]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
mmap locking API: add MMAP_LOCK_INITIALIZER
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
1da177e4 74
b3d1411b
JFG
75#include <trace/events/kmem.h>
76
6952b61d 77#include <asm/io.h>
33a709b2 78#include <asm/mmu_context.h>
1da177e4 79#include <asm/pgalloc.h>
7c0f6ba6 80#include <linux/uaccess.h>
1da177e4
LT
81#include <asm/tlb.h>
82#include <asm/tlbflush.h>
1da177e4 83
42b77728
JB
84#include "internal.h"
85
af27d940 86#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 87#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
88#endif
89
d41dee36 90#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
91/* use the per-pgdat data instead for discontigmem - mbligh */
92unsigned long max_mapnr;
1da177e4 93EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
94
95struct page *mem_map;
1da177e4
LT
96EXPORT_SYMBOL(mem_map);
97#endif
98
1da177e4
LT
99/*
100 * A number of key systems in x86 including ioremap() rely on the assumption
101 * that high_memory defines the upper bound on direct map memory, then end
102 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
103 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
104 * and ZONE_HIGHMEM.
105 */
166f61b9 106void *high_memory;
1da177e4 107EXPORT_SYMBOL(high_memory);
1da177e4 108
32a93233
IM
109/*
110 * Randomize the address space (stacks, mmaps, brk, etc.).
111 *
112 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
113 * as ancient (libc5 based) binaries can segfault. )
114 */
115int randomize_va_space __read_mostly =
116#ifdef CONFIG_COMPAT_BRK
117 1;
118#else
119 2;
120#endif
a62eaf15 121
83d116c5
JH
122#ifndef arch_faults_on_old_pte
123static inline bool arch_faults_on_old_pte(void)
124{
125 /*
126 * Those arches which don't have hw access flag feature need to
127 * implement their own helper. By default, "true" means pagefault
128 * will be hit on old pte.
129 */
130 return true;
131}
132#endif
133
a62eaf15
AK
134static int __init disable_randmaps(char *s)
135{
136 randomize_va_space = 0;
9b41046c 137 return 1;
a62eaf15
AK
138}
139__setup("norandmaps", disable_randmaps);
140
62eede62 141unsigned long zero_pfn __read_mostly;
0b70068e
AB
142EXPORT_SYMBOL(zero_pfn);
143
166f61b9
TH
144unsigned long highest_memmap_pfn __read_mostly;
145
a13ea5b7
HD
146/*
147 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
148 */
149static int __init init_zero_pfn(void)
150{
151 zero_pfn = page_to_pfn(ZERO_PAGE(0));
152 return 0;
153}
154core_initcall(init_zero_pfn);
a62eaf15 155
e4dcad20 156void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 157{
e4dcad20 158 trace_rss_stat(mm, member, count);
b3d1411b 159}
d559db08 160
34e55232
KH
161#if defined(SPLIT_RSS_COUNTING)
162
ea48cf78 163void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
164{
165 int i;
166
167 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
168 if (current->rss_stat.count[i]) {
169 add_mm_counter(mm, i, current->rss_stat.count[i]);
170 current->rss_stat.count[i] = 0;
34e55232
KH
171 }
172 }
05af2e10 173 current->rss_stat.events = 0;
34e55232
KH
174}
175
176static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
177{
178 struct task_struct *task = current;
179
180 if (likely(task->mm == mm))
181 task->rss_stat.count[member] += val;
182 else
183 add_mm_counter(mm, member, val);
184}
185#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
186#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
187
188/* sync counter once per 64 page faults */
189#define TASK_RSS_EVENTS_THRESH (64)
190static void check_sync_rss_stat(struct task_struct *task)
191{
192 if (unlikely(task != current))
193 return;
194 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 195 sync_mm_rss(task->mm);
34e55232 196}
9547d01b 197#else /* SPLIT_RSS_COUNTING */
34e55232
KH
198
199#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
200#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
201
202static void check_sync_rss_stat(struct task_struct *task)
203{
204}
205
9547d01b
PZ
206#endif /* SPLIT_RSS_COUNTING */
207
1da177e4
LT
208/*
209 * Note: this doesn't free the actual pages themselves. That
210 * has been handled earlier when unmapping all the memory regions.
211 */
9e1b32ca
BH
212static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
213 unsigned long addr)
1da177e4 214{
2f569afd 215 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 216 pmd_clear(pmd);
9e1b32ca 217 pte_free_tlb(tlb, token, addr);
c4812909 218 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
219}
220
e0da382c
HD
221static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
222 unsigned long addr, unsigned long end,
223 unsigned long floor, unsigned long ceiling)
1da177e4
LT
224{
225 pmd_t *pmd;
226 unsigned long next;
e0da382c 227 unsigned long start;
1da177e4 228
e0da382c 229 start = addr;
1da177e4 230 pmd = pmd_offset(pud, addr);
1da177e4
LT
231 do {
232 next = pmd_addr_end(addr, end);
233 if (pmd_none_or_clear_bad(pmd))
234 continue;
9e1b32ca 235 free_pte_range(tlb, pmd, addr);
1da177e4
LT
236 } while (pmd++, addr = next, addr != end);
237
e0da382c
HD
238 start &= PUD_MASK;
239 if (start < floor)
240 return;
241 if (ceiling) {
242 ceiling &= PUD_MASK;
243 if (!ceiling)
244 return;
1da177e4 245 }
e0da382c
HD
246 if (end - 1 > ceiling - 1)
247 return;
248
249 pmd = pmd_offset(pud, start);
250 pud_clear(pud);
9e1b32ca 251 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 252 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
253}
254
c2febafc 255static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
256 unsigned long addr, unsigned long end,
257 unsigned long floor, unsigned long ceiling)
1da177e4
LT
258{
259 pud_t *pud;
260 unsigned long next;
e0da382c 261 unsigned long start;
1da177e4 262
e0da382c 263 start = addr;
c2febafc 264 pud = pud_offset(p4d, addr);
1da177e4
LT
265 do {
266 next = pud_addr_end(addr, end);
267 if (pud_none_or_clear_bad(pud))
268 continue;
e0da382c 269 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
270 } while (pud++, addr = next, addr != end);
271
c2febafc
KS
272 start &= P4D_MASK;
273 if (start < floor)
274 return;
275 if (ceiling) {
276 ceiling &= P4D_MASK;
277 if (!ceiling)
278 return;
279 }
280 if (end - 1 > ceiling - 1)
281 return;
282
283 pud = pud_offset(p4d, start);
284 p4d_clear(p4d);
285 pud_free_tlb(tlb, pud, start);
b4e98d9a 286 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
287}
288
289static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
290 unsigned long addr, unsigned long end,
291 unsigned long floor, unsigned long ceiling)
292{
293 p4d_t *p4d;
294 unsigned long next;
295 unsigned long start;
296
297 start = addr;
298 p4d = p4d_offset(pgd, addr);
299 do {
300 next = p4d_addr_end(addr, end);
301 if (p4d_none_or_clear_bad(p4d))
302 continue;
303 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
304 } while (p4d++, addr = next, addr != end);
305
e0da382c
HD
306 start &= PGDIR_MASK;
307 if (start < floor)
308 return;
309 if (ceiling) {
310 ceiling &= PGDIR_MASK;
311 if (!ceiling)
312 return;
1da177e4 313 }
e0da382c
HD
314 if (end - 1 > ceiling - 1)
315 return;
316
c2febafc 317 p4d = p4d_offset(pgd, start);
e0da382c 318 pgd_clear(pgd);
c2febafc 319 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
320}
321
322/*
e0da382c 323 * This function frees user-level page tables of a process.
1da177e4 324 */
42b77728 325void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
326 unsigned long addr, unsigned long end,
327 unsigned long floor, unsigned long ceiling)
1da177e4
LT
328{
329 pgd_t *pgd;
330 unsigned long next;
e0da382c
HD
331
332 /*
333 * The next few lines have given us lots of grief...
334 *
335 * Why are we testing PMD* at this top level? Because often
336 * there will be no work to do at all, and we'd prefer not to
337 * go all the way down to the bottom just to discover that.
338 *
339 * Why all these "- 1"s? Because 0 represents both the bottom
340 * of the address space and the top of it (using -1 for the
341 * top wouldn't help much: the masks would do the wrong thing).
342 * The rule is that addr 0 and floor 0 refer to the bottom of
343 * the address space, but end 0 and ceiling 0 refer to the top
344 * Comparisons need to use "end - 1" and "ceiling - 1" (though
345 * that end 0 case should be mythical).
346 *
347 * Wherever addr is brought up or ceiling brought down, we must
348 * be careful to reject "the opposite 0" before it confuses the
349 * subsequent tests. But what about where end is brought down
350 * by PMD_SIZE below? no, end can't go down to 0 there.
351 *
352 * Whereas we round start (addr) and ceiling down, by different
353 * masks at different levels, in order to test whether a table
354 * now has no other vmas using it, so can be freed, we don't
355 * bother to round floor or end up - the tests don't need that.
356 */
1da177e4 357
e0da382c
HD
358 addr &= PMD_MASK;
359 if (addr < floor) {
360 addr += PMD_SIZE;
361 if (!addr)
362 return;
363 }
364 if (ceiling) {
365 ceiling &= PMD_MASK;
366 if (!ceiling)
367 return;
368 }
369 if (end - 1 > ceiling - 1)
370 end -= PMD_SIZE;
371 if (addr > end - 1)
372 return;
07e32661
AK
373 /*
374 * We add page table cache pages with PAGE_SIZE,
375 * (see pte_free_tlb()), flush the tlb if we need
376 */
ed6a7935 377 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 378 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
379 do {
380 next = pgd_addr_end(addr, end);
381 if (pgd_none_or_clear_bad(pgd))
382 continue;
c2febafc 383 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 384 } while (pgd++, addr = next, addr != end);
e0da382c
HD
385}
386
42b77728 387void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 388 unsigned long floor, unsigned long ceiling)
e0da382c
HD
389{
390 while (vma) {
391 struct vm_area_struct *next = vma->vm_next;
392 unsigned long addr = vma->vm_start;
393
8f4f8c16 394 /*
25d9e2d1
NP
395 * Hide vma from rmap and truncate_pagecache before freeing
396 * pgtables
8f4f8c16 397 */
5beb4930 398 unlink_anon_vmas(vma);
8f4f8c16
HD
399 unlink_file_vma(vma);
400
9da61aef 401 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 402 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 403 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
404 } else {
405 /*
406 * Optimization: gather nearby vmas into one call down
407 */
408 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 409 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
410 vma = next;
411 next = vma->vm_next;
5beb4930 412 unlink_anon_vmas(vma);
8f4f8c16 413 unlink_file_vma(vma);
3bf5ee95
HD
414 }
415 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 416 floor, next ? next->vm_start : ceiling);
3bf5ee95 417 }
e0da382c
HD
418 vma = next;
419 }
1da177e4
LT
420}
421
4cf58924 422int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 423{
c4088ebd 424 spinlock_t *ptl;
4cf58924 425 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
426 if (!new)
427 return -ENOMEM;
428
362a61ad
NP
429 /*
430 * Ensure all pte setup (eg. pte page lock and page clearing) are
431 * visible before the pte is made visible to other CPUs by being
432 * put into page tables.
433 *
434 * The other side of the story is the pointer chasing in the page
435 * table walking code (when walking the page table without locking;
436 * ie. most of the time). Fortunately, these data accesses consist
437 * of a chain of data-dependent loads, meaning most CPUs (alpha
438 * being the notable exception) will already guarantee loads are
439 * seen in-order. See the alpha page table accessors for the
440 * smp_read_barrier_depends() barriers in page table walking code.
441 */
442 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
443
c4088ebd 444 ptl = pmd_lock(mm, pmd);
8ac1f832 445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 446 mm_inc_nr_ptes(mm);
1da177e4 447 pmd_populate(mm, pmd, new);
2f569afd 448 new = NULL;
4b471e88 449 }
c4088ebd 450 spin_unlock(ptl);
2f569afd
MS
451 if (new)
452 pte_free(mm, new);
1bb3630e 453 return 0;
1da177e4
LT
454}
455
4cf58924 456int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 457{
4cf58924 458 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
459 if (!new)
460 return -ENOMEM;
461
362a61ad
NP
462 smp_wmb(); /* See comment in __pte_alloc */
463
1bb3630e 464 spin_lock(&init_mm.page_table_lock);
8ac1f832 465 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 466 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 467 new = NULL;
4b471e88 468 }
1bb3630e 469 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
470 if (new)
471 pte_free_kernel(&init_mm, new);
1bb3630e 472 return 0;
1da177e4
LT
473}
474
d559db08
KH
475static inline void init_rss_vec(int *rss)
476{
477 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
478}
479
480static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 481{
d559db08
KH
482 int i;
483
34e55232 484 if (current->mm == mm)
05af2e10 485 sync_mm_rss(mm);
d559db08
KH
486 for (i = 0; i < NR_MM_COUNTERS; i++)
487 if (rss[i])
488 add_mm_counter(mm, i, rss[i]);
ae859762
HD
489}
490
b5810039 491/*
6aab341e
LT
492 * This function is called to print an error when a bad pte
493 * is found. For example, we might have a PFN-mapped pte in
494 * a region that doesn't allow it.
b5810039
NP
495 *
496 * The calling function must still handle the error.
497 */
3dc14741
HD
498static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
499 pte_t pte, struct page *page)
b5810039 500{
3dc14741 501 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
502 p4d_t *p4d = p4d_offset(pgd, addr);
503 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
504 pmd_t *pmd = pmd_offset(pud, addr);
505 struct address_space *mapping;
506 pgoff_t index;
d936cf9b
HD
507 static unsigned long resume;
508 static unsigned long nr_shown;
509 static unsigned long nr_unshown;
510
511 /*
512 * Allow a burst of 60 reports, then keep quiet for that minute;
513 * or allow a steady drip of one report per second.
514 */
515 if (nr_shown == 60) {
516 if (time_before(jiffies, resume)) {
517 nr_unshown++;
518 return;
519 }
520 if (nr_unshown) {
1170532b
JP
521 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
522 nr_unshown);
d936cf9b
HD
523 nr_unshown = 0;
524 }
525 nr_shown = 0;
526 }
527 if (nr_shown++ == 0)
528 resume = jiffies + 60 * HZ;
3dc14741
HD
529
530 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
531 index = linear_page_index(vma, addr);
532
1170532b
JP
533 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
534 current->comm,
535 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 536 if (page)
f0b791a3 537 dump_page(page, "bad pte");
6aa9b8b2 538 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 539 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 540 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
541 vma->vm_file,
542 vma->vm_ops ? vma->vm_ops->fault : NULL,
543 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
544 mapping ? mapping->a_ops->readpage : NULL);
b5810039 545 dump_stack();
373d4d09 546 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
547}
548
ee498ed7 549/*
7e675137 550 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 551 *
7e675137
NP
552 * "Special" mappings do not wish to be associated with a "struct page" (either
553 * it doesn't exist, or it exists but they don't want to touch it). In this
554 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 555 *
7e675137
NP
556 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
557 * pte bit, in which case this function is trivial. Secondly, an architecture
558 * may not have a spare pte bit, which requires a more complicated scheme,
559 * described below.
560 *
561 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
562 * special mapping (even if there are underlying and valid "struct pages").
563 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 564 *
b379d790
JH
565 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
566 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
567 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
568 * mapping will always honor the rule
6aab341e
LT
569 *
570 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
571 *
7e675137
NP
572 * And for normal mappings this is false.
573 *
574 * This restricts such mappings to be a linear translation from virtual address
575 * to pfn. To get around this restriction, we allow arbitrary mappings so long
576 * as the vma is not a COW mapping; in that case, we know that all ptes are
577 * special (because none can have been COWed).
b379d790 578 *
b379d790 579 *
7e675137 580 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
581 *
582 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
583 * page" backing, however the difference is that _all_ pages with a struct
584 * page (that is, those where pfn_valid is true) are refcounted and considered
585 * normal pages by the VM. The disadvantage is that pages are refcounted
586 * (which can be slower and simply not an option for some PFNMAP users). The
587 * advantage is that we don't have to follow the strict linearity rule of
588 * PFNMAP mappings in order to support COWable mappings.
589 *
ee498ed7 590 */
25b2995a
CH
591struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592 pte_t pte)
ee498ed7 593{
22b31eec 594 unsigned long pfn = pte_pfn(pte);
7e675137 595
00b3a331 596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 597 if (likely(!pte_special(pte)))
22b31eec 598 goto check_pfn;
667a0a06
DV
599 if (vma->vm_ops && vma->vm_ops->find_special_page)
600 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
601 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602 return NULL;
df6ad698
JG
603 if (is_zero_pfn(pfn))
604 return NULL;
e1fb4a08
DJ
605 if (pte_devmap(pte))
606 return NULL;
607
df6ad698 608 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
609 return NULL;
610 }
611
00b3a331 612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 613
b379d790
JH
614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 if (vma->vm_flags & VM_MIXEDMAP) {
616 if (!pfn_valid(pfn))
617 return NULL;
618 goto out;
619 } else {
7e675137
NP
620 unsigned long off;
621 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
622 if (pfn == vma->vm_pgoff + off)
623 return NULL;
624 if (!is_cow_mapping(vma->vm_flags))
625 return NULL;
626 }
6aab341e
LT
627 }
628
b38af472
HD
629 if (is_zero_pfn(pfn))
630 return NULL;
00b3a331 631
22b31eec
HD
632check_pfn:
633 if (unlikely(pfn > highest_memmap_pfn)) {
634 print_bad_pte(vma, addr, pte, NULL);
635 return NULL;
636 }
6aab341e
LT
637
638 /*
7e675137 639 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 640 * eg. VDSO mappings can cause them to exist.
6aab341e 641 */
b379d790 642out:
6aab341e 643 return pfn_to_page(pfn);
ee498ed7
HD
644}
645
28093f9f
GS
646#ifdef CONFIG_TRANSPARENT_HUGEPAGE
647struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
648 pmd_t pmd)
649{
650 unsigned long pfn = pmd_pfn(pmd);
651
652 /*
653 * There is no pmd_special() but there may be special pmds, e.g.
654 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 655 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
656 */
657 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
658 if (vma->vm_flags & VM_MIXEDMAP) {
659 if (!pfn_valid(pfn))
660 return NULL;
661 goto out;
662 } else {
663 unsigned long off;
664 off = (addr - vma->vm_start) >> PAGE_SHIFT;
665 if (pfn == vma->vm_pgoff + off)
666 return NULL;
667 if (!is_cow_mapping(vma->vm_flags))
668 return NULL;
669 }
670 }
671
e1fb4a08
DJ
672 if (pmd_devmap(pmd))
673 return NULL;
3cde287b 674 if (is_huge_zero_pmd(pmd))
28093f9f
GS
675 return NULL;
676 if (unlikely(pfn > highest_memmap_pfn))
677 return NULL;
678
679 /*
680 * NOTE! We still have PageReserved() pages in the page tables.
681 * eg. VDSO mappings can cause them to exist.
682 */
683out:
684 return pfn_to_page(pfn);
685}
686#endif
687
1da177e4
LT
688/*
689 * copy one vm_area from one task to the other. Assumes the page tables
690 * already present in the new task to be cleared in the whole range
691 * covered by this vma.
1da177e4
LT
692 */
693
570a335b 694static inline unsigned long
1da177e4 695copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 696 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 697 unsigned long addr, int *rss)
1da177e4 698{
b5810039 699 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
700 pte_t pte = *src_pte;
701 struct page *page;
1da177e4
LT
702
703 /* pte contains position in swap or file, so copy. */
704 if (unlikely(!pte_present(pte))) {
0661a336
KS
705 swp_entry_t entry = pte_to_swp_entry(pte);
706
707 if (likely(!non_swap_entry(entry))) {
708 if (swap_duplicate(entry) < 0)
709 return entry.val;
710
711 /* make sure dst_mm is on swapoff's mmlist. */
712 if (unlikely(list_empty(&dst_mm->mmlist))) {
713 spin_lock(&mmlist_lock);
714 if (list_empty(&dst_mm->mmlist))
715 list_add(&dst_mm->mmlist,
716 &src_mm->mmlist);
717 spin_unlock(&mmlist_lock);
718 }
719 rss[MM_SWAPENTS]++;
720 } else if (is_migration_entry(entry)) {
721 page = migration_entry_to_page(entry);
722
eca56ff9 723 rss[mm_counter(page)]++;
0661a336
KS
724
725 if (is_write_migration_entry(entry) &&
726 is_cow_mapping(vm_flags)) {
727 /*
728 * COW mappings require pages in both
729 * parent and child to be set to read.
730 */
731 make_migration_entry_read(&entry);
732 pte = swp_entry_to_pte(entry);
733 if (pte_swp_soft_dirty(*src_pte))
734 pte = pte_swp_mksoft_dirty(pte);
f45ec5ff
PX
735 if (pte_swp_uffd_wp(*src_pte))
736 pte = pte_swp_mkuffd_wp(pte);
0661a336 737 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 738 }
5042db43
JG
739 } else if (is_device_private_entry(entry)) {
740 page = device_private_entry_to_page(entry);
741
742 /*
743 * Update rss count even for unaddressable pages, as
744 * they should treated just like normal pages in this
745 * respect.
746 *
747 * We will likely want to have some new rss counters
748 * for unaddressable pages, at some point. But for now
749 * keep things as they are.
750 */
751 get_page(page);
752 rss[mm_counter(page)]++;
753 page_dup_rmap(page, false);
754
755 /*
756 * We do not preserve soft-dirty information, because so
757 * far, checkpoint/restore is the only feature that
758 * requires that. And checkpoint/restore does not work
759 * when a device driver is involved (you cannot easily
760 * save and restore device driver state).
761 */
762 if (is_write_device_private_entry(entry) &&
763 is_cow_mapping(vm_flags)) {
764 make_device_private_entry_read(&entry);
765 pte = swp_entry_to_pte(entry);
f45ec5ff
PX
766 if (pte_swp_uffd_wp(*src_pte))
767 pte = pte_swp_mkuffd_wp(pte);
5042db43
JG
768 set_pte_at(src_mm, addr, src_pte, pte);
769 }
1da177e4 770 }
ae859762 771 goto out_set_pte;
1da177e4
LT
772 }
773
1da177e4
LT
774 /*
775 * If it's a COW mapping, write protect it both
776 * in the parent and the child
777 */
1b2de5d0 778 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 779 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 780 pte = pte_wrprotect(pte);
1da177e4
LT
781 }
782
783 /*
784 * If it's a shared mapping, mark it clean in
785 * the child
786 */
787 if (vm_flags & VM_SHARED)
788 pte = pte_mkclean(pte);
789 pte = pte_mkold(pte);
6aab341e 790
b569a176
PX
791 /*
792 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
793 * does not have the VM_UFFD_WP, which means that the uffd
794 * fork event is not enabled.
795 */
796 if (!(vm_flags & VM_UFFD_WP))
797 pte = pte_clear_uffd_wp(pte);
798
6aab341e
LT
799 page = vm_normal_page(vma, addr, pte);
800 if (page) {
801 get_page(page);
53f9263b 802 page_dup_rmap(page, false);
eca56ff9 803 rss[mm_counter(page)]++;
6aab341e 804 }
ae859762
HD
805
806out_set_pte:
807 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 808 return 0;
1da177e4
LT
809}
810
21bda264 811static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
812 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
813 unsigned long addr, unsigned long end)
1da177e4 814{
c36987e2 815 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 816 pte_t *src_pte, *dst_pte;
c74df32c 817 spinlock_t *src_ptl, *dst_ptl;
e040f218 818 int progress = 0;
d559db08 819 int rss[NR_MM_COUNTERS];
570a335b 820 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
821
822again:
d559db08
KH
823 init_rss_vec(rss);
824
c74df32c 825 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
826 if (!dst_pte)
827 return -ENOMEM;
ece0e2b6 828 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 829 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 830 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
831 orig_src_pte = src_pte;
832 orig_dst_pte = dst_pte;
6606c3e0 833 arch_enter_lazy_mmu_mode();
1da177e4 834
1da177e4
LT
835 do {
836 /*
837 * We are holding two locks at this point - either of them
838 * could generate latencies in another task on another CPU.
839 */
e040f218
HD
840 if (progress >= 32) {
841 progress = 0;
842 if (need_resched() ||
95c354fe 843 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
844 break;
845 }
1da177e4
LT
846 if (pte_none(*src_pte)) {
847 progress++;
848 continue;
849 }
570a335b
HD
850 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
851 vma, addr, rss);
852 if (entry.val)
853 break;
1da177e4
LT
854 progress += 8;
855 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 856
6606c3e0 857 arch_leave_lazy_mmu_mode();
c74df32c 858 spin_unlock(src_ptl);
ece0e2b6 859 pte_unmap(orig_src_pte);
d559db08 860 add_mm_rss_vec(dst_mm, rss);
c36987e2 861 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 862 cond_resched();
570a335b
HD
863
864 if (entry.val) {
865 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
866 return -ENOMEM;
867 progress = 0;
868 }
1da177e4
LT
869 if (addr != end)
870 goto again;
871 return 0;
872}
873
874static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
875 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
876 unsigned long addr, unsigned long end)
877{
878 pmd_t *src_pmd, *dst_pmd;
879 unsigned long next;
880
881 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
882 if (!dst_pmd)
883 return -ENOMEM;
884 src_pmd = pmd_offset(src_pud, addr);
885 do {
886 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
887 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
888 || pmd_devmap(*src_pmd)) {
71e3aac0 889 int err;
a00cc7d9 890 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
891 err = copy_huge_pmd(dst_mm, src_mm,
892 dst_pmd, src_pmd, addr, vma);
893 if (err == -ENOMEM)
894 return -ENOMEM;
895 if (!err)
896 continue;
897 /* fall through */
898 }
1da177e4
LT
899 if (pmd_none_or_clear_bad(src_pmd))
900 continue;
901 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
902 vma, addr, next))
903 return -ENOMEM;
904 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
905 return 0;
906}
907
908static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 909 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
910 unsigned long addr, unsigned long end)
911{
912 pud_t *src_pud, *dst_pud;
913 unsigned long next;
914
c2febafc 915 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
916 if (!dst_pud)
917 return -ENOMEM;
c2febafc 918 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
919 do {
920 next = pud_addr_end(addr, end);
a00cc7d9
MW
921 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
922 int err;
923
924 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
925 err = copy_huge_pud(dst_mm, src_mm,
926 dst_pud, src_pud, addr, vma);
927 if (err == -ENOMEM)
928 return -ENOMEM;
929 if (!err)
930 continue;
931 /* fall through */
932 }
1da177e4
LT
933 if (pud_none_or_clear_bad(src_pud))
934 continue;
935 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
936 vma, addr, next))
937 return -ENOMEM;
938 } while (dst_pud++, src_pud++, addr = next, addr != end);
939 return 0;
940}
941
c2febafc
KS
942static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
944 unsigned long addr, unsigned long end)
945{
946 p4d_t *src_p4d, *dst_p4d;
947 unsigned long next;
948
949 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
950 if (!dst_p4d)
951 return -ENOMEM;
952 src_p4d = p4d_offset(src_pgd, addr);
953 do {
954 next = p4d_addr_end(addr, end);
955 if (p4d_none_or_clear_bad(src_p4d))
956 continue;
957 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
958 vma, addr, next))
959 return -ENOMEM;
960 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
961 return 0;
962}
963
1da177e4
LT
964int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
965 struct vm_area_struct *vma)
966{
967 pgd_t *src_pgd, *dst_pgd;
968 unsigned long next;
969 unsigned long addr = vma->vm_start;
970 unsigned long end = vma->vm_end;
ac46d4f3 971 struct mmu_notifier_range range;
2ec74c3e 972 bool is_cow;
cddb8a5c 973 int ret;
1da177e4 974
d992895b
NP
975 /*
976 * Don't copy ptes where a page fault will fill them correctly.
977 * Fork becomes much lighter when there are big shared or private
978 * readonly mappings. The tradeoff is that copy_page_range is more
979 * efficient than faulting.
980 */
0661a336
KS
981 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
982 !vma->anon_vma)
983 return 0;
d992895b 984
1da177e4
LT
985 if (is_vm_hugetlb_page(vma))
986 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
987
b3b9c293 988 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 989 /*
990 * We do not free on error cases below as remove_vma
991 * gets called on error from higher level routine
992 */
5180da41 993 ret = track_pfn_copy(vma);
2ab64037 994 if (ret)
995 return ret;
996 }
997
cddb8a5c
AA
998 /*
999 * We need to invalidate the secondary MMU mappings only when
1000 * there could be a permission downgrade on the ptes of the
1001 * parent mm. And a permission downgrade will only happen if
1002 * is_cow_mapping() returns true.
1003 */
2ec74c3e 1004 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
1005
1006 if (is_cow) {
7269f999
JG
1007 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1008 0, vma, src_mm, addr, end);
ac46d4f3
JG
1009 mmu_notifier_invalidate_range_start(&range);
1010 }
cddb8a5c
AA
1011
1012 ret = 0;
1da177e4
LT
1013 dst_pgd = pgd_offset(dst_mm, addr);
1014 src_pgd = pgd_offset(src_mm, addr);
1015 do {
1016 next = pgd_addr_end(addr, end);
1017 if (pgd_none_or_clear_bad(src_pgd))
1018 continue;
c2febafc 1019 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1020 vma, addr, next))) {
1021 ret = -ENOMEM;
1022 break;
1023 }
1da177e4 1024 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1025
2ec74c3e 1026 if (is_cow)
ac46d4f3 1027 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1028 return ret;
1da177e4
LT
1029}
1030
51c6f666 1031static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1032 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1033 unsigned long addr, unsigned long end,
97a89413 1034 struct zap_details *details)
1da177e4 1035{
b5810039 1036 struct mm_struct *mm = tlb->mm;
d16dfc55 1037 int force_flush = 0;
d559db08 1038 int rss[NR_MM_COUNTERS];
97a89413 1039 spinlock_t *ptl;
5f1a1907 1040 pte_t *start_pte;
97a89413 1041 pte_t *pte;
8a5f14a2 1042 swp_entry_t entry;
d559db08 1043
ed6a7935 1044 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1045again:
e303297e 1046 init_rss_vec(rss);
5f1a1907
SR
1047 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1048 pte = start_pte;
3ea27719 1049 flush_tlb_batched_pending(mm);
6606c3e0 1050 arch_enter_lazy_mmu_mode();
1da177e4
LT
1051 do {
1052 pte_t ptent = *pte;
166f61b9 1053 if (pte_none(ptent))
1da177e4 1054 continue;
6f5e6b9e 1055
7b167b68
MK
1056 if (need_resched())
1057 break;
1058
1da177e4 1059 if (pte_present(ptent)) {
ee498ed7 1060 struct page *page;
51c6f666 1061
25b2995a 1062 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1063 if (unlikely(details) && page) {
1064 /*
1065 * unmap_shared_mapping_pages() wants to
1066 * invalidate cache without truncating:
1067 * unmap shared but keep private pages.
1068 */
1069 if (details->check_mapping &&
800d8c63 1070 details->check_mapping != page_rmapping(page))
1da177e4 1071 continue;
1da177e4 1072 }
b5810039 1073 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1074 tlb->fullmm);
1da177e4
LT
1075 tlb_remove_tlb_entry(tlb, pte, addr);
1076 if (unlikely(!page))
1077 continue;
eca56ff9
JM
1078
1079 if (!PageAnon(page)) {
1cf35d47
LT
1080 if (pte_dirty(ptent)) {
1081 force_flush = 1;
6237bcd9 1082 set_page_dirty(page);
1cf35d47 1083 }
4917e5d0 1084 if (pte_young(ptent) &&
64363aad 1085 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1086 mark_page_accessed(page);
6237bcd9 1087 }
eca56ff9 1088 rss[mm_counter(page)]--;
d281ee61 1089 page_remove_rmap(page, false);
3dc14741
HD
1090 if (unlikely(page_mapcount(page) < 0))
1091 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1092 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1093 force_flush = 1;
ce9ec37b 1094 addr += PAGE_SIZE;
d16dfc55 1095 break;
1cf35d47 1096 }
1da177e4
LT
1097 continue;
1098 }
5042db43
JG
1099
1100 entry = pte_to_swp_entry(ptent);
1101 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1102 struct page *page = device_private_entry_to_page(entry);
1103
1104 if (unlikely(details && details->check_mapping)) {
1105 /*
1106 * unmap_shared_mapping_pages() wants to
1107 * invalidate cache without truncating:
1108 * unmap shared but keep private pages.
1109 */
1110 if (details->check_mapping !=
1111 page_rmapping(page))
1112 continue;
1113 }
1114
1115 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1116 rss[mm_counter(page)]--;
1117 page_remove_rmap(page, false);
1118 put_page(page);
1119 continue;
1120 }
1121
3e8715fd
KS
1122 /* If details->check_mapping, we leave swap entries. */
1123 if (unlikely(details))
1da177e4 1124 continue;
b084d435 1125
8a5f14a2
KS
1126 if (!non_swap_entry(entry))
1127 rss[MM_SWAPENTS]--;
1128 else if (is_migration_entry(entry)) {
1129 struct page *page;
9f9f1acd 1130
8a5f14a2 1131 page = migration_entry_to_page(entry);
eca56ff9 1132 rss[mm_counter(page)]--;
b084d435 1133 }
8a5f14a2
KS
1134 if (unlikely(!free_swap_and_cache(entry)))
1135 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1136 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1137 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1138
d559db08 1139 add_mm_rss_vec(mm, rss);
6606c3e0 1140 arch_leave_lazy_mmu_mode();
51c6f666 1141
1cf35d47 1142 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1143 if (force_flush)
1cf35d47 1144 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1145 pte_unmap_unlock(start_pte, ptl);
1146
1147 /*
1148 * If we forced a TLB flush (either due to running out of
1149 * batch buffers or because we needed to flush dirty TLB
1150 * entries before releasing the ptl), free the batched
1151 * memory too. Restart if we didn't do everything.
1152 */
1153 if (force_flush) {
1154 force_flush = 0;
fa0aafb8 1155 tlb_flush_mmu(tlb);
7b167b68
MK
1156 }
1157
1158 if (addr != end) {
1159 cond_resched();
1160 goto again;
d16dfc55
PZ
1161 }
1162
51c6f666 1163 return addr;
1da177e4
LT
1164}
1165
51c6f666 1166static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1167 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1168 unsigned long addr, unsigned long end,
97a89413 1169 struct zap_details *details)
1da177e4
LT
1170{
1171 pmd_t *pmd;
1172 unsigned long next;
1173
1174 pmd = pmd_offset(pud, addr);
1175 do {
1176 next = pmd_addr_end(addr, end);
84c3fc4e 1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1178 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1179 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1180 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1181 goto next;
71e3aac0
AA
1182 /* fall through */
1183 }
1a5a9906
AA
1184 /*
1185 * Here there can be other concurrent MADV_DONTNEED or
1186 * trans huge page faults running, and if the pmd is
1187 * none or trans huge it can change under us. This is
1188 * because MADV_DONTNEED holds the mmap_sem in read
1189 * mode.
1190 */
1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 goto next;
97a89413 1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1194next:
97a89413
PZ
1195 cond_resched();
1196 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1197
1198 return addr;
1da177e4
LT
1199}
1200
51c6f666 1201static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1202 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1203 unsigned long addr, unsigned long end,
97a89413 1204 struct zap_details *details)
1da177e4
LT
1205{
1206 pud_t *pud;
1207 unsigned long next;
1208
c2febafc 1209 pud = pud_offset(p4d, addr);
1da177e4
LT
1210 do {
1211 next = pud_addr_end(addr, end);
a00cc7d9
MW
1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 if (next - addr != HPAGE_PUD_SIZE) {
1214 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1215 split_huge_pud(vma, pud, addr);
1216 } else if (zap_huge_pud(tlb, vma, pud, addr))
1217 goto next;
1218 /* fall through */
1219 }
97a89413 1220 if (pud_none_or_clear_bad(pud))
1da177e4 1221 continue;
97a89413 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1223next:
1224 cond_resched();
97a89413 1225 } while (pud++, addr = next, addr != end);
51c6f666
RH
1226
1227 return addr;
1da177e4
LT
1228}
1229
c2febafc
KS
1230static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 struct vm_area_struct *vma, pgd_t *pgd,
1232 unsigned long addr, unsigned long end,
1233 struct zap_details *details)
1234{
1235 p4d_t *p4d;
1236 unsigned long next;
1237
1238 p4d = p4d_offset(pgd, addr);
1239 do {
1240 next = p4d_addr_end(addr, end);
1241 if (p4d_none_or_clear_bad(p4d))
1242 continue;
1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 } while (p4d++, addr = next, addr != end);
1245
1246 return addr;
1247}
1248
aac45363 1249void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1250 struct vm_area_struct *vma,
1251 unsigned long addr, unsigned long end,
1252 struct zap_details *details)
1da177e4
LT
1253{
1254 pgd_t *pgd;
1255 unsigned long next;
1256
1da177e4
LT
1257 BUG_ON(addr >= end);
1258 tlb_start_vma(tlb, vma);
1259 pgd = pgd_offset(vma->vm_mm, addr);
1260 do {
1261 next = pgd_addr_end(addr, end);
97a89413 1262 if (pgd_none_or_clear_bad(pgd))
1da177e4 1263 continue;
c2febafc 1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1265 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1266 tlb_end_vma(tlb, vma);
1267}
51c6f666 1268
f5cc4eef
AV
1269
1270static void unmap_single_vma(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1272 unsigned long end_addr,
f5cc4eef
AV
1273 struct zap_details *details)
1274{
1275 unsigned long start = max(vma->vm_start, start_addr);
1276 unsigned long end;
1277
1278 if (start >= vma->vm_end)
1279 return;
1280 end = min(vma->vm_end, end_addr);
1281 if (end <= vma->vm_start)
1282 return;
1283
cbc91f71
SD
1284 if (vma->vm_file)
1285 uprobe_munmap(vma, start, end);
1286
b3b9c293 1287 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1288 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1289
1290 if (start != end) {
1291 if (unlikely(is_vm_hugetlb_page(vma))) {
1292 /*
1293 * It is undesirable to test vma->vm_file as it
1294 * should be non-null for valid hugetlb area.
1295 * However, vm_file will be NULL in the error
7aa6b4ad 1296 * cleanup path of mmap_region. When
f5cc4eef 1297 * hugetlbfs ->mmap method fails,
7aa6b4ad 1298 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1299 * before calling this function to clean up.
1300 * Since no pte has actually been setup, it is
1301 * safe to do nothing in this case.
1302 */
24669e58 1303 if (vma->vm_file) {
83cde9e8 1304 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1306 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1307 }
f5cc4eef
AV
1308 } else
1309 unmap_page_range(tlb, vma, start, end, details);
1310 }
1da177e4
LT
1311}
1312
1da177e4
LT
1313/**
1314 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1315 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1316 * @vma: the starting vma
1317 * @start_addr: virtual address at which to start unmapping
1318 * @end_addr: virtual address at which to end unmapping
1da177e4 1319 *
508034a3 1320 * Unmap all pages in the vma list.
1da177e4 1321 *
1da177e4
LT
1322 * Only addresses between `start' and `end' will be unmapped.
1323 *
1324 * The VMA list must be sorted in ascending virtual address order.
1325 *
1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327 * range after unmap_vmas() returns. So the only responsibility here is to
1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329 * drops the lock and schedules.
1330 */
6e8bb019 1331void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1332 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1333 unsigned long end_addr)
1da177e4 1334{
ac46d4f3 1335 struct mmu_notifier_range range;
1da177e4 1336
6f4f13e8
JG
1337 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1338 start_addr, end_addr);
ac46d4f3 1339 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1340 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1341 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1342 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1343}
1344
1345/**
1346 * zap_page_range - remove user pages in a given range
1347 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1348 * @start: starting address of pages to zap
1da177e4 1349 * @size: number of bytes to zap
f5cc4eef
AV
1350 *
1351 * Caller must protect the VMA list
1da177e4 1352 */
7e027b14 1353void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1354 unsigned long size)
1da177e4 1355{
ac46d4f3 1356 struct mmu_notifier_range range;
d16dfc55 1357 struct mmu_gather tlb;
1da177e4 1358
1da177e4 1359 lru_add_drain();
7269f999 1360 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1361 start, start + size);
ac46d4f3
JG
1362 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1363 update_hiwater_rss(vma->vm_mm);
1364 mmu_notifier_invalidate_range_start(&range);
1365 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1366 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1367 mmu_notifier_invalidate_range_end(&range);
1368 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1369}
1370
f5cc4eef
AV
1371/**
1372 * zap_page_range_single - remove user pages in a given range
1373 * @vma: vm_area_struct holding the applicable pages
1374 * @address: starting address of pages to zap
1375 * @size: number of bytes to zap
8a5f14a2 1376 * @details: details of shared cache invalidation
f5cc4eef
AV
1377 *
1378 * The range must fit into one VMA.
1da177e4 1379 */
f5cc4eef 1380static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1381 unsigned long size, struct zap_details *details)
1382{
ac46d4f3 1383 struct mmu_notifier_range range;
d16dfc55 1384 struct mmu_gather tlb;
1da177e4 1385
1da177e4 1386 lru_add_drain();
7269f999 1387 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1388 address, address + size);
ac46d4f3
JG
1389 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1390 update_hiwater_rss(vma->vm_mm);
1391 mmu_notifier_invalidate_range_start(&range);
1392 unmap_single_vma(&tlb, vma, address, range.end, details);
1393 mmu_notifier_invalidate_range_end(&range);
1394 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1395}
1396
c627f9cc
JS
1397/**
1398 * zap_vma_ptes - remove ptes mapping the vma
1399 * @vma: vm_area_struct holding ptes to be zapped
1400 * @address: starting address of pages to zap
1401 * @size: number of bytes to zap
1402 *
1403 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1404 *
1405 * The entire address range must be fully contained within the vma.
1406 *
c627f9cc 1407 */
27d036e3 1408void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1409 unsigned long size)
1410{
1411 if (address < vma->vm_start || address + size > vma->vm_end ||
1412 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1413 return;
1414
f5cc4eef 1415 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1416}
1417EXPORT_SYMBOL_GPL(zap_vma_ptes);
1418
8cd3984d 1419static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1420{
c2febafc
KS
1421 pgd_t *pgd;
1422 p4d_t *p4d;
1423 pud_t *pud;
1424 pmd_t *pmd;
1425
1426 pgd = pgd_offset(mm, addr);
1427 p4d = p4d_alloc(mm, pgd, addr);
1428 if (!p4d)
1429 return NULL;
1430 pud = pud_alloc(mm, p4d, addr);
1431 if (!pud)
1432 return NULL;
1433 pmd = pmd_alloc(mm, pud, addr);
1434 if (!pmd)
1435 return NULL;
1436
1437 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1438 return pmd;
1439}
1440
1441pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1442 spinlock_t **ptl)
1443{
1444 pmd_t *pmd = walk_to_pmd(mm, addr);
1445
1446 if (!pmd)
1447 return NULL;
c2febafc 1448 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1449}
1450
8efd6f5b
AR
1451static int validate_page_before_insert(struct page *page)
1452{
1453 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1454 return -EINVAL;
1455 flush_dcache_page(page);
1456 return 0;
1457}
1458
1459static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1460 unsigned long addr, struct page *page, pgprot_t prot)
1461{
1462 if (!pte_none(*pte))
1463 return -EBUSY;
1464 /* Ok, finally just insert the thing.. */
1465 get_page(page);
1466 inc_mm_counter_fast(mm, mm_counter_file(page));
1467 page_add_file_rmap(page, false);
1468 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1469 return 0;
1470}
1471
238f58d8
LT
1472/*
1473 * This is the old fallback for page remapping.
1474 *
1475 * For historical reasons, it only allows reserved pages. Only
1476 * old drivers should use this, and they needed to mark their
1477 * pages reserved for the old functions anyway.
1478 */
423bad60
NP
1479static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1480 struct page *page, pgprot_t prot)
238f58d8 1481{
423bad60 1482 struct mm_struct *mm = vma->vm_mm;
238f58d8 1483 int retval;
c9cfcddf 1484 pte_t *pte;
8a9f3ccd
BS
1485 spinlock_t *ptl;
1486
8efd6f5b
AR
1487 retval = validate_page_before_insert(page);
1488 if (retval)
5b4e655e 1489 goto out;
238f58d8 1490 retval = -ENOMEM;
c9cfcddf 1491 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1492 if (!pte)
5b4e655e 1493 goto out;
8efd6f5b 1494 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1495 pte_unmap_unlock(pte, ptl);
1496out:
1497 return retval;
1498}
1499
8cd3984d
AR
1500#ifdef pte_index
1501static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd,
1502 unsigned long addr, struct page *page, pgprot_t prot)
1503{
1504 int err;
1505
1506 if (!page_count(page))
1507 return -EINVAL;
1508 err = validate_page_before_insert(page);
1509 return err ? err : insert_page_into_pte_locked(
1510 mm, pte_offset_map(pmd, addr), addr, page, prot);
1511}
1512
1513/* insert_pages() amortizes the cost of spinlock operations
1514 * when inserting pages in a loop. Arch *must* define pte_index.
1515 */
1516static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1517 struct page **pages, unsigned long *num, pgprot_t prot)
1518{
1519 pmd_t *pmd = NULL;
1520 spinlock_t *pte_lock = NULL;
1521 struct mm_struct *const mm = vma->vm_mm;
1522 unsigned long curr_page_idx = 0;
1523 unsigned long remaining_pages_total = *num;
1524 unsigned long pages_to_write_in_pmd;
1525 int ret;
1526more:
1527 ret = -EFAULT;
1528 pmd = walk_to_pmd(mm, addr);
1529 if (!pmd)
1530 goto out;
1531
1532 pages_to_write_in_pmd = min_t(unsigned long,
1533 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1534
1535 /* Allocate the PTE if necessary; takes PMD lock once only. */
1536 ret = -ENOMEM;
1537 if (pte_alloc(mm, pmd))
1538 goto out;
1539 pte_lock = pte_lockptr(mm, pmd);
1540
1541 while (pages_to_write_in_pmd) {
1542 int pte_idx = 0;
1543 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1544
1545 spin_lock(pte_lock);
1546 for (; pte_idx < batch_size; ++pte_idx) {
1547 int err = insert_page_in_batch_locked(mm, pmd,
1548 addr, pages[curr_page_idx], prot);
1549 if (unlikely(err)) {
1550 spin_unlock(pte_lock);
1551 ret = err;
1552 remaining_pages_total -= pte_idx;
1553 goto out;
1554 }
1555 addr += PAGE_SIZE;
1556 ++curr_page_idx;
1557 }
1558 spin_unlock(pte_lock);
1559 pages_to_write_in_pmd -= batch_size;
1560 remaining_pages_total -= batch_size;
1561 }
1562 if (remaining_pages_total)
1563 goto more;
1564 ret = 0;
1565out:
1566 *num = remaining_pages_total;
1567 return ret;
1568}
1569#endif /* ifdef pte_index */
1570
1571/**
1572 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1573 * @vma: user vma to map to
1574 * @addr: target start user address of these pages
1575 * @pages: source kernel pages
1576 * @num: in: number of pages to map. out: number of pages that were *not*
1577 * mapped. (0 means all pages were successfully mapped).
1578 *
1579 * Preferred over vm_insert_page() when inserting multiple pages.
1580 *
1581 * In case of error, we may have mapped a subset of the provided
1582 * pages. It is the caller's responsibility to account for this case.
1583 *
1584 * The same restrictions apply as in vm_insert_page().
1585 */
1586int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1587 struct page **pages, unsigned long *num)
1588{
1589#ifdef pte_index
1590 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1591
1592 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1593 return -EFAULT;
1594 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1595 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1596 BUG_ON(vma->vm_flags & VM_PFNMAP);
1597 vma->vm_flags |= VM_MIXEDMAP;
1598 }
1599 /* Defer page refcount checking till we're about to map that page. */
1600 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1601#else
1602 unsigned long idx = 0, pgcount = *num;
1603 int err;
1604
1605 for (; idx < pgcount; ++idx) {
1606 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1607 if (err)
1608 break;
1609 }
1610 *num = pgcount - idx;
1611 return err;
1612#endif /* ifdef pte_index */
1613}
1614EXPORT_SYMBOL(vm_insert_pages);
1615
bfa5bf6d
REB
1616/**
1617 * vm_insert_page - insert single page into user vma
1618 * @vma: user vma to map to
1619 * @addr: target user address of this page
1620 * @page: source kernel page
1621 *
a145dd41
LT
1622 * This allows drivers to insert individual pages they've allocated
1623 * into a user vma.
1624 *
1625 * The page has to be a nice clean _individual_ kernel allocation.
1626 * If you allocate a compound page, you need to have marked it as
1627 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1628 * (see split_page()).
a145dd41
LT
1629 *
1630 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1631 * took an arbitrary page protection parameter. This doesn't allow
1632 * that. Your vma protection will have to be set up correctly, which
1633 * means that if you want a shared writable mapping, you'd better
1634 * ask for a shared writable mapping!
1635 *
1636 * The page does not need to be reserved.
4b6e1e37
KK
1637 *
1638 * Usually this function is called from f_op->mmap() handler
1639 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1640 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1641 * function from other places, for example from page-fault handler.
a862f68a
MR
1642 *
1643 * Return: %0 on success, negative error code otherwise.
a145dd41 1644 */
423bad60
NP
1645int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1646 struct page *page)
a145dd41
LT
1647{
1648 if (addr < vma->vm_start || addr >= vma->vm_end)
1649 return -EFAULT;
1650 if (!page_count(page))
1651 return -EINVAL;
4b6e1e37 1652 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1653 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1654 BUG_ON(vma->vm_flags & VM_PFNMAP);
1655 vma->vm_flags |= VM_MIXEDMAP;
1656 }
423bad60 1657 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1658}
e3c3374f 1659EXPORT_SYMBOL(vm_insert_page);
a145dd41 1660
a667d745
SJ
1661/*
1662 * __vm_map_pages - maps range of kernel pages into user vma
1663 * @vma: user vma to map to
1664 * @pages: pointer to array of source kernel pages
1665 * @num: number of pages in page array
1666 * @offset: user's requested vm_pgoff
1667 *
1668 * This allows drivers to map range of kernel pages into a user vma.
1669 *
1670 * Return: 0 on success and error code otherwise.
1671 */
1672static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1673 unsigned long num, unsigned long offset)
1674{
1675 unsigned long count = vma_pages(vma);
1676 unsigned long uaddr = vma->vm_start;
1677 int ret, i;
1678
1679 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1680 if (offset >= num)
a667d745
SJ
1681 return -ENXIO;
1682
1683 /* Fail if the user requested size exceeds available object size */
1684 if (count > num - offset)
1685 return -ENXIO;
1686
1687 for (i = 0; i < count; i++) {
1688 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1689 if (ret < 0)
1690 return ret;
1691 uaddr += PAGE_SIZE;
1692 }
1693
1694 return 0;
1695}
1696
1697/**
1698 * vm_map_pages - maps range of kernel pages starts with non zero offset
1699 * @vma: user vma to map to
1700 * @pages: pointer to array of source kernel pages
1701 * @num: number of pages in page array
1702 *
1703 * Maps an object consisting of @num pages, catering for the user's
1704 * requested vm_pgoff
1705 *
1706 * If we fail to insert any page into the vma, the function will return
1707 * immediately leaving any previously inserted pages present. Callers
1708 * from the mmap handler may immediately return the error as their caller
1709 * will destroy the vma, removing any successfully inserted pages. Other
1710 * callers should make their own arrangements for calling unmap_region().
1711 *
1712 * Context: Process context. Called by mmap handlers.
1713 * Return: 0 on success and error code otherwise.
1714 */
1715int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1716 unsigned long num)
1717{
1718 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1719}
1720EXPORT_SYMBOL(vm_map_pages);
1721
1722/**
1723 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1724 * @vma: user vma to map to
1725 * @pages: pointer to array of source kernel pages
1726 * @num: number of pages in page array
1727 *
1728 * Similar to vm_map_pages(), except that it explicitly sets the offset
1729 * to 0. This function is intended for the drivers that did not consider
1730 * vm_pgoff.
1731 *
1732 * Context: Process context. Called by mmap handlers.
1733 * Return: 0 on success and error code otherwise.
1734 */
1735int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1736 unsigned long num)
1737{
1738 return __vm_map_pages(vma, pages, num, 0);
1739}
1740EXPORT_SYMBOL(vm_map_pages_zero);
1741
9b5a8e00 1742static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1743 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1744{
1745 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1746 pte_t *pte, entry;
1747 spinlock_t *ptl;
1748
423bad60
NP
1749 pte = get_locked_pte(mm, addr, &ptl);
1750 if (!pte)
9b5a8e00 1751 return VM_FAULT_OOM;
b2770da6
RZ
1752 if (!pte_none(*pte)) {
1753 if (mkwrite) {
1754 /*
1755 * For read faults on private mappings the PFN passed
1756 * in may not match the PFN we have mapped if the
1757 * mapped PFN is a writeable COW page. In the mkwrite
1758 * case we are creating a writable PTE for a shared
f2c57d91
JK
1759 * mapping and we expect the PFNs to match. If they
1760 * don't match, we are likely racing with block
1761 * allocation and mapping invalidation so just skip the
1762 * update.
b2770da6 1763 */
f2c57d91
JK
1764 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1765 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1766 goto out_unlock;
f2c57d91 1767 }
cae85cb8
JK
1768 entry = pte_mkyoung(*pte);
1769 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1770 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1771 update_mmu_cache(vma, addr, pte);
1772 }
1773 goto out_unlock;
b2770da6 1774 }
423bad60
NP
1775
1776 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1777 if (pfn_t_devmap(pfn))
1778 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1779 else
1780 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1781
b2770da6
RZ
1782 if (mkwrite) {
1783 entry = pte_mkyoung(entry);
1784 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1785 }
1786
423bad60 1787 set_pte_at(mm, addr, pte, entry);
4b3073e1 1788 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1789
423bad60
NP
1790out_unlock:
1791 pte_unmap_unlock(pte, ptl);
9b5a8e00 1792 return VM_FAULT_NOPAGE;
423bad60
NP
1793}
1794
f5e6d1d5
MW
1795/**
1796 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1797 * @vma: user vma to map to
1798 * @addr: target user address of this page
1799 * @pfn: source kernel pfn
1800 * @pgprot: pgprot flags for the inserted page
1801 *
1802 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1803 * to override pgprot on a per-page basis.
1804 *
1805 * This only makes sense for IO mappings, and it makes no sense for
1806 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1807 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1808 * impractical.
1809 *
574c5b3d
TH
1810 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1811 * a value of @pgprot different from that of @vma->vm_page_prot.
1812 *
ae2b01f3 1813 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1814 * Return: vm_fault_t value.
1815 */
1816vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1817 unsigned long pfn, pgprot_t pgprot)
1818{
6d958546
MW
1819 /*
1820 * Technically, architectures with pte_special can avoid all these
1821 * restrictions (same for remap_pfn_range). However we would like
1822 * consistency in testing and feature parity among all, so we should
1823 * try to keep these invariants in place for everybody.
1824 */
1825 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1826 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1827 (VM_PFNMAP|VM_MIXEDMAP));
1828 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1829 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1830
1831 if (addr < vma->vm_start || addr >= vma->vm_end)
1832 return VM_FAULT_SIGBUS;
1833
1834 if (!pfn_modify_allowed(pfn, pgprot))
1835 return VM_FAULT_SIGBUS;
1836
1837 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1838
9b5a8e00 1839 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1840 false);
f5e6d1d5
MW
1841}
1842EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1843
ae2b01f3
MW
1844/**
1845 * vmf_insert_pfn - insert single pfn into user vma
1846 * @vma: user vma to map to
1847 * @addr: target user address of this page
1848 * @pfn: source kernel pfn
1849 *
1850 * Similar to vm_insert_page, this allows drivers to insert individual pages
1851 * they've allocated into a user vma. Same comments apply.
1852 *
1853 * This function should only be called from a vm_ops->fault handler, and
1854 * in that case the handler should return the result of this function.
1855 *
1856 * vma cannot be a COW mapping.
1857 *
1858 * As this is called only for pages that do not currently exist, we
1859 * do not need to flush old virtual caches or the TLB.
1860 *
1861 * Context: Process context. May allocate using %GFP_KERNEL.
1862 * Return: vm_fault_t value.
1863 */
1864vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1865 unsigned long pfn)
1866{
1867 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1868}
1869EXPORT_SYMBOL(vmf_insert_pfn);
1870
785a3fab
DW
1871static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1872{
1873 /* these checks mirror the abort conditions in vm_normal_page */
1874 if (vma->vm_flags & VM_MIXEDMAP)
1875 return true;
1876 if (pfn_t_devmap(pfn))
1877 return true;
1878 if (pfn_t_special(pfn))
1879 return true;
1880 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1881 return true;
1882 return false;
1883}
1884
79f3aa5b 1885static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
1886 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1887 bool mkwrite)
423bad60 1888{
79f3aa5b 1889 int err;
87744ab3 1890
785a3fab 1891 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1892
423bad60 1893 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1894 return VM_FAULT_SIGBUS;
308a047c
BP
1895
1896 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1897
42e4089c 1898 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1899 return VM_FAULT_SIGBUS;
42e4089c 1900
423bad60
NP
1901 /*
1902 * If we don't have pte special, then we have to use the pfn_valid()
1903 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1904 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1905 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1906 * without pte special, it would there be refcounted as a normal page.
423bad60 1907 */
00b3a331
LD
1908 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1909 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1910 struct page *page;
1911
03fc2da6
DW
1912 /*
1913 * At this point we are committed to insert_page()
1914 * regardless of whether the caller specified flags that
1915 * result in pfn_t_has_page() == false.
1916 */
1917 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1918 err = insert_page(vma, addr, page, pgprot);
1919 } else {
9b5a8e00 1920 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1921 }
b2770da6 1922
5d747637
MW
1923 if (err == -ENOMEM)
1924 return VM_FAULT_OOM;
1925 if (err < 0 && err != -EBUSY)
1926 return VM_FAULT_SIGBUS;
1927
1928 return VM_FAULT_NOPAGE;
e0dc0d8f 1929}
79f3aa5b 1930
574c5b3d
TH
1931/**
1932 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1933 * @vma: user vma to map to
1934 * @addr: target user address of this page
1935 * @pfn: source kernel pfn
1936 * @pgprot: pgprot flags for the inserted page
1937 *
1938 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1939 * to override pgprot on a per-page basis.
1940 *
1941 * Typically this function should be used by drivers to set caching- and
1942 * encryption bits different than those of @vma->vm_page_prot, because
1943 * the caching- or encryption mode may not be known at mmap() time.
1944 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1945 * to set caching and encryption bits for those vmas (except for COW pages).
1946 * This is ensured by core vm only modifying these page table entries using
1947 * functions that don't touch caching- or encryption bits, using pte_modify()
1948 * if needed. (See for example mprotect()).
1949 * Also when new page-table entries are created, this is only done using the
1950 * fault() callback, and never using the value of vma->vm_page_prot,
1951 * except for page-table entries that point to anonymous pages as the result
1952 * of COW.
1953 *
1954 * Context: Process context. May allocate using %GFP_KERNEL.
1955 * Return: vm_fault_t value.
1956 */
1957vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1958 pfn_t pfn, pgprot_t pgprot)
1959{
1960 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1961}
5379e4dd 1962EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 1963
79f3aa5b
MW
1964vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1965 pfn_t pfn)
1966{
574c5b3d 1967 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 1968}
5d747637 1969EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1970
ab77dab4
SJ
1971/*
1972 * If the insertion of PTE failed because someone else already added a
1973 * different entry in the mean time, we treat that as success as we assume
1974 * the same entry was actually inserted.
1975 */
ab77dab4
SJ
1976vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1977 unsigned long addr, pfn_t pfn)
b2770da6 1978{
574c5b3d 1979 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 1980}
ab77dab4 1981EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1982
1da177e4
LT
1983/*
1984 * maps a range of physical memory into the requested pages. the old
1985 * mappings are removed. any references to nonexistent pages results
1986 * in null mappings (currently treated as "copy-on-access")
1987 */
1988static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1989 unsigned long addr, unsigned long end,
1990 unsigned long pfn, pgprot_t prot)
1991{
1992 pte_t *pte;
c74df32c 1993 spinlock_t *ptl;
42e4089c 1994 int err = 0;
1da177e4 1995
c74df32c 1996 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1997 if (!pte)
1998 return -ENOMEM;
6606c3e0 1999 arch_enter_lazy_mmu_mode();
1da177e4
LT
2000 do {
2001 BUG_ON(!pte_none(*pte));
42e4089c
AK
2002 if (!pfn_modify_allowed(pfn, prot)) {
2003 err = -EACCES;
2004 break;
2005 }
7e675137 2006 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2007 pfn++;
2008 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2009 arch_leave_lazy_mmu_mode();
c74df32c 2010 pte_unmap_unlock(pte - 1, ptl);
42e4089c 2011 return err;
1da177e4
LT
2012}
2013
2014static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2015 unsigned long addr, unsigned long end,
2016 unsigned long pfn, pgprot_t prot)
2017{
2018 pmd_t *pmd;
2019 unsigned long next;
42e4089c 2020 int err;
1da177e4
LT
2021
2022 pfn -= addr >> PAGE_SHIFT;
2023 pmd = pmd_alloc(mm, pud, addr);
2024 if (!pmd)
2025 return -ENOMEM;
f66055ab 2026 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2027 do {
2028 next = pmd_addr_end(addr, end);
42e4089c
AK
2029 err = remap_pte_range(mm, pmd, addr, next,
2030 pfn + (addr >> PAGE_SHIFT), prot);
2031 if (err)
2032 return err;
1da177e4
LT
2033 } while (pmd++, addr = next, addr != end);
2034 return 0;
2035}
2036
c2febafc 2037static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2038 unsigned long addr, unsigned long end,
2039 unsigned long pfn, pgprot_t prot)
2040{
2041 pud_t *pud;
2042 unsigned long next;
42e4089c 2043 int err;
1da177e4
LT
2044
2045 pfn -= addr >> PAGE_SHIFT;
c2febafc 2046 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2047 if (!pud)
2048 return -ENOMEM;
2049 do {
2050 next = pud_addr_end(addr, end);
42e4089c
AK
2051 err = remap_pmd_range(mm, pud, addr, next,
2052 pfn + (addr >> PAGE_SHIFT), prot);
2053 if (err)
2054 return err;
1da177e4
LT
2055 } while (pud++, addr = next, addr != end);
2056 return 0;
2057}
2058
c2febafc
KS
2059static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2060 unsigned long addr, unsigned long end,
2061 unsigned long pfn, pgprot_t prot)
2062{
2063 p4d_t *p4d;
2064 unsigned long next;
42e4089c 2065 int err;
c2febafc
KS
2066
2067 pfn -= addr >> PAGE_SHIFT;
2068 p4d = p4d_alloc(mm, pgd, addr);
2069 if (!p4d)
2070 return -ENOMEM;
2071 do {
2072 next = p4d_addr_end(addr, end);
42e4089c
AK
2073 err = remap_pud_range(mm, p4d, addr, next,
2074 pfn + (addr >> PAGE_SHIFT), prot);
2075 if (err)
2076 return err;
c2febafc
KS
2077 } while (p4d++, addr = next, addr != end);
2078 return 0;
2079}
2080
bfa5bf6d
REB
2081/**
2082 * remap_pfn_range - remap kernel memory to userspace
2083 * @vma: user vma to map to
2084 * @addr: target user address to start at
86a76331 2085 * @pfn: page frame number of kernel physical memory address
552657b7 2086 * @size: size of mapping area
bfa5bf6d
REB
2087 * @prot: page protection flags for this mapping
2088 *
a862f68a
MR
2089 * Note: this is only safe if the mm semaphore is held when called.
2090 *
2091 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 2092 */
1da177e4
LT
2093int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2094 unsigned long pfn, unsigned long size, pgprot_t prot)
2095{
2096 pgd_t *pgd;
2097 unsigned long next;
2d15cab8 2098 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2099 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2100 unsigned long remap_pfn = pfn;
1da177e4
LT
2101 int err;
2102
2103 /*
2104 * Physically remapped pages are special. Tell the
2105 * rest of the world about it:
2106 * VM_IO tells people not to look at these pages
2107 * (accesses can have side effects).
6aab341e
LT
2108 * VM_PFNMAP tells the core MM that the base pages are just
2109 * raw PFN mappings, and do not have a "struct page" associated
2110 * with them.
314e51b9
KK
2111 * VM_DONTEXPAND
2112 * Disable vma merging and expanding with mremap().
2113 * VM_DONTDUMP
2114 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2115 *
2116 * There's a horrible special case to handle copy-on-write
2117 * behaviour that some programs depend on. We mark the "original"
2118 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2119 * See vm_normal_page() for details.
1da177e4 2120 */
b3b9c293
KK
2121 if (is_cow_mapping(vma->vm_flags)) {
2122 if (addr != vma->vm_start || end != vma->vm_end)
2123 return -EINVAL;
fb155c16 2124 vma->vm_pgoff = pfn;
b3b9c293
KK
2125 }
2126
d5957d2f 2127 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2128 if (err)
3c8bb73a 2129 return -EINVAL;
fb155c16 2130
314e51b9 2131 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2132
2133 BUG_ON(addr >= end);
2134 pfn -= addr >> PAGE_SHIFT;
2135 pgd = pgd_offset(mm, addr);
2136 flush_cache_range(vma, addr, end);
1da177e4
LT
2137 do {
2138 next = pgd_addr_end(addr, end);
c2febafc 2139 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2140 pfn + (addr >> PAGE_SHIFT), prot);
2141 if (err)
2142 break;
2143 } while (pgd++, addr = next, addr != end);
2ab64037 2144
2145 if (err)
d5957d2f 2146 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2147
1da177e4
LT
2148 return err;
2149}
2150EXPORT_SYMBOL(remap_pfn_range);
2151
b4cbb197
LT
2152/**
2153 * vm_iomap_memory - remap memory to userspace
2154 * @vma: user vma to map to
abd69b9e 2155 * @start: start of the physical memory to be mapped
b4cbb197
LT
2156 * @len: size of area
2157 *
2158 * This is a simplified io_remap_pfn_range() for common driver use. The
2159 * driver just needs to give us the physical memory range to be mapped,
2160 * we'll figure out the rest from the vma information.
2161 *
2162 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2163 * whatever write-combining details or similar.
a862f68a
MR
2164 *
2165 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2166 */
2167int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2168{
2169 unsigned long vm_len, pfn, pages;
2170
2171 /* Check that the physical memory area passed in looks valid */
2172 if (start + len < start)
2173 return -EINVAL;
2174 /*
2175 * You *really* shouldn't map things that aren't page-aligned,
2176 * but we've historically allowed it because IO memory might
2177 * just have smaller alignment.
2178 */
2179 len += start & ~PAGE_MASK;
2180 pfn = start >> PAGE_SHIFT;
2181 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2182 if (pfn + pages < pfn)
2183 return -EINVAL;
2184
2185 /* We start the mapping 'vm_pgoff' pages into the area */
2186 if (vma->vm_pgoff > pages)
2187 return -EINVAL;
2188 pfn += vma->vm_pgoff;
2189 pages -= vma->vm_pgoff;
2190
2191 /* Can we fit all of the mapping? */
2192 vm_len = vma->vm_end - vma->vm_start;
2193 if (vm_len >> PAGE_SHIFT > pages)
2194 return -EINVAL;
2195
2196 /* Ok, let it rip */
2197 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2198}
2199EXPORT_SYMBOL(vm_iomap_memory);
2200
aee16b3c
JF
2201static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2202 unsigned long addr, unsigned long end,
be1db475 2203 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2204{
2205 pte_t *pte;
be1db475 2206 int err = 0;
94909914 2207 spinlock_t *uninitialized_var(ptl);
aee16b3c 2208
be1db475
DA
2209 if (create) {
2210 pte = (mm == &init_mm) ?
2211 pte_alloc_kernel(pmd, addr) :
2212 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2213 if (!pte)
2214 return -ENOMEM;
2215 } else {
2216 pte = (mm == &init_mm) ?
2217 pte_offset_kernel(pmd, addr) :
2218 pte_offset_map_lock(mm, pmd, addr, &ptl);
2219 }
aee16b3c
JF
2220
2221 BUG_ON(pmd_huge(*pmd));
2222
38e0edb1
JF
2223 arch_enter_lazy_mmu_mode();
2224
aee16b3c 2225 do {
be1db475
DA
2226 if (create || !pte_none(*pte)) {
2227 err = fn(pte++, addr, data);
2228 if (err)
2229 break;
2230 }
c36987e2 2231 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2232
38e0edb1
JF
2233 arch_leave_lazy_mmu_mode();
2234
aee16b3c
JF
2235 if (mm != &init_mm)
2236 pte_unmap_unlock(pte-1, ptl);
2237 return err;
2238}
2239
2240static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2241 unsigned long addr, unsigned long end,
be1db475 2242 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2243{
2244 pmd_t *pmd;
2245 unsigned long next;
be1db475 2246 int err = 0;
aee16b3c 2247
ceb86879
AK
2248 BUG_ON(pud_huge(*pud));
2249
be1db475
DA
2250 if (create) {
2251 pmd = pmd_alloc(mm, pud, addr);
2252 if (!pmd)
2253 return -ENOMEM;
2254 } else {
2255 pmd = pmd_offset(pud, addr);
2256 }
aee16b3c
JF
2257 do {
2258 next = pmd_addr_end(addr, end);
be1db475
DA
2259 if (create || !pmd_none_or_clear_bad(pmd)) {
2260 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2261 create);
2262 if (err)
2263 break;
2264 }
aee16b3c
JF
2265 } while (pmd++, addr = next, addr != end);
2266 return err;
2267}
2268
c2febafc 2269static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2270 unsigned long addr, unsigned long end,
be1db475 2271 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2272{
2273 pud_t *pud;
2274 unsigned long next;
be1db475 2275 int err = 0;
aee16b3c 2276
be1db475
DA
2277 if (create) {
2278 pud = pud_alloc(mm, p4d, addr);
2279 if (!pud)
2280 return -ENOMEM;
2281 } else {
2282 pud = pud_offset(p4d, addr);
2283 }
aee16b3c
JF
2284 do {
2285 next = pud_addr_end(addr, end);
be1db475
DA
2286 if (create || !pud_none_or_clear_bad(pud)) {
2287 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2288 create);
2289 if (err)
2290 break;
2291 }
aee16b3c
JF
2292 } while (pud++, addr = next, addr != end);
2293 return err;
2294}
2295
c2febafc
KS
2296static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2297 unsigned long addr, unsigned long end,
be1db475 2298 pte_fn_t fn, void *data, bool create)
c2febafc
KS
2299{
2300 p4d_t *p4d;
2301 unsigned long next;
be1db475 2302 int err = 0;
c2febafc 2303
be1db475
DA
2304 if (create) {
2305 p4d = p4d_alloc(mm, pgd, addr);
2306 if (!p4d)
2307 return -ENOMEM;
2308 } else {
2309 p4d = p4d_offset(pgd, addr);
2310 }
c2febafc
KS
2311 do {
2312 next = p4d_addr_end(addr, end);
be1db475
DA
2313 if (create || !p4d_none_or_clear_bad(p4d)) {
2314 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2315 create);
2316 if (err)
2317 break;
2318 }
c2febafc
KS
2319 } while (p4d++, addr = next, addr != end);
2320 return err;
2321}
2322
be1db475
DA
2323static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2324 unsigned long size, pte_fn_t fn,
2325 void *data, bool create)
aee16b3c
JF
2326{
2327 pgd_t *pgd;
2328 unsigned long next;
57250a5b 2329 unsigned long end = addr + size;
be1db475 2330 int err = 0;
aee16b3c 2331
9cb65bc3
MP
2332 if (WARN_ON(addr >= end))
2333 return -EINVAL;
2334
aee16b3c
JF
2335 pgd = pgd_offset(mm, addr);
2336 do {
2337 next = pgd_addr_end(addr, end);
be1db475
DA
2338 if (!create && pgd_none_or_clear_bad(pgd))
2339 continue;
2340 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
aee16b3c
JF
2341 if (err)
2342 break;
2343 } while (pgd++, addr = next, addr != end);
57250a5b 2344
aee16b3c
JF
2345 return err;
2346}
be1db475
DA
2347
2348/*
2349 * Scan a region of virtual memory, filling in page tables as necessary
2350 * and calling a provided function on each leaf page table.
2351 */
2352int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2353 unsigned long size, pte_fn_t fn, void *data)
2354{
2355 return __apply_to_page_range(mm, addr, size, fn, data, true);
2356}
aee16b3c
JF
2357EXPORT_SYMBOL_GPL(apply_to_page_range);
2358
be1db475
DA
2359/*
2360 * Scan a region of virtual memory, calling a provided function on
2361 * each leaf page table where it exists.
2362 *
2363 * Unlike apply_to_page_range, this does _not_ fill in page tables
2364 * where they are absent.
2365 */
2366int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2367 unsigned long size, pte_fn_t fn, void *data)
2368{
2369 return __apply_to_page_range(mm, addr, size, fn, data, false);
2370}
2371EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2372
8f4e2101 2373/*
9b4bdd2f
KS
2374 * handle_pte_fault chooses page fault handler according to an entry which was
2375 * read non-atomically. Before making any commitment, on those architectures
2376 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2377 * parts, do_swap_page must check under lock before unmapping the pte and
2378 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2379 * and do_anonymous_page can safely check later on).
8f4e2101 2380 */
4c21e2f2 2381static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2382 pte_t *page_table, pte_t orig_pte)
2383{
2384 int same = 1;
923717cb 2385#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2386 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2387 spinlock_t *ptl = pte_lockptr(mm, pmd);
2388 spin_lock(ptl);
8f4e2101 2389 same = pte_same(*page_table, orig_pte);
4c21e2f2 2390 spin_unlock(ptl);
8f4e2101
HD
2391 }
2392#endif
2393 pte_unmap(page_table);
2394 return same;
2395}
2396
83d116c5
JH
2397static inline bool cow_user_page(struct page *dst, struct page *src,
2398 struct vm_fault *vmf)
6aab341e 2399{
83d116c5
JH
2400 bool ret;
2401 void *kaddr;
2402 void __user *uaddr;
c3e5ea6e 2403 bool locked = false;
83d116c5
JH
2404 struct vm_area_struct *vma = vmf->vma;
2405 struct mm_struct *mm = vma->vm_mm;
2406 unsigned long addr = vmf->address;
2407
0abdd7a8
DW
2408 debug_dma_assert_idle(src);
2409
83d116c5
JH
2410 if (likely(src)) {
2411 copy_user_highpage(dst, src, addr, vma);
2412 return true;
2413 }
2414
6aab341e
LT
2415 /*
2416 * If the source page was a PFN mapping, we don't have
2417 * a "struct page" for it. We do a best-effort copy by
2418 * just copying from the original user address. If that
2419 * fails, we just zero-fill it. Live with it.
2420 */
83d116c5
JH
2421 kaddr = kmap_atomic(dst);
2422 uaddr = (void __user *)(addr & PAGE_MASK);
2423
2424 /*
2425 * On architectures with software "accessed" bits, we would
2426 * take a double page fault, so mark it accessed here.
2427 */
c3e5ea6e 2428 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2429 pte_t entry;
5d2a2dbb 2430
83d116c5 2431 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2432 locked = true;
83d116c5
JH
2433 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2434 /*
2435 * Other thread has already handled the fault
7df67697 2436 * and update local tlb only
83d116c5 2437 */
7df67697 2438 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2439 ret = false;
2440 goto pte_unlock;
2441 }
2442
2443 entry = pte_mkyoung(vmf->orig_pte);
2444 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2445 update_mmu_cache(vma, addr, vmf->pte);
2446 }
2447
2448 /*
2449 * This really shouldn't fail, because the page is there
2450 * in the page tables. But it might just be unreadable,
2451 * in which case we just give up and fill the result with
2452 * zeroes.
2453 */
2454 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2455 if (locked)
2456 goto warn;
2457
2458 /* Re-validate under PTL if the page is still mapped */
2459 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2460 locked = true;
2461 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2462 /* The PTE changed under us, update local tlb */
2463 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2464 ret = false;
2465 goto pte_unlock;
2466 }
2467
5d2a2dbb 2468 /*
985ba004 2469 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2470 * Try to copy again under PTL.
5d2a2dbb 2471 */
c3e5ea6e
KS
2472 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2473 /*
2474 * Give a warn in case there can be some obscure
2475 * use-case
2476 */
2477warn:
2478 WARN_ON_ONCE(1);
2479 clear_page(kaddr);
2480 }
83d116c5
JH
2481 }
2482
2483 ret = true;
2484
2485pte_unlock:
c3e5ea6e 2486 if (locked)
83d116c5
JH
2487 pte_unmap_unlock(vmf->pte, vmf->ptl);
2488 kunmap_atomic(kaddr);
2489 flush_dcache_page(dst);
2490
2491 return ret;
6aab341e
LT
2492}
2493
c20cd45e
MH
2494static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2495{
2496 struct file *vm_file = vma->vm_file;
2497
2498 if (vm_file)
2499 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2500
2501 /*
2502 * Special mappings (e.g. VDSO) do not have any file so fake
2503 * a default GFP_KERNEL for them.
2504 */
2505 return GFP_KERNEL;
2506}
2507
fb09a464
KS
2508/*
2509 * Notify the address space that the page is about to become writable so that
2510 * it can prohibit this or wait for the page to get into an appropriate state.
2511 *
2512 * We do this without the lock held, so that it can sleep if it needs to.
2513 */
2b740303 2514static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2515{
2b740303 2516 vm_fault_t ret;
38b8cb7f
JK
2517 struct page *page = vmf->page;
2518 unsigned int old_flags = vmf->flags;
fb09a464 2519
38b8cb7f 2520 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2521
dc617f29
DW
2522 if (vmf->vma->vm_file &&
2523 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2524 return VM_FAULT_SIGBUS;
2525
11bac800 2526 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2527 /* Restore original flags so that caller is not surprised */
2528 vmf->flags = old_flags;
fb09a464
KS
2529 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2530 return ret;
2531 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2532 lock_page(page);
2533 if (!page->mapping) {
2534 unlock_page(page);
2535 return 0; /* retry */
2536 }
2537 ret |= VM_FAULT_LOCKED;
2538 } else
2539 VM_BUG_ON_PAGE(!PageLocked(page), page);
2540 return ret;
2541}
2542
97ba0c2b
JK
2543/*
2544 * Handle dirtying of a page in shared file mapping on a write fault.
2545 *
2546 * The function expects the page to be locked and unlocks it.
2547 */
89b15332 2548static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2549{
89b15332 2550 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2551 struct address_space *mapping;
89b15332 2552 struct page *page = vmf->page;
97ba0c2b
JK
2553 bool dirtied;
2554 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2555
2556 dirtied = set_page_dirty(page);
2557 VM_BUG_ON_PAGE(PageAnon(page), page);
2558 /*
2559 * Take a local copy of the address_space - page.mapping may be zeroed
2560 * by truncate after unlock_page(). The address_space itself remains
2561 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2562 * release semantics to prevent the compiler from undoing this copying.
2563 */
2564 mapping = page_rmapping(page);
2565 unlock_page(page);
2566
89b15332
JW
2567 if (!page_mkwrite)
2568 file_update_time(vma->vm_file);
2569
2570 /*
2571 * Throttle page dirtying rate down to writeback speed.
2572 *
2573 * mapping may be NULL here because some device drivers do not
2574 * set page.mapping but still dirty their pages
2575 *
2576 * Drop the mmap_sem before waiting on IO, if we can. The file
2577 * is pinning the mapping, as per above.
2578 */
97ba0c2b 2579 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2580 struct file *fpin;
2581
2582 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2583 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2584 if (fpin) {
2585 fput(fpin);
2586 return VM_FAULT_RETRY;
2587 }
97ba0c2b
JK
2588 }
2589
89b15332 2590 return 0;
97ba0c2b
JK
2591}
2592
4e047f89
SR
2593/*
2594 * Handle write page faults for pages that can be reused in the current vma
2595 *
2596 * This can happen either due to the mapping being with the VM_SHARED flag,
2597 * or due to us being the last reference standing to the page. In either
2598 * case, all we need to do here is to mark the page as writable and update
2599 * any related book-keeping.
2600 */
997dd98d 2601static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2602 __releases(vmf->ptl)
4e047f89 2603{
82b0f8c3 2604 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2605 struct page *page = vmf->page;
4e047f89
SR
2606 pte_t entry;
2607 /*
2608 * Clear the pages cpupid information as the existing
2609 * information potentially belongs to a now completely
2610 * unrelated process.
2611 */
2612 if (page)
2613 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2614
2994302b
JK
2615 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2616 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2617 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2618 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2619 update_mmu_cache(vma, vmf->address, vmf->pte);
2620 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2621}
2622
2f38ab2c
SR
2623/*
2624 * Handle the case of a page which we actually need to copy to a new page.
2625 *
2626 * Called with mmap_sem locked and the old page referenced, but
2627 * without the ptl held.
2628 *
2629 * High level logic flow:
2630 *
2631 * - Allocate a page, copy the content of the old page to the new one.
2632 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2633 * - Take the PTL. If the pte changed, bail out and release the allocated page
2634 * - If the pte is still the way we remember it, update the page table and all
2635 * relevant references. This includes dropping the reference the page-table
2636 * held to the old page, as well as updating the rmap.
2637 * - In any case, unlock the PTL and drop the reference we took to the old page.
2638 */
2b740303 2639static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2640{
82b0f8c3 2641 struct vm_area_struct *vma = vmf->vma;
bae473a4 2642 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2643 struct page *old_page = vmf->page;
2f38ab2c 2644 struct page *new_page = NULL;
2f38ab2c
SR
2645 pte_t entry;
2646 int page_copied = 0;
ac46d4f3 2647 struct mmu_notifier_range range;
2f38ab2c
SR
2648
2649 if (unlikely(anon_vma_prepare(vma)))
2650 goto oom;
2651
2994302b 2652 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2653 new_page = alloc_zeroed_user_highpage_movable(vma,
2654 vmf->address);
2f38ab2c
SR
2655 if (!new_page)
2656 goto oom;
2657 } else {
bae473a4 2658 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2659 vmf->address);
2f38ab2c
SR
2660 if (!new_page)
2661 goto oom;
83d116c5
JH
2662
2663 if (!cow_user_page(new_page, old_page, vmf)) {
2664 /*
2665 * COW failed, if the fault was solved by other,
2666 * it's fine. If not, userspace would re-fault on
2667 * the same address and we will handle the fault
2668 * from the second attempt.
2669 */
2670 put_page(new_page);
2671 if (old_page)
2672 put_page(old_page);
2673 return 0;
2674 }
2f38ab2c 2675 }
2f38ab2c 2676
d9eb1ea2 2677 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2678 goto oom_free_new;
9d82c694 2679 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2680
eb3c24f3
MG
2681 __SetPageUptodate(new_page);
2682
7269f999 2683 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2684 vmf->address & PAGE_MASK,
ac46d4f3
JG
2685 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2686 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2687
2688 /*
2689 * Re-check the pte - we dropped the lock
2690 */
82b0f8c3 2691 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2692 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2693 if (old_page) {
2694 if (!PageAnon(old_page)) {
eca56ff9
JM
2695 dec_mm_counter_fast(mm,
2696 mm_counter_file(old_page));
2f38ab2c
SR
2697 inc_mm_counter_fast(mm, MM_ANONPAGES);
2698 }
2699 } else {
2700 inc_mm_counter_fast(mm, MM_ANONPAGES);
2701 }
2994302b 2702 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 2703 entry = mk_pte(new_page, vma->vm_page_prot);
44bf431b 2704 entry = pte_sw_mkyoung(entry);
2f38ab2c
SR
2705 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2706 /*
2707 * Clear the pte entry and flush it first, before updating the
2708 * pte with the new entry. This will avoid a race condition
2709 * seen in the presence of one thread doing SMC and another
2710 * thread doing COW.
2711 */
82b0f8c3
JK
2712 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2713 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2f38ab2c
SR
2714 lru_cache_add_active_or_unevictable(new_page, vma);
2715 /*
2716 * We call the notify macro here because, when using secondary
2717 * mmu page tables (such as kvm shadow page tables), we want the
2718 * new page to be mapped directly into the secondary page table.
2719 */
82b0f8c3
JK
2720 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2721 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2722 if (old_page) {
2723 /*
2724 * Only after switching the pte to the new page may
2725 * we remove the mapcount here. Otherwise another
2726 * process may come and find the rmap count decremented
2727 * before the pte is switched to the new page, and
2728 * "reuse" the old page writing into it while our pte
2729 * here still points into it and can be read by other
2730 * threads.
2731 *
2732 * The critical issue is to order this
2733 * page_remove_rmap with the ptp_clear_flush above.
2734 * Those stores are ordered by (if nothing else,)
2735 * the barrier present in the atomic_add_negative
2736 * in page_remove_rmap.
2737 *
2738 * Then the TLB flush in ptep_clear_flush ensures that
2739 * no process can access the old page before the
2740 * decremented mapcount is visible. And the old page
2741 * cannot be reused until after the decremented
2742 * mapcount is visible. So transitively, TLBs to
2743 * old page will be flushed before it can be reused.
2744 */
d281ee61 2745 page_remove_rmap(old_page, false);
2f38ab2c
SR
2746 }
2747
2748 /* Free the old page.. */
2749 new_page = old_page;
2750 page_copied = 1;
2751 } else {
7df67697 2752 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2753 }
2754
2755 if (new_page)
09cbfeaf 2756 put_page(new_page);
2f38ab2c 2757
82b0f8c3 2758 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2759 /*
2760 * No need to double call mmu_notifier->invalidate_range() callback as
2761 * the above ptep_clear_flush_notify() did already call it.
2762 */
ac46d4f3 2763 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2764 if (old_page) {
2765 /*
2766 * Don't let another task, with possibly unlocked vma,
2767 * keep the mlocked page.
2768 */
2769 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2770 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2771 if (PageMlocked(old_page))
2772 munlock_vma_page(old_page);
2f38ab2c
SR
2773 unlock_page(old_page);
2774 }
09cbfeaf 2775 put_page(old_page);
2f38ab2c
SR
2776 }
2777 return page_copied ? VM_FAULT_WRITE : 0;
2778oom_free_new:
09cbfeaf 2779 put_page(new_page);
2f38ab2c
SR
2780oom:
2781 if (old_page)
09cbfeaf 2782 put_page(old_page);
2f38ab2c
SR
2783 return VM_FAULT_OOM;
2784}
2785
66a6197c
JK
2786/**
2787 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2788 * writeable once the page is prepared
2789 *
2790 * @vmf: structure describing the fault
2791 *
2792 * This function handles all that is needed to finish a write page fault in a
2793 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2794 * It handles locking of PTE and modifying it.
66a6197c
JK
2795 *
2796 * The function expects the page to be locked or other protection against
2797 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2798 *
2799 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2800 * we acquired PTE lock.
66a6197c 2801 */
2b740303 2802vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2803{
2804 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2805 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2806 &vmf->ptl);
2807 /*
2808 * We might have raced with another page fault while we released the
2809 * pte_offset_map_lock.
2810 */
2811 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 2812 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 2813 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2814 return VM_FAULT_NOPAGE;
66a6197c
JK
2815 }
2816 wp_page_reuse(vmf);
a19e2553 2817 return 0;
66a6197c
JK
2818}
2819
dd906184
BH
2820/*
2821 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2822 * mapping
2823 */
2b740303 2824static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2825{
82b0f8c3 2826 struct vm_area_struct *vma = vmf->vma;
bae473a4 2827
dd906184 2828 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2829 vm_fault_t ret;
dd906184 2830
82b0f8c3 2831 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2832 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2833 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2834 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2835 return ret;
66a6197c 2836 return finish_mkwrite_fault(vmf);
dd906184 2837 }
997dd98d
JK
2838 wp_page_reuse(vmf);
2839 return VM_FAULT_WRITE;
dd906184
BH
2840}
2841
2b740303 2842static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2843 __releases(vmf->ptl)
93e478d4 2844{
82b0f8c3 2845 struct vm_area_struct *vma = vmf->vma;
89b15332 2846 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 2847
a41b70d6 2848 get_page(vmf->page);
93e478d4 2849
93e478d4 2850 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2851 vm_fault_t tmp;
93e478d4 2852
82b0f8c3 2853 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2854 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2855 if (unlikely(!tmp || (tmp &
2856 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2857 put_page(vmf->page);
93e478d4
SR
2858 return tmp;
2859 }
66a6197c 2860 tmp = finish_mkwrite_fault(vmf);
a19e2553 2861 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2862 unlock_page(vmf->page);
a41b70d6 2863 put_page(vmf->page);
66a6197c 2864 return tmp;
93e478d4 2865 }
66a6197c
JK
2866 } else {
2867 wp_page_reuse(vmf);
997dd98d 2868 lock_page(vmf->page);
93e478d4 2869 }
89b15332 2870 ret |= fault_dirty_shared_page(vmf);
997dd98d 2871 put_page(vmf->page);
93e478d4 2872
89b15332 2873 return ret;
93e478d4
SR
2874}
2875
1da177e4
LT
2876/*
2877 * This routine handles present pages, when users try to write
2878 * to a shared page. It is done by copying the page to a new address
2879 * and decrementing the shared-page counter for the old page.
2880 *
1da177e4
LT
2881 * Note that this routine assumes that the protection checks have been
2882 * done by the caller (the low-level page fault routine in most cases).
2883 * Thus we can safely just mark it writable once we've done any necessary
2884 * COW.
2885 *
2886 * We also mark the page dirty at this point even though the page will
2887 * change only once the write actually happens. This avoids a few races,
2888 * and potentially makes it more efficient.
2889 *
8f4e2101
HD
2890 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2891 * but allow concurrent faults), with pte both mapped and locked.
2892 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2893 */
2b740303 2894static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2895 __releases(vmf->ptl)
1da177e4 2896{
82b0f8c3 2897 struct vm_area_struct *vma = vmf->vma;
1da177e4 2898
292924b2 2899 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
2900 pte_unmap_unlock(vmf->pte, vmf->ptl);
2901 return handle_userfault(vmf, VM_UFFD_WP);
2902 }
2903
a41b70d6
JK
2904 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2905 if (!vmf->page) {
251b97f5 2906 /*
64e45507
PF
2907 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2908 * VM_PFNMAP VMA.
251b97f5
PZ
2909 *
2910 * We should not cow pages in a shared writeable mapping.
dd906184 2911 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2912 */
2913 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2914 (VM_WRITE|VM_SHARED))
2994302b 2915 return wp_pfn_shared(vmf);
2f38ab2c 2916
82b0f8c3 2917 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2918 return wp_page_copy(vmf);
251b97f5 2919 }
1da177e4 2920
d08b3851 2921 /*
ee6a6457
PZ
2922 * Take out anonymous pages first, anonymous shared vmas are
2923 * not dirty accountable.
d08b3851 2924 */
52d1e606 2925 if (PageAnon(vmf->page)) {
ba3c4ce6 2926 int total_map_swapcount;
52d1e606
KT
2927 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2928 page_count(vmf->page) != 1))
2929 goto copy;
a41b70d6
JK
2930 if (!trylock_page(vmf->page)) {
2931 get_page(vmf->page);
82b0f8c3 2932 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2933 lock_page(vmf->page);
82b0f8c3
JK
2934 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2935 vmf->address, &vmf->ptl);
2994302b 2936 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 2937 update_mmu_tlb(vma, vmf->address, vmf->pte);
a41b70d6 2938 unlock_page(vmf->page);
82b0f8c3 2939 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2940 put_page(vmf->page);
28766805 2941 return 0;
ab967d86 2942 }
a41b70d6 2943 put_page(vmf->page);
ee6a6457 2944 }
52d1e606
KT
2945 if (PageKsm(vmf->page)) {
2946 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2947 vmf->address);
2948 unlock_page(vmf->page);
2949 if (!reused)
2950 goto copy;
2951 wp_page_reuse(vmf);
2952 return VM_FAULT_WRITE;
2953 }
ba3c4ce6
HY
2954 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2955 if (total_map_swapcount == 1) {
6d0a07ed
AA
2956 /*
2957 * The page is all ours. Move it to
2958 * our anon_vma so the rmap code will
2959 * not search our parent or siblings.
2960 * Protected against the rmap code by
2961 * the page lock.
2962 */
a41b70d6 2963 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2964 }
a41b70d6 2965 unlock_page(vmf->page);
997dd98d
JK
2966 wp_page_reuse(vmf);
2967 return VM_FAULT_WRITE;
b009c024 2968 }
a41b70d6 2969 unlock_page(vmf->page);
ee6a6457 2970 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2971 (VM_WRITE|VM_SHARED))) {
a41b70d6 2972 return wp_page_shared(vmf);
1da177e4 2973 }
52d1e606 2974copy:
1da177e4
LT
2975 /*
2976 * Ok, we need to copy. Oh, well..
2977 */
a41b70d6 2978 get_page(vmf->page);
28766805 2979
82b0f8c3 2980 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2981 return wp_page_copy(vmf);
1da177e4
LT
2982}
2983
97a89413 2984static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2985 unsigned long start_addr, unsigned long end_addr,
2986 struct zap_details *details)
2987{
f5cc4eef 2988 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2989}
2990
f808c13f 2991static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2992 struct zap_details *details)
2993{
2994 struct vm_area_struct *vma;
1da177e4
LT
2995 pgoff_t vba, vea, zba, zea;
2996
6b2dbba8 2997 vma_interval_tree_foreach(vma, root,
1da177e4 2998 details->first_index, details->last_index) {
1da177e4
LT
2999
3000 vba = vma->vm_pgoff;
d6e93217 3001 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3002 zba = details->first_index;
3003 if (zba < vba)
3004 zba = vba;
3005 zea = details->last_index;
3006 if (zea > vea)
3007 zea = vea;
3008
97a89413 3009 unmap_mapping_range_vma(vma,
1da177e4
LT
3010 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3011 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3012 details);
1da177e4
LT
3013 }
3014}
3015
977fbdcd
MW
3016/**
3017 * unmap_mapping_pages() - Unmap pages from processes.
3018 * @mapping: The address space containing pages to be unmapped.
3019 * @start: Index of first page to be unmapped.
3020 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3021 * @even_cows: Whether to unmap even private COWed pages.
3022 *
3023 * Unmap the pages in this address space from any userspace process which
3024 * has them mmaped. Generally, you want to remove COWed pages as well when
3025 * a file is being truncated, but not when invalidating pages from the page
3026 * cache.
3027 */
3028void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3029 pgoff_t nr, bool even_cows)
3030{
3031 struct zap_details details = { };
3032
3033 details.check_mapping = even_cows ? NULL : mapping;
3034 details.first_index = start;
3035 details.last_index = start + nr - 1;
3036 if (details.last_index < details.first_index)
3037 details.last_index = ULONG_MAX;
3038
3039 i_mmap_lock_write(mapping);
3040 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3041 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3042 i_mmap_unlock_write(mapping);
3043}
3044
1da177e4 3045/**
8a5f14a2 3046 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3047 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3048 * file.
3049 *
3d41088f 3050 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3051 * @holebegin: byte in first page to unmap, relative to the start of
3052 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3053 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3054 * must keep the partial page. In contrast, we must get rid of
3055 * partial pages.
3056 * @holelen: size of prospective hole in bytes. This will be rounded
3057 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3058 * end of the file.
3059 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3060 * but 0 when invalidating pagecache, don't throw away private data.
3061 */
3062void unmap_mapping_range(struct address_space *mapping,
3063 loff_t const holebegin, loff_t const holelen, int even_cows)
3064{
1da177e4
LT
3065 pgoff_t hba = holebegin >> PAGE_SHIFT;
3066 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3067
3068 /* Check for overflow. */
3069 if (sizeof(holelen) > sizeof(hlen)) {
3070 long long holeend =
3071 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3072 if (holeend & ~(long long)ULONG_MAX)
3073 hlen = ULONG_MAX - hba + 1;
3074 }
3075
977fbdcd 3076 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3077}
3078EXPORT_SYMBOL(unmap_mapping_range);
3079
1da177e4 3080/*
8f4e2101
HD
3081 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3082 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3083 * We return with pte unmapped and unlocked.
3084 *
3085 * We return with the mmap_sem locked or unlocked in the same cases
3086 * as does filemap_fault().
1da177e4 3087 */
2b740303 3088vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3089{
82b0f8c3 3090 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3091 struct page *page = NULL, *swapcache;
65500d23 3092 swp_entry_t entry;
1da177e4 3093 pte_t pte;
d065bd81 3094 int locked;
ad8c2ee8 3095 int exclusive = 0;
2b740303 3096 vm_fault_t ret = 0;
1da177e4 3097
eaf649eb 3098 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3099 goto out;
65500d23 3100
2994302b 3101 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3102 if (unlikely(non_swap_entry(entry))) {
3103 if (is_migration_entry(entry)) {
82b0f8c3
JK
3104 migration_entry_wait(vma->vm_mm, vmf->pmd,
3105 vmf->address);
5042db43 3106 } else if (is_device_private_entry(entry)) {
897e6365
CH
3107 vmf->page = device_private_entry_to_page(entry);
3108 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3109 } else if (is_hwpoison_entry(entry)) {
3110 ret = VM_FAULT_HWPOISON;
3111 } else {
2994302b 3112 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3113 ret = VM_FAULT_SIGBUS;
d1737fdb 3114 }
0697212a
CL
3115 goto out;
3116 }
0bcac06f
MK
3117
3118
0ff92245 3119 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3120 page = lookup_swap_cache(entry, vma, vmf->address);
3121 swapcache = page;
f8020772 3122
1da177e4 3123 if (!page) {
0bcac06f
MK
3124 struct swap_info_struct *si = swp_swap_info(entry);
3125
aa8d22a1 3126 if (si->flags & SWP_SYNCHRONOUS_IO &&
eb085574 3127 __swap_count(entry) == 1) {
0bcac06f 3128 /* skip swapcache */
e9e9b7ec
MK
3129 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3130 vmf->address);
0bcac06f 3131 if (page) {
4c6355b2
JW
3132 int err;
3133
0bcac06f
MK
3134 __SetPageLocked(page);
3135 __SetPageSwapBacked(page);
3136 set_page_private(page, entry.val);
4c6355b2
JW
3137
3138 /* Tell memcg to use swap ownership records */
3139 SetPageSwapCache(page);
3140 err = mem_cgroup_charge(page, vma->vm_mm,
d9eb1ea2 3141 GFP_KERNEL);
4c6355b2
JW
3142 ClearPageSwapCache(page);
3143 if (err)
3144 goto out_page;
3145
6058eaec 3146 lru_cache_add(page);
0bcac06f
MK
3147 swap_readpage(page, true);
3148 }
aa8d22a1 3149 } else {
e9e9b7ec
MK
3150 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3151 vmf);
aa8d22a1 3152 swapcache = page;
0bcac06f
MK
3153 }
3154
1da177e4
LT
3155 if (!page) {
3156 /*
8f4e2101
HD
3157 * Back out if somebody else faulted in this pte
3158 * while we released the pte lock.
1da177e4 3159 */
82b0f8c3
JK
3160 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3161 vmf->address, &vmf->ptl);
2994302b 3162 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3163 ret = VM_FAULT_OOM;
0ff92245 3164 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3165 goto unlock;
1da177e4
LT
3166 }
3167
3168 /* Had to read the page from swap area: Major fault */
3169 ret = VM_FAULT_MAJOR;
f8891e5e 3170 count_vm_event(PGMAJFAULT);
2262185c 3171 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3172 } else if (PageHWPoison(page)) {
71f72525
WF
3173 /*
3174 * hwpoisoned dirty swapcache pages are kept for killing
3175 * owner processes (which may be unknown at hwpoison time)
3176 */
d1737fdb
AK
3177 ret = VM_FAULT_HWPOISON;
3178 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3179 goto out_release;
1da177e4
LT
3180 }
3181
82b0f8c3 3182 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3183
073e587e 3184 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3185 if (!locked) {
3186 ret |= VM_FAULT_RETRY;
3187 goto out_release;
3188 }
073e587e 3189
4969c119 3190 /*
31c4a3d3
HD
3191 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3192 * release the swapcache from under us. The page pin, and pte_same
3193 * test below, are not enough to exclude that. Even if it is still
3194 * swapcache, we need to check that the page's swap has not changed.
4969c119 3195 */
0bcac06f
MK
3196 if (unlikely((!PageSwapCache(page) ||
3197 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3198 goto out_page;
3199
82b0f8c3 3200 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3201 if (unlikely(!page)) {
3202 ret = VM_FAULT_OOM;
3203 page = swapcache;
cbf86cfe 3204 goto out_page;
5ad64688
HD
3205 }
3206
9d82c694 3207 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3208
1da177e4 3209 /*
8f4e2101 3210 * Back out if somebody else already faulted in this pte.
1da177e4 3211 */
82b0f8c3
JK
3212 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3213 &vmf->ptl);
2994302b 3214 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3215 goto out_nomap;
b8107480
KK
3216
3217 if (unlikely(!PageUptodate(page))) {
3218 ret = VM_FAULT_SIGBUS;
3219 goto out_nomap;
1da177e4
LT
3220 }
3221
8c7c6e34
KH
3222 /*
3223 * The page isn't present yet, go ahead with the fault.
3224 *
3225 * Be careful about the sequence of operations here.
3226 * To get its accounting right, reuse_swap_page() must be called
3227 * while the page is counted on swap but not yet in mapcount i.e.
3228 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3229 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3230 */
1da177e4 3231
bae473a4
KS
3232 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3233 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3234 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3235 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3236 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3237 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3238 ret |= VM_FAULT_WRITE;
d281ee61 3239 exclusive = RMAP_EXCLUSIVE;
1da177e4 3240 }
1da177e4 3241 flush_icache_page(vma, page);
2994302b 3242 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3243 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3244 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3245 pte = pte_mkuffd_wp(pte);
3246 pte = pte_wrprotect(pte);
3247 }
82b0f8c3 3248 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3249 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3250 vmf->orig_pte = pte;
0bcac06f
MK
3251
3252 /* ksm created a completely new copy */
3253 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3254 page_add_new_anon_rmap(page, vma, vmf->address, false);
00501b53 3255 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
3256 } else {
3257 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
0bcac06f 3258 activate_page(page);
00501b53 3259 }
1da177e4 3260
c475a8ab 3261 swap_free(entry);
5ccc5aba
VD
3262 if (mem_cgroup_swap_full(page) ||
3263 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3264 try_to_free_swap(page);
c475a8ab 3265 unlock_page(page);
0bcac06f 3266 if (page != swapcache && swapcache) {
4969c119
AA
3267 /*
3268 * Hold the lock to avoid the swap entry to be reused
3269 * until we take the PT lock for the pte_same() check
3270 * (to avoid false positives from pte_same). For
3271 * further safety release the lock after the swap_free
3272 * so that the swap count won't change under a
3273 * parallel locked swapcache.
3274 */
3275 unlock_page(swapcache);
09cbfeaf 3276 put_page(swapcache);
4969c119 3277 }
c475a8ab 3278
82b0f8c3 3279 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3280 ret |= do_wp_page(vmf);
61469f1d
HD
3281 if (ret & VM_FAULT_ERROR)
3282 ret &= VM_FAULT_ERROR;
1da177e4
LT
3283 goto out;
3284 }
3285
3286 /* No need to invalidate - it was non-present before */
82b0f8c3 3287 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3288unlock:
82b0f8c3 3289 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3290out:
3291 return ret;
b8107480 3292out_nomap:
82b0f8c3 3293 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3294out_page:
b8107480 3295 unlock_page(page);
4779cb31 3296out_release:
09cbfeaf 3297 put_page(page);
0bcac06f 3298 if (page != swapcache && swapcache) {
4969c119 3299 unlock_page(swapcache);
09cbfeaf 3300 put_page(swapcache);
4969c119 3301 }
65500d23 3302 return ret;
1da177e4
LT
3303}
3304
3305/*
8f4e2101
HD
3306 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3307 * but allow concurrent faults), and pte mapped but not yet locked.
3308 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3309 */
2b740303 3310static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3311{
82b0f8c3 3312 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3313 struct page *page;
2b740303 3314 vm_fault_t ret = 0;
1da177e4 3315 pte_t entry;
1da177e4 3316
6b7339f4
KS
3317 /* File mapping without ->vm_ops ? */
3318 if (vma->vm_flags & VM_SHARED)
3319 return VM_FAULT_SIGBUS;
3320
7267ec00
KS
3321 /*
3322 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3323 * pte_offset_map() on pmds where a huge pmd might be created
3324 * from a different thread.
3325 *
3326 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3327 * parallel threads are excluded by other means.
3328 *
3329 * Here we only have down_read(mmap_sem).
3330 */
4cf58924 3331 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3332 return VM_FAULT_OOM;
3333
3334 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3335 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3336 return 0;
3337
11ac5524 3338 /* Use the zero-page for reads */
82b0f8c3 3339 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3340 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3341 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3342 vma->vm_page_prot));
82b0f8c3
JK
3343 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3344 vmf->address, &vmf->ptl);
7df67697
BM
3345 if (!pte_none(*vmf->pte)) {
3346 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3347 goto unlock;
7df67697 3348 }
6b31d595
MH
3349 ret = check_stable_address_space(vma->vm_mm);
3350 if (ret)
3351 goto unlock;
6b251fc9
AA
3352 /* Deliver the page fault to userland, check inside PT lock */
3353 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3354 pte_unmap_unlock(vmf->pte, vmf->ptl);
3355 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3356 }
a13ea5b7
HD
3357 goto setpte;
3358 }
3359
557ed1fa 3360 /* Allocate our own private page. */
557ed1fa
NP
3361 if (unlikely(anon_vma_prepare(vma)))
3362 goto oom;
82b0f8c3 3363 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3364 if (!page)
3365 goto oom;
eb3c24f3 3366
d9eb1ea2 3367 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3368 goto oom_free_page;
9d82c694 3369 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3370
52f37629
MK
3371 /*
3372 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3373 * preceding stores to the page contents become visible before
52f37629
MK
3374 * the set_pte_at() write.
3375 */
0ed361de 3376 __SetPageUptodate(page);
8f4e2101 3377
557ed1fa 3378 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3379 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3380 if (vma->vm_flags & VM_WRITE)
3381 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3382
82b0f8c3
JK
3383 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3384 &vmf->ptl);
7df67697
BM
3385 if (!pte_none(*vmf->pte)) {
3386 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3387 goto release;
7df67697 3388 }
9ba69294 3389
6b31d595
MH
3390 ret = check_stable_address_space(vma->vm_mm);
3391 if (ret)
3392 goto release;
3393
6b251fc9
AA
3394 /* Deliver the page fault to userland, check inside PT lock */
3395 if (userfaultfd_missing(vma)) {
82b0f8c3 3396 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3397 put_page(page);
82b0f8c3 3398 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3399 }
3400
bae473a4 3401 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3402 page_add_new_anon_rmap(page, vma, vmf->address, false);
00501b53 3403 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3404setpte:
82b0f8c3 3405 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3406
3407 /* No need to invalidate - it was non-present before */
82b0f8c3 3408 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3409unlock:
82b0f8c3 3410 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3411 return ret;
8f4e2101 3412release:
09cbfeaf 3413 put_page(page);
8f4e2101 3414 goto unlock;
8a9f3ccd 3415oom_free_page:
09cbfeaf 3416 put_page(page);
65500d23 3417oom:
1da177e4
LT
3418 return VM_FAULT_OOM;
3419}
3420
9a95f3cf
PC
3421/*
3422 * The mmap_sem must have been held on entry, and may have been
3423 * released depending on flags and vma->vm_ops->fault() return value.
3424 * See filemap_fault() and __lock_page_retry().
3425 */
2b740303 3426static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3427{
82b0f8c3 3428 struct vm_area_struct *vma = vmf->vma;
2b740303 3429 vm_fault_t ret;
7eae74af 3430
63f3655f
MH
3431 /*
3432 * Preallocate pte before we take page_lock because this might lead to
3433 * deadlocks for memcg reclaim which waits for pages under writeback:
3434 * lock_page(A)
3435 * SetPageWriteback(A)
3436 * unlock_page(A)
3437 * lock_page(B)
3438 * lock_page(B)
3439 * pte_alloc_pne
3440 * shrink_page_list
3441 * wait_on_page_writeback(A)
3442 * SetPageWriteback(B)
3443 * unlock_page(B)
3444 * # flush A, B to clear the writeback
3445 */
3446 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3447 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3448 if (!vmf->prealloc_pte)
3449 return VM_FAULT_OOM;
3450 smp_wmb(); /* See comment in __pte_alloc() */
3451 }
3452
11bac800 3453 ret = vma->vm_ops->fault(vmf);
3917048d 3454 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3455 VM_FAULT_DONE_COW)))
bc2466e4 3456 return ret;
7eae74af 3457
667240e0 3458 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3459 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3460 unlock_page(vmf->page);
3461 put_page(vmf->page);
936ca80d 3462 vmf->page = NULL;
7eae74af
KS
3463 return VM_FAULT_HWPOISON;
3464 }
3465
3466 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3467 lock_page(vmf->page);
7eae74af 3468 else
667240e0 3469 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3470
7eae74af
KS
3471 return ret;
3472}
3473
d0f0931d
RZ
3474/*
3475 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3476 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3477 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3478 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3479 */
3480static int pmd_devmap_trans_unstable(pmd_t *pmd)
3481{
3482 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3483}
3484
2b740303 3485static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3486{
82b0f8c3 3487 struct vm_area_struct *vma = vmf->vma;
7267ec00 3488
82b0f8c3 3489 if (!pmd_none(*vmf->pmd))
7267ec00 3490 goto map_pte;
82b0f8c3
JK
3491 if (vmf->prealloc_pte) {
3492 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3493 if (unlikely(!pmd_none(*vmf->pmd))) {
3494 spin_unlock(vmf->ptl);
7267ec00
KS
3495 goto map_pte;
3496 }
3497
c4812909 3498 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3499 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3500 spin_unlock(vmf->ptl);
7f2b6ce8 3501 vmf->prealloc_pte = NULL;
4cf58924 3502 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3503 return VM_FAULT_OOM;
3504 }
3505map_pte:
3506 /*
3507 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3508 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3509 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3510 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3511 * running immediately after a huge pmd fault in a different thread of
3512 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3513 * All we have to ensure is that it is a regular pmd that we can walk
3514 * with pte_offset_map() and we can do that through an atomic read in
3515 * C, which is what pmd_trans_unstable() provides.
7267ec00 3516 */
d0f0931d 3517 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3518 return VM_FAULT_NOPAGE;
3519
d0f0931d
RZ
3520 /*
3521 * At this point we know that our vmf->pmd points to a page of ptes
3522 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3523 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3524 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3525 * be valid and we will re-check to make sure the vmf->pte isn't
3526 * pte_none() under vmf->ptl protection when we return to
3527 * alloc_set_pte().
3528 */
82b0f8c3
JK
3529 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3530 &vmf->ptl);
7267ec00
KS
3531 return 0;
3532}
3533
396bcc52 3534#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3535static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3536{
82b0f8c3 3537 struct vm_area_struct *vma = vmf->vma;
953c66c2 3538
82b0f8c3 3539 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3540 /*
3541 * We are going to consume the prealloc table,
3542 * count that as nr_ptes.
3543 */
c4812909 3544 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3545 vmf->prealloc_pte = NULL;
953c66c2
AK
3546}
3547
2b740303 3548static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3549{
82b0f8c3
JK
3550 struct vm_area_struct *vma = vmf->vma;
3551 bool write = vmf->flags & FAULT_FLAG_WRITE;
3552 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3553 pmd_t entry;
2b740303
SJ
3554 int i;
3555 vm_fault_t ret;
10102459
KS
3556
3557 if (!transhuge_vma_suitable(vma, haddr))
3558 return VM_FAULT_FALLBACK;
3559
3560 ret = VM_FAULT_FALLBACK;
3561 page = compound_head(page);
3562
953c66c2
AK
3563 /*
3564 * Archs like ppc64 need additonal space to store information
3565 * related to pte entry. Use the preallocated table for that.
3566 */
82b0f8c3 3567 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3568 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3569 if (!vmf->prealloc_pte)
953c66c2
AK
3570 return VM_FAULT_OOM;
3571 smp_wmb(); /* See comment in __pte_alloc() */
3572 }
3573
82b0f8c3
JK
3574 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3575 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3576 goto out;
3577
3578 for (i = 0; i < HPAGE_PMD_NR; i++)
3579 flush_icache_page(vma, page + i);
3580
3581 entry = mk_huge_pmd(page, vma->vm_page_prot);
3582 if (write)
f55e1014 3583 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3584
fadae295 3585 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3586 page_add_file_rmap(page, true);
953c66c2
AK
3587 /*
3588 * deposit and withdraw with pmd lock held
3589 */
3590 if (arch_needs_pgtable_deposit())
82b0f8c3 3591 deposit_prealloc_pte(vmf);
10102459 3592
82b0f8c3 3593 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3594
82b0f8c3 3595 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3596
3597 /* fault is handled */
3598 ret = 0;
95ecedcd 3599 count_vm_event(THP_FILE_MAPPED);
10102459 3600out:
82b0f8c3 3601 spin_unlock(vmf->ptl);
10102459
KS
3602 return ret;
3603}
3604#else
2b740303 3605static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3606{
3607 BUILD_BUG();
3608 return 0;
3609}
3610#endif
3611
8c6e50b0 3612/**
7267ec00
KS
3613 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3614 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3615 *
82b0f8c3 3616 * @vmf: fault environment
8c6e50b0 3617 * @page: page to map
8c6e50b0 3618 *
82b0f8c3
JK
3619 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3620 * return.
8c6e50b0
KS
3621 *
3622 * Target users are page handler itself and implementations of
3623 * vm_ops->map_pages.
a862f68a
MR
3624 *
3625 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3626 */
9d82c694 3627vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3bb97794 3628{
82b0f8c3
JK
3629 struct vm_area_struct *vma = vmf->vma;
3630 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3631 pte_t entry;
2b740303 3632 vm_fault_t ret;
10102459 3633
396bcc52 3634 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
82b0f8c3 3635 ret = do_set_pmd(vmf, page);
10102459 3636 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3637 return ret;
10102459 3638 }
3bb97794 3639
82b0f8c3
JK
3640 if (!vmf->pte) {
3641 ret = pte_alloc_one_map(vmf);
7267ec00 3642 if (ret)
b0b9b3df 3643 return ret;
7267ec00
KS
3644 }
3645
3646 /* Re-check under ptl */
7df67697
BM
3647 if (unlikely(!pte_none(*vmf->pte))) {
3648 update_mmu_tlb(vma, vmf->address, vmf->pte);
b0b9b3df 3649 return VM_FAULT_NOPAGE;
7df67697 3650 }
7267ec00 3651
3bb97794
KS
3652 flush_icache_page(vma, page);
3653 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3654 entry = pte_sw_mkyoung(entry);
3bb97794
KS
3655 if (write)
3656 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3657 /* copy-on-write page */
3658 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3659 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3660 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00 3661 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3662 } else {
eca56ff9 3663 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3664 page_add_file_rmap(page, false);
3bb97794 3665 }
82b0f8c3 3666 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3667
3668 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3669 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3670
b0b9b3df 3671 return 0;
3bb97794
KS
3672}
3673
9118c0cb
JK
3674
3675/**
3676 * finish_fault - finish page fault once we have prepared the page to fault
3677 *
3678 * @vmf: structure describing the fault
3679 *
3680 * This function handles all that is needed to finish a page fault once the
3681 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3682 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3683 * addition.
9118c0cb
JK
3684 *
3685 * The function expects the page to be locked and on success it consumes a
3686 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3687 *
3688 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3689 */
2b740303 3690vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3691{
3692 struct page *page;
2b740303 3693 vm_fault_t ret = 0;
9118c0cb
JK
3694
3695 /* Did we COW the page? */
3696 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3697 !(vmf->vma->vm_flags & VM_SHARED))
3698 page = vmf->cow_page;
3699 else
3700 page = vmf->page;
6b31d595
MH
3701
3702 /*
3703 * check even for read faults because we might have lost our CoWed
3704 * page
3705 */
3706 if (!(vmf->vma->vm_flags & VM_SHARED))
3707 ret = check_stable_address_space(vmf->vma->vm_mm);
3708 if (!ret)
9d82c694 3709 ret = alloc_set_pte(vmf, page);
9118c0cb
JK
3710 if (vmf->pte)
3711 pte_unmap_unlock(vmf->pte, vmf->ptl);
3712 return ret;
3713}
3714
3a91053a
KS
3715static unsigned long fault_around_bytes __read_mostly =
3716 rounddown_pow_of_two(65536);
a9b0f861 3717
a9b0f861
KS
3718#ifdef CONFIG_DEBUG_FS
3719static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3720{
a9b0f861 3721 *val = fault_around_bytes;
1592eef0
KS
3722 return 0;
3723}
3724
b4903d6e 3725/*
da391d64
WK
3726 * fault_around_bytes must be rounded down to the nearest page order as it's
3727 * what do_fault_around() expects to see.
b4903d6e 3728 */
a9b0f861 3729static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3730{
a9b0f861 3731 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3732 return -EINVAL;
b4903d6e
AR
3733 if (val > PAGE_SIZE)
3734 fault_around_bytes = rounddown_pow_of_two(val);
3735 else
3736 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3737 return 0;
3738}
0a1345f8 3739DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3740 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3741
3742static int __init fault_around_debugfs(void)
3743{
d9f7979c
GKH
3744 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3745 &fault_around_bytes_fops);
1592eef0
KS
3746 return 0;
3747}
3748late_initcall(fault_around_debugfs);
1592eef0 3749#endif
8c6e50b0 3750
1fdb412b
KS
3751/*
3752 * do_fault_around() tries to map few pages around the fault address. The hope
3753 * is that the pages will be needed soon and this will lower the number of
3754 * faults to handle.
3755 *
3756 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3757 * not ready to be mapped: not up-to-date, locked, etc.
3758 *
3759 * This function is called with the page table lock taken. In the split ptlock
3760 * case the page table lock only protects only those entries which belong to
3761 * the page table corresponding to the fault address.
3762 *
3763 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3764 * only once.
3765 *
da391d64
WK
3766 * fault_around_bytes defines how many bytes we'll try to map.
3767 * do_fault_around() expects it to be set to a power of two less than or equal
3768 * to PTRS_PER_PTE.
1fdb412b 3769 *
da391d64
WK
3770 * The virtual address of the area that we map is naturally aligned to
3771 * fault_around_bytes rounded down to the machine page size
3772 * (and therefore to page order). This way it's easier to guarantee
3773 * that we don't cross page table boundaries.
1fdb412b 3774 */
2b740303 3775static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3776{
82b0f8c3 3777 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3778 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3779 pgoff_t end_pgoff;
2b740303
SJ
3780 int off;
3781 vm_fault_t ret = 0;
8c6e50b0 3782
4db0c3c2 3783 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3784 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3785
82b0f8c3
JK
3786 vmf->address = max(address & mask, vmf->vma->vm_start);
3787 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3788 start_pgoff -= off;
8c6e50b0
KS
3789
3790 /*
da391d64
WK
3791 * end_pgoff is either the end of the page table, the end of
3792 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3793 */
bae473a4 3794 end_pgoff = start_pgoff -
82b0f8c3 3795 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3796 PTRS_PER_PTE - 1;
82b0f8c3 3797 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3798 start_pgoff + nr_pages - 1);
8c6e50b0 3799
82b0f8c3 3800 if (pmd_none(*vmf->pmd)) {
4cf58924 3801 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3802 if (!vmf->prealloc_pte)
c5f88bd2 3803 goto out;
7267ec00 3804 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3805 }
3806
82b0f8c3 3807 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3808
7267ec00 3809 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3810 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3811 ret = VM_FAULT_NOPAGE;
3812 goto out;
3813 }
3814
3815 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3816 if (!vmf->pte)
7267ec00
KS
3817 goto out;
3818
3819 /* check if the page fault is solved */
82b0f8c3
JK
3820 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3821 if (!pte_none(*vmf->pte))
7267ec00 3822 ret = VM_FAULT_NOPAGE;
82b0f8c3 3823 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3824out:
82b0f8c3
JK
3825 vmf->address = address;
3826 vmf->pte = NULL;
7267ec00 3827 return ret;
8c6e50b0
KS
3828}
3829
2b740303 3830static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3831{
82b0f8c3 3832 struct vm_area_struct *vma = vmf->vma;
2b740303 3833 vm_fault_t ret = 0;
8c6e50b0
KS
3834
3835 /*
3836 * Let's call ->map_pages() first and use ->fault() as fallback
3837 * if page by the offset is not ready to be mapped (cold cache or
3838 * something).
3839 */
9b4bdd2f 3840 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3841 ret = do_fault_around(vmf);
7267ec00
KS
3842 if (ret)
3843 return ret;
8c6e50b0 3844 }
e655fb29 3845
936ca80d 3846 ret = __do_fault(vmf);
e655fb29
KS
3847 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3848 return ret;
3849
9118c0cb 3850 ret |= finish_fault(vmf);
936ca80d 3851 unlock_page(vmf->page);
7267ec00 3852 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3853 put_page(vmf->page);
e655fb29
KS
3854 return ret;
3855}
3856
2b740303 3857static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3858{
82b0f8c3 3859 struct vm_area_struct *vma = vmf->vma;
2b740303 3860 vm_fault_t ret;
ec47c3b9
KS
3861
3862 if (unlikely(anon_vma_prepare(vma)))
3863 return VM_FAULT_OOM;
3864
936ca80d
JK
3865 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3866 if (!vmf->cow_page)
ec47c3b9
KS
3867 return VM_FAULT_OOM;
3868
d9eb1ea2 3869 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 3870 put_page(vmf->cow_page);
ec47c3b9
KS
3871 return VM_FAULT_OOM;
3872 }
9d82c694 3873 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 3874
936ca80d 3875 ret = __do_fault(vmf);
ec47c3b9
KS
3876 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3877 goto uncharge_out;
3917048d
JK
3878 if (ret & VM_FAULT_DONE_COW)
3879 return ret;
ec47c3b9 3880
b1aa812b 3881 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3882 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3883
9118c0cb 3884 ret |= finish_fault(vmf);
b1aa812b
JK
3885 unlock_page(vmf->page);
3886 put_page(vmf->page);
7267ec00
KS
3887 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3888 goto uncharge_out;
ec47c3b9
KS
3889 return ret;
3890uncharge_out:
936ca80d 3891 put_page(vmf->cow_page);
ec47c3b9
KS
3892 return ret;
3893}
3894
2b740303 3895static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3896{
82b0f8c3 3897 struct vm_area_struct *vma = vmf->vma;
2b740303 3898 vm_fault_t ret, tmp;
1d65f86d 3899
936ca80d 3900 ret = __do_fault(vmf);
7eae74af 3901 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3902 return ret;
1da177e4
LT
3903
3904 /*
f0c6d4d2
KS
3905 * Check if the backing address space wants to know that the page is
3906 * about to become writable
1da177e4 3907 */
fb09a464 3908 if (vma->vm_ops->page_mkwrite) {
936ca80d 3909 unlock_page(vmf->page);
38b8cb7f 3910 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3911 if (unlikely(!tmp ||
3912 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3913 put_page(vmf->page);
fb09a464 3914 return tmp;
4294621f 3915 }
fb09a464
KS
3916 }
3917
9118c0cb 3918 ret |= finish_fault(vmf);
7267ec00
KS
3919 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3920 VM_FAULT_RETRY))) {
936ca80d
JK
3921 unlock_page(vmf->page);
3922 put_page(vmf->page);
f0c6d4d2 3923 return ret;
1da177e4 3924 }
b827e496 3925
89b15332 3926 ret |= fault_dirty_shared_page(vmf);
1d65f86d 3927 return ret;
54cb8821 3928}
d00806b1 3929
9a95f3cf
PC
3930/*
3931 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3932 * but allow concurrent faults).
3933 * The mmap_sem may have been released depending on flags and our
3934 * return value. See filemap_fault() and __lock_page_or_retry().
fc8efd2d
JS
3935 * If mmap_sem is released, vma may become invalid (for example
3936 * by other thread calling munmap()).
9a95f3cf 3937 */
2b740303 3938static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3939{
82b0f8c3 3940 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3941 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3942 vm_fault_t ret;
54cb8821 3943
ff09d7ec
AK
3944 /*
3945 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3946 */
3947 if (!vma->vm_ops->fault) {
3948 /*
3949 * If we find a migration pmd entry or a none pmd entry, which
3950 * should never happen, return SIGBUS
3951 */
3952 if (unlikely(!pmd_present(*vmf->pmd)))
3953 ret = VM_FAULT_SIGBUS;
3954 else {
3955 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3956 vmf->pmd,
3957 vmf->address,
3958 &vmf->ptl);
3959 /*
3960 * Make sure this is not a temporary clearing of pte
3961 * by holding ptl and checking again. A R/M/W update
3962 * of pte involves: take ptl, clearing the pte so that
3963 * we don't have concurrent modification by hardware
3964 * followed by an update.
3965 */
3966 if (unlikely(pte_none(*vmf->pte)))
3967 ret = VM_FAULT_SIGBUS;
3968 else
3969 ret = VM_FAULT_NOPAGE;
3970
3971 pte_unmap_unlock(vmf->pte, vmf->ptl);
3972 }
3973 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3974 ret = do_read_fault(vmf);
3975 else if (!(vma->vm_flags & VM_SHARED))
3976 ret = do_cow_fault(vmf);
3977 else
3978 ret = do_shared_fault(vmf);
3979
3980 /* preallocated pagetable is unused: free it */
3981 if (vmf->prealloc_pte) {
fc8efd2d 3982 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3983 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3984 }
3985 return ret;
54cb8821
NP
3986}
3987
b19a9939 3988static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3989 unsigned long addr, int page_nid,
3990 int *flags)
9532fec1
MG
3991{
3992 get_page(page);
3993
3994 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3995 if (page_nid == numa_node_id()) {
9532fec1 3996 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3997 *flags |= TNF_FAULT_LOCAL;
3998 }
9532fec1
MG
3999
4000 return mpol_misplaced(page, vma, addr);
4001}
4002
2b740303 4003static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4004{
82b0f8c3 4005 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4006 struct page *page = NULL;
98fa15f3 4007 int page_nid = NUMA_NO_NODE;
90572890 4008 int last_cpupid;
cbee9f88 4009 int target_nid;
b8593bfd 4010 bool migrated = false;
04a86453 4011 pte_t pte, old_pte;
288bc549 4012 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4013 int flags = 0;
d10e63f2
MG
4014
4015 /*
166f61b9
TH
4016 * The "pte" at this point cannot be used safely without
4017 * validation through pte_unmap_same(). It's of NUMA type but
4018 * the pfn may be screwed if the read is non atomic.
166f61b9 4019 */
82b0f8c3
JK
4020 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4021 spin_lock(vmf->ptl);
cee216a6 4022 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4023 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4024 goto out;
4025 }
4026
cee216a6
AK
4027 /*
4028 * Make it present again, Depending on how arch implementes non
4029 * accessible ptes, some can allow access by kernel mode.
4030 */
04a86453
AK
4031 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4032 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 4033 pte = pte_mkyoung(pte);
b191f9b1
MG
4034 if (was_writable)
4035 pte = pte_mkwrite(pte);
04a86453 4036 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 4037 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 4038
82b0f8c3 4039 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 4040 if (!page) {
82b0f8c3 4041 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
4042 return 0;
4043 }
4044
e81c4802
KS
4045 /* TODO: handle PTE-mapped THP */
4046 if (PageCompound(page)) {
82b0f8c3 4047 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
4048 return 0;
4049 }
4050
6688cc05 4051 /*
bea66fbd
MG
4052 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4053 * much anyway since they can be in shared cache state. This misses
4054 * the case where a mapping is writable but the process never writes
4055 * to it but pte_write gets cleared during protection updates and
4056 * pte_dirty has unpredictable behaviour between PTE scan updates,
4057 * background writeback, dirty balancing and application behaviour.
6688cc05 4058 */
d59dc7bc 4059 if (!pte_write(pte))
6688cc05
PZ
4060 flags |= TNF_NO_GROUP;
4061
dabe1d99
RR
4062 /*
4063 * Flag if the page is shared between multiple address spaces. This
4064 * is later used when determining whether to group tasks together
4065 */
4066 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4067 flags |= TNF_SHARED;
4068
90572890 4069 last_cpupid = page_cpupid_last(page);
8191acbd 4070 page_nid = page_to_nid(page);
82b0f8c3 4071 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4072 &flags);
82b0f8c3 4073 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 4074 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
4075 put_page(page);
4076 goto out;
4077 }
4078
4079 /* Migrate to the requested node */
1bc115d8 4080 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 4081 if (migrated) {
8191acbd 4082 page_nid = target_nid;
6688cc05 4083 flags |= TNF_MIGRATED;
074c2381
MG
4084 } else
4085 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
4086
4087out:
98fa15f3 4088 if (page_nid != NUMA_NO_NODE)
6688cc05 4089 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
4090 return 0;
4091}
4092
2b740303 4093static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4094{
f4200391 4095 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4096 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4097 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4098 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4099 return VM_FAULT_FALLBACK;
4100}
4101
183f24aa 4102/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4103static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4104{
529b930b 4105 if (vma_is_anonymous(vmf->vma)) {
292924b2 4106 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4107 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4108 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4109 }
327e9fd4
THV
4110 if (vmf->vma->vm_ops->huge_fault) {
4111 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4112
4113 if (!(ret & VM_FAULT_FALLBACK))
4114 return ret;
4115 }
af9e4d5f 4116
327e9fd4 4117 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4118 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4119
b96375f7
MW
4120 return VM_FAULT_FALLBACK;
4121}
4122
2b740303 4123static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4124{
327e9fd4
THV
4125#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4126 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4127 /* No support for anonymous transparent PUD pages yet */
4128 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4129 goto split;
4130 if (vmf->vma->vm_ops->huge_fault) {
4131 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4132
4133 if (!(ret & VM_FAULT_FALLBACK))
4134 return ret;
4135 }
4136split:
4137 /* COW or write-notify not handled on PUD level: split pud.*/
4138 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4139#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4140 return VM_FAULT_FALLBACK;
4141}
4142
2b740303 4143static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4144{
4145#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4146 /* No support for anonymous transparent PUD pages yet */
4147 if (vma_is_anonymous(vmf->vma))
4148 return VM_FAULT_FALLBACK;
4149 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4150 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4151#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4152 return VM_FAULT_FALLBACK;
4153}
4154
1da177e4
LT
4155/*
4156 * These routines also need to handle stuff like marking pages dirty
4157 * and/or accessed for architectures that don't do it in hardware (most
4158 * RISC architectures). The early dirtying is also good on the i386.
4159 *
4160 * There is also a hook called "update_mmu_cache()" that architectures
4161 * with external mmu caches can use to update those (ie the Sparc or
4162 * PowerPC hashed page tables that act as extended TLBs).
4163 *
7267ec00
KS
4164 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4165 * concurrent faults).
9a95f3cf 4166 *
7267ec00
KS
4167 * The mmap_sem may have been released depending on flags and our return value.
4168 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4169 */
2b740303 4170static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4171{
4172 pte_t entry;
4173
82b0f8c3 4174 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4175 /*
4176 * Leave __pte_alloc() until later: because vm_ops->fault may
4177 * want to allocate huge page, and if we expose page table
4178 * for an instant, it will be difficult to retract from
4179 * concurrent faults and from rmap lookups.
4180 */
82b0f8c3 4181 vmf->pte = NULL;
7267ec00
KS
4182 } else {
4183 /* See comment in pte_alloc_one_map() */
d0f0931d 4184 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4185 return 0;
4186 /*
4187 * A regular pmd is established and it can't morph into a huge
4188 * pmd from under us anymore at this point because we hold the
4189 * mmap_sem read mode and khugepaged takes it in write mode.
4190 * So now it's safe to run pte_offset_map().
4191 */
82b0f8c3 4192 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4193 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4194
4195 /*
4196 * some architectures can have larger ptes than wordsize,
4197 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4198 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4199 * accesses. The code below just needs a consistent view
4200 * for the ifs and we later double check anyway with the
7267ec00
KS
4201 * ptl lock held. So here a barrier will do.
4202 */
4203 barrier();
2994302b 4204 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4205 pte_unmap(vmf->pte);
4206 vmf->pte = NULL;
65500d23 4207 }
1da177e4
LT
4208 }
4209
82b0f8c3
JK
4210 if (!vmf->pte) {
4211 if (vma_is_anonymous(vmf->vma))
4212 return do_anonymous_page(vmf);
7267ec00 4213 else
82b0f8c3 4214 return do_fault(vmf);
7267ec00
KS
4215 }
4216
2994302b
JK
4217 if (!pte_present(vmf->orig_pte))
4218 return do_swap_page(vmf);
7267ec00 4219
2994302b
JK
4220 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4221 return do_numa_page(vmf);
d10e63f2 4222
82b0f8c3
JK
4223 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4224 spin_lock(vmf->ptl);
2994302b 4225 entry = vmf->orig_pte;
7df67697
BM
4226 if (unlikely(!pte_same(*vmf->pte, entry))) {
4227 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4228 goto unlock;
7df67697 4229 }
82b0f8c3 4230 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4231 if (!pte_write(entry))
2994302b 4232 return do_wp_page(vmf);
1da177e4
LT
4233 entry = pte_mkdirty(entry);
4234 }
4235 entry = pte_mkyoung(entry);
82b0f8c3
JK
4236 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4237 vmf->flags & FAULT_FLAG_WRITE)) {
4238 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
4239 } else {
4240 /*
4241 * This is needed only for protection faults but the arch code
4242 * is not yet telling us if this is a protection fault or not.
4243 * This still avoids useless tlb flushes for .text page faults
4244 * with threads.
4245 */
82b0f8c3
JK
4246 if (vmf->flags & FAULT_FLAG_WRITE)
4247 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4248 }
8f4e2101 4249unlock:
82b0f8c3 4250 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4251 return 0;
1da177e4
LT
4252}
4253
4254/*
4255 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
4256 *
4257 * The mmap_sem may have been released depending on flags and our
4258 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4259 */
2b740303
SJ
4260static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4261 unsigned long address, unsigned int flags)
1da177e4 4262{
82b0f8c3 4263 struct vm_fault vmf = {
bae473a4 4264 .vma = vma,
1a29d85e 4265 .address = address & PAGE_MASK,
bae473a4 4266 .flags = flags,
0721ec8b 4267 .pgoff = linear_page_index(vma, address),
667240e0 4268 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4269 };
fde26bed 4270 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4271 struct mm_struct *mm = vma->vm_mm;
1da177e4 4272 pgd_t *pgd;
c2febafc 4273 p4d_t *p4d;
2b740303 4274 vm_fault_t ret;
1da177e4 4275
1da177e4 4276 pgd = pgd_offset(mm, address);
c2febafc
KS
4277 p4d = p4d_alloc(mm, pgd, address);
4278 if (!p4d)
4279 return VM_FAULT_OOM;
a00cc7d9 4280
c2febafc 4281 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4282 if (!vmf.pud)
c74df32c 4283 return VM_FAULT_OOM;
625110b5 4284retry_pud:
7635d9cb 4285 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4286 ret = create_huge_pud(&vmf);
4287 if (!(ret & VM_FAULT_FALLBACK))
4288 return ret;
4289 } else {
4290 pud_t orig_pud = *vmf.pud;
4291
4292 barrier();
4293 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4294
a00cc7d9
MW
4295 /* NUMA case for anonymous PUDs would go here */
4296
f6f37321 4297 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4298 ret = wp_huge_pud(&vmf, orig_pud);
4299 if (!(ret & VM_FAULT_FALLBACK))
4300 return ret;
4301 } else {
4302 huge_pud_set_accessed(&vmf, orig_pud);
4303 return 0;
4304 }
4305 }
4306 }
4307
4308 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4309 if (!vmf.pmd)
c74df32c 4310 return VM_FAULT_OOM;
625110b5
TH
4311
4312 /* Huge pud page fault raced with pmd_alloc? */
4313 if (pud_trans_unstable(vmf.pud))
4314 goto retry_pud;
4315
7635d9cb 4316 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4317 ret = create_huge_pmd(&vmf);
c0292554
KS
4318 if (!(ret & VM_FAULT_FALLBACK))
4319 return ret;
71e3aac0 4320 } else {
82b0f8c3 4321 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4322
71e3aac0 4323 barrier();
84c3fc4e
ZY
4324 if (unlikely(is_swap_pmd(orig_pmd))) {
4325 VM_BUG_ON(thp_migration_supported() &&
4326 !is_pmd_migration_entry(orig_pmd));
4327 if (is_pmd_migration_entry(orig_pmd))
4328 pmd_migration_entry_wait(mm, vmf.pmd);
4329 return 0;
4330 }
5c7fb56e 4331 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4332 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4333 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4334
f6f37321 4335 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4336 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4337 if (!(ret & VM_FAULT_FALLBACK))
4338 return ret;
a1dd450b 4339 } else {
82b0f8c3 4340 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4341 return 0;
1f1d06c3 4342 }
71e3aac0
AA
4343 }
4344 }
4345
82b0f8c3 4346 return handle_pte_fault(&vmf);
1da177e4
LT
4347}
4348
9a95f3cf
PC
4349/*
4350 * By the time we get here, we already hold the mm semaphore
4351 *
4352 * The mmap_sem may have been released depending on flags and our
4353 * return value. See filemap_fault() and __lock_page_or_retry().
4354 */
2b740303 4355vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 4356 unsigned int flags)
519e5247 4357{
2b740303 4358 vm_fault_t ret;
519e5247
JW
4359
4360 __set_current_state(TASK_RUNNING);
4361
4362 count_vm_event(PGFAULT);
2262185c 4363 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4364
4365 /* do counter updates before entering really critical section. */
4366 check_sync_rss_stat(current);
4367
de0c799b
LD
4368 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4369 flags & FAULT_FLAG_INSTRUCTION,
4370 flags & FAULT_FLAG_REMOTE))
4371 return VM_FAULT_SIGSEGV;
4372
519e5247
JW
4373 /*
4374 * Enable the memcg OOM handling for faults triggered in user
4375 * space. Kernel faults are handled more gracefully.
4376 */
4377 if (flags & FAULT_FLAG_USER)
29ef680a 4378 mem_cgroup_enter_user_fault();
519e5247 4379
bae473a4
KS
4380 if (unlikely(is_vm_hugetlb_page(vma)))
4381 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4382 else
4383 ret = __handle_mm_fault(vma, address, flags);
519e5247 4384
49426420 4385 if (flags & FAULT_FLAG_USER) {
29ef680a 4386 mem_cgroup_exit_user_fault();
166f61b9
TH
4387 /*
4388 * The task may have entered a memcg OOM situation but
4389 * if the allocation error was handled gracefully (no
4390 * VM_FAULT_OOM), there is no need to kill anything.
4391 * Just clean up the OOM state peacefully.
4392 */
4393 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4394 mem_cgroup_oom_synchronize(false);
49426420 4395 }
3812c8c8 4396
519e5247
JW
4397 return ret;
4398}
e1d6d01a 4399EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4400
90eceff1
KS
4401#ifndef __PAGETABLE_P4D_FOLDED
4402/*
4403 * Allocate p4d page table.
4404 * We've already handled the fast-path in-line.
4405 */
4406int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4407{
4408 p4d_t *new = p4d_alloc_one(mm, address);
4409 if (!new)
4410 return -ENOMEM;
4411
4412 smp_wmb(); /* See comment in __pte_alloc */
4413
4414 spin_lock(&mm->page_table_lock);
4415 if (pgd_present(*pgd)) /* Another has populated it */
4416 p4d_free(mm, new);
4417 else
4418 pgd_populate(mm, pgd, new);
4419 spin_unlock(&mm->page_table_lock);
4420 return 0;
4421}
4422#endif /* __PAGETABLE_P4D_FOLDED */
4423
1da177e4
LT
4424#ifndef __PAGETABLE_PUD_FOLDED
4425/*
4426 * Allocate page upper directory.
872fec16 4427 * We've already handled the fast-path in-line.
1da177e4 4428 */
c2febafc 4429int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4430{
c74df32c
HD
4431 pud_t *new = pud_alloc_one(mm, address);
4432 if (!new)
1bb3630e 4433 return -ENOMEM;
1da177e4 4434
362a61ad
NP
4435 smp_wmb(); /* See comment in __pte_alloc */
4436
872fec16 4437 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4438 if (!p4d_present(*p4d)) {
4439 mm_inc_nr_puds(mm);
c2febafc 4440 p4d_populate(mm, p4d, new);
b4e98d9a 4441 } else /* Another has populated it */
5e541973 4442 pud_free(mm, new);
c74df32c 4443 spin_unlock(&mm->page_table_lock);
1bb3630e 4444 return 0;
1da177e4
LT
4445}
4446#endif /* __PAGETABLE_PUD_FOLDED */
4447
4448#ifndef __PAGETABLE_PMD_FOLDED
4449/*
4450 * Allocate page middle directory.
872fec16 4451 * We've already handled the fast-path in-line.
1da177e4 4452 */
1bb3630e 4453int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4454{
a00cc7d9 4455 spinlock_t *ptl;
c74df32c
HD
4456 pmd_t *new = pmd_alloc_one(mm, address);
4457 if (!new)
1bb3630e 4458 return -ENOMEM;
1da177e4 4459
362a61ad
NP
4460 smp_wmb(); /* See comment in __pte_alloc */
4461
a00cc7d9 4462 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4463 if (!pud_present(*pud)) {
4464 mm_inc_nr_pmds(mm);
1bb3630e 4465 pud_populate(mm, pud, new);
dc6c9a35 4466 } else /* Another has populated it */
5e541973 4467 pmd_free(mm, new);
a00cc7d9 4468 spin_unlock(ptl);
1bb3630e 4469 return 0;
e0f39591 4470}
1da177e4
LT
4471#endif /* __PAGETABLE_PMD_FOLDED */
4472
09796395 4473static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4474 struct mmu_notifier_range *range,
a4d1a885 4475 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4476{
4477 pgd_t *pgd;
c2febafc 4478 p4d_t *p4d;
f8ad0f49
JW
4479 pud_t *pud;
4480 pmd_t *pmd;
4481 pte_t *ptep;
4482
4483 pgd = pgd_offset(mm, address);
4484 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4485 goto out;
4486
c2febafc
KS
4487 p4d = p4d_offset(pgd, address);
4488 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4489 goto out;
4490
4491 pud = pud_offset(p4d, address);
f8ad0f49
JW
4492 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4493 goto out;
4494
4495 pmd = pmd_offset(pud, address);
f66055ab 4496 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4497
09796395
RZ
4498 if (pmd_huge(*pmd)) {
4499 if (!pmdpp)
4500 goto out;
4501
ac46d4f3 4502 if (range) {
7269f999 4503 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4504 NULL, mm, address & PMD_MASK,
4505 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4506 mmu_notifier_invalidate_range_start(range);
a4d1a885 4507 }
09796395
RZ
4508 *ptlp = pmd_lock(mm, pmd);
4509 if (pmd_huge(*pmd)) {
4510 *pmdpp = pmd;
4511 return 0;
4512 }
4513 spin_unlock(*ptlp);
ac46d4f3
JG
4514 if (range)
4515 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4516 }
4517
4518 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4519 goto out;
4520
ac46d4f3 4521 if (range) {
7269f999 4522 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4523 address & PAGE_MASK,
4524 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4525 mmu_notifier_invalidate_range_start(range);
a4d1a885 4526 }
f8ad0f49 4527 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4528 if (!pte_present(*ptep))
4529 goto unlock;
4530 *ptepp = ptep;
4531 return 0;
4532unlock:
4533 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4534 if (range)
4535 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4536out:
4537 return -EINVAL;
4538}
4539
f729c8c9
RZ
4540static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4541 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4542{
4543 int res;
4544
4545 /* (void) is needed to make gcc happy */
4546 (void) __cond_lock(*ptlp,
ac46d4f3 4547 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4548 ptepp, NULL, ptlp)));
09796395
RZ
4549 return res;
4550}
4551
4552int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4553 struct mmu_notifier_range *range,
4554 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4555{
4556 int res;
4557
4558 /* (void) is needed to make gcc happy */
4559 (void) __cond_lock(*ptlp,
ac46d4f3 4560 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4561 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4562 return res;
4563}
09796395 4564EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4565
3b6748e2
JW
4566/**
4567 * follow_pfn - look up PFN at a user virtual address
4568 * @vma: memory mapping
4569 * @address: user virtual address
4570 * @pfn: location to store found PFN
4571 *
4572 * Only IO mappings and raw PFN mappings are allowed.
4573 *
a862f68a 4574 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4575 */
4576int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4577 unsigned long *pfn)
4578{
4579 int ret = -EINVAL;
4580 spinlock_t *ptl;
4581 pte_t *ptep;
4582
4583 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4584 return ret;
4585
4586 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4587 if (ret)
4588 return ret;
4589 *pfn = pte_pfn(*ptep);
4590 pte_unmap_unlock(ptep, ptl);
4591 return 0;
4592}
4593EXPORT_SYMBOL(follow_pfn);
4594
28b2ee20 4595#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4596int follow_phys(struct vm_area_struct *vma,
4597 unsigned long address, unsigned int flags,
4598 unsigned long *prot, resource_size_t *phys)
28b2ee20 4599{
03668a4d 4600 int ret = -EINVAL;
28b2ee20
RR
4601 pte_t *ptep, pte;
4602 spinlock_t *ptl;
28b2ee20 4603
d87fe660 4604 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4605 goto out;
28b2ee20 4606
03668a4d 4607 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4608 goto out;
28b2ee20 4609 pte = *ptep;
03668a4d 4610
f6f37321 4611 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4612 goto unlock;
28b2ee20
RR
4613
4614 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4615 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4616
03668a4d 4617 ret = 0;
28b2ee20
RR
4618unlock:
4619 pte_unmap_unlock(ptep, ptl);
4620out:
d87fe660 4621 return ret;
28b2ee20
RR
4622}
4623
4624int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4625 void *buf, int len, int write)
4626{
4627 resource_size_t phys_addr;
4628 unsigned long prot = 0;
2bc7273b 4629 void __iomem *maddr;
28b2ee20
RR
4630 int offset = addr & (PAGE_SIZE-1);
4631
d87fe660 4632 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4633 return -EINVAL;
4634
9cb12d7b 4635 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4636 if (!maddr)
4637 return -ENOMEM;
4638
28b2ee20
RR
4639 if (write)
4640 memcpy_toio(maddr + offset, buf, len);
4641 else
4642 memcpy_fromio(buf, maddr + offset, len);
4643 iounmap(maddr);
4644
4645 return len;
4646}
5a73633e 4647EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4648#endif
4649
0ec76a11 4650/*
206cb636
SW
4651 * Access another process' address space as given in mm. If non-NULL, use the
4652 * given task for page fault accounting.
0ec76a11 4653 */
84d77d3f 4654int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4655 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4656{
0ec76a11 4657 struct vm_area_struct *vma;
0ec76a11 4658 void *old_buf = buf;
442486ec 4659 int write = gup_flags & FOLL_WRITE;
0ec76a11 4660
d8ed45c5 4661 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4662 return 0;
4663
183ff22b 4664 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4665 while (len) {
4666 int bytes, ret, offset;
4667 void *maddr;
28b2ee20 4668 struct page *page = NULL;
0ec76a11 4669
1e987790 4670 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4671 gup_flags, &page, &vma, NULL);
28b2ee20 4672 if (ret <= 0) {
dbffcd03
RR
4673#ifndef CONFIG_HAVE_IOREMAP_PROT
4674 break;
4675#else
28b2ee20
RR
4676 /*
4677 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4678 * we can access using slightly different code.
4679 */
28b2ee20 4680 vma = find_vma(mm, addr);
fe936dfc 4681 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4682 break;
4683 if (vma->vm_ops && vma->vm_ops->access)
4684 ret = vma->vm_ops->access(vma, addr, buf,
4685 len, write);
4686 if (ret <= 0)
28b2ee20
RR
4687 break;
4688 bytes = ret;
dbffcd03 4689#endif
0ec76a11 4690 } else {
28b2ee20
RR
4691 bytes = len;
4692 offset = addr & (PAGE_SIZE-1);
4693 if (bytes > PAGE_SIZE-offset)
4694 bytes = PAGE_SIZE-offset;
4695
4696 maddr = kmap(page);
4697 if (write) {
4698 copy_to_user_page(vma, page, addr,
4699 maddr + offset, buf, bytes);
4700 set_page_dirty_lock(page);
4701 } else {
4702 copy_from_user_page(vma, page, addr,
4703 buf, maddr + offset, bytes);
4704 }
4705 kunmap(page);
09cbfeaf 4706 put_page(page);
0ec76a11 4707 }
0ec76a11
DH
4708 len -= bytes;
4709 buf += bytes;
4710 addr += bytes;
4711 }
d8ed45c5 4712 mmap_read_unlock(mm);
0ec76a11
DH
4713
4714 return buf - old_buf;
4715}
03252919 4716
5ddd36b9 4717/**
ae91dbfc 4718 * access_remote_vm - access another process' address space
5ddd36b9
SW
4719 * @mm: the mm_struct of the target address space
4720 * @addr: start address to access
4721 * @buf: source or destination buffer
4722 * @len: number of bytes to transfer
6347e8d5 4723 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4724 *
4725 * The caller must hold a reference on @mm.
a862f68a
MR
4726 *
4727 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4728 */
4729int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4730 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4731{
6347e8d5 4732 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4733}
4734
206cb636
SW
4735/*
4736 * Access another process' address space.
4737 * Source/target buffer must be kernel space,
4738 * Do not walk the page table directly, use get_user_pages
4739 */
4740int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4741 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4742{
4743 struct mm_struct *mm;
4744 int ret;
4745
4746 mm = get_task_mm(tsk);
4747 if (!mm)
4748 return 0;
4749
f307ab6d 4750 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4751
206cb636
SW
4752 mmput(mm);
4753
4754 return ret;
4755}
fcd35857 4756EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4757
03252919
AK
4758/*
4759 * Print the name of a VMA.
4760 */
4761void print_vma_addr(char *prefix, unsigned long ip)
4762{
4763 struct mm_struct *mm = current->mm;
4764 struct vm_area_struct *vma;
4765
e8bff74a 4766 /*
0a7f682d 4767 * we might be running from an atomic context so we cannot sleep
e8bff74a 4768 */
d8ed45c5 4769 if (!mmap_read_trylock(mm))
e8bff74a
IM
4770 return;
4771
03252919
AK
4772 vma = find_vma(mm, ip);
4773 if (vma && vma->vm_file) {
4774 struct file *f = vma->vm_file;
0a7f682d 4775 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4776 if (buf) {
2fbc57c5 4777 char *p;
03252919 4778
9bf39ab2 4779 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4780 if (IS_ERR(p))
4781 p = "?";
2fbc57c5 4782 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4783 vma->vm_start,
4784 vma->vm_end - vma->vm_start);
4785 free_page((unsigned long)buf);
4786 }
4787 }
d8ed45c5 4788 mmap_read_unlock(mm);
03252919 4789}
3ee1afa3 4790
662bbcb2 4791#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4792void __might_fault(const char *file, int line)
3ee1afa3 4793{
95156f00
PZ
4794 /*
4795 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4796 * holding the mmap_sem, this is safe because kernel memory doesn't
4797 * get paged out, therefore we'll never actually fault, and the
4798 * below annotations will generate false positives.
4799 */
db68ce10 4800 if (uaccess_kernel())
95156f00 4801 return;
9ec23531 4802 if (pagefault_disabled())
662bbcb2 4803 return;
9ec23531
DH
4804 __might_sleep(file, line, 0);
4805#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4806 if (current->mm)
3ee1afa3 4807 might_lock_read(&current->mm->mmap_sem);
9ec23531 4808#endif
3ee1afa3 4809}
9ec23531 4810EXPORT_SYMBOL(__might_fault);
3ee1afa3 4811#endif
47ad8475
AA
4812
4813#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4814/*
4815 * Process all subpages of the specified huge page with the specified
4816 * operation. The target subpage will be processed last to keep its
4817 * cache lines hot.
4818 */
4819static inline void process_huge_page(
4820 unsigned long addr_hint, unsigned int pages_per_huge_page,
4821 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4822 void *arg)
47ad8475 4823{
c79b57e4
HY
4824 int i, n, base, l;
4825 unsigned long addr = addr_hint &
4826 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4827
c6ddfb6c 4828 /* Process target subpage last to keep its cache lines hot */
47ad8475 4829 might_sleep();
c79b57e4
HY
4830 n = (addr_hint - addr) / PAGE_SIZE;
4831 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4832 /* If target subpage in first half of huge page */
c79b57e4
HY
4833 base = 0;
4834 l = n;
c6ddfb6c 4835 /* Process subpages at the end of huge page */
c79b57e4
HY
4836 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4837 cond_resched();
c6ddfb6c 4838 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4839 }
4840 } else {
c6ddfb6c 4841 /* If target subpage in second half of huge page */
c79b57e4
HY
4842 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4843 l = pages_per_huge_page - n;
c6ddfb6c 4844 /* Process subpages at the begin of huge page */
c79b57e4
HY
4845 for (i = 0; i < base; i++) {
4846 cond_resched();
c6ddfb6c 4847 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4848 }
4849 }
4850 /*
c6ddfb6c
HY
4851 * Process remaining subpages in left-right-left-right pattern
4852 * towards the target subpage
c79b57e4
HY
4853 */
4854 for (i = 0; i < l; i++) {
4855 int left_idx = base + i;
4856 int right_idx = base + 2 * l - 1 - i;
4857
4858 cond_resched();
c6ddfb6c 4859 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4860 cond_resched();
c6ddfb6c 4861 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4862 }
4863}
4864
c6ddfb6c
HY
4865static void clear_gigantic_page(struct page *page,
4866 unsigned long addr,
4867 unsigned int pages_per_huge_page)
4868{
4869 int i;
4870 struct page *p = page;
4871
4872 might_sleep();
4873 for (i = 0; i < pages_per_huge_page;
4874 i++, p = mem_map_next(p, page, i)) {
4875 cond_resched();
4876 clear_user_highpage(p, addr + i * PAGE_SIZE);
4877 }
4878}
4879
4880static void clear_subpage(unsigned long addr, int idx, void *arg)
4881{
4882 struct page *page = arg;
4883
4884 clear_user_highpage(page + idx, addr);
4885}
4886
4887void clear_huge_page(struct page *page,
4888 unsigned long addr_hint, unsigned int pages_per_huge_page)
4889{
4890 unsigned long addr = addr_hint &
4891 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4892
4893 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4894 clear_gigantic_page(page, addr, pages_per_huge_page);
4895 return;
4896 }
4897
4898 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4899}
4900
47ad8475
AA
4901static void copy_user_gigantic_page(struct page *dst, struct page *src,
4902 unsigned long addr,
4903 struct vm_area_struct *vma,
4904 unsigned int pages_per_huge_page)
4905{
4906 int i;
4907 struct page *dst_base = dst;
4908 struct page *src_base = src;
4909
4910 for (i = 0; i < pages_per_huge_page; ) {
4911 cond_resched();
4912 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4913
4914 i++;
4915 dst = mem_map_next(dst, dst_base, i);
4916 src = mem_map_next(src, src_base, i);
4917 }
4918}
4919
c9f4cd71
HY
4920struct copy_subpage_arg {
4921 struct page *dst;
4922 struct page *src;
4923 struct vm_area_struct *vma;
4924};
4925
4926static void copy_subpage(unsigned long addr, int idx, void *arg)
4927{
4928 struct copy_subpage_arg *copy_arg = arg;
4929
4930 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4931 addr, copy_arg->vma);
4932}
4933
47ad8475 4934void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4935 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4936 unsigned int pages_per_huge_page)
4937{
c9f4cd71
HY
4938 unsigned long addr = addr_hint &
4939 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4940 struct copy_subpage_arg arg = {
4941 .dst = dst,
4942 .src = src,
4943 .vma = vma,
4944 };
47ad8475
AA
4945
4946 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4947 copy_user_gigantic_page(dst, src, addr, vma,
4948 pages_per_huge_page);
4949 return;
4950 }
4951
c9f4cd71 4952 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4953}
fa4d75c1
MK
4954
4955long copy_huge_page_from_user(struct page *dst_page,
4956 const void __user *usr_src,
810a56b9
MK
4957 unsigned int pages_per_huge_page,
4958 bool allow_pagefault)
fa4d75c1
MK
4959{
4960 void *src = (void *)usr_src;
4961 void *page_kaddr;
4962 unsigned long i, rc = 0;
4963 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4964
4965 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4966 if (allow_pagefault)
4967 page_kaddr = kmap(dst_page + i);
4968 else
4969 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4970 rc = copy_from_user(page_kaddr,
4971 (const void __user *)(src + i * PAGE_SIZE),
4972 PAGE_SIZE);
810a56b9
MK
4973 if (allow_pagefault)
4974 kunmap(dst_page + i);
4975 else
4976 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4977
4978 ret_val -= (PAGE_SIZE - rc);
4979 if (rc)
4980 break;
4981
4982 cond_resched();
4983 }
4984 return ret_val;
4985}
47ad8475 4986#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4987
40b64acd 4988#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4989
4990static struct kmem_cache *page_ptl_cachep;
4991
4992void __init ptlock_cache_init(void)
4993{
4994 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4995 SLAB_PANIC, NULL);
4996}
4997
539edb58 4998bool ptlock_alloc(struct page *page)
49076ec2
KS
4999{
5000 spinlock_t *ptl;
5001
b35f1819 5002 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5003 if (!ptl)
5004 return false;
539edb58 5005 page->ptl = ptl;
49076ec2
KS
5006 return true;
5007}
5008
539edb58 5009void ptlock_free(struct page *page)
49076ec2 5010{
b35f1819 5011 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5012}
5013#endif