]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
mm/thp: fix page_address_in_vma() on file THP tails
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
bce617ed
PX
73#include <linux/perf_event.h>
74#include <linux/ptrace.h>
e80d3909 75#include <linux/vmalloc.h>
1da177e4 76
b3d1411b
JFG
77#include <trace/events/kmem.h>
78
6952b61d 79#include <asm/io.h>
33a709b2 80#include <asm/mmu_context.h>
1da177e4 81#include <asm/pgalloc.h>
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4
LT
83#include <asm/tlb.h>
84#include <asm/tlbflush.h>
1da177e4 85
e80d3909 86#include "pgalloc-track.h"
42b77728
JB
87#include "internal.h"
88
af27d940 89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
91#endif
92
d41dee36 93#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
94/* use the per-pgdat data instead for discontigmem - mbligh */
95unsigned long max_mapnr;
1da177e4 96EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
97
98struct page *mem_map;
1da177e4
LT
99EXPORT_SYMBOL(mem_map);
100#endif
101
1da177e4
LT
102/*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
166f61b9 109void *high_memory;
1da177e4 110EXPORT_SYMBOL(high_memory);
1da177e4 111
32a93233
IM
112/*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118int randomize_va_space __read_mostly =
119#ifdef CONFIG_COMPAT_BRK
120 1;
121#else
122 2;
123#endif
a62eaf15 124
83d116c5
JH
125#ifndef arch_faults_on_old_pte
126static inline bool arch_faults_on_old_pte(void)
127{
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134}
135#endif
136
46bdb427
WD
137#ifndef arch_wants_old_prefaulted_pte
138static inline bool arch_wants_old_prefaulted_pte(void)
139{
140 /*
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
144 */
145 return false;
146}
147#endif
148
a62eaf15
AK
149static int __init disable_randmaps(char *s)
150{
151 randomize_va_space = 0;
9b41046c 152 return 1;
a62eaf15
AK
153}
154__setup("norandmaps", disable_randmaps);
155
62eede62 156unsigned long zero_pfn __read_mostly;
0b70068e
AB
157EXPORT_SYMBOL(zero_pfn);
158
166f61b9
TH
159unsigned long highest_memmap_pfn __read_mostly;
160
a13ea5b7
HD
161/*
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163 */
164static int __init init_zero_pfn(void)
165{
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 return 0;
168}
e720e7d0 169early_initcall(init_zero_pfn);
a62eaf15 170
e4dcad20 171void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 172{
e4dcad20 173 trace_rss_stat(mm, member, count);
b3d1411b 174}
d559db08 175
34e55232
KH
176#if defined(SPLIT_RSS_COUNTING)
177
ea48cf78 178void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
179{
180 int i;
181
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
34e55232
KH
186 }
187 }
05af2e10 188 current->rss_stat.events = 0;
34e55232
KH
189}
190
191static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192{
193 struct task_struct *task = current;
194
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
197 else
198 add_mm_counter(mm, member, val);
199}
200#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203/* sync counter once per 64 page faults */
204#define TASK_RSS_EVENTS_THRESH (64)
205static void check_sync_rss_stat(struct task_struct *task)
206{
207 if (unlikely(task != current))
208 return;
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 210 sync_mm_rss(task->mm);
34e55232 211}
9547d01b 212#else /* SPLIT_RSS_COUNTING */
34e55232
KH
213
214#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217static void check_sync_rss_stat(struct task_struct *task)
218{
219}
220
9547d01b
PZ
221#endif /* SPLIT_RSS_COUNTING */
222
1da177e4
LT
223/*
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
226 */
9e1b32ca
BH
227static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 unsigned long addr)
1da177e4 229{
2f569afd 230 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 231 pmd_clear(pmd);
9e1b32ca 232 pte_free_tlb(tlb, token, addr);
c4812909 233 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
234}
235
e0da382c
HD
236static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
1da177e4
LT
239{
240 pmd_t *pmd;
241 unsigned long next;
e0da382c 242 unsigned long start;
1da177e4 243
e0da382c 244 start = addr;
1da177e4 245 pmd = pmd_offset(pud, addr);
1da177e4
LT
246 do {
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
249 continue;
9e1b32ca 250 free_pte_range(tlb, pmd, addr);
1da177e4
LT
251 } while (pmd++, addr = next, addr != end);
252
e0da382c
HD
253 start &= PUD_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= PUD_MASK;
258 if (!ceiling)
259 return;
1da177e4 260 }
e0da382c
HD
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pmd = pmd_offset(pud, start);
265 pud_clear(pud);
9e1b32ca 266 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 267 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
268}
269
c2febafc 270static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
1da177e4
LT
273{
274 pud_t *pud;
275 unsigned long next;
e0da382c 276 unsigned long start;
1da177e4 277
e0da382c 278 start = addr;
c2febafc 279 pud = pud_offset(p4d, addr);
1da177e4
LT
280 do {
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
283 continue;
e0da382c 284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
285 } while (pud++, addr = next, addr != end);
286
c2febafc
KS
287 start &= P4D_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= P4D_MASK;
292 if (!ceiling)
293 return;
294 }
295 if (end - 1 > ceiling - 1)
296 return;
297
298 pud = pud_offset(p4d, start);
299 p4d_clear(p4d);
300 pud_free_tlb(tlb, pud, start);
b4e98d9a 301 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
302}
303
304static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
307{
308 p4d_t *p4d;
309 unsigned long next;
310 unsigned long start;
311
312 start = addr;
313 p4d = p4d_offset(pgd, addr);
314 do {
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
317 continue;
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
320
e0da382c
HD
321 start &= PGDIR_MASK;
322 if (start < floor)
323 return;
324 if (ceiling) {
325 ceiling &= PGDIR_MASK;
326 if (!ceiling)
327 return;
1da177e4 328 }
e0da382c
HD
329 if (end - 1 > ceiling - 1)
330 return;
331
c2febafc 332 p4d = p4d_offset(pgd, start);
e0da382c 333 pgd_clear(pgd);
c2febafc 334 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
335}
336
337/*
e0da382c 338 * This function frees user-level page tables of a process.
1da177e4 339 */
42b77728 340void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
1da177e4
LT
343{
344 pgd_t *pgd;
345 unsigned long next;
e0da382c
HD
346
347 /*
348 * The next few lines have given us lots of grief...
349 *
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
353 *
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
361 *
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
366 *
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
371 */
1da177e4 372
e0da382c
HD
373 addr &= PMD_MASK;
374 if (addr < floor) {
375 addr += PMD_SIZE;
376 if (!addr)
377 return;
378 }
379 if (ceiling) {
380 ceiling &= PMD_MASK;
381 if (!ceiling)
382 return;
383 }
384 if (end - 1 > ceiling - 1)
385 end -= PMD_SIZE;
386 if (addr > end - 1)
387 return;
07e32661
AK
388 /*
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
391 */
ed6a7935 392 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 393 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
394 do {
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
397 continue;
c2febafc 398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 399 } while (pgd++, addr = next, addr != end);
e0da382c
HD
400}
401
42b77728 402void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 403 unsigned long floor, unsigned long ceiling)
e0da382c
HD
404{
405 while (vma) {
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
408
8f4f8c16 409 /*
25d9e2d1
NP
410 * Hide vma from rmap and truncate_pagecache before freeing
411 * pgtables
8f4f8c16 412 */
5beb4930 413 unlink_anon_vmas(vma);
8f4f8c16
HD
414 unlink_file_vma(vma);
415
9da61aef 416 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 418 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
419 } else {
420 /*
421 * Optimization: gather nearby vmas into one call down
422 */
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 424 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
425 vma = next;
426 next = vma->vm_next;
5beb4930 427 unlink_anon_vmas(vma);
8f4f8c16 428 unlink_file_vma(vma);
3bf5ee95
HD
429 }
430 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 431 floor, next ? next->vm_start : ceiling);
3bf5ee95 432 }
e0da382c
HD
433 vma = next;
434 }
1da177e4
LT
435}
436
4cf58924 437int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 438{
c4088ebd 439 spinlock_t *ptl;
4cf58924 440 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
441 if (!new)
442 return -ENOMEM;
443
362a61ad
NP
444 /*
445 * Ensure all pte setup (eg. pte page lock and page clearing) are
446 * visible before the pte is made visible to other CPUs by being
447 * put into page tables.
448 *
449 * The other side of the story is the pointer chasing in the page
450 * table walking code (when walking the page table without locking;
451 * ie. most of the time). Fortunately, these data accesses consist
452 * of a chain of data-dependent loads, meaning most CPUs (alpha
453 * being the notable exception) will already guarantee loads are
454 * seen in-order. See the alpha page table accessors for the
bb7cdd38 455 * smp_rmb() barriers in page table walking code.
362a61ad
NP
456 */
457 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458
c4088ebd 459 ptl = pmd_lock(mm, pmd);
8ac1f832 460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 461 mm_inc_nr_ptes(mm);
1da177e4 462 pmd_populate(mm, pmd, new);
2f569afd 463 new = NULL;
4b471e88 464 }
c4088ebd 465 spin_unlock(ptl);
2f569afd
MS
466 if (new)
467 pte_free(mm, new);
1bb3630e 468 return 0;
1da177e4
LT
469}
470
4cf58924 471int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 472{
4cf58924 473 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
474 if (!new)
475 return -ENOMEM;
476
362a61ad
NP
477 smp_wmb(); /* See comment in __pte_alloc */
478
1bb3630e 479 spin_lock(&init_mm.page_table_lock);
8ac1f832 480 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 481 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 482 new = NULL;
4b471e88 483 }
1bb3630e 484 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
485 if (new)
486 pte_free_kernel(&init_mm, new);
1bb3630e 487 return 0;
1da177e4
LT
488}
489
d559db08
KH
490static inline void init_rss_vec(int *rss)
491{
492 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
493}
494
495static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 496{
d559db08
KH
497 int i;
498
34e55232 499 if (current->mm == mm)
05af2e10 500 sync_mm_rss(mm);
d559db08
KH
501 for (i = 0; i < NR_MM_COUNTERS; i++)
502 if (rss[i])
503 add_mm_counter(mm, i, rss[i]);
ae859762
HD
504}
505
b5810039 506/*
6aab341e
LT
507 * This function is called to print an error when a bad pte
508 * is found. For example, we might have a PFN-mapped pte in
509 * a region that doesn't allow it.
b5810039
NP
510 *
511 * The calling function must still handle the error.
512 */
3dc14741
HD
513static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
514 pte_t pte, struct page *page)
b5810039 515{
3dc14741 516 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
517 p4d_t *p4d = p4d_offset(pgd, addr);
518 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
519 pmd_t *pmd = pmd_offset(pud, addr);
520 struct address_space *mapping;
521 pgoff_t index;
d936cf9b
HD
522 static unsigned long resume;
523 static unsigned long nr_shown;
524 static unsigned long nr_unshown;
525
526 /*
527 * Allow a burst of 60 reports, then keep quiet for that minute;
528 * or allow a steady drip of one report per second.
529 */
530 if (nr_shown == 60) {
531 if (time_before(jiffies, resume)) {
532 nr_unshown++;
533 return;
534 }
535 if (nr_unshown) {
1170532b
JP
536 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
537 nr_unshown);
d936cf9b
HD
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
3dc14741
HD
544
545 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
546 index = linear_page_index(vma, addr);
547
1170532b
JP
548 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
549 current->comm,
550 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 551 if (page)
f0b791a3 552 dump_page(page, "bad pte");
6aa9b8b2 553 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 554 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 555 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
556 vma->vm_file,
557 vma->vm_ops ? vma->vm_ops->fault : NULL,
558 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
559 mapping ? mapping->a_ops->readpage : NULL);
b5810039 560 dump_stack();
373d4d09 561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
562}
563
ee498ed7 564/*
7e675137 565 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 566 *
7e675137
NP
567 * "Special" mappings do not wish to be associated with a "struct page" (either
568 * it doesn't exist, or it exists but they don't want to touch it). In this
569 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 570 *
7e675137
NP
571 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
572 * pte bit, in which case this function is trivial. Secondly, an architecture
573 * may not have a spare pte bit, which requires a more complicated scheme,
574 * described below.
575 *
576 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
577 * special mapping (even if there are underlying and valid "struct pages").
578 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 579 *
b379d790
JH
580 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
581 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
582 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
583 * mapping will always honor the rule
6aab341e
LT
584 *
585 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
586 *
7e675137
NP
587 * And for normal mappings this is false.
588 *
589 * This restricts such mappings to be a linear translation from virtual address
590 * to pfn. To get around this restriction, we allow arbitrary mappings so long
591 * as the vma is not a COW mapping; in that case, we know that all ptes are
592 * special (because none can have been COWed).
b379d790 593 *
b379d790 594 *
7e675137 595 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
596 *
597 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
598 * page" backing, however the difference is that _all_ pages with a struct
599 * page (that is, those where pfn_valid is true) are refcounted and considered
600 * normal pages by the VM. The disadvantage is that pages are refcounted
601 * (which can be slower and simply not an option for some PFNMAP users). The
602 * advantage is that we don't have to follow the strict linearity rule of
603 * PFNMAP mappings in order to support COWable mappings.
604 *
ee498ed7 605 */
25b2995a
CH
606struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
607 pte_t pte)
ee498ed7 608{
22b31eec 609 unsigned long pfn = pte_pfn(pte);
7e675137 610
00b3a331 611 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 612 if (likely(!pte_special(pte)))
22b31eec 613 goto check_pfn;
667a0a06
DV
614 if (vma->vm_ops && vma->vm_ops->find_special_page)
615 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
616 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
617 return NULL;
df6ad698
JG
618 if (is_zero_pfn(pfn))
619 return NULL;
e1fb4a08
DJ
620 if (pte_devmap(pte))
621 return NULL;
622
df6ad698 623 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
624 return NULL;
625 }
626
00b3a331 627 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 628
b379d790
JH
629 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
630 if (vma->vm_flags & VM_MIXEDMAP) {
631 if (!pfn_valid(pfn))
632 return NULL;
633 goto out;
634 } else {
7e675137
NP
635 unsigned long off;
636 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
637 if (pfn == vma->vm_pgoff + off)
638 return NULL;
639 if (!is_cow_mapping(vma->vm_flags))
640 return NULL;
641 }
6aab341e
LT
642 }
643
b38af472
HD
644 if (is_zero_pfn(pfn))
645 return NULL;
00b3a331 646
22b31eec
HD
647check_pfn:
648 if (unlikely(pfn > highest_memmap_pfn)) {
649 print_bad_pte(vma, addr, pte, NULL);
650 return NULL;
651 }
6aab341e
LT
652
653 /*
7e675137 654 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 655 * eg. VDSO mappings can cause them to exist.
6aab341e 656 */
b379d790 657out:
6aab341e 658 return pfn_to_page(pfn);
ee498ed7
HD
659}
660
28093f9f
GS
661#ifdef CONFIG_TRANSPARENT_HUGEPAGE
662struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
663 pmd_t pmd)
664{
665 unsigned long pfn = pmd_pfn(pmd);
666
667 /*
668 * There is no pmd_special() but there may be special pmds, e.g.
669 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 670 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
671 */
672 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
673 if (vma->vm_flags & VM_MIXEDMAP) {
674 if (!pfn_valid(pfn))
675 return NULL;
676 goto out;
677 } else {
678 unsigned long off;
679 off = (addr - vma->vm_start) >> PAGE_SHIFT;
680 if (pfn == vma->vm_pgoff + off)
681 return NULL;
682 if (!is_cow_mapping(vma->vm_flags))
683 return NULL;
684 }
685 }
686
e1fb4a08
DJ
687 if (pmd_devmap(pmd))
688 return NULL;
3cde287b 689 if (is_huge_zero_pmd(pmd))
28093f9f
GS
690 return NULL;
691 if (unlikely(pfn > highest_memmap_pfn))
692 return NULL;
693
694 /*
695 * NOTE! We still have PageReserved() pages in the page tables.
696 * eg. VDSO mappings can cause them to exist.
697 */
698out:
699 return pfn_to_page(pfn);
700}
701#endif
702
1da177e4
LT
703/*
704 * copy one vm_area from one task to the other. Assumes the page tables
705 * already present in the new task to be cleared in the whole range
706 * covered by this vma.
1da177e4
LT
707 */
708
df3a57d1
LT
709static unsigned long
710copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 711 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 712 unsigned long addr, int *rss)
1da177e4 713{
b5810039 714 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
715 pte_t pte = *src_pte;
716 struct page *page;
df3a57d1
LT
717 swp_entry_t entry = pte_to_swp_entry(pte);
718
719 if (likely(!non_swap_entry(entry))) {
720 if (swap_duplicate(entry) < 0)
721 return entry.val;
722
723 /* make sure dst_mm is on swapoff's mmlist. */
724 if (unlikely(list_empty(&dst_mm->mmlist))) {
725 spin_lock(&mmlist_lock);
726 if (list_empty(&dst_mm->mmlist))
727 list_add(&dst_mm->mmlist,
728 &src_mm->mmlist);
729 spin_unlock(&mmlist_lock);
730 }
731 rss[MM_SWAPENTS]++;
732 } else if (is_migration_entry(entry)) {
733 page = migration_entry_to_page(entry);
1da177e4 734
df3a57d1 735 rss[mm_counter(page)]++;
5042db43 736
df3a57d1
LT
737 if (is_write_migration_entry(entry) &&
738 is_cow_mapping(vm_flags)) {
5042db43 739 /*
df3a57d1
LT
740 * COW mappings require pages in both
741 * parent and child to be set to read.
5042db43 742 */
df3a57d1
LT
743 make_migration_entry_read(&entry);
744 pte = swp_entry_to_pte(entry);
745 if (pte_swp_soft_dirty(*src_pte))
746 pte = pte_swp_mksoft_dirty(pte);
747 if (pte_swp_uffd_wp(*src_pte))
748 pte = pte_swp_mkuffd_wp(pte);
749 set_pte_at(src_mm, addr, src_pte, pte);
750 }
751 } else if (is_device_private_entry(entry)) {
752 page = device_private_entry_to_page(entry);
5042db43 753
df3a57d1
LT
754 /*
755 * Update rss count even for unaddressable pages, as
756 * they should treated just like normal pages in this
757 * respect.
758 *
759 * We will likely want to have some new rss counters
760 * for unaddressable pages, at some point. But for now
761 * keep things as they are.
762 */
763 get_page(page);
764 rss[mm_counter(page)]++;
765 page_dup_rmap(page, false);
766
767 /*
768 * We do not preserve soft-dirty information, because so
769 * far, checkpoint/restore is the only feature that
770 * requires that. And checkpoint/restore does not work
771 * when a device driver is involved (you cannot easily
772 * save and restore device driver state).
773 */
774 if (is_write_device_private_entry(entry) &&
775 is_cow_mapping(vm_flags)) {
776 make_device_private_entry_read(&entry);
777 pte = swp_entry_to_pte(entry);
778 if (pte_swp_uffd_wp(*src_pte))
779 pte = pte_swp_mkuffd_wp(pte);
780 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 781 }
1da177e4 782 }
df3a57d1
LT
783 set_pte_at(dst_mm, addr, dst_pte, pte);
784 return 0;
785}
786
70e806e4
PX
787/*
788 * Copy a present and normal page if necessary.
789 *
790 * NOTE! The usual case is that this doesn't need to do
791 * anything, and can just return a positive value. That
792 * will let the caller know that it can just increase
793 * the page refcount and re-use the pte the traditional
794 * way.
795 *
796 * But _if_ we need to copy it because it needs to be
797 * pinned in the parent (and the child should get its own
798 * copy rather than just a reference to the same page),
799 * we'll do that here and return zero to let the caller
800 * know we're done.
801 *
802 * And if we need a pre-allocated page but don't yet have
803 * one, return a negative error to let the preallocation
804 * code know so that it can do so outside the page table
805 * lock.
806 */
807static inline int
c78f4636
PX
808copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
809 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
810 struct page **prealloc, pte_t pte, struct page *page)
70e806e4
PX
811{
812 struct page *new_page;
813
70e806e4 814 /*
70e806e4
PX
815 * What we want to do is to check whether this page may
816 * have been pinned by the parent process. If so,
817 * instead of wrprotect the pte on both sides, we copy
818 * the page immediately so that we'll always guarantee
819 * the pinned page won't be randomly replaced in the
820 * future.
821 *
f3c64eda
LT
822 * The page pinning checks are just "has this mm ever
823 * seen pinning", along with the (inexact) check of
824 * the page count. That might give false positives for
825 * for pinning, but it will work correctly.
70e806e4 826 */
97a7e473 827 if (likely(!page_needs_cow_for_dma(src_vma, page)))
70e806e4
PX
828 return 1;
829
70e806e4
PX
830 new_page = *prealloc;
831 if (!new_page)
832 return -EAGAIN;
833
834 /*
835 * We have a prealloc page, all good! Take it
836 * over and copy the page & arm it.
837 */
838 *prealloc = NULL;
c78f4636 839 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 840 __SetPageUptodate(new_page);
c78f4636
PX
841 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
842 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
843 rss[mm_counter(new_page)]++;
844
845 /* All done, just insert the new page copy in the child */
c78f4636
PX
846 pte = mk_pte(new_page, dst_vma->vm_page_prot);
847 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
848 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
849 return 0;
850}
851
852/*
853 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
854 * is required to copy this pte.
855 */
856static inline int
c78f4636
PX
857copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
858 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
859 struct page **prealloc)
df3a57d1 860{
c78f4636
PX
861 struct mm_struct *src_mm = src_vma->vm_mm;
862 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
863 pte_t pte = *src_pte;
864 struct page *page;
865
c78f4636 866 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
867 if (page) {
868 int retval;
869
c78f4636
PX
870 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
871 addr, rss, prealloc, pte, page);
70e806e4
PX
872 if (retval <= 0)
873 return retval;
874
875 get_page(page);
876 page_dup_rmap(page, false);
877 rss[mm_counter(page)]++;
878 }
879
1da177e4
LT
880 /*
881 * If it's a COW mapping, write protect it both
882 * in the parent and the child
883 */
1b2de5d0 884 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 885 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 886 pte = pte_wrprotect(pte);
1da177e4
LT
887 }
888
889 /*
890 * If it's a shared mapping, mark it clean in
891 * the child
892 */
893 if (vm_flags & VM_SHARED)
894 pte = pte_mkclean(pte);
895 pte = pte_mkold(pte);
6aab341e 896
b569a176
PX
897 /*
898 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
899 * does not have the VM_UFFD_WP, which means that the uffd
900 * fork event is not enabled.
901 */
902 if (!(vm_flags & VM_UFFD_WP))
903 pte = pte_clear_uffd_wp(pte);
904
c78f4636 905 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
906 return 0;
907}
908
909static inline struct page *
910page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
911 unsigned long addr)
912{
913 struct page *new_page;
914
915 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
916 if (!new_page)
917 return NULL;
918
919 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
920 put_page(new_page);
921 return NULL;
6aab341e 922 }
70e806e4 923 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 924
70e806e4 925 return new_page;
1da177e4
LT
926}
927
c78f4636
PX
928static int
929copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
930 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
931 unsigned long end)
1da177e4 932{
c78f4636
PX
933 struct mm_struct *dst_mm = dst_vma->vm_mm;
934 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 935 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 936 pte_t *src_pte, *dst_pte;
c74df32c 937 spinlock_t *src_ptl, *dst_ptl;
70e806e4 938 int progress, ret = 0;
d559db08 939 int rss[NR_MM_COUNTERS];
570a335b 940 swp_entry_t entry = (swp_entry_t){0};
70e806e4 941 struct page *prealloc = NULL;
1da177e4
LT
942
943again:
70e806e4 944 progress = 0;
d559db08
KH
945 init_rss_vec(rss);
946
c74df32c 947 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
948 if (!dst_pte) {
949 ret = -ENOMEM;
950 goto out;
951 }
ece0e2b6 952 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 953 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 954 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
955 orig_src_pte = src_pte;
956 orig_dst_pte = dst_pte;
6606c3e0 957 arch_enter_lazy_mmu_mode();
1da177e4 958
1da177e4
LT
959 do {
960 /*
961 * We are holding two locks at this point - either of them
962 * could generate latencies in another task on another CPU.
963 */
e040f218
HD
964 if (progress >= 32) {
965 progress = 0;
966 if (need_resched() ||
95c354fe 967 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
968 break;
969 }
1da177e4
LT
970 if (pte_none(*src_pte)) {
971 progress++;
972 continue;
973 }
79a1971c
LT
974 if (unlikely(!pte_present(*src_pte))) {
975 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
976 dst_pte, src_pte,
c78f4636 977 src_vma, addr, rss);
79a1971c
LT
978 if (entry.val)
979 break;
980 progress += 8;
981 continue;
982 }
70e806e4 983 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
984 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
985 addr, rss, &prealloc);
70e806e4
PX
986 /*
987 * If we need a pre-allocated page for this pte, drop the
988 * locks, allocate, and try again.
989 */
990 if (unlikely(ret == -EAGAIN))
991 break;
992 if (unlikely(prealloc)) {
993 /*
994 * pre-alloc page cannot be reused by next time so as
995 * to strictly follow mempolicy (e.g., alloc_page_vma()
996 * will allocate page according to address). This
997 * could only happen if one pinned pte changed.
998 */
999 put_page(prealloc);
1000 prealloc = NULL;
1001 }
1da177e4
LT
1002 progress += 8;
1003 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1004
6606c3e0 1005 arch_leave_lazy_mmu_mode();
c74df32c 1006 spin_unlock(src_ptl);
ece0e2b6 1007 pte_unmap(orig_src_pte);
d559db08 1008 add_mm_rss_vec(dst_mm, rss);
c36987e2 1009 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1010 cond_resched();
570a335b
HD
1011
1012 if (entry.val) {
70e806e4
PX
1013 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1014 ret = -ENOMEM;
1015 goto out;
1016 }
1017 entry.val = 0;
1018 } else if (ret) {
1019 WARN_ON_ONCE(ret != -EAGAIN);
c78f4636 1020 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1021 if (!prealloc)
570a335b 1022 return -ENOMEM;
70e806e4
PX
1023 /* We've captured and resolved the error. Reset, try again. */
1024 ret = 0;
570a335b 1025 }
1da177e4
LT
1026 if (addr != end)
1027 goto again;
70e806e4
PX
1028out:
1029 if (unlikely(prealloc))
1030 put_page(prealloc);
1031 return ret;
1da177e4
LT
1032}
1033
c78f4636
PX
1034static inline int
1035copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1036 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1037 unsigned long end)
1da177e4 1038{
c78f4636
PX
1039 struct mm_struct *dst_mm = dst_vma->vm_mm;
1040 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1041 pmd_t *src_pmd, *dst_pmd;
1042 unsigned long next;
1043
1044 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1045 if (!dst_pmd)
1046 return -ENOMEM;
1047 src_pmd = pmd_offset(src_pud, addr);
1048 do {
1049 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1050 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1051 || pmd_devmap(*src_pmd)) {
71e3aac0 1052 int err;
c78f4636 1053 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
71e3aac0 1054 err = copy_huge_pmd(dst_mm, src_mm,
c78f4636 1055 dst_pmd, src_pmd, addr, src_vma);
71e3aac0
AA
1056 if (err == -ENOMEM)
1057 return -ENOMEM;
1058 if (!err)
1059 continue;
1060 /* fall through */
1061 }
1da177e4
LT
1062 if (pmd_none_or_clear_bad(src_pmd))
1063 continue;
c78f4636
PX
1064 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1065 addr, next))
1da177e4
LT
1066 return -ENOMEM;
1067 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1068 return 0;
1069}
1070
c78f4636
PX
1071static inline int
1072copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1073 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1074 unsigned long end)
1da177e4 1075{
c78f4636
PX
1076 struct mm_struct *dst_mm = dst_vma->vm_mm;
1077 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1078 pud_t *src_pud, *dst_pud;
1079 unsigned long next;
1080
c2febafc 1081 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1082 if (!dst_pud)
1083 return -ENOMEM;
c2febafc 1084 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1085 do {
1086 next = pud_addr_end(addr, end);
a00cc7d9
MW
1087 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1088 int err;
1089
c78f4636 1090 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1091 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1092 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1093 if (err == -ENOMEM)
1094 return -ENOMEM;
1095 if (!err)
1096 continue;
1097 /* fall through */
1098 }
1da177e4
LT
1099 if (pud_none_or_clear_bad(src_pud))
1100 continue;
c78f4636
PX
1101 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1102 addr, next))
1da177e4
LT
1103 return -ENOMEM;
1104 } while (dst_pud++, src_pud++, addr = next, addr != end);
1105 return 0;
1106}
1107
c78f4636
PX
1108static inline int
1109copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1110 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1111 unsigned long end)
c2febafc 1112{
c78f4636 1113 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1114 p4d_t *src_p4d, *dst_p4d;
1115 unsigned long next;
1116
1117 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1118 if (!dst_p4d)
1119 return -ENOMEM;
1120 src_p4d = p4d_offset(src_pgd, addr);
1121 do {
1122 next = p4d_addr_end(addr, end);
1123 if (p4d_none_or_clear_bad(src_p4d))
1124 continue;
c78f4636
PX
1125 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1126 addr, next))
c2febafc
KS
1127 return -ENOMEM;
1128 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1129 return 0;
1130}
1131
c78f4636
PX
1132int
1133copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1134{
1135 pgd_t *src_pgd, *dst_pgd;
1136 unsigned long next;
c78f4636
PX
1137 unsigned long addr = src_vma->vm_start;
1138 unsigned long end = src_vma->vm_end;
1139 struct mm_struct *dst_mm = dst_vma->vm_mm;
1140 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1141 struct mmu_notifier_range range;
2ec74c3e 1142 bool is_cow;
cddb8a5c 1143 int ret;
1da177e4 1144
d992895b
NP
1145 /*
1146 * Don't copy ptes where a page fault will fill them correctly.
1147 * Fork becomes much lighter when there are big shared or private
1148 * readonly mappings. The tradeoff is that copy_page_range is more
1149 * efficient than faulting.
1150 */
c78f4636
PX
1151 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1152 !src_vma->anon_vma)
0661a336 1153 return 0;
d992895b 1154
c78f4636
PX
1155 if (is_vm_hugetlb_page(src_vma))
1156 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1157
c78f4636 1158 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1159 /*
1160 * We do not free on error cases below as remove_vma
1161 * gets called on error from higher level routine
1162 */
c78f4636 1163 ret = track_pfn_copy(src_vma);
2ab64037 1164 if (ret)
1165 return ret;
1166 }
1167
cddb8a5c
AA
1168 /*
1169 * We need to invalidate the secondary MMU mappings only when
1170 * there could be a permission downgrade on the ptes of the
1171 * parent mm. And a permission downgrade will only happen if
1172 * is_cow_mapping() returns true.
1173 */
c78f4636 1174 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1175
1176 if (is_cow) {
7269f999 1177 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1178 0, src_vma, src_mm, addr, end);
ac46d4f3 1179 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1180 /*
1181 * Disabling preemption is not needed for the write side, as
1182 * the read side doesn't spin, but goes to the mmap_lock.
1183 *
1184 * Use the raw variant of the seqcount_t write API to avoid
1185 * lockdep complaining about preemptibility.
1186 */
1187 mmap_assert_write_locked(src_mm);
1188 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1189 }
cddb8a5c
AA
1190
1191 ret = 0;
1da177e4
LT
1192 dst_pgd = pgd_offset(dst_mm, addr);
1193 src_pgd = pgd_offset(src_mm, addr);
1194 do {
1195 next = pgd_addr_end(addr, end);
1196 if (pgd_none_or_clear_bad(src_pgd))
1197 continue;
c78f4636
PX
1198 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1199 addr, next))) {
cddb8a5c
AA
1200 ret = -ENOMEM;
1201 break;
1202 }
1da177e4 1203 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1204
57efa1fe
JG
1205 if (is_cow) {
1206 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1207 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1208 }
cddb8a5c 1209 return ret;
1da177e4
LT
1210}
1211
51c6f666 1212static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1213 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1214 unsigned long addr, unsigned long end,
97a89413 1215 struct zap_details *details)
1da177e4 1216{
b5810039 1217 struct mm_struct *mm = tlb->mm;
d16dfc55 1218 int force_flush = 0;
d559db08 1219 int rss[NR_MM_COUNTERS];
97a89413 1220 spinlock_t *ptl;
5f1a1907 1221 pte_t *start_pte;
97a89413 1222 pte_t *pte;
8a5f14a2 1223 swp_entry_t entry;
d559db08 1224
ed6a7935 1225 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1226again:
e303297e 1227 init_rss_vec(rss);
5f1a1907
SR
1228 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1229 pte = start_pte;
3ea27719 1230 flush_tlb_batched_pending(mm);
6606c3e0 1231 arch_enter_lazy_mmu_mode();
1da177e4
LT
1232 do {
1233 pte_t ptent = *pte;
166f61b9 1234 if (pte_none(ptent))
1da177e4 1235 continue;
6f5e6b9e 1236
7b167b68
MK
1237 if (need_resched())
1238 break;
1239
1da177e4 1240 if (pte_present(ptent)) {
ee498ed7 1241 struct page *page;
51c6f666 1242
25b2995a 1243 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1244 if (unlikely(details) && page) {
1245 /*
1246 * unmap_shared_mapping_pages() wants to
1247 * invalidate cache without truncating:
1248 * unmap shared but keep private pages.
1249 */
1250 if (details->check_mapping &&
800d8c63 1251 details->check_mapping != page_rmapping(page))
1da177e4 1252 continue;
1da177e4 1253 }
b5810039 1254 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1255 tlb->fullmm);
1da177e4
LT
1256 tlb_remove_tlb_entry(tlb, pte, addr);
1257 if (unlikely(!page))
1258 continue;
eca56ff9
JM
1259
1260 if (!PageAnon(page)) {
1cf35d47
LT
1261 if (pte_dirty(ptent)) {
1262 force_flush = 1;
6237bcd9 1263 set_page_dirty(page);
1cf35d47 1264 }
4917e5d0 1265 if (pte_young(ptent) &&
64363aad 1266 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1267 mark_page_accessed(page);
6237bcd9 1268 }
eca56ff9 1269 rss[mm_counter(page)]--;
d281ee61 1270 page_remove_rmap(page, false);
3dc14741
HD
1271 if (unlikely(page_mapcount(page) < 0))
1272 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1273 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1274 force_flush = 1;
ce9ec37b 1275 addr += PAGE_SIZE;
d16dfc55 1276 break;
1cf35d47 1277 }
1da177e4
LT
1278 continue;
1279 }
5042db43
JG
1280
1281 entry = pte_to_swp_entry(ptent);
463b7a17 1282 if (is_device_private_entry(entry)) {
5042db43
JG
1283 struct page *page = device_private_entry_to_page(entry);
1284
1285 if (unlikely(details && details->check_mapping)) {
1286 /*
1287 * unmap_shared_mapping_pages() wants to
1288 * invalidate cache without truncating:
1289 * unmap shared but keep private pages.
1290 */
1291 if (details->check_mapping !=
1292 page_rmapping(page))
1293 continue;
1294 }
1295
1296 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1297 rss[mm_counter(page)]--;
1298 page_remove_rmap(page, false);
1299 put_page(page);
1300 continue;
1301 }
1302
3e8715fd
KS
1303 /* If details->check_mapping, we leave swap entries. */
1304 if (unlikely(details))
1da177e4 1305 continue;
b084d435 1306
8a5f14a2
KS
1307 if (!non_swap_entry(entry))
1308 rss[MM_SWAPENTS]--;
1309 else if (is_migration_entry(entry)) {
1310 struct page *page;
9f9f1acd 1311
8a5f14a2 1312 page = migration_entry_to_page(entry);
eca56ff9 1313 rss[mm_counter(page)]--;
b084d435 1314 }
8a5f14a2
KS
1315 if (unlikely(!free_swap_and_cache(entry)))
1316 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1317 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1318 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1319
d559db08 1320 add_mm_rss_vec(mm, rss);
6606c3e0 1321 arch_leave_lazy_mmu_mode();
51c6f666 1322
1cf35d47 1323 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1324 if (force_flush)
1cf35d47 1325 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1326 pte_unmap_unlock(start_pte, ptl);
1327
1328 /*
1329 * If we forced a TLB flush (either due to running out of
1330 * batch buffers or because we needed to flush dirty TLB
1331 * entries before releasing the ptl), free the batched
1332 * memory too. Restart if we didn't do everything.
1333 */
1334 if (force_flush) {
1335 force_flush = 0;
fa0aafb8 1336 tlb_flush_mmu(tlb);
7b167b68
MK
1337 }
1338
1339 if (addr != end) {
1340 cond_resched();
1341 goto again;
d16dfc55
PZ
1342 }
1343
51c6f666 1344 return addr;
1da177e4
LT
1345}
1346
51c6f666 1347static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1348 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1349 unsigned long addr, unsigned long end,
97a89413 1350 struct zap_details *details)
1da177e4
LT
1351{
1352 pmd_t *pmd;
1353 unsigned long next;
1354
1355 pmd = pmd_offset(pud, addr);
1356 do {
1357 next = pmd_addr_end(addr, end);
84c3fc4e 1358 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1359 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1360 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1361 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1362 goto next;
71e3aac0
AA
1363 /* fall through */
1364 }
1a5a9906
AA
1365 /*
1366 * Here there can be other concurrent MADV_DONTNEED or
1367 * trans huge page faults running, and if the pmd is
1368 * none or trans huge it can change under us. This is
c1e8d7c6 1369 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1370 * mode.
1371 */
1372 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1373 goto next;
97a89413 1374 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1375next:
97a89413
PZ
1376 cond_resched();
1377 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1378
1379 return addr;
1da177e4
LT
1380}
1381
51c6f666 1382static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1383 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1384 unsigned long addr, unsigned long end,
97a89413 1385 struct zap_details *details)
1da177e4
LT
1386{
1387 pud_t *pud;
1388 unsigned long next;
1389
c2febafc 1390 pud = pud_offset(p4d, addr);
1da177e4
LT
1391 do {
1392 next = pud_addr_end(addr, end);
a00cc7d9
MW
1393 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1394 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1395 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1396 split_huge_pud(vma, pud, addr);
1397 } else if (zap_huge_pud(tlb, vma, pud, addr))
1398 goto next;
1399 /* fall through */
1400 }
97a89413 1401 if (pud_none_or_clear_bad(pud))
1da177e4 1402 continue;
97a89413 1403 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1404next:
1405 cond_resched();
97a89413 1406 } while (pud++, addr = next, addr != end);
51c6f666
RH
1407
1408 return addr;
1da177e4
LT
1409}
1410
c2febafc
KS
1411static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1412 struct vm_area_struct *vma, pgd_t *pgd,
1413 unsigned long addr, unsigned long end,
1414 struct zap_details *details)
1415{
1416 p4d_t *p4d;
1417 unsigned long next;
1418
1419 p4d = p4d_offset(pgd, addr);
1420 do {
1421 next = p4d_addr_end(addr, end);
1422 if (p4d_none_or_clear_bad(p4d))
1423 continue;
1424 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1425 } while (p4d++, addr = next, addr != end);
1426
1427 return addr;
1428}
1429
aac45363 1430void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1431 struct vm_area_struct *vma,
1432 unsigned long addr, unsigned long end,
1433 struct zap_details *details)
1da177e4
LT
1434{
1435 pgd_t *pgd;
1436 unsigned long next;
1437
1da177e4
LT
1438 BUG_ON(addr >= end);
1439 tlb_start_vma(tlb, vma);
1440 pgd = pgd_offset(vma->vm_mm, addr);
1441 do {
1442 next = pgd_addr_end(addr, end);
97a89413 1443 if (pgd_none_or_clear_bad(pgd))
1da177e4 1444 continue;
c2febafc 1445 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1446 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1447 tlb_end_vma(tlb, vma);
1448}
51c6f666 1449
f5cc4eef
AV
1450
1451static void unmap_single_vma(struct mmu_gather *tlb,
1452 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1453 unsigned long end_addr,
f5cc4eef
AV
1454 struct zap_details *details)
1455{
1456 unsigned long start = max(vma->vm_start, start_addr);
1457 unsigned long end;
1458
1459 if (start >= vma->vm_end)
1460 return;
1461 end = min(vma->vm_end, end_addr);
1462 if (end <= vma->vm_start)
1463 return;
1464
cbc91f71
SD
1465 if (vma->vm_file)
1466 uprobe_munmap(vma, start, end);
1467
b3b9c293 1468 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1469 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1470
1471 if (start != end) {
1472 if (unlikely(is_vm_hugetlb_page(vma))) {
1473 /*
1474 * It is undesirable to test vma->vm_file as it
1475 * should be non-null for valid hugetlb area.
1476 * However, vm_file will be NULL in the error
7aa6b4ad 1477 * cleanup path of mmap_region. When
f5cc4eef 1478 * hugetlbfs ->mmap method fails,
7aa6b4ad 1479 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1480 * before calling this function to clean up.
1481 * Since no pte has actually been setup, it is
1482 * safe to do nothing in this case.
1483 */
24669e58 1484 if (vma->vm_file) {
83cde9e8 1485 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1486 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1487 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1488 }
f5cc4eef
AV
1489 } else
1490 unmap_page_range(tlb, vma, start, end, details);
1491 }
1da177e4
LT
1492}
1493
1da177e4
LT
1494/**
1495 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1496 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1497 * @vma: the starting vma
1498 * @start_addr: virtual address at which to start unmapping
1499 * @end_addr: virtual address at which to end unmapping
1da177e4 1500 *
508034a3 1501 * Unmap all pages in the vma list.
1da177e4 1502 *
1da177e4
LT
1503 * Only addresses between `start' and `end' will be unmapped.
1504 *
1505 * The VMA list must be sorted in ascending virtual address order.
1506 *
1507 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1508 * range after unmap_vmas() returns. So the only responsibility here is to
1509 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1510 * drops the lock and schedules.
1511 */
6e8bb019 1512void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1513 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1514 unsigned long end_addr)
1da177e4 1515{
ac46d4f3 1516 struct mmu_notifier_range range;
1da177e4 1517
6f4f13e8
JG
1518 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1519 start_addr, end_addr);
ac46d4f3 1520 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1521 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1522 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1523 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1524}
1525
1526/**
1527 * zap_page_range - remove user pages in a given range
1528 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1529 * @start: starting address of pages to zap
1da177e4 1530 * @size: number of bytes to zap
f5cc4eef
AV
1531 *
1532 * Caller must protect the VMA list
1da177e4 1533 */
7e027b14 1534void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1535 unsigned long size)
1da177e4 1536{
ac46d4f3 1537 struct mmu_notifier_range range;
d16dfc55 1538 struct mmu_gather tlb;
1da177e4 1539
1da177e4 1540 lru_add_drain();
7269f999 1541 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1542 start, start + size);
a72afd87 1543 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1544 update_hiwater_rss(vma->vm_mm);
1545 mmu_notifier_invalidate_range_start(&range);
1546 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1547 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1548 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1549 tlb_finish_mmu(&tlb);
1da177e4
LT
1550}
1551
f5cc4eef
AV
1552/**
1553 * zap_page_range_single - remove user pages in a given range
1554 * @vma: vm_area_struct holding the applicable pages
1555 * @address: starting address of pages to zap
1556 * @size: number of bytes to zap
8a5f14a2 1557 * @details: details of shared cache invalidation
f5cc4eef
AV
1558 *
1559 * The range must fit into one VMA.
1da177e4 1560 */
f5cc4eef 1561static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1562 unsigned long size, struct zap_details *details)
1563{
ac46d4f3 1564 struct mmu_notifier_range range;
d16dfc55 1565 struct mmu_gather tlb;
1da177e4 1566
1da177e4 1567 lru_add_drain();
7269f999 1568 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1569 address, address + size);
a72afd87 1570 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1571 update_hiwater_rss(vma->vm_mm);
1572 mmu_notifier_invalidate_range_start(&range);
1573 unmap_single_vma(&tlb, vma, address, range.end, details);
1574 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1575 tlb_finish_mmu(&tlb);
1da177e4
LT
1576}
1577
c627f9cc
JS
1578/**
1579 * zap_vma_ptes - remove ptes mapping the vma
1580 * @vma: vm_area_struct holding ptes to be zapped
1581 * @address: starting address of pages to zap
1582 * @size: number of bytes to zap
1583 *
1584 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1585 *
1586 * The entire address range must be fully contained within the vma.
1587 *
c627f9cc 1588 */
27d036e3 1589void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1590 unsigned long size)
1591{
1592 if (address < vma->vm_start || address + size > vma->vm_end ||
1593 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1594 return;
1595
f5cc4eef 1596 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1597}
1598EXPORT_SYMBOL_GPL(zap_vma_ptes);
1599
8cd3984d 1600static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1601{
c2febafc
KS
1602 pgd_t *pgd;
1603 p4d_t *p4d;
1604 pud_t *pud;
1605 pmd_t *pmd;
1606
1607 pgd = pgd_offset(mm, addr);
1608 p4d = p4d_alloc(mm, pgd, addr);
1609 if (!p4d)
1610 return NULL;
1611 pud = pud_alloc(mm, p4d, addr);
1612 if (!pud)
1613 return NULL;
1614 pmd = pmd_alloc(mm, pud, addr);
1615 if (!pmd)
1616 return NULL;
1617
1618 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1619 return pmd;
1620}
1621
1622pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1623 spinlock_t **ptl)
1624{
1625 pmd_t *pmd = walk_to_pmd(mm, addr);
1626
1627 if (!pmd)
1628 return NULL;
c2febafc 1629 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1630}
1631
8efd6f5b
AR
1632static int validate_page_before_insert(struct page *page)
1633{
1634 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1635 return -EINVAL;
1636 flush_dcache_page(page);
1637 return 0;
1638}
1639
1640static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1641 unsigned long addr, struct page *page, pgprot_t prot)
1642{
1643 if (!pte_none(*pte))
1644 return -EBUSY;
1645 /* Ok, finally just insert the thing.. */
1646 get_page(page);
1647 inc_mm_counter_fast(mm, mm_counter_file(page));
1648 page_add_file_rmap(page, false);
1649 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1650 return 0;
1651}
1652
238f58d8
LT
1653/*
1654 * This is the old fallback for page remapping.
1655 *
1656 * For historical reasons, it only allows reserved pages. Only
1657 * old drivers should use this, and they needed to mark their
1658 * pages reserved for the old functions anyway.
1659 */
423bad60
NP
1660static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1661 struct page *page, pgprot_t prot)
238f58d8 1662{
423bad60 1663 struct mm_struct *mm = vma->vm_mm;
238f58d8 1664 int retval;
c9cfcddf 1665 pte_t *pte;
8a9f3ccd
BS
1666 spinlock_t *ptl;
1667
8efd6f5b
AR
1668 retval = validate_page_before_insert(page);
1669 if (retval)
5b4e655e 1670 goto out;
238f58d8 1671 retval = -ENOMEM;
c9cfcddf 1672 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1673 if (!pte)
5b4e655e 1674 goto out;
8efd6f5b 1675 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1676 pte_unmap_unlock(pte, ptl);
1677out:
1678 return retval;
1679}
1680
8cd3984d 1681#ifdef pte_index
7f70c2a6 1682static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1683 unsigned long addr, struct page *page, pgprot_t prot)
1684{
1685 int err;
1686
1687 if (!page_count(page))
1688 return -EINVAL;
1689 err = validate_page_before_insert(page);
7f70c2a6
AR
1690 if (err)
1691 return err;
1692 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1693}
1694
1695/* insert_pages() amortizes the cost of spinlock operations
1696 * when inserting pages in a loop. Arch *must* define pte_index.
1697 */
1698static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1699 struct page **pages, unsigned long *num, pgprot_t prot)
1700{
1701 pmd_t *pmd = NULL;
7f70c2a6
AR
1702 pte_t *start_pte, *pte;
1703 spinlock_t *pte_lock;
8cd3984d
AR
1704 struct mm_struct *const mm = vma->vm_mm;
1705 unsigned long curr_page_idx = 0;
1706 unsigned long remaining_pages_total = *num;
1707 unsigned long pages_to_write_in_pmd;
1708 int ret;
1709more:
1710 ret = -EFAULT;
1711 pmd = walk_to_pmd(mm, addr);
1712 if (!pmd)
1713 goto out;
1714
1715 pages_to_write_in_pmd = min_t(unsigned long,
1716 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1717
1718 /* Allocate the PTE if necessary; takes PMD lock once only. */
1719 ret = -ENOMEM;
1720 if (pte_alloc(mm, pmd))
1721 goto out;
8cd3984d
AR
1722
1723 while (pages_to_write_in_pmd) {
1724 int pte_idx = 0;
1725 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1726
7f70c2a6
AR
1727 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1728 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1729 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1730 addr, pages[curr_page_idx], prot);
1731 if (unlikely(err)) {
7f70c2a6 1732 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1733 ret = err;
1734 remaining_pages_total -= pte_idx;
1735 goto out;
1736 }
1737 addr += PAGE_SIZE;
1738 ++curr_page_idx;
1739 }
7f70c2a6 1740 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1741 pages_to_write_in_pmd -= batch_size;
1742 remaining_pages_total -= batch_size;
1743 }
1744 if (remaining_pages_total)
1745 goto more;
1746 ret = 0;
1747out:
1748 *num = remaining_pages_total;
1749 return ret;
1750}
1751#endif /* ifdef pte_index */
1752
1753/**
1754 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1755 * @vma: user vma to map to
1756 * @addr: target start user address of these pages
1757 * @pages: source kernel pages
1758 * @num: in: number of pages to map. out: number of pages that were *not*
1759 * mapped. (0 means all pages were successfully mapped).
1760 *
1761 * Preferred over vm_insert_page() when inserting multiple pages.
1762 *
1763 * In case of error, we may have mapped a subset of the provided
1764 * pages. It is the caller's responsibility to account for this case.
1765 *
1766 * The same restrictions apply as in vm_insert_page().
1767 */
1768int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1769 struct page **pages, unsigned long *num)
1770{
1771#ifdef pte_index
1772 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1773
1774 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1775 return -EFAULT;
1776 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1777 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1778 BUG_ON(vma->vm_flags & VM_PFNMAP);
1779 vma->vm_flags |= VM_MIXEDMAP;
1780 }
1781 /* Defer page refcount checking till we're about to map that page. */
1782 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1783#else
1784 unsigned long idx = 0, pgcount = *num;
45779b03 1785 int err = -EINVAL;
8cd3984d
AR
1786
1787 for (; idx < pgcount; ++idx) {
1788 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1789 if (err)
1790 break;
1791 }
1792 *num = pgcount - idx;
1793 return err;
1794#endif /* ifdef pte_index */
1795}
1796EXPORT_SYMBOL(vm_insert_pages);
1797
bfa5bf6d
REB
1798/**
1799 * vm_insert_page - insert single page into user vma
1800 * @vma: user vma to map to
1801 * @addr: target user address of this page
1802 * @page: source kernel page
1803 *
a145dd41
LT
1804 * This allows drivers to insert individual pages they've allocated
1805 * into a user vma.
1806 *
1807 * The page has to be a nice clean _individual_ kernel allocation.
1808 * If you allocate a compound page, you need to have marked it as
1809 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1810 * (see split_page()).
a145dd41
LT
1811 *
1812 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1813 * took an arbitrary page protection parameter. This doesn't allow
1814 * that. Your vma protection will have to be set up correctly, which
1815 * means that if you want a shared writable mapping, you'd better
1816 * ask for a shared writable mapping!
1817 *
1818 * The page does not need to be reserved.
4b6e1e37
KK
1819 *
1820 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1821 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1822 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1823 * function from other places, for example from page-fault handler.
a862f68a
MR
1824 *
1825 * Return: %0 on success, negative error code otherwise.
a145dd41 1826 */
423bad60
NP
1827int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1828 struct page *page)
a145dd41
LT
1829{
1830 if (addr < vma->vm_start || addr >= vma->vm_end)
1831 return -EFAULT;
1832 if (!page_count(page))
1833 return -EINVAL;
4b6e1e37 1834 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1835 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1836 BUG_ON(vma->vm_flags & VM_PFNMAP);
1837 vma->vm_flags |= VM_MIXEDMAP;
1838 }
423bad60 1839 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1840}
e3c3374f 1841EXPORT_SYMBOL(vm_insert_page);
a145dd41 1842
a667d745
SJ
1843/*
1844 * __vm_map_pages - maps range of kernel pages into user vma
1845 * @vma: user vma to map to
1846 * @pages: pointer to array of source kernel pages
1847 * @num: number of pages in page array
1848 * @offset: user's requested vm_pgoff
1849 *
1850 * This allows drivers to map range of kernel pages into a user vma.
1851 *
1852 * Return: 0 on success and error code otherwise.
1853 */
1854static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1855 unsigned long num, unsigned long offset)
1856{
1857 unsigned long count = vma_pages(vma);
1858 unsigned long uaddr = vma->vm_start;
1859 int ret, i;
1860
1861 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1862 if (offset >= num)
a667d745
SJ
1863 return -ENXIO;
1864
1865 /* Fail if the user requested size exceeds available object size */
1866 if (count > num - offset)
1867 return -ENXIO;
1868
1869 for (i = 0; i < count; i++) {
1870 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1871 if (ret < 0)
1872 return ret;
1873 uaddr += PAGE_SIZE;
1874 }
1875
1876 return 0;
1877}
1878
1879/**
1880 * vm_map_pages - maps range of kernel pages starts with non zero offset
1881 * @vma: user vma to map to
1882 * @pages: pointer to array of source kernel pages
1883 * @num: number of pages in page array
1884 *
1885 * Maps an object consisting of @num pages, catering for the user's
1886 * requested vm_pgoff
1887 *
1888 * If we fail to insert any page into the vma, the function will return
1889 * immediately leaving any previously inserted pages present. Callers
1890 * from the mmap handler may immediately return the error as their caller
1891 * will destroy the vma, removing any successfully inserted pages. Other
1892 * callers should make their own arrangements for calling unmap_region().
1893 *
1894 * Context: Process context. Called by mmap handlers.
1895 * Return: 0 on success and error code otherwise.
1896 */
1897int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1898 unsigned long num)
1899{
1900 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1901}
1902EXPORT_SYMBOL(vm_map_pages);
1903
1904/**
1905 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1906 * @vma: user vma to map to
1907 * @pages: pointer to array of source kernel pages
1908 * @num: number of pages in page array
1909 *
1910 * Similar to vm_map_pages(), except that it explicitly sets the offset
1911 * to 0. This function is intended for the drivers that did not consider
1912 * vm_pgoff.
1913 *
1914 * Context: Process context. Called by mmap handlers.
1915 * Return: 0 on success and error code otherwise.
1916 */
1917int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1918 unsigned long num)
1919{
1920 return __vm_map_pages(vma, pages, num, 0);
1921}
1922EXPORT_SYMBOL(vm_map_pages_zero);
1923
9b5a8e00 1924static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1925 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1926{
1927 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1928 pte_t *pte, entry;
1929 spinlock_t *ptl;
1930
423bad60
NP
1931 pte = get_locked_pte(mm, addr, &ptl);
1932 if (!pte)
9b5a8e00 1933 return VM_FAULT_OOM;
b2770da6
RZ
1934 if (!pte_none(*pte)) {
1935 if (mkwrite) {
1936 /*
1937 * For read faults on private mappings the PFN passed
1938 * in may not match the PFN we have mapped if the
1939 * mapped PFN is a writeable COW page. In the mkwrite
1940 * case we are creating a writable PTE for a shared
f2c57d91
JK
1941 * mapping and we expect the PFNs to match. If they
1942 * don't match, we are likely racing with block
1943 * allocation and mapping invalidation so just skip the
1944 * update.
b2770da6 1945 */
f2c57d91
JK
1946 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1947 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1948 goto out_unlock;
f2c57d91 1949 }
cae85cb8
JK
1950 entry = pte_mkyoung(*pte);
1951 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1952 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1953 update_mmu_cache(vma, addr, pte);
1954 }
1955 goto out_unlock;
b2770da6 1956 }
423bad60
NP
1957
1958 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1959 if (pfn_t_devmap(pfn))
1960 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1961 else
1962 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1963
b2770da6
RZ
1964 if (mkwrite) {
1965 entry = pte_mkyoung(entry);
1966 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1967 }
1968
423bad60 1969 set_pte_at(mm, addr, pte, entry);
4b3073e1 1970 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1971
423bad60
NP
1972out_unlock:
1973 pte_unmap_unlock(pte, ptl);
9b5a8e00 1974 return VM_FAULT_NOPAGE;
423bad60
NP
1975}
1976
f5e6d1d5
MW
1977/**
1978 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1979 * @vma: user vma to map to
1980 * @addr: target user address of this page
1981 * @pfn: source kernel pfn
1982 * @pgprot: pgprot flags for the inserted page
1983 *
a1a0aea5 1984 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
1985 * to override pgprot on a per-page basis.
1986 *
1987 * This only makes sense for IO mappings, and it makes no sense for
1988 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1989 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1990 * impractical.
1991 *
574c5b3d
TH
1992 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1993 * a value of @pgprot different from that of @vma->vm_page_prot.
1994 *
ae2b01f3 1995 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1996 * Return: vm_fault_t value.
1997 */
1998vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1999 unsigned long pfn, pgprot_t pgprot)
2000{
6d958546
MW
2001 /*
2002 * Technically, architectures with pte_special can avoid all these
2003 * restrictions (same for remap_pfn_range). However we would like
2004 * consistency in testing and feature parity among all, so we should
2005 * try to keep these invariants in place for everybody.
2006 */
2007 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2008 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2009 (VM_PFNMAP|VM_MIXEDMAP));
2010 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2011 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2012
2013 if (addr < vma->vm_start || addr >= vma->vm_end)
2014 return VM_FAULT_SIGBUS;
2015
2016 if (!pfn_modify_allowed(pfn, pgprot))
2017 return VM_FAULT_SIGBUS;
2018
2019 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2020
9b5a8e00 2021 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2022 false);
f5e6d1d5
MW
2023}
2024EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2025
ae2b01f3
MW
2026/**
2027 * vmf_insert_pfn - insert single pfn into user vma
2028 * @vma: user vma to map to
2029 * @addr: target user address of this page
2030 * @pfn: source kernel pfn
2031 *
2032 * Similar to vm_insert_page, this allows drivers to insert individual pages
2033 * they've allocated into a user vma. Same comments apply.
2034 *
2035 * This function should only be called from a vm_ops->fault handler, and
2036 * in that case the handler should return the result of this function.
2037 *
2038 * vma cannot be a COW mapping.
2039 *
2040 * As this is called only for pages that do not currently exist, we
2041 * do not need to flush old virtual caches or the TLB.
2042 *
2043 * Context: Process context. May allocate using %GFP_KERNEL.
2044 * Return: vm_fault_t value.
2045 */
2046vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2047 unsigned long pfn)
2048{
2049 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2050}
2051EXPORT_SYMBOL(vmf_insert_pfn);
2052
785a3fab
DW
2053static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2054{
2055 /* these checks mirror the abort conditions in vm_normal_page */
2056 if (vma->vm_flags & VM_MIXEDMAP)
2057 return true;
2058 if (pfn_t_devmap(pfn))
2059 return true;
2060 if (pfn_t_special(pfn))
2061 return true;
2062 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2063 return true;
2064 return false;
2065}
2066
79f3aa5b 2067static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2068 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2069 bool mkwrite)
423bad60 2070{
79f3aa5b 2071 int err;
87744ab3 2072
785a3fab 2073 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2074
423bad60 2075 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2076 return VM_FAULT_SIGBUS;
308a047c
BP
2077
2078 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2079
42e4089c 2080 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2081 return VM_FAULT_SIGBUS;
42e4089c 2082
423bad60
NP
2083 /*
2084 * If we don't have pte special, then we have to use the pfn_valid()
2085 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2086 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2087 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2088 * without pte special, it would there be refcounted as a normal page.
423bad60 2089 */
00b3a331
LD
2090 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2091 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2092 struct page *page;
2093
03fc2da6
DW
2094 /*
2095 * At this point we are committed to insert_page()
2096 * regardless of whether the caller specified flags that
2097 * result in pfn_t_has_page() == false.
2098 */
2099 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2100 err = insert_page(vma, addr, page, pgprot);
2101 } else {
9b5a8e00 2102 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2103 }
b2770da6 2104
5d747637
MW
2105 if (err == -ENOMEM)
2106 return VM_FAULT_OOM;
2107 if (err < 0 && err != -EBUSY)
2108 return VM_FAULT_SIGBUS;
2109
2110 return VM_FAULT_NOPAGE;
e0dc0d8f 2111}
79f3aa5b 2112
574c5b3d
TH
2113/**
2114 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2115 * @vma: user vma to map to
2116 * @addr: target user address of this page
2117 * @pfn: source kernel pfn
2118 * @pgprot: pgprot flags for the inserted page
2119 *
a1a0aea5 2120 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2121 * to override pgprot on a per-page basis.
2122 *
2123 * Typically this function should be used by drivers to set caching- and
2124 * encryption bits different than those of @vma->vm_page_prot, because
2125 * the caching- or encryption mode may not be known at mmap() time.
2126 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2127 * to set caching and encryption bits for those vmas (except for COW pages).
2128 * This is ensured by core vm only modifying these page table entries using
2129 * functions that don't touch caching- or encryption bits, using pte_modify()
2130 * if needed. (See for example mprotect()).
2131 * Also when new page-table entries are created, this is only done using the
2132 * fault() callback, and never using the value of vma->vm_page_prot,
2133 * except for page-table entries that point to anonymous pages as the result
2134 * of COW.
2135 *
2136 * Context: Process context. May allocate using %GFP_KERNEL.
2137 * Return: vm_fault_t value.
2138 */
2139vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2140 pfn_t pfn, pgprot_t pgprot)
2141{
2142 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2143}
5379e4dd 2144EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2145
79f3aa5b
MW
2146vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2147 pfn_t pfn)
2148{
574c5b3d 2149 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2150}
5d747637 2151EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2152
ab77dab4
SJ
2153/*
2154 * If the insertion of PTE failed because someone else already added a
2155 * different entry in the mean time, we treat that as success as we assume
2156 * the same entry was actually inserted.
2157 */
ab77dab4
SJ
2158vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2159 unsigned long addr, pfn_t pfn)
b2770da6 2160{
574c5b3d 2161 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2162}
ab77dab4 2163EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2164
1da177e4
LT
2165/*
2166 * maps a range of physical memory into the requested pages. the old
2167 * mappings are removed. any references to nonexistent pages results
2168 * in null mappings (currently treated as "copy-on-access")
2169 */
2170static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2171 unsigned long addr, unsigned long end,
2172 unsigned long pfn, pgprot_t prot)
2173{
90a3e375 2174 pte_t *pte, *mapped_pte;
c74df32c 2175 spinlock_t *ptl;
42e4089c 2176 int err = 0;
1da177e4 2177
90a3e375 2178 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2179 if (!pte)
2180 return -ENOMEM;
6606c3e0 2181 arch_enter_lazy_mmu_mode();
1da177e4
LT
2182 do {
2183 BUG_ON(!pte_none(*pte));
42e4089c
AK
2184 if (!pfn_modify_allowed(pfn, prot)) {
2185 err = -EACCES;
2186 break;
2187 }
7e675137 2188 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2189 pfn++;
2190 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2191 arch_leave_lazy_mmu_mode();
90a3e375 2192 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2193 return err;
1da177e4
LT
2194}
2195
2196static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2197 unsigned long addr, unsigned long end,
2198 unsigned long pfn, pgprot_t prot)
2199{
2200 pmd_t *pmd;
2201 unsigned long next;
42e4089c 2202 int err;
1da177e4
LT
2203
2204 pfn -= addr >> PAGE_SHIFT;
2205 pmd = pmd_alloc(mm, pud, addr);
2206 if (!pmd)
2207 return -ENOMEM;
f66055ab 2208 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2209 do {
2210 next = pmd_addr_end(addr, end);
42e4089c
AK
2211 err = remap_pte_range(mm, pmd, addr, next,
2212 pfn + (addr >> PAGE_SHIFT), prot);
2213 if (err)
2214 return err;
1da177e4
LT
2215 } while (pmd++, addr = next, addr != end);
2216 return 0;
2217}
2218
c2febafc 2219static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2220 unsigned long addr, unsigned long end,
2221 unsigned long pfn, pgprot_t prot)
2222{
2223 pud_t *pud;
2224 unsigned long next;
42e4089c 2225 int err;
1da177e4
LT
2226
2227 pfn -= addr >> PAGE_SHIFT;
c2febafc 2228 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2229 if (!pud)
2230 return -ENOMEM;
2231 do {
2232 next = pud_addr_end(addr, end);
42e4089c
AK
2233 err = remap_pmd_range(mm, pud, addr, next,
2234 pfn + (addr >> PAGE_SHIFT), prot);
2235 if (err)
2236 return err;
1da177e4
LT
2237 } while (pud++, addr = next, addr != end);
2238 return 0;
2239}
2240
c2febafc
KS
2241static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2242 unsigned long addr, unsigned long end,
2243 unsigned long pfn, pgprot_t prot)
2244{
2245 p4d_t *p4d;
2246 unsigned long next;
42e4089c 2247 int err;
c2febafc
KS
2248
2249 pfn -= addr >> PAGE_SHIFT;
2250 p4d = p4d_alloc(mm, pgd, addr);
2251 if (!p4d)
2252 return -ENOMEM;
2253 do {
2254 next = p4d_addr_end(addr, end);
42e4089c
AK
2255 err = remap_pud_range(mm, p4d, addr, next,
2256 pfn + (addr >> PAGE_SHIFT), prot);
2257 if (err)
2258 return err;
c2febafc
KS
2259 } while (p4d++, addr = next, addr != end);
2260 return 0;
2261}
2262
74ffa5a3
CH
2263/*
2264 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2265 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2266 */
74ffa5a3
CH
2267int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2268 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2269{
2270 pgd_t *pgd;
2271 unsigned long next;
2d15cab8 2272 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2273 struct mm_struct *mm = vma->vm_mm;
2274 int err;
2275
0c4123e3
AZ
2276 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2277 return -EINVAL;
2278
1da177e4
LT
2279 /*
2280 * Physically remapped pages are special. Tell the
2281 * rest of the world about it:
2282 * VM_IO tells people not to look at these pages
2283 * (accesses can have side effects).
6aab341e
LT
2284 * VM_PFNMAP tells the core MM that the base pages are just
2285 * raw PFN mappings, and do not have a "struct page" associated
2286 * with them.
314e51b9
KK
2287 * VM_DONTEXPAND
2288 * Disable vma merging and expanding with mremap().
2289 * VM_DONTDUMP
2290 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2291 *
2292 * There's a horrible special case to handle copy-on-write
2293 * behaviour that some programs depend on. We mark the "original"
2294 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2295 * See vm_normal_page() for details.
1da177e4 2296 */
b3b9c293
KK
2297 if (is_cow_mapping(vma->vm_flags)) {
2298 if (addr != vma->vm_start || end != vma->vm_end)
2299 return -EINVAL;
fb155c16 2300 vma->vm_pgoff = pfn;
b3b9c293
KK
2301 }
2302
314e51b9 2303 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2304
2305 BUG_ON(addr >= end);
2306 pfn -= addr >> PAGE_SHIFT;
2307 pgd = pgd_offset(mm, addr);
2308 flush_cache_range(vma, addr, end);
1da177e4
LT
2309 do {
2310 next = pgd_addr_end(addr, end);
c2febafc 2311 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2312 pfn + (addr >> PAGE_SHIFT), prot);
2313 if (err)
74ffa5a3 2314 return err;
1da177e4 2315 } while (pgd++, addr = next, addr != end);
2ab64037 2316
74ffa5a3
CH
2317 return 0;
2318}
2319
2320/**
2321 * remap_pfn_range - remap kernel memory to userspace
2322 * @vma: user vma to map to
2323 * @addr: target page aligned user address to start at
2324 * @pfn: page frame number of kernel physical memory address
2325 * @size: size of mapping area
2326 * @prot: page protection flags for this mapping
2327 *
2328 * Note: this is only safe if the mm semaphore is held when called.
2329 *
2330 * Return: %0 on success, negative error code otherwise.
2331 */
2332int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2333 unsigned long pfn, unsigned long size, pgprot_t prot)
2334{
2335 int err;
2336
2337 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2338 if (err)
74ffa5a3 2339 return -EINVAL;
2ab64037 2340
74ffa5a3
CH
2341 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2342 if (err)
2343 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2344 return err;
2345}
2346EXPORT_SYMBOL(remap_pfn_range);
2347
b4cbb197
LT
2348/**
2349 * vm_iomap_memory - remap memory to userspace
2350 * @vma: user vma to map to
abd69b9e 2351 * @start: start of the physical memory to be mapped
b4cbb197
LT
2352 * @len: size of area
2353 *
2354 * This is a simplified io_remap_pfn_range() for common driver use. The
2355 * driver just needs to give us the physical memory range to be mapped,
2356 * we'll figure out the rest from the vma information.
2357 *
2358 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2359 * whatever write-combining details or similar.
a862f68a
MR
2360 *
2361 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2362 */
2363int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2364{
2365 unsigned long vm_len, pfn, pages;
2366
2367 /* Check that the physical memory area passed in looks valid */
2368 if (start + len < start)
2369 return -EINVAL;
2370 /*
2371 * You *really* shouldn't map things that aren't page-aligned,
2372 * but we've historically allowed it because IO memory might
2373 * just have smaller alignment.
2374 */
2375 len += start & ~PAGE_MASK;
2376 pfn = start >> PAGE_SHIFT;
2377 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2378 if (pfn + pages < pfn)
2379 return -EINVAL;
2380
2381 /* We start the mapping 'vm_pgoff' pages into the area */
2382 if (vma->vm_pgoff > pages)
2383 return -EINVAL;
2384 pfn += vma->vm_pgoff;
2385 pages -= vma->vm_pgoff;
2386
2387 /* Can we fit all of the mapping? */
2388 vm_len = vma->vm_end - vma->vm_start;
2389 if (vm_len >> PAGE_SHIFT > pages)
2390 return -EINVAL;
2391
2392 /* Ok, let it rip */
2393 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2394}
2395EXPORT_SYMBOL(vm_iomap_memory);
2396
aee16b3c
JF
2397static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2398 unsigned long addr, unsigned long end,
e80d3909
JR
2399 pte_fn_t fn, void *data, bool create,
2400 pgtbl_mod_mask *mask)
aee16b3c 2401{
8abb50c7 2402 pte_t *pte, *mapped_pte;
be1db475 2403 int err = 0;
3f649ab7 2404 spinlock_t *ptl;
aee16b3c 2405
be1db475 2406 if (create) {
8abb50c7 2407 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2408 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2409 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2410 if (!pte)
2411 return -ENOMEM;
2412 } else {
8abb50c7 2413 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2414 pte_offset_kernel(pmd, addr) :
2415 pte_offset_map_lock(mm, pmd, addr, &ptl);
2416 }
aee16b3c
JF
2417
2418 BUG_ON(pmd_huge(*pmd));
2419
38e0edb1
JF
2420 arch_enter_lazy_mmu_mode();
2421
eeb4a05f
CH
2422 if (fn) {
2423 do {
2424 if (create || !pte_none(*pte)) {
2425 err = fn(pte++, addr, data);
2426 if (err)
2427 break;
2428 }
2429 } while (addr += PAGE_SIZE, addr != end);
2430 }
e80d3909 2431 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2432
38e0edb1
JF
2433 arch_leave_lazy_mmu_mode();
2434
aee16b3c 2435 if (mm != &init_mm)
8abb50c7 2436 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2437 return err;
2438}
2439
2440static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2441 unsigned long addr, unsigned long end,
e80d3909
JR
2442 pte_fn_t fn, void *data, bool create,
2443 pgtbl_mod_mask *mask)
aee16b3c
JF
2444{
2445 pmd_t *pmd;
2446 unsigned long next;
be1db475 2447 int err = 0;
aee16b3c 2448
ceb86879
AK
2449 BUG_ON(pud_huge(*pud));
2450
be1db475 2451 if (create) {
e80d3909 2452 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2453 if (!pmd)
2454 return -ENOMEM;
2455 } else {
2456 pmd = pmd_offset(pud, addr);
2457 }
aee16b3c
JF
2458 do {
2459 next = pmd_addr_end(addr, end);
0c95cba4
NP
2460 if (pmd_none(*pmd) && !create)
2461 continue;
2462 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2463 return -EINVAL;
2464 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2465 if (!create)
2466 continue;
2467 pmd_clear_bad(pmd);
be1db475 2468 }
0c95cba4
NP
2469 err = apply_to_pte_range(mm, pmd, addr, next,
2470 fn, data, create, mask);
2471 if (err)
2472 break;
aee16b3c 2473 } while (pmd++, addr = next, addr != end);
0c95cba4 2474
aee16b3c
JF
2475 return err;
2476}
2477
c2febafc 2478static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2479 unsigned long addr, unsigned long end,
e80d3909
JR
2480 pte_fn_t fn, void *data, bool create,
2481 pgtbl_mod_mask *mask)
aee16b3c
JF
2482{
2483 pud_t *pud;
2484 unsigned long next;
be1db475 2485 int err = 0;
aee16b3c 2486
be1db475 2487 if (create) {
e80d3909 2488 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2489 if (!pud)
2490 return -ENOMEM;
2491 } else {
2492 pud = pud_offset(p4d, addr);
2493 }
aee16b3c
JF
2494 do {
2495 next = pud_addr_end(addr, end);
0c95cba4
NP
2496 if (pud_none(*pud) && !create)
2497 continue;
2498 if (WARN_ON_ONCE(pud_leaf(*pud)))
2499 return -EINVAL;
2500 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2501 if (!create)
2502 continue;
2503 pud_clear_bad(pud);
be1db475 2504 }
0c95cba4
NP
2505 err = apply_to_pmd_range(mm, pud, addr, next,
2506 fn, data, create, mask);
2507 if (err)
2508 break;
aee16b3c 2509 } while (pud++, addr = next, addr != end);
0c95cba4 2510
aee16b3c
JF
2511 return err;
2512}
2513
c2febafc
KS
2514static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2515 unsigned long addr, unsigned long end,
e80d3909
JR
2516 pte_fn_t fn, void *data, bool create,
2517 pgtbl_mod_mask *mask)
c2febafc
KS
2518{
2519 p4d_t *p4d;
2520 unsigned long next;
be1db475 2521 int err = 0;
c2febafc 2522
be1db475 2523 if (create) {
e80d3909 2524 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2525 if (!p4d)
2526 return -ENOMEM;
2527 } else {
2528 p4d = p4d_offset(pgd, addr);
2529 }
c2febafc
KS
2530 do {
2531 next = p4d_addr_end(addr, end);
0c95cba4
NP
2532 if (p4d_none(*p4d) && !create)
2533 continue;
2534 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2535 return -EINVAL;
2536 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2537 if (!create)
2538 continue;
2539 p4d_clear_bad(p4d);
be1db475 2540 }
0c95cba4
NP
2541 err = apply_to_pud_range(mm, p4d, addr, next,
2542 fn, data, create, mask);
2543 if (err)
2544 break;
c2febafc 2545 } while (p4d++, addr = next, addr != end);
0c95cba4 2546
c2febafc
KS
2547 return err;
2548}
2549
be1db475
DA
2550static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2551 unsigned long size, pte_fn_t fn,
2552 void *data, bool create)
aee16b3c
JF
2553{
2554 pgd_t *pgd;
e80d3909 2555 unsigned long start = addr, next;
57250a5b 2556 unsigned long end = addr + size;
e80d3909 2557 pgtbl_mod_mask mask = 0;
be1db475 2558 int err = 0;
aee16b3c 2559
9cb65bc3
MP
2560 if (WARN_ON(addr >= end))
2561 return -EINVAL;
2562
aee16b3c
JF
2563 pgd = pgd_offset(mm, addr);
2564 do {
2565 next = pgd_addr_end(addr, end);
0c95cba4 2566 if (pgd_none(*pgd) && !create)
be1db475 2567 continue;
0c95cba4
NP
2568 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2569 return -EINVAL;
2570 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2571 if (!create)
2572 continue;
2573 pgd_clear_bad(pgd);
2574 }
2575 err = apply_to_p4d_range(mm, pgd, addr, next,
2576 fn, data, create, &mask);
aee16b3c
JF
2577 if (err)
2578 break;
2579 } while (pgd++, addr = next, addr != end);
57250a5b 2580
e80d3909
JR
2581 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2582 arch_sync_kernel_mappings(start, start + size);
2583
aee16b3c
JF
2584 return err;
2585}
be1db475
DA
2586
2587/*
2588 * Scan a region of virtual memory, filling in page tables as necessary
2589 * and calling a provided function on each leaf page table.
2590 */
2591int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2592 unsigned long size, pte_fn_t fn, void *data)
2593{
2594 return __apply_to_page_range(mm, addr, size, fn, data, true);
2595}
aee16b3c
JF
2596EXPORT_SYMBOL_GPL(apply_to_page_range);
2597
be1db475
DA
2598/*
2599 * Scan a region of virtual memory, calling a provided function on
2600 * each leaf page table where it exists.
2601 *
2602 * Unlike apply_to_page_range, this does _not_ fill in page tables
2603 * where they are absent.
2604 */
2605int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2606 unsigned long size, pte_fn_t fn, void *data)
2607{
2608 return __apply_to_page_range(mm, addr, size, fn, data, false);
2609}
2610EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2611
8f4e2101 2612/*
9b4bdd2f
KS
2613 * handle_pte_fault chooses page fault handler according to an entry which was
2614 * read non-atomically. Before making any commitment, on those architectures
2615 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2616 * parts, do_swap_page must check under lock before unmapping the pte and
2617 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2618 * and do_anonymous_page can safely check later on).
8f4e2101 2619 */
4c21e2f2 2620static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2621 pte_t *page_table, pte_t orig_pte)
2622{
2623 int same = 1;
923717cb 2624#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2625 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2626 spinlock_t *ptl = pte_lockptr(mm, pmd);
2627 spin_lock(ptl);
8f4e2101 2628 same = pte_same(*page_table, orig_pte);
4c21e2f2 2629 spin_unlock(ptl);
8f4e2101
HD
2630 }
2631#endif
2632 pte_unmap(page_table);
2633 return same;
2634}
2635
83d116c5
JH
2636static inline bool cow_user_page(struct page *dst, struct page *src,
2637 struct vm_fault *vmf)
6aab341e 2638{
83d116c5
JH
2639 bool ret;
2640 void *kaddr;
2641 void __user *uaddr;
c3e5ea6e 2642 bool locked = false;
83d116c5
JH
2643 struct vm_area_struct *vma = vmf->vma;
2644 struct mm_struct *mm = vma->vm_mm;
2645 unsigned long addr = vmf->address;
2646
83d116c5
JH
2647 if (likely(src)) {
2648 copy_user_highpage(dst, src, addr, vma);
2649 return true;
2650 }
2651
6aab341e
LT
2652 /*
2653 * If the source page was a PFN mapping, we don't have
2654 * a "struct page" for it. We do a best-effort copy by
2655 * just copying from the original user address. If that
2656 * fails, we just zero-fill it. Live with it.
2657 */
83d116c5
JH
2658 kaddr = kmap_atomic(dst);
2659 uaddr = (void __user *)(addr & PAGE_MASK);
2660
2661 /*
2662 * On architectures with software "accessed" bits, we would
2663 * take a double page fault, so mark it accessed here.
2664 */
c3e5ea6e 2665 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2666 pte_t entry;
5d2a2dbb 2667
83d116c5 2668 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2669 locked = true;
83d116c5
JH
2670 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2671 /*
2672 * Other thread has already handled the fault
7df67697 2673 * and update local tlb only
83d116c5 2674 */
7df67697 2675 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2676 ret = false;
2677 goto pte_unlock;
2678 }
2679
2680 entry = pte_mkyoung(vmf->orig_pte);
2681 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2682 update_mmu_cache(vma, addr, vmf->pte);
2683 }
2684
2685 /*
2686 * This really shouldn't fail, because the page is there
2687 * in the page tables. But it might just be unreadable,
2688 * in which case we just give up and fill the result with
2689 * zeroes.
2690 */
2691 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2692 if (locked)
2693 goto warn;
2694
2695 /* Re-validate under PTL if the page is still mapped */
2696 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2697 locked = true;
2698 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2699 /* The PTE changed under us, update local tlb */
2700 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2701 ret = false;
2702 goto pte_unlock;
2703 }
2704
5d2a2dbb 2705 /*
985ba004 2706 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2707 * Try to copy again under PTL.
5d2a2dbb 2708 */
c3e5ea6e
KS
2709 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2710 /*
2711 * Give a warn in case there can be some obscure
2712 * use-case
2713 */
2714warn:
2715 WARN_ON_ONCE(1);
2716 clear_page(kaddr);
2717 }
83d116c5
JH
2718 }
2719
2720 ret = true;
2721
2722pte_unlock:
c3e5ea6e 2723 if (locked)
83d116c5
JH
2724 pte_unmap_unlock(vmf->pte, vmf->ptl);
2725 kunmap_atomic(kaddr);
2726 flush_dcache_page(dst);
2727
2728 return ret;
6aab341e
LT
2729}
2730
c20cd45e
MH
2731static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2732{
2733 struct file *vm_file = vma->vm_file;
2734
2735 if (vm_file)
2736 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2737
2738 /*
2739 * Special mappings (e.g. VDSO) do not have any file so fake
2740 * a default GFP_KERNEL for them.
2741 */
2742 return GFP_KERNEL;
2743}
2744
fb09a464
KS
2745/*
2746 * Notify the address space that the page is about to become writable so that
2747 * it can prohibit this or wait for the page to get into an appropriate state.
2748 *
2749 * We do this without the lock held, so that it can sleep if it needs to.
2750 */
2b740303 2751static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2752{
2b740303 2753 vm_fault_t ret;
38b8cb7f
JK
2754 struct page *page = vmf->page;
2755 unsigned int old_flags = vmf->flags;
fb09a464 2756
38b8cb7f 2757 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2758
dc617f29
DW
2759 if (vmf->vma->vm_file &&
2760 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2761 return VM_FAULT_SIGBUS;
2762
11bac800 2763 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2764 /* Restore original flags so that caller is not surprised */
2765 vmf->flags = old_flags;
fb09a464
KS
2766 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2767 return ret;
2768 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2769 lock_page(page);
2770 if (!page->mapping) {
2771 unlock_page(page);
2772 return 0; /* retry */
2773 }
2774 ret |= VM_FAULT_LOCKED;
2775 } else
2776 VM_BUG_ON_PAGE(!PageLocked(page), page);
2777 return ret;
2778}
2779
97ba0c2b
JK
2780/*
2781 * Handle dirtying of a page in shared file mapping on a write fault.
2782 *
2783 * The function expects the page to be locked and unlocks it.
2784 */
89b15332 2785static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2786{
89b15332 2787 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2788 struct address_space *mapping;
89b15332 2789 struct page *page = vmf->page;
97ba0c2b
JK
2790 bool dirtied;
2791 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2792
2793 dirtied = set_page_dirty(page);
2794 VM_BUG_ON_PAGE(PageAnon(page), page);
2795 /*
2796 * Take a local copy of the address_space - page.mapping may be zeroed
2797 * by truncate after unlock_page(). The address_space itself remains
2798 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2799 * release semantics to prevent the compiler from undoing this copying.
2800 */
2801 mapping = page_rmapping(page);
2802 unlock_page(page);
2803
89b15332
JW
2804 if (!page_mkwrite)
2805 file_update_time(vma->vm_file);
2806
2807 /*
2808 * Throttle page dirtying rate down to writeback speed.
2809 *
2810 * mapping may be NULL here because some device drivers do not
2811 * set page.mapping but still dirty their pages
2812 *
c1e8d7c6 2813 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2814 * is pinning the mapping, as per above.
2815 */
97ba0c2b 2816 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2817 struct file *fpin;
2818
2819 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2820 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2821 if (fpin) {
2822 fput(fpin);
2823 return VM_FAULT_RETRY;
2824 }
97ba0c2b
JK
2825 }
2826
89b15332 2827 return 0;
97ba0c2b
JK
2828}
2829
4e047f89
SR
2830/*
2831 * Handle write page faults for pages that can be reused in the current vma
2832 *
2833 * This can happen either due to the mapping being with the VM_SHARED flag,
2834 * or due to us being the last reference standing to the page. In either
2835 * case, all we need to do here is to mark the page as writable and update
2836 * any related book-keeping.
2837 */
997dd98d 2838static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2839 __releases(vmf->ptl)
4e047f89 2840{
82b0f8c3 2841 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2842 struct page *page = vmf->page;
4e047f89
SR
2843 pte_t entry;
2844 /*
2845 * Clear the pages cpupid information as the existing
2846 * information potentially belongs to a now completely
2847 * unrelated process.
2848 */
2849 if (page)
2850 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2851
2994302b
JK
2852 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2853 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2854 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2855 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2856 update_mmu_cache(vma, vmf->address, vmf->pte);
2857 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2858 count_vm_event(PGREUSE);
4e047f89
SR
2859}
2860
2f38ab2c
SR
2861/*
2862 * Handle the case of a page which we actually need to copy to a new page.
2863 *
c1e8d7c6 2864 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2865 * without the ptl held.
2866 *
2867 * High level logic flow:
2868 *
2869 * - Allocate a page, copy the content of the old page to the new one.
2870 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2871 * - Take the PTL. If the pte changed, bail out and release the allocated page
2872 * - If the pte is still the way we remember it, update the page table and all
2873 * relevant references. This includes dropping the reference the page-table
2874 * held to the old page, as well as updating the rmap.
2875 * - In any case, unlock the PTL and drop the reference we took to the old page.
2876 */
2b740303 2877static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2878{
82b0f8c3 2879 struct vm_area_struct *vma = vmf->vma;
bae473a4 2880 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2881 struct page *old_page = vmf->page;
2f38ab2c 2882 struct page *new_page = NULL;
2f38ab2c
SR
2883 pte_t entry;
2884 int page_copied = 0;
ac46d4f3 2885 struct mmu_notifier_range range;
2f38ab2c
SR
2886
2887 if (unlikely(anon_vma_prepare(vma)))
2888 goto oom;
2889
2994302b 2890 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2891 new_page = alloc_zeroed_user_highpage_movable(vma,
2892 vmf->address);
2f38ab2c
SR
2893 if (!new_page)
2894 goto oom;
2895 } else {
bae473a4 2896 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2897 vmf->address);
2f38ab2c
SR
2898 if (!new_page)
2899 goto oom;
83d116c5
JH
2900
2901 if (!cow_user_page(new_page, old_page, vmf)) {
2902 /*
2903 * COW failed, if the fault was solved by other,
2904 * it's fine. If not, userspace would re-fault on
2905 * the same address and we will handle the fault
2906 * from the second attempt.
2907 */
2908 put_page(new_page);
2909 if (old_page)
2910 put_page(old_page);
2911 return 0;
2912 }
2f38ab2c 2913 }
2f38ab2c 2914
d9eb1ea2 2915 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2916 goto oom_free_new;
9d82c694 2917 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2918
eb3c24f3
MG
2919 __SetPageUptodate(new_page);
2920
7269f999 2921 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2922 vmf->address & PAGE_MASK,
ac46d4f3
JG
2923 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2924 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2925
2926 /*
2927 * Re-check the pte - we dropped the lock
2928 */
82b0f8c3 2929 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2930 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2931 if (old_page) {
2932 if (!PageAnon(old_page)) {
eca56ff9
JM
2933 dec_mm_counter_fast(mm,
2934 mm_counter_file(old_page));
2f38ab2c
SR
2935 inc_mm_counter_fast(mm, MM_ANONPAGES);
2936 }
2937 } else {
2938 inc_mm_counter_fast(mm, MM_ANONPAGES);
2939 }
2994302b 2940 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 2941 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 2942 entry = pte_sw_mkyoung(entry);
2f38ab2c 2943 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 2944
2f38ab2c
SR
2945 /*
2946 * Clear the pte entry and flush it first, before updating the
111fe718
NP
2947 * pte with the new entry, to keep TLBs on different CPUs in
2948 * sync. This code used to set the new PTE then flush TLBs, but
2949 * that left a window where the new PTE could be loaded into
2950 * some TLBs while the old PTE remains in others.
2f38ab2c 2951 */
82b0f8c3
JK
2952 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2953 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 2954 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
2955 /*
2956 * We call the notify macro here because, when using secondary
2957 * mmu page tables (such as kvm shadow page tables), we want the
2958 * new page to be mapped directly into the secondary page table.
2959 */
82b0f8c3
JK
2960 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2961 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2962 if (old_page) {
2963 /*
2964 * Only after switching the pte to the new page may
2965 * we remove the mapcount here. Otherwise another
2966 * process may come and find the rmap count decremented
2967 * before the pte is switched to the new page, and
2968 * "reuse" the old page writing into it while our pte
2969 * here still points into it and can be read by other
2970 * threads.
2971 *
2972 * The critical issue is to order this
2973 * page_remove_rmap with the ptp_clear_flush above.
2974 * Those stores are ordered by (if nothing else,)
2975 * the barrier present in the atomic_add_negative
2976 * in page_remove_rmap.
2977 *
2978 * Then the TLB flush in ptep_clear_flush ensures that
2979 * no process can access the old page before the
2980 * decremented mapcount is visible. And the old page
2981 * cannot be reused until after the decremented
2982 * mapcount is visible. So transitively, TLBs to
2983 * old page will be flushed before it can be reused.
2984 */
d281ee61 2985 page_remove_rmap(old_page, false);
2f38ab2c
SR
2986 }
2987
2988 /* Free the old page.. */
2989 new_page = old_page;
2990 page_copied = 1;
2991 } else {
7df67697 2992 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2993 }
2994
2995 if (new_page)
09cbfeaf 2996 put_page(new_page);
2f38ab2c 2997
82b0f8c3 2998 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2999 /*
3000 * No need to double call mmu_notifier->invalidate_range() callback as
3001 * the above ptep_clear_flush_notify() did already call it.
3002 */
ac46d4f3 3003 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
3004 if (old_page) {
3005 /*
3006 * Don't let another task, with possibly unlocked vma,
3007 * keep the mlocked page.
3008 */
3009 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3010 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
3011 if (PageMlocked(old_page))
3012 munlock_vma_page(old_page);
2f38ab2c
SR
3013 unlock_page(old_page);
3014 }
09cbfeaf 3015 put_page(old_page);
2f38ab2c
SR
3016 }
3017 return page_copied ? VM_FAULT_WRITE : 0;
3018oom_free_new:
09cbfeaf 3019 put_page(new_page);
2f38ab2c
SR
3020oom:
3021 if (old_page)
09cbfeaf 3022 put_page(old_page);
2f38ab2c
SR
3023 return VM_FAULT_OOM;
3024}
3025
66a6197c
JK
3026/**
3027 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3028 * writeable once the page is prepared
3029 *
3030 * @vmf: structure describing the fault
3031 *
3032 * This function handles all that is needed to finish a write page fault in a
3033 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3034 * It handles locking of PTE and modifying it.
66a6197c
JK
3035 *
3036 * The function expects the page to be locked or other protection against
3037 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
3038 *
3039 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3040 * we acquired PTE lock.
66a6197c 3041 */
2b740303 3042vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3043{
3044 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3045 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3046 &vmf->ptl);
3047 /*
3048 * We might have raced with another page fault while we released the
3049 * pte_offset_map_lock.
3050 */
3051 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3052 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3053 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3054 return VM_FAULT_NOPAGE;
66a6197c
JK
3055 }
3056 wp_page_reuse(vmf);
a19e2553 3057 return 0;
66a6197c
JK
3058}
3059
dd906184
BH
3060/*
3061 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3062 * mapping
3063 */
2b740303 3064static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3065{
82b0f8c3 3066 struct vm_area_struct *vma = vmf->vma;
bae473a4 3067
dd906184 3068 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3069 vm_fault_t ret;
dd906184 3070
82b0f8c3 3071 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3072 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3073 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3074 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3075 return ret;
66a6197c 3076 return finish_mkwrite_fault(vmf);
dd906184 3077 }
997dd98d
JK
3078 wp_page_reuse(vmf);
3079 return VM_FAULT_WRITE;
dd906184
BH
3080}
3081
2b740303 3082static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3083 __releases(vmf->ptl)
93e478d4 3084{
82b0f8c3 3085 struct vm_area_struct *vma = vmf->vma;
89b15332 3086 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3087
a41b70d6 3088 get_page(vmf->page);
93e478d4 3089
93e478d4 3090 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3091 vm_fault_t tmp;
93e478d4 3092
82b0f8c3 3093 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3094 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3095 if (unlikely(!tmp || (tmp &
3096 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3097 put_page(vmf->page);
93e478d4
SR
3098 return tmp;
3099 }
66a6197c 3100 tmp = finish_mkwrite_fault(vmf);
a19e2553 3101 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3102 unlock_page(vmf->page);
a41b70d6 3103 put_page(vmf->page);
66a6197c 3104 return tmp;
93e478d4 3105 }
66a6197c
JK
3106 } else {
3107 wp_page_reuse(vmf);
997dd98d 3108 lock_page(vmf->page);
93e478d4 3109 }
89b15332 3110 ret |= fault_dirty_shared_page(vmf);
997dd98d 3111 put_page(vmf->page);
93e478d4 3112
89b15332 3113 return ret;
93e478d4
SR
3114}
3115
1da177e4
LT
3116/*
3117 * This routine handles present pages, when users try to write
3118 * to a shared page. It is done by copying the page to a new address
3119 * and decrementing the shared-page counter for the old page.
3120 *
1da177e4
LT
3121 * Note that this routine assumes that the protection checks have been
3122 * done by the caller (the low-level page fault routine in most cases).
3123 * Thus we can safely just mark it writable once we've done any necessary
3124 * COW.
3125 *
3126 * We also mark the page dirty at this point even though the page will
3127 * change only once the write actually happens. This avoids a few races,
3128 * and potentially makes it more efficient.
3129 *
c1e8d7c6 3130 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3131 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3132 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3133 */
2b740303 3134static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3135 __releases(vmf->ptl)
1da177e4 3136{
82b0f8c3 3137 struct vm_area_struct *vma = vmf->vma;
1da177e4 3138
292924b2 3139 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3140 pte_unmap_unlock(vmf->pte, vmf->ptl);
3141 return handle_userfault(vmf, VM_UFFD_WP);
3142 }
3143
6ce64428
NA
3144 /*
3145 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3146 * is flushed in this case before copying.
3147 */
3148 if (unlikely(userfaultfd_wp(vmf->vma) &&
3149 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3150 flush_tlb_page(vmf->vma, vmf->address);
3151
a41b70d6
JK
3152 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3153 if (!vmf->page) {
251b97f5 3154 /*
64e45507
PF
3155 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3156 * VM_PFNMAP VMA.
251b97f5
PZ
3157 *
3158 * We should not cow pages in a shared writeable mapping.
dd906184 3159 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3160 */
3161 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3162 (VM_WRITE|VM_SHARED))
2994302b 3163 return wp_pfn_shared(vmf);
2f38ab2c 3164
82b0f8c3 3165 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3166 return wp_page_copy(vmf);
251b97f5 3167 }
1da177e4 3168
d08b3851 3169 /*
ee6a6457
PZ
3170 * Take out anonymous pages first, anonymous shared vmas are
3171 * not dirty accountable.
d08b3851 3172 */
52d1e606 3173 if (PageAnon(vmf->page)) {
09854ba9
LT
3174 struct page *page = vmf->page;
3175
3176 /* PageKsm() doesn't necessarily raise the page refcount */
3177 if (PageKsm(page) || page_count(page) != 1)
3178 goto copy;
3179 if (!trylock_page(page))
3180 goto copy;
3181 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3182 unlock_page(page);
52d1e606 3183 goto copy;
b009c024 3184 }
09854ba9
LT
3185 /*
3186 * Ok, we've got the only map reference, and the only
3187 * page count reference, and the page is locked,
3188 * it's dark out, and we're wearing sunglasses. Hit it.
3189 */
09854ba9 3190 unlock_page(page);
be068f29 3191 wp_page_reuse(vmf);
09854ba9 3192 return VM_FAULT_WRITE;
ee6a6457 3193 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3194 (VM_WRITE|VM_SHARED))) {
a41b70d6 3195 return wp_page_shared(vmf);
1da177e4 3196 }
52d1e606 3197copy:
1da177e4
LT
3198 /*
3199 * Ok, we need to copy. Oh, well..
3200 */
a41b70d6 3201 get_page(vmf->page);
28766805 3202
82b0f8c3 3203 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3204 return wp_page_copy(vmf);
1da177e4
LT
3205}
3206
97a89413 3207static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3208 unsigned long start_addr, unsigned long end_addr,
3209 struct zap_details *details)
3210{
f5cc4eef 3211 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3212}
3213
f808c13f 3214static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
3215 struct zap_details *details)
3216{
3217 struct vm_area_struct *vma;
1da177e4
LT
3218 pgoff_t vba, vea, zba, zea;
3219
6b2dbba8 3220 vma_interval_tree_foreach(vma, root,
1da177e4 3221 details->first_index, details->last_index) {
1da177e4
LT
3222
3223 vba = vma->vm_pgoff;
d6e93217 3224 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3225 zba = details->first_index;
3226 if (zba < vba)
3227 zba = vba;
3228 zea = details->last_index;
3229 if (zea > vea)
3230 zea = vea;
3231
97a89413 3232 unmap_mapping_range_vma(vma,
1da177e4
LT
3233 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3234 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3235 details);
1da177e4
LT
3236 }
3237}
3238
977fbdcd
MW
3239/**
3240 * unmap_mapping_pages() - Unmap pages from processes.
3241 * @mapping: The address space containing pages to be unmapped.
3242 * @start: Index of first page to be unmapped.
3243 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3244 * @even_cows: Whether to unmap even private COWed pages.
3245 *
3246 * Unmap the pages in this address space from any userspace process which
3247 * has them mmaped. Generally, you want to remove COWed pages as well when
3248 * a file is being truncated, but not when invalidating pages from the page
3249 * cache.
3250 */
3251void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3252 pgoff_t nr, bool even_cows)
3253{
3254 struct zap_details details = { };
3255
3256 details.check_mapping = even_cows ? NULL : mapping;
3257 details.first_index = start;
3258 details.last_index = start + nr - 1;
3259 if (details.last_index < details.first_index)
3260 details.last_index = ULONG_MAX;
3261
3262 i_mmap_lock_write(mapping);
3263 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3264 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3265 i_mmap_unlock_write(mapping);
3266}
3267
1da177e4 3268/**
8a5f14a2 3269 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3270 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3271 * file.
3272 *
3d41088f 3273 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3274 * @holebegin: byte in first page to unmap, relative to the start of
3275 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3276 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3277 * must keep the partial page. In contrast, we must get rid of
3278 * partial pages.
3279 * @holelen: size of prospective hole in bytes. This will be rounded
3280 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3281 * end of the file.
3282 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3283 * but 0 when invalidating pagecache, don't throw away private data.
3284 */
3285void unmap_mapping_range(struct address_space *mapping,
3286 loff_t const holebegin, loff_t const holelen, int even_cows)
3287{
1da177e4
LT
3288 pgoff_t hba = holebegin >> PAGE_SHIFT;
3289 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3290
3291 /* Check for overflow. */
3292 if (sizeof(holelen) > sizeof(hlen)) {
3293 long long holeend =
3294 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3295 if (holeend & ~(long long)ULONG_MAX)
3296 hlen = ULONG_MAX - hba + 1;
3297 }
3298
977fbdcd 3299 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3300}
3301EXPORT_SYMBOL(unmap_mapping_range);
3302
1da177e4 3303/*
c1e8d7c6 3304 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3305 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3306 * We return with pte unmapped and unlocked.
3307 *
c1e8d7c6 3308 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3309 * as does filemap_fault().
1da177e4 3310 */
2b740303 3311vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3312{
82b0f8c3 3313 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3314 struct page *page = NULL, *swapcache;
65500d23 3315 swp_entry_t entry;
1da177e4 3316 pte_t pte;
d065bd81 3317 int locked;
ad8c2ee8 3318 int exclusive = 0;
2b740303 3319 vm_fault_t ret = 0;
aae466b0 3320 void *shadow = NULL;
1da177e4 3321
eaf649eb 3322 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3323 goto out;
65500d23 3324
2994302b 3325 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3326 if (unlikely(non_swap_entry(entry))) {
3327 if (is_migration_entry(entry)) {
82b0f8c3
JK
3328 migration_entry_wait(vma->vm_mm, vmf->pmd,
3329 vmf->address);
5042db43 3330 } else if (is_device_private_entry(entry)) {
897e6365
CH
3331 vmf->page = device_private_entry_to_page(entry);
3332 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3333 } else if (is_hwpoison_entry(entry)) {
3334 ret = VM_FAULT_HWPOISON;
3335 } else {
2994302b 3336 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3337 ret = VM_FAULT_SIGBUS;
d1737fdb 3338 }
0697212a
CL
3339 goto out;
3340 }
0bcac06f
MK
3341
3342
3d1c7fd9 3343 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3344 page = lookup_swap_cache(entry, vma, vmf->address);
3345 swapcache = page;
f8020772 3346
1da177e4 3347 if (!page) {
0bcac06f
MK
3348 struct swap_info_struct *si = swp_swap_info(entry);
3349
a449bf58
QC
3350 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3351 __swap_count(entry) == 1) {
0bcac06f 3352 /* skip swapcache */
e9e9b7ec
MK
3353 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3354 vmf->address);
0bcac06f
MK
3355 if (page) {
3356 __SetPageLocked(page);
3357 __SetPageSwapBacked(page);
4c6355b2 3358
0add0c77
SB
3359 if (mem_cgroup_swapin_charge_page(page,
3360 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3361 ret = VM_FAULT_OOM;
4c6355b2 3362 goto out_page;
545b1b07 3363 }
0add0c77 3364 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3365
aae466b0
JK
3366 shadow = get_shadow_from_swap_cache(entry);
3367 if (shadow)
3368 workingset_refault(page, shadow);
0076f029 3369
6058eaec 3370 lru_cache_add(page);
0add0c77
SB
3371
3372 /* To provide entry to swap_readpage() */
3373 set_page_private(page, entry.val);
0bcac06f 3374 swap_readpage(page, true);
0add0c77 3375 set_page_private(page, 0);
0bcac06f 3376 }
aa8d22a1 3377 } else {
e9e9b7ec
MK
3378 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3379 vmf);
aa8d22a1 3380 swapcache = page;
0bcac06f
MK
3381 }
3382
1da177e4
LT
3383 if (!page) {
3384 /*
8f4e2101
HD
3385 * Back out if somebody else faulted in this pte
3386 * while we released the pte lock.
1da177e4 3387 */
82b0f8c3
JK
3388 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3389 vmf->address, &vmf->ptl);
2994302b 3390 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3391 ret = VM_FAULT_OOM;
3d1c7fd9 3392 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
65500d23 3393 goto unlock;
1da177e4
LT
3394 }
3395
3396 /* Had to read the page from swap area: Major fault */
3397 ret = VM_FAULT_MAJOR;
f8891e5e 3398 count_vm_event(PGMAJFAULT);
2262185c 3399 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3400 } else if (PageHWPoison(page)) {
71f72525
WF
3401 /*
3402 * hwpoisoned dirty swapcache pages are kept for killing
3403 * owner processes (which may be unknown at hwpoison time)
3404 */
d1737fdb 3405 ret = VM_FAULT_HWPOISON;
3d1c7fd9 3406 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
4779cb31 3407 goto out_release;
1da177e4
LT
3408 }
3409
82b0f8c3 3410 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3411
3d1c7fd9 3412 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
d065bd81
ML
3413 if (!locked) {
3414 ret |= VM_FAULT_RETRY;
3415 goto out_release;
3416 }
073e587e 3417
4969c119 3418 /*
31c4a3d3
HD
3419 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3420 * release the swapcache from under us. The page pin, and pte_same
3421 * test below, are not enough to exclude that. Even if it is still
3422 * swapcache, we need to check that the page's swap has not changed.
4969c119 3423 */
0bcac06f
MK
3424 if (unlikely((!PageSwapCache(page) ||
3425 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3426 goto out_page;
3427
82b0f8c3 3428 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3429 if (unlikely(!page)) {
3430 ret = VM_FAULT_OOM;
3431 page = swapcache;
cbf86cfe 3432 goto out_page;
5ad64688
HD
3433 }
3434
9d82c694 3435 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3436
1da177e4 3437 /*
8f4e2101 3438 * Back out if somebody else already faulted in this pte.
1da177e4 3439 */
82b0f8c3
JK
3440 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3441 &vmf->ptl);
2994302b 3442 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3443 goto out_nomap;
b8107480
KK
3444
3445 if (unlikely(!PageUptodate(page))) {
3446 ret = VM_FAULT_SIGBUS;
3447 goto out_nomap;
1da177e4
LT
3448 }
3449
8c7c6e34
KH
3450 /*
3451 * The page isn't present yet, go ahead with the fault.
3452 *
3453 * Be careful about the sequence of operations here.
3454 * To get its accounting right, reuse_swap_page() must be called
3455 * while the page is counted on swap but not yet in mapcount i.e.
3456 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3457 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3458 */
1da177e4 3459
bae473a4
KS
3460 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3461 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3462 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3463 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3464 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3465 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3466 ret |= VM_FAULT_WRITE;
d281ee61 3467 exclusive = RMAP_EXCLUSIVE;
1da177e4 3468 }
1da177e4 3469 flush_icache_page(vma, page);
2994302b 3470 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3471 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3472 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3473 pte = pte_mkuffd_wp(pte);
3474 pte = pte_wrprotect(pte);
3475 }
82b0f8c3 3476 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3477 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3478 vmf->orig_pte = pte;
0bcac06f
MK
3479
3480 /* ksm created a completely new copy */
3481 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3482 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3483 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3484 } else {
3485 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3486 }
1da177e4 3487
c475a8ab 3488 swap_free(entry);
5ccc5aba
VD
3489 if (mem_cgroup_swap_full(page) ||
3490 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3491 try_to_free_swap(page);
c475a8ab 3492 unlock_page(page);
0bcac06f 3493 if (page != swapcache && swapcache) {
4969c119
AA
3494 /*
3495 * Hold the lock to avoid the swap entry to be reused
3496 * until we take the PT lock for the pte_same() check
3497 * (to avoid false positives from pte_same). For
3498 * further safety release the lock after the swap_free
3499 * so that the swap count won't change under a
3500 * parallel locked swapcache.
3501 */
3502 unlock_page(swapcache);
09cbfeaf 3503 put_page(swapcache);
4969c119 3504 }
c475a8ab 3505
82b0f8c3 3506 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3507 ret |= do_wp_page(vmf);
61469f1d
HD
3508 if (ret & VM_FAULT_ERROR)
3509 ret &= VM_FAULT_ERROR;
1da177e4
LT
3510 goto out;
3511 }
3512
3513 /* No need to invalidate - it was non-present before */
82b0f8c3 3514 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3515unlock:
82b0f8c3 3516 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3517out:
3518 return ret;
b8107480 3519out_nomap:
82b0f8c3 3520 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3521out_page:
b8107480 3522 unlock_page(page);
4779cb31 3523out_release:
09cbfeaf 3524 put_page(page);
0bcac06f 3525 if (page != swapcache && swapcache) {
4969c119 3526 unlock_page(swapcache);
09cbfeaf 3527 put_page(swapcache);
4969c119 3528 }
65500d23 3529 return ret;
1da177e4
LT
3530}
3531
3532/*
c1e8d7c6 3533 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3534 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3535 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3536 */
2b740303 3537static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3538{
82b0f8c3 3539 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3540 struct page *page;
2b740303 3541 vm_fault_t ret = 0;
1da177e4 3542 pte_t entry;
1da177e4 3543
6b7339f4
KS
3544 /* File mapping without ->vm_ops ? */
3545 if (vma->vm_flags & VM_SHARED)
3546 return VM_FAULT_SIGBUS;
3547
7267ec00
KS
3548 /*
3549 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3550 * pte_offset_map() on pmds where a huge pmd might be created
3551 * from a different thread.
3552 *
3e4e28c5 3553 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3554 * parallel threads are excluded by other means.
3555 *
3e4e28c5 3556 * Here we only have mmap_read_lock(mm).
7267ec00 3557 */
4cf58924 3558 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3559 return VM_FAULT_OOM;
3560
f9ce0be7 3561 /* See comment in handle_pte_fault() */
82b0f8c3 3562 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3563 return 0;
3564
11ac5524 3565 /* Use the zero-page for reads */
82b0f8c3 3566 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3567 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3568 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3569 vma->vm_page_prot));
82b0f8c3
JK
3570 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3571 vmf->address, &vmf->ptl);
7df67697
BM
3572 if (!pte_none(*vmf->pte)) {
3573 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3574 goto unlock;
7df67697 3575 }
6b31d595
MH
3576 ret = check_stable_address_space(vma->vm_mm);
3577 if (ret)
3578 goto unlock;
6b251fc9
AA
3579 /* Deliver the page fault to userland, check inside PT lock */
3580 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3581 pte_unmap_unlock(vmf->pte, vmf->ptl);
3582 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3583 }
a13ea5b7
HD
3584 goto setpte;
3585 }
3586
557ed1fa 3587 /* Allocate our own private page. */
557ed1fa
NP
3588 if (unlikely(anon_vma_prepare(vma)))
3589 goto oom;
82b0f8c3 3590 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3591 if (!page)
3592 goto oom;
eb3c24f3 3593
d9eb1ea2 3594 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3595 goto oom_free_page;
9d82c694 3596 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3597
52f37629
MK
3598 /*
3599 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3600 * preceding stores to the page contents become visible before
52f37629
MK
3601 * the set_pte_at() write.
3602 */
0ed361de 3603 __SetPageUptodate(page);
8f4e2101 3604
557ed1fa 3605 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 3606 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3607 if (vma->vm_flags & VM_WRITE)
3608 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3609
82b0f8c3
JK
3610 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3611 &vmf->ptl);
7df67697
BM
3612 if (!pte_none(*vmf->pte)) {
3613 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3614 goto release;
7df67697 3615 }
9ba69294 3616
6b31d595
MH
3617 ret = check_stable_address_space(vma->vm_mm);
3618 if (ret)
3619 goto release;
3620
6b251fc9
AA
3621 /* Deliver the page fault to userland, check inside PT lock */
3622 if (userfaultfd_missing(vma)) {
82b0f8c3 3623 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3624 put_page(page);
82b0f8c3 3625 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3626 }
3627
bae473a4 3628 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3629 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3630 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3631setpte:
82b0f8c3 3632 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3633
3634 /* No need to invalidate - it was non-present before */
82b0f8c3 3635 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3636unlock:
82b0f8c3 3637 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3638 return ret;
8f4e2101 3639release:
09cbfeaf 3640 put_page(page);
8f4e2101 3641 goto unlock;
8a9f3ccd 3642oom_free_page:
09cbfeaf 3643 put_page(page);
65500d23 3644oom:
1da177e4
LT
3645 return VM_FAULT_OOM;
3646}
3647
9a95f3cf 3648/*
c1e8d7c6 3649 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3650 * released depending on flags and vma->vm_ops->fault() return value.
3651 * See filemap_fault() and __lock_page_retry().
3652 */
2b740303 3653static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3654{
82b0f8c3 3655 struct vm_area_struct *vma = vmf->vma;
2b740303 3656 vm_fault_t ret;
7eae74af 3657
63f3655f
MH
3658 /*
3659 * Preallocate pte before we take page_lock because this might lead to
3660 * deadlocks for memcg reclaim which waits for pages under writeback:
3661 * lock_page(A)
3662 * SetPageWriteback(A)
3663 * unlock_page(A)
3664 * lock_page(B)
3665 * lock_page(B)
d383807a 3666 * pte_alloc_one
63f3655f
MH
3667 * shrink_page_list
3668 * wait_on_page_writeback(A)
3669 * SetPageWriteback(B)
3670 * unlock_page(B)
3671 * # flush A, B to clear the writeback
3672 */
3673 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3674 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3675 if (!vmf->prealloc_pte)
3676 return VM_FAULT_OOM;
3677 smp_wmb(); /* See comment in __pte_alloc() */
3678 }
3679
11bac800 3680 ret = vma->vm_ops->fault(vmf);
3917048d 3681 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3682 VM_FAULT_DONE_COW)))
bc2466e4 3683 return ret;
7eae74af 3684
667240e0 3685 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3686 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3687 unlock_page(vmf->page);
3688 put_page(vmf->page);
936ca80d 3689 vmf->page = NULL;
7eae74af
KS
3690 return VM_FAULT_HWPOISON;
3691 }
3692
3693 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3694 lock_page(vmf->page);
7eae74af 3695 else
667240e0 3696 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3697
7eae74af
KS
3698 return ret;
3699}
3700
396bcc52 3701#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3702static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3703{
82b0f8c3 3704 struct vm_area_struct *vma = vmf->vma;
953c66c2 3705
82b0f8c3 3706 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3707 /*
3708 * We are going to consume the prealloc table,
3709 * count that as nr_ptes.
3710 */
c4812909 3711 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3712 vmf->prealloc_pte = NULL;
953c66c2
AK
3713}
3714
f9ce0be7 3715vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3716{
82b0f8c3
JK
3717 struct vm_area_struct *vma = vmf->vma;
3718 bool write = vmf->flags & FAULT_FLAG_WRITE;
3719 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3720 pmd_t entry;
2b740303 3721 int i;
d01ac3c3 3722 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3723
3724 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3725 return ret;
10102459 3726
10102459 3727 page = compound_head(page);
d01ac3c3
MWO
3728 if (compound_order(page) != HPAGE_PMD_ORDER)
3729 return ret;
10102459 3730
953c66c2 3731 /*
f0953a1b 3732 * Archs like ppc64 need additional space to store information
953c66c2
AK
3733 * related to pte entry. Use the preallocated table for that.
3734 */
82b0f8c3 3735 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3736 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3737 if (!vmf->prealloc_pte)
953c66c2
AK
3738 return VM_FAULT_OOM;
3739 smp_wmb(); /* See comment in __pte_alloc() */
3740 }
3741
82b0f8c3
JK
3742 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3743 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3744 goto out;
3745
3746 for (i = 0; i < HPAGE_PMD_NR; i++)
3747 flush_icache_page(vma, page + i);
3748
3749 entry = mk_huge_pmd(page, vma->vm_page_prot);
3750 if (write)
f55e1014 3751 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3752
fadae295 3753 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3754 page_add_file_rmap(page, true);
953c66c2
AK
3755 /*
3756 * deposit and withdraw with pmd lock held
3757 */
3758 if (arch_needs_pgtable_deposit())
82b0f8c3 3759 deposit_prealloc_pte(vmf);
10102459 3760
82b0f8c3 3761 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3762
82b0f8c3 3763 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3764
3765 /* fault is handled */
3766 ret = 0;
95ecedcd 3767 count_vm_event(THP_FILE_MAPPED);
10102459 3768out:
82b0f8c3 3769 spin_unlock(vmf->ptl);
10102459
KS
3770 return ret;
3771}
3772#else
f9ce0be7 3773vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3774{
f9ce0be7 3775 return VM_FAULT_FALLBACK;
10102459
KS
3776}
3777#endif
3778
9d3af4b4 3779void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 3780{
82b0f8c3
JK
3781 struct vm_area_struct *vma = vmf->vma;
3782 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 3783 bool prefault = vmf->address != addr;
3bb97794 3784 pte_t entry;
7267ec00 3785
3bb97794
KS
3786 flush_icache_page(vma, page);
3787 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
3788
3789 if (prefault && arch_wants_old_prefaulted_pte())
3790 entry = pte_mkold(entry);
50c25ee9
TB
3791 else
3792 entry = pte_sw_mkyoung(entry);
46bdb427 3793
3bb97794
KS
3794 if (write)
3795 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3796 /* copy-on-write page */
3797 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3798 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
9d3af4b4 3799 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 3800 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3801 } else {
eca56ff9 3802 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3803 page_add_file_rmap(page, false);
3bb97794 3804 }
9d3af4b4 3805 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
3806}
3807
9118c0cb
JK
3808/**
3809 * finish_fault - finish page fault once we have prepared the page to fault
3810 *
3811 * @vmf: structure describing the fault
3812 *
3813 * This function handles all that is needed to finish a page fault once the
3814 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3815 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3816 * addition.
9118c0cb
JK
3817 *
3818 * The function expects the page to be locked and on success it consumes a
3819 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3820 *
3821 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3822 */
2b740303 3823vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 3824{
f9ce0be7 3825 struct vm_area_struct *vma = vmf->vma;
9118c0cb 3826 struct page *page;
f9ce0be7 3827 vm_fault_t ret;
9118c0cb
JK
3828
3829 /* Did we COW the page? */
f9ce0be7 3830 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
3831 page = vmf->cow_page;
3832 else
3833 page = vmf->page;
6b31d595
MH
3834
3835 /*
3836 * check even for read faults because we might have lost our CoWed
3837 * page
3838 */
f9ce0be7
KS
3839 if (!(vma->vm_flags & VM_SHARED)) {
3840 ret = check_stable_address_space(vma->vm_mm);
3841 if (ret)
3842 return ret;
3843 }
3844
3845 if (pmd_none(*vmf->pmd)) {
3846 if (PageTransCompound(page)) {
3847 ret = do_set_pmd(vmf, page);
3848 if (ret != VM_FAULT_FALLBACK)
3849 return ret;
3850 }
3851
3852 if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3853 return VM_FAULT_OOM;
3854 }
3855
3856 /* See comment in handle_pte_fault() */
3857 if (pmd_devmap_trans_unstable(vmf->pmd))
3858 return 0;
3859
3860 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3861 vmf->address, &vmf->ptl);
3862 ret = 0;
3863 /* Re-check under ptl */
3864 if (likely(pte_none(*vmf->pte)))
9d3af4b4 3865 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
3866 else
3867 ret = VM_FAULT_NOPAGE;
3868
3869 update_mmu_tlb(vma, vmf->address, vmf->pte);
3870 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
3871 return ret;
3872}
3873
3a91053a
KS
3874static unsigned long fault_around_bytes __read_mostly =
3875 rounddown_pow_of_two(65536);
a9b0f861 3876
a9b0f861
KS
3877#ifdef CONFIG_DEBUG_FS
3878static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3879{
a9b0f861 3880 *val = fault_around_bytes;
1592eef0
KS
3881 return 0;
3882}
3883
b4903d6e 3884/*
da391d64
WK
3885 * fault_around_bytes must be rounded down to the nearest page order as it's
3886 * what do_fault_around() expects to see.
b4903d6e 3887 */
a9b0f861 3888static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3889{
a9b0f861 3890 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3891 return -EINVAL;
b4903d6e
AR
3892 if (val > PAGE_SIZE)
3893 fault_around_bytes = rounddown_pow_of_two(val);
3894 else
3895 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3896 return 0;
3897}
0a1345f8 3898DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3899 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3900
3901static int __init fault_around_debugfs(void)
3902{
d9f7979c
GKH
3903 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3904 &fault_around_bytes_fops);
1592eef0
KS
3905 return 0;
3906}
3907late_initcall(fault_around_debugfs);
1592eef0 3908#endif
8c6e50b0 3909
1fdb412b
KS
3910/*
3911 * do_fault_around() tries to map few pages around the fault address. The hope
3912 * is that the pages will be needed soon and this will lower the number of
3913 * faults to handle.
3914 *
3915 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3916 * not ready to be mapped: not up-to-date, locked, etc.
3917 *
3918 * This function is called with the page table lock taken. In the split ptlock
3919 * case the page table lock only protects only those entries which belong to
3920 * the page table corresponding to the fault address.
3921 *
3922 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3923 * only once.
3924 *
da391d64
WK
3925 * fault_around_bytes defines how many bytes we'll try to map.
3926 * do_fault_around() expects it to be set to a power of two less than or equal
3927 * to PTRS_PER_PTE.
1fdb412b 3928 *
da391d64
WK
3929 * The virtual address of the area that we map is naturally aligned to
3930 * fault_around_bytes rounded down to the machine page size
3931 * (and therefore to page order). This way it's easier to guarantee
3932 * that we don't cross page table boundaries.
1fdb412b 3933 */
2b740303 3934static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3935{
82b0f8c3 3936 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3937 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3938 pgoff_t end_pgoff;
2b740303 3939 int off;
8c6e50b0 3940
4db0c3c2 3941 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3942 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3943
f9ce0be7
KS
3944 address = max(address & mask, vmf->vma->vm_start);
3945 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3946 start_pgoff -= off;
8c6e50b0
KS
3947
3948 /*
da391d64
WK
3949 * end_pgoff is either the end of the page table, the end of
3950 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3951 */
bae473a4 3952 end_pgoff = start_pgoff -
f9ce0be7 3953 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3954 PTRS_PER_PTE - 1;
82b0f8c3 3955 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3956 start_pgoff + nr_pages - 1);
8c6e50b0 3957
82b0f8c3 3958 if (pmd_none(*vmf->pmd)) {
4cf58924 3959 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3960 if (!vmf->prealloc_pte)
f9ce0be7 3961 return VM_FAULT_OOM;
7267ec00 3962 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3963 }
3964
f9ce0be7 3965 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
3966}
3967
2b740303 3968static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3969{
82b0f8c3 3970 struct vm_area_struct *vma = vmf->vma;
2b740303 3971 vm_fault_t ret = 0;
8c6e50b0
KS
3972
3973 /*
3974 * Let's call ->map_pages() first and use ->fault() as fallback
3975 * if page by the offset is not ready to be mapped (cold cache or
3976 * something).
3977 */
9b4bdd2f 3978 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3979 ret = do_fault_around(vmf);
7267ec00
KS
3980 if (ret)
3981 return ret;
8c6e50b0 3982 }
e655fb29 3983
936ca80d 3984 ret = __do_fault(vmf);
e655fb29
KS
3985 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3986 return ret;
3987
9118c0cb 3988 ret |= finish_fault(vmf);
936ca80d 3989 unlock_page(vmf->page);
7267ec00 3990 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3991 put_page(vmf->page);
e655fb29
KS
3992 return ret;
3993}
3994
2b740303 3995static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3996{
82b0f8c3 3997 struct vm_area_struct *vma = vmf->vma;
2b740303 3998 vm_fault_t ret;
ec47c3b9
KS
3999
4000 if (unlikely(anon_vma_prepare(vma)))
4001 return VM_FAULT_OOM;
4002
936ca80d
JK
4003 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4004 if (!vmf->cow_page)
ec47c3b9
KS
4005 return VM_FAULT_OOM;
4006
d9eb1ea2 4007 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 4008 put_page(vmf->cow_page);
ec47c3b9
KS
4009 return VM_FAULT_OOM;
4010 }
9d82c694 4011 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4012
936ca80d 4013 ret = __do_fault(vmf);
ec47c3b9
KS
4014 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4015 goto uncharge_out;
3917048d
JK
4016 if (ret & VM_FAULT_DONE_COW)
4017 return ret;
ec47c3b9 4018
b1aa812b 4019 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4020 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4021
9118c0cb 4022 ret |= finish_fault(vmf);
b1aa812b
JK
4023 unlock_page(vmf->page);
4024 put_page(vmf->page);
7267ec00
KS
4025 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4026 goto uncharge_out;
ec47c3b9
KS
4027 return ret;
4028uncharge_out:
936ca80d 4029 put_page(vmf->cow_page);
ec47c3b9
KS
4030 return ret;
4031}
4032
2b740303 4033static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4034{
82b0f8c3 4035 struct vm_area_struct *vma = vmf->vma;
2b740303 4036 vm_fault_t ret, tmp;
1d65f86d 4037
936ca80d 4038 ret = __do_fault(vmf);
7eae74af 4039 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4040 return ret;
1da177e4
LT
4041
4042 /*
f0c6d4d2
KS
4043 * Check if the backing address space wants to know that the page is
4044 * about to become writable
1da177e4 4045 */
fb09a464 4046 if (vma->vm_ops->page_mkwrite) {
936ca80d 4047 unlock_page(vmf->page);
38b8cb7f 4048 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4049 if (unlikely(!tmp ||
4050 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4051 put_page(vmf->page);
fb09a464 4052 return tmp;
4294621f 4053 }
fb09a464
KS
4054 }
4055
9118c0cb 4056 ret |= finish_fault(vmf);
7267ec00
KS
4057 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4058 VM_FAULT_RETRY))) {
936ca80d
JK
4059 unlock_page(vmf->page);
4060 put_page(vmf->page);
f0c6d4d2 4061 return ret;
1da177e4 4062 }
b827e496 4063
89b15332 4064 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4065 return ret;
54cb8821 4066}
d00806b1 4067
9a95f3cf 4068/*
c1e8d7c6 4069 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4070 * but allow concurrent faults).
c1e8d7c6 4071 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4072 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 4073 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4074 * by other thread calling munmap()).
9a95f3cf 4075 */
2b740303 4076static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4077{
82b0f8c3 4078 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4079 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4080 vm_fault_t ret;
54cb8821 4081
ff09d7ec
AK
4082 /*
4083 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4084 */
4085 if (!vma->vm_ops->fault) {
4086 /*
4087 * If we find a migration pmd entry or a none pmd entry, which
4088 * should never happen, return SIGBUS
4089 */
4090 if (unlikely(!pmd_present(*vmf->pmd)))
4091 ret = VM_FAULT_SIGBUS;
4092 else {
4093 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4094 vmf->pmd,
4095 vmf->address,
4096 &vmf->ptl);
4097 /*
4098 * Make sure this is not a temporary clearing of pte
4099 * by holding ptl and checking again. A R/M/W update
4100 * of pte involves: take ptl, clearing the pte so that
4101 * we don't have concurrent modification by hardware
4102 * followed by an update.
4103 */
4104 if (unlikely(pte_none(*vmf->pte)))
4105 ret = VM_FAULT_SIGBUS;
4106 else
4107 ret = VM_FAULT_NOPAGE;
4108
4109 pte_unmap_unlock(vmf->pte, vmf->ptl);
4110 }
4111 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4112 ret = do_read_fault(vmf);
4113 else if (!(vma->vm_flags & VM_SHARED))
4114 ret = do_cow_fault(vmf);
4115 else
4116 ret = do_shared_fault(vmf);
4117
4118 /* preallocated pagetable is unused: free it */
4119 if (vmf->prealloc_pte) {
fc8efd2d 4120 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4121 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4122 }
4123 return ret;
54cb8821
NP
4124}
4125
b19a9939 4126static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
4127 unsigned long addr, int page_nid,
4128 int *flags)
9532fec1
MG
4129{
4130 get_page(page);
4131
4132 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4133 if (page_nid == numa_node_id()) {
9532fec1 4134 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4135 *flags |= TNF_FAULT_LOCAL;
4136 }
9532fec1
MG
4137
4138 return mpol_misplaced(page, vma, addr);
4139}
4140
2b740303 4141static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4142{
82b0f8c3 4143 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4144 struct page *page = NULL;
98fa15f3 4145 int page_nid = NUMA_NO_NODE;
90572890 4146 int last_cpupid;
cbee9f88 4147 int target_nid;
04a86453 4148 pte_t pte, old_pte;
288bc549 4149 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4150 int flags = 0;
d10e63f2
MG
4151
4152 /*
166f61b9
TH
4153 * The "pte" at this point cannot be used safely without
4154 * validation through pte_unmap_same(). It's of NUMA type but
4155 * the pfn may be screwed if the read is non atomic.
166f61b9 4156 */
82b0f8c3
JK
4157 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4158 spin_lock(vmf->ptl);
cee216a6 4159 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4160 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4161 goto out;
4162 }
4163
b99a342d
HY
4164 /* Get the normal PTE */
4165 old_pte = ptep_get(vmf->pte);
04a86453 4166 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4167
82b0f8c3 4168 page = vm_normal_page(vma, vmf->address, pte);
b99a342d
HY
4169 if (!page)
4170 goto out_map;
d10e63f2 4171
e81c4802 4172 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4173 if (PageCompound(page))
4174 goto out_map;
e81c4802 4175
6688cc05 4176 /*
bea66fbd
MG
4177 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4178 * much anyway since they can be in shared cache state. This misses
4179 * the case where a mapping is writable but the process never writes
4180 * to it but pte_write gets cleared during protection updates and
4181 * pte_dirty has unpredictable behaviour between PTE scan updates,
4182 * background writeback, dirty balancing and application behaviour.
6688cc05 4183 */
b99a342d 4184 if (!was_writable)
6688cc05
PZ
4185 flags |= TNF_NO_GROUP;
4186
dabe1d99
RR
4187 /*
4188 * Flag if the page is shared between multiple address spaces. This
4189 * is later used when determining whether to group tasks together
4190 */
4191 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4192 flags |= TNF_SHARED;
4193
90572890 4194 last_cpupid = page_cpupid_last(page);
8191acbd 4195 page_nid = page_to_nid(page);
82b0f8c3 4196 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4197 &flags);
98fa15f3 4198 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4199 put_page(page);
b99a342d 4200 goto out_map;
4daae3b4 4201 }
b99a342d 4202 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4203
4204 /* Migrate to the requested node */
bf90ac19 4205 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4206 page_nid = target_nid;
6688cc05 4207 flags |= TNF_MIGRATED;
b99a342d 4208 } else {
074c2381 4209 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4210 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4211 spin_lock(vmf->ptl);
4212 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4213 pte_unmap_unlock(vmf->pte, vmf->ptl);
4214 goto out;
4215 }
4216 goto out_map;
4217 }
4daae3b4
MG
4218
4219out:
98fa15f3 4220 if (page_nid != NUMA_NO_NODE)
6688cc05 4221 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4222 return 0;
b99a342d
HY
4223out_map:
4224 /*
4225 * Make it present again, depending on how arch implements
4226 * non-accessible ptes, some can allow access by kernel mode.
4227 */
4228 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4229 pte = pte_modify(old_pte, vma->vm_page_prot);
4230 pte = pte_mkyoung(pte);
4231 if (was_writable)
4232 pte = pte_mkwrite(pte);
4233 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4234 update_mmu_cache(vma, vmf->address, vmf->pte);
4235 pte_unmap_unlock(vmf->pte, vmf->ptl);
4236 goto out;
d10e63f2
MG
4237}
4238
2b740303 4239static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4240{
f4200391 4241 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4242 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4243 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4244 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4245 return VM_FAULT_FALLBACK;
4246}
4247
183f24aa 4248/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4249static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4250{
529b930b 4251 if (vma_is_anonymous(vmf->vma)) {
292924b2 4252 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4253 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4254 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4255 }
327e9fd4
THV
4256 if (vmf->vma->vm_ops->huge_fault) {
4257 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4258
4259 if (!(ret & VM_FAULT_FALLBACK))
4260 return ret;
4261 }
af9e4d5f 4262
327e9fd4 4263 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4264 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4265
b96375f7
MW
4266 return VM_FAULT_FALLBACK;
4267}
4268
2b740303 4269static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4270{
327e9fd4
THV
4271#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4272 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4273 /* No support for anonymous transparent PUD pages yet */
4274 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4275 goto split;
4276 if (vmf->vma->vm_ops->huge_fault) {
4277 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4278
4279 if (!(ret & VM_FAULT_FALLBACK))
4280 return ret;
4281 }
4282split:
4283 /* COW or write-notify not handled on PUD level: split pud.*/
4284 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4285#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4286 return VM_FAULT_FALLBACK;
4287}
4288
2b740303 4289static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4290{
4291#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4292 /* No support for anonymous transparent PUD pages yet */
4293 if (vma_is_anonymous(vmf->vma))
4294 return VM_FAULT_FALLBACK;
4295 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4296 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4297#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4298 return VM_FAULT_FALLBACK;
4299}
4300
1da177e4
LT
4301/*
4302 * These routines also need to handle stuff like marking pages dirty
4303 * and/or accessed for architectures that don't do it in hardware (most
4304 * RISC architectures). The early dirtying is also good on the i386.
4305 *
4306 * There is also a hook called "update_mmu_cache()" that architectures
4307 * with external mmu caches can use to update those (ie the Sparc or
4308 * PowerPC hashed page tables that act as extended TLBs).
4309 *
c1e8d7c6 4310 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4311 * concurrent faults).
9a95f3cf 4312 *
c1e8d7c6 4313 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4314 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4315 */
2b740303 4316static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4317{
4318 pte_t entry;
4319
82b0f8c3 4320 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4321 /*
4322 * Leave __pte_alloc() until later: because vm_ops->fault may
4323 * want to allocate huge page, and if we expose page table
4324 * for an instant, it will be difficult to retract from
4325 * concurrent faults and from rmap lookups.
4326 */
82b0f8c3 4327 vmf->pte = NULL;
7267ec00 4328 } else {
f9ce0be7
KS
4329 /*
4330 * If a huge pmd materialized under us just retry later. Use
4331 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4332 * of pmd_trans_huge() to ensure the pmd didn't become
4333 * pmd_trans_huge under us and then back to pmd_none, as a
4334 * result of MADV_DONTNEED running immediately after a huge pmd
4335 * fault in a different thread of this mm, in turn leading to a
4336 * misleading pmd_trans_huge() retval. All we have to ensure is
4337 * that it is a regular pmd that we can walk with
4338 * pte_offset_map() and we can do that through an atomic read
4339 * in C, which is what pmd_trans_unstable() provides.
4340 */
d0f0931d 4341 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4342 return 0;
4343 /*
4344 * A regular pmd is established and it can't morph into a huge
4345 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4346 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4347 * So now it's safe to run pte_offset_map().
4348 */
82b0f8c3 4349 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4350 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4351
4352 /*
4353 * some architectures can have larger ptes than wordsize,
4354 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4355 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4356 * accesses. The code below just needs a consistent view
4357 * for the ifs and we later double check anyway with the
7267ec00
KS
4358 * ptl lock held. So here a barrier will do.
4359 */
4360 barrier();
2994302b 4361 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4362 pte_unmap(vmf->pte);
4363 vmf->pte = NULL;
65500d23 4364 }
1da177e4
LT
4365 }
4366
82b0f8c3
JK
4367 if (!vmf->pte) {
4368 if (vma_is_anonymous(vmf->vma))
4369 return do_anonymous_page(vmf);
7267ec00 4370 else
82b0f8c3 4371 return do_fault(vmf);
7267ec00
KS
4372 }
4373
2994302b
JK
4374 if (!pte_present(vmf->orig_pte))
4375 return do_swap_page(vmf);
7267ec00 4376
2994302b
JK
4377 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4378 return do_numa_page(vmf);
d10e63f2 4379
82b0f8c3
JK
4380 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4381 spin_lock(vmf->ptl);
2994302b 4382 entry = vmf->orig_pte;
7df67697
BM
4383 if (unlikely(!pte_same(*vmf->pte, entry))) {
4384 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4385 goto unlock;
7df67697 4386 }
82b0f8c3 4387 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4388 if (!pte_write(entry))
2994302b 4389 return do_wp_page(vmf);
1da177e4
LT
4390 entry = pte_mkdirty(entry);
4391 }
4392 entry = pte_mkyoung(entry);
82b0f8c3
JK
4393 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4394 vmf->flags & FAULT_FLAG_WRITE)) {
4395 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4396 } else {
b7333b58
YS
4397 /* Skip spurious TLB flush for retried page fault */
4398 if (vmf->flags & FAULT_FLAG_TRIED)
4399 goto unlock;
1a44e149
AA
4400 /*
4401 * This is needed only for protection faults but the arch code
4402 * is not yet telling us if this is a protection fault or not.
4403 * This still avoids useless tlb flushes for .text page faults
4404 * with threads.
4405 */
82b0f8c3
JK
4406 if (vmf->flags & FAULT_FLAG_WRITE)
4407 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4408 }
8f4e2101 4409unlock:
82b0f8c3 4410 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4411 return 0;
1da177e4
LT
4412}
4413
4414/*
4415 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4416 *
c1e8d7c6 4417 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4418 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4419 */
2b740303
SJ
4420static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4421 unsigned long address, unsigned int flags)
1da177e4 4422{
82b0f8c3 4423 struct vm_fault vmf = {
bae473a4 4424 .vma = vma,
1a29d85e 4425 .address = address & PAGE_MASK,
bae473a4 4426 .flags = flags,
0721ec8b 4427 .pgoff = linear_page_index(vma, address),
667240e0 4428 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4429 };
fde26bed 4430 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4431 struct mm_struct *mm = vma->vm_mm;
1da177e4 4432 pgd_t *pgd;
c2febafc 4433 p4d_t *p4d;
2b740303 4434 vm_fault_t ret;
1da177e4 4435
1da177e4 4436 pgd = pgd_offset(mm, address);
c2febafc
KS
4437 p4d = p4d_alloc(mm, pgd, address);
4438 if (!p4d)
4439 return VM_FAULT_OOM;
a00cc7d9 4440
c2febafc 4441 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4442 if (!vmf.pud)
c74df32c 4443 return VM_FAULT_OOM;
625110b5 4444retry_pud:
7635d9cb 4445 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4446 ret = create_huge_pud(&vmf);
4447 if (!(ret & VM_FAULT_FALLBACK))
4448 return ret;
4449 } else {
4450 pud_t orig_pud = *vmf.pud;
4451
4452 barrier();
4453 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4454
a00cc7d9
MW
4455 /* NUMA case for anonymous PUDs would go here */
4456
f6f37321 4457 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4458 ret = wp_huge_pud(&vmf, orig_pud);
4459 if (!(ret & VM_FAULT_FALLBACK))
4460 return ret;
4461 } else {
4462 huge_pud_set_accessed(&vmf, orig_pud);
4463 return 0;
4464 }
4465 }
4466 }
4467
4468 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4469 if (!vmf.pmd)
c74df32c 4470 return VM_FAULT_OOM;
625110b5
TH
4471
4472 /* Huge pud page fault raced with pmd_alloc? */
4473 if (pud_trans_unstable(vmf.pud))
4474 goto retry_pud;
4475
7635d9cb 4476 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4477 ret = create_huge_pmd(&vmf);
c0292554
KS
4478 if (!(ret & VM_FAULT_FALLBACK))
4479 return ret;
71e3aac0 4480 } else {
82b0f8c3 4481 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4482
71e3aac0 4483 barrier();
84c3fc4e
ZY
4484 if (unlikely(is_swap_pmd(orig_pmd))) {
4485 VM_BUG_ON(thp_migration_supported() &&
4486 !is_pmd_migration_entry(orig_pmd));
4487 if (is_pmd_migration_entry(orig_pmd))
4488 pmd_migration_entry_wait(mm, vmf.pmd);
4489 return 0;
4490 }
5c7fb56e 4491 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4492 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4493 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4494
f6f37321 4495 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4496 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4497 if (!(ret & VM_FAULT_FALLBACK))
4498 return ret;
a1dd450b 4499 } else {
82b0f8c3 4500 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4501 return 0;
1f1d06c3 4502 }
71e3aac0
AA
4503 }
4504 }
4505
82b0f8c3 4506 return handle_pte_fault(&vmf);
1da177e4
LT
4507}
4508
bce617ed 4509/**
f0953a1b 4510 * mm_account_fault - Do page fault accounting
bce617ed
PX
4511 *
4512 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4513 * of perf event counters, but we'll still do the per-task accounting to
4514 * the task who triggered this page fault.
4515 * @address: the faulted address.
4516 * @flags: the fault flags.
4517 * @ret: the fault retcode.
4518 *
f0953a1b 4519 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 4520 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 4521 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
4522 * still be in per-arch page fault handlers at the entry of page fault.
4523 */
4524static inline void mm_account_fault(struct pt_regs *regs,
4525 unsigned long address, unsigned int flags,
4526 vm_fault_t ret)
4527{
4528 bool major;
4529
4530 /*
4531 * We don't do accounting for some specific faults:
4532 *
4533 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4534 * includes arch_vma_access_permitted() failing before reaching here.
4535 * So this is not a "this many hardware page faults" counter. We
4536 * should use the hw profiling for that.
4537 *
4538 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4539 * once they're completed.
4540 */
4541 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4542 return;
4543
4544 /*
4545 * We define the fault as a major fault when the final successful fault
4546 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4547 * handle it immediately previously).
4548 */
4549 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4550
a2beb5f1
PX
4551 if (major)
4552 current->maj_flt++;
4553 else
4554 current->min_flt++;
4555
bce617ed 4556 /*
a2beb5f1
PX
4557 * If the fault is done for GUP, regs will be NULL. We only do the
4558 * accounting for the per thread fault counters who triggered the
4559 * fault, and we skip the perf event updates.
bce617ed
PX
4560 */
4561 if (!regs)
4562 return;
4563
a2beb5f1 4564 if (major)
bce617ed 4565 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4566 else
bce617ed 4567 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4568}
4569
9a95f3cf
PC
4570/*
4571 * By the time we get here, we already hold the mm semaphore
4572 *
c1e8d7c6 4573 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4574 * return value. See filemap_fault() and __lock_page_or_retry().
4575 */
2b740303 4576vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4577 unsigned int flags, struct pt_regs *regs)
519e5247 4578{
2b740303 4579 vm_fault_t ret;
519e5247
JW
4580
4581 __set_current_state(TASK_RUNNING);
4582
4583 count_vm_event(PGFAULT);
2262185c 4584 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4585
4586 /* do counter updates before entering really critical section. */
4587 check_sync_rss_stat(current);
4588
de0c799b
LD
4589 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4590 flags & FAULT_FLAG_INSTRUCTION,
4591 flags & FAULT_FLAG_REMOTE))
4592 return VM_FAULT_SIGSEGV;
4593
519e5247
JW
4594 /*
4595 * Enable the memcg OOM handling for faults triggered in user
4596 * space. Kernel faults are handled more gracefully.
4597 */
4598 if (flags & FAULT_FLAG_USER)
29ef680a 4599 mem_cgroup_enter_user_fault();
519e5247 4600
bae473a4
KS
4601 if (unlikely(is_vm_hugetlb_page(vma)))
4602 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4603 else
4604 ret = __handle_mm_fault(vma, address, flags);
519e5247 4605
49426420 4606 if (flags & FAULT_FLAG_USER) {
29ef680a 4607 mem_cgroup_exit_user_fault();
166f61b9
TH
4608 /*
4609 * The task may have entered a memcg OOM situation but
4610 * if the allocation error was handled gracefully (no
4611 * VM_FAULT_OOM), there is no need to kill anything.
4612 * Just clean up the OOM state peacefully.
4613 */
4614 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4615 mem_cgroup_oom_synchronize(false);
49426420 4616 }
3812c8c8 4617
bce617ed
PX
4618 mm_account_fault(regs, address, flags, ret);
4619
519e5247
JW
4620 return ret;
4621}
e1d6d01a 4622EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4623
90eceff1
KS
4624#ifndef __PAGETABLE_P4D_FOLDED
4625/*
4626 * Allocate p4d page table.
4627 * We've already handled the fast-path in-line.
4628 */
4629int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4630{
4631 p4d_t *new = p4d_alloc_one(mm, address);
4632 if (!new)
4633 return -ENOMEM;
4634
4635 smp_wmb(); /* See comment in __pte_alloc */
4636
4637 spin_lock(&mm->page_table_lock);
4638 if (pgd_present(*pgd)) /* Another has populated it */
4639 p4d_free(mm, new);
4640 else
4641 pgd_populate(mm, pgd, new);
4642 spin_unlock(&mm->page_table_lock);
4643 return 0;
4644}
4645#endif /* __PAGETABLE_P4D_FOLDED */
4646
1da177e4
LT
4647#ifndef __PAGETABLE_PUD_FOLDED
4648/*
4649 * Allocate page upper directory.
872fec16 4650 * We've already handled the fast-path in-line.
1da177e4 4651 */
c2febafc 4652int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4653{
c74df32c
HD
4654 pud_t *new = pud_alloc_one(mm, address);
4655 if (!new)
1bb3630e 4656 return -ENOMEM;
1da177e4 4657
362a61ad
NP
4658 smp_wmb(); /* See comment in __pte_alloc */
4659
872fec16 4660 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4661 if (!p4d_present(*p4d)) {
4662 mm_inc_nr_puds(mm);
c2febafc 4663 p4d_populate(mm, p4d, new);
b4e98d9a 4664 } else /* Another has populated it */
5e541973 4665 pud_free(mm, new);
c74df32c 4666 spin_unlock(&mm->page_table_lock);
1bb3630e 4667 return 0;
1da177e4
LT
4668}
4669#endif /* __PAGETABLE_PUD_FOLDED */
4670
4671#ifndef __PAGETABLE_PMD_FOLDED
4672/*
4673 * Allocate page middle directory.
872fec16 4674 * We've already handled the fast-path in-line.
1da177e4 4675 */
1bb3630e 4676int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4677{
a00cc7d9 4678 spinlock_t *ptl;
c74df32c
HD
4679 pmd_t *new = pmd_alloc_one(mm, address);
4680 if (!new)
1bb3630e 4681 return -ENOMEM;
1da177e4 4682
362a61ad
NP
4683 smp_wmb(); /* See comment in __pte_alloc */
4684
a00cc7d9 4685 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4686 if (!pud_present(*pud)) {
4687 mm_inc_nr_pmds(mm);
1bb3630e 4688 pud_populate(mm, pud, new);
dc6c9a35 4689 } else /* Another has populated it */
5e541973 4690 pmd_free(mm, new);
a00cc7d9 4691 spin_unlock(ptl);
1bb3630e 4692 return 0;
e0f39591 4693}
1da177e4
LT
4694#endif /* __PAGETABLE_PMD_FOLDED */
4695
9fd6dad1
PB
4696int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4697 struct mmu_notifier_range *range, pte_t **ptepp,
4698 pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4699{
4700 pgd_t *pgd;
c2febafc 4701 p4d_t *p4d;
f8ad0f49
JW
4702 pud_t *pud;
4703 pmd_t *pmd;
4704 pte_t *ptep;
4705
4706 pgd = pgd_offset(mm, address);
4707 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4708 goto out;
4709
c2febafc
KS
4710 p4d = p4d_offset(pgd, address);
4711 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4712 goto out;
4713
4714 pud = pud_offset(p4d, address);
f8ad0f49
JW
4715 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4716 goto out;
4717
4718 pmd = pmd_offset(pud, address);
f66055ab 4719 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4720
09796395
RZ
4721 if (pmd_huge(*pmd)) {
4722 if (!pmdpp)
4723 goto out;
4724
ac46d4f3 4725 if (range) {
7269f999 4726 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4727 NULL, mm, address & PMD_MASK,
4728 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4729 mmu_notifier_invalidate_range_start(range);
a4d1a885 4730 }
09796395
RZ
4731 *ptlp = pmd_lock(mm, pmd);
4732 if (pmd_huge(*pmd)) {
4733 *pmdpp = pmd;
4734 return 0;
4735 }
4736 spin_unlock(*ptlp);
ac46d4f3
JG
4737 if (range)
4738 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4739 }
4740
4741 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4742 goto out;
4743
ac46d4f3 4744 if (range) {
7269f999 4745 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4746 address & PAGE_MASK,
4747 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4748 mmu_notifier_invalidate_range_start(range);
a4d1a885 4749 }
f8ad0f49 4750 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4751 if (!pte_present(*ptep))
4752 goto unlock;
4753 *ptepp = ptep;
4754 return 0;
4755unlock:
4756 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4757 if (range)
4758 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4759out:
4760 return -EINVAL;
4761}
4762
9fd6dad1
PB
4763/**
4764 * follow_pte - look up PTE at a user virtual address
4765 * @mm: the mm_struct of the target address space
4766 * @address: user virtual address
4767 * @ptepp: location to store found PTE
4768 * @ptlp: location to store the lock for the PTE
4769 *
4770 * On a successful return, the pointer to the PTE is stored in @ptepp;
4771 * the corresponding lock is taken and its location is stored in @ptlp.
4772 * The contents of the PTE are only stable until @ptlp is released;
4773 * any further use, if any, must be protected against invalidation
4774 * with MMU notifiers.
4775 *
4776 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4777 * should be taken for read.
4778 *
4779 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4780 * it is not a good general-purpose API.
4781 *
4782 * Return: zero on success, -ve otherwise.
4783 */
4784int follow_pte(struct mm_struct *mm, unsigned long address,
4785 pte_t **ptepp, spinlock_t **ptlp)
4786{
4787 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4788}
4789EXPORT_SYMBOL_GPL(follow_pte);
4790
3b6748e2
JW
4791/**
4792 * follow_pfn - look up PFN at a user virtual address
4793 * @vma: memory mapping
4794 * @address: user virtual address
4795 * @pfn: location to store found PFN
4796 *
4797 * Only IO mappings and raw PFN mappings are allowed.
4798 *
9fd6dad1
PB
4799 * This function does not allow the caller to read the permissions
4800 * of the PTE. Do not use it.
4801 *
a862f68a 4802 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4803 */
4804int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4805 unsigned long *pfn)
4806{
4807 int ret = -EINVAL;
4808 spinlock_t *ptl;
4809 pte_t *ptep;
4810
4811 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4812 return ret;
4813
9fd6dad1 4814 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
4815 if (ret)
4816 return ret;
4817 *pfn = pte_pfn(*ptep);
4818 pte_unmap_unlock(ptep, ptl);
4819 return 0;
4820}
4821EXPORT_SYMBOL(follow_pfn);
4822
28b2ee20 4823#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4824int follow_phys(struct vm_area_struct *vma,
4825 unsigned long address, unsigned int flags,
4826 unsigned long *prot, resource_size_t *phys)
28b2ee20 4827{
03668a4d 4828 int ret = -EINVAL;
28b2ee20
RR
4829 pte_t *ptep, pte;
4830 spinlock_t *ptl;
28b2ee20 4831
d87fe660 4832 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4833 goto out;
28b2ee20 4834
9fd6dad1 4835 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4836 goto out;
28b2ee20 4837 pte = *ptep;
03668a4d 4838
f6f37321 4839 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4840 goto unlock;
28b2ee20
RR
4841
4842 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4843 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4844
03668a4d 4845 ret = 0;
28b2ee20
RR
4846unlock:
4847 pte_unmap_unlock(ptep, ptl);
4848out:
d87fe660 4849 return ret;
28b2ee20
RR
4850}
4851
96667f8a
DV
4852/**
4853 * generic_access_phys - generic implementation for iomem mmap access
4854 * @vma: the vma to access
f0953a1b 4855 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
4856 * @buf: buffer to read/write
4857 * @len: length of transfer
4858 * @write: set to FOLL_WRITE when writing, otherwise reading
4859 *
4860 * This is a generic implementation for &vm_operations_struct.access for an
4861 * iomem mapping. This callback is used by access_process_vm() when the @vma is
4862 * not page based.
4863 */
28b2ee20
RR
4864int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4865 void *buf, int len, int write)
4866{
4867 resource_size_t phys_addr;
4868 unsigned long prot = 0;
2bc7273b 4869 void __iomem *maddr;
96667f8a
DV
4870 pte_t *ptep, pte;
4871 spinlock_t *ptl;
4872 int offset = offset_in_page(addr);
4873 int ret = -EINVAL;
4874
4875 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4876 return -EINVAL;
4877
4878retry:
e913a8cd 4879 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
4880 return -EINVAL;
4881 pte = *ptep;
4882 pte_unmap_unlock(ptep, ptl);
28b2ee20 4883
96667f8a
DV
4884 prot = pgprot_val(pte_pgprot(pte));
4885 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4886
4887 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
4888 return -EINVAL;
4889
9cb12d7b 4890 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4891 if (!maddr)
4892 return -ENOMEM;
4893
e913a8cd 4894 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
4895 goto out_unmap;
4896
4897 if (!pte_same(pte, *ptep)) {
4898 pte_unmap_unlock(ptep, ptl);
4899 iounmap(maddr);
4900
4901 goto retry;
4902 }
4903
28b2ee20
RR
4904 if (write)
4905 memcpy_toio(maddr + offset, buf, len);
4906 else
4907 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
4908 ret = len;
4909 pte_unmap_unlock(ptep, ptl);
4910out_unmap:
28b2ee20
RR
4911 iounmap(maddr);
4912
96667f8a 4913 return ret;
28b2ee20 4914}
5a73633e 4915EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4916#endif
4917
0ec76a11 4918/*
d3f5ffca 4919 * Access another process' address space as given in mm.
0ec76a11 4920 */
d3f5ffca
JH
4921int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4922 int len, unsigned int gup_flags)
0ec76a11 4923{
0ec76a11 4924 struct vm_area_struct *vma;
0ec76a11 4925 void *old_buf = buf;
442486ec 4926 int write = gup_flags & FOLL_WRITE;
0ec76a11 4927
d8ed45c5 4928 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4929 return 0;
4930
183ff22b 4931 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4932 while (len) {
4933 int bytes, ret, offset;
4934 void *maddr;
28b2ee20 4935 struct page *page = NULL;
0ec76a11 4936
64019a2e 4937 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 4938 gup_flags, &page, &vma, NULL);
28b2ee20 4939 if (ret <= 0) {
dbffcd03
RR
4940#ifndef CONFIG_HAVE_IOREMAP_PROT
4941 break;
4942#else
28b2ee20
RR
4943 /*
4944 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4945 * we can access using slightly different code.
4946 */
28b2ee20 4947 vma = find_vma(mm, addr);
fe936dfc 4948 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4949 break;
4950 if (vma->vm_ops && vma->vm_ops->access)
4951 ret = vma->vm_ops->access(vma, addr, buf,
4952 len, write);
4953 if (ret <= 0)
28b2ee20
RR
4954 break;
4955 bytes = ret;
dbffcd03 4956#endif
0ec76a11 4957 } else {
28b2ee20
RR
4958 bytes = len;
4959 offset = addr & (PAGE_SIZE-1);
4960 if (bytes > PAGE_SIZE-offset)
4961 bytes = PAGE_SIZE-offset;
4962
4963 maddr = kmap(page);
4964 if (write) {
4965 copy_to_user_page(vma, page, addr,
4966 maddr + offset, buf, bytes);
4967 set_page_dirty_lock(page);
4968 } else {
4969 copy_from_user_page(vma, page, addr,
4970 buf, maddr + offset, bytes);
4971 }
4972 kunmap(page);
09cbfeaf 4973 put_page(page);
0ec76a11 4974 }
0ec76a11
DH
4975 len -= bytes;
4976 buf += bytes;
4977 addr += bytes;
4978 }
d8ed45c5 4979 mmap_read_unlock(mm);
0ec76a11
DH
4980
4981 return buf - old_buf;
4982}
03252919 4983
5ddd36b9 4984/**
ae91dbfc 4985 * access_remote_vm - access another process' address space
5ddd36b9
SW
4986 * @mm: the mm_struct of the target address space
4987 * @addr: start address to access
4988 * @buf: source or destination buffer
4989 * @len: number of bytes to transfer
6347e8d5 4990 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4991 *
4992 * The caller must hold a reference on @mm.
a862f68a
MR
4993 *
4994 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4995 */
4996int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4997 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4998{
d3f5ffca 4999 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5000}
5001
206cb636
SW
5002/*
5003 * Access another process' address space.
5004 * Source/target buffer must be kernel space,
5005 * Do not walk the page table directly, use get_user_pages
5006 */
5007int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5008 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5009{
5010 struct mm_struct *mm;
5011 int ret;
5012
5013 mm = get_task_mm(tsk);
5014 if (!mm)
5015 return 0;
5016
d3f5ffca 5017 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5018
206cb636
SW
5019 mmput(mm);
5020
5021 return ret;
5022}
fcd35857 5023EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5024
03252919
AK
5025/*
5026 * Print the name of a VMA.
5027 */
5028void print_vma_addr(char *prefix, unsigned long ip)
5029{
5030 struct mm_struct *mm = current->mm;
5031 struct vm_area_struct *vma;
5032
e8bff74a 5033 /*
0a7f682d 5034 * we might be running from an atomic context so we cannot sleep
e8bff74a 5035 */
d8ed45c5 5036 if (!mmap_read_trylock(mm))
e8bff74a
IM
5037 return;
5038
03252919
AK
5039 vma = find_vma(mm, ip);
5040 if (vma && vma->vm_file) {
5041 struct file *f = vma->vm_file;
0a7f682d 5042 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5043 if (buf) {
2fbc57c5 5044 char *p;
03252919 5045
9bf39ab2 5046 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5047 if (IS_ERR(p))
5048 p = "?";
2fbc57c5 5049 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5050 vma->vm_start,
5051 vma->vm_end - vma->vm_start);
5052 free_page((unsigned long)buf);
5053 }
5054 }
d8ed45c5 5055 mmap_read_unlock(mm);
03252919 5056}
3ee1afa3 5057
662bbcb2 5058#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5059void __might_fault(const char *file, int line)
3ee1afa3 5060{
95156f00
PZ
5061 /*
5062 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5063 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5064 * get paged out, therefore we'll never actually fault, and the
5065 * below annotations will generate false positives.
5066 */
db68ce10 5067 if (uaccess_kernel())
95156f00 5068 return;
9ec23531 5069 if (pagefault_disabled())
662bbcb2 5070 return;
9ec23531
DH
5071 __might_sleep(file, line, 0);
5072#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5073 if (current->mm)
da1c55f1 5074 might_lock_read(&current->mm->mmap_lock);
9ec23531 5075#endif
3ee1afa3 5076}
9ec23531 5077EXPORT_SYMBOL(__might_fault);
3ee1afa3 5078#endif
47ad8475
AA
5079
5080#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5081/*
5082 * Process all subpages of the specified huge page with the specified
5083 * operation. The target subpage will be processed last to keep its
5084 * cache lines hot.
5085 */
5086static inline void process_huge_page(
5087 unsigned long addr_hint, unsigned int pages_per_huge_page,
5088 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5089 void *arg)
47ad8475 5090{
c79b57e4
HY
5091 int i, n, base, l;
5092 unsigned long addr = addr_hint &
5093 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5094
c6ddfb6c 5095 /* Process target subpage last to keep its cache lines hot */
47ad8475 5096 might_sleep();
c79b57e4
HY
5097 n = (addr_hint - addr) / PAGE_SIZE;
5098 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5099 /* If target subpage in first half of huge page */
c79b57e4
HY
5100 base = 0;
5101 l = n;
c6ddfb6c 5102 /* Process subpages at the end of huge page */
c79b57e4
HY
5103 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5104 cond_resched();
c6ddfb6c 5105 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5106 }
5107 } else {
c6ddfb6c 5108 /* If target subpage in second half of huge page */
c79b57e4
HY
5109 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5110 l = pages_per_huge_page - n;
c6ddfb6c 5111 /* Process subpages at the begin of huge page */
c79b57e4
HY
5112 for (i = 0; i < base; i++) {
5113 cond_resched();
c6ddfb6c 5114 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5115 }
5116 }
5117 /*
c6ddfb6c
HY
5118 * Process remaining subpages in left-right-left-right pattern
5119 * towards the target subpage
c79b57e4
HY
5120 */
5121 for (i = 0; i < l; i++) {
5122 int left_idx = base + i;
5123 int right_idx = base + 2 * l - 1 - i;
5124
5125 cond_resched();
c6ddfb6c 5126 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5127 cond_resched();
c6ddfb6c 5128 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5129 }
5130}
5131
c6ddfb6c
HY
5132static void clear_gigantic_page(struct page *page,
5133 unsigned long addr,
5134 unsigned int pages_per_huge_page)
5135{
5136 int i;
5137 struct page *p = page;
5138
5139 might_sleep();
5140 for (i = 0; i < pages_per_huge_page;
5141 i++, p = mem_map_next(p, page, i)) {
5142 cond_resched();
5143 clear_user_highpage(p, addr + i * PAGE_SIZE);
5144 }
5145}
5146
5147static void clear_subpage(unsigned long addr, int idx, void *arg)
5148{
5149 struct page *page = arg;
5150
5151 clear_user_highpage(page + idx, addr);
5152}
5153
5154void clear_huge_page(struct page *page,
5155 unsigned long addr_hint, unsigned int pages_per_huge_page)
5156{
5157 unsigned long addr = addr_hint &
5158 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5159
5160 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5161 clear_gigantic_page(page, addr, pages_per_huge_page);
5162 return;
5163 }
5164
5165 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5166}
5167
47ad8475
AA
5168static void copy_user_gigantic_page(struct page *dst, struct page *src,
5169 unsigned long addr,
5170 struct vm_area_struct *vma,
5171 unsigned int pages_per_huge_page)
5172{
5173 int i;
5174 struct page *dst_base = dst;
5175 struct page *src_base = src;
5176
5177 for (i = 0; i < pages_per_huge_page; ) {
5178 cond_resched();
5179 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5180
5181 i++;
5182 dst = mem_map_next(dst, dst_base, i);
5183 src = mem_map_next(src, src_base, i);
5184 }
5185}
5186
c9f4cd71
HY
5187struct copy_subpage_arg {
5188 struct page *dst;
5189 struct page *src;
5190 struct vm_area_struct *vma;
5191};
5192
5193static void copy_subpage(unsigned long addr, int idx, void *arg)
5194{
5195 struct copy_subpage_arg *copy_arg = arg;
5196
5197 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5198 addr, copy_arg->vma);
5199}
5200
47ad8475 5201void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5202 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5203 unsigned int pages_per_huge_page)
5204{
c9f4cd71
HY
5205 unsigned long addr = addr_hint &
5206 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5207 struct copy_subpage_arg arg = {
5208 .dst = dst,
5209 .src = src,
5210 .vma = vma,
5211 };
47ad8475
AA
5212
5213 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5214 copy_user_gigantic_page(dst, src, addr, vma,
5215 pages_per_huge_page);
5216 return;
5217 }
5218
c9f4cd71 5219 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5220}
fa4d75c1
MK
5221
5222long copy_huge_page_from_user(struct page *dst_page,
5223 const void __user *usr_src,
810a56b9
MK
5224 unsigned int pages_per_huge_page,
5225 bool allow_pagefault)
fa4d75c1
MK
5226{
5227 void *src = (void *)usr_src;
5228 void *page_kaddr;
5229 unsigned long i, rc = 0;
5230 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5231 struct page *subpage = dst_page;
fa4d75c1 5232
3272cfc2
MK
5233 for (i = 0; i < pages_per_huge_page;
5234 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5235 if (allow_pagefault)
3272cfc2 5236 page_kaddr = kmap(subpage);
810a56b9 5237 else
3272cfc2 5238 page_kaddr = kmap_atomic(subpage);
fa4d75c1
MK
5239 rc = copy_from_user(page_kaddr,
5240 (const void __user *)(src + i * PAGE_SIZE),
5241 PAGE_SIZE);
810a56b9 5242 if (allow_pagefault)
3272cfc2 5243 kunmap(subpage);
810a56b9
MK
5244 else
5245 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5246
5247 ret_val -= (PAGE_SIZE - rc);
5248 if (rc)
5249 break;
5250
5251 cond_resched();
5252 }
5253 return ret_val;
5254}
47ad8475 5255#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5256
40b64acd 5257#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5258
5259static struct kmem_cache *page_ptl_cachep;
5260
5261void __init ptlock_cache_init(void)
5262{
5263 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5264 SLAB_PANIC, NULL);
5265}
5266
539edb58 5267bool ptlock_alloc(struct page *page)
49076ec2
KS
5268{
5269 spinlock_t *ptl;
5270
b35f1819 5271 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5272 if (!ptl)
5273 return false;
539edb58 5274 page->ptl = ptl;
49076ec2
KS
5275 return true;
5276}
5277
539edb58 5278void ptlock_free(struct page *page)
49076ec2 5279{
b35f1819 5280 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5281}
5282#endif