]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memory.c
[PATCH] hugepage: Make {alloc,free}_huge_page() local
[mirror_ubuntu-artful-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
d41dee36 61#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
a62eaf15
AK
85int randomize_va_space __read_mostly = 1;
86
87static int __init disable_randmaps(char *s)
88{
89 randomize_va_space = 0;
90 return 0;
91}
92__setup("norandmaps", disable_randmaps);
93
94
1da177e4
LT
95/*
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none. Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
99 */
100
101void pgd_clear_bad(pgd_t *pgd)
102{
103 pgd_ERROR(*pgd);
104 pgd_clear(pgd);
105}
106
107void pud_clear_bad(pud_t *pud)
108{
109 pud_ERROR(*pud);
110 pud_clear(pud);
111}
112
113void pmd_clear_bad(pmd_t *pmd)
114{
115 pmd_ERROR(*pmd);
116 pmd_clear(pmd);
117}
118
119/*
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
122 */
e0da382c 123static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 124{
e0da382c
HD
125 struct page *page = pmd_page(*pmd);
126 pmd_clear(pmd);
4c21e2f2 127 pte_lock_deinit(page);
e0da382c
HD
128 pte_free_tlb(tlb, page);
129 dec_page_state(nr_page_table_pages);
130 tlb->mm->nr_ptes--;
1da177e4
LT
131}
132
e0da382c
HD
133static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 unsigned long addr, unsigned long end,
135 unsigned long floor, unsigned long ceiling)
1da177e4
LT
136{
137 pmd_t *pmd;
138 unsigned long next;
e0da382c 139 unsigned long start;
1da177e4 140
e0da382c 141 start = addr;
1da177e4 142 pmd = pmd_offset(pud, addr);
1da177e4
LT
143 do {
144 next = pmd_addr_end(addr, end);
145 if (pmd_none_or_clear_bad(pmd))
146 continue;
e0da382c 147 free_pte_range(tlb, pmd);
1da177e4
LT
148 } while (pmd++, addr = next, addr != end);
149
e0da382c
HD
150 start &= PUD_MASK;
151 if (start < floor)
152 return;
153 if (ceiling) {
154 ceiling &= PUD_MASK;
155 if (!ceiling)
156 return;
1da177e4 157 }
e0da382c
HD
158 if (end - 1 > ceiling - 1)
159 return;
160
161 pmd = pmd_offset(pud, start);
162 pud_clear(pud);
163 pmd_free_tlb(tlb, pmd);
1da177e4
LT
164}
165
e0da382c
HD
166static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 unsigned long addr, unsigned long end,
168 unsigned long floor, unsigned long ceiling)
1da177e4
LT
169{
170 pud_t *pud;
171 unsigned long next;
e0da382c 172 unsigned long start;
1da177e4 173
e0da382c 174 start = addr;
1da177e4 175 pud = pud_offset(pgd, addr);
1da177e4
LT
176 do {
177 next = pud_addr_end(addr, end);
178 if (pud_none_or_clear_bad(pud))
179 continue;
e0da382c 180 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
181 } while (pud++, addr = next, addr != end);
182
e0da382c
HD
183 start &= PGDIR_MASK;
184 if (start < floor)
185 return;
186 if (ceiling) {
187 ceiling &= PGDIR_MASK;
188 if (!ceiling)
189 return;
1da177e4 190 }
e0da382c
HD
191 if (end - 1 > ceiling - 1)
192 return;
193
194 pud = pud_offset(pgd, start);
195 pgd_clear(pgd);
196 pud_free_tlb(tlb, pud);
1da177e4
LT
197}
198
199/*
e0da382c
HD
200 * This function frees user-level page tables of a process.
201 *
1da177e4
LT
202 * Must be called with pagetable lock held.
203 */
3bf5ee95 204void free_pgd_range(struct mmu_gather **tlb,
e0da382c
HD
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
1da177e4
LT
207{
208 pgd_t *pgd;
209 unsigned long next;
e0da382c
HD
210 unsigned long start;
211
212 /*
213 * The next few lines have given us lots of grief...
214 *
215 * Why are we testing PMD* at this top level? Because often
216 * there will be no work to do at all, and we'd prefer not to
217 * go all the way down to the bottom just to discover that.
218 *
219 * Why all these "- 1"s? Because 0 represents both the bottom
220 * of the address space and the top of it (using -1 for the
221 * top wouldn't help much: the masks would do the wrong thing).
222 * The rule is that addr 0 and floor 0 refer to the bottom of
223 * the address space, but end 0 and ceiling 0 refer to the top
224 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 * that end 0 case should be mythical).
226 *
227 * Wherever addr is brought up or ceiling brought down, we must
228 * be careful to reject "the opposite 0" before it confuses the
229 * subsequent tests. But what about where end is brought down
230 * by PMD_SIZE below? no, end can't go down to 0 there.
231 *
232 * Whereas we round start (addr) and ceiling down, by different
233 * masks at different levels, in order to test whether a table
234 * now has no other vmas using it, so can be freed, we don't
235 * bother to round floor or end up - the tests don't need that.
236 */
1da177e4 237
e0da382c
HD
238 addr &= PMD_MASK;
239 if (addr < floor) {
240 addr += PMD_SIZE;
241 if (!addr)
242 return;
243 }
244 if (ceiling) {
245 ceiling &= PMD_MASK;
246 if (!ceiling)
247 return;
248 }
249 if (end - 1 > ceiling - 1)
250 end -= PMD_SIZE;
251 if (addr > end - 1)
252 return;
253
254 start = addr;
3bf5ee95 255 pgd = pgd_offset((*tlb)->mm, addr);
1da177e4
LT
256 do {
257 next = pgd_addr_end(addr, end);
258 if (pgd_none_or_clear_bad(pgd))
259 continue;
3bf5ee95 260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
1da177e4 261 } while (pgd++, addr = next, addr != end);
e0da382c 262
4d6ddfa9 263 if (!(*tlb)->fullmm)
3bf5ee95 264 flush_tlb_pgtables((*tlb)->mm, start, end);
e0da382c
HD
265}
266
267void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
3bf5ee95 268 unsigned long floor, unsigned long ceiling)
e0da382c
HD
269{
270 while (vma) {
271 struct vm_area_struct *next = vma->vm_next;
272 unsigned long addr = vma->vm_start;
273
8f4f8c16
HD
274 /*
275 * Hide vma from rmap and vmtruncate before freeing pgtables
276 */
277 anon_vma_unlink(vma);
278 unlink_file_vma(vma);
279
3bf5ee95
HD
280 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
281 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 282 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
283 } else {
284 /*
285 * Optimization: gather nearby vmas into one call down
286 */
287 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
288 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
289 HPAGE_SIZE)) {
290 vma = next;
291 next = vma->vm_next;
8f4f8c16
HD
292 anon_vma_unlink(vma);
293 unlink_file_vma(vma);
3bf5ee95
HD
294 }
295 free_pgd_range(tlb, addr, vma->vm_end,
296 floor, next? next->vm_start: ceiling);
297 }
e0da382c
HD
298 vma = next;
299 }
1da177e4
LT
300}
301
1bb3630e 302int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 303{
c74df32c 304 struct page *new = pte_alloc_one(mm, address);
1bb3630e
HD
305 if (!new)
306 return -ENOMEM;
307
4c21e2f2 308 pte_lock_init(new);
c74df32c 309 spin_lock(&mm->page_table_lock);
4c21e2f2
HD
310 if (pmd_present(*pmd)) { /* Another has populated it */
311 pte_lock_deinit(new);
1bb3630e 312 pte_free(new);
4c21e2f2 313 } else {
1da177e4
LT
314 mm->nr_ptes++;
315 inc_page_state(nr_page_table_pages);
316 pmd_populate(mm, pmd, new);
317 }
c74df32c 318 spin_unlock(&mm->page_table_lock);
1bb3630e 319 return 0;
1da177e4
LT
320}
321
1bb3630e 322int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 323{
1bb3630e
HD
324 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
325 if (!new)
326 return -ENOMEM;
327
328 spin_lock(&init_mm.page_table_lock);
329 if (pmd_present(*pmd)) /* Another has populated it */
330 pte_free_kernel(new);
331 else
332 pmd_populate_kernel(&init_mm, pmd, new);
333 spin_unlock(&init_mm.page_table_lock);
334 return 0;
1da177e4
LT
335}
336
ae859762
HD
337static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
338{
339 if (file_rss)
340 add_mm_counter(mm, file_rss, file_rss);
341 if (anon_rss)
342 add_mm_counter(mm, anon_rss, anon_rss);
343}
344
b5810039 345/*
6aab341e
LT
346 * This function is called to print an error when a bad pte
347 * is found. For example, we might have a PFN-mapped pte in
348 * a region that doesn't allow it.
b5810039
NP
349 *
350 * The calling function must still handle the error.
351 */
352void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
353{
354 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
355 "vm_flags = %lx, vaddr = %lx\n",
356 (long long)pte_val(pte),
357 (vma->vm_mm == current->mm ? current->comm : "???"),
358 vma->vm_flags, vaddr);
359 dump_stack();
360}
361
67121172
LT
362static inline int is_cow_mapping(unsigned int flags)
363{
364 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
365}
366
ee498ed7 367/*
6aab341e
LT
368 * This function gets the "struct page" associated with a pte.
369 *
370 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
371 * will have each page table entry just pointing to a raw page frame
372 * number, and as far as the VM layer is concerned, those do not have
373 * pages associated with them - even if the PFN might point to memory
374 * that otherwise is perfectly fine and has a "struct page".
375 *
376 * The way we recognize those mappings is through the rules set up
377 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
378 * and the vm_pgoff will point to the first PFN mapped: thus every
379 * page that is a raw mapping will always honor the rule
380 *
381 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
382 *
383 * and if that isn't true, the page has been COW'ed (in which case it
384 * _does_ have a "struct page" associated with it even if it is in a
385 * VM_PFNMAP range).
ee498ed7 386 */
6aab341e 387struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
ee498ed7 388{
6aab341e
LT
389 unsigned long pfn = pte_pfn(pte);
390
b7ab795b 391 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
6aab341e
LT
392 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
393 if (pfn == vma->vm_pgoff + off)
394 return NULL;
67121172 395 if (!is_cow_mapping(vma->vm_flags))
fb155c16 396 return NULL;
6aab341e
LT
397 }
398
b7ab795b 399#ifdef CONFIG_DEBUG_VM
6aab341e
LT
400 if (unlikely(!pfn_valid(pfn))) {
401 print_bad_pte(vma, pte, addr);
402 return NULL;
403 }
b7ab795b 404#endif
6aab341e
LT
405
406 /*
407 * NOTE! We still have PageReserved() pages in the page
408 * tables.
409 *
410 * The PAGE_ZERO() pages and various VDSO mappings can
411 * cause them to exist.
412 */
413 return pfn_to_page(pfn);
ee498ed7
HD
414}
415
1da177e4
LT
416/*
417 * copy one vm_area from one task to the other. Assumes the page tables
418 * already present in the new task to be cleared in the whole range
419 * covered by this vma.
1da177e4
LT
420 */
421
8c103762 422static inline void
1da177e4 423copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 424 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 425 unsigned long addr, int *rss)
1da177e4 426{
b5810039 427 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
428 pte_t pte = *src_pte;
429 struct page *page;
1da177e4
LT
430
431 /* pte contains position in swap or file, so copy. */
432 if (unlikely(!pte_present(pte))) {
433 if (!pte_file(pte)) {
434 swap_duplicate(pte_to_swp_entry(pte));
435 /* make sure dst_mm is on swapoff's mmlist. */
436 if (unlikely(list_empty(&dst_mm->mmlist))) {
437 spin_lock(&mmlist_lock);
f412ac08
HD
438 if (list_empty(&dst_mm->mmlist))
439 list_add(&dst_mm->mmlist,
440 &src_mm->mmlist);
1da177e4
LT
441 spin_unlock(&mmlist_lock);
442 }
443 }
ae859762 444 goto out_set_pte;
1da177e4
LT
445 }
446
1da177e4
LT
447 /*
448 * If it's a COW mapping, write protect it both
449 * in the parent and the child
450 */
67121172 451 if (is_cow_mapping(vm_flags)) {
1da177e4
LT
452 ptep_set_wrprotect(src_mm, addr, src_pte);
453 pte = *src_pte;
454 }
455
456 /*
457 * If it's a shared mapping, mark it clean in
458 * the child
459 */
460 if (vm_flags & VM_SHARED)
461 pte = pte_mkclean(pte);
462 pte = pte_mkold(pte);
6aab341e
LT
463
464 page = vm_normal_page(vma, addr, pte);
465 if (page) {
466 get_page(page);
467 page_dup_rmap(page);
468 rss[!!PageAnon(page)]++;
469 }
ae859762
HD
470
471out_set_pte:
472 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
473}
474
475static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
476 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
477 unsigned long addr, unsigned long end)
478{
479 pte_t *src_pte, *dst_pte;
c74df32c 480 spinlock_t *src_ptl, *dst_ptl;
e040f218 481 int progress = 0;
8c103762 482 int rss[2];
1da177e4
LT
483
484again:
ae859762 485 rss[1] = rss[0] = 0;
c74df32c 486 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
487 if (!dst_pte)
488 return -ENOMEM;
489 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 490 src_ptl = pte_lockptr(src_mm, src_pmd);
c74df32c 491 spin_lock(src_ptl);
1da177e4 492
1da177e4
LT
493 do {
494 /*
495 * We are holding two locks at this point - either of them
496 * could generate latencies in another task on another CPU.
497 */
e040f218
HD
498 if (progress >= 32) {
499 progress = 0;
500 if (need_resched() ||
c74df32c
HD
501 need_lockbreak(src_ptl) ||
502 need_lockbreak(dst_ptl))
e040f218
HD
503 break;
504 }
1da177e4
LT
505 if (pte_none(*src_pte)) {
506 progress++;
507 continue;
508 }
8c103762 509 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
510 progress += 8;
511 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 512
c74df32c 513 spin_unlock(src_ptl);
1da177e4 514 pte_unmap_nested(src_pte - 1);
ae859762 515 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
516 pte_unmap_unlock(dst_pte - 1, dst_ptl);
517 cond_resched();
1da177e4
LT
518 if (addr != end)
519 goto again;
520 return 0;
521}
522
523static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
524 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
525 unsigned long addr, unsigned long end)
526{
527 pmd_t *src_pmd, *dst_pmd;
528 unsigned long next;
529
530 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
531 if (!dst_pmd)
532 return -ENOMEM;
533 src_pmd = pmd_offset(src_pud, addr);
534 do {
535 next = pmd_addr_end(addr, end);
536 if (pmd_none_or_clear_bad(src_pmd))
537 continue;
538 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
539 vma, addr, next))
540 return -ENOMEM;
541 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
542 return 0;
543}
544
545static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
546 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
547 unsigned long addr, unsigned long end)
548{
549 pud_t *src_pud, *dst_pud;
550 unsigned long next;
551
552 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
553 if (!dst_pud)
554 return -ENOMEM;
555 src_pud = pud_offset(src_pgd, addr);
556 do {
557 next = pud_addr_end(addr, end);
558 if (pud_none_or_clear_bad(src_pud))
559 continue;
560 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
561 vma, addr, next))
562 return -ENOMEM;
563 } while (dst_pud++, src_pud++, addr = next, addr != end);
564 return 0;
565}
566
567int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
568 struct vm_area_struct *vma)
569{
570 pgd_t *src_pgd, *dst_pgd;
571 unsigned long next;
572 unsigned long addr = vma->vm_start;
573 unsigned long end = vma->vm_end;
574
d992895b
NP
575 /*
576 * Don't copy ptes where a page fault will fill them correctly.
577 * Fork becomes much lighter when there are big shared or private
578 * readonly mappings. The tradeoff is that copy_page_range is more
579 * efficient than faulting.
580 */
4d7672b4 581 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
582 if (!vma->anon_vma)
583 return 0;
584 }
585
1da177e4
LT
586 if (is_vm_hugetlb_page(vma))
587 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
588
589 dst_pgd = pgd_offset(dst_mm, addr);
590 src_pgd = pgd_offset(src_mm, addr);
591 do {
592 next = pgd_addr_end(addr, end);
593 if (pgd_none_or_clear_bad(src_pgd))
594 continue;
595 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
596 vma, addr, next))
597 return -ENOMEM;
598 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
599 return 0;
600}
601
51c6f666 602static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 603 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 604 unsigned long addr, unsigned long end,
51c6f666 605 long *zap_work, struct zap_details *details)
1da177e4 606{
b5810039 607 struct mm_struct *mm = tlb->mm;
1da177e4 608 pte_t *pte;
508034a3 609 spinlock_t *ptl;
ae859762
HD
610 int file_rss = 0;
611 int anon_rss = 0;
1da177e4 612
508034a3 613 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
614 do {
615 pte_t ptent = *pte;
51c6f666
RH
616 if (pte_none(ptent)) {
617 (*zap_work)--;
1da177e4 618 continue;
51c6f666 619 }
6f5e6b9e
HD
620
621 (*zap_work) -= PAGE_SIZE;
622
1da177e4 623 if (pte_present(ptent)) {
ee498ed7 624 struct page *page;
51c6f666 625
6aab341e 626 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
627 if (unlikely(details) && page) {
628 /*
629 * unmap_shared_mapping_pages() wants to
630 * invalidate cache without truncating:
631 * unmap shared but keep private pages.
632 */
633 if (details->check_mapping &&
634 details->check_mapping != page->mapping)
635 continue;
636 /*
637 * Each page->index must be checked when
638 * invalidating or truncating nonlinear.
639 */
640 if (details->nonlinear_vma &&
641 (page->index < details->first_index ||
642 page->index > details->last_index))
643 continue;
644 }
b5810039 645 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 646 tlb->fullmm);
1da177e4
LT
647 tlb_remove_tlb_entry(tlb, pte, addr);
648 if (unlikely(!page))
649 continue;
650 if (unlikely(details) && details->nonlinear_vma
651 && linear_page_index(details->nonlinear_vma,
652 addr) != page->index)
b5810039 653 set_pte_at(mm, addr, pte,
1da177e4 654 pgoff_to_pte(page->index));
1da177e4 655 if (PageAnon(page))
86d912f4 656 anon_rss--;
6237bcd9
HD
657 else {
658 if (pte_dirty(ptent))
659 set_page_dirty(page);
660 if (pte_young(ptent))
661 mark_page_accessed(page);
86d912f4 662 file_rss--;
6237bcd9 663 }
1da177e4
LT
664 page_remove_rmap(page);
665 tlb_remove_page(tlb, page);
666 continue;
667 }
668 /*
669 * If details->check_mapping, we leave swap entries;
670 * if details->nonlinear_vma, we leave file entries.
671 */
672 if (unlikely(details))
673 continue;
674 if (!pte_file(ptent))
675 free_swap_and_cache(pte_to_swp_entry(ptent));
b5810039 676 pte_clear_full(mm, addr, pte, tlb->fullmm);
51c6f666 677 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 678
86d912f4 679 add_mm_rss(mm, file_rss, anon_rss);
508034a3 680 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
681
682 return addr;
1da177e4
LT
683}
684
51c6f666 685static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 686 struct vm_area_struct *vma, pud_t *pud,
1da177e4 687 unsigned long addr, unsigned long end,
51c6f666 688 long *zap_work, struct zap_details *details)
1da177e4
LT
689{
690 pmd_t *pmd;
691 unsigned long next;
692
693 pmd = pmd_offset(pud, addr);
694 do {
695 next = pmd_addr_end(addr, end);
51c6f666
RH
696 if (pmd_none_or_clear_bad(pmd)) {
697 (*zap_work)--;
1da177e4 698 continue;
51c6f666
RH
699 }
700 next = zap_pte_range(tlb, vma, pmd, addr, next,
701 zap_work, details);
702 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
703
704 return addr;
1da177e4
LT
705}
706
51c6f666 707static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 708 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 709 unsigned long addr, unsigned long end,
51c6f666 710 long *zap_work, struct zap_details *details)
1da177e4
LT
711{
712 pud_t *pud;
713 unsigned long next;
714
715 pud = pud_offset(pgd, addr);
716 do {
717 next = pud_addr_end(addr, end);
51c6f666
RH
718 if (pud_none_or_clear_bad(pud)) {
719 (*zap_work)--;
1da177e4 720 continue;
51c6f666
RH
721 }
722 next = zap_pmd_range(tlb, vma, pud, addr, next,
723 zap_work, details);
724 } while (pud++, addr = next, (addr != end && *zap_work > 0));
725
726 return addr;
1da177e4
LT
727}
728
51c6f666
RH
729static unsigned long unmap_page_range(struct mmu_gather *tlb,
730 struct vm_area_struct *vma,
1da177e4 731 unsigned long addr, unsigned long end,
51c6f666 732 long *zap_work, struct zap_details *details)
1da177e4
LT
733{
734 pgd_t *pgd;
735 unsigned long next;
736
737 if (details && !details->check_mapping && !details->nonlinear_vma)
738 details = NULL;
739
740 BUG_ON(addr >= end);
741 tlb_start_vma(tlb, vma);
742 pgd = pgd_offset(vma->vm_mm, addr);
743 do {
744 next = pgd_addr_end(addr, end);
51c6f666
RH
745 if (pgd_none_or_clear_bad(pgd)) {
746 (*zap_work)--;
1da177e4 747 continue;
51c6f666
RH
748 }
749 next = zap_pud_range(tlb, vma, pgd, addr, next,
750 zap_work, details);
751 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 752 tlb_end_vma(tlb, vma);
51c6f666
RH
753
754 return addr;
1da177e4
LT
755}
756
757#ifdef CONFIG_PREEMPT
758# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
759#else
760/* No preempt: go for improved straight-line efficiency */
761# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
762#endif
763
764/**
765 * unmap_vmas - unmap a range of memory covered by a list of vma's
766 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
767 * @vma: the starting vma
768 * @start_addr: virtual address at which to start unmapping
769 * @end_addr: virtual address at which to end unmapping
770 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
771 * @details: details of nonlinear truncation or shared cache invalidation
772 *
ee39b37b 773 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 774 *
508034a3 775 * Unmap all pages in the vma list.
1da177e4 776 *
508034a3
HD
777 * We aim to not hold locks for too long (for scheduling latency reasons).
778 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
779 * return the ending mmu_gather to the caller.
780 *
781 * Only addresses between `start' and `end' will be unmapped.
782 *
783 * The VMA list must be sorted in ascending virtual address order.
784 *
785 * unmap_vmas() assumes that the caller will flush the whole unmapped address
786 * range after unmap_vmas() returns. So the only responsibility here is to
787 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
788 * drops the lock and schedules.
789 */
508034a3 790unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
791 struct vm_area_struct *vma, unsigned long start_addr,
792 unsigned long end_addr, unsigned long *nr_accounted,
793 struct zap_details *details)
794{
51c6f666 795 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
796 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
797 int tlb_start_valid = 0;
ee39b37b 798 unsigned long start = start_addr;
1da177e4 799 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 800 int fullmm = (*tlbp)->fullmm;
1da177e4
LT
801
802 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
803 unsigned long end;
804
805 start = max(vma->vm_start, start_addr);
806 if (start >= vma->vm_end)
807 continue;
808 end = min(vma->vm_end, end_addr);
809 if (end <= vma->vm_start)
810 continue;
811
812 if (vma->vm_flags & VM_ACCOUNT)
813 *nr_accounted += (end - start) >> PAGE_SHIFT;
814
1da177e4 815 while (start != end) {
1da177e4
LT
816 if (!tlb_start_valid) {
817 tlb_start = start;
818 tlb_start_valid = 1;
819 }
820
51c6f666 821 if (unlikely(is_vm_hugetlb_page(vma))) {
1da177e4 822 unmap_hugepage_range(vma, start, end);
51c6f666
RH
823 zap_work -= (end - start) /
824 (HPAGE_SIZE / PAGE_SIZE);
825 start = end;
826 } else
827 start = unmap_page_range(*tlbp, vma,
828 start, end, &zap_work, details);
829
830 if (zap_work > 0) {
831 BUG_ON(start != end);
832 break;
1da177e4
LT
833 }
834
1da177e4
LT
835 tlb_finish_mmu(*tlbp, tlb_start, start);
836
837 if (need_resched() ||
1da177e4
LT
838 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
839 if (i_mmap_lock) {
508034a3 840 *tlbp = NULL;
1da177e4
LT
841 goto out;
842 }
1da177e4 843 cond_resched();
1da177e4
LT
844 }
845
508034a3 846 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 847 tlb_start_valid = 0;
51c6f666 848 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
849 }
850 }
851out:
ee39b37b 852 return start; /* which is now the end (or restart) address */
1da177e4
LT
853}
854
855/**
856 * zap_page_range - remove user pages in a given range
857 * @vma: vm_area_struct holding the applicable pages
858 * @address: starting address of pages to zap
859 * @size: number of bytes to zap
860 * @details: details of nonlinear truncation or shared cache invalidation
861 */
ee39b37b 862unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
863 unsigned long size, struct zap_details *details)
864{
865 struct mm_struct *mm = vma->vm_mm;
866 struct mmu_gather *tlb;
867 unsigned long end = address + size;
868 unsigned long nr_accounted = 0;
869
1da177e4 870 lru_add_drain();
1da177e4 871 tlb = tlb_gather_mmu(mm, 0);
365e9c87 872 update_hiwater_rss(mm);
508034a3
HD
873 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
874 if (tlb)
875 tlb_finish_mmu(tlb, address, end);
ee39b37b 876 return end;
1da177e4
LT
877}
878
879/*
880 * Do a quick page-table lookup for a single page.
1da177e4 881 */
6aab341e 882struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 883 unsigned int flags)
1da177e4
LT
884{
885 pgd_t *pgd;
886 pud_t *pud;
887 pmd_t *pmd;
888 pte_t *ptep, pte;
deceb6cd 889 spinlock_t *ptl;
1da177e4 890 struct page *page;
6aab341e 891 struct mm_struct *mm = vma->vm_mm;
1da177e4 892
deceb6cd
HD
893 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
894 if (!IS_ERR(page)) {
895 BUG_ON(flags & FOLL_GET);
896 goto out;
897 }
1da177e4 898
deceb6cd 899 page = NULL;
1da177e4
LT
900 pgd = pgd_offset(mm, address);
901 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 902 goto no_page_table;
1da177e4
LT
903
904 pud = pud_offset(pgd, address);
905 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
deceb6cd 906 goto no_page_table;
1da177e4
LT
907
908 pmd = pmd_offset(pud, address);
909 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
deceb6cd
HD
910 goto no_page_table;
911
912 if (pmd_huge(*pmd)) {
913 BUG_ON(flags & FOLL_GET);
914 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 915 goto out;
deceb6cd 916 }
1da177e4 917
deceb6cd 918 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
919 if (!ptep)
920 goto out;
921
922 pte = *ptep;
deceb6cd
HD
923 if (!pte_present(pte))
924 goto unlock;
925 if ((flags & FOLL_WRITE) && !pte_write(pte))
926 goto unlock;
6aab341e
LT
927 page = vm_normal_page(vma, address, pte);
928 if (unlikely(!page))
deceb6cd 929 goto unlock;
1da177e4 930
deceb6cd
HD
931 if (flags & FOLL_GET)
932 get_page(page);
933 if (flags & FOLL_TOUCH) {
934 if ((flags & FOLL_WRITE) &&
935 !pte_dirty(pte) && !PageDirty(page))
936 set_page_dirty(page);
937 mark_page_accessed(page);
938 }
939unlock:
940 pte_unmap_unlock(ptep, ptl);
1da177e4 941out:
deceb6cd 942 return page;
1da177e4 943
deceb6cd
HD
944no_page_table:
945 /*
946 * When core dumping an enormous anonymous area that nobody
947 * has touched so far, we don't want to allocate page tables.
948 */
949 if (flags & FOLL_ANON) {
950 page = ZERO_PAGE(address);
951 if (flags & FOLL_GET)
952 get_page(page);
953 BUG_ON(flags & FOLL_WRITE);
954 }
955 return page;
1da177e4
LT
956}
957
1da177e4
LT
958int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
959 unsigned long start, int len, int write, int force,
960 struct page **pages, struct vm_area_struct **vmas)
961{
962 int i;
deceb6cd 963 unsigned int vm_flags;
1da177e4
LT
964
965 /*
966 * Require read or write permissions.
967 * If 'force' is set, we only require the "MAY" flags.
968 */
deceb6cd
HD
969 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
970 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
971 i = 0;
972
973 do {
deceb6cd
HD
974 struct vm_area_struct *vma;
975 unsigned int foll_flags;
1da177e4
LT
976
977 vma = find_extend_vma(mm, start);
978 if (!vma && in_gate_area(tsk, start)) {
979 unsigned long pg = start & PAGE_MASK;
980 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
981 pgd_t *pgd;
982 pud_t *pud;
983 pmd_t *pmd;
984 pte_t *pte;
985 if (write) /* user gate pages are read-only */
986 return i ? : -EFAULT;
987 if (pg > TASK_SIZE)
988 pgd = pgd_offset_k(pg);
989 else
990 pgd = pgd_offset_gate(mm, pg);
991 BUG_ON(pgd_none(*pgd));
992 pud = pud_offset(pgd, pg);
993 BUG_ON(pud_none(*pud));
994 pmd = pmd_offset(pud, pg);
690dbe1c
HD
995 if (pmd_none(*pmd))
996 return i ? : -EFAULT;
1da177e4 997 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
998 if (pte_none(*pte)) {
999 pte_unmap(pte);
1000 return i ? : -EFAULT;
1001 }
1da177e4 1002 if (pages) {
fa2a455b 1003 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1004 pages[i] = page;
1005 if (page)
1006 get_page(page);
1da177e4
LT
1007 }
1008 pte_unmap(pte);
1009 if (vmas)
1010 vmas[i] = gate_vma;
1011 i++;
1012 start += PAGE_SIZE;
1013 len--;
1014 continue;
1015 }
1016
1ff80389 1017 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
deceb6cd 1018 || !(vm_flags & vma->vm_flags))
1da177e4
LT
1019 return i ? : -EFAULT;
1020
1021 if (is_vm_hugetlb_page(vma)) {
1022 i = follow_hugetlb_page(mm, vma, pages, vmas,
1023 &start, &len, i);
1024 continue;
1025 }
deceb6cd
HD
1026
1027 foll_flags = FOLL_TOUCH;
1028 if (pages)
1029 foll_flags |= FOLL_GET;
1030 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1031 (!vma->vm_ops || !vma->vm_ops->nopage))
1032 foll_flags |= FOLL_ANON;
1033
1da177e4 1034 do {
08ef4729 1035 struct page *page;
1da177e4 1036
deceb6cd
HD
1037 if (write)
1038 foll_flags |= FOLL_WRITE;
a68d2ebc 1039
deceb6cd 1040 cond_resched();
6aab341e 1041 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd
HD
1042 int ret;
1043 ret = __handle_mm_fault(mm, vma, start,
1044 foll_flags & FOLL_WRITE);
a68d2ebc
LT
1045 /*
1046 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1047 * broken COW when necessary, even if maybe_mkwrite
1048 * decided not to set pte_write. We can thus safely do
1049 * subsequent page lookups as if they were reads.
1050 */
1051 if (ret & VM_FAULT_WRITE)
deceb6cd 1052 foll_flags &= ~FOLL_WRITE;
a68d2ebc
LT
1053
1054 switch (ret & ~VM_FAULT_WRITE) {
1da177e4
LT
1055 case VM_FAULT_MINOR:
1056 tsk->min_flt++;
1057 break;
1058 case VM_FAULT_MAJOR:
1059 tsk->maj_flt++;
1060 break;
1061 case VM_FAULT_SIGBUS:
1062 return i ? i : -EFAULT;
1063 case VM_FAULT_OOM:
1064 return i ? i : -ENOMEM;
1065 default:
1066 BUG();
1067 }
1da177e4
LT
1068 }
1069 if (pages) {
08ef4729
HD
1070 pages[i] = page;
1071 flush_dcache_page(page);
1da177e4
LT
1072 }
1073 if (vmas)
1074 vmas[i] = vma;
1075 i++;
1076 start += PAGE_SIZE;
1077 len--;
08ef4729 1078 } while (len && start < vma->vm_end);
08ef4729 1079 } while (len);
1da177e4
LT
1080 return i;
1081}
1da177e4
LT
1082EXPORT_SYMBOL(get_user_pages);
1083
1084static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1085 unsigned long addr, unsigned long end, pgprot_t prot)
1086{
1087 pte_t *pte;
c74df32c 1088 spinlock_t *ptl;
1da177e4 1089
c74df32c 1090 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1091 if (!pte)
1092 return -ENOMEM;
1093 do {
b5810039
NP
1094 struct page *page = ZERO_PAGE(addr);
1095 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1096 page_cache_get(page);
1097 page_add_file_rmap(page);
1098 inc_mm_counter(mm, file_rss);
1da177e4
LT
1099 BUG_ON(!pte_none(*pte));
1100 set_pte_at(mm, addr, pte, zero_pte);
1101 } while (pte++, addr += PAGE_SIZE, addr != end);
c74df32c 1102 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1103 return 0;
1104}
1105
1106static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1107 unsigned long addr, unsigned long end, pgprot_t prot)
1108{
1109 pmd_t *pmd;
1110 unsigned long next;
1111
1112 pmd = pmd_alloc(mm, pud, addr);
1113 if (!pmd)
1114 return -ENOMEM;
1115 do {
1116 next = pmd_addr_end(addr, end);
1117 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1118 return -ENOMEM;
1119 } while (pmd++, addr = next, addr != end);
1120 return 0;
1121}
1122
1123static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1124 unsigned long addr, unsigned long end, pgprot_t prot)
1125{
1126 pud_t *pud;
1127 unsigned long next;
1128
1129 pud = pud_alloc(mm, pgd, addr);
1130 if (!pud)
1131 return -ENOMEM;
1132 do {
1133 next = pud_addr_end(addr, end);
1134 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1135 return -ENOMEM;
1136 } while (pud++, addr = next, addr != end);
1137 return 0;
1138}
1139
1140int zeromap_page_range(struct vm_area_struct *vma,
1141 unsigned long addr, unsigned long size, pgprot_t prot)
1142{
1143 pgd_t *pgd;
1144 unsigned long next;
1145 unsigned long end = addr + size;
1146 struct mm_struct *mm = vma->vm_mm;
1147 int err;
1148
1149 BUG_ON(addr >= end);
1150 pgd = pgd_offset(mm, addr);
1151 flush_cache_range(vma, addr, end);
1da177e4
LT
1152 do {
1153 next = pgd_addr_end(addr, end);
1154 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1155 if (err)
1156 break;
1157 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1158 return err;
1159}
1160
49c91fb0 1161pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
c9cfcddf
LT
1162{
1163 pgd_t * pgd = pgd_offset(mm, addr);
1164 pud_t * pud = pud_alloc(mm, pgd, addr);
1165 if (pud) {
49c91fb0 1166 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1167 if (pmd)
1168 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1169 }
1170 return NULL;
1171}
1172
238f58d8
LT
1173/*
1174 * This is the old fallback for page remapping.
1175 *
1176 * For historical reasons, it only allows reserved pages. Only
1177 * old drivers should use this, and they needed to mark their
1178 * pages reserved for the old functions anyway.
1179 */
1180static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1181{
1182 int retval;
c9cfcddf 1183 pte_t *pte;
238f58d8
LT
1184 spinlock_t *ptl;
1185
1186 retval = -EINVAL;
a145dd41 1187 if (PageAnon(page))
238f58d8
LT
1188 goto out;
1189 retval = -ENOMEM;
1190 flush_dcache_page(page);
c9cfcddf 1191 pte = get_locked_pte(mm, addr, &ptl);
238f58d8
LT
1192 if (!pte)
1193 goto out;
1194 retval = -EBUSY;
1195 if (!pte_none(*pte))
1196 goto out_unlock;
1197
1198 /* Ok, finally just insert the thing.. */
1199 get_page(page);
1200 inc_mm_counter(mm, file_rss);
1201 page_add_file_rmap(page);
1202 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1203
1204 retval = 0;
1205out_unlock:
1206 pte_unmap_unlock(pte, ptl);
1207out:
1208 return retval;
1209}
1210
a145dd41
LT
1211/*
1212 * This allows drivers to insert individual pages they've allocated
1213 * into a user vma.
1214 *
1215 * The page has to be a nice clean _individual_ kernel allocation.
1216 * If you allocate a compound page, you need to have marked it as
1217 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1218 * (see split_page()).
a145dd41
LT
1219 *
1220 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1221 * took an arbitrary page protection parameter. This doesn't allow
1222 * that. Your vma protection will have to be set up correctly, which
1223 * means that if you want a shared writable mapping, you'd better
1224 * ask for a shared writable mapping!
1225 *
1226 * The page does not need to be reserved.
1227 */
1228int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1229{
1230 if (addr < vma->vm_start || addr >= vma->vm_end)
1231 return -EFAULT;
1232 if (!page_count(page))
1233 return -EINVAL;
4d7672b4 1234 vma->vm_flags |= VM_INSERTPAGE;
a145dd41
LT
1235 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1236}
e3c3374f 1237EXPORT_SYMBOL(vm_insert_page);
a145dd41 1238
1da177e4
LT
1239/*
1240 * maps a range of physical memory into the requested pages. the old
1241 * mappings are removed. any references to nonexistent pages results
1242 * in null mappings (currently treated as "copy-on-access")
1243 */
1244static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1245 unsigned long addr, unsigned long end,
1246 unsigned long pfn, pgprot_t prot)
1247{
1248 pte_t *pte;
c74df32c 1249 spinlock_t *ptl;
1da177e4 1250
c74df32c 1251 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1252 if (!pte)
1253 return -ENOMEM;
1254 do {
1255 BUG_ON(!pte_none(*pte));
b5810039 1256 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1da177e4
LT
1257 pfn++;
1258 } while (pte++, addr += PAGE_SIZE, addr != end);
c74df32c 1259 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1260 return 0;
1261}
1262
1263static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1264 unsigned long addr, unsigned long end,
1265 unsigned long pfn, pgprot_t prot)
1266{
1267 pmd_t *pmd;
1268 unsigned long next;
1269
1270 pfn -= addr >> PAGE_SHIFT;
1271 pmd = pmd_alloc(mm, pud, addr);
1272 if (!pmd)
1273 return -ENOMEM;
1274 do {
1275 next = pmd_addr_end(addr, end);
1276 if (remap_pte_range(mm, pmd, addr, next,
1277 pfn + (addr >> PAGE_SHIFT), prot))
1278 return -ENOMEM;
1279 } while (pmd++, addr = next, addr != end);
1280 return 0;
1281}
1282
1283static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1284 unsigned long addr, unsigned long end,
1285 unsigned long pfn, pgprot_t prot)
1286{
1287 pud_t *pud;
1288 unsigned long next;
1289
1290 pfn -= addr >> PAGE_SHIFT;
1291 pud = pud_alloc(mm, pgd, addr);
1292 if (!pud)
1293 return -ENOMEM;
1294 do {
1295 next = pud_addr_end(addr, end);
1296 if (remap_pmd_range(mm, pud, addr, next,
1297 pfn + (addr >> PAGE_SHIFT), prot))
1298 return -ENOMEM;
1299 } while (pud++, addr = next, addr != end);
1300 return 0;
1301}
1302
1303/* Note: this is only safe if the mm semaphore is held when called. */
1304int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1305 unsigned long pfn, unsigned long size, pgprot_t prot)
1306{
1307 pgd_t *pgd;
1308 unsigned long next;
2d15cab8 1309 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1310 struct mm_struct *mm = vma->vm_mm;
1311 int err;
1312
1313 /*
1314 * Physically remapped pages are special. Tell the
1315 * rest of the world about it:
1316 * VM_IO tells people not to look at these pages
1317 * (accesses can have side effects).
0b14c179
HD
1318 * VM_RESERVED is specified all over the place, because
1319 * in 2.4 it kept swapout's vma scan off this vma; but
1320 * in 2.6 the LRU scan won't even find its pages, so this
1321 * flag means no more than count its pages in reserved_vm,
1322 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1323 * VM_PFNMAP tells the core MM that the base pages are just
1324 * raw PFN mappings, and do not have a "struct page" associated
1325 * with them.
fb155c16
LT
1326 *
1327 * There's a horrible special case to handle copy-on-write
1328 * behaviour that some programs depend on. We mark the "original"
1329 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1330 */
67121172 1331 if (is_cow_mapping(vma->vm_flags)) {
fb155c16 1332 if (addr != vma->vm_start || end != vma->vm_end)
7fc7e2ee 1333 return -EINVAL;
fb155c16
LT
1334 vma->vm_pgoff = pfn;
1335 }
1336
6aab341e 1337 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4
LT
1338
1339 BUG_ON(addr >= end);
1340 pfn -= addr >> PAGE_SHIFT;
1341 pgd = pgd_offset(mm, addr);
1342 flush_cache_range(vma, addr, end);
1da177e4
LT
1343 do {
1344 next = pgd_addr_end(addr, end);
1345 err = remap_pud_range(mm, pgd, addr, next,
1346 pfn + (addr >> PAGE_SHIFT), prot);
1347 if (err)
1348 break;
1349 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1350 return err;
1351}
1352EXPORT_SYMBOL(remap_pfn_range);
1353
8f4e2101
HD
1354/*
1355 * handle_pte_fault chooses page fault handler according to an entry
1356 * which was read non-atomically. Before making any commitment, on
1357 * those architectures or configurations (e.g. i386 with PAE) which
1358 * might give a mix of unmatched parts, do_swap_page and do_file_page
1359 * must check under lock before unmapping the pte and proceeding
1360 * (but do_wp_page is only called after already making such a check;
1361 * and do_anonymous_page and do_no_page can safely check later on).
1362 */
4c21e2f2 1363static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1364 pte_t *page_table, pte_t orig_pte)
1365{
1366 int same = 1;
1367#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1368 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1369 spinlock_t *ptl = pte_lockptr(mm, pmd);
1370 spin_lock(ptl);
8f4e2101 1371 same = pte_same(*page_table, orig_pte);
4c21e2f2 1372 spin_unlock(ptl);
8f4e2101
HD
1373 }
1374#endif
1375 pte_unmap(page_table);
1376 return same;
1377}
1378
1da177e4
LT
1379/*
1380 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1381 * servicing faults for write access. In the normal case, do always want
1382 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1383 * that do not have writing enabled, when used by access_process_vm.
1384 */
1385static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1386{
1387 if (likely(vma->vm_flags & VM_WRITE))
1388 pte = pte_mkwrite(pte);
1389 return pte;
1390}
1391
6aab341e
LT
1392static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1393{
1394 /*
1395 * If the source page was a PFN mapping, we don't have
1396 * a "struct page" for it. We do a best-effort copy by
1397 * just copying from the original user address. If that
1398 * fails, we just zero-fill it. Live with it.
1399 */
1400 if (unlikely(!src)) {
1401 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1402 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1403
1404 /*
1405 * This really shouldn't fail, because the page is there
1406 * in the page tables. But it might just be unreadable,
1407 * in which case we just give up and fill the result with
1408 * zeroes.
1409 */
1410 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1411 memset(kaddr, 0, PAGE_SIZE);
1412 kunmap_atomic(kaddr, KM_USER0);
1413 return;
1414
1415 }
1416 copy_user_highpage(dst, src, va);
1417}
1418
1da177e4
LT
1419/*
1420 * This routine handles present pages, when users try to write
1421 * to a shared page. It is done by copying the page to a new address
1422 * and decrementing the shared-page counter for the old page.
1423 *
1da177e4
LT
1424 * Note that this routine assumes that the protection checks have been
1425 * done by the caller (the low-level page fault routine in most cases).
1426 * Thus we can safely just mark it writable once we've done any necessary
1427 * COW.
1428 *
1429 * We also mark the page dirty at this point even though the page will
1430 * change only once the write actually happens. This avoids a few races,
1431 * and potentially makes it more efficient.
1432 *
8f4e2101
HD
1433 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1434 * but allow concurrent faults), with pte both mapped and locked.
1435 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1436 */
65500d23
HD
1437static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1438 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1439 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1440{
e5bbe4df 1441 struct page *old_page, *new_page;
1da177e4 1442 pte_t entry;
65500d23 1443 int ret = VM_FAULT_MINOR;
1da177e4 1444
6aab341e 1445 old_page = vm_normal_page(vma, address, orig_pte);
6aab341e
LT
1446 if (!old_page)
1447 goto gotten;
1da177e4 1448
d296e9cd 1449 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1da177e4
LT
1450 int reuse = can_share_swap_page(old_page);
1451 unlock_page(old_page);
1452 if (reuse) {
eca35133 1453 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1454 entry = pte_mkyoung(orig_pte);
1455 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4
LT
1456 ptep_set_access_flags(vma, address, page_table, entry, 1);
1457 update_mmu_cache(vma, address, entry);
1458 lazy_mmu_prot_update(entry);
65500d23
HD
1459 ret |= VM_FAULT_WRITE;
1460 goto unlock;
1da177e4
LT
1461 }
1462 }
1da177e4
LT
1463
1464 /*
1465 * Ok, we need to copy. Oh, well..
1466 */
b5810039 1467 page_cache_get(old_page);
920fc356 1468gotten:
8f4e2101 1469 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1470
1471 if (unlikely(anon_vma_prepare(vma)))
65500d23 1472 goto oom;
e5bbe4df 1473 if (old_page == ZERO_PAGE(address)) {
1da177e4
LT
1474 new_page = alloc_zeroed_user_highpage(vma, address);
1475 if (!new_page)
65500d23 1476 goto oom;
1da177e4
LT
1477 } else {
1478 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1479 if (!new_page)
65500d23 1480 goto oom;
e5bbe4df 1481 cow_user_page(new_page, old_page, address);
1da177e4 1482 }
65500d23 1483
1da177e4
LT
1484 /*
1485 * Re-check the pte - we dropped the lock
1486 */
8f4e2101 1487 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1488 if (likely(pte_same(*page_table, orig_pte))) {
920fc356
HD
1489 if (old_page) {
1490 page_remove_rmap(old_page);
1491 if (!PageAnon(old_page)) {
1492 dec_mm_counter(mm, file_rss);
1493 inc_mm_counter(mm, anon_rss);
1494 }
1495 } else
4294621f 1496 inc_mm_counter(mm, anon_rss);
eca35133 1497 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1498 entry = mk_pte(new_page, vma->vm_page_prot);
1499 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1500 ptep_establish(vma, address, page_table, entry);
1501 update_mmu_cache(vma, address, entry);
1502 lazy_mmu_prot_update(entry);
1da177e4 1503 lru_cache_add_active(new_page);
9617d95e 1504 page_add_new_anon_rmap(new_page, vma, address);
1da177e4
LT
1505
1506 /* Free the old page.. */
1507 new_page = old_page;
f33ea7f4 1508 ret |= VM_FAULT_WRITE;
1da177e4 1509 }
920fc356
HD
1510 if (new_page)
1511 page_cache_release(new_page);
1512 if (old_page)
1513 page_cache_release(old_page);
65500d23 1514unlock:
8f4e2101 1515 pte_unmap_unlock(page_table, ptl);
f33ea7f4 1516 return ret;
65500d23 1517oom:
920fc356
HD
1518 if (old_page)
1519 page_cache_release(old_page);
1da177e4
LT
1520 return VM_FAULT_OOM;
1521}
1522
1523/*
1524 * Helper functions for unmap_mapping_range().
1525 *
1526 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1527 *
1528 * We have to restart searching the prio_tree whenever we drop the lock,
1529 * since the iterator is only valid while the lock is held, and anyway
1530 * a later vma might be split and reinserted earlier while lock dropped.
1531 *
1532 * The list of nonlinear vmas could be handled more efficiently, using
1533 * a placeholder, but handle it in the same way until a need is shown.
1534 * It is important to search the prio_tree before nonlinear list: a vma
1535 * may become nonlinear and be shifted from prio_tree to nonlinear list
1536 * while the lock is dropped; but never shifted from list to prio_tree.
1537 *
1538 * In order to make forward progress despite restarting the search,
1539 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1540 * quickly skip it next time around. Since the prio_tree search only
1541 * shows us those vmas affected by unmapping the range in question, we
1542 * can't efficiently keep all vmas in step with mapping->truncate_count:
1543 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1544 * mapping->truncate_count and vma->vm_truncate_count are protected by
1545 * i_mmap_lock.
1546 *
1547 * In order to make forward progress despite repeatedly restarting some
ee39b37b 1548 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
1549 * and restart from that address when we reach that vma again. It might
1550 * have been split or merged, shrunk or extended, but never shifted: so
1551 * restart_addr remains valid so long as it remains in the vma's range.
1552 * unmap_mapping_range forces truncate_count to leap over page-aligned
1553 * values so we can save vma's restart_addr in its truncate_count field.
1554 */
1555#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1556
1557static void reset_vma_truncate_counts(struct address_space *mapping)
1558{
1559 struct vm_area_struct *vma;
1560 struct prio_tree_iter iter;
1561
1562 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1563 vma->vm_truncate_count = 0;
1564 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1565 vma->vm_truncate_count = 0;
1566}
1567
1568static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1569 unsigned long start_addr, unsigned long end_addr,
1570 struct zap_details *details)
1571{
1572 unsigned long restart_addr;
1573 int need_break;
1574
1575again:
1576 restart_addr = vma->vm_truncate_count;
1577 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1578 start_addr = restart_addr;
1579 if (start_addr >= end_addr) {
1580 /* Top of vma has been split off since last time */
1581 vma->vm_truncate_count = details->truncate_count;
1582 return 0;
1583 }
1584 }
1585
ee39b37b
HD
1586 restart_addr = zap_page_range(vma, start_addr,
1587 end_addr - start_addr, details);
1da177e4
LT
1588 need_break = need_resched() ||
1589 need_lockbreak(details->i_mmap_lock);
1590
ee39b37b 1591 if (restart_addr >= end_addr) {
1da177e4
LT
1592 /* We have now completed this vma: mark it so */
1593 vma->vm_truncate_count = details->truncate_count;
1594 if (!need_break)
1595 return 0;
1596 } else {
1597 /* Note restart_addr in vma's truncate_count field */
ee39b37b 1598 vma->vm_truncate_count = restart_addr;
1da177e4
LT
1599 if (!need_break)
1600 goto again;
1601 }
1602
1603 spin_unlock(details->i_mmap_lock);
1604 cond_resched();
1605 spin_lock(details->i_mmap_lock);
1606 return -EINTR;
1607}
1608
1609static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1610 struct zap_details *details)
1611{
1612 struct vm_area_struct *vma;
1613 struct prio_tree_iter iter;
1614 pgoff_t vba, vea, zba, zea;
1615
1616restart:
1617 vma_prio_tree_foreach(vma, &iter, root,
1618 details->first_index, details->last_index) {
1619 /* Skip quickly over those we have already dealt with */
1620 if (vma->vm_truncate_count == details->truncate_count)
1621 continue;
1622
1623 vba = vma->vm_pgoff;
1624 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1625 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1626 zba = details->first_index;
1627 if (zba < vba)
1628 zba = vba;
1629 zea = details->last_index;
1630 if (zea > vea)
1631 zea = vea;
1632
1633 if (unmap_mapping_range_vma(vma,
1634 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1635 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1636 details) < 0)
1637 goto restart;
1638 }
1639}
1640
1641static inline void unmap_mapping_range_list(struct list_head *head,
1642 struct zap_details *details)
1643{
1644 struct vm_area_struct *vma;
1645
1646 /*
1647 * In nonlinear VMAs there is no correspondence between virtual address
1648 * offset and file offset. So we must perform an exhaustive search
1649 * across *all* the pages in each nonlinear VMA, not just the pages
1650 * whose virtual address lies outside the file truncation point.
1651 */
1652restart:
1653 list_for_each_entry(vma, head, shared.vm_set.list) {
1654 /* Skip quickly over those we have already dealt with */
1655 if (vma->vm_truncate_count == details->truncate_count)
1656 continue;
1657 details->nonlinear_vma = vma;
1658 if (unmap_mapping_range_vma(vma, vma->vm_start,
1659 vma->vm_end, details) < 0)
1660 goto restart;
1661 }
1662}
1663
1664/**
1665 * unmap_mapping_range - unmap the portion of all mmaps
1666 * in the specified address_space corresponding to the specified
1667 * page range in the underlying file.
3d41088f 1668 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
1669 * @holebegin: byte in first page to unmap, relative to the start of
1670 * the underlying file. This will be rounded down to a PAGE_SIZE
1671 * boundary. Note that this is different from vmtruncate(), which
1672 * must keep the partial page. In contrast, we must get rid of
1673 * partial pages.
1674 * @holelen: size of prospective hole in bytes. This will be rounded
1675 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1676 * end of the file.
1677 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1678 * but 0 when invalidating pagecache, don't throw away private data.
1679 */
1680void unmap_mapping_range(struct address_space *mapping,
1681 loff_t const holebegin, loff_t const holelen, int even_cows)
1682{
1683 struct zap_details details;
1684 pgoff_t hba = holebegin >> PAGE_SHIFT;
1685 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1686
1687 /* Check for overflow. */
1688 if (sizeof(holelen) > sizeof(hlen)) {
1689 long long holeend =
1690 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1691 if (holeend & ~(long long)ULONG_MAX)
1692 hlen = ULONG_MAX - hba + 1;
1693 }
1694
1695 details.check_mapping = even_cows? NULL: mapping;
1696 details.nonlinear_vma = NULL;
1697 details.first_index = hba;
1698 details.last_index = hba + hlen - 1;
1699 if (details.last_index < details.first_index)
1700 details.last_index = ULONG_MAX;
1701 details.i_mmap_lock = &mapping->i_mmap_lock;
1702
1703 spin_lock(&mapping->i_mmap_lock);
1704
1705 /* serialize i_size write against truncate_count write */
1706 smp_wmb();
1707 /* Protect against page faults, and endless unmapping loops */
1708 mapping->truncate_count++;
1709 /*
1710 * For archs where spin_lock has inclusive semantics like ia64
1711 * this smp_mb() will prevent to read pagetable contents
1712 * before the truncate_count increment is visible to
1713 * other cpus.
1714 */
1715 smp_mb();
1716 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1717 if (mapping->truncate_count == 0)
1718 reset_vma_truncate_counts(mapping);
1719 mapping->truncate_count++;
1720 }
1721 details.truncate_count = mapping->truncate_count;
1722
1723 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1724 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1725 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1726 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1727 spin_unlock(&mapping->i_mmap_lock);
1728}
1729EXPORT_SYMBOL(unmap_mapping_range);
1730
1731/*
1732 * Handle all mappings that got truncated by a "truncate()"
1733 * system call.
1734 *
1735 * NOTE! We have to be ready to update the memory sharing
1736 * between the file and the memory map for a potential last
1737 * incomplete page. Ugly, but necessary.
1738 */
1739int vmtruncate(struct inode * inode, loff_t offset)
1740{
1741 struct address_space *mapping = inode->i_mapping;
1742 unsigned long limit;
1743
1744 if (inode->i_size < offset)
1745 goto do_expand;
1746 /*
1747 * truncation of in-use swapfiles is disallowed - it would cause
1748 * subsequent swapout to scribble on the now-freed blocks.
1749 */
1750 if (IS_SWAPFILE(inode))
1751 goto out_busy;
1752 i_size_write(inode, offset);
1753 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1754 truncate_inode_pages(mapping, offset);
1755 goto out_truncate;
1756
1757do_expand:
1758 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1759 if (limit != RLIM_INFINITY && offset > limit)
1760 goto out_sig;
1761 if (offset > inode->i_sb->s_maxbytes)
1762 goto out_big;
1763 i_size_write(inode, offset);
1764
1765out_truncate:
1766 if (inode->i_op && inode->i_op->truncate)
1767 inode->i_op->truncate(inode);
1768 return 0;
1769out_sig:
1770 send_sig(SIGXFSZ, current, 0);
1771out_big:
1772 return -EFBIG;
1773out_busy:
1774 return -ETXTBSY;
1775}
1da177e4
LT
1776EXPORT_SYMBOL(vmtruncate);
1777
f6b3ec23
BP
1778int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1779{
1780 struct address_space *mapping = inode->i_mapping;
1781
1782 /*
1783 * If the underlying filesystem is not going to provide
1784 * a way to truncate a range of blocks (punch a hole) -
1785 * we should return failure right now.
1786 */
1787 if (!inode->i_op || !inode->i_op->truncate_range)
1788 return -ENOSYS;
1789
1b1dcc1b 1790 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
1791 down_write(&inode->i_alloc_sem);
1792 unmap_mapping_range(mapping, offset, (end - offset), 1);
1793 truncate_inode_pages_range(mapping, offset, end);
1794 inode->i_op->truncate_range(inode, offset, end);
1795 up_write(&inode->i_alloc_sem);
1b1dcc1b 1796 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
1797
1798 return 0;
1799}
1800EXPORT_SYMBOL(vmtruncate_range);
1801
1da177e4
LT
1802/*
1803 * Primitive swap readahead code. We simply read an aligned block of
1804 * (1 << page_cluster) entries in the swap area. This method is chosen
1805 * because it doesn't cost us any seek time. We also make sure to queue
1806 * the 'original' request together with the readahead ones...
1807 *
1808 * This has been extended to use the NUMA policies from the mm triggering
1809 * the readahead.
1810 *
1811 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1812 */
1813void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1814{
1815#ifdef CONFIG_NUMA
1816 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1817#endif
1818 int i, num;
1819 struct page *new_page;
1820 unsigned long offset;
1821
1822 /*
1823 * Get the number of handles we should do readahead io to.
1824 */
1825 num = valid_swaphandles(entry, &offset);
1826 for (i = 0; i < num; offset++, i++) {
1827 /* Ok, do the async read-ahead now */
1828 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1829 offset), vma, addr);
1830 if (!new_page)
1831 break;
1832 page_cache_release(new_page);
1833#ifdef CONFIG_NUMA
1834 /*
1835 * Find the next applicable VMA for the NUMA policy.
1836 */
1837 addr += PAGE_SIZE;
1838 if (addr == 0)
1839 vma = NULL;
1840 if (vma) {
1841 if (addr >= vma->vm_end) {
1842 vma = next_vma;
1843 next_vma = vma ? vma->vm_next : NULL;
1844 }
1845 if (vma && addr < vma->vm_start)
1846 vma = NULL;
1847 } else {
1848 if (next_vma && addr >= next_vma->vm_start) {
1849 vma = next_vma;
1850 next_vma = vma->vm_next;
1851 }
1852 }
1853#endif
1854 }
1855 lru_add_drain(); /* Push any new pages onto the LRU now */
1856}
1857
1858/*
8f4e2101
HD
1859 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1860 * but allow concurrent faults), and pte mapped but not yet locked.
1861 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1862 */
65500d23
HD
1863static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1864 unsigned long address, pte_t *page_table, pmd_t *pmd,
1865 int write_access, pte_t orig_pte)
1da177e4 1866{
8f4e2101 1867 spinlock_t *ptl;
1da177e4 1868 struct page *page;
65500d23 1869 swp_entry_t entry;
1da177e4
LT
1870 pte_t pte;
1871 int ret = VM_FAULT_MINOR;
1872
4c21e2f2 1873 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 1874 goto out;
65500d23
HD
1875
1876 entry = pte_to_swp_entry(orig_pte);
b16664e4 1877again:
1da177e4
LT
1878 page = lookup_swap_cache(entry);
1879 if (!page) {
1880 swapin_readahead(entry, address, vma);
1881 page = read_swap_cache_async(entry, vma, address);
1882 if (!page) {
1883 /*
8f4e2101
HD
1884 * Back out if somebody else faulted in this pte
1885 * while we released the pte lock.
1da177e4 1886 */
8f4e2101 1887 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1888 if (likely(pte_same(*page_table, orig_pte)))
1889 ret = VM_FAULT_OOM;
65500d23 1890 goto unlock;
1da177e4
LT
1891 }
1892
1893 /* Had to read the page from swap area: Major fault */
1894 ret = VM_FAULT_MAJOR;
1895 inc_page_state(pgmajfault);
1896 grab_swap_token();
1897 }
1898
1899 mark_page_accessed(page);
1900 lock_page(page);
b16664e4
CL
1901 if (!PageSwapCache(page)) {
1902 /* Page migration has occured */
1903 unlock_page(page);
1904 page_cache_release(page);
1905 goto again;
1906 }
1da177e4
LT
1907
1908 /*
8f4e2101 1909 * Back out if somebody else already faulted in this pte.
1da177e4 1910 */
8f4e2101 1911 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 1912 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 1913 goto out_nomap;
b8107480
KK
1914
1915 if (unlikely(!PageUptodate(page))) {
1916 ret = VM_FAULT_SIGBUS;
1917 goto out_nomap;
1da177e4
LT
1918 }
1919
1920 /* The page isn't present yet, go ahead with the fault. */
1da177e4 1921
4294621f 1922 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1923 pte = mk_pte(page, vma->vm_page_prot);
1924 if (write_access && can_share_swap_page(page)) {
1925 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1926 write_access = 0;
1927 }
1da177e4
LT
1928
1929 flush_icache_page(vma, page);
1930 set_pte_at(mm, address, page_table, pte);
1931 page_add_anon_rmap(page, vma, address);
1932
c475a8ab
HD
1933 swap_free(entry);
1934 if (vm_swap_full())
1935 remove_exclusive_swap_page(page);
1936 unlock_page(page);
1937
1da177e4
LT
1938 if (write_access) {
1939 if (do_wp_page(mm, vma, address,
8f4e2101 1940 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1da177e4
LT
1941 ret = VM_FAULT_OOM;
1942 goto out;
1943 }
1944
1945 /* No need to invalidate - it was non-present before */
1946 update_mmu_cache(vma, address, pte);
1947 lazy_mmu_prot_update(pte);
65500d23 1948unlock:
8f4e2101 1949 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1950out:
1951 return ret;
b8107480 1952out_nomap:
8f4e2101 1953 pte_unmap_unlock(page_table, ptl);
b8107480
KK
1954 unlock_page(page);
1955 page_cache_release(page);
65500d23 1956 return ret;
1da177e4
LT
1957}
1958
1959/*
8f4e2101
HD
1960 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1961 * but allow concurrent faults), and pte mapped but not yet locked.
1962 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1963 */
65500d23
HD
1964static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1965 unsigned long address, pte_t *page_table, pmd_t *pmd,
1966 int write_access)
1da177e4 1967{
8f4e2101
HD
1968 struct page *page;
1969 spinlock_t *ptl;
1da177e4 1970 pte_t entry;
1da177e4 1971
6aab341e 1972 if (write_access) {
1da177e4
LT
1973 /* Allocate our own private page. */
1974 pte_unmap(page_table);
1da177e4
LT
1975
1976 if (unlikely(anon_vma_prepare(vma)))
65500d23
HD
1977 goto oom;
1978 page = alloc_zeroed_user_highpage(vma, address);
1da177e4 1979 if (!page)
65500d23 1980 goto oom;
1da177e4 1981
65500d23
HD
1982 entry = mk_pte(page, vma->vm_page_prot);
1983 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
8f4e2101
HD
1984
1985 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1986 if (!pte_none(*page_table))
1987 goto release;
1988 inc_mm_counter(mm, anon_rss);
1da177e4 1989 lru_cache_add_active(page);
9617d95e 1990 page_add_new_anon_rmap(page, vma, address);
b5810039 1991 } else {
8f4e2101
HD
1992 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1993 page = ZERO_PAGE(address);
1994 page_cache_get(page);
1995 entry = mk_pte(page, vma->vm_page_prot);
1996
4c21e2f2 1997 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
1998 spin_lock(ptl);
1999 if (!pte_none(*page_table))
2000 goto release;
b5810039
NP
2001 inc_mm_counter(mm, file_rss);
2002 page_add_file_rmap(page);
1da177e4
LT
2003 }
2004
65500d23 2005 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2006
2007 /* No need to invalidate - it was non-present before */
65500d23 2008 update_mmu_cache(vma, address, entry);
1da177e4 2009 lazy_mmu_prot_update(entry);
65500d23 2010unlock:
8f4e2101 2011 pte_unmap_unlock(page_table, ptl);
1da177e4 2012 return VM_FAULT_MINOR;
8f4e2101
HD
2013release:
2014 page_cache_release(page);
2015 goto unlock;
65500d23 2016oom:
1da177e4
LT
2017 return VM_FAULT_OOM;
2018}
2019
2020/*
2021 * do_no_page() tries to create a new page mapping. It aggressively
2022 * tries to share with existing pages, but makes a separate copy if
2023 * the "write_access" parameter is true in order to avoid the next
2024 * page fault.
2025 *
2026 * As this is called only for pages that do not currently exist, we
2027 * do not need to flush old virtual caches or the TLB.
2028 *
8f4e2101
HD
2029 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2030 * but allow concurrent faults), and pte mapped but not yet locked.
2031 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2032 */
65500d23
HD
2033static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2034 unsigned long address, pte_t *page_table, pmd_t *pmd,
2035 int write_access)
1da177e4 2036{
8f4e2101 2037 spinlock_t *ptl;
65500d23 2038 struct page *new_page;
1da177e4
LT
2039 struct address_space *mapping = NULL;
2040 pte_t entry;
2041 unsigned int sequence = 0;
2042 int ret = VM_FAULT_MINOR;
2043 int anon = 0;
2044
1da177e4 2045 pte_unmap(page_table);
325f04db
HD
2046 BUG_ON(vma->vm_flags & VM_PFNMAP);
2047
1da177e4
LT
2048 if (vma->vm_file) {
2049 mapping = vma->vm_file->f_mapping;
2050 sequence = mapping->truncate_count;
2051 smp_rmb(); /* serializes i_size against truncate_count */
2052 }
2053retry:
1da177e4
LT
2054 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2055 /*
2056 * No smp_rmb is needed here as long as there's a full
2057 * spin_lock/unlock sequence inside the ->nopage callback
2058 * (for the pagecache lookup) that acts as an implicit
2059 * smp_mb() and prevents the i_size read to happen
2060 * after the next truncate_count read.
2061 */
2062
2063 /* no page was available -- either SIGBUS or OOM */
2064 if (new_page == NOPAGE_SIGBUS)
2065 return VM_FAULT_SIGBUS;
2066 if (new_page == NOPAGE_OOM)
2067 return VM_FAULT_OOM;
2068
2069 /*
2070 * Should we do an early C-O-W break?
2071 */
2072 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2073 struct page *page;
2074
2075 if (unlikely(anon_vma_prepare(vma)))
2076 goto oom;
2077 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2078 if (!page)
2079 goto oom;
325f04db 2080 copy_user_highpage(page, new_page, address);
1da177e4
LT
2081 page_cache_release(new_page);
2082 new_page = page;
2083 anon = 1;
2084 }
2085
8f4e2101 2086 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2087 /*
2088 * For a file-backed vma, someone could have truncated or otherwise
2089 * invalidated this page. If unmap_mapping_range got called,
2090 * retry getting the page.
2091 */
2092 if (mapping && unlikely(sequence != mapping->truncate_count)) {
8f4e2101 2093 pte_unmap_unlock(page_table, ptl);
1da177e4 2094 page_cache_release(new_page);
65500d23
HD
2095 cond_resched();
2096 sequence = mapping->truncate_count;
2097 smp_rmb();
1da177e4
LT
2098 goto retry;
2099 }
1da177e4
LT
2100
2101 /*
2102 * This silly early PAGE_DIRTY setting removes a race
2103 * due to the bad i386 page protection. But it's valid
2104 * for other architectures too.
2105 *
2106 * Note that if write_access is true, we either now have
2107 * an exclusive copy of the page, or this is a shared mapping,
2108 * so we can make it writable and dirty to avoid having to
2109 * handle that later.
2110 */
2111 /* Only go through if we didn't race with anybody else... */
2112 if (pte_none(*page_table)) {
1da177e4
LT
2113 flush_icache_page(vma, new_page);
2114 entry = mk_pte(new_page, vma->vm_page_prot);
2115 if (write_access)
2116 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2117 set_pte_at(mm, address, page_table, entry);
2118 if (anon) {
4294621f 2119 inc_mm_counter(mm, anon_rss);
1da177e4 2120 lru_cache_add_active(new_page);
9617d95e 2121 page_add_new_anon_rmap(new_page, vma, address);
f57e88a8 2122 } else {
4294621f 2123 inc_mm_counter(mm, file_rss);
1da177e4 2124 page_add_file_rmap(new_page);
4294621f 2125 }
1da177e4
LT
2126 } else {
2127 /* One of our sibling threads was faster, back out. */
1da177e4 2128 page_cache_release(new_page);
65500d23 2129 goto unlock;
1da177e4
LT
2130 }
2131
2132 /* no need to invalidate: a not-present page shouldn't be cached */
2133 update_mmu_cache(vma, address, entry);
2134 lazy_mmu_prot_update(entry);
65500d23 2135unlock:
8f4e2101 2136 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2137 return ret;
2138oom:
2139 page_cache_release(new_page);
65500d23 2140 return VM_FAULT_OOM;
1da177e4
LT
2141}
2142
2143/*
2144 * Fault of a previously existing named mapping. Repopulate the pte
2145 * from the encoded file_pte if possible. This enables swappable
2146 * nonlinear vmas.
8f4e2101
HD
2147 *
2148 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2149 * but allow concurrent faults), and pte mapped but not yet locked.
2150 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2151 */
65500d23
HD
2152static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2153 unsigned long address, pte_t *page_table, pmd_t *pmd,
2154 int write_access, pte_t orig_pte)
1da177e4 2155{
65500d23 2156 pgoff_t pgoff;
1da177e4
LT
2157 int err;
2158
4c21e2f2 2159 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2160 return VM_FAULT_MINOR;
1da177e4 2161
65500d23
HD
2162 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2163 /*
2164 * Page table corrupted: show pte and kill process.
2165 */
b5810039 2166 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2167 return VM_FAULT_OOM;
2168 }
2169 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2170
2171 pgoff = pte_to_pgoff(orig_pte);
2172 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2173 vma->vm_page_prot, pgoff, 0);
1da177e4
LT
2174 if (err == -ENOMEM)
2175 return VM_FAULT_OOM;
2176 if (err)
2177 return VM_FAULT_SIGBUS;
2178 return VM_FAULT_MAJOR;
2179}
2180
2181/*
2182 * These routines also need to handle stuff like marking pages dirty
2183 * and/or accessed for architectures that don't do it in hardware (most
2184 * RISC architectures). The early dirtying is also good on the i386.
2185 *
2186 * There is also a hook called "update_mmu_cache()" that architectures
2187 * with external mmu caches can use to update those (ie the Sparc or
2188 * PowerPC hashed page tables that act as extended TLBs).
2189 *
c74df32c
HD
2190 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2191 * but allow concurrent faults), and pte mapped but not yet locked.
2192 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2193 */
2194static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2195 struct vm_area_struct *vma, unsigned long address,
2196 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2197{
2198 pte_t entry;
1a44e149 2199 pte_t old_entry;
8f4e2101 2200 spinlock_t *ptl;
1da177e4 2201
1a44e149 2202 old_entry = entry = *pte;
1da177e4 2203 if (!pte_present(entry)) {
65500d23
HD
2204 if (pte_none(entry)) {
2205 if (!vma->vm_ops || !vma->vm_ops->nopage)
2206 return do_anonymous_page(mm, vma, address,
2207 pte, pmd, write_access);
2208 return do_no_page(mm, vma, address,
2209 pte, pmd, write_access);
2210 }
1da177e4 2211 if (pte_file(entry))
65500d23
HD
2212 return do_file_page(mm, vma, address,
2213 pte, pmd, write_access, entry);
2214 return do_swap_page(mm, vma, address,
2215 pte, pmd, write_access, entry);
1da177e4
LT
2216 }
2217
4c21e2f2 2218 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2219 spin_lock(ptl);
2220 if (unlikely(!pte_same(*pte, entry)))
2221 goto unlock;
1da177e4
LT
2222 if (write_access) {
2223 if (!pte_write(entry))
8f4e2101
HD
2224 return do_wp_page(mm, vma, address,
2225 pte, pmd, ptl, entry);
1da177e4
LT
2226 entry = pte_mkdirty(entry);
2227 }
2228 entry = pte_mkyoung(entry);
1a44e149
AA
2229 if (!pte_same(old_entry, entry)) {
2230 ptep_set_access_flags(vma, address, pte, entry, write_access);
2231 update_mmu_cache(vma, address, entry);
2232 lazy_mmu_prot_update(entry);
2233 } else {
2234 /*
2235 * This is needed only for protection faults but the arch code
2236 * is not yet telling us if this is a protection fault or not.
2237 * This still avoids useless tlb flushes for .text page faults
2238 * with threads.
2239 */
2240 if (write_access)
2241 flush_tlb_page(vma, address);
2242 }
8f4e2101
HD
2243unlock:
2244 pte_unmap_unlock(pte, ptl);
1da177e4
LT
2245 return VM_FAULT_MINOR;
2246}
2247
2248/*
2249 * By the time we get here, we already hold the mm semaphore
2250 */
65500d23 2251int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2252 unsigned long address, int write_access)
2253{
2254 pgd_t *pgd;
2255 pud_t *pud;
2256 pmd_t *pmd;
2257 pte_t *pte;
2258
2259 __set_current_state(TASK_RUNNING);
2260
2261 inc_page_state(pgfault);
2262
ac9b9c66
HD
2263 if (unlikely(is_vm_hugetlb_page(vma)))
2264 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2265
1da177e4 2266 pgd = pgd_offset(mm, address);
1da177e4
LT
2267 pud = pud_alloc(mm, pgd, address);
2268 if (!pud)
c74df32c 2269 return VM_FAULT_OOM;
1da177e4
LT
2270 pmd = pmd_alloc(mm, pud, address);
2271 if (!pmd)
c74df32c 2272 return VM_FAULT_OOM;
1da177e4
LT
2273 pte = pte_alloc_map(mm, pmd, address);
2274 if (!pte)
c74df32c 2275 return VM_FAULT_OOM;
1da177e4 2276
c74df32c 2277 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2278}
2279
67207b96
AB
2280EXPORT_SYMBOL_GPL(__handle_mm_fault);
2281
1da177e4
LT
2282#ifndef __PAGETABLE_PUD_FOLDED
2283/*
2284 * Allocate page upper directory.
872fec16 2285 * We've already handled the fast-path in-line.
1da177e4 2286 */
1bb3630e 2287int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2288{
c74df32c
HD
2289 pud_t *new = pud_alloc_one(mm, address);
2290 if (!new)
1bb3630e 2291 return -ENOMEM;
1da177e4 2292
872fec16 2293 spin_lock(&mm->page_table_lock);
1bb3630e 2294 if (pgd_present(*pgd)) /* Another has populated it */
1da177e4 2295 pud_free(new);
1bb3630e
HD
2296 else
2297 pgd_populate(mm, pgd, new);
c74df32c 2298 spin_unlock(&mm->page_table_lock);
1bb3630e 2299 return 0;
1da177e4 2300}
e0f39591
AS
2301#else
2302/* Workaround for gcc 2.96 */
2303int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2304{
2305 return 0;
2306}
1da177e4
LT
2307#endif /* __PAGETABLE_PUD_FOLDED */
2308
2309#ifndef __PAGETABLE_PMD_FOLDED
2310/*
2311 * Allocate page middle directory.
872fec16 2312 * We've already handled the fast-path in-line.
1da177e4 2313 */
1bb3630e 2314int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2315{
c74df32c
HD
2316 pmd_t *new = pmd_alloc_one(mm, address);
2317 if (!new)
1bb3630e 2318 return -ENOMEM;
1da177e4 2319
872fec16 2320 spin_lock(&mm->page_table_lock);
1da177e4 2321#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2322 if (pud_present(*pud)) /* Another has populated it */
1da177e4 2323 pmd_free(new);
1bb3630e
HD
2324 else
2325 pud_populate(mm, pud, new);
1da177e4 2326#else
1bb3630e 2327 if (pgd_present(*pud)) /* Another has populated it */
1da177e4 2328 pmd_free(new);
1bb3630e
HD
2329 else
2330 pgd_populate(mm, pud, new);
1da177e4 2331#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2332 spin_unlock(&mm->page_table_lock);
1bb3630e 2333 return 0;
e0f39591
AS
2334}
2335#else
2336/* Workaround for gcc 2.96 */
2337int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2338{
2339 return 0;
1da177e4
LT
2340}
2341#endif /* __PAGETABLE_PMD_FOLDED */
2342
2343int make_pages_present(unsigned long addr, unsigned long end)
2344{
2345 int ret, len, write;
2346 struct vm_area_struct * vma;
2347
2348 vma = find_vma(current->mm, addr);
2349 if (!vma)
2350 return -1;
2351 write = (vma->vm_flags & VM_WRITE) != 0;
2352 if (addr >= end)
2353 BUG();
2354 if (end > vma->vm_end)
2355 BUG();
2356 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2357 ret = get_user_pages(current, current->mm, addr,
2358 len, write, 0, NULL, NULL);
2359 if (ret < 0)
2360 return ret;
2361 return ret == len ? 0 : -1;
2362}
2363
2364/*
2365 * Map a vmalloc()-space virtual address to the physical page.
2366 */
2367struct page * vmalloc_to_page(void * vmalloc_addr)
2368{
2369 unsigned long addr = (unsigned long) vmalloc_addr;
2370 struct page *page = NULL;
2371 pgd_t *pgd = pgd_offset_k(addr);
2372 pud_t *pud;
2373 pmd_t *pmd;
2374 pte_t *ptep, pte;
2375
2376 if (!pgd_none(*pgd)) {
2377 pud = pud_offset(pgd, addr);
2378 if (!pud_none(*pud)) {
2379 pmd = pmd_offset(pud, addr);
2380 if (!pmd_none(*pmd)) {
2381 ptep = pte_offset_map(pmd, addr);
2382 pte = *ptep;
2383 if (pte_present(pte))
2384 page = pte_page(pte);
2385 pte_unmap(ptep);
2386 }
2387 }
2388 }
2389 return page;
2390}
2391
2392EXPORT_SYMBOL(vmalloc_to_page);
2393
2394/*
2395 * Map a vmalloc()-space virtual address to the physical page frame number.
2396 */
2397unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2398{
2399 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2400}
2401
2402EXPORT_SYMBOL(vmalloc_to_pfn);
2403
1da177e4
LT
2404#if !defined(__HAVE_ARCH_GATE_AREA)
2405
2406#if defined(AT_SYSINFO_EHDR)
5ce7852c 2407static struct vm_area_struct gate_vma;
1da177e4
LT
2408
2409static int __init gate_vma_init(void)
2410{
2411 gate_vma.vm_mm = NULL;
2412 gate_vma.vm_start = FIXADDR_USER_START;
2413 gate_vma.vm_end = FIXADDR_USER_END;
2414 gate_vma.vm_page_prot = PAGE_READONLY;
0b14c179 2415 gate_vma.vm_flags = 0;
1da177e4
LT
2416 return 0;
2417}
2418__initcall(gate_vma_init);
2419#endif
2420
2421struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2422{
2423#ifdef AT_SYSINFO_EHDR
2424 return &gate_vma;
2425#else
2426 return NULL;
2427#endif
2428}
2429
2430int in_gate_area_no_task(unsigned long addr)
2431{
2432#ifdef AT_SYSINFO_EHDR
2433 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2434 return 1;
2435#endif
2436 return 0;
2437}
2438
2439#endif /* __HAVE_ARCH_GATE_AREA */