]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memory.c
thp: split_huge_page anon_vma ordering dependency
[mirror_ubuntu-artful-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4
LT
49#include <linux/rmap.h>
50#include <linux/module.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
1da177e4 60
6952b61d 61#include <asm/io.h>
1da177e4
LT
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
42b77728
JB
68#include "internal.h"
69
d41dee36 70#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
1da177e4
LT
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
1da177e4 91
32a93233
IM
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100 1;
101#else
102 2;
103#endif
a62eaf15
AK
104
105static int __init disable_randmaps(char *s)
106{
107 randomize_va_space = 0;
9b41046c 108 return 1;
a62eaf15
AK
109}
110__setup("norandmaps", disable_randmaps);
111
62eede62 112unsigned long zero_pfn __read_mostly;
03f6462a 113unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122}
123core_initcall(init_zero_pfn);
a62eaf15 124
d559db08 125
34e55232
KH
126#if defined(SPLIT_RSS_COUNTING)
127
a3a2e76c 128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
34e55232
KH
129{
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
136 }
137 }
138 task->rss_stat.events = 0;
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
161}
162
163unsigned long get_mm_counter(struct mm_struct *mm, int member)
164{
165 long val = 0;
166
167 /*
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
170 */
171 val = atomic_long_read(&mm->rss_stat.count[member]);
172 /*
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
175 */
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
179}
180
181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182{
183 __sync_task_rss_stat(task, mm);
184}
185#else
186
187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190static void check_sync_rss_stat(struct task_struct *task)
191{
192}
193
34e55232
KH
194#endif
195
1da177e4
LT
196/*
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none. Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
200 */
201
202void pgd_clear_bad(pgd_t *pgd)
203{
204 pgd_ERROR(*pgd);
205 pgd_clear(pgd);
206}
207
208void pud_clear_bad(pud_t *pud)
209{
210 pud_ERROR(*pud);
211 pud_clear(pud);
212}
213
214void pmd_clear_bad(pmd_t *pmd)
215{
216 pmd_ERROR(*pmd);
217 pmd_clear(pmd);
218}
219
220/*
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
223 */
9e1b32ca
BH
224static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 unsigned long addr)
1da177e4 226{
2f569afd 227 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 228 pmd_clear(pmd);
9e1b32ca 229 pte_free_tlb(tlb, token, addr);
e0da382c 230 tlb->mm->nr_ptes--;
1da177e4
LT
231}
232
e0da382c
HD
233static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
1da177e4
LT
236{
237 pmd_t *pmd;
238 unsigned long next;
e0da382c 239 unsigned long start;
1da177e4 240
e0da382c 241 start = addr;
1da177e4 242 pmd = pmd_offset(pud, addr);
1da177e4
LT
243 do {
244 next = pmd_addr_end(addr, end);
245 if (pmd_none_or_clear_bad(pmd))
246 continue;
9e1b32ca 247 free_pte_range(tlb, pmd, addr);
1da177e4
LT
248 } while (pmd++, addr = next, addr != end);
249
e0da382c
HD
250 start &= PUD_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= PUD_MASK;
255 if (!ceiling)
256 return;
1da177e4 257 }
e0da382c
HD
258 if (end - 1 > ceiling - 1)
259 return;
260
261 pmd = pmd_offset(pud, start);
262 pud_clear(pud);
9e1b32ca 263 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
264}
265
e0da382c
HD
266static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
1da177e4
LT
269{
270 pud_t *pud;
271 unsigned long next;
e0da382c 272 unsigned long start;
1da177e4 273
e0da382c 274 start = addr;
1da177e4 275 pud = pud_offset(pgd, addr);
1da177e4
LT
276 do {
277 next = pud_addr_end(addr, end);
278 if (pud_none_or_clear_bad(pud))
279 continue;
e0da382c 280 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
281 } while (pud++, addr = next, addr != end);
282
e0da382c
HD
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
1da177e4 290 }
e0da382c
HD
291 if (end - 1 > ceiling - 1)
292 return;
293
294 pud = pud_offset(pgd, start);
295 pgd_clear(pgd);
9e1b32ca 296 pud_free_tlb(tlb, pud, start);
1da177e4
LT
297}
298
299/*
e0da382c
HD
300 * This function frees user-level page tables of a process.
301 *
1da177e4
LT
302 * Must be called with pagetable lock held.
303 */
42b77728 304void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
1da177e4
LT
307{
308 pgd_t *pgd;
309 unsigned long next;
e0da382c
HD
310
311 /*
312 * The next few lines have given us lots of grief...
313 *
314 * Why are we testing PMD* at this top level? Because often
315 * there will be no work to do at all, and we'd prefer not to
316 * go all the way down to the bottom just to discover that.
317 *
318 * Why all these "- 1"s? Because 0 represents both the bottom
319 * of the address space and the top of it (using -1 for the
320 * top wouldn't help much: the masks would do the wrong thing).
321 * The rule is that addr 0 and floor 0 refer to the bottom of
322 * the address space, but end 0 and ceiling 0 refer to the top
323 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324 * that end 0 case should be mythical).
325 *
326 * Wherever addr is brought up or ceiling brought down, we must
327 * be careful to reject "the opposite 0" before it confuses the
328 * subsequent tests. But what about where end is brought down
329 * by PMD_SIZE below? no, end can't go down to 0 there.
330 *
331 * Whereas we round start (addr) and ceiling down, by different
332 * masks at different levels, in order to test whether a table
333 * now has no other vmas using it, so can be freed, we don't
334 * bother to round floor or end up - the tests don't need that.
335 */
1da177e4 336
e0da382c
HD
337 addr &= PMD_MASK;
338 if (addr < floor) {
339 addr += PMD_SIZE;
340 if (!addr)
341 return;
342 }
343 if (ceiling) {
344 ceiling &= PMD_MASK;
345 if (!ceiling)
346 return;
347 }
348 if (end - 1 > ceiling - 1)
349 end -= PMD_SIZE;
350 if (addr > end - 1)
351 return;
352
42b77728 353 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
354 do {
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
357 continue;
42b77728 358 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 359 } while (pgd++, addr = next, addr != end);
e0da382c
HD
360}
361
42b77728 362void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 363 unsigned long floor, unsigned long ceiling)
e0da382c
HD
364{
365 while (vma) {
366 struct vm_area_struct *next = vma->vm_next;
367 unsigned long addr = vma->vm_start;
368
8f4f8c16 369 /*
25d9e2d1 370 * Hide vma from rmap and truncate_pagecache before freeing
371 * pgtables
8f4f8c16 372 */
5beb4930 373 unlink_anon_vmas(vma);
8f4f8c16
HD
374 unlink_file_vma(vma);
375
9da61aef 376 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 377 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 378 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
379 } else {
380 /*
381 * Optimization: gather nearby vmas into one call down
382 */
383 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 384 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
385 vma = next;
386 next = vma->vm_next;
5beb4930 387 unlink_anon_vmas(vma);
8f4f8c16 388 unlink_file_vma(vma);
3bf5ee95
HD
389 }
390 free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next? next->vm_start: ceiling);
392 }
e0da382c
HD
393 vma = next;
394 }
1da177e4
LT
395}
396
8ac1f832
AA
397int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
398 pmd_t *pmd, unsigned long address)
1da177e4 399{
2f569afd 400 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 401 int wait_split_huge_page;
1bb3630e
HD
402 if (!new)
403 return -ENOMEM;
404
362a61ad
NP
405 /*
406 * Ensure all pte setup (eg. pte page lock and page clearing) are
407 * visible before the pte is made visible to other CPUs by being
408 * put into page tables.
409 *
410 * The other side of the story is the pointer chasing in the page
411 * table walking code (when walking the page table without locking;
412 * ie. most of the time). Fortunately, these data accesses consist
413 * of a chain of data-dependent loads, meaning most CPUs (alpha
414 * being the notable exception) will already guarantee loads are
415 * seen in-order. See the alpha page table accessors for the
416 * smp_read_barrier_depends() barriers in page table walking code.
417 */
418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
419
c74df32c 420 spin_lock(&mm->page_table_lock);
8ac1f832
AA
421 wait_split_huge_page = 0;
422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 423 mm->nr_ptes++;
1da177e4 424 pmd_populate(mm, pmd, new);
2f569afd 425 new = NULL;
8ac1f832
AA
426 } else if (unlikely(pmd_trans_splitting(*pmd)))
427 wait_split_huge_page = 1;
c74df32c 428 spin_unlock(&mm->page_table_lock);
2f569afd
MS
429 if (new)
430 pte_free(mm, new);
8ac1f832
AA
431 if (wait_split_huge_page)
432 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 433 return 0;
1da177e4
LT
434}
435
1bb3630e 436int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 437{
1bb3630e
HD
438 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
439 if (!new)
440 return -ENOMEM;
441
362a61ad
NP
442 smp_wmb(); /* See comment in __pte_alloc */
443
1bb3630e 444 spin_lock(&init_mm.page_table_lock);
8ac1f832 445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 446 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 447 new = NULL;
8ac1f832
AA
448 } else
449 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 450 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
451 if (new)
452 pte_free_kernel(&init_mm, new);
1bb3630e 453 return 0;
1da177e4
LT
454}
455
d559db08
KH
456static inline void init_rss_vec(int *rss)
457{
458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
459}
460
461static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 462{
d559db08
KH
463 int i;
464
34e55232
KH
465 if (current->mm == mm)
466 sync_mm_rss(current, mm);
d559db08
KH
467 for (i = 0; i < NR_MM_COUNTERS; i++)
468 if (rss[i])
469 add_mm_counter(mm, i, rss[i]);
ae859762
HD
470}
471
b5810039 472/*
6aab341e
LT
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
b5810039
NP
476 *
477 * The calling function must still handle the error.
478 */
3dc14741
HD
479static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480 pte_t pte, struct page *page)
b5810039 481{
3dc14741
HD
482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483 pud_t *pud = pud_offset(pgd, addr);
484 pmd_t *pmd = pmd_offset(pud, addr);
485 struct address_space *mapping;
486 pgoff_t index;
d936cf9b
HD
487 static unsigned long resume;
488 static unsigned long nr_shown;
489 static unsigned long nr_unshown;
490
491 /*
492 * Allow a burst of 60 reports, then keep quiet for that minute;
493 * or allow a steady drip of one report per second.
494 */
495 if (nr_shown == 60) {
496 if (time_before(jiffies, resume)) {
497 nr_unshown++;
498 return;
499 }
500 if (nr_unshown) {
1e9e6365
HD
501 printk(KERN_ALERT
502 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
503 nr_unshown);
504 nr_unshown = 0;
505 }
506 nr_shown = 0;
507 }
508 if (nr_shown++ == 0)
509 resume = jiffies + 60 * HZ;
3dc14741
HD
510
511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512 index = linear_page_index(vma, addr);
513
1e9e6365
HD
514 printk(KERN_ALERT
515 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
516 current->comm,
517 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
518 if (page)
519 dump_page(page);
1e9e6365 520 printk(KERN_ALERT
3dc14741
HD
521 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523 /*
524 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
525 */
526 if (vma->vm_ops)
1e9e6365 527 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
528 (unsigned long)vma->vm_ops->fault);
529 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 530 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 531 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 532 dump_stack();
3dc14741 533 add_taint(TAINT_BAD_PAGE);
b5810039
NP
534}
535
67121172
LT
536static inline int is_cow_mapping(unsigned int flags)
537{
538 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
539}
540
62eede62
HD
541#ifndef is_zero_pfn
542static inline int is_zero_pfn(unsigned long pfn)
543{
544 return pfn == zero_pfn;
545}
546#endif
547
548#ifndef my_zero_pfn
549static inline unsigned long my_zero_pfn(unsigned long addr)
550{
551 return zero_pfn;
552}
553#endif
554
ee498ed7 555/*
7e675137 556 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 557 *
7e675137
NP
558 * "Special" mappings do not wish to be associated with a "struct page" (either
559 * it doesn't exist, or it exists but they don't want to touch it). In this
560 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 561 *
7e675137
NP
562 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
563 * pte bit, in which case this function is trivial. Secondly, an architecture
564 * may not have a spare pte bit, which requires a more complicated scheme,
565 * described below.
566 *
567 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
568 * special mapping (even if there are underlying and valid "struct pages").
569 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 570 *
b379d790
JH
571 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
572 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
573 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
574 * mapping will always honor the rule
6aab341e
LT
575 *
576 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
577 *
7e675137
NP
578 * And for normal mappings this is false.
579 *
580 * This restricts such mappings to be a linear translation from virtual address
581 * to pfn. To get around this restriction, we allow arbitrary mappings so long
582 * as the vma is not a COW mapping; in that case, we know that all ptes are
583 * special (because none can have been COWed).
b379d790 584 *
b379d790 585 *
7e675137 586 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
587 *
588 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
589 * page" backing, however the difference is that _all_ pages with a struct
590 * page (that is, those where pfn_valid is true) are refcounted and considered
591 * normal pages by the VM. The disadvantage is that pages are refcounted
592 * (which can be slower and simply not an option for some PFNMAP users). The
593 * advantage is that we don't have to follow the strict linearity rule of
594 * PFNMAP mappings in order to support COWable mappings.
595 *
ee498ed7 596 */
7e675137
NP
597#ifdef __HAVE_ARCH_PTE_SPECIAL
598# define HAVE_PTE_SPECIAL 1
599#else
600# define HAVE_PTE_SPECIAL 0
601#endif
602struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
603 pte_t pte)
ee498ed7 604{
22b31eec 605 unsigned long pfn = pte_pfn(pte);
7e675137
NP
606
607 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
608 if (likely(!pte_special(pte)))
609 goto check_pfn;
a13ea5b7
HD
610 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
611 return NULL;
62eede62 612 if (!is_zero_pfn(pfn))
22b31eec 613 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
614 return NULL;
615 }
616
617 /* !HAVE_PTE_SPECIAL case follows: */
618
b379d790
JH
619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 if (vma->vm_flags & VM_MIXEDMAP) {
621 if (!pfn_valid(pfn))
622 return NULL;
623 goto out;
624 } else {
7e675137
NP
625 unsigned long off;
626 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
627 if (pfn == vma->vm_pgoff + off)
628 return NULL;
629 if (!is_cow_mapping(vma->vm_flags))
630 return NULL;
631 }
6aab341e
LT
632 }
633
62eede62
HD
634 if (is_zero_pfn(pfn))
635 return NULL;
22b31eec
HD
636check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
640 }
6aab341e
LT
641
642 /*
7e675137 643 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 644 * eg. VDSO mappings can cause them to exist.
6aab341e 645 */
b379d790 646out:
6aab341e 647 return pfn_to_page(pfn);
ee498ed7
HD
648}
649
1da177e4
LT
650/*
651 * copy one vm_area from one task to the other. Assumes the page tables
652 * already present in the new task to be cleared in the whole range
653 * covered by this vma.
1da177e4
LT
654 */
655
570a335b 656static inline unsigned long
1da177e4 657copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 658 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 659 unsigned long addr, int *rss)
1da177e4 660{
b5810039 661 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
662 pte_t pte = *src_pte;
663 struct page *page;
1da177e4
LT
664
665 /* pte contains position in swap or file, so copy. */
666 if (unlikely(!pte_present(pte))) {
667 if (!pte_file(pte)) {
0697212a
CL
668 swp_entry_t entry = pte_to_swp_entry(pte);
669
570a335b
HD
670 if (swap_duplicate(entry) < 0)
671 return entry.val;
672
1da177e4
LT
673 /* make sure dst_mm is on swapoff's mmlist. */
674 if (unlikely(list_empty(&dst_mm->mmlist))) {
675 spin_lock(&mmlist_lock);
f412ac08
HD
676 if (list_empty(&dst_mm->mmlist))
677 list_add(&dst_mm->mmlist,
678 &src_mm->mmlist);
1da177e4
LT
679 spin_unlock(&mmlist_lock);
680 }
b084d435
KH
681 if (likely(!non_swap_entry(entry)))
682 rss[MM_SWAPENTS]++;
683 else if (is_write_migration_entry(entry) &&
0697212a
CL
684 is_cow_mapping(vm_flags)) {
685 /*
686 * COW mappings require pages in both parent
687 * and child to be set to read.
688 */
689 make_migration_entry_read(&entry);
690 pte = swp_entry_to_pte(entry);
691 set_pte_at(src_mm, addr, src_pte, pte);
692 }
1da177e4 693 }
ae859762 694 goto out_set_pte;
1da177e4
LT
695 }
696
1da177e4
LT
697 /*
698 * If it's a COW mapping, write protect it both
699 * in the parent and the child
700 */
67121172 701 if (is_cow_mapping(vm_flags)) {
1da177e4 702 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 703 pte = pte_wrprotect(pte);
1da177e4
LT
704 }
705
706 /*
707 * If it's a shared mapping, mark it clean in
708 * the child
709 */
710 if (vm_flags & VM_SHARED)
711 pte = pte_mkclean(pte);
712 pte = pte_mkold(pte);
6aab341e
LT
713
714 page = vm_normal_page(vma, addr, pte);
715 if (page) {
716 get_page(page);
21333b2b 717 page_dup_rmap(page);
d559db08
KH
718 if (PageAnon(page))
719 rss[MM_ANONPAGES]++;
720 else
721 rss[MM_FILEPAGES]++;
6aab341e 722 }
ae859762
HD
723
724out_set_pte:
725 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 726 return 0;
1da177e4
LT
727}
728
71e3aac0
AA
729int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
730 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
731 unsigned long addr, unsigned long end)
1da177e4 732{
c36987e2 733 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 734 pte_t *src_pte, *dst_pte;
c74df32c 735 spinlock_t *src_ptl, *dst_ptl;
e040f218 736 int progress = 0;
d559db08 737 int rss[NR_MM_COUNTERS];
570a335b 738 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
739
740again:
d559db08
KH
741 init_rss_vec(rss);
742
c74df32c 743 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
744 if (!dst_pte)
745 return -ENOMEM;
ece0e2b6 746 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 747 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 748 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
749 orig_src_pte = src_pte;
750 orig_dst_pte = dst_pte;
6606c3e0 751 arch_enter_lazy_mmu_mode();
1da177e4 752
1da177e4
LT
753 do {
754 /*
755 * We are holding two locks at this point - either of them
756 * could generate latencies in another task on another CPU.
757 */
e040f218
HD
758 if (progress >= 32) {
759 progress = 0;
760 if (need_resched() ||
95c354fe 761 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
762 break;
763 }
1da177e4
LT
764 if (pte_none(*src_pte)) {
765 progress++;
766 continue;
767 }
570a335b
HD
768 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
769 vma, addr, rss);
770 if (entry.val)
771 break;
1da177e4
LT
772 progress += 8;
773 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 774
6606c3e0 775 arch_leave_lazy_mmu_mode();
c74df32c 776 spin_unlock(src_ptl);
ece0e2b6 777 pte_unmap(orig_src_pte);
d559db08 778 add_mm_rss_vec(dst_mm, rss);
c36987e2 779 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 780 cond_resched();
570a335b
HD
781
782 if (entry.val) {
783 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
784 return -ENOMEM;
785 progress = 0;
786 }
1da177e4
LT
787 if (addr != end)
788 goto again;
789 return 0;
790}
791
792static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
793 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
794 unsigned long addr, unsigned long end)
795{
796 pmd_t *src_pmd, *dst_pmd;
797 unsigned long next;
798
799 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
800 if (!dst_pmd)
801 return -ENOMEM;
802 src_pmd = pmd_offset(src_pud, addr);
803 do {
804 next = pmd_addr_end(addr, end);
71e3aac0
AA
805 if (pmd_trans_huge(*src_pmd)) {
806 int err;
807 err = copy_huge_pmd(dst_mm, src_mm,
808 dst_pmd, src_pmd, addr, vma);
809 if (err == -ENOMEM)
810 return -ENOMEM;
811 if (!err)
812 continue;
813 /* fall through */
814 }
1da177e4
LT
815 if (pmd_none_or_clear_bad(src_pmd))
816 continue;
817 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
818 vma, addr, next))
819 return -ENOMEM;
820 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
821 return 0;
822}
823
824static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
825 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
826 unsigned long addr, unsigned long end)
827{
828 pud_t *src_pud, *dst_pud;
829 unsigned long next;
830
831 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
832 if (!dst_pud)
833 return -ENOMEM;
834 src_pud = pud_offset(src_pgd, addr);
835 do {
836 next = pud_addr_end(addr, end);
837 if (pud_none_or_clear_bad(src_pud))
838 continue;
839 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
840 vma, addr, next))
841 return -ENOMEM;
842 } while (dst_pud++, src_pud++, addr = next, addr != end);
843 return 0;
844}
845
846int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847 struct vm_area_struct *vma)
848{
849 pgd_t *src_pgd, *dst_pgd;
850 unsigned long next;
851 unsigned long addr = vma->vm_start;
852 unsigned long end = vma->vm_end;
cddb8a5c 853 int ret;
1da177e4 854
d992895b
NP
855 /*
856 * Don't copy ptes where a page fault will fill them correctly.
857 * Fork becomes much lighter when there are big shared or private
858 * readonly mappings. The tradeoff is that copy_page_range is more
859 * efficient than faulting.
860 */
4d7672b4 861 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
862 if (!vma->anon_vma)
863 return 0;
864 }
865
1da177e4
LT
866 if (is_vm_hugetlb_page(vma))
867 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
868
34801ba9 869 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 870 /*
871 * We do not free on error cases below as remove_vma
872 * gets called on error from higher level routine
873 */
874 ret = track_pfn_vma_copy(vma);
875 if (ret)
876 return ret;
877 }
878
cddb8a5c
AA
879 /*
880 * We need to invalidate the secondary MMU mappings only when
881 * there could be a permission downgrade on the ptes of the
882 * parent mm. And a permission downgrade will only happen if
883 * is_cow_mapping() returns true.
884 */
885 if (is_cow_mapping(vma->vm_flags))
886 mmu_notifier_invalidate_range_start(src_mm, addr, end);
887
888 ret = 0;
1da177e4
LT
889 dst_pgd = pgd_offset(dst_mm, addr);
890 src_pgd = pgd_offset(src_mm, addr);
891 do {
892 next = pgd_addr_end(addr, end);
893 if (pgd_none_or_clear_bad(src_pgd))
894 continue;
cddb8a5c
AA
895 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
896 vma, addr, next))) {
897 ret = -ENOMEM;
898 break;
899 }
1da177e4 900 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
901
902 if (is_cow_mapping(vma->vm_flags))
903 mmu_notifier_invalidate_range_end(src_mm,
904 vma->vm_start, end);
905 return ret;
1da177e4
LT
906}
907
51c6f666 908static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 909 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 910 unsigned long addr, unsigned long end,
51c6f666 911 long *zap_work, struct zap_details *details)
1da177e4 912{
b5810039 913 struct mm_struct *mm = tlb->mm;
1da177e4 914 pte_t *pte;
508034a3 915 spinlock_t *ptl;
d559db08
KH
916 int rss[NR_MM_COUNTERS];
917
918 init_rss_vec(rss);
1da177e4 919
508034a3 920 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 921 arch_enter_lazy_mmu_mode();
1da177e4
LT
922 do {
923 pte_t ptent = *pte;
51c6f666
RH
924 if (pte_none(ptent)) {
925 (*zap_work)--;
1da177e4 926 continue;
51c6f666 927 }
6f5e6b9e
HD
928
929 (*zap_work) -= PAGE_SIZE;
930
1da177e4 931 if (pte_present(ptent)) {
ee498ed7 932 struct page *page;
51c6f666 933
6aab341e 934 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
935 if (unlikely(details) && page) {
936 /*
937 * unmap_shared_mapping_pages() wants to
938 * invalidate cache without truncating:
939 * unmap shared but keep private pages.
940 */
941 if (details->check_mapping &&
942 details->check_mapping != page->mapping)
943 continue;
944 /*
945 * Each page->index must be checked when
946 * invalidating or truncating nonlinear.
947 */
948 if (details->nonlinear_vma &&
949 (page->index < details->first_index ||
950 page->index > details->last_index))
951 continue;
952 }
b5810039 953 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 954 tlb->fullmm);
1da177e4
LT
955 tlb_remove_tlb_entry(tlb, pte, addr);
956 if (unlikely(!page))
957 continue;
958 if (unlikely(details) && details->nonlinear_vma
959 && linear_page_index(details->nonlinear_vma,
960 addr) != page->index)
b5810039 961 set_pte_at(mm, addr, pte,
1da177e4 962 pgoff_to_pte(page->index));
1da177e4 963 if (PageAnon(page))
d559db08 964 rss[MM_ANONPAGES]--;
6237bcd9
HD
965 else {
966 if (pte_dirty(ptent))
967 set_page_dirty(page);
4917e5d0
JW
968 if (pte_young(ptent) &&
969 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 970 mark_page_accessed(page);
d559db08 971 rss[MM_FILEPAGES]--;
6237bcd9 972 }
edc315fd 973 page_remove_rmap(page);
3dc14741
HD
974 if (unlikely(page_mapcount(page) < 0))
975 print_bad_pte(vma, addr, ptent, page);
1da177e4
LT
976 tlb_remove_page(tlb, page);
977 continue;
978 }
979 /*
980 * If details->check_mapping, we leave swap entries;
981 * if details->nonlinear_vma, we leave file entries.
982 */
983 if (unlikely(details))
984 continue;
2509ef26
HD
985 if (pte_file(ptent)) {
986 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
987 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
988 } else {
989 swp_entry_t entry = pte_to_swp_entry(ptent);
990
991 if (!non_swap_entry(entry))
992 rss[MM_SWAPENTS]--;
993 if (unlikely(!free_swap_and_cache(entry)))
994 print_bad_pte(vma, addr, ptent, NULL);
995 }
9888a1ca 996 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 997 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 998
d559db08 999 add_mm_rss_vec(mm, rss);
6606c3e0 1000 arch_leave_lazy_mmu_mode();
508034a3 1001 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
1002
1003 return addr;
1da177e4
LT
1004}
1005
51c6f666 1006static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1007 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1008 unsigned long addr, unsigned long end,
51c6f666 1009 long *zap_work, struct zap_details *details)
1da177e4
LT
1010{
1011 pmd_t *pmd;
1012 unsigned long next;
1013
1014 pmd = pmd_offset(pud, addr);
1015 do {
1016 next = pmd_addr_end(addr, end);
71e3aac0
AA
1017 if (pmd_trans_huge(*pmd)) {
1018 if (next-addr != HPAGE_PMD_SIZE)
1019 split_huge_page_pmd(vma->vm_mm, pmd);
1020 else if (zap_huge_pmd(tlb, vma, pmd)) {
1021 (*zap_work)--;
1022 continue;
1023 }
1024 /* fall through */
1025 }
51c6f666
RH
1026 if (pmd_none_or_clear_bad(pmd)) {
1027 (*zap_work)--;
1da177e4 1028 continue;
51c6f666
RH
1029 }
1030 next = zap_pte_range(tlb, vma, pmd, addr, next,
1031 zap_work, details);
1032 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1033
1034 return addr;
1da177e4
LT
1035}
1036
51c6f666 1037static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1038 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1039 unsigned long addr, unsigned long end,
51c6f666 1040 long *zap_work, struct zap_details *details)
1da177e4
LT
1041{
1042 pud_t *pud;
1043 unsigned long next;
1044
1045 pud = pud_offset(pgd, addr);
1046 do {
1047 next = pud_addr_end(addr, end);
51c6f666
RH
1048 if (pud_none_or_clear_bad(pud)) {
1049 (*zap_work)--;
1da177e4 1050 continue;
51c6f666
RH
1051 }
1052 next = zap_pmd_range(tlb, vma, pud, addr, next,
1053 zap_work, details);
1054 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1055
1056 return addr;
1da177e4
LT
1057}
1058
51c6f666
RH
1059static unsigned long unmap_page_range(struct mmu_gather *tlb,
1060 struct vm_area_struct *vma,
1da177e4 1061 unsigned long addr, unsigned long end,
51c6f666 1062 long *zap_work, struct zap_details *details)
1da177e4
LT
1063{
1064 pgd_t *pgd;
1065 unsigned long next;
1066
1067 if (details && !details->check_mapping && !details->nonlinear_vma)
1068 details = NULL;
1069
1070 BUG_ON(addr >= end);
569b846d 1071 mem_cgroup_uncharge_start();
1da177e4
LT
1072 tlb_start_vma(tlb, vma);
1073 pgd = pgd_offset(vma->vm_mm, addr);
1074 do {
1075 next = pgd_addr_end(addr, end);
51c6f666
RH
1076 if (pgd_none_or_clear_bad(pgd)) {
1077 (*zap_work)--;
1da177e4 1078 continue;
51c6f666
RH
1079 }
1080 next = zap_pud_range(tlb, vma, pgd, addr, next,
1081 zap_work, details);
1082 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 1083 tlb_end_vma(tlb, vma);
569b846d 1084 mem_cgroup_uncharge_end();
51c6f666
RH
1085
1086 return addr;
1da177e4
LT
1087}
1088
1089#ifdef CONFIG_PREEMPT
1090# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1091#else
1092/* No preempt: go for improved straight-line efficiency */
1093# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1094#endif
1095
1096/**
1097 * unmap_vmas - unmap a range of memory covered by a list of vma's
1098 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
1099 * @vma: the starting vma
1100 * @start_addr: virtual address at which to start unmapping
1101 * @end_addr: virtual address at which to end unmapping
1102 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1103 * @details: details of nonlinear truncation or shared cache invalidation
1104 *
ee39b37b 1105 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 1106 *
508034a3 1107 * Unmap all pages in the vma list.
1da177e4 1108 *
508034a3
HD
1109 * We aim to not hold locks for too long (for scheduling latency reasons).
1110 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
1111 * return the ending mmu_gather to the caller.
1112 *
1113 * Only addresses between `start' and `end' will be unmapped.
1114 *
1115 * The VMA list must be sorted in ascending virtual address order.
1116 *
1117 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1118 * range after unmap_vmas() returns. So the only responsibility here is to
1119 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1120 * drops the lock and schedules.
1121 */
508034a3 1122unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
1123 struct vm_area_struct *vma, unsigned long start_addr,
1124 unsigned long end_addr, unsigned long *nr_accounted,
1125 struct zap_details *details)
1126{
51c6f666 1127 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1128 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1129 int tlb_start_valid = 0;
ee39b37b 1130 unsigned long start = start_addr;
1da177e4 1131 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 1132 int fullmm = (*tlbp)->fullmm;
cddb8a5c 1133 struct mm_struct *mm = vma->vm_mm;
1da177e4 1134
cddb8a5c 1135 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 1136 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
1137 unsigned long end;
1138
1139 start = max(vma->vm_start, start_addr);
1140 if (start >= vma->vm_end)
1141 continue;
1142 end = min(vma->vm_end, end_addr);
1143 if (end <= vma->vm_start)
1144 continue;
1145
1146 if (vma->vm_flags & VM_ACCOUNT)
1147 *nr_accounted += (end - start) >> PAGE_SHIFT;
1148
34801ba9 1149 if (unlikely(is_pfn_mapping(vma)))
2ab64037 1150 untrack_pfn_vma(vma, 0, 0);
1151
1da177e4 1152 while (start != end) {
1da177e4
LT
1153 if (!tlb_start_valid) {
1154 tlb_start = start;
1155 tlb_start_valid = 1;
1156 }
1157
51c6f666 1158 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
1159 /*
1160 * It is undesirable to test vma->vm_file as it
1161 * should be non-null for valid hugetlb area.
1162 * However, vm_file will be NULL in the error
1163 * cleanup path of do_mmap_pgoff. When
1164 * hugetlbfs ->mmap method fails,
1165 * do_mmap_pgoff() nullifies vma->vm_file
1166 * before calling this function to clean up.
1167 * Since no pte has actually been setup, it is
1168 * safe to do nothing in this case.
1169 */
1170 if (vma->vm_file) {
1171 unmap_hugepage_range(vma, start, end, NULL);
1172 zap_work -= (end - start) /
a5516438 1173 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
1174 }
1175
51c6f666
RH
1176 start = end;
1177 } else
1178 start = unmap_page_range(*tlbp, vma,
1179 start, end, &zap_work, details);
1180
1181 if (zap_work > 0) {
1182 BUG_ON(start != end);
1183 break;
1da177e4
LT
1184 }
1185
1da177e4
LT
1186 tlb_finish_mmu(*tlbp, tlb_start, start);
1187
1188 if (need_resched() ||
95c354fe 1189 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1190 if (i_mmap_lock) {
508034a3 1191 *tlbp = NULL;
1da177e4
LT
1192 goto out;
1193 }
1da177e4 1194 cond_resched();
1da177e4
LT
1195 }
1196
508034a3 1197 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1198 tlb_start_valid = 0;
51c6f666 1199 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1200 }
1201 }
1202out:
cddb8a5c 1203 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1204 return start; /* which is now the end (or restart) address */
1da177e4
LT
1205}
1206
1207/**
1208 * zap_page_range - remove user pages in a given range
1209 * @vma: vm_area_struct holding the applicable pages
1210 * @address: starting address of pages to zap
1211 * @size: number of bytes to zap
1212 * @details: details of nonlinear truncation or shared cache invalidation
1213 */
ee39b37b 1214unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1215 unsigned long size, struct zap_details *details)
1216{
1217 struct mm_struct *mm = vma->vm_mm;
1218 struct mmu_gather *tlb;
1219 unsigned long end = address + size;
1220 unsigned long nr_accounted = 0;
1221
1da177e4 1222 lru_add_drain();
1da177e4 1223 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1224 update_hiwater_rss(mm);
508034a3
HD
1225 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1226 if (tlb)
1227 tlb_finish_mmu(tlb, address, end);
ee39b37b 1228 return end;
1da177e4
LT
1229}
1230
c627f9cc
JS
1231/**
1232 * zap_vma_ptes - remove ptes mapping the vma
1233 * @vma: vm_area_struct holding ptes to be zapped
1234 * @address: starting address of pages to zap
1235 * @size: number of bytes to zap
1236 *
1237 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1238 *
1239 * The entire address range must be fully contained within the vma.
1240 *
1241 * Returns 0 if successful.
1242 */
1243int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1244 unsigned long size)
1245{
1246 if (address < vma->vm_start || address + size > vma->vm_end ||
1247 !(vma->vm_flags & VM_PFNMAP))
1248 return -1;
1249 zap_page_range(vma, address, size, NULL);
1250 return 0;
1251}
1252EXPORT_SYMBOL_GPL(zap_vma_ptes);
1253
142762bd
JW
1254/**
1255 * follow_page - look up a page descriptor from a user-virtual address
1256 * @vma: vm_area_struct mapping @address
1257 * @address: virtual address to look up
1258 * @flags: flags modifying lookup behaviour
1259 *
1260 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1261 *
1262 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1263 * an error pointer if there is a mapping to something not represented
1264 * by a page descriptor (see also vm_normal_page()).
1da177e4 1265 */
6aab341e 1266struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1267 unsigned int flags)
1da177e4
LT
1268{
1269 pgd_t *pgd;
1270 pud_t *pud;
1271 pmd_t *pmd;
1272 pte_t *ptep, pte;
deceb6cd 1273 spinlock_t *ptl;
1da177e4 1274 struct page *page;
6aab341e 1275 struct mm_struct *mm = vma->vm_mm;
1da177e4 1276
deceb6cd
HD
1277 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1278 if (!IS_ERR(page)) {
1279 BUG_ON(flags & FOLL_GET);
1280 goto out;
1281 }
1da177e4 1282
deceb6cd 1283 page = NULL;
1da177e4
LT
1284 pgd = pgd_offset(mm, address);
1285 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1286 goto no_page_table;
1da177e4
LT
1287
1288 pud = pud_offset(pgd, address);
ceb86879 1289 if (pud_none(*pud))
deceb6cd 1290 goto no_page_table;
8a07651e 1291 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
ceb86879
AK
1292 BUG_ON(flags & FOLL_GET);
1293 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1294 goto out;
1295 }
1296 if (unlikely(pud_bad(*pud)))
1297 goto no_page_table;
1298
1da177e4 1299 pmd = pmd_offset(pud, address);
aeed5fce 1300 if (pmd_none(*pmd))
deceb6cd 1301 goto no_page_table;
71e3aac0 1302 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd
HD
1303 BUG_ON(flags & FOLL_GET);
1304 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1305 goto out;
deceb6cd 1306 }
71e3aac0
AA
1307 if (pmd_trans_huge(*pmd)) {
1308 spin_lock(&mm->page_table_lock);
1309 if (likely(pmd_trans_huge(*pmd))) {
1310 if (unlikely(pmd_trans_splitting(*pmd))) {
1311 spin_unlock(&mm->page_table_lock);
1312 wait_split_huge_page(vma->anon_vma, pmd);
1313 } else {
1314 page = follow_trans_huge_pmd(mm, address,
1315 pmd, flags);
1316 spin_unlock(&mm->page_table_lock);
1317 goto out;
1318 }
1319 } else
1320 spin_unlock(&mm->page_table_lock);
1321 /* fall through */
1322 }
aeed5fce
HD
1323 if (unlikely(pmd_bad(*pmd)))
1324 goto no_page_table;
1325
deceb6cd 1326 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1327
1328 pte = *ptep;
deceb6cd 1329 if (!pte_present(pte))
89f5b7da 1330 goto no_page;
deceb6cd
HD
1331 if ((flags & FOLL_WRITE) && !pte_write(pte))
1332 goto unlock;
a13ea5b7 1333
6aab341e 1334 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1335 if (unlikely(!page)) {
1336 if ((flags & FOLL_DUMP) ||
62eede62 1337 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1338 goto bad_page;
1339 page = pte_page(pte);
1340 }
1da177e4 1341
deceb6cd
HD
1342 if (flags & FOLL_GET)
1343 get_page(page);
1344 if (flags & FOLL_TOUCH) {
1345 if ((flags & FOLL_WRITE) &&
1346 !pte_dirty(pte) && !PageDirty(page))
1347 set_page_dirty(page);
bd775c42
KM
1348 /*
1349 * pte_mkyoung() would be more correct here, but atomic care
1350 * is needed to avoid losing the dirty bit: it is easier to use
1351 * mark_page_accessed().
1352 */
deceb6cd
HD
1353 mark_page_accessed(page);
1354 }
110d74a9
ML
1355 if (flags & FOLL_MLOCK) {
1356 /*
1357 * The preliminary mapping check is mainly to avoid the
1358 * pointless overhead of lock_page on the ZERO_PAGE
1359 * which might bounce very badly if there is contention.
1360 *
1361 * If the page is already locked, we don't need to
1362 * handle it now - vmscan will handle it later if and
1363 * when it attempts to reclaim the page.
1364 */
1365 if (page->mapping && trylock_page(page)) {
1366 lru_add_drain(); /* push cached pages to LRU */
1367 /*
1368 * Because we lock page here and migration is
1369 * blocked by the pte's page reference, we need
1370 * only check for file-cache page truncation.
1371 */
1372 if (page->mapping)
1373 mlock_vma_page(page);
1374 unlock_page(page);
1375 }
1376 }
deceb6cd
HD
1377unlock:
1378 pte_unmap_unlock(ptep, ptl);
1da177e4 1379out:
deceb6cd 1380 return page;
1da177e4 1381
89f5b7da
LT
1382bad_page:
1383 pte_unmap_unlock(ptep, ptl);
1384 return ERR_PTR(-EFAULT);
1385
1386no_page:
1387 pte_unmap_unlock(ptep, ptl);
1388 if (!pte_none(pte))
1389 return page;
8e4b9a60 1390
deceb6cd
HD
1391no_page_table:
1392 /*
1393 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1394 * has touched so far, we don't want to allocate unnecessary pages or
1395 * page tables. Return error instead of NULL to skip handle_mm_fault,
1396 * then get_dump_page() will return NULL to leave a hole in the dump.
1397 * But we can only make this optimization where a hole would surely
1398 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1399 */
8e4b9a60
HD
1400 if ((flags & FOLL_DUMP) &&
1401 (!vma->vm_ops || !vma->vm_ops->fault))
1402 return ERR_PTR(-EFAULT);
deceb6cd 1403 return page;
1da177e4
LT
1404}
1405
b291f000 1406int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1407 unsigned long start, int nr_pages, unsigned int gup_flags,
53a7706d
ML
1408 struct page **pages, struct vm_area_struct **vmas,
1409 int *nonblocking)
1da177e4
LT
1410{
1411 int i;
58fa879e 1412 unsigned long vm_flags;
1da177e4 1413
9d73777e 1414 if (nr_pages <= 0)
900cf086 1415 return 0;
58fa879e
HD
1416
1417 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1418
1da177e4
LT
1419 /*
1420 * Require read or write permissions.
58fa879e 1421 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1422 */
58fa879e
HD
1423 vm_flags = (gup_flags & FOLL_WRITE) ?
1424 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1425 vm_flags &= (gup_flags & FOLL_FORCE) ?
1426 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1427 i = 0;
1428
1429 do {
deceb6cd 1430 struct vm_area_struct *vma;
1da177e4
LT
1431
1432 vma = find_extend_vma(mm, start);
1433 if (!vma && in_gate_area(tsk, start)) {
1434 unsigned long pg = start & PAGE_MASK;
1435 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1436 pgd_t *pgd;
1437 pud_t *pud;
1438 pmd_t *pmd;
1439 pte_t *pte;
b291f000
NP
1440
1441 /* user gate pages are read-only */
58fa879e 1442 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1443 return i ? : -EFAULT;
1444 if (pg > TASK_SIZE)
1445 pgd = pgd_offset_k(pg);
1446 else
1447 pgd = pgd_offset_gate(mm, pg);
1448 BUG_ON(pgd_none(*pgd));
1449 pud = pud_offset(pgd, pg);
1450 BUG_ON(pud_none(*pud));
1451 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1452 if (pmd_none(*pmd))
1453 return i ? : -EFAULT;
1da177e4 1454 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1455 if (pte_none(*pte)) {
1456 pte_unmap(pte);
1457 return i ? : -EFAULT;
1458 }
1da177e4 1459 if (pages) {
de51257a
HD
1460 struct page *page;
1461
1462 page = vm_normal_page(gate_vma, start, *pte);
1463 if (!page) {
1464 if (!(gup_flags & FOLL_DUMP) &&
1465 is_zero_pfn(pte_pfn(*pte)))
1466 page = pte_page(*pte);
1467 else {
1468 pte_unmap(pte);
1469 return i ? : -EFAULT;
1470 }
1471 }
6aab341e 1472 pages[i] = page;
de51257a 1473 get_page(page);
1da177e4
LT
1474 }
1475 pte_unmap(pte);
1476 if (vmas)
1477 vmas[i] = gate_vma;
1478 i++;
1479 start += PAGE_SIZE;
9d73777e 1480 nr_pages--;
1da177e4
LT
1481 continue;
1482 }
1483
b291f000
NP
1484 if (!vma ||
1485 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1486 !(vm_flags & vma->vm_flags))
1da177e4
LT
1487 return i ? : -EFAULT;
1488
2a15efc9
HD
1489 if (is_vm_hugetlb_page(vma)) {
1490 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1491 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1492 continue;
1493 }
deceb6cd 1494
1da177e4 1495 do {
08ef4729 1496 struct page *page;
58fa879e 1497 unsigned int foll_flags = gup_flags;
1da177e4 1498
462e00cc 1499 /*
4779280d 1500 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1501 * pages and potentially allocating memory.
462e00cc 1502 */
1c3aff1c 1503 if (unlikely(fatal_signal_pending(current)))
4779280d 1504 return i ? i : -ERESTARTSYS;
462e00cc 1505
deceb6cd 1506 cond_resched();
6aab341e 1507 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1508 int ret;
53a7706d
ML
1509 unsigned int fault_flags = 0;
1510
1511 if (foll_flags & FOLL_WRITE)
1512 fault_flags |= FAULT_FLAG_WRITE;
1513 if (nonblocking)
1514 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
d06063cc 1515
d26ed650 1516 ret = handle_mm_fault(mm, vma, start,
53a7706d 1517 fault_flags);
d26ed650 1518
83c54070
NP
1519 if (ret & VM_FAULT_ERROR) {
1520 if (ret & VM_FAULT_OOM)
1521 return i ? i : -ENOMEM;
d1737fdb 1522 if (ret &
aa50d3a7
AK
1523 (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE|
1524 VM_FAULT_SIGBUS))
83c54070
NP
1525 return i ? i : -EFAULT;
1526 BUG();
1527 }
1528 if (ret & VM_FAULT_MAJOR)
1529 tsk->maj_flt++;
1530 else
1531 tsk->min_flt++;
1532
53a7706d
ML
1533 if (ret & VM_FAULT_RETRY) {
1534 *nonblocking = 0;
1535 return i;
1536 }
1537
a68d2ebc 1538 /*
83c54070
NP
1539 * The VM_FAULT_WRITE bit tells us that
1540 * do_wp_page has broken COW when necessary,
1541 * even if maybe_mkwrite decided not to set
1542 * pte_write. We can thus safely do subsequent
878b63ac
HD
1543 * page lookups as if they were reads. But only
1544 * do so when looping for pte_write is futile:
1545 * in some cases userspace may also be wanting
1546 * to write to the gotten user page, which a
1547 * read fault here might prevent (a readonly
1548 * page might get reCOWed by userspace write).
a68d2ebc 1549 */
878b63ac
HD
1550 if ((ret & VM_FAULT_WRITE) &&
1551 !(vma->vm_flags & VM_WRITE))
deceb6cd 1552 foll_flags &= ~FOLL_WRITE;
83c54070 1553
7f7bbbe5 1554 cond_resched();
1da177e4 1555 }
89f5b7da
LT
1556 if (IS_ERR(page))
1557 return i ? i : PTR_ERR(page);
1da177e4 1558 if (pages) {
08ef4729 1559 pages[i] = page;
03beb076 1560
a6f36be3 1561 flush_anon_page(vma, page, start);
08ef4729 1562 flush_dcache_page(page);
1da177e4
LT
1563 }
1564 if (vmas)
1565 vmas[i] = vma;
1566 i++;
1567 start += PAGE_SIZE;
9d73777e
PZ
1568 nr_pages--;
1569 } while (nr_pages && start < vma->vm_end);
1570 } while (nr_pages);
1da177e4
LT
1571 return i;
1572}
b291f000 1573
d2bf6be8
NP
1574/**
1575 * get_user_pages() - pin user pages in memory
1576 * @tsk: task_struct of target task
1577 * @mm: mm_struct of target mm
1578 * @start: starting user address
9d73777e 1579 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1580 * @write: whether pages will be written to by the caller
1581 * @force: whether to force write access even if user mapping is
1582 * readonly. This will result in the page being COWed even
1583 * in MAP_SHARED mappings. You do not want this.
1584 * @pages: array that receives pointers to the pages pinned.
1585 * Should be at least nr_pages long. Or NULL, if caller
1586 * only intends to ensure the pages are faulted in.
1587 * @vmas: array of pointers to vmas corresponding to each page.
1588 * Or NULL if the caller does not require them.
1589 *
1590 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1591 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1592 * were pinned, returns -errno. Each page returned must be released
1593 * with a put_page() call when it is finished with. vmas will only
1594 * remain valid while mmap_sem is held.
1595 *
1596 * Must be called with mmap_sem held for read or write.
1597 *
1598 * get_user_pages walks a process's page tables and takes a reference to
1599 * each struct page that each user address corresponds to at a given
1600 * instant. That is, it takes the page that would be accessed if a user
1601 * thread accesses the given user virtual address at that instant.
1602 *
1603 * This does not guarantee that the page exists in the user mappings when
1604 * get_user_pages returns, and there may even be a completely different
1605 * page there in some cases (eg. if mmapped pagecache has been invalidated
1606 * and subsequently re faulted). However it does guarantee that the page
1607 * won't be freed completely. And mostly callers simply care that the page
1608 * contains data that was valid *at some point in time*. Typically, an IO
1609 * or similar operation cannot guarantee anything stronger anyway because
1610 * locks can't be held over the syscall boundary.
1611 *
1612 * If write=0, the page must not be written to. If the page is written to,
1613 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1614 * after the page is finished with, and before put_page is called.
1615 *
1616 * get_user_pages is typically used for fewer-copy IO operations, to get a
1617 * handle on the memory by some means other than accesses via the user virtual
1618 * addresses. The pages may be submitted for DMA to devices or accessed via
1619 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1620 * use the correct cache flushing APIs.
1621 *
1622 * See also get_user_pages_fast, for performance critical applications.
1623 */
b291f000 1624int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1625 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1626 struct page **pages, struct vm_area_struct **vmas)
1627{
58fa879e 1628 int flags = FOLL_TOUCH;
b291f000 1629
58fa879e
HD
1630 if (pages)
1631 flags |= FOLL_GET;
b291f000 1632 if (write)
58fa879e 1633 flags |= FOLL_WRITE;
b291f000 1634 if (force)
58fa879e 1635 flags |= FOLL_FORCE;
b291f000 1636
53a7706d
ML
1637 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1638 NULL);
b291f000 1639}
1da177e4
LT
1640EXPORT_SYMBOL(get_user_pages);
1641
f3e8fccd
HD
1642/**
1643 * get_dump_page() - pin user page in memory while writing it to core dump
1644 * @addr: user address
1645 *
1646 * Returns struct page pointer of user page pinned for dump,
1647 * to be freed afterwards by page_cache_release() or put_page().
1648 *
1649 * Returns NULL on any kind of failure - a hole must then be inserted into
1650 * the corefile, to preserve alignment with its headers; and also returns
1651 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1652 * allowing a hole to be left in the corefile to save diskspace.
1653 *
1654 * Called without mmap_sem, but after all other threads have been killed.
1655 */
1656#ifdef CONFIG_ELF_CORE
1657struct page *get_dump_page(unsigned long addr)
1658{
1659 struct vm_area_struct *vma;
1660 struct page *page;
1661
1662 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
1663 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1664 NULL) < 1)
f3e8fccd 1665 return NULL;
f3e8fccd
HD
1666 flush_cache_page(vma, addr, page_to_pfn(page));
1667 return page;
1668}
1669#endif /* CONFIG_ELF_CORE */
1670
25ca1d6c 1671pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1672 spinlock_t **ptl)
c9cfcddf
LT
1673{
1674 pgd_t * pgd = pgd_offset(mm, addr);
1675 pud_t * pud = pud_alloc(mm, pgd, addr);
1676 if (pud) {
49c91fb0 1677 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1678 if (pmd)
1679 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1680 }
1681 return NULL;
1682}
1683
238f58d8
LT
1684/*
1685 * This is the old fallback for page remapping.
1686 *
1687 * For historical reasons, it only allows reserved pages. Only
1688 * old drivers should use this, and they needed to mark their
1689 * pages reserved for the old functions anyway.
1690 */
423bad60
NP
1691static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1692 struct page *page, pgprot_t prot)
238f58d8 1693{
423bad60 1694 struct mm_struct *mm = vma->vm_mm;
238f58d8 1695 int retval;
c9cfcddf 1696 pte_t *pte;
8a9f3ccd
BS
1697 spinlock_t *ptl;
1698
238f58d8 1699 retval = -EINVAL;
a145dd41 1700 if (PageAnon(page))
5b4e655e 1701 goto out;
238f58d8
LT
1702 retval = -ENOMEM;
1703 flush_dcache_page(page);
c9cfcddf 1704 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1705 if (!pte)
5b4e655e 1706 goto out;
238f58d8
LT
1707 retval = -EBUSY;
1708 if (!pte_none(*pte))
1709 goto out_unlock;
1710
1711 /* Ok, finally just insert the thing.. */
1712 get_page(page);
34e55232 1713 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
1714 page_add_file_rmap(page);
1715 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1716
1717 retval = 0;
8a9f3ccd
BS
1718 pte_unmap_unlock(pte, ptl);
1719 return retval;
238f58d8
LT
1720out_unlock:
1721 pte_unmap_unlock(pte, ptl);
1722out:
1723 return retval;
1724}
1725
bfa5bf6d
REB
1726/**
1727 * vm_insert_page - insert single page into user vma
1728 * @vma: user vma to map to
1729 * @addr: target user address of this page
1730 * @page: source kernel page
1731 *
a145dd41
LT
1732 * This allows drivers to insert individual pages they've allocated
1733 * into a user vma.
1734 *
1735 * The page has to be a nice clean _individual_ kernel allocation.
1736 * If you allocate a compound page, you need to have marked it as
1737 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1738 * (see split_page()).
a145dd41
LT
1739 *
1740 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1741 * took an arbitrary page protection parameter. This doesn't allow
1742 * that. Your vma protection will have to be set up correctly, which
1743 * means that if you want a shared writable mapping, you'd better
1744 * ask for a shared writable mapping!
1745 *
1746 * The page does not need to be reserved.
1747 */
423bad60
NP
1748int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1749 struct page *page)
a145dd41
LT
1750{
1751 if (addr < vma->vm_start || addr >= vma->vm_end)
1752 return -EFAULT;
1753 if (!page_count(page))
1754 return -EINVAL;
4d7672b4 1755 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1756 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1757}
e3c3374f 1758EXPORT_SYMBOL(vm_insert_page);
a145dd41 1759
423bad60
NP
1760static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1761 unsigned long pfn, pgprot_t prot)
1762{
1763 struct mm_struct *mm = vma->vm_mm;
1764 int retval;
1765 pte_t *pte, entry;
1766 spinlock_t *ptl;
1767
1768 retval = -ENOMEM;
1769 pte = get_locked_pte(mm, addr, &ptl);
1770 if (!pte)
1771 goto out;
1772 retval = -EBUSY;
1773 if (!pte_none(*pte))
1774 goto out_unlock;
1775
1776 /* Ok, finally just insert the thing.. */
1777 entry = pte_mkspecial(pfn_pte(pfn, prot));
1778 set_pte_at(mm, addr, pte, entry);
4b3073e1 1779 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1780
1781 retval = 0;
1782out_unlock:
1783 pte_unmap_unlock(pte, ptl);
1784out:
1785 return retval;
1786}
1787
e0dc0d8f
NP
1788/**
1789 * vm_insert_pfn - insert single pfn into user vma
1790 * @vma: user vma to map to
1791 * @addr: target user address of this page
1792 * @pfn: source kernel pfn
1793 *
1794 * Similar to vm_inert_page, this allows drivers to insert individual pages
1795 * they've allocated into a user vma. Same comments apply.
1796 *
1797 * This function should only be called from a vm_ops->fault handler, and
1798 * in that case the handler should return NULL.
0d71d10a
NP
1799 *
1800 * vma cannot be a COW mapping.
1801 *
1802 * As this is called only for pages that do not currently exist, we
1803 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1804 */
1805int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1806 unsigned long pfn)
e0dc0d8f 1807{
2ab64037 1808 int ret;
e4b866ed 1809 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1810 /*
1811 * Technically, architectures with pte_special can avoid all these
1812 * restrictions (same for remap_pfn_range). However we would like
1813 * consistency in testing and feature parity among all, so we should
1814 * try to keep these invariants in place for everybody.
1815 */
b379d790
JH
1816 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1817 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1818 (VM_PFNMAP|VM_MIXEDMAP));
1819 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1820 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1821
423bad60
NP
1822 if (addr < vma->vm_start || addr >= vma->vm_end)
1823 return -EFAULT;
e4b866ed 1824 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 1825 return -EINVAL;
1826
e4b866ed 1827 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1828
1829 if (ret)
1830 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1831
1832 return ret;
423bad60
NP
1833}
1834EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1835
423bad60
NP
1836int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1837 unsigned long pfn)
1838{
1839 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1840
423bad60
NP
1841 if (addr < vma->vm_start || addr >= vma->vm_end)
1842 return -EFAULT;
e0dc0d8f 1843
423bad60
NP
1844 /*
1845 * If we don't have pte special, then we have to use the pfn_valid()
1846 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1847 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1848 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1849 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1850 */
1851 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1852 struct page *page;
1853
1854 page = pfn_to_page(pfn);
1855 return insert_page(vma, addr, page, vma->vm_page_prot);
1856 }
1857 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1858}
423bad60 1859EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1860
1da177e4
LT
1861/*
1862 * maps a range of physical memory into the requested pages. the old
1863 * mappings are removed. any references to nonexistent pages results
1864 * in null mappings (currently treated as "copy-on-access")
1865 */
1866static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1867 unsigned long addr, unsigned long end,
1868 unsigned long pfn, pgprot_t prot)
1869{
1870 pte_t *pte;
c74df32c 1871 spinlock_t *ptl;
1da177e4 1872
c74df32c 1873 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1874 if (!pte)
1875 return -ENOMEM;
6606c3e0 1876 arch_enter_lazy_mmu_mode();
1da177e4
LT
1877 do {
1878 BUG_ON(!pte_none(*pte));
7e675137 1879 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1880 pfn++;
1881 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1882 arch_leave_lazy_mmu_mode();
c74df32c 1883 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1884 return 0;
1885}
1886
1887static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1888 unsigned long addr, unsigned long end,
1889 unsigned long pfn, pgprot_t prot)
1890{
1891 pmd_t *pmd;
1892 unsigned long next;
1893
1894 pfn -= addr >> PAGE_SHIFT;
1895 pmd = pmd_alloc(mm, pud, addr);
1896 if (!pmd)
1897 return -ENOMEM;
1898 do {
1899 next = pmd_addr_end(addr, end);
1900 if (remap_pte_range(mm, pmd, addr, next,
1901 pfn + (addr >> PAGE_SHIFT), prot))
1902 return -ENOMEM;
1903 } while (pmd++, addr = next, addr != end);
1904 return 0;
1905}
1906
1907static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1908 unsigned long addr, unsigned long end,
1909 unsigned long pfn, pgprot_t prot)
1910{
1911 pud_t *pud;
1912 unsigned long next;
1913
1914 pfn -= addr >> PAGE_SHIFT;
1915 pud = pud_alloc(mm, pgd, addr);
1916 if (!pud)
1917 return -ENOMEM;
1918 do {
1919 next = pud_addr_end(addr, end);
1920 if (remap_pmd_range(mm, pud, addr, next,
1921 pfn + (addr >> PAGE_SHIFT), prot))
1922 return -ENOMEM;
1923 } while (pud++, addr = next, addr != end);
1924 return 0;
1925}
1926
bfa5bf6d
REB
1927/**
1928 * remap_pfn_range - remap kernel memory to userspace
1929 * @vma: user vma to map to
1930 * @addr: target user address to start at
1931 * @pfn: physical address of kernel memory
1932 * @size: size of map area
1933 * @prot: page protection flags for this mapping
1934 *
1935 * Note: this is only safe if the mm semaphore is held when called.
1936 */
1da177e4
LT
1937int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1938 unsigned long pfn, unsigned long size, pgprot_t prot)
1939{
1940 pgd_t *pgd;
1941 unsigned long next;
2d15cab8 1942 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1943 struct mm_struct *mm = vma->vm_mm;
1944 int err;
1945
1946 /*
1947 * Physically remapped pages are special. Tell the
1948 * rest of the world about it:
1949 * VM_IO tells people not to look at these pages
1950 * (accesses can have side effects).
0b14c179
HD
1951 * VM_RESERVED is specified all over the place, because
1952 * in 2.4 it kept swapout's vma scan off this vma; but
1953 * in 2.6 the LRU scan won't even find its pages, so this
1954 * flag means no more than count its pages in reserved_vm,
1955 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1956 * VM_PFNMAP tells the core MM that the base pages are just
1957 * raw PFN mappings, and do not have a "struct page" associated
1958 * with them.
fb155c16
LT
1959 *
1960 * There's a horrible special case to handle copy-on-write
1961 * behaviour that some programs depend on. We mark the "original"
1962 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1963 */
4bb9c5c0 1964 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 1965 vma->vm_pgoff = pfn;
895791da 1966 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 1967 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 1968 return -EINVAL;
fb155c16 1969
6aab341e 1970 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1971
e4b866ed 1972 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 1973 if (err) {
1974 /*
1975 * To indicate that track_pfn related cleanup is not
1976 * needed from higher level routine calling unmap_vmas
1977 */
1978 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 1979 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 1980 return -EINVAL;
a3670613 1981 }
2ab64037 1982
1da177e4
LT
1983 BUG_ON(addr >= end);
1984 pfn -= addr >> PAGE_SHIFT;
1985 pgd = pgd_offset(mm, addr);
1986 flush_cache_range(vma, addr, end);
1da177e4
LT
1987 do {
1988 next = pgd_addr_end(addr, end);
1989 err = remap_pud_range(mm, pgd, addr, next,
1990 pfn + (addr >> PAGE_SHIFT), prot);
1991 if (err)
1992 break;
1993 } while (pgd++, addr = next, addr != end);
2ab64037 1994
1995 if (err)
1996 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1997
1da177e4
LT
1998 return err;
1999}
2000EXPORT_SYMBOL(remap_pfn_range);
2001
aee16b3c
JF
2002static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2003 unsigned long addr, unsigned long end,
2004 pte_fn_t fn, void *data)
2005{
2006 pte_t *pte;
2007 int err;
2f569afd 2008 pgtable_t token;
94909914 2009 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2010
2011 pte = (mm == &init_mm) ?
2012 pte_alloc_kernel(pmd, addr) :
2013 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2014 if (!pte)
2015 return -ENOMEM;
2016
2017 BUG_ON(pmd_huge(*pmd));
2018
38e0edb1
JF
2019 arch_enter_lazy_mmu_mode();
2020
2f569afd 2021 token = pmd_pgtable(*pmd);
aee16b3c
JF
2022
2023 do {
c36987e2 2024 err = fn(pte++, token, addr, data);
aee16b3c
JF
2025 if (err)
2026 break;
c36987e2 2027 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2028
38e0edb1
JF
2029 arch_leave_lazy_mmu_mode();
2030
aee16b3c
JF
2031 if (mm != &init_mm)
2032 pte_unmap_unlock(pte-1, ptl);
2033 return err;
2034}
2035
2036static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2037 unsigned long addr, unsigned long end,
2038 pte_fn_t fn, void *data)
2039{
2040 pmd_t *pmd;
2041 unsigned long next;
2042 int err;
2043
ceb86879
AK
2044 BUG_ON(pud_huge(*pud));
2045
aee16b3c
JF
2046 pmd = pmd_alloc(mm, pud, addr);
2047 if (!pmd)
2048 return -ENOMEM;
2049 do {
2050 next = pmd_addr_end(addr, end);
2051 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2052 if (err)
2053 break;
2054 } while (pmd++, addr = next, addr != end);
2055 return err;
2056}
2057
2058static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2059 unsigned long addr, unsigned long end,
2060 pte_fn_t fn, void *data)
2061{
2062 pud_t *pud;
2063 unsigned long next;
2064 int err;
2065
2066 pud = pud_alloc(mm, pgd, addr);
2067 if (!pud)
2068 return -ENOMEM;
2069 do {
2070 next = pud_addr_end(addr, end);
2071 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2072 if (err)
2073 break;
2074 } while (pud++, addr = next, addr != end);
2075 return err;
2076}
2077
2078/*
2079 * Scan a region of virtual memory, filling in page tables as necessary
2080 * and calling a provided function on each leaf page table.
2081 */
2082int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2083 unsigned long size, pte_fn_t fn, void *data)
2084{
2085 pgd_t *pgd;
2086 unsigned long next;
57250a5b 2087 unsigned long end = addr + size;
aee16b3c
JF
2088 int err;
2089
2090 BUG_ON(addr >= end);
2091 pgd = pgd_offset(mm, addr);
2092 do {
2093 next = pgd_addr_end(addr, end);
2094 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2095 if (err)
2096 break;
2097 } while (pgd++, addr = next, addr != end);
57250a5b 2098
aee16b3c
JF
2099 return err;
2100}
2101EXPORT_SYMBOL_GPL(apply_to_page_range);
2102
8f4e2101
HD
2103/*
2104 * handle_pte_fault chooses page fault handler according to an entry
2105 * which was read non-atomically. Before making any commitment, on
2106 * those architectures or configurations (e.g. i386 with PAE) which
2107 * might give a mix of unmatched parts, do_swap_page and do_file_page
2108 * must check under lock before unmapping the pte and proceeding
2109 * (but do_wp_page is only called after already making such a check;
2110 * and do_anonymous_page and do_no_page can safely check later on).
2111 */
4c21e2f2 2112static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2113 pte_t *page_table, pte_t orig_pte)
2114{
2115 int same = 1;
2116#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2117 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2118 spinlock_t *ptl = pte_lockptr(mm, pmd);
2119 spin_lock(ptl);
8f4e2101 2120 same = pte_same(*page_table, orig_pte);
4c21e2f2 2121 spin_unlock(ptl);
8f4e2101
HD
2122 }
2123#endif
2124 pte_unmap(page_table);
2125 return same;
2126}
2127
9de455b2 2128static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2129{
2130 /*
2131 * If the source page was a PFN mapping, we don't have
2132 * a "struct page" for it. We do a best-effort copy by
2133 * just copying from the original user address. If that
2134 * fails, we just zero-fill it. Live with it.
2135 */
2136 if (unlikely(!src)) {
2137 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
2138 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2139
2140 /*
2141 * This really shouldn't fail, because the page is there
2142 * in the page tables. But it might just be unreadable,
2143 * in which case we just give up and fill the result with
2144 * zeroes.
2145 */
2146 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2147 clear_page(kaddr);
6aab341e 2148 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 2149 flush_dcache_page(dst);
0ed361de
NP
2150 } else
2151 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2152}
2153
1da177e4
LT
2154/*
2155 * This routine handles present pages, when users try to write
2156 * to a shared page. It is done by copying the page to a new address
2157 * and decrementing the shared-page counter for the old page.
2158 *
1da177e4
LT
2159 * Note that this routine assumes that the protection checks have been
2160 * done by the caller (the low-level page fault routine in most cases).
2161 * Thus we can safely just mark it writable once we've done any necessary
2162 * COW.
2163 *
2164 * We also mark the page dirty at this point even though the page will
2165 * change only once the write actually happens. This avoids a few races,
2166 * and potentially makes it more efficient.
2167 *
8f4e2101
HD
2168 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2169 * but allow concurrent faults), with pte both mapped and locked.
2170 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2171 */
65500d23
HD
2172static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2173 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2174 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2175 __releases(ptl)
1da177e4 2176{
e5bbe4df 2177 struct page *old_page, *new_page;
1da177e4 2178 pte_t entry;
b009c024 2179 int ret = 0;
a200ee18 2180 int page_mkwrite = 0;
d08b3851 2181 struct page *dirty_page = NULL;
1da177e4 2182
6aab341e 2183 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2184 if (!old_page) {
2185 /*
2186 * VM_MIXEDMAP !pfn_valid() case
2187 *
2188 * We should not cow pages in a shared writeable mapping.
2189 * Just mark the pages writable as we can't do any dirty
2190 * accounting on raw pfn maps.
2191 */
2192 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2193 (VM_WRITE|VM_SHARED))
2194 goto reuse;
6aab341e 2195 goto gotten;
251b97f5 2196 }
1da177e4 2197
d08b3851 2198 /*
ee6a6457
PZ
2199 * Take out anonymous pages first, anonymous shared vmas are
2200 * not dirty accountable.
d08b3851 2201 */
9a840895 2202 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2203 if (!trylock_page(old_page)) {
2204 page_cache_get(old_page);
2205 pte_unmap_unlock(page_table, ptl);
2206 lock_page(old_page);
2207 page_table = pte_offset_map_lock(mm, pmd, address,
2208 &ptl);
2209 if (!pte_same(*page_table, orig_pte)) {
2210 unlock_page(old_page);
2211 page_cache_release(old_page);
2212 goto unlock;
2213 }
2214 page_cache_release(old_page);
ee6a6457 2215 }
b009c024 2216 if (reuse_swap_page(old_page)) {
c44b6743
RR
2217 /*
2218 * The page is all ours. Move it to our anon_vma so
2219 * the rmap code will not search our parent or siblings.
2220 * Protected against the rmap code by the page lock.
2221 */
2222 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2223 unlock_page(old_page);
2224 goto reuse;
2225 }
ab967d86 2226 unlock_page(old_page);
ee6a6457 2227 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2228 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2229 /*
2230 * Only catch write-faults on shared writable pages,
2231 * read-only shared pages can get COWed by
2232 * get_user_pages(.write=1, .force=1).
2233 */
9637a5ef 2234 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2235 struct vm_fault vmf;
2236 int tmp;
2237
2238 vmf.virtual_address = (void __user *)(address &
2239 PAGE_MASK);
2240 vmf.pgoff = old_page->index;
2241 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2242 vmf.page = old_page;
2243
9637a5ef
DH
2244 /*
2245 * Notify the address space that the page is about to
2246 * become writable so that it can prohibit this or wait
2247 * for the page to get into an appropriate state.
2248 *
2249 * We do this without the lock held, so that it can
2250 * sleep if it needs to.
2251 */
2252 page_cache_get(old_page);
2253 pte_unmap_unlock(page_table, ptl);
2254
c2ec175c
NP
2255 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2256 if (unlikely(tmp &
2257 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2258 ret = tmp;
9637a5ef 2259 goto unwritable_page;
c2ec175c 2260 }
b827e496
NP
2261 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2262 lock_page(old_page);
2263 if (!old_page->mapping) {
2264 ret = 0; /* retry the fault */
2265 unlock_page(old_page);
2266 goto unwritable_page;
2267 }
2268 } else
2269 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2270
9637a5ef
DH
2271 /*
2272 * Since we dropped the lock we need to revalidate
2273 * the PTE as someone else may have changed it. If
2274 * they did, we just return, as we can count on the
2275 * MMU to tell us if they didn't also make it writable.
2276 */
2277 page_table = pte_offset_map_lock(mm, pmd, address,
2278 &ptl);
b827e496
NP
2279 if (!pte_same(*page_table, orig_pte)) {
2280 unlock_page(old_page);
2281 page_cache_release(old_page);
9637a5ef 2282 goto unlock;
b827e496 2283 }
a200ee18
PZ
2284
2285 page_mkwrite = 1;
1da177e4 2286 }
d08b3851
PZ
2287 dirty_page = old_page;
2288 get_page(dirty_page);
9637a5ef 2289
251b97f5 2290reuse:
9637a5ef
DH
2291 flush_cache_page(vma, address, pte_pfn(orig_pte));
2292 entry = pte_mkyoung(orig_pte);
2293 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2294 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2295 update_mmu_cache(vma, address, page_table);
72ddc8f7 2296 pte_unmap_unlock(page_table, ptl);
9637a5ef 2297 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2298
2299 if (!dirty_page)
2300 return ret;
2301
2302 /*
2303 * Yes, Virginia, this is actually required to prevent a race
2304 * with clear_page_dirty_for_io() from clearing the page dirty
2305 * bit after it clear all dirty ptes, but before a racing
2306 * do_wp_page installs a dirty pte.
2307 *
2308 * do_no_page is protected similarly.
2309 */
2310 if (!page_mkwrite) {
2311 wait_on_page_locked(dirty_page);
2312 set_page_dirty_balance(dirty_page, page_mkwrite);
2313 }
2314 put_page(dirty_page);
2315 if (page_mkwrite) {
2316 struct address_space *mapping = dirty_page->mapping;
2317
2318 set_page_dirty(dirty_page);
2319 unlock_page(dirty_page);
2320 page_cache_release(dirty_page);
2321 if (mapping) {
2322 /*
2323 * Some device drivers do not set page.mapping
2324 * but still dirty their pages
2325 */
2326 balance_dirty_pages_ratelimited(mapping);
2327 }
2328 }
2329
2330 /* file_update_time outside page_lock */
2331 if (vma->vm_file)
2332 file_update_time(vma->vm_file);
2333
2334 return ret;
1da177e4 2335 }
1da177e4
LT
2336
2337 /*
2338 * Ok, we need to copy. Oh, well..
2339 */
b5810039 2340 page_cache_get(old_page);
920fc356 2341gotten:
8f4e2101 2342 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2343
2344 if (unlikely(anon_vma_prepare(vma)))
65500d23 2345 goto oom;
a13ea5b7 2346
62eede62 2347 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2348 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2349 if (!new_page)
2350 goto oom;
2351 } else {
2352 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2353 if (!new_page)
2354 goto oom;
2355 cow_user_page(new_page, old_page, address, vma);
2356 }
2357 __SetPageUptodate(new_page);
2358
b291f000
NP
2359 /*
2360 * Don't let another task, with possibly unlocked vma,
2361 * keep the mlocked page.
2362 */
ab92661d 2363 if ((vma->vm_flags & VM_LOCKED) && old_page) {
b291f000
NP
2364 lock_page(old_page); /* for LRU manipulation */
2365 clear_page_mlock(old_page);
2366 unlock_page(old_page);
2367 }
65500d23 2368
2c26fdd7 2369 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2370 goto oom_free_new;
2371
1da177e4
LT
2372 /*
2373 * Re-check the pte - we dropped the lock
2374 */
8f4e2101 2375 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2376 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2377 if (old_page) {
920fc356 2378 if (!PageAnon(old_page)) {
34e55232
KH
2379 dec_mm_counter_fast(mm, MM_FILEPAGES);
2380 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2381 }
2382 } else
34e55232 2383 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2384 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2385 entry = mk_pte(new_page, vma->vm_page_prot);
2386 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2387 /*
2388 * Clear the pte entry and flush it first, before updating the
2389 * pte with the new entry. This will avoid a race condition
2390 * seen in the presence of one thread doing SMC and another
2391 * thread doing COW.
2392 */
828502d3 2393 ptep_clear_flush(vma, address, page_table);
9617d95e 2394 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2395 /*
2396 * We call the notify macro here because, when using secondary
2397 * mmu page tables (such as kvm shadow page tables), we want the
2398 * new page to be mapped directly into the secondary page table.
2399 */
2400 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2401 update_mmu_cache(vma, address, page_table);
945754a1
NP
2402 if (old_page) {
2403 /*
2404 * Only after switching the pte to the new page may
2405 * we remove the mapcount here. Otherwise another
2406 * process may come and find the rmap count decremented
2407 * before the pte is switched to the new page, and
2408 * "reuse" the old page writing into it while our pte
2409 * here still points into it and can be read by other
2410 * threads.
2411 *
2412 * The critical issue is to order this
2413 * page_remove_rmap with the ptp_clear_flush above.
2414 * Those stores are ordered by (if nothing else,)
2415 * the barrier present in the atomic_add_negative
2416 * in page_remove_rmap.
2417 *
2418 * Then the TLB flush in ptep_clear_flush ensures that
2419 * no process can access the old page before the
2420 * decremented mapcount is visible. And the old page
2421 * cannot be reused until after the decremented
2422 * mapcount is visible. So transitively, TLBs to
2423 * old page will be flushed before it can be reused.
2424 */
edc315fd 2425 page_remove_rmap(old_page);
945754a1
NP
2426 }
2427
1da177e4
LT
2428 /* Free the old page.. */
2429 new_page = old_page;
f33ea7f4 2430 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2431 } else
2432 mem_cgroup_uncharge_page(new_page);
2433
920fc356
HD
2434 if (new_page)
2435 page_cache_release(new_page);
2436 if (old_page)
2437 page_cache_release(old_page);
65500d23 2438unlock:
8f4e2101 2439 pte_unmap_unlock(page_table, ptl);
f33ea7f4 2440 return ret;
8a9f3ccd 2441oom_free_new:
6dbf6d3b 2442 page_cache_release(new_page);
65500d23 2443oom:
b827e496
NP
2444 if (old_page) {
2445 if (page_mkwrite) {
2446 unlock_page(old_page);
2447 page_cache_release(old_page);
2448 }
920fc356 2449 page_cache_release(old_page);
b827e496 2450 }
1da177e4 2451 return VM_FAULT_OOM;
9637a5ef
DH
2452
2453unwritable_page:
2454 page_cache_release(old_page);
c2ec175c 2455 return ret;
1da177e4
LT
2456}
2457
2458/*
2459 * Helper functions for unmap_mapping_range().
2460 *
2461 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2462 *
2463 * We have to restart searching the prio_tree whenever we drop the lock,
2464 * since the iterator is only valid while the lock is held, and anyway
2465 * a later vma might be split and reinserted earlier while lock dropped.
2466 *
2467 * The list of nonlinear vmas could be handled more efficiently, using
2468 * a placeholder, but handle it in the same way until a need is shown.
2469 * It is important to search the prio_tree before nonlinear list: a vma
2470 * may become nonlinear and be shifted from prio_tree to nonlinear list
2471 * while the lock is dropped; but never shifted from list to prio_tree.
2472 *
2473 * In order to make forward progress despite restarting the search,
2474 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2475 * quickly skip it next time around. Since the prio_tree search only
2476 * shows us those vmas affected by unmapping the range in question, we
2477 * can't efficiently keep all vmas in step with mapping->truncate_count:
2478 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2479 * mapping->truncate_count and vma->vm_truncate_count are protected by
2480 * i_mmap_lock.
2481 *
2482 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2483 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2484 * and restart from that address when we reach that vma again. It might
2485 * have been split or merged, shrunk or extended, but never shifted: so
2486 * restart_addr remains valid so long as it remains in the vma's range.
2487 * unmap_mapping_range forces truncate_count to leap over page-aligned
2488 * values so we can save vma's restart_addr in its truncate_count field.
2489 */
2490#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2491
2492static void reset_vma_truncate_counts(struct address_space *mapping)
2493{
2494 struct vm_area_struct *vma;
2495 struct prio_tree_iter iter;
2496
2497 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2498 vma->vm_truncate_count = 0;
2499 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2500 vma->vm_truncate_count = 0;
2501}
2502
2503static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2504 unsigned long start_addr, unsigned long end_addr,
2505 struct zap_details *details)
2506{
2507 unsigned long restart_addr;
2508 int need_break;
2509
d00806b1
NP
2510 /*
2511 * files that support invalidating or truncating portions of the
d0217ac0 2512 * file from under mmaped areas must have their ->fault function
83c54070
NP
2513 * return a locked page (and set VM_FAULT_LOCKED in the return).
2514 * This provides synchronisation against concurrent unmapping here.
d00806b1 2515 */
d00806b1 2516
1da177e4
LT
2517again:
2518 restart_addr = vma->vm_truncate_count;
2519 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2520 start_addr = restart_addr;
2521 if (start_addr >= end_addr) {
2522 /* Top of vma has been split off since last time */
2523 vma->vm_truncate_count = details->truncate_count;
2524 return 0;
2525 }
2526 }
2527
ee39b37b
HD
2528 restart_addr = zap_page_range(vma, start_addr,
2529 end_addr - start_addr, details);
95c354fe 2530 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2531
ee39b37b 2532 if (restart_addr >= end_addr) {
1da177e4
LT
2533 /* We have now completed this vma: mark it so */
2534 vma->vm_truncate_count = details->truncate_count;
2535 if (!need_break)
2536 return 0;
2537 } else {
2538 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2539 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2540 if (!need_break)
2541 goto again;
2542 }
2543
2544 spin_unlock(details->i_mmap_lock);
2545 cond_resched();
2546 spin_lock(details->i_mmap_lock);
2547 return -EINTR;
2548}
2549
2550static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2551 struct zap_details *details)
2552{
2553 struct vm_area_struct *vma;
2554 struct prio_tree_iter iter;
2555 pgoff_t vba, vea, zba, zea;
2556
2557restart:
2558 vma_prio_tree_foreach(vma, &iter, root,
2559 details->first_index, details->last_index) {
2560 /* Skip quickly over those we have already dealt with */
2561 if (vma->vm_truncate_count == details->truncate_count)
2562 continue;
2563
2564 vba = vma->vm_pgoff;
2565 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2566 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2567 zba = details->first_index;
2568 if (zba < vba)
2569 zba = vba;
2570 zea = details->last_index;
2571 if (zea > vea)
2572 zea = vea;
2573
2574 if (unmap_mapping_range_vma(vma,
2575 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2576 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2577 details) < 0)
2578 goto restart;
2579 }
2580}
2581
2582static inline void unmap_mapping_range_list(struct list_head *head,
2583 struct zap_details *details)
2584{
2585 struct vm_area_struct *vma;
2586
2587 /*
2588 * In nonlinear VMAs there is no correspondence between virtual address
2589 * offset and file offset. So we must perform an exhaustive search
2590 * across *all* the pages in each nonlinear VMA, not just the pages
2591 * whose virtual address lies outside the file truncation point.
2592 */
2593restart:
2594 list_for_each_entry(vma, head, shared.vm_set.list) {
2595 /* Skip quickly over those we have already dealt with */
2596 if (vma->vm_truncate_count == details->truncate_count)
2597 continue;
2598 details->nonlinear_vma = vma;
2599 if (unmap_mapping_range_vma(vma, vma->vm_start,
2600 vma->vm_end, details) < 0)
2601 goto restart;
2602 }
2603}
2604
2605/**
72fd4a35 2606 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2607 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2608 * @holebegin: byte in first page to unmap, relative to the start of
2609 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2610 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2611 * must keep the partial page. In contrast, we must get rid of
2612 * partial pages.
2613 * @holelen: size of prospective hole in bytes. This will be rounded
2614 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2615 * end of the file.
2616 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2617 * but 0 when invalidating pagecache, don't throw away private data.
2618 */
2619void unmap_mapping_range(struct address_space *mapping,
2620 loff_t const holebegin, loff_t const holelen, int even_cows)
2621{
2622 struct zap_details details;
2623 pgoff_t hba = holebegin >> PAGE_SHIFT;
2624 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2625
2626 /* Check for overflow. */
2627 if (sizeof(holelen) > sizeof(hlen)) {
2628 long long holeend =
2629 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2630 if (holeend & ~(long long)ULONG_MAX)
2631 hlen = ULONG_MAX - hba + 1;
2632 }
2633
2634 details.check_mapping = even_cows? NULL: mapping;
2635 details.nonlinear_vma = NULL;
2636 details.first_index = hba;
2637 details.last_index = hba + hlen - 1;
2638 if (details.last_index < details.first_index)
2639 details.last_index = ULONG_MAX;
2640 details.i_mmap_lock = &mapping->i_mmap_lock;
2641
2642 spin_lock(&mapping->i_mmap_lock);
2643
d00806b1 2644 /* Protect against endless unmapping loops */
1da177e4 2645 mapping->truncate_count++;
1da177e4
LT
2646 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2647 if (mapping->truncate_count == 0)
2648 reset_vma_truncate_counts(mapping);
2649 mapping->truncate_count++;
2650 }
2651 details.truncate_count = mapping->truncate_count;
2652
2653 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2654 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2655 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2656 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2657 spin_unlock(&mapping->i_mmap_lock);
2658}
2659EXPORT_SYMBOL(unmap_mapping_range);
2660
f6b3ec23
BP
2661int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2662{
2663 struct address_space *mapping = inode->i_mapping;
2664
2665 /*
2666 * If the underlying filesystem is not going to provide
2667 * a way to truncate a range of blocks (punch a hole) -
2668 * we should return failure right now.
2669 */
acfa4380 2670 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2671 return -ENOSYS;
2672
1b1dcc1b 2673 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2674 down_write(&inode->i_alloc_sem);
2675 unmap_mapping_range(mapping, offset, (end - offset), 1);
2676 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2677 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2678 inode->i_op->truncate_range(inode, offset, end);
2679 up_write(&inode->i_alloc_sem);
1b1dcc1b 2680 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2681
2682 return 0;
2683}
f6b3ec23 2684
1da177e4 2685/*
8f4e2101
HD
2686 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2687 * but allow concurrent faults), and pte mapped but not yet locked.
2688 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2689 */
65500d23
HD
2690static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2691 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2692 unsigned int flags, pte_t orig_pte)
1da177e4 2693{
8f4e2101 2694 spinlock_t *ptl;
4969c119 2695 struct page *page, *swapcache = NULL;
65500d23 2696 swp_entry_t entry;
1da177e4 2697 pte_t pte;
d065bd81 2698 int locked;
7a81b88c 2699 struct mem_cgroup *ptr = NULL;
ad8c2ee8 2700 int exclusive = 0;
83c54070 2701 int ret = 0;
1da177e4 2702
4c21e2f2 2703 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2704 goto out;
65500d23
HD
2705
2706 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2707 if (unlikely(non_swap_entry(entry))) {
2708 if (is_migration_entry(entry)) {
2709 migration_entry_wait(mm, pmd, address);
2710 } else if (is_hwpoison_entry(entry)) {
2711 ret = VM_FAULT_HWPOISON;
2712 } else {
2713 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2714 ret = VM_FAULT_SIGBUS;
d1737fdb 2715 }
0697212a
CL
2716 goto out;
2717 }
0ff92245 2718 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2719 page = lookup_swap_cache(entry);
2720 if (!page) {
a5c9b696 2721 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2722 page = swapin_readahead(entry,
2723 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2724 if (!page) {
2725 /*
8f4e2101
HD
2726 * Back out if somebody else faulted in this pte
2727 * while we released the pte lock.
1da177e4 2728 */
8f4e2101 2729 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2730 if (likely(pte_same(*page_table, orig_pte)))
2731 ret = VM_FAULT_OOM;
0ff92245 2732 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2733 goto unlock;
1da177e4
LT
2734 }
2735
2736 /* Had to read the page from swap area: Major fault */
2737 ret = VM_FAULT_MAJOR;
f8891e5e 2738 count_vm_event(PGMAJFAULT);
d1737fdb 2739 } else if (PageHWPoison(page)) {
71f72525
WF
2740 /*
2741 * hwpoisoned dirty swapcache pages are kept for killing
2742 * owner processes (which may be unknown at hwpoison time)
2743 */
d1737fdb
AK
2744 ret = VM_FAULT_HWPOISON;
2745 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2746 goto out_release;
1da177e4
LT
2747 }
2748
d065bd81 2749 locked = lock_page_or_retry(page, mm, flags);
073e587e 2750 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2751 if (!locked) {
2752 ret |= VM_FAULT_RETRY;
2753 goto out_release;
2754 }
073e587e 2755
4969c119 2756 /*
31c4a3d3
HD
2757 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2758 * release the swapcache from under us. The page pin, and pte_same
2759 * test below, are not enough to exclude that. Even if it is still
2760 * swapcache, we need to check that the page's swap has not changed.
4969c119 2761 */
31c4a3d3 2762 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2763 goto out_page;
2764
2765 if (ksm_might_need_to_copy(page, vma, address)) {
2766 swapcache = page;
2767 page = ksm_does_need_to_copy(page, vma, address);
2768
2769 if (unlikely(!page)) {
2770 ret = VM_FAULT_OOM;
2771 page = swapcache;
2772 swapcache = NULL;
2773 goto out_page;
2774 }
5ad64688
HD
2775 }
2776
2c26fdd7 2777 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2778 ret = VM_FAULT_OOM;
bc43f75c 2779 goto out_page;
8a9f3ccd
BS
2780 }
2781
1da177e4 2782 /*
8f4e2101 2783 * Back out if somebody else already faulted in this pte.
1da177e4 2784 */
8f4e2101 2785 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2786 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2787 goto out_nomap;
b8107480
KK
2788
2789 if (unlikely(!PageUptodate(page))) {
2790 ret = VM_FAULT_SIGBUS;
2791 goto out_nomap;
1da177e4
LT
2792 }
2793
8c7c6e34
KH
2794 /*
2795 * The page isn't present yet, go ahead with the fault.
2796 *
2797 * Be careful about the sequence of operations here.
2798 * To get its accounting right, reuse_swap_page() must be called
2799 * while the page is counted on swap but not yet in mapcount i.e.
2800 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2801 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2802 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2803 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2804 * in page->private. In this case, a record in swap_cgroup is silently
2805 * discarded at swap_free().
8c7c6e34 2806 */
1da177e4 2807
34e55232 2808 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2809 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2810 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2811 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2812 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2813 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2814 ret |= VM_FAULT_WRITE;
ad8c2ee8 2815 exclusive = 1;
1da177e4 2816 }
1da177e4
LT
2817 flush_icache_page(vma, page);
2818 set_pte_at(mm, address, page_table, pte);
ad8c2ee8 2819 do_page_add_anon_rmap(page, vma, address, exclusive);
03f3c433
KH
2820 /* It's better to call commit-charge after rmap is established */
2821 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2822
c475a8ab 2823 swap_free(entry);
b291f000 2824 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2825 try_to_free_swap(page);
c475a8ab 2826 unlock_page(page);
4969c119
AA
2827 if (swapcache) {
2828 /*
2829 * Hold the lock to avoid the swap entry to be reused
2830 * until we take the PT lock for the pte_same() check
2831 * (to avoid false positives from pte_same). For
2832 * further safety release the lock after the swap_free
2833 * so that the swap count won't change under a
2834 * parallel locked swapcache.
2835 */
2836 unlock_page(swapcache);
2837 page_cache_release(swapcache);
2838 }
c475a8ab 2839
30c9f3a9 2840 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2841 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2842 if (ret & VM_FAULT_ERROR)
2843 ret &= VM_FAULT_ERROR;
1da177e4
LT
2844 goto out;
2845 }
2846
2847 /* No need to invalidate - it was non-present before */
4b3073e1 2848 update_mmu_cache(vma, address, page_table);
65500d23 2849unlock:
8f4e2101 2850 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2851out:
2852 return ret;
b8107480 2853out_nomap:
7a81b88c 2854 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 2855 pte_unmap_unlock(page_table, ptl);
bc43f75c 2856out_page:
b8107480 2857 unlock_page(page);
4779cb31 2858out_release:
b8107480 2859 page_cache_release(page);
4969c119
AA
2860 if (swapcache) {
2861 unlock_page(swapcache);
2862 page_cache_release(swapcache);
2863 }
65500d23 2864 return ret;
1da177e4
LT
2865}
2866
320b2b8d 2867/*
8ca3eb08
TL
2868 * This is like a special single-page "expand_{down|up}wards()",
2869 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2870 * doesn't hit another vma.
320b2b8d
LT
2871 */
2872static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2873{
2874 address &= PAGE_MASK;
2875 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2876 struct vm_area_struct *prev = vma->vm_prev;
2877
2878 /*
2879 * Is there a mapping abutting this one below?
2880 *
2881 * That's only ok if it's the same stack mapping
2882 * that has gotten split..
2883 */
2884 if (prev && prev->vm_end == address)
2885 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2886
0e8e50e2 2887 expand_stack(vma, address - PAGE_SIZE);
320b2b8d 2888 }
8ca3eb08
TL
2889 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2890 struct vm_area_struct *next = vma->vm_next;
2891
2892 /* As VM_GROWSDOWN but s/below/above/ */
2893 if (next && next->vm_start == address + PAGE_SIZE)
2894 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2895
2896 expand_upwards(vma, address + PAGE_SIZE);
2897 }
320b2b8d
LT
2898 return 0;
2899}
2900
1da177e4 2901/*
8f4e2101
HD
2902 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2903 * but allow concurrent faults), and pte mapped but not yet locked.
2904 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2905 */
65500d23
HD
2906static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2907 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2908 unsigned int flags)
1da177e4 2909{
8f4e2101
HD
2910 struct page *page;
2911 spinlock_t *ptl;
1da177e4 2912 pte_t entry;
1da177e4 2913
11ac5524
LT
2914 pte_unmap(page_table);
2915
2916 /* Check if we need to add a guard page to the stack */
2917 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
2918 return VM_FAULT_SIGBUS;
2919
11ac5524 2920 /* Use the zero-page for reads */
62eede62
HD
2921 if (!(flags & FAULT_FLAG_WRITE)) {
2922 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2923 vma->vm_page_prot));
11ac5524 2924 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2925 if (!pte_none(*page_table))
2926 goto unlock;
2927 goto setpte;
2928 }
2929
557ed1fa 2930 /* Allocate our own private page. */
557ed1fa
NP
2931 if (unlikely(anon_vma_prepare(vma)))
2932 goto oom;
2933 page = alloc_zeroed_user_highpage_movable(vma, address);
2934 if (!page)
2935 goto oom;
0ed361de 2936 __SetPageUptodate(page);
8f4e2101 2937
2c26fdd7 2938 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2939 goto oom_free_page;
2940
557ed1fa 2941 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2942 if (vma->vm_flags & VM_WRITE)
2943 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2944
557ed1fa 2945 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2946 if (!pte_none(*page_table))
557ed1fa 2947 goto release;
9ba69294 2948
34e55232 2949 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 2950 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 2951setpte:
65500d23 2952 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2953
2954 /* No need to invalidate - it was non-present before */
4b3073e1 2955 update_mmu_cache(vma, address, page_table);
65500d23 2956unlock:
8f4e2101 2957 pte_unmap_unlock(page_table, ptl);
83c54070 2958 return 0;
8f4e2101 2959release:
8a9f3ccd 2960 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2961 page_cache_release(page);
2962 goto unlock;
8a9f3ccd 2963oom_free_page:
6dbf6d3b 2964 page_cache_release(page);
65500d23 2965oom:
1da177e4
LT
2966 return VM_FAULT_OOM;
2967}
2968
2969/*
54cb8821 2970 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2971 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2972 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2973 * the next page fault.
1da177e4
LT
2974 *
2975 * As this is called only for pages that do not currently exist, we
2976 * do not need to flush old virtual caches or the TLB.
2977 *
8f4e2101 2978 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2979 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2980 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2981 */
54cb8821 2982static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2983 unsigned long address, pmd_t *pmd,
54cb8821 2984 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2985{
16abfa08 2986 pte_t *page_table;
8f4e2101 2987 spinlock_t *ptl;
d0217ac0 2988 struct page *page;
1da177e4 2989 pte_t entry;
1da177e4 2990 int anon = 0;
5b4e655e 2991 int charged = 0;
d08b3851 2992 struct page *dirty_page = NULL;
d0217ac0
NP
2993 struct vm_fault vmf;
2994 int ret;
a200ee18 2995 int page_mkwrite = 0;
54cb8821 2996
d0217ac0
NP
2997 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2998 vmf.pgoff = pgoff;
2999 vmf.flags = flags;
3000 vmf.page = NULL;
1da177e4 3001
3c18ddd1 3002 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3003 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3004 VM_FAULT_RETRY)))
3c18ddd1 3005 return ret;
1da177e4 3006
a3b947ea
AK
3007 if (unlikely(PageHWPoison(vmf.page))) {
3008 if (ret & VM_FAULT_LOCKED)
3009 unlock_page(vmf.page);
3010 return VM_FAULT_HWPOISON;
3011 }
3012
d00806b1 3013 /*
d0217ac0 3014 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3015 * locked.
3016 */
83c54070 3017 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3018 lock_page(vmf.page);
54cb8821 3019 else
d0217ac0 3020 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3021
1da177e4
LT
3022 /*
3023 * Should we do an early C-O-W break?
3024 */
d0217ac0 3025 page = vmf.page;
54cb8821 3026 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3027 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 3028 anon = 1;
d00806b1 3029 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 3030 ret = VM_FAULT_OOM;
54cb8821 3031 goto out;
d00806b1 3032 }
83c54070
NP
3033 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3034 vma, address);
d00806b1 3035 if (!page) {
d0217ac0 3036 ret = VM_FAULT_OOM;
54cb8821 3037 goto out;
d00806b1 3038 }
2c26fdd7 3039 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
5b4e655e
KH
3040 ret = VM_FAULT_OOM;
3041 page_cache_release(page);
3042 goto out;
3043 }
3044 charged = 1;
b291f000
NP
3045 /*
3046 * Don't let another task, with possibly unlocked vma,
3047 * keep the mlocked page.
3048 */
3049 if (vma->vm_flags & VM_LOCKED)
3050 clear_page_mlock(vmf.page);
d0217ac0 3051 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3052 __SetPageUptodate(page);
9637a5ef 3053 } else {
54cb8821
NP
3054 /*
3055 * If the page will be shareable, see if the backing
9637a5ef 3056 * address space wants to know that the page is about
54cb8821
NP
3057 * to become writable
3058 */
69676147 3059 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3060 int tmp;
3061
69676147 3062 unlock_page(page);
b827e496 3063 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3064 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3065 if (unlikely(tmp &
3066 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3067 ret = tmp;
b827e496 3068 goto unwritable_page;
d0217ac0 3069 }
b827e496
NP
3070 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3071 lock_page(page);
3072 if (!page->mapping) {
3073 ret = 0; /* retry the fault */
3074 unlock_page(page);
3075 goto unwritable_page;
3076 }
3077 } else
3078 VM_BUG_ON(!PageLocked(page));
a200ee18 3079 page_mkwrite = 1;
9637a5ef
DH
3080 }
3081 }
54cb8821 3082
1da177e4
LT
3083 }
3084
8f4e2101 3085 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3086
3087 /*
3088 * This silly early PAGE_DIRTY setting removes a race
3089 * due to the bad i386 page protection. But it's valid
3090 * for other architectures too.
3091 *
30c9f3a9 3092 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3093 * an exclusive copy of the page, or this is a shared mapping,
3094 * so we can make it writable and dirty to avoid having to
3095 * handle that later.
3096 */
3097 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3098 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3099 flush_icache_page(vma, page);
3100 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3101 if (flags & FAULT_FLAG_WRITE)
1da177e4 3102 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 3103 if (anon) {
34e55232 3104 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3105 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3106 } else {
34e55232 3107 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3108 page_add_file_rmap(page);
54cb8821 3109 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3110 dirty_page = page;
d08b3851
PZ
3111 get_page(dirty_page);
3112 }
4294621f 3113 }
64d6519d 3114 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3115
3116 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3117 update_mmu_cache(vma, address, page_table);
1da177e4 3118 } else {
5b4e655e
KH
3119 if (charged)
3120 mem_cgroup_uncharge_page(page);
d00806b1
NP
3121 if (anon)
3122 page_cache_release(page);
3123 else
54cb8821 3124 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3125 }
3126
8f4e2101 3127 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
3128
3129out:
b827e496
NP
3130 if (dirty_page) {
3131 struct address_space *mapping = page->mapping;
8f7b3d15 3132
b827e496
NP
3133 if (set_page_dirty(dirty_page))
3134 page_mkwrite = 1;
3135 unlock_page(dirty_page);
d08b3851 3136 put_page(dirty_page);
b827e496
NP
3137 if (page_mkwrite && mapping) {
3138 /*
3139 * Some device drivers do not set page.mapping but still
3140 * dirty their pages
3141 */
3142 balance_dirty_pages_ratelimited(mapping);
3143 }
3144
3145 /* file_update_time outside page_lock */
3146 if (vma->vm_file)
3147 file_update_time(vma->vm_file);
3148 } else {
3149 unlock_page(vmf.page);
3150 if (anon)
3151 page_cache_release(vmf.page);
d08b3851 3152 }
d00806b1 3153
83c54070 3154 return ret;
b827e496
NP
3155
3156unwritable_page:
3157 page_cache_release(page);
3158 return ret;
54cb8821 3159}
d00806b1 3160
54cb8821
NP
3161static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3162 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3163 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3164{
3165 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3166 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3167
16abfa08
HD
3168 pte_unmap(page_table);
3169 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3170}
3171
1da177e4
LT
3172/*
3173 * Fault of a previously existing named mapping. Repopulate the pte
3174 * from the encoded file_pte if possible. This enables swappable
3175 * nonlinear vmas.
8f4e2101
HD
3176 *
3177 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178 * but allow concurrent faults), and pte mapped but not yet locked.
3179 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3180 */
d0217ac0 3181static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3182 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3183 unsigned int flags, pte_t orig_pte)
1da177e4 3184{
65500d23 3185 pgoff_t pgoff;
1da177e4 3186
30c9f3a9
LT
3187 flags |= FAULT_FLAG_NONLINEAR;
3188
4c21e2f2 3189 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3190 return 0;
1da177e4 3191
2509ef26 3192 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3193 /*
3194 * Page table corrupted: show pte and kill process.
3195 */
3dc14741 3196 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3197 return VM_FAULT_SIGBUS;
65500d23 3198 }
65500d23
HD
3199
3200 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3201 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3202}
3203
3204/*
3205 * These routines also need to handle stuff like marking pages dirty
3206 * and/or accessed for architectures that don't do it in hardware (most
3207 * RISC architectures). The early dirtying is also good on the i386.
3208 *
3209 * There is also a hook called "update_mmu_cache()" that architectures
3210 * with external mmu caches can use to update those (ie the Sparc or
3211 * PowerPC hashed page tables that act as extended TLBs).
3212 *
c74df32c
HD
3213 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3214 * but allow concurrent faults), and pte mapped but not yet locked.
3215 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3216 */
71e3aac0
AA
3217int handle_pte_fault(struct mm_struct *mm,
3218 struct vm_area_struct *vma, unsigned long address,
3219 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3220{
3221 pte_t entry;
8f4e2101 3222 spinlock_t *ptl;
1da177e4 3223
8dab5241 3224 entry = *pte;
1da177e4 3225 if (!pte_present(entry)) {
65500d23 3226 if (pte_none(entry)) {
f4b81804 3227 if (vma->vm_ops) {
3c18ddd1 3228 if (likely(vma->vm_ops->fault))
54cb8821 3229 return do_linear_fault(mm, vma, address,
30c9f3a9 3230 pte, pmd, flags, entry);
f4b81804
JS
3231 }
3232 return do_anonymous_page(mm, vma, address,
30c9f3a9 3233 pte, pmd, flags);
65500d23 3234 }
1da177e4 3235 if (pte_file(entry))
d0217ac0 3236 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3237 pte, pmd, flags, entry);
65500d23 3238 return do_swap_page(mm, vma, address,
30c9f3a9 3239 pte, pmd, flags, entry);
1da177e4
LT
3240 }
3241
4c21e2f2 3242 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3243 spin_lock(ptl);
3244 if (unlikely(!pte_same(*pte, entry)))
3245 goto unlock;
30c9f3a9 3246 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3247 if (!pte_write(entry))
8f4e2101
HD
3248 return do_wp_page(mm, vma, address,
3249 pte, pmd, ptl, entry);
1da177e4
LT
3250 entry = pte_mkdirty(entry);
3251 }
3252 entry = pte_mkyoung(entry);
30c9f3a9 3253 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3254 update_mmu_cache(vma, address, pte);
1a44e149
AA
3255 } else {
3256 /*
3257 * This is needed only for protection faults but the arch code
3258 * is not yet telling us if this is a protection fault or not.
3259 * This still avoids useless tlb flushes for .text page faults
3260 * with threads.
3261 */
30c9f3a9 3262 if (flags & FAULT_FLAG_WRITE)
61c77326 3263 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3264 }
8f4e2101
HD
3265unlock:
3266 pte_unmap_unlock(pte, ptl);
83c54070 3267 return 0;
1da177e4
LT
3268}
3269
3270/*
3271 * By the time we get here, we already hold the mm semaphore
3272 */
83c54070 3273int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3274 unsigned long address, unsigned int flags)
1da177e4
LT
3275{
3276 pgd_t *pgd;
3277 pud_t *pud;
3278 pmd_t *pmd;
3279 pte_t *pte;
3280
3281 __set_current_state(TASK_RUNNING);
3282
f8891e5e 3283 count_vm_event(PGFAULT);
1da177e4 3284
34e55232
KH
3285 /* do counter updates before entering really critical section. */
3286 check_sync_rss_stat(current);
3287
ac9b9c66 3288 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3289 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3290
1da177e4 3291 pgd = pgd_offset(mm, address);
1da177e4
LT
3292 pud = pud_alloc(mm, pgd, address);
3293 if (!pud)
c74df32c 3294 return VM_FAULT_OOM;
1da177e4
LT
3295 pmd = pmd_alloc(mm, pud, address);
3296 if (!pmd)
c74df32c 3297 return VM_FAULT_OOM;
71e3aac0
AA
3298 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3299 if (!vma->vm_ops)
3300 return do_huge_pmd_anonymous_page(mm, vma, address,
3301 pmd, flags);
3302 } else {
3303 pmd_t orig_pmd = *pmd;
3304 barrier();
3305 if (pmd_trans_huge(orig_pmd)) {
3306 if (flags & FAULT_FLAG_WRITE &&
3307 !pmd_write(orig_pmd) &&
3308 !pmd_trans_splitting(orig_pmd))
3309 return do_huge_pmd_wp_page(mm, vma, address,
3310 pmd, orig_pmd);
3311 return 0;
3312 }
3313 }
3314
3315 /*
3316 * Use __pte_alloc instead of pte_alloc_map, because we can't
3317 * run pte_offset_map on the pmd, if an huge pmd could
3318 * materialize from under us from a different thread.
3319 */
3320 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3321 return VM_FAULT_OOM;
71e3aac0
AA
3322 /* if an huge pmd materialized from under us just retry later */
3323 if (unlikely(pmd_trans_huge(*pmd)))
3324 return 0;
3325 /*
3326 * A regular pmd is established and it can't morph into a huge pmd
3327 * from under us anymore at this point because we hold the mmap_sem
3328 * read mode and khugepaged takes it in write mode. So now it's
3329 * safe to run pte_offset_map().
3330 */
3331 pte = pte_offset_map(pmd, address);
1da177e4 3332
30c9f3a9 3333 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3334}
3335
3336#ifndef __PAGETABLE_PUD_FOLDED
3337/*
3338 * Allocate page upper directory.
872fec16 3339 * We've already handled the fast-path in-line.
1da177e4 3340 */
1bb3630e 3341int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3342{
c74df32c
HD
3343 pud_t *new = pud_alloc_one(mm, address);
3344 if (!new)
1bb3630e 3345 return -ENOMEM;
1da177e4 3346
362a61ad
NP
3347 smp_wmb(); /* See comment in __pte_alloc */
3348
872fec16 3349 spin_lock(&mm->page_table_lock);
1bb3630e 3350 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3351 pud_free(mm, new);
1bb3630e
HD
3352 else
3353 pgd_populate(mm, pgd, new);
c74df32c 3354 spin_unlock(&mm->page_table_lock);
1bb3630e 3355 return 0;
1da177e4
LT
3356}
3357#endif /* __PAGETABLE_PUD_FOLDED */
3358
3359#ifndef __PAGETABLE_PMD_FOLDED
3360/*
3361 * Allocate page middle directory.
872fec16 3362 * We've already handled the fast-path in-line.
1da177e4 3363 */
1bb3630e 3364int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3365{
c74df32c
HD
3366 pmd_t *new = pmd_alloc_one(mm, address);
3367 if (!new)
1bb3630e 3368 return -ENOMEM;
1da177e4 3369
362a61ad
NP
3370 smp_wmb(); /* See comment in __pte_alloc */
3371
872fec16 3372 spin_lock(&mm->page_table_lock);
1da177e4 3373#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3374 if (pud_present(*pud)) /* Another has populated it */
5e541973 3375 pmd_free(mm, new);
1bb3630e
HD
3376 else
3377 pud_populate(mm, pud, new);
1da177e4 3378#else
1bb3630e 3379 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3380 pmd_free(mm, new);
1bb3630e
HD
3381 else
3382 pgd_populate(mm, pud, new);
1da177e4 3383#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3384 spin_unlock(&mm->page_table_lock);
1bb3630e 3385 return 0;
e0f39591 3386}
1da177e4
LT
3387#endif /* __PAGETABLE_PMD_FOLDED */
3388
3389int make_pages_present(unsigned long addr, unsigned long end)
3390{
3391 int ret, len, write;
3392 struct vm_area_struct * vma;
3393
3394 vma = find_vma(current->mm, addr);
3395 if (!vma)
a477097d 3396 return -ENOMEM;
5ecfda04
ML
3397 /*
3398 * We want to touch writable mappings with a write fault in order
3399 * to break COW, except for shared mappings because these don't COW
3400 * and we would not want to dirty them for nothing.
3401 */
3402 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
5bcb28b1
ES
3403 BUG_ON(addr >= end);
3404 BUG_ON(end > vma->vm_end);
68e116a3 3405 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3406 ret = get_user_pages(current, current->mm, addr,
3407 len, write, 0, NULL, NULL);
c11d69d8 3408 if (ret < 0)
1da177e4 3409 return ret;
9978ad58 3410 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3411}
3412
1da177e4
LT
3413#if !defined(__HAVE_ARCH_GATE_AREA)
3414
3415#if defined(AT_SYSINFO_EHDR)
5ce7852c 3416static struct vm_area_struct gate_vma;
1da177e4
LT
3417
3418static int __init gate_vma_init(void)
3419{
3420 gate_vma.vm_mm = NULL;
3421 gate_vma.vm_start = FIXADDR_USER_START;
3422 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3423 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3424 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3425 /*
3426 * Make sure the vDSO gets into every core dump.
3427 * Dumping its contents makes post-mortem fully interpretable later
3428 * without matching up the same kernel and hardware config to see
3429 * what PC values meant.
3430 */
3431 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3432 return 0;
3433}
3434__initcall(gate_vma_init);
3435#endif
3436
3437struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3438{
3439#ifdef AT_SYSINFO_EHDR
3440 return &gate_vma;
3441#else
3442 return NULL;
3443#endif
3444}
3445
3446int in_gate_area_no_task(unsigned long addr)
3447{
3448#ifdef AT_SYSINFO_EHDR
3449 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3450 return 1;
3451#endif
3452 return 0;
3453}
3454
3455#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3456
1b36ba81 3457static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3458 pte_t **ptepp, spinlock_t **ptlp)
3459{
3460 pgd_t *pgd;
3461 pud_t *pud;
3462 pmd_t *pmd;
3463 pte_t *ptep;
3464
3465 pgd = pgd_offset(mm, address);
3466 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3467 goto out;
3468
3469 pud = pud_offset(pgd, address);
3470 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3471 goto out;
3472
3473 pmd = pmd_offset(pud, address);
3474 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3475 goto out;
3476
3477 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3478 if (pmd_huge(*pmd))
3479 goto out;
3480
3481 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3482 if (!ptep)
3483 goto out;
3484 if (!pte_present(*ptep))
3485 goto unlock;
3486 *ptepp = ptep;
3487 return 0;
3488unlock:
3489 pte_unmap_unlock(ptep, *ptlp);
3490out:
3491 return -EINVAL;
3492}
3493
1b36ba81
NK
3494static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3495 pte_t **ptepp, spinlock_t **ptlp)
3496{
3497 int res;
3498
3499 /* (void) is needed to make gcc happy */
3500 (void) __cond_lock(*ptlp,
3501 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3502 return res;
3503}
3504
3b6748e2
JW
3505/**
3506 * follow_pfn - look up PFN at a user virtual address
3507 * @vma: memory mapping
3508 * @address: user virtual address
3509 * @pfn: location to store found PFN
3510 *
3511 * Only IO mappings and raw PFN mappings are allowed.
3512 *
3513 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3514 */
3515int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3516 unsigned long *pfn)
3517{
3518 int ret = -EINVAL;
3519 spinlock_t *ptl;
3520 pte_t *ptep;
3521
3522 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3523 return ret;
3524
3525 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3526 if (ret)
3527 return ret;
3528 *pfn = pte_pfn(*ptep);
3529 pte_unmap_unlock(ptep, ptl);
3530 return 0;
3531}
3532EXPORT_SYMBOL(follow_pfn);
3533
28b2ee20 3534#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3535int follow_phys(struct vm_area_struct *vma,
3536 unsigned long address, unsigned int flags,
3537 unsigned long *prot, resource_size_t *phys)
28b2ee20 3538{
03668a4d 3539 int ret = -EINVAL;
28b2ee20
RR
3540 pte_t *ptep, pte;
3541 spinlock_t *ptl;
28b2ee20 3542
d87fe660 3543 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3544 goto out;
28b2ee20 3545
03668a4d 3546 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3547 goto out;
28b2ee20 3548 pte = *ptep;
03668a4d 3549
28b2ee20
RR
3550 if ((flags & FOLL_WRITE) && !pte_write(pte))
3551 goto unlock;
28b2ee20
RR
3552
3553 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3554 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3555
03668a4d 3556 ret = 0;
28b2ee20
RR
3557unlock:
3558 pte_unmap_unlock(ptep, ptl);
3559out:
d87fe660 3560 return ret;
28b2ee20
RR
3561}
3562
3563int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3564 void *buf, int len, int write)
3565{
3566 resource_size_t phys_addr;
3567 unsigned long prot = 0;
2bc7273b 3568 void __iomem *maddr;
28b2ee20
RR
3569 int offset = addr & (PAGE_SIZE-1);
3570
d87fe660 3571 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3572 return -EINVAL;
3573
3574 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3575 if (write)
3576 memcpy_toio(maddr + offset, buf, len);
3577 else
3578 memcpy_fromio(buf, maddr + offset, len);
3579 iounmap(maddr);
3580
3581 return len;
3582}
3583#endif
3584
0ec76a11
DH
3585/*
3586 * Access another process' address space.
3587 * Source/target buffer must be kernel space,
3588 * Do not walk the page table directly, use get_user_pages
3589 */
3590int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3591{
3592 struct mm_struct *mm;
3593 struct vm_area_struct *vma;
0ec76a11
DH
3594 void *old_buf = buf;
3595
3596 mm = get_task_mm(tsk);
3597 if (!mm)
3598 return 0;
3599
3600 down_read(&mm->mmap_sem);
183ff22b 3601 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3602 while (len) {
3603 int bytes, ret, offset;
3604 void *maddr;
28b2ee20 3605 struct page *page = NULL;
0ec76a11
DH
3606
3607 ret = get_user_pages(tsk, mm, addr, 1,
3608 write, 1, &page, &vma);
28b2ee20
RR
3609 if (ret <= 0) {
3610 /*
3611 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3612 * we can access using slightly different code.
3613 */
3614#ifdef CONFIG_HAVE_IOREMAP_PROT
3615 vma = find_vma(mm, addr);
3616 if (!vma)
3617 break;
3618 if (vma->vm_ops && vma->vm_ops->access)
3619 ret = vma->vm_ops->access(vma, addr, buf,
3620 len, write);
3621 if (ret <= 0)
3622#endif
3623 break;
3624 bytes = ret;
0ec76a11 3625 } else {
28b2ee20
RR
3626 bytes = len;
3627 offset = addr & (PAGE_SIZE-1);
3628 if (bytes > PAGE_SIZE-offset)
3629 bytes = PAGE_SIZE-offset;
3630
3631 maddr = kmap(page);
3632 if (write) {
3633 copy_to_user_page(vma, page, addr,
3634 maddr + offset, buf, bytes);
3635 set_page_dirty_lock(page);
3636 } else {
3637 copy_from_user_page(vma, page, addr,
3638 buf, maddr + offset, bytes);
3639 }
3640 kunmap(page);
3641 page_cache_release(page);
0ec76a11 3642 }
0ec76a11
DH
3643 len -= bytes;
3644 buf += bytes;
3645 addr += bytes;
3646 }
3647 up_read(&mm->mmap_sem);
3648 mmput(mm);
3649
3650 return buf - old_buf;
3651}
03252919
AK
3652
3653/*
3654 * Print the name of a VMA.
3655 */
3656void print_vma_addr(char *prefix, unsigned long ip)
3657{
3658 struct mm_struct *mm = current->mm;
3659 struct vm_area_struct *vma;
3660
e8bff74a
IM
3661 /*
3662 * Do not print if we are in atomic
3663 * contexts (in exception stacks, etc.):
3664 */
3665 if (preempt_count())
3666 return;
3667
03252919
AK
3668 down_read(&mm->mmap_sem);
3669 vma = find_vma(mm, ip);
3670 if (vma && vma->vm_file) {
3671 struct file *f = vma->vm_file;
3672 char *buf = (char *)__get_free_page(GFP_KERNEL);
3673 if (buf) {
3674 char *p, *s;
3675
cf28b486 3676 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3677 if (IS_ERR(p))
3678 p = "?";
3679 s = strrchr(p, '/');
3680 if (s)
3681 p = s+1;
3682 printk("%s%s[%lx+%lx]", prefix, p,
3683 vma->vm_start,
3684 vma->vm_end - vma->vm_start);
3685 free_page((unsigned long)buf);
3686 }
3687 }
3688 up_read(&current->mm->mmap_sem);
3689}
3ee1afa3
NP
3690
3691#ifdef CONFIG_PROVE_LOCKING
3692void might_fault(void)
3693{
95156f00
PZ
3694 /*
3695 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3696 * holding the mmap_sem, this is safe because kernel memory doesn't
3697 * get paged out, therefore we'll never actually fault, and the
3698 * below annotations will generate false positives.
3699 */
3700 if (segment_eq(get_fs(), KERNEL_DS))
3701 return;
3702
3ee1afa3
NP
3703 might_sleep();
3704 /*
3705 * it would be nicer only to annotate paths which are not under
3706 * pagefault_disable, however that requires a larger audit and
3707 * providing helpers like get_user_atomic.
3708 */
3709 if (!in_atomic() && current->mm)
3710 might_lock_read(&current->mm->mmap_sem);
3711}
3712EXPORT_SYMBOL(might_fault);
3713#endif
47ad8475
AA
3714
3715#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3716static void clear_gigantic_page(struct page *page,
3717 unsigned long addr,
3718 unsigned int pages_per_huge_page)
3719{
3720 int i;
3721 struct page *p = page;
3722
3723 might_sleep();
3724 for (i = 0; i < pages_per_huge_page;
3725 i++, p = mem_map_next(p, page, i)) {
3726 cond_resched();
3727 clear_user_highpage(p, addr + i * PAGE_SIZE);
3728 }
3729}
3730void clear_huge_page(struct page *page,
3731 unsigned long addr, unsigned int pages_per_huge_page)
3732{
3733 int i;
3734
3735 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3736 clear_gigantic_page(page, addr, pages_per_huge_page);
3737 return;
3738 }
3739
3740 might_sleep();
3741 for (i = 0; i < pages_per_huge_page; i++) {
3742 cond_resched();
3743 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3744 }
3745}
3746
3747static void copy_user_gigantic_page(struct page *dst, struct page *src,
3748 unsigned long addr,
3749 struct vm_area_struct *vma,
3750 unsigned int pages_per_huge_page)
3751{
3752 int i;
3753 struct page *dst_base = dst;
3754 struct page *src_base = src;
3755
3756 for (i = 0; i < pages_per_huge_page; ) {
3757 cond_resched();
3758 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3759
3760 i++;
3761 dst = mem_map_next(dst, dst_base, i);
3762 src = mem_map_next(src, src_base, i);
3763 }
3764}
3765
3766void copy_user_huge_page(struct page *dst, struct page *src,
3767 unsigned long addr, struct vm_area_struct *vma,
3768 unsigned int pages_per_huge_page)
3769{
3770 int i;
3771
3772 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3773 copy_user_gigantic_page(dst, src, addr, vma,
3774 pages_per_huge_page);
3775 return;
3776 }
3777
3778 might_sleep();
3779 for (i = 0; i < pages_per_huge_page; i++) {
3780 cond_resched();
3781 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3782 }
3783}
3784#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */