*vmf->pte))
7267ec00 3397 ret = VM_FAULT_NOPAGE;
82b0f8c3 3398 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3399out:
82b0f8c3
JK
3400 vmf->address = address;
3401 vmf->pte = NULL;
7267ec00 3402 return ret;
8c6e50b0
KS
3403}
3404
0721ec8b 3405static int do_read_fault(struct vm_fault *vmf)
e655fb29 3406{
82b0f8c3 3407 struct vm_area_struct *vma = vmf->vma;
8c6e50b0
KS
3408 int ret = 0;
3409
3410 /*
3411 * Let's call ->map_pages() first and use ->fault() as fallback
3412 * if page by the offset is not ready to be mapped (cold cache or
3413 * something).
3414 */
9b4bdd2f 3415 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3416 ret = do_fault_around(vmf);
7267ec00
KS
3417 if (ret)
3418 return ret;
8c6e50b0 3419 }
e655fb29 3420
936ca80d 3421 ret = __do_fault(vmf);
e655fb29
KS
3422 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3423 return ret;
3424
9118c0cb 3425 ret |= finish_fault(vmf);
936ca80d 3426 unlock_page(vmf->page);
7267ec00 3427 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3428 put_page(vmf->page);
e655fb29
KS
3429 return ret;
3430}
3431
0721ec8b 3432static int do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3433{
82b0f8c3 3434 struct vm_area_struct *vma = vmf->vma;
ec47c3b9
KS
3435 int ret;
3436
3437 if (unlikely(anon_vma_prepare(vma)))
3438 return VM_FAULT_OOM;
3439
936ca80d
JK
3440 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3441 if (!vmf->cow_page)
ec47c3b9
KS
3442 return VM_FAULT_OOM;
3443
936ca80d 3444 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3445 &vmf->memcg, false)) {
936ca80d 3446 put_page(vmf->cow_page);
ec47c3b9
KS
3447 return VM_FAULT_OOM;
3448 }
3449
936ca80d 3450 ret = __do_fault(vmf);
ec47c3b9
KS
3451 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3452 goto uncharge_out;
3917048d
JK
3453 if (ret & VM_FAULT_DONE_COW)
3454 return ret;
ec47c3b9 3455
b1aa812b 3456 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3457 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3458
9118c0cb 3459 ret |= finish_fault(vmf);
b1aa812b
JK
3460 unlock_page(vmf->page);
3461 put_page(vmf->page);
7267ec00
KS
3462 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3463 goto uncharge_out;
ec47c3b9
KS
3464 return ret;
3465uncharge_out:
3917048d 3466 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3467 put_page(vmf->cow_page);
ec47c3b9
KS
3468 return ret;
3469}
3470
0721ec8b 3471static int do_shared_fault(struct vm_fault *vmf)
1da177e4 3472{
82b0f8c3 3473 struct vm_area_struct *vma = vmf->vma;
f0c6d4d2 3474 int ret, tmp;
1d65f86d 3475
936ca80d 3476 ret = __do_fault(vmf);
7eae74af 3477 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3478 return ret;
1da177e4
LT
3479
3480 /*
f0c6d4d2
KS
3481 * Check if the backing address space wants to know that the page is
3482 * about to become writable
1da177e4 3483 */
fb09a464 3484 if (vma->vm_ops->page_mkwrite) {
936ca80d 3485 unlock_page(vmf->page);
38b8cb7f 3486 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3487 if (unlikely(!tmp ||
3488 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3489 put_page(vmf->page);
fb09a464 3490 return tmp;
4294621f 3491 }
fb09a464
KS
3492 }
3493
9118c0cb 3494 ret |= finish_fault(vmf);
7267ec00
KS
3495 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3496 VM_FAULT_RETRY))) {
936ca80d
JK
3497 unlock_page(vmf->page);
3498 put_page(vmf->page);
f0c6d4d2 3499 return ret;
1da177e4 3500 }
b827e496 3501
97ba0c2b 3502 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3503 return ret;
54cb8821 3504}
d00806b1 3505
9a95f3cf
PC
3506/*
3507 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3508 * but allow concurrent faults).
3509 * The mmap_sem may have been released depending on flags and our
3510 * return value. See filemap_fault() and __lock_page_or_retry().
3511 */
82b0f8c3 3512static int do_fault(struct vm_fault *vmf)
54cb8821 3513{
82b0f8c3 3514 struct vm_area_struct *vma = vmf->vma;
b0b9b3df 3515 int ret;
54cb8821 3516
6b7339f4
KS
3517 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3518 if (!vma->vm_ops->fault)
b0b9b3df
HD
3519 ret = VM_FAULT_SIGBUS;
3520 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3521 ret = do_read_fault(vmf);
3522 else if (!(vma->vm_flags & VM_SHARED))
3523 ret = do_cow_fault(vmf);
3524 else
3525 ret = do_shared_fault(vmf);
3526
3527 /* preallocated pagetable is unused: free it */
3528 if (vmf->prealloc_pte) {
3529 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3530 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3531 }
3532 return ret;
54cb8821
NP
3533}
3534
b19a9939 3535static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3536 unsigned long addr, int page_nid,
3537 int *flags)
9532fec1
MG
3538{
3539 get_page(page);
3540
3541 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3542 if (page_nid == numa_node_id()) {
9532fec1 3543 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3544 *flags |= TNF_FAULT_LOCAL;
3545 }
9532fec1
MG
3546
3547 return mpol_misplaced(page, vma, addr);
3548}
3549
2994302b 3550static int do_numa_page(struct vm_fault *vmf)
d10e63f2 3551{
82b0f8c3 3552 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3553 struct page *page = NULL;
8191acbd 3554 int page_nid = -1;
90572890 3555 int last_cpupid;
cbee9f88 3556 int target_nid;
b8593bfd 3557 bool migrated = false;
cee216a6 3558 pte_t pte;
288bc549 3559 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3560 int flags = 0;
d10e63f2
MG
3561
3562 /*
166f61b9
TH
3563 * The "pte" at this point cannot be used safely without
3564 * validation through pte_unmap_same(). It's of NUMA type but
3565 * the pfn may be screwed if the read is non atomic.
166f61b9 3566 */
82b0f8c3
JK
3567 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3568 spin_lock(vmf->ptl);
cee216a6 3569 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3570 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3571 goto out;
3572 }
3573
cee216a6
AK
3574 /*
3575 * Make it present again, Depending on how arch implementes non
3576 * accessible ptes, some can allow access by kernel mode.
3577 */
3578 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4d942466
MG
3579 pte = pte_modify(pte, vma->vm_page_prot);
3580 pte = pte_mkyoung(pte);
b191f9b1
MG
3581 if (was_writable)
3582 pte = pte_mkwrite(pte);
cee216a6 3583 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
82b0f8c3 3584 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3585
82b0f8c3 3586 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3587 if (!page) {
82b0f8c3 3588 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3589 return 0;
3590 }
3591
e81c4802
KS
3592 /* TODO: handle PTE-mapped THP */
3593 if (PageCompound(page)) {
82b0f8c3 3594 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3595 return 0;
3596 }
3597
6688cc05 3598 /*
bea66fbd
MG
3599 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3600 * much anyway since they can be in shared cache state. This misses
3601 * the case where a mapping is writable but the process never writes
3602 * to it but pte_write gets cleared during protection updates and
3603 * pte_dirty has unpredictable behaviour between PTE scan updates,
3604 * background writeback, dirty balancing and application behaviour.
6688cc05 3605 */
d59dc7bc 3606 if (!pte_write(pte))
6688cc05
PZ
3607 flags |= TNF_NO_GROUP;
3608
dabe1d99
RR
3609 /*
3610 * Flag if the page is shared between multiple address spaces. This
3611 * is later used when determining whether to group tasks together
3612 */
3613 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3614 flags |= TNF_SHARED;
3615
90572890 3616 last_cpupid = page_cpupid_last(page);
8191acbd 3617 page_nid = page_to_nid(page);
82b0f8c3 3618 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3619 &flags);
82b0f8c3 3620 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3621 if (target_nid == -1) {
4daae3b4
MG
3622 put_page(page);
3623 goto out;
3624 }
3625
3626 /* Migrate to the requested node */
1bc115d8 3627 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3628 if (migrated) {
8191acbd 3629 page_nid = target_nid;
6688cc05 3630 flags |= TNF_MIGRATED;
074c2381
MG
3631 } else
3632 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3633
3634out:
8191acbd 3635 if (page_nid != -1)
6688cc05 3636 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3637 return 0;
3638}
3639
91a90140 3640static inline int create_huge_pmd(struct vm_fault *vmf)
b96375f7 3641{
f4200391 3642 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3643 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3644 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3645 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3646 return VM_FAULT_FALLBACK;
3647}
3648
82b0f8c3 3649static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3650{
82b0f8c3
JK
3651 if (vma_is_anonymous(vmf->vma))
3652 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3653 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3654 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3655
3656 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3657 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3658 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3659
b96375f7
MW
3660 return VM_FAULT_FALLBACK;
3661}
3662
38e08854
LS
3663static inline bool vma_is_accessible(struct vm_area_struct *vma)
3664{
3665 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3666}
3667
a00cc7d9
MW
3668static int create_huge_pud(struct vm_fault *vmf)
3669{
3670#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3671 /* No support for anonymous transparent PUD pages yet */
3672 if (vma_is_anonymous(vmf->vma))
3673 return VM_FAULT_FALLBACK;
3674 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3675 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3676#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3677 return VM_FAULT_FALLBACK;
3678}
3679
3680static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3681{
3682#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3683 /* No support for anonymous transparent PUD pages yet */
3684 if (vma_is_anonymous(vmf->vma))
3685 return VM_FAULT_FALLBACK;
3686 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3687 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3688#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3689 return VM_FAULT_FALLBACK;
3690}
3691
1da177e4
LT
3692/*
3693 * These routines also need to handle stuff like marking pages dirty
3694 * and/or accessed for architectures that don't do it in hardware (most
3695 * RISC architectures). The early dirtying is also good on the i386.
3696 *
3697 * There is also a hook called "update_mmu_cache()" that architectures
3698 * with external mmu caches can use to update those (ie the Sparc or
3699 * PowerPC hashed page tables that act as extended TLBs).
3700 *
7267ec00
KS
3701 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3702 * concurrent faults).
9a95f3cf 3703 *
7267ec00
KS
3704 * The mmap_sem may have been released depending on flags and our return value.
3705 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3706 */
82b0f8c3 3707static int handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3708{
3709 pte_t entry;
3710
82b0f8c3 3711 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3712 /*
3713 * Leave __pte_alloc() until later: because vm_ops->fault may
3714 * want to allocate huge page, and if we expose page table
3715 * for an instant, it will be difficult to retract from
3716 * concurrent faults and from rmap lookups.
3717 */
82b0f8c3 3718 vmf->pte = NULL;
7267ec00
KS
3719 } else {
3720 /* See comment in pte_alloc_one_map() */
d0f0931d 3721 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3722 return 0;
3723 /*
3724 * A regular pmd is established and it can't morph into a huge
3725 * pmd from under us anymore at this point because we hold the
3726 * mmap_sem read mode and khugepaged takes it in write mode.
3727 * So now it's safe to run pte_offset_map().
3728 */
82b0f8c3 3729 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3730 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3731
3732 /*
3733 * some architectures can have larger ptes than wordsize,
3734 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3735 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3736 * atomic accesses. The code below just needs a consistent
3737 * view for the ifs and we later double check anyway with the
3738 * ptl lock held. So here a barrier will do.
3739 */
3740 barrier();
2994302b 3741 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3742 pte_unmap(vmf->pte);
3743 vmf->pte = NULL;
65500d23 3744 }
1da177e4
LT
3745 }
3746
82b0f8c3
JK
3747 if (!vmf->pte) {
3748 if (vma_is_anonymous(vmf->vma))
3749 return do_anonymous_page(vmf);
7267ec00 3750 else
82b0f8c3 3751 return do_fault(vmf);
7267ec00
KS
3752 }
3753
2994302b
JK
3754 if (!pte_present(vmf->orig_pte))
3755 return do_swap_page(vmf);
7267ec00 3756
2994302b
JK
3757 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3758 return do_numa_page(vmf);
d10e63f2 3759
82b0f8c3
JK
3760 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3761 spin_lock(vmf->ptl);
2994302b 3762 entry = vmf->orig_pte;
82b0f8c3 3763 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3764 goto unlock;
82b0f8c3 3765 if (vmf->flags & FAULT_FLAG_WRITE) {
1da177e4 3766 if (!pte_write(entry))
2994302b 3767 return do_wp_page(vmf);
1da177e4
LT
3768 entry = pte_mkdirty(entry);
3769 }
3770 entry = pte_mkyoung(entry);
82b0f8c3
JK
3771 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3772 vmf->flags & FAULT_FLAG_WRITE)) {
3773 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3774 } else {
3775 /*
3776 * This is needed only for protection faults but the arch code
3777 * is not yet telling us if this is a protection fault or not.
3778 * This still avoids useless tlb flushes for .text page faults
3779 * with threads.
3780 */
82b0f8c3
JK
3781 if (vmf->flags & FAULT_FLAG_WRITE)
3782 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3783 }
8f4e2101 3784unlock:
82b0f8c3 3785 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3786 return 0;
1da177e4
LT
3787}
3788
3789/*
3790 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3791 *
3792 * The mmap_sem may have been released depending on flags and our
3793 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3794 */
dcddffd4
KS
3795static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3796 unsigned int flags)
1da177e4 3797{
82b0f8c3 3798 struct vm_fault vmf = {
bae473a4 3799 .vma = vma,
1a29d85e 3800 .address = address & PAGE_MASK,
bae473a4 3801 .flags = flags,
0721ec8b 3802 .pgoff = linear_page_index(vma, address),
667240e0 3803 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3804 };
dcddffd4 3805 struct mm_struct *mm = vma->vm_mm;
1da177e4 3806 pgd_t *pgd;
c2febafc 3807 p4d_t *p4d;
a2d58167 3808 int ret;
1da177e4 3809
1da177e4 3810 pgd = pgd_offset(mm, address);
c2febafc
KS
3811 p4d = p4d_alloc(mm, pgd, address);
3812 if (!p4d)
3813 return VM_FAULT_OOM;
a00cc7d9 3814
c2febafc 3815 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3816 if (!vmf.pud)
c74df32c 3817 return VM_FAULT_OOM;
a00cc7d9 3818 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3819 ret = create_huge_pud(&vmf);
3820 if (!(ret & VM_FAULT_FALLBACK))
3821 return ret;
3822 } else {
3823 pud_t orig_pud = *vmf.pud;
3824
3825 barrier();
3826 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3827 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3828
a00cc7d9
MW
3829 /* NUMA case for anonymous PUDs would go here */
3830
3831 if (dirty && !pud_write(orig_pud)) {
3832 ret = wp_huge_pud(&vmf, orig_pud);
3833 if (!(ret & VM_FAULT_FALLBACK))
3834 return ret;
3835 } else {
3836 huge_pud_set_accessed(&vmf, orig_pud);
3837 return 0;
3838 }
3839 }
3840 }
3841
3842 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3843 if (!vmf.pmd)
c74df32c 3844 return VM_FAULT_OOM;
82b0f8c3 3845 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
a2d58167 3846 ret = create_huge_pmd(&vmf);
c0292554
KS
3847 if (!(ret & VM_FAULT_FALLBACK))
3848 return ret;
71e3aac0 3849 } else {
82b0f8c3 3850 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3851
71e3aac0 3852 barrier();
5c7fb56e 3853 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3854 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3855 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3856
82b0f8c3 3857 if ((vmf.flags & FAULT_FLAG_WRITE) &&
bae473a4 3858 !pmd_write(orig_pmd)) {
82b0f8c3 3859 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3860 if (!(ret & VM_FAULT_FALLBACK))
3861 return ret;
a1dd450b 3862 } else {
82b0f8c3 3863 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3864 return 0;
1f1d06c3 3865 }
71e3aac0
AA
3866 }
3867 }
3868
82b0f8c3 3869 return handle_pte_fault(&vmf);
1da177e4
LT
3870}
3871
9a95f3cf
PC
3872/*
3873 * By the time we get here, we already hold the mm semaphore
3874 *
3875 * The mmap_sem may have been released depending on flags and our
3876 * return value. See filemap_fault() and __lock_page_or_retry().
3877 */
dcddffd4
KS
3878int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3879 unsigned int flags)
519e5247
JW
3880{
3881 int ret;
3882
3883 __set_current_state(TASK_RUNNING);
3884
3885 count_vm_event(PGFAULT);
2262185c 3886 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
3887
3888 /* do counter updates before entering really critical section. */
3889 check_sync_rss_stat(current);
3890
3891 /*
3892 * Enable the memcg OOM handling for faults triggered in user
3893 * space. Kernel faults are handled more gracefully.
3894 */
3895 if (flags & FAULT_FLAG_USER)
49426420 3896 mem_cgroup_oom_enable();
519e5247 3897
bae473a4
KS
3898 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3899 flags & FAULT_FLAG_INSTRUCTION,
3900 flags & FAULT_FLAG_REMOTE))
3901 return VM_FAULT_SIGSEGV;
3902
3903 if (unlikely(is_vm_hugetlb_page(vma)))
3904 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3905 else
3906 ret = __handle_mm_fault(vma, address, flags);
519e5247 3907
49426420
JW
3908 if (flags & FAULT_FLAG_USER) {
3909 mem_cgroup_oom_disable();
166f61b9
TH
3910 /*
3911 * The task may have entered a memcg OOM situation but
3912 * if the allocation error was handled gracefully (no
3913 * VM_FAULT_OOM), there is no need to kill anything.
3914 * Just clean up the OOM state peacefully.
3915 */
3916 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3917 mem_cgroup_oom_synchronize(false);
49426420 3918 }
3812c8c8 3919
519e5247
JW
3920 return ret;
3921}
e1d6d01a 3922EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3923
90eceff1
KS
3924#ifndef __PAGETABLE_P4D_FOLDED
3925/*
3926 * Allocate p4d page table.
3927 * We've already handled the fast-path in-line.
3928 */
3929int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3930{
3931 p4d_t *new = p4d_alloc_one(mm, address);
3932 if (!new)
3933 return -ENOMEM;
3934
3935 smp_wmb(); /* See comment in __pte_alloc */
3936
3937 spin_lock(&mm->page_table_lock);
3938 if (pgd_present(*pgd)) /* Another has populated it */
3939 p4d_free(mm, new);
3940 else
3941 pgd_populate(mm, pgd, new);
3942 spin_unlock(&mm->page_table_lock);
3943 return 0;
3944}
3945#endif /* __PAGETABLE_P4D_FOLDED */
3946
1da177e4
LT
3947#ifndef __PAGETABLE_PUD_FOLDED
3948/*
3949 * Allocate page upper directory.
872fec16 3950 * We've already handled the fast-path in-line.
1da177e4 3951 */
c2febafc 3952int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 3953{
c74df32c
HD
3954 pud_t *new = pud_alloc_one(mm, address);
3955 if (!new)
1bb3630e 3956 return -ENOMEM;
1da177e4 3957
362a61ad
NP
3958 smp_wmb(); /* See comment in __pte_alloc */
3959
872fec16 3960 spin_lock(&mm->page_table_lock);
c2febafc
KS
3961#ifndef __ARCH_HAS_5LEVEL_HACK
3962 if (p4d_present(*p4d)) /* Another has populated it */
5e541973 3963 pud_free(mm, new);
1bb3630e 3964 else
c2febafc
KS
3965 p4d_populate(mm, p4d, new);
3966#else
3967 if (pgd_present(*p4d)) /* Another has populated it */
5e541973 3968 pud_free(mm, new);
1bb3630e 3969 else
c2febafc
KS
3970 pgd_populate(mm, p4d, new);
3971#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 3972 spin_unlock(&mm->page_table_lock);
1bb3630e 3973 return 0;
1da177e4
LT
3974}
3975#endif /* __PAGETABLE_PUD_FOLDED */
3976
3977#ifndef __PAGETABLE_PMD_FOLDED
3978/*
3979 * Allocate page middle directory.
872fec16 3980 * We've already handled the fast-path in-line.
1da177e4 3981 */
1bb3630e 3982int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3983{
a00cc7d9 3984 spinlock_t *ptl;
c74df32c
HD
3985 pmd_t *new = pmd_alloc_one(mm, address);
3986 if (!new)
1bb3630e 3987 return -ENOMEM;
1da177e4 3988
362a61ad
NP
3989 smp_wmb(); /* See comment in __pte_alloc */
3990
a00cc7d9 3991 ptl = pud_lock(mm, pud);
1da177e4 3992#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3993 if (!pud_present(*pud)) {
3994 mm_inc_nr_pmds(mm);
1bb3630e 3995 pud_populate(mm, pud, new);
dc6c9a35 3996 } else /* Another has populated it */
5e541973 3997 pmd_free(mm, new);
dc6c9a35
KS
3998#else
3999 if (!pgd_present(*pud)) {
4000 mm_inc_nr_pmds(mm);
1bb3630e 4001 pgd_populate(mm, pud, new);
dc6c9a35
KS
4002 } else /* Another has populated it */
4003 pmd_free(mm, new);
1da177e4 4004#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4005 spin_unlock(ptl);
1bb3630e 4006 return 0;
e0f39591 4007}
1da177e4
LT
4008#endif /* __PAGETABLE_PMD_FOLDED */
4009
09796395
RZ
4010static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4011 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4012{
4013 pgd_t *pgd;
c2febafc 4014 p4d_t *p4d;
f8ad0f49
JW
4015 pud_t *pud;
4016 pmd_t *pmd;
4017 pte_t *ptep;
4018
4019 pgd = pgd_offset(mm, address);
4020 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4021 goto out;
4022
c2febafc
KS
4023 p4d = p4d_offset(pgd, address);
4024 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4025 goto out;
4026
4027 pud = pud_offset(p4d, address);
f8ad0f49
JW
4028 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4029 goto out;
4030
4031 pmd = pmd_offset(pud, address);
f66055ab 4032 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4033
09796395
RZ
4034 if (pmd_huge(*pmd)) {
4035 if (!pmdpp)
4036 goto out;
4037
4038 *ptlp = pmd_lock(mm, pmd);
4039 if (pmd_huge(*pmd)) {
4040 *pmdpp = pmd;
4041 return 0;
4042 }
4043 spin_unlock(*ptlp);
4044 }
4045
4046 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4047 goto out;
4048
4049 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4050 if (!pte_present(*ptep))
4051 goto unlock;
4052 *ptepp = ptep;
4053 return 0;
4054unlock:
4055 pte_unmap_unlock(ptep, *ptlp);
4056out:
4057 return -EINVAL;
4058}
4059
f729c8c9
RZ
4060static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4061 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4062{
4063 int res;
4064
4065 /* (void) is needed to make gcc happy */
4066 (void) __cond_lock(*ptlp,
09796395
RZ
4067 !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
4068 ptlp)));
4069 return res;
4070}
4071
4072int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4073 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4074{
4075 int res;
4076
4077 /* (void) is needed to make gcc happy */
4078 (void) __cond_lock(*ptlp,
4079 !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
4080 ptlp)));
1b36ba81
NK
4081 return res;
4082}
09796395 4083EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4084
3b6748e2
JW
4085/**
4086 * follow_pfn - look up PFN at a user virtual address
4087 * @vma: memory mapping
4088 * @address: user virtual address
4089 * @pfn: location to store found PFN
4090 *
4091 * Only IO mappings and raw PFN mappings are allowed.
4092 *
4093 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4094 */
4095int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4096 unsigned long *pfn)
4097{
4098 int ret = -EINVAL;
4099 spinlock_t *ptl;
4100 pte_t *ptep;
4101
4102 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4103 return ret;
4104
4105 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4106 if (ret)
4107 return ret;
4108 *pfn = pte_pfn(*ptep);
4109 pte_unmap_unlock(ptep, ptl);
4110 return 0;
4111}
4112EXPORT_SYMBOL(follow_pfn);
4113
28b2ee20 4114#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4115int follow_phys(struct vm_area_struct *vma,
4116 unsigned long address, unsigned int flags,
4117 unsigned long *prot, resource_size_t *phys)
28b2ee20 4118{
03668a4d 4119 int ret = -EINVAL;
28b2ee20
RR
4120 pte_t *ptep, pte;
4121 spinlock_t *ptl;
28b2ee20 4122
d87fe660 4123 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4124 goto out;
28b2ee20 4125
03668a4d 4126 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4127 goto out;
28b2ee20 4128 pte = *ptep;
03668a4d 4129
28b2ee20
RR
4130 if ((flags & FOLL_WRITE) && !pte_write(pte))
4131 goto unlock;
28b2ee20
RR
4132
4133 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4134 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4135
03668a4d 4136 ret = 0;
28b2ee20
RR
4137unlock:
4138 pte_unmap_unlock(ptep, ptl);
4139out:
d87fe660 4140 return ret;
28b2ee20
RR
4141}
4142
4143int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4144 void *buf, int len, int write)
4145{
4146 resource_size_t phys_addr;
4147 unsigned long prot = 0;
2bc7273b 4148 void __iomem *maddr;
28b2ee20
RR
4149 int offset = addr & (PAGE_SIZE-1);
4150
d87fe660 4151 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4152 return -EINVAL;
4153
9cb12d7b 4154 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
4155 if (write)
4156 memcpy_toio(maddr + offset, buf, len);
4157 else
4158 memcpy_fromio(buf, maddr + offset, len);
4159 iounmap(maddr);
4160
4161 return len;
4162}
5a73633e 4163EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4164#endif
4165
0ec76a11 4166/*
206cb636
SW
4167 * Access another process' address space as given in mm. If non-NULL, use the
4168 * given task for page fault accounting.
0ec76a11 4169 */
84d77d3f 4170int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4171 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4172{
0ec76a11 4173 struct vm_area_struct *vma;
0ec76a11 4174 void *old_buf = buf;
442486ec 4175 int write = gup_flags & FOLL_WRITE;
0ec76a11 4176
0ec76a11 4177 down_read(&mm->mmap_sem);
183ff22b 4178 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4179 while (len) {
4180 int bytes, ret, offset;
4181 void *maddr;
28b2ee20 4182 struct page *page = NULL;
0ec76a11 4183
1e987790 4184 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4185 gup_flags, &page, &vma, NULL);
28b2ee20 4186 if (ret <= 0) {
dbffcd03
RR
4187#ifndef CONFIG_HAVE_IOREMAP_PROT
4188 break;
4189#else
28b2ee20
RR
4190 /*
4191 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4192 * we can access using slightly different code.
4193 */
28b2ee20 4194 vma = find_vma(mm, addr);
fe936dfc 4195 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4196 break;
4197 if (vma->vm_ops && vma->vm_ops->access)
4198 ret = vma->vm_ops->access(vma, addr, buf,
4199 len, write);
4200 if (ret <= 0)
28b2ee20
RR
4201 break;
4202 bytes = ret;
dbffcd03 4203#endif
0ec76a11 4204 } else {
28b2ee20
RR
4205 bytes = len;
4206 offset = addr & (PAGE_SIZE-1);
4207 if (bytes > PAGE_SIZE-offset)
4208 bytes = PAGE_SIZE-offset;
4209
4210 maddr = kmap(page);
4211 if (write) {
4212 copy_to_user_page(vma, page, addr,
4213 maddr + offset, buf, bytes);
4214 set_page_dirty_lock(page);
4215 } else {
4216 copy_from_user_page(vma, page, addr,
4217 buf, maddr + offset, bytes);
4218 }
4219 kunmap(page);
09cbfeaf 4220 put_page(page);
0ec76a11 4221 }
0ec76a11
DH
4222 len -= bytes;
4223 buf += bytes;
4224 addr += bytes;
4225 }
4226 up_read(&mm->mmap_sem);
0ec76a11
DH
4227
4228 return buf - old_buf;
4229}
03252919 4230
5ddd36b9 4231/**
ae91dbfc 4232 * access_remote_vm - access another process' address space
5ddd36b9
SW
4233 * @mm: the mm_struct of the target address space
4234 * @addr: start address to access
4235 * @buf: source or destination buffer
4236 * @len: number of bytes to transfer
6347e8d5 4237 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4238 *
4239 * The caller must hold a reference on @mm.
4240 */
4241int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4242 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4243{
6347e8d5 4244 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4245}
4246
206cb636
SW
4247/*
4248 * Access another process' address space.
4249 * Source/target buffer must be kernel space,
4250 * Do not walk the page table directly, use get_user_pages
4251 */
4252int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4253 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4254{
4255 struct mm_struct *mm;
4256 int ret;
4257
4258 mm = get_task_mm(tsk);
4259 if (!mm)
4260 return 0;
4261
f307ab6d 4262 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4263
206cb636
SW
4264 mmput(mm);
4265
4266 return ret;
4267}
fcd35857 4268EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4269
03252919
AK
4270/*
4271 * Print the name of a VMA.
4272 */
4273void print_vma_addr(char *prefix, unsigned long ip)
4274{
4275 struct mm_struct *mm = current->mm;
4276 struct vm_area_struct *vma;
4277
e8bff74a
IM
4278 /*
4279 * Do not print if we are in atomic
4280 * contexts (in exception stacks, etc.):
4281 */
4282 if (preempt_count())
4283 return;
4284
03252919
AK
4285 down_read(&mm->mmap_sem);
4286 vma = find_vma(mm, ip);
4287 if (vma && vma->vm_file) {
4288 struct file *f = vma->vm_file;
4289 char *buf = (char *)__get_free_page(GFP_KERNEL);
4290 if (buf) {
2fbc57c5 4291 char *p;
03252919 4292
9bf39ab2 4293 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4294 if (IS_ERR(p))
4295 p = "?";
2fbc57c5 4296 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4297 vma->vm_start,
4298 vma->vm_end - vma->vm_start);
4299 free_page((unsigned long)buf);
4300 }
4301 }
51a07e50 4302 up_read(&mm->mmap_sem);
03252919 4303}
3ee1afa3 4304
662bbcb2 4305#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4306void __might_fault(const char *file, int line)
3ee1afa3 4307{
95156f00
PZ
4308 /*
4309 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4310 * holding the mmap_sem, this is safe because kernel memory doesn't
4311 * get paged out, therefore we'll never actually fault, and the
4312 * below annotations will generate false positives.
4313 */
db68ce10 4314 if (uaccess_kernel())
95156f00 4315 return;
9ec23531 4316 if (pagefault_disabled())
662bbcb2 4317 return;
9ec23531
DH
4318 __might_sleep(file, line, 0);
4319#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4320 if (current->mm)
3ee1afa3 4321 might_lock_read(&current->mm->mmap_sem);
9ec23531 4322#endif
3ee1afa3 4323}
9ec23531 4324EXPORT_SYMBOL(__might_fault);
3ee1afa3 4325#endif
47ad8475
AA
4326
4327#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4328static void clear_gigantic_page(struct page *page,
4329 unsigned long addr,
4330 unsigned int pages_per_huge_page)
4331{
4332 int i;
4333 struct page *p = page;
4334
4335 might_sleep();
4336 for (i = 0; i < pages_per_huge_page;
4337 i++, p = mem_map_next(p, page, i)) {
4338 cond_resched();
4339 clear_user_highpage(p, addr + i * PAGE_SIZE);
4340 }
4341}
4342void clear_huge_page(struct page *page,
4343 unsigned long addr, unsigned int pages_per_huge_page)
4344{
4345 int i;
4346
4347 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4348 clear_gigantic_page(page, addr, pages_per_huge_page);
4349 return;
4350 }
4351
4352 might_sleep();
4353 for (i = 0; i < pages_per_huge_page; i++) {
4354 cond_resched();
4355 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4356 }
4357}
4358
4359static void copy_user_gigantic_page(struct page *dst, struct page *src,
4360 unsigned long addr,
4361 struct vm_area_struct *vma,
4362 unsigned int pages_per_huge_page)
4363{
4364 int i;
4365 struct page *dst_base = dst;
4366 struct page *src_base = src;
4367
4368 for (i = 0; i < pages_per_huge_page; ) {
4369 cond_resched();
4370 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4371
4372 i++;
4373 dst = mem_map_next(dst, dst_base, i);
4374 src = mem_map_next(src, src_base, i);
4375 }
4376}
4377
4378void copy_user_huge_page(struct page *dst, struct page *src,
4379 unsigned long addr, struct vm_area_struct *vma,
4380 unsigned int pages_per_huge_page)
4381{
4382 int i;
4383
4384 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4385 copy_user_gigantic_page(dst, src, addr, vma,
4386 pages_per_huge_page);
4387 return;
4388 }
4389
4390 might_sleep();
4391 for (i = 0; i < pages_per_huge_page; i++) {
4392 cond_resched();
4393 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4394 }
4395}
fa4d75c1
MK
4396
4397long copy_huge_page_from_user(struct page *dst_page,
4398 const void __user *usr_src,
810a56b9
MK
4399 unsigned int pages_per_huge_page,
4400 bool allow_pagefault)
fa4d75c1
MK
4401{
4402 void *src = (void *)usr_src;
4403 void *page_kaddr;
4404 unsigned long i, rc = 0;
4405 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4406
4407 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4408 if (allow_pagefault)
4409 page_kaddr = kmap(dst_page + i);
4410 else
4411 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4412 rc = copy_from_user(page_kaddr,
4413 (const void __user *)(src + i * PAGE_SIZE),
4414 PAGE_SIZE);
810a56b9
MK
4415 if (allow_pagefault)
4416 kunmap(dst_page + i);
4417 else
4418 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4419
4420 ret_val -= (PAGE_SIZE - rc);
4421 if (rc)
4422 break;
4423
4424 cond_resched();
4425 }
4426 return ret_val;
4427}
47ad8475 4428#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4429
40b64acd 4430#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4431
4432static struct kmem_cache *page_ptl_cachep;
4433
4434void __init ptlock_cache_init(void)
4435{
4436 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4437 SLAB_PANIC, NULL);
4438}
4439
539edb58 4440bool ptlock_alloc(struct page *page)
49076ec2
KS
4441{
4442 spinlock_t *ptl;
4443
b35f1819 4444 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4445 if (!ptl)
4446 return false;
539edb58 4447 page->ptl = ptl;
49076ec2
KS
4448 return true;
4449}
4450
539edb58 4451void ptlock_free(struct page *page)
49076ec2 4452{
b35f1819 4453 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4454}
4455#endif