]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memory.c
mm: refactor do_wp_page, extract the page copy flow
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
0abdd7a8 62#include <linux/dma-debug.h>
1592eef0 63#include <linux/debugfs.h>
1da177e4 64
6952b61d 65#include <asm/io.h>
1da177e4
LT
66#include <asm/pgalloc.h>
67#include <asm/uaccess.h>
68#include <asm/tlb.h>
69#include <asm/tlbflush.h>
70#include <asm/pgtable.h>
71
42b77728
JB
72#include "internal.h"
73
90572890
PZ
74#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
76#endif
77
d41dee36 78#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
79/* use the per-pgdat data instead for discontigmem - mbligh */
80unsigned long max_mapnr;
81struct page *mem_map;
82
83EXPORT_SYMBOL(max_mapnr);
84EXPORT_SYMBOL(mem_map);
85#endif
86
1da177e4
LT
87/*
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
93 */
94void * high_memory;
1da177e4 95
1da177e4 96EXPORT_SYMBOL(high_memory);
1da177e4 97
32a93233
IM
98/*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104int randomize_va_space __read_mostly =
105#ifdef CONFIG_COMPAT_BRK
106 1;
107#else
108 2;
109#endif
a62eaf15
AK
110
111static int __init disable_randmaps(char *s)
112{
113 randomize_va_space = 0;
9b41046c 114 return 1;
a62eaf15
AK
115}
116__setup("norandmaps", disable_randmaps);
117
62eede62 118unsigned long zero_pfn __read_mostly;
03f6462a 119unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 120
0b70068e
AB
121EXPORT_SYMBOL(zero_pfn);
122
a13ea5b7
HD
123/*
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125 */
126static int __init init_zero_pfn(void)
127{
128 zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 return 0;
130}
131core_initcall(init_zero_pfn);
a62eaf15 132
d559db08 133
34e55232
KH
134#if defined(SPLIT_RSS_COUNTING)
135
ea48cf78 136void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
137{
138 int i;
139
140 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
141 if (current->rss_stat.count[i]) {
142 add_mm_counter(mm, i, current->rss_stat.count[i]);
143 current->rss_stat.count[i] = 0;
34e55232
KH
144 }
145 }
05af2e10 146 current->rss_stat.events = 0;
34e55232
KH
147}
148
149static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150{
151 struct task_struct *task = current;
152
153 if (likely(task->mm == mm))
154 task->rss_stat.count[member] += val;
155 else
156 add_mm_counter(mm, member, val);
157}
158#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161/* sync counter once per 64 page faults */
162#define TASK_RSS_EVENTS_THRESH (64)
163static void check_sync_rss_stat(struct task_struct *task)
164{
165 if (unlikely(task != current))
166 return;
167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 168 sync_mm_rss(task->mm);
34e55232 169}
9547d01b 170#else /* SPLIT_RSS_COUNTING */
34e55232
KH
171
172#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175static void check_sync_rss_stat(struct task_struct *task)
176{
177}
178
9547d01b
PZ
179#endif /* SPLIT_RSS_COUNTING */
180
181#ifdef HAVE_GENERIC_MMU_GATHER
182
183static int tlb_next_batch(struct mmu_gather *tlb)
184{
185 struct mmu_gather_batch *batch;
186
187 batch = tlb->active;
188 if (batch->next) {
189 tlb->active = batch->next;
190 return 1;
191 }
192
53a59fc6
MH
193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 return 0;
195
9547d01b
PZ
196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 if (!batch)
198 return 0;
199
53a59fc6 200 tlb->batch_count++;
9547d01b
PZ
201 batch->next = NULL;
202 batch->nr = 0;
203 batch->max = MAX_GATHER_BATCH;
204
205 tlb->active->next = batch;
206 tlb->active = batch;
207
208 return 1;
209}
210
211/* tlb_gather_mmu
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
215 */
2b047252 216void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
217{
218 tlb->mm = mm;
219
2b047252
LT
220 /* Is it from 0 to ~0? */
221 tlb->fullmm = !(start | (end+1));
1de14c3c 222 tlb->need_flush_all = 0;
9547d01b
PZ
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
53a59fc6 227 tlb->batch_count = 0;
9547d01b
PZ
228
229#ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231#endif
fb7332a9
WD
232
233 __tlb_reset_range(tlb);
9547d01b
PZ
234}
235
1cf35d47 236static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 237{
721c21c1
WD
238 if (!tlb->end)
239 return;
240
9547d01b 241 tlb_flush(tlb);
34ee645e 242 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
243#ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb);
34e55232 245#endif
fb7332a9 246 __tlb_reset_range(tlb);
1cf35d47
LT
247}
248
249static void tlb_flush_mmu_free(struct mmu_gather *tlb)
250{
251 struct mmu_gather_batch *batch;
34e55232 252
721c21c1 253 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
254 free_pages_and_swap_cache(batch->pages, batch->nr);
255 batch->nr = 0;
256 }
257 tlb->active = &tlb->local;
258}
259
1cf35d47
LT
260void tlb_flush_mmu(struct mmu_gather *tlb)
261{
1cf35d47
LT
262 tlb_flush_mmu_tlbonly(tlb);
263 tlb_flush_mmu_free(tlb);
264}
265
9547d01b
PZ
266/* tlb_finish_mmu
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
269 */
270void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271{
272 struct mmu_gather_batch *batch, *next;
273
274 tlb_flush_mmu(tlb);
275
276 /* keep the page table cache within bounds */
277 check_pgt_cache();
278
279 for (batch = tlb->local.next; batch; batch = next) {
280 next = batch->next;
281 free_pages((unsigned long)batch, 0);
282 }
283 tlb->local.next = NULL;
284}
285
286/* __tlb_remove_page
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
291 */
292int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293{
294 struct mmu_gather_batch *batch;
295
fb7332a9 296 VM_BUG_ON(!tlb->end);
9547d01b 297
9547d01b
PZ
298 batch = tlb->active;
299 batch->pages[batch->nr++] = page;
300 if (batch->nr == batch->max) {
301 if (!tlb_next_batch(tlb))
302 return 0;
0b43c3aa 303 batch = tlb->active;
9547d01b 304 }
309381fe 305 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b
PZ
306
307 return batch->max - batch->nr;
308}
309
310#endif /* HAVE_GENERIC_MMU_GATHER */
311
26723911
PZ
312#ifdef CONFIG_HAVE_RCU_TABLE_FREE
313
314/*
315 * See the comment near struct mmu_table_batch.
316 */
317
318static void tlb_remove_table_smp_sync(void *arg)
319{
320 /* Simply deliver the interrupt */
321}
322
323static void tlb_remove_table_one(void *table)
324{
325 /*
326 * This isn't an RCU grace period and hence the page-tables cannot be
327 * assumed to be actually RCU-freed.
328 *
329 * It is however sufficient for software page-table walkers that rely on
330 * IRQ disabling. See the comment near struct mmu_table_batch.
331 */
332 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333 __tlb_remove_table(table);
334}
335
336static void tlb_remove_table_rcu(struct rcu_head *head)
337{
338 struct mmu_table_batch *batch;
339 int i;
340
341 batch = container_of(head, struct mmu_table_batch, rcu);
342
343 for (i = 0; i < batch->nr; i++)
344 __tlb_remove_table(batch->tables[i]);
345
346 free_page((unsigned long)batch);
347}
348
349void tlb_table_flush(struct mmu_gather *tlb)
350{
351 struct mmu_table_batch **batch = &tlb->batch;
352
353 if (*batch) {
354 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355 *batch = NULL;
356 }
357}
358
359void tlb_remove_table(struct mmu_gather *tlb, void *table)
360{
361 struct mmu_table_batch **batch = &tlb->batch;
362
26723911
PZ
363 /*
364 * When there's less then two users of this mm there cannot be a
365 * concurrent page-table walk.
366 */
367 if (atomic_read(&tlb->mm->mm_users) < 2) {
368 __tlb_remove_table(table);
369 return;
370 }
371
372 if (*batch == NULL) {
373 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374 if (*batch == NULL) {
375 tlb_remove_table_one(table);
376 return;
377 }
378 (*batch)->nr = 0;
379 }
380 (*batch)->tables[(*batch)->nr++] = table;
381 if ((*batch)->nr == MAX_TABLE_BATCH)
382 tlb_table_flush(tlb);
383}
384
9547d01b 385#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 386
1da177e4
LT
387/*
388 * Note: this doesn't free the actual pages themselves. That
389 * has been handled earlier when unmapping all the memory regions.
390 */
9e1b32ca
BH
391static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392 unsigned long addr)
1da177e4 393{
2f569afd 394 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 395 pmd_clear(pmd);
9e1b32ca 396 pte_free_tlb(tlb, token, addr);
e1f56c89 397 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
398}
399
e0da382c
HD
400static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401 unsigned long addr, unsigned long end,
402 unsigned long floor, unsigned long ceiling)
1da177e4
LT
403{
404 pmd_t *pmd;
405 unsigned long next;
e0da382c 406 unsigned long start;
1da177e4 407
e0da382c 408 start = addr;
1da177e4 409 pmd = pmd_offset(pud, addr);
1da177e4
LT
410 do {
411 next = pmd_addr_end(addr, end);
412 if (pmd_none_or_clear_bad(pmd))
413 continue;
9e1b32ca 414 free_pte_range(tlb, pmd, addr);
1da177e4
LT
415 } while (pmd++, addr = next, addr != end);
416
e0da382c
HD
417 start &= PUD_MASK;
418 if (start < floor)
419 return;
420 if (ceiling) {
421 ceiling &= PUD_MASK;
422 if (!ceiling)
423 return;
1da177e4 424 }
e0da382c
HD
425 if (end - 1 > ceiling - 1)
426 return;
427
428 pmd = pmd_offset(pud, start);
429 pud_clear(pud);
9e1b32ca 430 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 431 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
432}
433
e0da382c
HD
434static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
435 unsigned long addr, unsigned long end,
436 unsigned long floor, unsigned long ceiling)
1da177e4
LT
437{
438 pud_t *pud;
439 unsigned long next;
e0da382c 440 unsigned long start;
1da177e4 441
e0da382c 442 start = addr;
1da177e4 443 pud = pud_offset(pgd, addr);
1da177e4
LT
444 do {
445 next = pud_addr_end(addr, end);
446 if (pud_none_or_clear_bad(pud))
447 continue;
e0da382c 448 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
449 } while (pud++, addr = next, addr != end);
450
e0da382c
HD
451 start &= PGDIR_MASK;
452 if (start < floor)
453 return;
454 if (ceiling) {
455 ceiling &= PGDIR_MASK;
456 if (!ceiling)
457 return;
1da177e4 458 }
e0da382c
HD
459 if (end - 1 > ceiling - 1)
460 return;
461
462 pud = pud_offset(pgd, start);
463 pgd_clear(pgd);
9e1b32ca 464 pud_free_tlb(tlb, pud, start);
1da177e4
LT
465}
466
467/*
e0da382c 468 * This function frees user-level page tables of a process.
1da177e4 469 */
42b77728 470void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
471 unsigned long addr, unsigned long end,
472 unsigned long floor, unsigned long ceiling)
1da177e4
LT
473{
474 pgd_t *pgd;
475 unsigned long next;
e0da382c
HD
476
477 /*
478 * The next few lines have given us lots of grief...
479 *
480 * Why are we testing PMD* at this top level? Because often
481 * there will be no work to do at all, and we'd prefer not to
482 * go all the way down to the bottom just to discover that.
483 *
484 * Why all these "- 1"s? Because 0 represents both the bottom
485 * of the address space and the top of it (using -1 for the
486 * top wouldn't help much: the masks would do the wrong thing).
487 * The rule is that addr 0 and floor 0 refer to the bottom of
488 * the address space, but end 0 and ceiling 0 refer to the top
489 * Comparisons need to use "end - 1" and "ceiling - 1" (though
490 * that end 0 case should be mythical).
491 *
492 * Wherever addr is brought up or ceiling brought down, we must
493 * be careful to reject "the opposite 0" before it confuses the
494 * subsequent tests. But what about where end is brought down
495 * by PMD_SIZE below? no, end can't go down to 0 there.
496 *
497 * Whereas we round start (addr) and ceiling down, by different
498 * masks at different levels, in order to test whether a table
499 * now has no other vmas using it, so can be freed, we don't
500 * bother to round floor or end up - the tests don't need that.
501 */
1da177e4 502
e0da382c
HD
503 addr &= PMD_MASK;
504 if (addr < floor) {
505 addr += PMD_SIZE;
506 if (!addr)
507 return;
508 }
509 if (ceiling) {
510 ceiling &= PMD_MASK;
511 if (!ceiling)
512 return;
513 }
514 if (end - 1 > ceiling - 1)
515 end -= PMD_SIZE;
516 if (addr > end - 1)
517 return;
518
42b77728 519 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
520 do {
521 next = pgd_addr_end(addr, end);
522 if (pgd_none_or_clear_bad(pgd))
523 continue;
42b77728 524 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 525 } while (pgd++, addr = next, addr != end);
e0da382c
HD
526}
527
42b77728 528void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 529 unsigned long floor, unsigned long ceiling)
e0da382c
HD
530{
531 while (vma) {
532 struct vm_area_struct *next = vma->vm_next;
533 unsigned long addr = vma->vm_start;
534
8f4f8c16 535 /*
25d9e2d1 536 * Hide vma from rmap and truncate_pagecache before freeing
537 * pgtables
8f4f8c16 538 */
5beb4930 539 unlink_anon_vmas(vma);
8f4f8c16
HD
540 unlink_file_vma(vma);
541
9da61aef 542 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 543 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 544 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
545 } else {
546 /*
547 * Optimization: gather nearby vmas into one call down
548 */
549 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 550 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
551 vma = next;
552 next = vma->vm_next;
5beb4930 553 unlink_anon_vmas(vma);
8f4f8c16 554 unlink_file_vma(vma);
3bf5ee95
HD
555 }
556 free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
558 }
e0da382c
HD
559 vma = next;
560 }
1da177e4
LT
561}
562
8ac1f832
AA
563int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
564 pmd_t *pmd, unsigned long address)
1da177e4 565{
c4088ebd 566 spinlock_t *ptl;
2f569afd 567 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 568 int wait_split_huge_page;
1bb3630e
HD
569 if (!new)
570 return -ENOMEM;
571
362a61ad
NP
572 /*
573 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 * visible before the pte is made visible to other CPUs by being
575 * put into page tables.
576 *
577 * The other side of the story is the pointer chasing in the page
578 * table walking code (when walking the page table without locking;
579 * ie. most of the time). Fortunately, these data accesses consist
580 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 * being the notable exception) will already guarantee loads are
582 * seen in-order. See the alpha page table accessors for the
583 * smp_read_barrier_depends() barriers in page table walking code.
584 */
585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
c4088ebd 587 ptl = pmd_lock(mm, pmd);
8ac1f832
AA
588 wait_split_huge_page = 0;
589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 590 atomic_long_inc(&mm->nr_ptes);
1da177e4 591 pmd_populate(mm, pmd, new);
2f569afd 592 new = NULL;
8ac1f832
AA
593 } else if (unlikely(pmd_trans_splitting(*pmd)))
594 wait_split_huge_page = 1;
c4088ebd 595 spin_unlock(ptl);
2f569afd
MS
596 if (new)
597 pte_free(mm, new);
8ac1f832
AA
598 if (wait_split_huge_page)
599 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 600 return 0;
1da177e4
LT
601}
602
1bb3630e 603int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 604{
1bb3630e
HD
605 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
606 if (!new)
607 return -ENOMEM;
608
362a61ad
NP
609 smp_wmb(); /* See comment in __pte_alloc */
610
1bb3630e 611 spin_lock(&init_mm.page_table_lock);
8ac1f832 612 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 613 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 614 new = NULL;
8ac1f832
AA
615 } else
616 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 617 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
618 if (new)
619 pte_free_kernel(&init_mm, new);
1bb3630e 620 return 0;
1da177e4
LT
621}
622
d559db08
KH
623static inline void init_rss_vec(int *rss)
624{
625 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626}
627
628static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 629{
d559db08
KH
630 int i;
631
34e55232 632 if (current->mm == mm)
05af2e10 633 sync_mm_rss(mm);
d559db08
KH
634 for (i = 0; i < NR_MM_COUNTERS; i++)
635 if (rss[i])
636 add_mm_counter(mm, i, rss[i]);
ae859762
HD
637}
638
b5810039 639/*
6aab341e
LT
640 * This function is called to print an error when a bad pte
641 * is found. For example, we might have a PFN-mapped pte in
642 * a region that doesn't allow it.
b5810039
NP
643 *
644 * The calling function must still handle the error.
645 */
3dc14741
HD
646static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
647 pte_t pte, struct page *page)
b5810039 648{
3dc14741
HD
649 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
650 pud_t *pud = pud_offset(pgd, addr);
651 pmd_t *pmd = pmd_offset(pud, addr);
652 struct address_space *mapping;
653 pgoff_t index;
d936cf9b
HD
654 static unsigned long resume;
655 static unsigned long nr_shown;
656 static unsigned long nr_unshown;
657
658 /*
659 * Allow a burst of 60 reports, then keep quiet for that minute;
660 * or allow a steady drip of one report per second.
661 */
662 if (nr_shown == 60) {
663 if (time_before(jiffies, resume)) {
664 nr_unshown++;
665 return;
666 }
667 if (nr_unshown) {
1e9e6365
HD
668 printk(KERN_ALERT
669 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
670 nr_unshown);
671 nr_unshown = 0;
672 }
673 nr_shown = 0;
674 }
675 if (nr_shown++ == 0)
676 resume = jiffies + 60 * HZ;
3dc14741
HD
677
678 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
679 index = linear_page_index(vma, addr);
680
1e9e6365
HD
681 printk(KERN_ALERT
682 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
683 current->comm,
684 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 685 if (page)
f0b791a3 686 dump_page(page, "bad pte");
1e9e6365 687 printk(KERN_ALERT
3dc14741
HD
688 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
690 /*
691 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 */
693 if (vma->vm_ops)
071361d3
JP
694 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
695 vma->vm_ops->fault);
72c2d531 696 if (vma->vm_file)
071361d3
JP
697 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
698 vma->vm_file->f_op->mmap);
b5810039 699 dump_stack();
373d4d09 700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
701}
702
ee498ed7 703/*
7e675137 704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 705 *
7e675137
NP
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 709 *
7e675137
NP
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
713 * described below.
714 *
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 718 *
b379d790
JH
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
6aab341e
LT
723 *
724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 *
7e675137
NP
726 * And for normal mappings this is false.
727 *
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
b379d790 732 *
b379d790 733 *
7e675137 734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
735 *
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
743 *
ee498ed7 744 */
7e675137
NP
745#ifdef __HAVE_ARCH_PTE_SPECIAL
746# define HAVE_PTE_SPECIAL 1
747#else
748# define HAVE_PTE_SPECIAL 0
749#endif
750struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 pte_t pte)
ee498ed7 752{
22b31eec 753 unsigned long pfn = pte_pfn(pte);
7e675137
NP
754
755 if (HAVE_PTE_SPECIAL) {
b38af472 756 if (likely(!pte_special(pte)))
22b31eec 757 goto check_pfn;
667a0a06
DV
758 if (vma->vm_ops && vma->vm_ops->find_special_page)
759 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
760 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761 return NULL;
62eede62 762 if (!is_zero_pfn(pfn))
22b31eec 763 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
764 return NULL;
765 }
766
767 /* !HAVE_PTE_SPECIAL case follows: */
768
b379d790
JH
769 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770 if (vma->vm_flags & VM_MIXEDMAP) {
771 if (!pfn_valid(pfn))
772 return NULL;
773 goto out;
774 } else {
7e675137
NP
775 unsigned long off;
776 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
777 if (pfn == vma->vm_pgoff + off)
778 return NULL;
779 if (!is_cow_mapping(vma->vm_flags))
780 return NULL;
781 }
6aab341e
LT
782 }
783
b38af472
HD
784 if (is_zero_pfn(pfn))
785 return NULL;
22b31eec
HD
786check_pfn:
787 if (unlikely(pfn > highest_memmap_pfn)) {
788 print_bad_pte(vma, addr, pte, NULL);
789 return NULL;
790 }
6aab341e
LT
791
792 /*
7e675137 793 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 794 * eg. VDSO mappings can cause them to exist.
6aab341e 795 */
b379d790 796out:
6aab341e 797 return pfn_to_page(pfn);
ee498ed7
HD
798}
799
1da177e4
LT
800/*
801 * copy one vm_area from one task to the other. Assumes the page tables
802 * already present in the new task to be cleared in the whole range
803 * covered by this vma.
1da177e4
LT
804 */
805
570a335b 806static inline unsigned long
1da177e4 807copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 808 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 809 unsigned long addr, int *rss)
1da177e4 810{
b5810039 811 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
812 pte_t pte = *src_pte;
813 struct page *page;
1da177e4
LT
814
815 /* pte contains position in swap or file, so copy. */
816 if (unlikely(!pte_present(pte))) {
0661a336
KS
817 swp_entry_t entry = pte_to_swp_entry(pte);
818
819 if (likely(!non_swap_entry(entry))) {
820 if (swap_duplicate(entry) < 0)
821 return entry.val;
822
823 /* make sure dst_mm is on swapoff's mmlist. */
824 if (unlikely(list_empty(&dst_mm->mmlist))) {
825 spin_lock(&mmlist_lock);
826 if (list_empty(&dst_mm->mmlist))
827 list_add(&dst_mm->mmlist,
828 &src_mm->mmlist);
829 spin_unlock(&mmlist_lock);
830 }
831 rss[MM_SWAPENTS]++;
832 } else if (is_migration_entry(entry)) {
833 page = migration_entry_to_page(entry);
834
835 if (PageAnon(page))
836 rss[MM_ANONPAGES]++;
837 else
838 rss[MM_FILEPAGES]++;
839
840 if (is_write_migration_entry(entry) &&
841 is_cow_mapping(vm_flags)) {
842 /*
843 * COW mappings require pages in both
844 * parent and child to be set to read.
845 */
846 make_migration_entry_read(&entry);
847 pte = swp_entry_to_pte(entry);
848 if (pte_swp_soft_dirty(*src_pte))
849 pte = pte_swp_mksoft_dirty(pte);
850 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 851 }
1da177e4 852 }
ae859762 853 goto out_set_pte;
1da177e4
LT
854 }
855
1da177e4
LT
856 /*
857 * If it's a COW mapping, write protect it both
858 * in the parent and the child
859 */
67121172 860 if (is_cow_mapping(vm_flags)) {
1da177e4 861 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 862 pte = pte_wrprotect(pte);
1da177e4
LT
863 }
864
865 /*
866 * If it's a shared mapping, mark it clean in
867 * the child
868 */
869 if (vm_flags & VM_SHARED)
870 pte = pte_mkclean(pte);
871 pte = pte_mkold(pte);
6aab341e
LT
872
873 page = vm_normal_page(vma, addr, pte);
874 if (page) {
875 get_page(page);
21333b2b 876 page_dup_rmap(page);
d559db08
KH
877 if (PageAnon(page))
878 rss[MM_ANONPAGES]++;
879 else
880 rss[MM_FILEPAGES]++;
6aab341e 881 }
ae859762
HD
882
883out_set_pte:
884 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 885 return 0;
1da177e4
LT
886}
887
21bda264 888static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
889 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
890 unsigned long addr, unsigned long end)
1da177e4 891{
c36987e2 892 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 893 pte_t *src_pte, *dst_pte;
c74df32c 894 spinlock_t *src_ptl, *dst_ptl;
e040f218 895 int progress = 0;
d559db08 896 int rss[NR_MM_COUNTERS];
570a335b 897 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
898
899again:
d559db08
KH
900 init_rss_vec(rss);
901
c74df32c 902 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
903 if (!dst_pte)
904 return -ENOMEM;
ece0e2b6 905 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 906 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 907 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
908 orig_src_pte = src_pte;
909 orig_dst_pte = dst_pte;
6606c3e0 910 arch_enter_lazy_mmu_mode();
1da177e4 911
1da177e4
LT
912 do {
913 /*
914 * We are holding two locks at this point - either of them
915 * could generate latencies in another task on another CPU.
916 */
e040f218
HD
917 if (progress >= 32) {
918 progress = 0;
919 if (need_resched() ||
95c354fe 920 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
921 break;
922 }
1da177e4
LT
923 if (pte_none(*src_pte)) {
924 progress++;
925 continue;
926 }
570a335b
HD
927 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
928 vma, addr, rss);
929 if (entry.val)
930 break;
1da177e4
LT
931 progress += 8;
932 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 933
6606c3e0 934 arch_leave_lazy_mmu_mode();
c74df32c 935 spin_unlock(src_ptl);
ece0e2b6 936 pte_unmap(orig_src_pte);
d559db08 937 add_mm_rss_vec(dst_mm, rss);
c36987e2 938 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 939 cond_resched();
570a335b
HD
940
941 if (entry.val) {
942 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
943 return -ENOMEM;
944 progress = 0;
945 }
1da177e4
LT
946 if (addr != end)
947 goto again;
948 return 0;
949}
950
951static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
952 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
953 unsigned long addr, unsigned long end)
954{
955 pmd_t *src_pmd, *dst_pmd;
956 unsigned long next;
957
958 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
959 if (!dst_pmd)
960 return -ENOMEM;
961 src_pmd = pmd_offset(src_pud, addr);
962 do {
963 next = pmd_addr_end(addr, end);
71e3aac0
AA
964 if (pmd_trans_huge(*src_pmd)) {
965 int err;
14d1a55c 966 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
967 err = copy_huge_pmd(dst_mm, src_mm,
968 dst_pmd, src_pmd, addr, vma);
969 if (err == -ENOMEM)
970 return -ENOMEM;
971 if (!err)
972 continue;
973 /* fall through */
974 }
1da177e4
LT
975 if (pmd_none_or_clear_bad(src_pmd))
976 continue;
977 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
978 vma, addr, next))
979 return -ENOMEM;
980 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
981 return 0;
982}
983
984static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
985 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
986 unsigned long addr, unsigned long end)
987{
988 pud_t *src_pud, *dst_pud;
989 unsigned long next;
990
991 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
992 if (!dst_pud)
993 return -ENOMEM;
994 src_pud = pud_offset(src_pgd, addr);
995 do {
996 next = pud_addr_end(addr, end);
997 if (pud_none_or_clear_bad(src_pud))
998 continue;
999 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1000 vma, addr, next))
1001 return -ENOMEM;
1002 } while (dst_pud++, src_pud++, addr = next, addr != end);
1003 return 0;
1004}
1005
1006int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007 struct vm_area_struct *vma)
1008{
1009 pgd_t *src_pgd, *dst_pgd;
1010 unsigned long next;
1011 unsigned long addr = vma->vm_start;
1012 unsigned long end = vma->vm_end;
2ec74c3e
SG
1013 unsigned long mmun_start; /* For mmu_notifiers */
1014 unsigned long mmun_end; /* For mmu_notifiers */
1015 bool is_cow;
cddb8a5c 1016 int ret;
1da177e4 1017
d992895b
NP
1018 /*
1019 * Don't copy ptes where a page fault will fill them correctly.
1020 * Fork becomes much lighter when there are big shared or private
1021 * readonly mappings. The tradeoff is that copy_page_range is more
1022 * efficient than faulting.
1023 */
0661a336
KS
1024 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1025 !vma->anon_vma)
1026 return 0;
d992895b 1027
1da177e4
LT
1028 if (is_vm_hugetlb_page(vma))
1029 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1030
b3b9c293 1031 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1032 /*
1033 * We do not free on error cases below as remove_vma
1034 * gets called on error from higher level routine
1035 */
5180da41 1036 ret = track_pfn_copy(vma);
2ab64037 1037 if (ret)
1038 return ret;
1039 }
1040
cddb8a5c
AA
1041 /*
1042 * We need to invalidate the secondary MMU mappings only when
1043 * there could be a permission downgrade on the ptes of the
1044 * parent mm. And a permission downgrade will only happen if
1045 * is_cow_mapping() returns true.
1046 */
2ec74c3e
SG
1047 is_cow = is_cow_mapping(vma->vm_flags);
1048 mmun_start = addr;
1049 mmun_end = end;
1050 if (is_cow)
1051 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1052 mmun_end);
cddb8a5c
AA
1053
1054 ret = 0;
1da177e4
LT
1055 dst_pgd = pgd_offset(dst_mm, addr);
1056 src_pgd = pgd_offset(src_mm, addr);
1057 do {
1058 next = pgd_addr_end(addr, end);
1059 if (pgd_none_or_clear_bad(src_pgd))
1060 continue;
cddb8a5c
AA
1061 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1062 vma, addr, next))) {
1063 ret = -ENOMEM;
1064 break;
1065 }
1da177e4 1066 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1067
2ec74c3e
SG
1068 if (is_cow)
1069 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1070 return ret;
1da177e4
LT
1071}
1072
51c6f666 1073static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1074 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1075 unsigned long addr, unsigned long end,
97a89413 1076 struct zap_details *details)
1da177e4 1077{
b5810039 1078 struct mm_struct *mm = tlb->mm;
d16dfc55 1079 int force_flush = 0;
d559db08 1080 int rss[NR_MM_COUNTERS];
97a89413 1081 spinlock_t *ptl;
5f1a1907 1082 pte_t *start_pte;
97a89413 1083 pte_t *pte;
8a5f14a2 1084 swp_entry_t entry;
d559db08 1085
d16dfc55 1086again:
e303297e 1087 init_rss_vec(rss);
5f1a1907
SR
1088 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1089 pte = start_pte;
6606c3e0 1090 arch_enter_lazy_mmu_mode();
1da177e4
LT
1091 do {
1092 pte_t ptent = *pte;
51c6f666 1093 if (pte_none(ptent)) {
1da177e4 1094 continue;
51c6f666 1095 }
6f5e6b9e 1096
1da177e4 1097 if (pte_present(ptent)) {
ee498ed7 1098 struct page *page;
51c6f666 1099
6aab341e 1100 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1101 if (unlikely(details) && page) {
1102 /*
1103 * unmap_shared_mapping_pages() wants to
1104 * invalidate cache without truncating:
1105 * unmap shared but keep private pages.
1106 */
1107 if (details->check_mapping &&
1108 details->check_mapping != page->mapping)
1109 continue;
1da177e4 1110 }
b5810039 1111 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1112 tlb->fullmm);
1da177e4
LT
1113 tlb_remove_tlb_entry(tlb, pte, addr);
1114 if (unlikely(!page))
1115 continue;
1da177e4 1116 if (PageAnon(page))
d559db08 1117 rss[MM_ANONPAGES]--;
6237bcd9 1118 else {
1cf35d47
LT
1119 if (pte_dirty(ptent)) {
1120 force_flush = 1;
6237bcd9 1121 set_page_dirty(page);
1cf35d47 1122 }
4917e5d0 1123 if (pte_young(ptent) &&
64363aad 1124 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1125 mark_page_accessed(page);
d559db08 1126 rss[MM_FILEPAGES]--;
6237bcd9 1127 }
edc315fd 1128 page_remove_rmap(page);
3dc14741
HD
1129 if (unlikely(page_mapcount(page) < 0))
1130 print_bad_pte(vma, addr, ptent, page);
1cf35d47
LT
1131 if (unlikely(!__tlb_remove_page(tlb, page))) {
1132 force_flush = 1;
ce9ec37b 1133 addr += PAGE_SIZE;
d16dfc55 1134 break;
1cf35d47 1135 }
1da177e4
LT
1136 continue;
1137 }
8a5f14a2 1138 /* If details->check_mapping, we leave swap entries. */
1da177e4
LT
1139 if (unlikely(details))
1140 continue;
b084d435 1141
8a5f14a2
KS
1142 entry = pte_to_swp_entry(ptent);
1143 if (!non_swap_entry(entry))
1144 rss[MM_SWAPENTS]--;
1145 else if (is_migration_entry(entry)) {
1146 struct page *page;
9f9f1acd 1147
8a5f14a2 1148 page = migration_entry_to_page(entry);
9f9f1acd 1149
8a5f14a2
KS
1150 if (PageAnon(page))
1151 rss[MM_ANONPAGES]--;
1152 else
1153 rss[MM_FILEPAGES]--;
b084d435 1154 }
8a5f14a2
KS
1155 if (unlikely(!free_swap_and_cache(entry)))
1156 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1157 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1158 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1159
d559db08 1160 add_mm_rss_vec(mm, rss);
6606c3e0 1161 arch_leave_lazy_mmu_mode();
51c6f666 1162
1cf35d47 1163 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1164 if (force_flush)
1cf35d47 1165 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1166 pte_unmap_unlock(start_pte, ptl);
1167
1168 /*
1169 * If we forced a TLB flush (either due to running out of
1170 * batch buffers or because we needed to flush dirty TLB
1171 * entries before releasing the ptl), free the batched
1172 * memory too. Restart if we didn't do everything.
1173 */
1174 if (force_flush) {
1175 force_flush = 0;
1176 tlb_flush_mmu_free(tlb);
2b047252
LT
1177
1178 if (addr != end)
d16dfc55
PZ
1179 goto again;
1180 }
1181
51c6f666 1182 return addr;
1da177e4
LT
1183}
1184
51c6f666 1185static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1186 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1187 unsigned long addr, unsigned long end,
97a89413 1188 struct zap_details *details)
1da177e4
LT
1189{
1190 pmd_t *pmd;
1191 unsigned long next;
1192
1193 pmd = pmd_offset(pud, addr);
1194 do {
1195 next = pmd_addr_end(addr, end);
71e3aac0 1196 if (pmd_trans_huge(*pmd)) {
1a5a9906 1197 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1198#ifdef CONFIG_DEBUG_VM
1199 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1200 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1201 __func__, addr, end,
1202 vma->vm_start,
1203 vma->vm_end);
1204 BUG();
1205 }
1206#endif
e180377f 1207 split_huge_page_pmd(vma, addr, pmd);
f21760b1 1208 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1209 goto next;
71e3aac0
AA
1210 /* fall through */
1211 }
1a5a9906
AA
1212 /*
1213 * Here there can be other concurrent MADV_DONTNEED or
1214 * trans huge page faults running, and if the pmd is
1215 * none or trans huge it can change under us. This is
1216 * because MADV_DONTNEED holds the mmap_sem in read
1217 * mode.
1218 */
1219 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1220 goto next;
97a89413 1221 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1222next:
97a89413
PZ
1223 cond_resched();
1224 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1225
1226 return addr;
1da177e4
LT
1227}
1228
51c6f666 1229static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1230 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1231 unsigned long addr, unsigned long end,
97a89413 1232 struct zap_details *details)
1da177e4
LT
1233{
1234 pud_t *pud;
1235 unsigned long next;
1236
1237 pud = pud_offset(pgd, addr);
1238 do {
1239 next = pud_addr_end(addr, end);
97a89413 1240 if (pud_none_or_clear_bad(pud))
1da177e4 1241 continue;
97a89413
PZ
1242 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1243 } while (pud++, addr = next, addr != end);
51c6f666
RH
1244
1245 return addr;
1da177e4
LT
1246}
1247
038c7aa1
AV
1248static void unmap_page_range(struct mmu_gather *tlb,
1249 struct vm_area_struct *vma,
1250 unsigned long addr, unsigned long end,
1251 struct zap_details *details)
1da177e4
LT
1252{
1253 pgd_t *pgd;
1254 unsigned long next;
1255
8a5f14a2 1256 if (details && !details->check_mapping)
1da177e4
LT
1257 details = NULL;
1258
1259 BUG_ON(addr >= end);
1260 tlb_start_vma(tlb, vma);
1261 pgd = pgd_offset(vma->vm_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
97a89413 1264 if (pgd_none_or_clear_bad(pgd))
1da177e4 1265 continue;
97a89413
PZ
1266 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1267 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1268 tlb_end_vma(tlb, vma);
1269}
51c6f666 1270
f5cc4eef
AV
1271
1272static void unmap_single_vma(struct mmu_gather *tlb,
1273 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1274 unsigned long end_addr,
f5cc4eef
AV
1275 struct zap_details *details)
1276{
1277 unsigned long start = max(vma->vm_start, start_addr);
1278 unsigned long end;
1279
1280 if (start >= vma->vm_end)
1281 return;
1282 end = min(vma->vm_end, end_addr);
1283 if (end <= vma->vm_start)
1284 return;
1285
cbc91f71
SD
1286 if (vma->vm_file)
1287 uprobe_munmap(vma, start, end);
1288
b3b9c293 1289 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1290 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1291
1292 if (start != end) {
1293 if (unlikely(is_vm_hugetlb_page(vma))) {
1294 /*
1295 * It is undesirable to test vma->vm_file as it
1296 * should be non-null for valid hugetlb area.
1297 * However, vm_file will be NULL in the error
7aa6b4ad 1298 * cleanup path of mmap_region. When
f5cc4eef 1299 * hugetlbfs ->mmap method fails,
7aa6b4ad 1300 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1301 * before calling this function to clean up.
1302 * Since no pte has actually been setup, it is
1303 * safe to do nothing in this case.
1304 */
24669e58 1305 if (vma->vm_file) {
83cde9e8 1306 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1307 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1308 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1309 }
f5cc4eef
AV
1310 } else
1311 unmap_page_range(tlb, vma, start, end, details);
1312 }
1da177e4
LT
1313}
1314
1da177e4
LT
1315/**
1316 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1317 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1318 * @vma: the starting vma
1319 * @start_addr: virtual address at which to start unmapping
1320 * @end_addr: virtual address at which to end unmapping
1da177e4 1321 *
508034a3 1322 * Unmap all pages in the vma list.
1da177e4 1323 *
1da177e4
LT
1324 * Only addresses between `start' and `end' will be unmapped.
1325 *
1326 * The VMA list must be sorted in ascending virtual address order.
1327 *
1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329 * range after unmap_vmas() returns. So the only responsibility here is to
1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331 * drops the lock and schedules.
1332 */
6e8bb019 1333void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1334 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1335 unsigned long end_addr)
1da177e4 1336{
cddb8a5c 1337 struct mm_struct *mm = vma->vm_mm;
1da177e4 1338
cddb8a5c 1339 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1340 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1341 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1342 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1343}
1344
1345/**
1346 * zap_page_range - remove user pages in a given range
1347 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1348 * @start: starting address of pages to zap
1da177e4 1349 * @size: number of bytes to zap
8a5f14a2 1350 * @details: details of shared cache invalidation
f5cc4eef
AV
1351 *
1352 * Caller must protect the VMA list
1da177e4 1353 */
7e027b14 1354void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1355 unsigned long size, struct zap_details *details)
1356{
1357 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1358 struct mmu_gather tlb;
7e027b14 1359 unsigned long end = start + size;
1da177e4 1360
1da177e4 1361 lru_add_drain();
2b047252 1362 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1363 update_hiwater_rss(mm);
7e027b14
LT
1364 mmu_notifier_invalidate_range_start(mm, start, end);
1365 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1366 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1367 mmu_notifier_invalidate_range_end(mm, start, end);
1368 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1369}
1370
f5cc4eef
AV
1371/**
1372 * zap_page_range_single - remove user pages in a given range
1373 * @vma: vm_area_struct holding the applicable pages
1374 * @address: starting address of pages to zap
1375 * @size: number of bytes to zap
8a5f14a2 1376 * @details: details of shared cache invalidation
f5cc4eef
AV
1377 *
1378 * The range must fit into one VMA.
1da177e4 1379 */
f5cc4eef 1380static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1381 unsigned long size, struct zap_details *details)
1382{
1383 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1384 struct mmu_gather tlb;
1da177e4 1385 unsigned long end = address + size;
1da177e4 1386
1da177e4 1387 lru_add_drain();
2b047252 1388 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1389 update_hiwater_rss(mm);
f5cc4eef 1390 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1391 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1392 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1393 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1394}
1395
c627f9cc
JS
1396/**
1397 * zap_vma_ptes - remove ptes mapping the vma
1398 * @vma: vm_area_struct holding ptes to be zapped
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
1401 *
1402 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1403 *
1404 * The entire address range must be fully contained within the vma.
1405 *
1406 * Returns 0 if successful.
1407 */
1408int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1409 unsigned long size)
1410{
1411 if (address < vma->vm_start || address + size > vma->vm_end ||
1412 !(vma->vm_flags & VM_PFNMAP))
1413 return -1;
f5cc4eef 1414 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1415 return 0;
1416}
1417EXPORT_SYMBOL_GPL(zap_vma_ptes);
1418
25ca1d6c 1419pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1420 spinlock_t **ptl)
c9cfcddf
LT
1421{
1422 pgd_t * pgd = pgd_offset(mm, addr);
1423 pud_t * pud = pud_alloc(mm, pgd, addr);
1424 if (pud) {
49c91fb0 1425 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1426 if (pmd) {
1427 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1428 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1429 }
c9cfcddf
LT
1430 }
1431 return NULL;
1432}
1433
238f58d8
LT
1434/*
1435 * This is the old fallback for page remapping.
1436 *
1437 * For historical reasons, it only allows reserved pages. Only
1438 * old drivers should use this, and they needed to mark their
1439 * pages reserved for the old functions anyway.
1440 */
423bad60
NP
1441static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1442 struct page *page, pgprot_t prot)
238f58d8 1443{
423bad60 1444 struct mm_struct *mm = vma->vm_mm;
238f58d8 1445 int retval;
c9cfcddf 1446 pte_t *pte;
8a9f3ccd
BS
1447 spinlock_t *ptl;
1448
238f58d8 1449 retval = -EINVAL;
a145dd41 1450 if (PageAnon(page))
5b4e655e 1451 goto out;
238f58d8
LT
1452 retval = -ENOMEM;
1453 flush_dcache_page(page);
c9cfcddf 1454 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1455 if (!pte)
5b4e655e 1456 goto out;
238f58d8
LT
1457 retval = -EBUSY;
1458 if (!pte_none(*pte))
1459 goto out_unlock;
1460
1461 /* Ok, finally just insert the thing.. */
1462 get_page(page);
34e55232 1463 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
1464 page_add_file_rmap(page);
1465 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1466
1467 retval = 0;
8a9f3ccd
BS
1468 pte_unmap_unlock(pte, ptl);
1469 return retval;
238f58d8
LT
1470out_unlock:
1471 pte_unmap_unlock(pte, ptl);
1472out:
1473 return retval;
1474}
1475
bfa5bf6d
REB
1476/**
1477 * vm_insert_page - insert single page into user vma
1478 * @vma: user vma to map to
1479 * @addr: target user address of this page
1480 * @page: source kernel page
1481 *
a145dd41
LT
1482 * This allows drivers to insert individual pages they've allocated
1483 * into a user vma.
1484 *
1485 * The page has to be a nice clean _individual_ kernel allocation.
1486 * If you allocate a compound page, you need to have marked it as
1487 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1488 * (see split_page()).
a145dd41
LT
1489 *
1490 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1491 * took an arbitrary page protection parameter. This doesn't allow
1492 * that. Your vma protection will have to be set up correctly, which
1493 * means that if you want a shared writable mapping, you'd better
1494 * ask for a shared writable mapping!
1495 *
1496 * The page does not need to be reserved.
4b6e1e37
KK
1497 *
1498 * Usually this function is called from f_op->mmap() handler
1499 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1500 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1501 * function from other places, for example from page-fault handler.
a145dd41 1502 */
423bad60
NP
1503int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1504 struct page *page)
a145dd41
LT
1505{
1506 if (addr < vma->vm_start || addr >= vma->vm_end)
1507 return -EFAULT;
1508 if (!page_count(page))
1509 return -EINVAL;
4b6e1e37
KK
1510 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1511 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1512 BUG_ON(vma->vm_flags & VM_PFNMAP);
1513 vma->vm_flags |= VM_MIXEDMAP;
1514 }
423bad60 1515 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1516}
e3c3374f 1517EXPORT_SYMBOL(vm_insert_page);
a145dd41 1518
423bad60
NP
1519static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1520 unsigned long pfn, pgprot_t prot)
1521{
1522 struct mm_struct *mm = vma->vm_mm;
1523 int retval;
1524 pte_t *pte, entry;
1525 spinlock_t *ptl;
1526
1527 retval = -ENOMEM;
1528 pte = get_locked_pte(mm, addr, &ptl);
1529 if (!pte)
1530 goto out;
1531 retval = -EBUSY;
1532 if (!pte_none(*pte))
1533 goto out_unlock;
1534
1535 /* Ok, finally just insert the thing.. */
1536 entry = pte_mkspecial(pfn_pte(pfn, prot));
1537 set_pte_at(mm, addr, pte, entry);
4b3073e1 1538 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1539
1540 retval = 0;
1541out_unlock:
1542 pte_unmap_unlock(pte, ptl);
1543out:
1544 return retval;
1545}
1546
e0dc0d8f
NP
1547/**
1548 * vm_insert_pfn - insert single pfn into user vma
1549 * @vma: user vma to map to
1550 * @addr: target user address of this page
1551 * @pfn: source kernel pfn
1552 *
c462f179 1553 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1554 * they've allocated into a user vma. Same comments apply.
1555 *
1556 * This function should only be called from a vm_ops->fault handler, and
1557 * in that case the handler should return NULL.
0d71d10a
NP
1558 *
1559 * vma cannot be a COW mapping.
1560 *
1561 * As this is called only for pages that do not currently exist, we
1562 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1563 */
1564int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1565 unsigned long pfn)
e0dc0d8f 1566{
2ab64037 1567 int ret;
e4b866ed 1568 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1569 /*
1570 * Technically, architectures with pte_special can avoid all these
1571 * restrictions (same for remap_pfn_range). However we would like
1572 * consistency in testing and feature parity among all, so we should
1573 * try to keep these invariants in place for everybody.
1574 */
b379d790
JH
1575 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1576 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1577 (VM_PFNMAP|VM_MIXEDMAP));
1578 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1579 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1580
423bad60
NP
1581 if (addr < vma->vm_start || addr >= vma->vm_end)
1582 return -EFAULT;
5180da41 1583 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 1584 return -EINVAL;
1585
e4b866ed 1586 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1587
2ab64037 1588 return ret;
423bad60
NP
1589}
1590EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1591
423bad60
NP
1592int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1593 unsigned long pfn)
1594{
1595 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1596
423bad60
NP
1597 if (addr < vma->vm_start || addr >= vma->vm_end)
1598 return -EFAULT;
e0dc0d8f 1599
423bad60
NP
1600 /*
1601 * If we don't have pte special, then we have to use the pfn_valid()
1602 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1603 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1604 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1605 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1606 */
1607 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1608 struct page *page;
1609
1610 page = pfn_to_page(pfn);
1611 return insert_page(vma, addr, page, vma->vm_page_prot);
1612 }
1613 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1614}
423bad60 1615EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1616
1da177e4
LT
1617/*
1618 * maps a range of physical memory into the requested pages. the old
1619 * mappings are removed. any references to nonexistent pages results
1620 * in null mappings (currently treated as "copy-on-access")
1621 */
1622static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1623 unsigned long addr, unsigned long end,
1624 unsigned long pfn, pgprot_t prot)
1625{
1626 pte_t *pte;
c74df32c 1627 spinlock_t *ptl;
1da177e4 1628
c74df32c 1629 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1630 if (!pte)
1631 return -ENOMEM;
6606c3e0 1632 arch_enter_lazy_mmu_mode();
1da177e4
LT
1633 do {
1634 BUG_ON(!pte_none(*pte));
7e675137 1635 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1636 pfn++;
1637 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1638 arch_leave_lazy_mmu_mode();
c74df32c 1639 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1640 return 0;
1641}
1642
1643static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1644 unsigned long addr, unsigned long end,
1645 unsigned long pfn, pgprot_t prot)
1646{
1647 pmd_t *pmd;
1648 unsigned long next;
1649
1650 pfn -= addr >> PAGE_SHIFT;
1651 pmd = pmd_alloc(mm, pud, addr);
1652 if (!pmd)
1653 return -ENOMEM;
f66055ab 1654 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1655 do {
1656 next = pmd_addr_end(addr, end);
1657 if (remap_pte_range(mm, pmd, addr, next,
1658 pfn + (addr >> PAGE_SHIFT), prot))
1659 return -ENOMEM;
1660 } while (pmd++, addr = next, addr != end);
1661 return 0;
1662}
1663
1664static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1665 unsigned long addr, unsigned long end,
1666 unsigned long pfn, pgprot_t prot)
1667{
1668 pud_t *pud;
1669 unsigned long next;
1670
1671 pfn -= addr >> PAGE_SHIFT;
1672 pud = pud_alloc(mm, pgd, addr);
1673 if (!pud)
1674 return -ENOMEM;
1675 do {
1676 next = pud_addr_end(addr, end);
1677 if (remap_pmd_range(mm, pud, addr, next,
1678 pfn + (addr >> PAGE_SHIFT), prot))
1679 return -ENOMEM;
1680 } while (pud++, addr = next, addr != end);
1681 return 0;
1682}
1683
bfa5bf6d
REB
1684/**
1685 * remap_pfn_range - remap kernel memory to userspace
1686 * @vma: user vma to map to
1687 * @addr: target user address to start at
1688 * @pfn: physical address of kernel memory
1689 * @size: size of map area
1690 * @prot: page protection flags for this mapping
1691 *
1692 * Note: this is only safe if the mm semaphore is held when called.
1693 */
1da177e4
LT
1694int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1695 unsigned long pfn, unsigned long size, pgprot_t prot)
1696{
1697 pgd_t *pgd;
1698 unsigned long next;
2d15cab8 1699 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1700 struct mm_struct *mm = vma->vm_mm;
1701 int err;
1702
1703 /*
1704 * Physically remapped pages are special. Tell the
1705 * rest of the world about it:
1706 * VM_IO tells people not to look at these pages
1707 * (accesses can have side effects).
6aab341e
LT
1708 * VM_PFNMAP tells the core MM that the base pages are just
1709 * raw PFN mappings, and do not have a "struct page" associated
1710 * with them.
314e51b9
KK
1711 * VM_DONTEXPAND
1712 * Disable vma merging and expanding with mremap().
1713 * VM_DONTDUMP
1714 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1715 *
1716 * There's a horrible special case to handle copy-on-write
1717 * behaviour that some programs depend on. We mark the "original"
1718 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1719 * See vm_normal_page() for details.
1da177e4 1720 */
b3b9c293
KK
1721 if (is_cow_mapping(vma->vm_flags)) {
1722 if (addr != vma->vm_start || end != vma->vm_end)
1723 return -EINVAL;
fb155c16 1724 vma->vm_pgoff = pfn;
b3b9c293
KK
1725 }
1726
1727 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1728 if (err)
3c8bb73a 1729 return -EINVAL;
fb155c16 1730
314e51b9 1731 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1732
1733 BUG_ON(addr >= end);
1734 pfn -= addr >> PAGE_SHIFT;
1735 pgd = pgd_offset(mm, addr);
1736 flush_cache_range(vma, addr, end);
1da177e4
LT
1737 do {
1738 next = pgd_addr_end(addr, end);
1739 err = remap_pud_range(mm, pgd, addr, next,
1740 pfn + (addr >> PAGE_SHIFT), prot);
1741 if (err)
1742 break;
1743 } while (pgd++, addr = next, addr != end);
2ab64037 1744
1745 if (err)
5180da41 1746 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 1747
1da177e4
LT
1748 return err;
1749}
1750EXPORT_SYMBOL(remap_pfn_range);
1751
b4cbb197
LT
1752/**
1753 * vm_iomap_memory - remap memory to userspace
1754 * @vma: user vma to map to
1755 * @start: start of area
1756 * @len: size of area
1757 *
1758 * This is a simplified io_remap_pfn_range() for common driver use. The
1759 * driver just needs to give us the physical memory range to be mapped,
1760 * we'll figure out the rest from the vma information.
1761 *
1762 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1763 * whatever write-combining details or similar.
1764 */
1765int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1766{
1767 unsigned long vm_len, pfn, pages;
1768
1769 /* Check that the physical memory area passed in looks valid */
1770 if (start + len < start)
1771 return -EINVAL;
1772 /*
1773 * You *really* shouldn't map things that aren't page-aligned,
1774 * but we've historically allowed it because IO memory might
1775 * just have smaller alignment.
1776 */
1777 len += start & ~PAGE_MASK;
1778 pfn = start >> PAGE_SHIFT;
1779 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1780 if (pfn + pages < pfn)
1781 return -EINVAL;
1782
1783 /* We start the mapping 'vm_pgoff' pages into the area */
1784 if (vma->vm_pgoff > pages)
1785 return -EINVAL;
1786 pfn += vma->vm_pgoff;
1787 pages -= vma->vm_pgoff;
1788
1789 /* Can we fit all of the mapping? */
1790 vm_len = vma->vm_end - vma->vm_start;
1791 if (vm_len >> PAGE_SHIFT > pages)
1792 return -EINVAL;
1793
1794 /* Ok, let it rip */
1795 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1796}
1797EXPORT_SYMBOL(vm_iomap_memory);
1798
aee16b3c
JF
1799static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1800 unsigned long addr, unsigned long end,
1801 pte_fn_t fn, void *data)
1802{
1803 pte_t *pte;
1804 int err;
2f569afd 1805 pgtable_t token;
94909914 1806 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1807
1808 pte = (mm == &init_mm) ?
1809 pte_alloc_kernel(pmd, addr) :
1810 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1811 if (!pte)
1812 return -ENOMEM;
1813
1814 BUG_ON(pmd_huge(*pmd));
1815
38e0edb1
JF
1816 arch_enter_lazy_mmu_mode();
1817
2f569afd 1818 token = pmd_pgtable(*pmd);
aee16b3c
JF
1819
1820 do {
c36987e2 1821 err = fn(pte++, token, addr, data);
aee16b3c
JF
1822 if (err)
1823 break;
c36987e2 1824 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1825
38e0edb1
JF
1826 arch_leave_lazy_mmu_mode();
1827
aee16b3c
JF
1828 if (mm != &init_mm)
1829 pte_unmap_unlock(pte-1, ptl);
1830 return err;
1831}
1832
1833static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1834 unsigned long addr, unsigned long end,
1835 pte_fn_t fn, void *data)
1836{
1837 pmd_t *pmd;
1838 unsigned long next;
1839 int err;
1840
ceb86879
AK
1841 BUG_ON(pud_huge(*pud));
1842
aee16b3c
JF
1843 pmd = pmd_alloc(mm, pud, addr);
1844 if (!pmd)
1845 return -ENOMEM;
1846 do {
1847 next = pmd_addr_end(addr, end);
1848 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1849 if (err)
1850 break;
1851 } while (pmd++, addr = next, addr != end);
1852 return err;
1853}
1854
1855static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1856 unsigned long addr, unsigned long end,
1857 pte_fn_t fn, void *data)
1858{
1859 pud_t *pud;
1860 unsigned long next;
1861 int err;
1862
1863 pud = pud_alloc(mm, pgd, addr);
1864 if (!pud)
1865 return -ENOMEM;
1866 do {
1867 next = pud_addr_end(addr, end);
1868 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1869 if (err)
1870 break;
1871 } while (pud++, addr = next, addr != end);
1872 return err;
1873}
1874
1875/*
1876 * Scan a region of virtual memory, filling in page tables as necessary
1877 * and calling a provided function on each leaf page table.
1878 */
1879int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1880 unsigned long size, pte_fn_t fn, void *data)
1881{
1882 pgd_t *pgd;
1883 unsigned long next;
57250a5b 1884 unsigned long end = addr + size;
aee16b3c
JF
1885 int err;
1886
1887 BUG_ON(addr >= end);
1888 pgd = pgd_offset(mm, addr);
1889 do {
1890 next = pgd_addr_end(addr, end);
1891 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1892 if (err)
1893 break;
1894 } while (pgd++, addr = next, addr != end);
57250a5b 1895
aee16b3c
JF
1896 return err;
1897}
1898EXPORT_SYMBOL_GPL(apply_to_page_range);
1899
8f4e2101 1900/*
9b4bdd2f
KS
1901 * handle_pte_fault chooses page fault handler according to an entry which was
1902 * read non-atomically. Before making any commitment, on those architectures
1903 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1904 * parts, do_swap_page must check under lock before unmapping the pte and
1905 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 1906 * and do_anonymous_page can safely check later on).
8f4e2101 1907 */
4c21e2f2 1908static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1909 pte_t *page_table, pte_t orig_pte)
1910{
1911 int same = 1;
1912#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1913 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1914 spinlock_t *ptl = pte_lockptr(mm, pmd);
1915 spin_lock(ptl);
8f4e2101 1916 same = pte_same(*page_table, orig_pte);
4c21e2f2 1917 spin_unlock(ptl);
8f4e2101
HD
1918 }
1919#endif
1920 pte_unmap(page_table);
1921 return same;
1922}
1923
9de455b2 1924static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1925{
0abdd7a8
DW
1926 debug_dma_assert_idle(src);
1927
6aab341e
LT
1928 /*
1929 * If the source page was a PFN mapping, we don't have
1930 * a "struct page" for it. We do a best-effort copy by
1931 * just copying from the original user address. If that
1932 * fails, we just zero-fill it. Live with it.
1933 */
1934 if (unlikely(!src)) {
9b04c5fe 1935 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1936 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1937
1938 /*
1939 * This really shouldn't fail, because the page is there
1940 * in the page tables. But it might just be unreadable,
1941 * in which case we just give up and fill the result with
1942 * zeroes.
1943 */
1944 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 1945 clear_page(kaddr);
9b04c5fe 1946 kunmap_atomic(kaddr);
c4ec7b0d 1947 flush_dcache_page(dst);
0ed361de
NP
1948 } else
1949 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1950}
1951
fb09a464
KS
1952/*
1953 * Notify the address space that the page is about to become writable so that
1954 * it can prohibit this or wait for the page to get into an appropriate state.
1955 *
1956 * We do this without the lock held, so that it can sleep if it needs to.
1957 */
1958static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1959 unsigned long address)
1960{
1961 struct vm_fault vmf;
1962 int ret;
1963
1964 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1965 vmf.pgoff = page->index;
1966 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1967 vmf.page = page;
2e4cdab0 1968 vmf.cow_page = NULL;
fb09a464
KS
1969
1970 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1971 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1972 return ret;
1973 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1974 lock_page(page);
1975 if (!page->mapping) {
1976 unlock_page(page);
1977 return 0; /* retry */
1978 }
1979 ret |= VM_FAULT_LOCKED;
1980 } else
1981 VM_BUG_ON_PAGE(!PageLocked(page), page);
1982 return ret;
1983}
1984
4e047f89
SR
1985/*
1986 * Handle write page faults for pages that can be reused in the current vma
1987 *
1988 * This can happen either due to the mapping being with the VM_SHARED flag,
1989 * or due to us being the last reference standing to the page. In either
1990 * case, all we need to do here is to mark the page as writable and update
1991 * any related book-keeping.
1992 */
1993static inline int wp_page_reuse(struct mm_struct *mm,
1994 struct vm_area_struct *vma, unsigned long address,
1995 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
1996 struct page *page, int page_mkwrite,
1997 int dirty_shared)
1998 __releases(ptl)
1999{
2000 pte_t entry;
2001 /*
2002 * Clear the pages cpupid information as the existing
2003 * information potentially belongs to a now completely
2004 * unrelated process.
2005 */
2006 if (page)
2007 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2008
2009 flush_cache_page(vma, address, pte_pfn(orig_pte));
2010 entry = pte_mkyoung(orig_pte);
2011 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2012 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2013 update_mmu_cache(vma, address, page_table);
2014 pte_unmap_unlock(page_table, ptl);
2015
2016 if (dirty_shared) {
2017 struct address_space *mapping;
2018 int dirtied;
2019
2020 if (!page_mkwrite)
2021 lock_page(page);
2022
2023 dirtied = set_page_dirty(page);
2024 VM_BUG_ON_PAGE(PageAnon(page), page);
2025 mapping = page->mapping;
2026 unlock_page(page);
2027 page_cache_release(page);
2028
2029 if ((dirtied || page_mkwrite) && mapping) {
2030 /*
2031 * Some device drivers do not set page.mapping
2032 * but still dirty their pages
2033 */
2034 balance_dirty_pages_ratelimited(mapping);
2035 }
2036
2037 if (!page_mkwrite)
2038 file_update_time(vma->vm_file);
2039 }
2040
2041 return VM_FAULT_WRITE;
2042}
2043
2f38ab2c
SR
2044/*
2045 * Handle the case of a page which we actually need to copy to a new page.
2046 *
2047 * Called with mmap_sem locked and the old page referenced, but
2048 * without the ptl held.
2049 *
2050 * High level logic flow:
2051 *
2052 * - Allocate a page, copy the content of the old page to the new one.
2053 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2054 * - Take the PTL. If the pte changed, bail out and release the allocated page
2055 * - If the pte is still the way we remember it, update the page table and all
2056 * relevant references. This includes dropping the reference the page-table
2057 * held to the old page, as well as updating the rmap.
2058 * - In any case, unlock the PTL and drop the reference we took to the old page.
2059 */
2060static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2061 unsigned long address, pte_t *page_table, pmd_t *pmd,
2062 pte_t orig_pte, struct page *old_page)
2063{
2064 struct page *new_page = NULL;
2065 spinlock_t *ptl = NULL;
2066 pte_t entry;
2067 int page_copied = 0;
2068 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2069 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2070 struct mem_cgroup *memcg;
2071
2072 if (unlikely(anon_vma_prepare(vma)))
2073 goto oom;
2074
2075 if (is_zero_pfn(pte_pfn(orig_pte))) {
2076 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2077 if (!new_page)
2078 goto oom;
2079 } else {
2080 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2081 if (!new_page)
2082 goto oom;
2083 cow_user_page(new_page, old_page, address, vma);
2084 }
2085 __SetPageUptodate(new_page);
2086
2087 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2088 goto oom_free_new;
2089
2090 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2091
2092 /*
2093 * Re-check the pte - we dropped the lock
2094 */
2095 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2096 if (likely(pte_same(*page_table, orig_pte))) {
2097 if (old_page) {
2098 if (!PageAnon(old_page)) {
2099 dec_mm_counter_fast(mm, MM_FILEPAGES);
2100 inc_mm_counter_fast(mm, MM_ANONPAGES);
2101 }
2102 } else {
2103 inc_mm_counter_fast(mm, MM_ANONPAGES);
2104 }
2105 flush_cache_page(vma, address, pte_pfn(orig_pte));
2106 entry = mk_pte(new_page, vma->vm_page_prot);
2107 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2108 /*
2109 * Clear the pte entry and flush it first, before updating the
2110 * pte with the new entry. This will avoid a race condition
2111 * seen in the presence of one thread doing SMC and another
2112 * thread doing COW.
2113 */
2114 ptep_clear_flush_notify(vma, address, page_table);
2115 page_add_new_anon_rmap(new_page, vma, address);
2116 mem_cgroup_commit_charge(new_page, memcg, false);
2117 lru_cache_add_active_or_unevictable(new_page, vma);
2118 /*
2119 * We call the notify macro here because, when using secondary
2120 * mmu page tables (such as kvm shadow page tables), we want the
2121 * new page to be mapped directly into the secondary page table.
2122 */
2123 set_pte_at_notify(mm, address, page_table, entry);
2124 update_mmu_cache(vma, address, page_table);
2125 if (old_page) {
2126 /*
2127 * Only after switching the pte to the new page may
2128 * we remove the mapcount here. Otherwise another
2129 * process may come and find the rmap count decremented
2130 * before the pte is switched to the new page, and
2131 * "reuse" the old page writing into it while our pte
2132 * here still points into it and can be read by other
2133 * threads.
2134 *
2135 * The critical issue is to order this
2136 * page_remove_rmap with the ptp_clear_flush above.
2137 * Those stores are ordered by (if nothing else,)
2138 * the barrier present in the atomic_add_negative
2139 * in page_remove_rmap.
2140 *
2141 * Then the TLB flush in ptep_clear_flush ensures that
2142 * no process can access the old page before the
2143 * decremented mapcount is visible. And the old page
2144 * cannot be reused until after the decremented
2145 * mapcount is visible. So transitively, TLBs to
2146 * old page will be flushed before it can be reused.
2147 */
2148 page_remove_rmap(old_page);
2149 }
2150
2151 /* Free the old page.. */
2152 new_page = old_page;
2153 page_copied = 1;
2154 } else {
2155 mem_cgroup_cancel_charge(new_page, memcg);
2156 }
2157
2158 if (new_page)
2159 page_cache_release(new_page);
2160
2161 pte_unmap_unlock(page_table, ptl);
2162 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2163 if (old_page) {
2164 /*
2165 * Don't let another task, with possibly unlocked vma,
2166 * keep the mlocked page.
2167 */
2168 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2169 lock_page(old_page); /* LRU manipulation */
2170 munlock_vma_page(old_page);
2171 unlock_page(old_page);
2172 }
2173 page_cache_release(old_page);
2174 }
2175 return page_copied ? VM_FAULT_WRITE : 0;
2176oom_free_new:
2177 page_cache_release(new_page);
2178oom:
2179 if (old_page)
2180 page_cache_release(old_page);
2181 return VM_FAULT_OOM;
2182}
2183
1da177e4
LT
2184/*
2185 * This routine handles present pages, when users try to write
2186 * to a shared page. It is done by copying the page to a new address
2187 * and decrementing the shared-page counter for the old page.
2188 *
1da177e4
LT
2189 * Note that this routine assumes that the protection checks have been
2190 * done by the caller (the low-level page fault routine in most cases).
2191 * Thus we can safely just mark it writable once we've done any necessary
2192 * COW.
2193 *
2194 * We also mark the page dirty at this point even though the page will
2195 * change only once the write actually happens. This avoids a few races,
2196 * and potentially makes it more efficient.
2197 *
8f4e2101
HD
2198 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2199 * but allow concurrent faults), with pte both mapped and locked.
2200 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2201 */
65500d23
HD
2202static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2203 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2204 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2205 __releases(ptl)
1da177e4 2206{
2f38ab2c 2207 struct page *old_page;
1da177e4 2208
6aab341e 2209 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2210 if (!old_page) {
2211 /*
64e45507
PF
2212 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2213 * VM_PFNMAP VMA.
251b97f5
PZ
2214 *
2215 * We should not cow pages in a shared writeable mapping.
2216 * Just mark the pages writable as we can't do any dirty
2217 * accounting on raw pfn maps.
2218 */
2219 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2220 (VM_WRITE|VM_SHARED))
4e047f89
SR
2221 return wp_page_reuse(mm, vma, address, page_table, ptl,
2222 orig_pte, old_page, 0, 0);
2f38ab2c
SR
2223
2224 pte_unmap_unlock(page_table, ptl);
2225 return wp_page_copy(mm, vma, address, page_table, pmd,
2226 orig_pte, old_page);
251b97f5 2227 }
1da177e4 2228
d08b3851 2229 /*
ee6a6457
PZ
2230 * Take out anonymous pages first, anonymous shared vmas are
2231 * not dirty accountable.
d08b3851 2232 */
9a840895 2233 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2234 if (!trylock_page(old_page)) {
2235 page_cache_get(old_page);
2236 pte_unmap_unlock(page_table, ptl);
2237 lock_page(old_page);
2238 page_table = pte_offset_map_lock(mm, pmd, address,
2239 &ptl);
2240 if (!pte_same(*page_table, orig_pte)) {
2241 unlock_page(old_page);
28766805
SR
2242 pte_unmap_unlock(page_table, ptl);
2243 page_cache_release(old_page);
2244 return 0;
ab967d86
HD
2245 }
2246 page_cache_release(old_page);
ee6a6457 2247 }
b009c024 2248 if (reuse_swap_page(old_page)) {
c44b6743
RR
2249 /*
2250 * The page is all ours. Move it to our anon_vma so
2251 * the rmap code will not search our parent or siblings.
2252 * Protected against the rmap code by the page lock.
2253 */
2254 page_move_anon_rmap(old_page, vma, address);
b009c024 2255 unlock_page(old_page);
4e047f89
SR
2256 return wp_page_reuse(mm, vma, address, page_table, ptl,
2257 orig_pte, old_page, 0, 0);
b009c024 2258 }
ab967d86 2259 unlock_page(old_page);
ee6a6457 2260 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2261 (VM_WRITE|VM_SHARED))) {
4e047f89
SR
2262 int page_mkwrite = 0;
2263
f38b4b31 2264 page_cache_get(old_page);
4e047f89 2265
ee6a6457
PZ
2266 /*
2267 * Only catch write-faults on shared writable pages,
2268 * read-only shared pages can get COWed by
2269 * get_user_pages(.write=1, .force=1).
2270 */
9637a5ef 2271 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c 2272 int tmp;
f38b4b31 2273
9637a5ef 2274 pte_unmap_unlock(page_table, ptl);
fb09a464
KS
2275 tmp = do_page_mkwrite(vma, old_page, address);
2276 if (unlikely(!tmp || (tmp &
2277 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2278 page_cache_release(old_page);
2279 return tmp;
c2ec175c 2280 }
9637a5ef
DH
2281 /*
2282 * Since we dropped the lock we need to revalidate
2283 * the PTE as someone else may have changed it. If
2284 * they did, we just return, as we can count on the
2285 * MMU to tell us if they didn't also make it writable.
2286 */
2287 page_table = pte_offset_map_lock(mm, pmd, address,
2288 &ptl);
b827e496
NP
2289 if (!pte_same(*page_table, orig_pte)) {
2290 unlock_page(old_page);
28766805
SR
2291 pte_unmap_unlock(page_table, ptl);
2292 page_cache_release(old_page);
2293 return 0;
b827e496 2294 }
a200ee18 2295 page_mkwrite = 1;
1da177e4 2296 }
f38b4b31 2297
4e047f89
SR
2298 return wp_page_reuse(mm, vma, address, page_table, ptl,
2299 orig_pte, old_page, page_mkwrite, 1);
1da177e4 2300 }
1da177e4
LT
2301
2302 /*
2303 * Ok, we need to copy. Oh, well..
2304 */
b5810039 2305 page_cache_get(old_page);
28766805 2306
8f4e2101 2307 pte_unmap_unlock(page_table, ptl);
2f38ab2c
SR
2308 return wp_page_copy(mm, vma, address, page_table, pmd,
2309 orig_pte, old_page);
1da177e4
LT
2310}
2311
97a89413 2312static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2313 unsigned long start_addr, unsigned long end_addr,
2314 struct zap_details *details)
2315{
f5cc4eef 2316 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2317}
2318
6b2dbba8 2319static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2320 struct zap_details *details)
2321{
2322 struct vm_area_struct *vma;
1da177e4
LT
2323 pgoff_t vba, vea, zba, zea;
2324
6b2dbba8 2325 vma_interval_tree_foreach(vma, root,
1da177e4 2326 details->first_index, details->last_index) {
1da177e4
LT
2327
2328 vba = vma->vm_pgoff;
d6e93217 2329 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2330 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2331 zba = details->first_index;
2332 if (zba < vba)
2333 zba = vba;
2334 zea = details->last_index;
2335 if (zea > vea)
2336 zea = vea;
2337
97a89413 2338 unmap_mapping_range_vma(vma,
1da177e4
LT
2339 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2340 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2341 details);
1da177e4
LT
2342 }
2343}
2344
1da177e4 2345/**
8a5f14a2
KS
2346 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2347 * address_space corresponding to the specified page range in the underlying
2348 * file.
2349 *
3d41088f 2350 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2351 * @holebegin: byte in first page to unmap, relative to the start of
2352 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2353 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2354 * must keep the partial page. In contrast, we must get rid of
2355 * partial pages.
2356 * @holelen: size of prospective hole in bytes. This will be rounded
2357 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2358 * end of the file.
2359 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2360 * but 0 when invalidating pagecache, don't throw away private data.
2361 */
2362void unmap_mapping_range(struct address_space *mapping,
2363 loff_t const holebegin, loff_t const holelen, int even_cows)
2364{
2365 struct zap_details details;
2366 pgoff_t hba = holebegin >> PAGE_SHIFT;
2367 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2368
2369 /* Check for overflow. */
2370 if (sizeof(holelen) > sizeof(hlen)) {
2371 long long holeend =
2372 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2373 if (holeend & ~(long long)ULONG_MAX)
2374 hlen = ULONG_MAX - hba + 1;
2375 }
2376
2377 details.check_mapping = even_cows? NULL: mapping;
1da177e4
LT
2378 details.first_index = hba;
2379 details.last_index = hba + hlen - 1;
2380 if (details.last_index < details.first_index)
2381 details.last_index = ULONG_MAX;
1da177e4 2382
1da177e4 2383
283307c7 2384 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
48ec833b 2385 i_mmap_lock_write(mapping);
6b2dbba8 2386 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2387 unmap_mapping_range_tree(&mapping->i_mmap, &details);
48ec833b 2388 i_mmap_unlock_write(mapping);
1da177e4
LT
2389}
2390EXPORT_SYMBOL(unmap_mapping_range);
2391
1da177e4 2392/*
8f4e2101
HD
2393 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2394 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2395 * We return with pte unmapped and unlocked.
2396 *
2397 * We return with the mmap_sem locked or unlocked in the same cases
2398 * as does filemap_fault().
1da177e4 2399 */
65500d23
HD
2400static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2401 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2402 unsigned int flags, pte_t orig_pte)
1da177e4 2403{
8f4e2101 2404 spinlock_t *ptl;
56f31801 2405 struct page *page, *swapcache;
00501b53 2406 struct mem_cgroup *memcg;
65500d23 2407 swp_entry_t entry;
1da177e4 2408 pte_t pte;
d065bd81 2409 int locked;
ad8c2ee8 2410 int exclusive = 0;
83c54070 2411 int ret = 0;
1da177e4 2412
4c21e2f2 2413 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2414 goto out;
65500d23
HD
2415
2416 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2417 if (unlikely(non_swap_entry(entry))) {
2418 if (is_migration_entry(entry)) {
2419 migration_entry_wait(mm, pmd, address);
2420 } else if (is_hwpoison_entry(entry)) {
2421 ret = VM_FAULT_HWPOISON;
2422 } else {
2423 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2424 ret = VM_FAULT_SIGBUS;
d1737fdb 2425 }
0697212a
CL
2426 goto out;
2427 }
0ff92245 2428 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2429 page = lookup_swap_cache(entry);
2430 if (!page) {
02098fea
HD
2431 page = swapin_readahead(entry,
2432 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2433 if (!page) {
2434 /*
8f4e2101
HD
2435 * Back out if somebody else faulted in this pte
2436 * while we released the pte lock.
1da177e4 2437 */
8f4e2101 2438 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2439 if (likely(pte_same(*page_table, orig_pte)))
2440 ret = VM_FAULT_OOM;
0ff92245 2441 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2442 goto unlock;
1da177e4
LT
2443 }
2444
2445 /* Had to read the page from swap area: Major fault */
2446 ret = VM_FAULT_MAJOR;
f8891e5e 2447 count_vm_event(PGMAJFAULT);
456f998e 2448 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2449 } else if (PageHWPoison(page)) {
71f72525
WF
2450 /*
2451 * hwpoisoned dirty swapcache pages are kept for killing
2452 * owner processes (which may be unknown at hwpoison time)
2453 */
d1737fdb
AK
2454 ret = VM_FAULT_HWPOISON;
2455 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2456 swapcache = page;
4779cb31 2457 goto out_release;
1da177e4
LT
2458 }
2459
56f31801 2460 swapcache = page;
d065bd81 2461 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2462
073e587e 2463 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2464 if (!locked) {
2465 ret |= VM_FAULT_RETRY;
2466 goto out_release;
2467 }
073e587e 2468
4969c119 2469 /*
31c4a3d3
HD
2470 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2471 * release the swapcache from under us. The page pin, and pte_same
2472 * test below, are not enough to exclude that. Even if it is still
2473 * swapcache, we need to check that the page's swap has not changed.
4969c119 2474 */
31c4a3d3 2475 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2476 goto out_page;
2477
cbf86cfe
HD
2478 page = ksm_might_need_to_copy(page, vma, address);
2479 if (unlikely(!page)) {
2480 ret = VM_FAULT_OOM;
2481 page = swapcache;
cbf86cfe 2482 goto out_page;
5ad64688
HD
2483 }
2484
00501b53 2485 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
8a9f3ccd 2486 ret = VM_FAULT_OOM;
bc43f75c 2487 goto out_page;
8a9f3ccd
BS
2488 }
2489
1da177e4 2490 /*
8f4e2101 2491 * Back out if somebody else already faulted in this pte.
1da177e4 2492 */
8f4e2101 2493 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2494 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2495 goto out_nomap;
b8107480
KK
2496
2497 if (unlikely(!PageUptodate(page))) {
2498 ret = VM_FAULT_SIGBUS;
2499 goto out_nomap;
1da177e4
LT
2500 }
2501
8c7c6e34
KH
2502 /*
2503 * The page isn't present yet, go ahead with the fault.
2504 *
2505 * Be careful about the sequence of operations here.
2506 * To get its accounting right, reuse_swap_page() must be called
2507 * while the page is counted on swap but not yet in mapcount i.e.
2508 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2509 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2510 */
1da177e4 2511
34e55232 2512 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2513 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2514 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2515 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2516 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2517 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2518 ret |= VM_FAULT_WRITE;
ad8c2ee8 2519 exclusive = 1;
1da177e4 2520 }
1da177e4 2521 flush_icache_page(vma, page);
179ef71c
CG
2522 if (pte_swp_soft_dirty(orig_pte))
2523 pte = pte_mksoft_dirty(pte);
1da177e4 2524 set_pte_at(mm, address, page_table, pte);
00501b53 2525 if (page == swapcache) {
af34770e 2526 do_page_add_anon_rmap(page, vma, address, exclusive);
00501b53
JW
2527 mem_cgroup_commit_charge(page, memcg, true);
2528 } else { /* ksm created a completely new copy */
56f31801 2529 page_add_new_anon_rmap(page, vma, address);
00501b53
JW
2530 mem_cgroup_commit_charge(page, memcg, false);
2531 lru_cache_add_active_or_unevictable(page, vma);
2532 }
1da177e4 2533
c475a8ab 2534 swap_free(entry);
b291f000 2535 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2536 try_to_free_swap(page);
c475a8ab 2537 unlock_page(page);
56f31801 2538 if (page != swapcache) {
4969c119
AA
2539 /*
2540 * Hold the lock to avoid the swap entry to be reused
2541 * until we take the PT lock for the pte_same() check
2542 * (to avoid false positives from pte_same). For
2543 * further safety release the lock after the swap_free
2544 * so that the swap count won't change under a
2545 * parallel locked swapcache.
2546 */
2547 unlock_page(swapcache);
2548 page_cache_release(swapcache);
2549 }
c475a8ab 2550
30c9f3a9 2551 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2552 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2553 if (ret & VM_FAULT_ERROR)
2554 ret &= VM_FAULT_ERROR;
1da177e4
LT
2555 goto out;
2556 }
2557
2558 /* No need to invalidate - it was non-present before */
4b3073e1 2559 update_mmu_cache(vma, address, page_table);
65500d23 2560unlock:
8f4e2101 2561 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2562out:
2563 return ret;
b8107480 2564out_nomap:
00501b53 2565 mem_cgroup_cancel_charge(page, memcg);
8f4e2101 2566 pte_unmap_unlock(page_table, ptl);
bc43f75c 2567out_page:
b8107480 2568 unlock_page(page);
4779cb31 2569out_release:
b8107480 2570 page_cache_release(page);
56f31801 2571 if (page != swapcache) {
4969c119
AA
2572 unlock_page(swapcache);
2573 page_cache_release(swapcache);
2574 }
65500d23 2575 return ret;
1da177e4
LT
2576}
2577
320b2b8d 2578/*
8ca3eb08
TL
2579 * This is like a special single-page "expand_{down|up}wards()",
2580 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2581 * doesn't hit another vma.
320b2b8d
LT
2582 */
2583static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2584{
2585 address &= PAGE_MASK;
2586 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2587 struct vm_area_struct *prev = vma->vm_prev;
2588
2589 /*
2590 * Is there a mapping abutting this one below?
2591 *
2592 * That's only ok if it's the same stack mapping
2593 * that has gotten split..
2594 */
2595 if (prev && prev->vm_end == address)
2596 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2597
fee7e49d 2598 return expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2599 }
8ca3eb08
TL
2600 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2601 struct vm_area_struct *next = vma->vm_next;
2602
2603 /* As VM_GROWSDOWN but s/below/above/ */
2604 if (next && next->vm_start == address + PAGE_SIZE)
2605 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2606
fee7e49d 2607 return expand_upwards(vma, address + PAGE_SIZE);
8ca3eb08 2608 }
320b2b8d
LT
2609 return 0;
2610}
2611
1da177e4 2612/*
8f4e2101
HD
2613 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2614 * but allow concurrent faults), and pte mapped but not yet locked.
2615 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2616 */
65500d23
HD
2617static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2618 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2619 unsigned int flags)
1da177e4 2620{
00501b53 2621 struct mem_cgroup *memcg;
8f4e2101
HD
2622 struct page *page;
2623 spinlock_t *ptl;
1da177e4 2624 pte_t entry;
1da177e4 2625
11ac5524
LT
2626 pte_unmap(page_table);
2627
2628 /* Check if we need to add a guard page to the stack */
2629 if (check_stack_guard_page(vma, address) < 0)
9c145c56 2630 return VM_FAULT_SIGSEGV;
320b2b8d 2631
11ac5524 2632 /* Use the zero-page for reads */
593befa6 2633 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
62eede62
HD
2634 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2635 vma->vm_page_prot));
11ac5524 2636 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2637 if (!pte_none(*page_table))
2638 goto unlock;
2639 goto setpte;
2640 }
2641
557ed1fa 2642 /* Allocate our own private page. */
557ed1fa
NP
2643 if (unlikely(anon_vma_prepare(vma)))
2644 goto oom;
2645 page = alloc_zeroed_user_highpage_movable(vma, address);
2646 if (!page)
2647 goto oom;
52f37629
MK
2648 /*
2649 * The memory barrier inside __SetPageUptodate makes sure that
2650 * preceeding stores to the page contents become visible before
2651 * the set_pte_at() write.
2652 */
0ed361de 2653 __SetPageUptodate(page);
8f4e2101 2654
00501b53 2655 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
8a9f3ccd
BS
2656 goto oom_free_page;
2657
557ed1fa 2658 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2659 if (vma->vm_flags & VM_WRITE)
2660 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2661
557ed1fa 2662 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2663 if (!pte_none(*page_table))
557ed1fa 2664 goto release;
9ba69294 2665
34e55232 2666 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 2667 page_add_new_anon_rmap(page, vma, address);
00501b53
JW
2668 mem_cgroup_commit_charge(page, memcg, false);
2669 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2670setpte:
65500d23 2671 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2672
2673 /* No need to invalidate - it was non-present before */
4b3073e1 2674 update_mmu_cache(vma, address, page_table);
65500d23 2675unlock:
8f4e2101 2676 pte_unmap_unlock(page_table, ptl);
83c54070 2677 return 0;
8f4e2101 2678release:
00501b53 2679 mem_cgroup_cancel_charge(page, memcg);
8f4e2101
HD
2680 page_cache_release(page);
2681 goto unlock;
8a9f3ccd 2682oom_free_page:
6dbf6d3b 2683 page_cache_release(page);
65500d23 2684oom:
1da177e4
LT
2685 return VM_FAULT_OOM;
2686}
2687
9a95f3cf
PC
2688/*
2689 * The mmap_sem must have been held on entry, and may have been
2690 * released depending on flags and vma->vm_ops->fault() return value.
2691 * See filemap_fault() and __lock_page_retry().
2692 */
7eae74af 2693static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2e4cdab0
MW
2694 pgoff_t pgoff, unsigned int flags,
2695 struct page *cow_page, struct page **page)
7eae74af
KS
2696{
2697 struct vm_fault vmf;
2698 int ret;
2699
2700 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2701 vmf.pgoff = pgoff;
2702 vmf.flags = flags;
2703 vmf.page = NULL;
2e4cdab0 2704 vmf.cow_page = cow_page;
7eae74af
KS
2705
2706 ret = vma->vm_ops->fault(vma, &vmf);
2707 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2708 return ret;
2e4cdab0
MW
2709 if (!vmf.page)
2710 goto out;
7eae74af
KS
2711
2712 if (unlikely(PageHWPoison(vmf.page))) {
2713 if (ret & VM_FAULT_LOCKED)
2714 unlock_page(vmf.page);
2715 page_cache_release(vmf.page);
2716 return VM_FAULT_HWPOISON;
2717 }
2718
2719 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2720 lock_page(vmf.page);
2721 else
2722 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2723
2e4cdab0 2724 out:
7eae74af
KS
2725 *page = vmf.page;
2726 return ret;
2727}
2728
8c6e50b0
KS
2729/**
2730 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2731 *
2732 * @vma: virtual memory area
2733 * @address: user virtual address
2734 * @page: page to map
2735 * @pte: pointer to target page table entry
2736 * @write: true, if new entry is writable
2737 * @anon: true, if it's anonymous page
2738 *
2739 * Caller must hold page table lock relevant for @pte.
2740 *
2741 * Target users are page handler itself and implementations of
2742 * vm_ops->map_pages.
2743 */
2744void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3bb97794
KS
2745 struct page *page, pte_t *pte, bool write, bool anon)
2746{
2747 pte_t entry;
2748
2749 flush_icache_page(vma, page);
2750 entry = mk_pte(page, vma->vm_page_prot);
2751 if (write)
2752 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3bb97794
KS
2753 if (anon) {
2754 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2755 page_add_new_anon_rmap(page, vma, address);
2756 } else {
2757 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2758 page_add_file_rmap(page);
2759 }
2760 set_pte_at(vma->vm_mm, address, pte, entry);
2761
2762 /* no need to invalidate: a not-present page won't be cached */
2763 update_mmu_cache(vma, address, pte);
2764}
2765
3a91053a
KS
2766static unsigned long fault_around_bytes __read_mostly =
2767 rounddown_pow_of_two(65536);
a9b0f861 2768
a9b0f861
KS
2769#ifdef CONFIG_DEBUG_FS
2770static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2771{
a9b0f861 2772 *val = fault_around_bytes;
1592eef0
KS
2773 return 0;
2774}
2775
b4903d6e
AR
2776/*
2777 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2778 * rounded down to nearest page order. It's what do_fault_around() expects to
2779 * see.
2780 */
a9b0f861 2781static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2782{
a9b0f861 2783 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2784 return -EINVAL;
b4903d6e
AR
2785 if (val > PAGE_SIZE)
2786 fault_around_bytes = rounddown_pow_of_two(val);
2787 else
2788 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2789 return 0;
2790}
a9b0f861
KS
2791DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2792 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2793
2794static int __init fault_around_debugfs(void)
2795{
2796 void *ret;
2797
a9b0f861
KS
2798 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2799 &fault_around_bytes_fops);
1592eef0 2800 if (!ret)
a9b0f861 2801 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2802 return 0;
2803}
2804late_initcall(fault_around_debugfs);
1592eef0 2805#endif
8c6e50b0 2806
1fdb412b
KS
2807/*
2808 * do_fault_around() tries to map few pages around the fault address. The hope
2809 * is that the pages will be needed soon and this will lower the number of
2810 * faults to handle.
2811 *
2812 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2813 * not ready to be mapped: not up-to-date, locked, etc.
2814 *
2815 * This function is called with the page table lock taken. In the split ptlock
2816 * case the page table lock only protects only those entries which belong to
2817 * the page table corresponding to the fault address.
2818 *
2819 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2820 * only once.
2821 *
2822 * fault_around_pages() defines how many pages we'll try to map.
2823 * do_fault_around() expects it to return a power of two less than or equal to
2824 * PTRS_PER_PTE.
2825 *
2826 * The virtual address of the area that we map is naturally aligned to the
2827 * fault_around_pages() value (and therefore to page order). This way it's
2828 * easier to guarantee that we don't cross page table boundaries.
2829 */
8c6e50b0
KS
2830static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2831 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2832{
aecd6f44 2833 unsigned long start_addr, nr_pages, mask;
8c6e50b0
KS
2834 pgoff_t max_pgoff;
2835 struct vm_fault vmf;
2836 int off;
2837
aecd6f44
KS
2838 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2839 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2840
2841 start_addr = max(address & mask, vma->vm_start);
8c6e50b0
KS
2842 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2843 pte -= off;
2844 pgoff -= off;
2845
2846 /*
2847 * max_pgoff is either end of page table or end of vma
850e9c69 2848 * or fault_around_pages() from pgoff, depending what is nearest.
8c6e50b0
KS
2849 */
2850 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2851 PTRS_PER_PTE - 1;
2852 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
aecd6f44 2853 pgoff + nr_pages - 1);
8c6e50b0
KS
2854
2855 /* Check if it makes any sense to call ->map_pages */
2856 while (!pte_none(*pte)) {
2857 if (++pgoff > max_pgoff)
2858 return;
2859 start_addr += PAGE_SIZE;
2860 if (start_addr >= vma->vm_end)
2861 return;
2862 pte++;
2863 }
2864
2865 vmf.virtual_address = (void __user *) start_addr;
2866 vmf.pte = pte;
2867 vmf.pgoff = pgoff;
2868 vmf.max_pgoff = max_pgoff;
2869 vmf.flags = flags;
2870 vma->vm_ops->map_pages(vma, &vmf);
2871}
2872
e655fb29
KS
2873static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2874 unsigned long address, pmd_t *pmd,
2875 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2876{
2877 struct page *fault_page;
2878 spinlock_t *ptl;
3bb97794 2879 pte_t *pte;
8c6e50b0
KS
2880 int ret = 0;
2881
2882 /*
2883 * Let's call ->map_pages() first and use ->fault() as fallback
2884 * if page by the offset is not ready to be mapped (cold cache or
2885 * something).
2886 */
9b4bdd2f 2887 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
8c6e50b0
KS
2888 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2889 do_fault_around(vma, address, pte, pgoff, flags);
2890 if (!pte_same(*pte, orig_pte))
2891 goto unlock_out;
2892 pte_unmap_unlock(pte, ptl);
2893 }
e655fb29 2894
2e4cdab0 2895 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
e655fb29
KS
2896 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2897 return ret;
2898
2899 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2900 if (unlikely(!pte_same(*pte, orig_pte))) {
2901 pte_unmap_unlock(pte, ptl);
2902 unlock_page(fault_page);
2903 page_cache_release(fault_page);
2904 return ret;
2905 }
3bb97794 2906 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 2907 unlock_page(fault_page);
8c6e50b0
KS
2908unlock_out:
2909 pte_unmap_unlock(pte, ptl);
e655fb29
KS
2910 return ret;
2911}
2912
ec47c3b9
KS
2913static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2914 unsigned long address, pmd_t *pmd,
2915 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2916{
2917 struct page *fault_page, *new_page;
00501b53 2918 struct mem_cgroup *memcg;
ec47c3b9 2919 spinlock_t *ptl;
3bb97794 2920 pte_t *pte;
ec47c3b9
KS
2921 int ret;
2922
2923 if (unlikely(anon_vma_prepare(vma)))
2924 return VM_FAULT_OOM;
2925
2926 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2927 if (!new_page)
2928 return VM_FAULT_OOM;
2929
00501b53 2930 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
ec47c3b9
KS
2931 page_cache_release(new_page);
2932 return VM_FAULT_OOM;
2933 }
2934
2e4cdab0 2935 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
ec47c3b9
KS
2936 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2937 goto uncharge_out;
2938
2e4cdab0
MW
2939 if (fault_page)
2940 copy_user_highpage(new_page, fault_page, address, vma);
ec47c3b9
KS
2941 __SetPageUptodate(new_page);
2942
2943 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2944 if (unlikely(!pte_same(*pte, orig_pte))) {
2945 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
2946 if (fault_page) {
2947 unlock_page(fault_page);
2948 page_cache_release(fault_page);
2949 } else {
2950 /*
2951 * The fault handler has no page to lock, so it holds
2952 * i_mmap_lock for read to protect against truncate.
2953 */
2954 i_mmap_unlock_read(vma->vm_file->f_mapping);
2955 }
ec47c3b9
KS
2956 goto uncharge_out;
2957 }
3bb97794 2958 do_set_pte(vma, address, new_page, pte, true, true);
00501b53
JW
2959 mem_cgroup_commit_charge(new_page, memcg, false);
2960 lru_cache_add_active_or_unevictable(new_page, vma);
ec47c3b9 2961 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
2962 if (fault_page) {
2963 unlock_page(fault_page);
2964 page_cache_release(fault_page);
2965 } else {
2966 /*
2967 * The fault handler has no page to lock, so it holds
2968 * i_mmap_lock for read to protect against truncate.
2969 */
2970 i_mmap_unlock_read(vma->vm_file->f_mapping);
2971 }
ec47c3b9
KS
2972 return ret;
2973uncharge_out:
00501b53 2974 mem_cgroup_cancel_charge(new_page, memcg);
ec47c3b9
KS
2975 page_cache_release(new_page);
2976 return ret;
2977}
2978
f0c6d4d2 2979static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2980 unsigned long address, pmd_t *pmd,
54cb8821 2981 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2982{
f0c6d4d2
KS
2983 struct page *fault_page;
2984 struct address_space *mapping;
8f4e2101 2985 spinlock_t *ptl;
3bb97794 2986 pte_t *pte;
f0c6d4d2 2987 int dirtied = 0;
f0c6d4d2 2988 int ret, tmp;
1d65f86d 2989
2e4cdab0 2990 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
7eae74af 2991 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 2992 return ret;
1da177e4
LT
2993
2994 /*
f0c6d4d2
KS
2995 * Check if the backing address space wants to know that the page is
2996 * about to become writable
1da177e4 2997 */
fb09a464
KS
2998 if (vma->vm_ops->page_mkwrite) {
2999 unlock_page(fault_page);
3000 tmp = do_page_mkwrite(vma, fault_page, address);
3001 if (unlikely(!tmp ||
3002 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
f0c6d4d2 3003 page_cache_release(fault_page);
fb09a464 3004 return tmp;
4294621f 3005 }
fb09a464
KS
3006 }
3007
f0c6d4d2
KS
3008 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3009 if (unlikely(!pte_same(*pte, orig_pte))) {
3010 pte_unmap_unlock(pte, ptl);
3011 unlock_page(fault_page);
3012 page_cache_release(fault_page);
3013 return ret;
1da177e4 3014 }
3bb97794 3015 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 3016 pte_unmap_unlock(pte, ptl);
b827e496 3017
f0c6d4d2
KS
3018 if (set_page_dirty(fault_page))
3019 dirtied = 1;
d82fa87d
AM
3020 /*
3021 * Take a local copy of the address_space - page.mapping may be zeroed
3022 * by truncate after unlock_page(). The address_space itself remains
3023 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3024 * release semantics to prevent the compiler from undoing this copying.
3025 */
f0c6d4d2
KS
3026 mapping = fault_page->mapping;
3027 unlock_page(fault_page);
3028 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3029 /*
3030 * Some device drivers do not set page.mapping but still
3031 * dirty their pages
3032 */
3033 balance_dirty_pages_ratelimited(mapping);
d08b3851 3034 }
d00806b1 3035
74ec6751 3036 if (!vma->vm_ops->page_mkwrite)
f0c6d4d2 3037 file_update_time(vma->vm_file);
b827e496 3038
1d65f86d 3039 return ret;
54cb8821 3040}
d00806b1 3041
9a95f3cf
PC
3042/*
3043 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3044 * but allow concurrent faults).
3045 * The mmap_sem may have been released depending on flags and our
3046 * return value. See filemap_fault() and __lock_page_or_retry().
3047 */
9b4bdd2f 3048static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
54cb8821 3049 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3050 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3051{
3052 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3053 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3054
16abfa08 3055 pte_unmap(page_table);
e655fb29
KS
3056 if (!(flags & FAULT_FLAG_WRITE))
3057 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3058 orig_pte);
ec47c3b9
KS
3059 if (!(vma->vm_flags & VM_SHARED))
3060 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3061 orig_pte);
f0c6d4d2 3062 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3063}
3064
b19a9939 3065static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3066 unsigned long addr, int page_nid,
3067 int *flags)
9532fec1
MG
3068{
3069 get_page(page);
3070
3071 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3072 if (page_nid == numa_node_id()) {
9532fec1 3073 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3074 *flags |= TNF_FAULT_LOCAL;
3075 }
9532fec1
MG
3076
3077 return mpol_misplaced(page, vma, addr);
3078}
3079
b19a9939 3080static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3081 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3082{
4daae3b4 3083 struct page *page = NULL;
d10e63f2 3084 spinlock_t *ptl;
8191acbd 3085 int page_nid = -1;
90572890 3086 int last_cpupid;
cbee9f88 3087 int target_nid;
b8593bfd 3088 bool migrated = false;
b191f9b1 3089 bool was_writable = pte_write(pte);
6688cc05 3090 int flags = 0;
d10e63f2 3091
c0e7cad9
MG
3092 /* A PROT_NONE fault should not end up here */
3093 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3094
d10e63f2
MG
3095 /*
3096 * The "pte" at this point cannot be used safely without
3097 * validation through pte_unmap_same(). It's of NUMA type but
3098 * the pfn may be screwed if the read is non atomic.
3099 *
4d942466
MG
3100 * We can safely just do a "set_pte_at()", because the old
3101 * page table entry is not accessible, so there would be no
3102 * concurrent hardware modifications to the PTE.
d10e63f2
MG
3103 */
3104 ptl = pte_lockptr(mm, pmd);
3105 spin_lock(ptl);
4daae3b4
MG
3106 if (unlikely(!pte_same(*ptep, pte))) {
3107 pte_unmap_unlock(ptep, ptl);
3108 goto out;
3109 }
3110
4d942466
MG
3111 /* Make it present again */
3112 pte = pte_modify(pte, vma->vm_page_prot);
3113 pte = pte_mkyoung(pte);
b191f9b1
MG
3114 if (was_writable)
3115 pte = pte_mkwrite(pte);
d10e63f2
MG
3116 set_pte_at(mm, addr, ptep, pte);
3117 update_mmu_cache(vma, addr, ptep);
3118
3119 page = vm_normal_page(vma, addr, pte);
3120 if (!page) {
3121 pte_unmap_unlock(ptep, ptl);
3122 return 0;
3123 }
3124
6688cc05 3125 /*
bea66fbd
MG
3126 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3127 * much anyway since they can be in shared cache state. This misses
3128 * the case where a mapping is writable but the process never writes
3129 * to it but pte_write gets cleared during protection updates and
3130 * pte_dirty has unpredictable behaviour between PTE scan updates,
3131 * background writeback, dirty balancing and application behaviour.
6688cc05 3132 */
bea66fbd 3133 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
3134 flags |= TNF_NO_GROUP;
3135
dabe1d99
RR
3136 /*
3137 * Flag if the page is shared between multiple address spaces. This
3138 * is later used when determining whether to group tasks together
3139 */
3140 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3141 flags |= TNF_SHARED;
3142
90572890 3143 last_cpupid = page_cpupid_last(page);
8191acbd 3144 page_nid = page_to_nid(page);
04bb2f94 3145 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3146 pte_unmap_unlock(ptep, ptl);
4daae3b4 3147 if (target_nid == -1) {
4daae3b4
MG
3148 put_page(page);
3149 goto out;
3150 }
3151
3152 /* Migrate to the requested node */
1bc115d8 3153 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3154 if (migrated) {
8191acbd 3155 page_nid = target_nid;
6688cc05 3156 flags |= TNF_MIGRATED;
074c2381
MG
3157 } else
3158 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3159
3160out:
8191acbd 3161 if (page_nid != -1)
6688cc05 3162 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3163 return 0;
3164}
3165
1da177e4
LT
3166/*
3167 * These routines also need to handle stuff like marking pages dirty
3168 * and/or accessed for architectures that don't do it in hardware (most
3169 * RISC architectures). The early dirtying is also good on the i386.
3170 *
3171 * There is also a hook called "update_mmu_cache()" that architectures
3172 * with external mmu caches can use to update those (ie the Sparc or
3173 * PowerPC hashed page tables that act as extended TLBs).
3174 *
c74df32c
HD
3175 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3176 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3177 * We return with pte unmapped and unlocked.
3178 *
3179 * The mmap_sem may have been released depending on flags and our
3180 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3181 */
c0292554 3182static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3183 struct vm_area_struct *vma, unsigned long address,
3184 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3185{
3186 pte_t entry;
8f4e2101 3187 spinlock_t *ptl;
1da177e4 3188
e37c6982
CB
3189 /*
3190 * some architectures can have larger ptes than wordsize,
3191 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3192 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3193 * The code below just needs a consistent view for the ifs and
3194 * we later double check anyway with the ptl lock held. So here
3195 * a barrier will do.
3196 */
3197 entry = *pte;
3198 barrier();
1da177e4 3199 if (!pte_present(entry)) {
65500d23 3200 if (pte_none(entry)) {
f4b81804 3201 if (vma->vm_ops) {
3c18ddd1 3202 if (likely(vma->vm_ops->fault))
9b4bdd2f
KS
3203 return do_fault(mm, vma, address, pte,
3204 pmd, flags, entry);
f4b81804
JS
3205 }
3206 return do_anonymous_page(mm, vma, address,
30c9f3a9 3207 pte, pmd, flags);
65500d23 3208 }
65500d23 3209 return do_swap_page(mm, vma, address,
30c9f3a9 3210 pte, pmd, flags, entry);
1da177e4
LT
3211 }
3212
8a0516ed 3213 if (pte_protnone(entry))
d10e63f2
MG
3214 return do_numa_page(mm, vma, address, entry, pte, pmd);
3215
4c21e2f2 3216 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3217 spin_lock(ptl);
3218 if (unlikely(!pte_same(*pte, entry)))
3219 goto unlock;
30c9f3a9 3220 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3221 if (!pte_write(entry))
8f4e2101
HD
3222 return do_wp_page(mm, vma, address,
3223 pte, pmd, ptl, entry);
1da177e4
LT
3224 entry = pte_mkdirty(entry);
3225 }
3226 entry = pte_mkyoung(entry);
30c9f3a9 3227 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3228 update_mmu_cache(vma, address, pte);
1a44e149
AA
3229 } else {
3230 /*
3231 * This is needed only for protection faults but the arch code
3232 * is not yet telling us if this is a protection fault or not.
3233 * This still avoids useless tlb flushes for .text page faults
3234 * with threads.
3235 */
30c9f3a9 3236 if (flags & FAULT_FLAG_WRITE)
61c77326 3237 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3238 }
8f4e2101
HD
3239unlock:
3240 pte_unmap_unlock(pte, ptl);
83c54070 3241 return 0;
1da177e4
LT
3242}
3243
3244/*
3245 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3246 *
3247 * The mmap_sem may have been released depending on flags and our
3248 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3249 */
519e5247
JW
3250static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3251 unsigned long address, unsigned int flags)
1da177e4
LT
3252{
3253 pgd_t *pgd;
3254 pud_t *pud;
3255 pmd_t *pmd;
3256 pte_t *pte;
3257
ac9b9c66 3258 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3259 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3260
1da177e4 3261 pgd = pgd_offset(mm, address);
1da177e4
LT
3262 pud = pud_alloc(mm, pgd, address);
3263 if (!pud)
c74df32c 3264 return VM_FAULT_OOM;
1da177e4
LT
3265 pmd = pmd_alloc(mm, pud, address);
3266 if (!pmd)
c74df32c 3267 return VM_FAULT_OOM;
71e3aac0 3268 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
c0292554 3269 int ret = VM_FAULT_FALLBACK;
71e3aac0 3270 if (!vma->vm_ops)
c0292554
KS
3271 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3272 pmd, flags);
3273 if (!(ret & VM_FAULT_FALLBACK))
3274 return ret;
71e3aac0
AA
3275 } else {
3276 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3277 int ret;
3278
71e3aac0
AA
3279 barrier();
3280 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3281 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3282
e53289c0
LT
3283 /*
3284 * If the pmd is splitting, return and retry the
3285 * the fault. Alternative: wait until the split
3286 * is done, and goto retry.
3287 */
3288 if (pmd_trans_splitting(orig_pmd))
3289 return 0;
3290
8a0516ed 3291 if (pmd_protnone(orig_pmd))
4daae3b4 3292 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3293 orig_pmd, pmd);
3294
3d59eebc 3295 if (dirty && !pmd_write(orig_pmd)) {
1f1d06c3
DR
3296 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3297 orig_pmd);
9845cbbd
KS
3298 if (!(ret & VM_FAULT_FALLBACK))
3299 return ret;
a1dd450b
WD
3300 } else {
3301 huge_pmd_set_accessed(mm, vma, address, pmd,
3302 orig_pmd, dirty);
9845cbbd 3303 return 0;
1f1d06c3 3304 }
71e3aac0
AA
3305 }
3306 }
3307
3308 /*
3309 * Use __pte_alloc instead of pte_alloc_map, because we can't
3310 * run pte_offset_map on the pmd, if an huge pmd could
3311 * materialize from under us from a different thread.
3312 */
4fd01770
MG
3313 if (unlikely(pmd_none(*pmd)) &&
3314 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3315 return VM_FAULT_OOM;
71e3aac0
AA
3316 /* if an huge pmd materialized from under us just retry later */
3317 if (unlikely(pmd_trans_huge(*pmd)))
3318 return 0;
3319 /*
3320 * A regular pmd is established and it can't morph into a huge pmd
3321 * from under us anymore at this point because we hold the mmap_sem
3322 * read mode and khugepaged takes it in write mode. So now it's
3323 * safe to run pte_offset_map().
3324 */
3325 pte = pte_offset_map(pmd, address);
1da177e4 3326
30c9f3a9 3327 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3328}
3329
9a95f3cf
PC
3330/*
3331 * By the time we get here, we already hold the mm semaphore
3332 *
3333 * The mmap_sem may have been released depending on flags and our
3334 * return value. See filemap_fault() and __lock_page_or_retry().
3335 */
519e5247
JW
3336int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3337 unsigned long address, unsigned int flags)
3338{
3339 int ret;
3340
3341 __set_current_state(TASK_RUNNING);
3342
3343 count_vm_event(PGFAULT);
3344 mem_cgroup_count_vm_event(mm, PGFAULT);
3345
3346 /* do counter updates before entering really critical section. */
3347 check_sync_rss_stat(current);
3348
3349 /*
3350 * Enable the memcg OOM handling for faults triggered in user
3351 * space. Kernel faults are handled more gracefully.
3352 */
3353 if (flags & FAULT_FLAG_USER)
49426420 3354 mem_cgroup_oom_enable();
519e5247
JW
3355
3356 ret = __handle_mm_fault(mm, vma, address, flags);
3357
49426420
JW
3358 if (flags & FAULT_FLAG_USER) {
3359 mem_cgroup_oom_disable();
3360 /*
3361 * The task may have entered a memcg OOM situation but
3362 * if the allocation error was handled gracefully (no
3363 * VM_FAULT_OOM), there is no need to kill anything.
3364 * Just clean up the OOM state peacefully.
3365 */
3366 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3367 mem_cgroup_oom_synchronize(false);
3368 }
3812c8c8 3369
519e5247
JW
3370 return ret;
3371}
e1d6d01a 3372EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3373
1da177e4
LT
3374#ifndef __PAGETABLE_PUD_FOLDED
3375/*
3376 * Allocate page upper directory.
872fec16 3377 * We've already handled the fast-path in-line.
1da177e4 3378 */
1bb3630e 3379int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3380{
c74df32c
HD
3381 pud_t *new = pud_alloc_one(mm, address);
3382 if (!new)
1bb3630e 3383 return -ENOMEM;
1da177e4 3384
362a61ad
NP
3385 smp_wmb(); /* See comment in __pte_alloc */
3386
872fec16 3387 spin_lock(&mm->page_table_lock);
1bb3630e 3388 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3389 pud_free(mm, new);
1bb3630e
HD
3390 else
3391 pgd_populate(mm, pgd, new);
c74df32c 3392 spin_unlock(&mm->page_table_lock);
1bb3630e 3393 return 0;
1da177e4
LT
3394}
3395#endif /* __PAGETABLE_PUD_FOLDED */
3396
3397#ifndef __PAGETABLE_PMD_FOLDED
3398/*
3399 * Allocate page middle directory.
872fec16 3400 * We've already handled the fast-path in-line.
1da177e4 3401 */
1bb3630e 3402int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3403{
c74df32c
HD
3404 pmd_t *new = pmd_alloc_one(mm, address);
3405 if (!new)
1bb3630e 3406 return -ENOMEM;
1da177e4 3407
362a61ad
NP
3408 smp_wmb(); /* See comment in __pte_alloc */
3409
872fec16 3410 spin_lock(&mm->page_table_lock);
1da177e4 3411#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3412 if (!pud_present(*pud)) {
3413 mm_inc_nr_pmds(mm);
1bb3630e 3414 pud_populate(mm, pud, new);
dc6c9a35 3415 } else /* Another has populated it */
5e541973 3416 pmd_free(mm, new);
dc6c9a35
KS
3417#else
3418 if (!pgd_present(*pud)) {
3419 mm_inc_nr_pmds(mm);
1bb3630e 3420 pgd_populate(mm, pud, new);
dc6c9a35
KS
3421 } else /* Another has populated it */
3422 pmd_free(mm, new);
1da177e4 3423#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3424 spin_unlock(&mm->page_table_lock);
1bb3630e 3425 return 0;
e0f39591 3426}
1da177e4
LT
3427#endif /* __PAGETABLE_PMD_FOLDED */
3428
1b36ba81 3429static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3430 pte_t **ptepp, spinlock_t **ptlp)
3431{
3432 pgd_t *pgd;
3433 pud_t *pud;
3434 pmd_t *pmd;
3435 pte_t *ptep;
3436
3437 pgd = pgd_offset(mm, address);
3438 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3439 goto out;
3440
3441 pud = pud_offset(pgd, address);
3442 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3443 goto out;
3444
3445 pmd = pmd_offset(pud, address);
f66055ab 3446 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3447 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3448 goto out;
3449
3450 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3451 if (pmd_huge(*pmd))
3452 goto out;
3453
3454 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3455 if (!ptep)
3456 goto out;
3457 if (!pte_present(*ptep))
3458 goto unlock;
3459 *ptepp = ptep;
3460 return 0;
3461unlock:
3462 pte_unmap_unlock(ptep, *ptlp);
3463out:
3464 return -EINVAL;
3465}
3466
1b36ba81
NK
3467static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3468 pte_t **ptepp, spinlock_t **ptlp)
3469{
3470 int res;
3471
3472 /* (void) is needed to make gcc happy */
3473 (void) __cond_lock(*ptlp,
3474 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3475 return res;
3476}
3477
3b6748e2
JW
3478/**
3479 * follow_pfn - look up PFN at a user virtual address
3480 * @vma: memory mapping
3481 * @address: user virtual address
3482 * @pfn: location to store found PFN
3483 *
3484 * Only IO mappings and raw PFN mappings are allowed.
3485 *
3486 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3487 */
3488int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3489 unsigned long *pfn)
3490{
3491 int ret = -EINVAL;
3492 spinlock_t *ptl;
3493 pte_t *ptep;
3494
3495 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3496 return ret;
3497
3498 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3499 if (ret)
3500 return ret;
3501 *pfn = pte_pfn(*ptep);
3502 pte_unmap_unlock(ptep, ptl);
3503 return 0;
3504}
3505EXPORT_SYMBOL(follow_pfn);
3506
28b2ee20 3507#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3508int follow_phys(struct vm_area_struct *vma,
3509 unsigned long address, unsigned int flags,
3510 unsigned long *prot, resource_size_t *phys)
28b2ee20 3511{
03668a4d 3512 int ret = -EINVAL;
28b2ee20
RR
3513 pte_t *ptep, pte;
3514 spinlock_t *ptl;
28b2ee20 3515
d87fe660 3516 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3517 goto out;
28b2ee20 3518
03668a4d 3519 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3520 goto out;
28b2ee20 3521 pte = *ptep;
03668a4d 3522
28b2ee20
RR
3523 if ((flags & FOLL_WRITE) && !pte_write(pte))
3524 goto unlock;
28b2ee20
RR
3525
3526 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3527 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3528
03668a4d 3529 ret = 0;
28b2ee20
RR
3530unlock:
3531 pte_unmap_unlock(ptep, ptl);
3532out:
d87fe660 3533 return ret;
28b2ee20
RR
3534}
3535
3536int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3537 void *buf, int len, int write)
3538{
3539 resource_size_t phys_addr;
3540 unsigned long prot = 0;
2bc7273b 3541 void __iomem *maddr;
28b2ee20
RR
3542 int offset = addr & (PAGE_SIZE-1);
3543
d87fe660 3544 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3545 return -EINVAL;
3546
9cb12d7b 3547 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
3548 if (write)
3549 memcpy_toio(maddr + offset, buf, len);
3550 else
3551 memcpy_fromio(buf, maddr + offset, len);
3552 iounmap(maddr);
3553
3554 return len;
3555}
5a73633e 3556EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3557#endif
3558
0ec76a11 3559/*
206cb636
SW
3560 * Access another process' address space as given in mm. If non-NULL, use the
3561 * given task for page fault accounting.
0ec76a11 3562 */
206cb636
SW
3563static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3564 unsigned long addr, void *buf, int len, int write)
0ec76a11 3565{
0ec76a11 3566 struct vm_area_struct *vma;
0ec76a11
DH
3567 void *old_buf = buf;
3568
0ec76a11 3569 down_read(&mm->mmap_sem);
183ff22b 3570 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3571 while (len) {
3572 int bytes, ret, offset;
3573 void *maddr;
28b2ee20 3574 struct page *page = NULL;
0ec76a11
DH
3575
3576 ret = get_user_pages(tsk, mm, addr, 1,
3577 write, 1, &page, &vma);
28b2ee20 3578 if (ret <= 0) {
dbffcd03
RR
3579#ifndef CONFIG_HAVE_IOREMAP_PROT
3580 break;
3581#else
28b2ee20
RR
3582 /*
3583 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3584 * we can access using slightly different code.
3585 */
28b2ee20 3586 vma = find_vma(mm, addr);
fe936dfc 3587 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3588 break;
3589 if (vma->vm_ops && vma->vm_ops->access)
3590 ret = vma->vm_ops->access(vma, addr, buf,
3591 len, write);
3592 if (ret <= 0)
28b2ee20
RR
3593 break;
3594 bytes = ret;
dbffcd03 3595#endif
0ec76a11 3596 } else {
28b2ee20
RR
3597 bytes = len;
3598 offset = addr & (PAGE_SIZE-1);
3599 if (bytes > PAGE_SIZE-offset)
3600 bytes = PAGE_SIZE-offset;
3601
3602 maddr = kmap(page);
3603 if (write) {
3604 copy_to_user_page(vma, page, addr,
3605 maddr + offset, buf, bytes);
3606 set_page_dirty_lock(page);
3607 } else {
3608 copy_from_user_page(vma, page, addr,
3609 buf, maddr + offset, bytes);
3610 }
3611 kunmap(page);
3612 page_cache_release(page);
0ec76a11 3613 }
0ec76a11
DH
3614 len -= bytes;
3615 buf += bytes;
3616 addr += bytes;
3617 }
3618 up_read(&mm->mmap_sem);
0ec76a11
DH
3619
3620 return buf - old_buf;
3621}
03252919 3622
5ddd36b9 3623/**
ae91dbfc 3624 * access_remote_vm - access another process' address space
5ddd36b9
SW
3625 * @mm: the mm_struct of the target address space
3626 * @addr: start address to access
3627 * @buf: source or destination buffer
3628 * @len: number of bytes to transfer
3629 * @write: whether the access is a write
3630 *
3631 * The caller must hold a reference on @mm.
3632 */
3633int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3634 void *buf, int len, int write)
3635{
3636 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3637}
3638
206cb636
SW
3639/*
3640 * Access another process' address space.
3641 * Source/target buffer must be kernel space,
3642 * Do not walk the page table directly, use get_user_pages
3643 */
3644int access_process_vm(struct task_struct *tsk, unsigned long addr,
3645 void *buf, int len, int write)
3646{
3647 struct mm_struct *mm;
3648 int ret;
3649
3650 mm = get_task_mm(tsk);
3651 if (!mm)
3652 return 0;
3653
3654 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3655 mmput(mm);
3656
3657 return ret;
3658}
3659
03252919
AK
3660/*
3661 * Print the name of a VMA.
3662 */
3663void print_vma_addr(char *prefix, unsigned long ip)
3664{
3665 struct mm_struct *mm = current->mm;
3666 struct vm_area_struct *vma;
3667
e8bff74a
IM
3668 /*
3669 * Do not print if we are in atomic
3670 * contexts (in exception stacks, etc.):
3671 */
3672 if (preempt_count())
3673 return;
3674
03252919
AK
3675 down_read(&mm->mmap_sem);
3676 vma = find_vma(mm, ip);
3677 if (vma && vma->vm_file) {
3678 struct file *f = vma->vm_file;
3679 char *buf = (char *)__get_free_page(GFP_KERNEL);
3680 if (buf) {
2fbc57c5 3681 char *p;
03252919 3682
cf28b486 3683 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3684 if (IS_ERR(p))
3685 p = "?";
2fbc57c5 3686 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3687 vma->vm_start,
3688 vma->vm_end - vma->vm_start);
3689 free_page((unsigned long)buf);
3690 }
3691 }
51a07e50 3692 up_read(&mm->mmap_sem);
03252919 3693}
3ee1afa3 3694
662bbcb2 3695#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3ee1afa3
NP
3696void might_fault(void)
3697{
95156f00
PZ
3698 /*
3699 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3700 * holding the mmap_sem, this is safe because kernel memory doesn't
3701 * get paged out, therefore we'll never actually fault, and the
3702 * below annotations will generate false positives.
3703 */
3704 if (segment_eq(get_fs(), KERNEL_DS))
3705 return;
3706
3ee1afa3
NP
3707 /*
3708 * it would be nicer only to annotate paths which are not under
3709 * pagefault_disable, however that requires a larger audit and
3710 * providing helpers like get_user_atomic.
3711 */
662bbcb2
MT
3712 if (in_atomic())
3713 return;
3714
3715 __might_sleep(__FILE__, __LINE__, 0);
3716
3717 if (current->mm)
3ee1afa3
NP
3718 might_lock_read(&current->mm->mmap_sem);
3719}
3720EXPORT_SYMBOL(might_fault);
3721#endif
47ad8475
AA
3722
3723#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3724static void clear_gigantic_page(struct page *page,
3725 unsigned long addr,
3726 unsigned int pages_per_huge_page)
3727{
3728 int i;
3729 struct page *p = page;
3730
3731 might_sleep();
3732 for (i = 0; i < pages_per_huge_page;
3733 i++, p = mem_map_next(p, page, i)) {
3734 cond_resched();
3735 clear_user_highpage(p, addr + i * PAGE_SIZE);
3736 }
3737}
3738void clear_huge_page(struct page *page,
3739 unsigned long addr, unsigned int pages_per_huge_page)
3740{
3741 int i;
3742
3743 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3744 clear_gigantic_page(page, addr, pages_per_huge_page);
3745 return;
3746 }
3747
3748 might_sleep();
3749 for (i = 0; i < pages_per_huge_page; i++) {
3750 cond_resched();
3751 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3752 }
3753}
3754
3755static void copy_user_gigantic_page(struct page *dst, struct page *src,
3756 unsigned long addr,
3757 struct vm_area_struct *vma,
3758 unsigned int pages_per_huge_page)
3759{
3760 int i;
3761 struct page *dst_base = dst;
3762 struct page *src_base = src;
3763
3764 for (i = 0; i < pages_per_huge_page; ) {
3765 cond_resched();
3766 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3767
3768 i++;
3769 dst = mem_map_next(dst, dst_base, i);
3770 src = mem_map_next(src, src_base, i);
3771 }
3772}
3773
3774void copy_user_huge_page(struct page *dst, struct page *src,
3775 unsigned long addr, struct vm_area_struct *vma,
3776 unsigned int pages_per_huge_page)
3777{
3778 int i;
3779
3780 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3781 copy_user_gigantic_page(dst, src, addr, vma,
3782 pages_per_huge_page);
3783 return;
3784 }
3785
3786 might_sleep();
3787 for (i = 0; i < pages_per_huge_page; i++) {
3788 cond_resched();
3789 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3790 }
3791}
3792#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3793
40b64acd 3794#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3795
3796static struct kmem_cache *page_ptl_cachep;
3797
3798void __init ptlock_cache_init(void)
3799{
3800 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3801 SLAB_PANIC, NULL);
3802}
3803
539edb58 3804bool ptlock_alloc(struct page *page)
49076ec2
KS
3805{
3806 spinlock_t *ptl;
3807
b35f1819 3808 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3809 if (!ptl)
3810 return false;
539edb58 3811 page->ptl = ptl;
49076ec2
KS
3812 return true;
3813}
3814
539edb58 3815void ptlock_free(struct page *page)
49076ec2 3816{
b35f1819 3817 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3818}
3819#endif