]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - mm/memory.c
mm: avoid false sharing of mm_counter
[mirror_ubuntu-eoan-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4
LT
49#include <linux/rmap.h>
50#include <linux/module.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
1da177e4 59
6952b61d 60#include <asm/io.h>
1da177e4
LT
61#include <asm/pgalloc.h>
62#include <asm/uaccess.h>
63#include <asm/tlb.h>
64#include <asm/tlbflush.h>
65#include <asm/pgtable.h>
66
42b77728
JB
67#include "internal.h"
68
d41dee36 69#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
70/* use the per-pgdat data instead for discontigmem - mbligh */
71unsigned long max_mapnr;
72struct page *mem_map;
73
74EXPORT_SYMBOL(max_mapnr);
75EXPORT_SYMBOL(mem_map);
76#endif
77
78unsigned long num_physpages;
79/*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86void * high_memory;
1da177e4
LT
87
88EXPORT_SYMBOL(num_physpages);
89EXPORT_SYMBOL(high_memory);
1da177e4 90
32a93233
IM
91/*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
96 */
97int randomize_va_space __read_mostly =
98#ifdef CONFIG_COMPAT_BRK
99 1;
100#else
101 2;
102#endif
a62eaf15
AK
103
104static int __init disable_randmaps(char *s)
105{
106 randomize_va_space = 0;
9b41046c 107 return 1;
a62eaf15
AK
108}
109__setup("norandmaps", disable_randmaps);
110
62eede62 111unsigned long zero_pfn __read_mostly;
03f6462a 112unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
113
114/*
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
116 */
117static int __init init_zero_pfn(void)
118{
119 zero_pfn = page_to_pfn(ZERO_PAGE(0));
120 return 0;
121}
122core_initcall(init_zero_pfn);
a62eaf15 123
d559db08 124
34e55232
KH
125#if defined(SPLIT_RSS_COUNTING)
126
127void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
128{
129 int i;
130
131 for (i = 0; i < NR_MM_COUNTERS; i++) {
132 if (task->rss_stat.count[i]) {
133 add_mm_counter(mm, i, task->rss_stat.count[i]);
134 task->rss_stat.count[i] = 0;
135 }
136 }
137 task->rss_stat.events = 0;
138}
139
140static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
141{
142 struct task_struct *task = current;
143
144 if (likely(task->mm == mm))
145 task->rss_stat.count[member] += val;
146 else
147 add_mm_counter(mm, member, val);
148}
149#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
150#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
151
152/* sync counter once per 64 page faults */
153#define TASK_RSS_EVENTS_THRESH (64)
154static void check_sync_rss_stat(struct task_struct *task)
155{
156 if (unlikely(task != current))
157 return;
158 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
159 __sync_task_rss_stat(task, task->mm);
160}
161
162unsigned long get_mm_counter(struct mm_struct *mm, int member)
163{
164 long val = 0;
165
166 /*
167 * Don't use task->mm here...for avoiding to use task_get_mm()..
168 * The caller must guarantee task->mm is not invalid.
169 */
170 val = atomic_long_read(&mm->rss_stat.count[member]);
171 /*
172 * counter is updated in asynchronous manner and may go to minus.
173 * But it's never be expected number for users.
174 */
175 if (val < 0)
176 return 0;
177 return (unsigned long)val;
178}
179
180void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
181{
182 __sync_task_rss_stat(task, mm);
183}
184#else
185
186#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
187#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
188
189static void check_sync_rss_stat(struct task_struct *task)
190{
191}
192
193void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
194{
195}
196#endif
197
1da177e4
LT
198/*
199 * If a p?d_bad entry is found while walking page tables, report
200 * the error, before resetting entry to p?d_none. Usually (but
201 * very seldom) called out from the p?d_none_or_clear_bad macros.
202 */
203
204void pgd_clear_bad(pgd_t *pgd)
205{
206 pgd_ERROR(*pgd);
207 pgd_clear(pgd);
208}
209
210void pud_clear_bad(pud_t *pud)
211{
212 pud_ERROR(*pud);
213 pud_clear(pud);
214}
215
216void pmd_clear_bad(pmd_t *pmd)
217{
218 pmd_ERROR(*pmd);
219 pmd_clear(pmd);
220}
221
222/*
223 * Note: this doesn't free the actual pages themselves. That
224 * has been handled earlier when unmapping all the memory regions.
225 */
9e1b32ca
BH
226static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227 unsigned long addr)
1da177e4 228{
2f569afd 229 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 230 pmd_clear(pmd);
9e1b32ca 231 pte_free_tlb(tlb, token, addr);
e0da382c 232 tlb->mm->nr_ptes--;
1da177e4
LT
233}
234
e0da382c
HD
235static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 unsigned long addr, unsigned long end,
237 unsigned long floor, unsigned long ceiling)
1da177e4
LT
238{
239 pmd_t *pmd;
240 unsigned long next;
e0da382c 241 unsigned long start;
1da177e4 242
e0da382c 243 start = addr;
1da177e4 244 pmd = pmd_offset(pud, addr);
1da177e4
LT
245 do {
246 next = pmd_addr_end(addr, end);
247 if (pmd_none_or_clear_bad(pmd))
248 continue;
9e1b32ca 249 free_pte_range(tlb, pmd, addr);
1da177e4
LT
250 } while (pmd++, addr = next, addr != end);
251
e0da382c
HD
252 start &= PUD_MASK;
253 if (start < floor)
254 return;
255 if (ceiling) {
256 ceiling &= PUD_MASK;
257 if (!ceiling)
258 return;
1da177e4 259 }
e0da382c
HD
260 if (end - 1 > ceiling - 1)
261 return;
262
263 pmd = pmd_offset(pud, start);
264 pud_clear(pud);
9e1b32ca 265 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
266}
267
e0da382c
HD
268static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
269 unsigned long addr, unsigned long end,
270 unsigned long floor, unsigned long ceiling)
1da177e4
LT
271{
272 pud_t *pud;
273 unsigned long next;
e0da382c 274 unsigned long start;
1da177e4 275
e0da382c 276 start = addr;
1da177e4 277 pud = pud_offset(pgd, addr);
1da177e4
LT
278 do {
279 next = pud_addr_end(addr, end);
280 if (pud_none_or_clear_bad(pud))
281 continue;
e0da382c 282 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
283 } while (pud++, addr = next, addr != end);
284
e0da382c
HD
285 start &= PGDIR_MASK;
286 if (start < floor)
287 return;
288 if (ceiling) {
289 ceiling &= PGDIR_MASK;
290 if (!ceiling)
291 return;
1da177e4 292 }
e0da382c
HD
293 if (end - 1 > ceiling - 1)
294 return;
295
296 pud = pud_offset(pgd, start);
297 pgd_clear(pgd);
9e1b32ca 298 pud_free_tlb(tlb, pud, start);
1da177e4
LT
299}
300
301/*
e0da382c
HD
302 * This function frees user-level page tables of a process.
303 *
1da177e4
LT
304 * Must be called with pagetable lock held.
305 */
42b77728 306void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
307 unsigned long addr, unsigned long end,
308 unsigned long floor, unsigned long ceiling)
1da177e4
LT
309{
310 pgd_t *pgd;
311 unsigned long next;
e0da382c
HD
312 unsigned long start;
313
314 /*
315 * The next few lines have given us lots of grief...
316 *
317 * Why are we testing PMD* at this top level? Because often
318 * there will be no work to do at all, and we'd prefer not to
319 * go all the way down to the bottom just to discover that.
320 *
321 * Why all these "- 1"s? Because 0 represents both the bottom
322 * of the address space and the top of it (using -1 for the
323 * top wouldn't help much: the masks would do the wrong thing).
324 * The rule is that addr 0 and floor 0 refer to the bottom of
325 * the address space, but end 0 and ceiling 0 refer to the top
326 * Comparisons need to use "end - 1" and "ceiling - 1" (though
327 * that end 0 case should be mythical).
328 *
329 * Wherever addr is brought up or ceiling brought down, we must
330 * be careful to reject "the opposite 0" before it confuses the
331 * subsequent tests. But what about where end is brought down
332 * by PMD_SIZE below? no, end can't go down to 0 there.
333 *
334 * Whereas we round start (addr) and ceiling down, by different
335 * masks at different levels, in order to test whether a table
336 * now has no other vmas using it, so can be freed, we don't
337 * bother to round floor or end up - the tests don't need that.
338 */
1da177e4 339
e0da382c
HD
340 addr &= PMD_MASK;
341 if (addr < floor) {
342 addr += PMD_SIZE;
343 if (!addr)
344 return;
345 }
346 if (ceiling) {
347 ceiling &= PMD_MASK;
348 if (!ceiling)
349 return;
350 }
351 if (end - 1 > ceiling - 1)
352 end -= PMD_SIZE;
353 if (addr > end - 1)
354 return;
355
356 start = addr;
42b77728 357 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
358 do {
359 next = pgd_addr_end(addr, end);
360 if (pgd_none_or_clear_bad(pgd))
361 continue;
42b77728 362 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 363 } while (pgd++, addr = next, addr != end);
e0da382c
HD
364}
365
42b77728 366void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 367 unsigned long floor, unsigned long ceiling)
e0da382c
HD
368{
369 while (vma) {
370 struct vm_area_struct *next = vma->vm_next;
371 unsigned long addr = vma->vm_start;
372
8f4f8c16 373 /*
25d9e2d1 374 * Hide vma from rmap and truncate_pagecache before freeing
375 * pgtables
8f4f8c16
HD
376 */
377 anon_vma_unlink(vma);
378 unlink_file_vma(vma);
379
9da61aef 380 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 381 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 382 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
383 } else {
384 /*
385 * Optimization: gather nearby vmas into one call down
386 */
387 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 388 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
389 vma = next;
390 next = vma->vm_next;
8f4f8c16
HD
391 anon_vma_unlink(vma);
392 unlink_file_vma(vma);
3bf5ee95
HD
393 }
394 free_pgd_range(tlb, addr, vma->vm_end,
395 floor, next? next->vm_start: ceiling);
396 }
e0da382c
HD
397 vma = next;
398 }
1da177e4
LT
399}
400
1bb3630e 401int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 402{
2f569afd 403 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
404 if (!new)
405 return -ENOMEM;
406
362a61ad
NP
407 /*
408 * Ensure all pte setup (eg. pte page lock and page clearing) are
409 * visible before the pte is made visible to other CPUs by being
410 * put into page tables.
411 *
412 * The other side of the story is the pointer chasing in the page
413 * table walking code (when walking the page table without locking;
414 * ie. most of the time). Fortunately, these data accesses consist
415 * of a chain of data-dependent loads, meaning most CPUs (alpha
416 * being the notable exception) will already guarantee loads are
417 * seen in-order. See the alpha page table accessors for the
418 * smp_read_barrier_depends() barriers in page table walking code.
419 */
420 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
421
c74df32c 422 spin_lock(&mm->page_table_lock);
2f569afd 423 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 424 mm->nr_ptes++;
1da177e4 425 pmd_populate(mm, pmd, new);
2f569afd 426 new = NULL;
1da177e4 427 }
c74df32c 428 spin_unlock(&mm->page_table_lock);
2f569afd
MS
429 if (new)
430 pte_free(mm, new);
1bb3630e 431 return 0;
1da177e4
LT
432}
433
1bb3630e 434int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 435{
1bb3630e
HD
436 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
437 if (!new)
438 return -ENOMEM;
439
362a61ad
NP
440 smp_wmb(); /* See comment in __pte_alloc */
441
1bb3630e 442 spin_lock(&init_mm.page_table_lock);
2f569afd 443 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 444 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
445 new = NULL;
446 }
1bb3630e 447 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
448 if (new)
449 pte_free_kernel(&init_mm, new);
1bb3630e 450 return 0;
1da177e4
LT
451}
452
d559db08
KH
453static inline void init_rss_vec(int *rss)
454{
455 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
456}
457
458static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 459{
d559db08
KH
460 int i;
461
34e55232
KH
462 if (current->mm == mm)
463 sync_mm_rss(current, mm);
d559db08
KH
464 for (i = 0; i < NR_MM_COUNTERS; i++)
465 if (rss[i])
466 add_mm_counter(mm, i, rss[i]);
ae859762
HD
467}
468
b5810039 469/*
6aab341e
LT
470 * This function is called to print an error when a bad pte
471 * is found. For example, we might have a PFN-mapped pte in
472 * a region that doesn't allow it.
b5810039
NP
473 *
474 * The calling function must still handle the error.
475 */
3dc14741
HD
476static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
477 pte_t pte, struct page *page)
b5810039 478{
3dc14741
HD
479 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
480 pud_t *pud = pud_offset(pgd, addr);
481 pmd_t *pmd = pmd_offset(pud, addr);
482 struct address_space *mapping;
483 pgoff_t index;
d936cf9b
HD
484 static unsigned long resume;
485 static unsigned long nr_shown;
486 static unsigned long nr_unshown;
487
488 /*
489 * Allow a burst of 60 reports, then keep quiet for that minute;
490 * or allow a steady drip of one report per second.
491 */
492 if (nr_shown == 60) {
493 if (time_before(jiffies, resume)) {
494 nr_unshown++;
495 return;
496 }
497 if (nr_unshown) {
1e9e6365
HD
498 printk(KERN_ALERT
499 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
500 nr_unshown);
501 nr_unshown = 0;
502 }
503 nr_shown = 0;
504 }
505 if (nr_shown++ == 0)
506 resume = jiffies + 60 * HZ;
3dc14741
HD
507
508 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
509 index = linear_page_index(vma, addr);
510
1e9e6365
HD
511 printk(KERN_ALERT
512 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
513 current->comm,
514 (long long)pte_val(pte), (long long)pmd_val(*pmd));
515 if (page) {
1e9e6365 516 printk(KERN_ALERT
3dc14741
HD
517 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
518 page, (void *)page->flags, page_count(page),
519 page_mapcount(page), page->mapping, page->index);
520 }
1e9e6365 521 printk(KERN_ALERT
3dc14741
HD
522 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
523 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
524 /*
525 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
526 */
527 if (vma->vm_ops)
1e9e6365 528 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
529 (unsigned long)vma->vm_ops->fault);
530 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 531 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 532 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 533 dump_stack();
3dc14741 534 add_taint(TAINT_BAD_PAGE);
b5810039
NP
535}
536
67121172
LT
537static inline int is_cow_mapping(unsigned int flags)
538{
539 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
540}
541
62eede62
HD
542#ifndef is_zero_pfn
543static inline int is_zero_pfn(unsigned long pfn)
544{
545 return pfn == zero_pfn;
546}
547#endif
548
549#ifndef my_zero_pfn
550static inline unsigned long my_zero_pfn(unsigned long addr)
551{
552 return zero_pfn;
553}
554#endif
555
ee498ed7 556/*
7e675137 557 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 558 *
7e675137
NP
559 * "Special" mappings do not wish to be associated with a "struct page" (either
560 * it doesn't exist, or it exists but they don't want to touch it). In this
561 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 562 *
7e675137
NP
563 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
564 * pte bit, in which case this function is trivial. Secondly, an architecture
565 * may not have a spare pte bit, which requires a more complicated scheme,
566 * described below.
567 *
568 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
569 * special mapping (even if there are underlying and valid "struct pages").
570 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 571 *
b379d790
JH
572 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
573 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
574 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
575 * mapping will always honor the rule
6aab341e
LT
576 *
577 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
578 *
7e675137
NP
579 * And for normal mappings this is false.
580 *
581 * This restricts such mappings to be a linear translation from virtual address
582 * to pfn. To get around this restriction, we allow arbitrary mappings so long
583 * as the vma is not a COW mapping; in that case, we know that all ptes are
584 * special (because none can have been COWed).
b379d790 585 *
b379d790 586 *
7e675137 587 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
588 *
589 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
590 * page" backing, however the difference is that _all_ pages with a struct
591 * page (that is, those where pfn_valid is true) are refcounted and considered
592 * normal pages by the VM. The disadvantage is that pages are refcounted
593 * (which can be slower and simply not an option for some PFNMAP users). The
594 * advantage is that we don't have to follow the strict linearity rule of
595 * PFNMAP mappings in order to support COWable mappings.
596 *
ee498ed7 597 */
7e675137
NP
598#ifdef __HAVE_ARCH_PTE_SPECIAL
599# define HAVE_PTE_SPECIAL 1
600#else
601# define HAVE_PTE_SPECIAL 0
602#endif
603struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
604 pte_t pte)
ee498ed7 605{
22b31eec 606 unsigned long pfn = pte_pfn(pte);
7e675137
NP
607
608 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
609 if (likely(!pte_special(pte)))
610 goto check_pfn;
a13ea5b7
HD
611 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
612 return NULL;
62eede62 613 if (!is_zero_pfn(pfn))
22b31eec 614 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
615 return NULL;
616 }
617
618 /* !HAVE_PTE_SPECIAL case follows: */
619
b379d790
JH
620 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
621 if (vma->vm_flags & VM_MIXEDMAP) {
622 if (!pfn_valid(pfn))
623 return NULL;
624 goto out;
625 } else {
7e675137
NP
626 unsigned long off;
627 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
628 if (pfn == vma->vm_pgoff + off)
629 return NULL;
630 if (!is_cow_mapping(vma->vm_flags))
631 return NULL;
632 }
6aab341e
LT
633 }
634
62eede62
HD
635 if (is_zero_pfn(pfn))
636 return NULL;
22b31eec
HD
637check_pfn:
638 if (unlikely(pfn > highest_memmap_pfn)) {
639 print_bad_pte(vma, addr, pte, NULL);
640 return NULL;
641 }
6aab341e
LT
642
643 /*
7e675137 644 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 645 * eg. VDSO mappings can cause them to exist.
6aab341e 646 */
b379d790 647out:
6aab341e 648 return pfn_to_page(pfn);
ee498ed7
HD
649}
650
1da177e4
LT
651/*
652 * copy one vm_area from one task to the other. Assumes the page tables
653 * already present in the new task to be cleared in the whole range
654 * covered by this vma.
1da177e4
LT
655 */
656
570a335b 657static inline unsigned long
1da177e4 658copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 659 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 660 unsigned long addr, int *rss)
1da177e4 661{
b5810039 662 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
663 pte_t pte = *src_pte;
664 struct page *page;
1da177e4
LT
665
666 /* pte contains position in swap or file, so copy. */
667 if (unlikely(!pte_present(pte))) {
668 if (!pte_file(pte)) {
0697212a
CL
669 swp_entry_t entry = pte_to_swp_entry(pte);
670
570a335b
HD
671 if (swap_duplicate(entry) < 0)
672 return entry.val;
673
1da177e4
LT
674 /* make sure dst_mm is on swapoff's mmlist. */
675 if (unlikely(list_empty(&dst_mm->mmlist))) {
676 spin_lock(&mmlist_lock);
f412ac08
HD
677 if (list_empty(&dst_mm->mmlist))
678 list_add(&dst_mm->mmlist,
679 &src_mm->mmlist);
1da177e4
LT
680 spin_unlock(&mmlist_lock);
681 }
0697212a
CL
682 if (is_write_migration_entry(entry) &&
683 is_cow_mapping(vm_flags)) {
684 /*
685 * COW mappings require pages in both parent
686 * and child to be set to read.
687 */
688 make_migration_entry_read(&entry);
689 pte = swp_entry_to_pte(entry);
690 set_pte_at(src_mm, addr, src_pte, pte);
691 }
1da177e4 692 }
ae859762 693 goto out_set_pte;
1da177e4
LT
694 }
695
1da177e4
LT
696 /*
697 * If it's a COW mapping, write protect it both
698 * in the parent and the child
699 */
67121172 700 if (is_cow_mapping(vm_flags)) {
1da177e4 701 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 702 pte = pte_wrprotect(pte);
1da177e4
LT
703 }
704
705 /*
706 * If it's a shared mapping, mark it clean in
707 * the child
708 */
709 if (vm_flags & VM_SHARED)
710 pte = pte_mkclean(pte);
711 pte = pte_mkold(pte);
6aab341e
LT
712
713 page = vm_normal_page(vma, addr, pte);
714 if (page) {
715 get_page(page);
21333b2b 716 page_dup_rmap(page);
d559db08
KH
717 if (PageAnon(page))
718 rss[MM_ANONPAGES]++;
719 else
720 rss[MM_FILEPAGES]++;
6aab341e 721 }
ae859762
HD
722
723out_set_pte:
724 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 725 return 0;
1da177e4
LT
726}
727
728static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
729 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
730 unsigned long addr, unsigned long end)
731{
c36987e2 732 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 733 pte_t *src_pte, *dst_pte;
c74df32c 734 spinlock_t *src_ptl, *dst_ptl;
e040f218 735 int progress = 0;
d559db08 736 int rss[NR_MM_COUNTERS];
570a335b 737 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
738
739again:
d559db08
KH
740 init_rss_vec(rss);
741
c74df32c 742 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
743 if (!dst_pte)
744 return -ENOMEM;
745 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 746 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 747 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
748 orig_src_pte = src_pte;
749 orig_dst_pte = dst_pte;
6606c3e0 750 arch_enter_lazy_mmu_mode();
1da177e4 751
1da177e4
LT
752 do {
753 /*
754 * We are holding two locks at this point - either of them
755 * could generate latencies in another task on another CPU.
756 */
e040f218
HD
757 if (progress >= 32) {
758 progress = 0;
759 if (need_resched() ||
95c354fe 760 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
761 break;
762 }
1da177e4
LT
763 if (pte_none(*src_pte)) {
764 progress++;
765 continue;
766 }
570a335b
HD
767 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
768 vma, addr, rss);
769 if (entry.val)
770 break;
1da177e4
LT
771 progress += 8;
772 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 773
6606c3e0 774 arch_leave_lazy_mmu_mode();
c74df32c 775 spin_unlock(src_ptl);
c36987e2 776 pte_unmap_nested(orig_src_pte);
d559db08 777 add_mm_rss_vec(dst_mm, rss);
c36987e2 778 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 779 cond_resched();
570a335b
HD
780
781 if (entry.val) {
782 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
783 return -ENOMEM;
784 progress = 0;
785 }
1da177e4
LT
786 if (addr != end)
787 goto again;
788 return 0;
789}
790
791static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
792 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
793 unsigned long addr, unsigned long end)
794{
795 pmd_t *src_pmd, *dst_pmd;
796 unsigned long next;
797
798 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
799 if (!dst_pmd)
800 return -ENOMEM;
801 src_pmd = pmd_offset(src_pud, addr);
802 do {
803 next = pmd_addr_end(addr, end);
804 if (pmd_none_or_clear_bad(src_pmd))
805 continue;
806 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
807 vma, addr, next))
808 return -ENOMEM;
809 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
810 return 0;
811}
812
813static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
814 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
815 unsigned long addr, unsigned long end)
816{
817 pud_t *src_pud, *dst_pud;
818 unsigned long next;
819
820 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
821 if (!dst_pud)
822 return -ENOMEM;
823 src_pud = pud_offset(src_pgd, addr);
824 do {
825 next = pud_addr_end(addr, end);
826 if (pud_none_or_clear_bad(src_pud))
827 continue;
828 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
829 vma, addr, next))
830 return -ENOMEM;
831 } while (dst_pud++, src_pud++, addr = next, addr != end);
832 return 0;
833}
834
835int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
836 struct vm_area_struct *vma)
837{
838 pgd_t *src_pgd, *dst_pgd;
839 unsigned long next;
840 unsigned long addr = vma->vm_start;
841 unsigned long end = vma->vm_end;
cddb8a5c 842 int ret;
1da177e4 843
d992895b
NP
844 /*
845 * Don't copy ptes where a page fault will fill them correctly.
846 * Fork becomes much lighter when there are big shared or private
847 * readonly mappings. The tradeoff is that copy_page_range is more
848 * efficient than faulting.
849 */
4d7672b4 850 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
851 if (!vma->anon_vma)
852 return 0;
853 }
854
1da177e4
LT
855 if (is_vm_hugetlb_page(vma))
856 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
857
34801ba9 858 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 859 /*
860 * We do not free on error cases below as remove_vma
861 * gets called on error from higher level routine
862 */
863 ret = track_pfn_vma_copy(vma);
864 if (ret)
865 return ret;
866 }
867
cddb8a5c
AA
868 /*
869 * We need to invalidate the secondary MMU mappings only when
870 * there could be a permission downgrade on the ptes of the
871 * parent mm. And a permission downgrade will only happen if
872 * is_cow_mapping() returns true.
873 */
874 if (is_cow_mapping(vma->vm_flags))
875 mmu_notifier_invalidate_range_start(src_mm, addr, end);
876
877 ret = 0;
1da177e4
LT
878 dst_pgd = pgd_offset(dst_mm, addr);
879 src_pgd = pgd_offset(src_mm, addr);
880 do {
881 next = pgd_addr_end(addr, end);
882 if (pgd_none_or_clear_bad(src_pgd))
883 continue;
cddb8a5c
AA
884 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
885 vma, addr, next))) {
886 ret = -ENOMEM;
887 break;
888 }
1da177e4 889 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
890
891 if (is_cow_mapping(vma->vm_flags))
892 mmu_notifier_invalidate_range_end(src_mm,
893 vma->vm_start, end);
894 return ret;
1da177e4
LT
895}
896
51c6f666 897static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 898 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 899 unsigned long addr, unsigned long end,
51c6f666 900 long *zap_work, struct zap_details *details)
1da177e4 901{
b5810039 902 struct mm_struct *mm = tlb->mm;
1da177e4 903 pte_t *pte;
508034a3 904 spinlock_t *ptl;
d559db08
KH
905 int rss[NR_MM_COUNTERS];
906
907 init_rss_vec(rss);
1da177e4 908
508034a3 909 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 910 arch_enter_lazy_mmu_mode();
1da177e4
LT
911 do {
912 pte_t ptent = *pte;
51c6f666
RH
913 if (pte_none(ptent)) {
914 (*zap_work)--;
1da177e4 915 continue;
51c6f666 916 }
6f5e6b9e
HD
917
918 (*zap_work) -= PAGE_SIZE;
919
1da177e4 920 if (pte_present(ptent)) {
ee498ed7 921 struct page *page;
51c6f666 922
6aab341e 923 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
924 if (unlikely(details) && page) {
925 /*
926 * unmap_shared_mapping_pages() wants to
927 * invalidate cache without truncating:
928 * unmap shared but keep private pages.
929 */
930 if (details->check_mapping &&
931 details->check_mapping != page->mapping)
932 continue;
933 /*
934 * Each page->index must be checked when
935 * invalidating or truncating nonlinear.
936 */
937 if (details->nonlinear_vma &&
938 (page->index < details->first_index ||
939 page->index > details->last_index))
940 continue;
941 }
b5810039 942 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 943 tlb->fullmm);
1da177e4
LT
944 tlb_remove_tlb_entry(tlb, pte, addr);
945 if (unlikely(!page))
946 continue;
947 if (unlikely(details) && details->nonlinear_vma
948 && linear_page_index(details->nonlinear_vma,
949 addr) != page->index)
b5810039 950 set_pte_at(mm, addr, pte,
1da177e4 951 pgoff_to_pte(page->index));
1da177e4 952 if (PageAnon(page))
d559db08 953 rss[MM_ANONPAGES]--;
6237bcd9
HD
954 else {
955 if (pte_dirty(ptent))
956 set_page_dirty(page);
4917e5d0
JW
957 if (pte_young(ptent) &&
958 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 959 mark_page_accessed(page);
d559db08 960 rss[MM_FILEPAGES]--;
6237bcd9 961 }
edc315fd 962 page_remove_rmap(page);
3dc14741
HD
963 if (unlikely(page_mapcount(page) < 0))
964 print_bad_pte(vma, addr, ptent, page);
1da177e4
LT
965 tlb_remove_page(tlb, page);
966 continue;
967 }
968 /*
969 * If details->check_mapping, we leave swap entries;
970 * if details->nonlinear_vma, we leave file entries.
971 */
972 if (unlikely(details))
973 continue;
2509ef26
HD
974 if (pte_file(ptent)) {
975 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
976 print_bad_pte(vma, addr, ptent, NULL);
977 } else if
978 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
979 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 980 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 981 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 982
d559db08 983 add_mm_rss_vec(mm, rss);
6606c3e0 984 arch_leave_lazy_mmu_mode();
508034a3 985 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
986
987 return addr;
1da177e4
LT
988}
989
51c6f666 990static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 991 struct vm_area_struct *vma, pud_t *pud,
1da177e4 992 unsigned long addr, unsigned long end,
51c6f666 993 long *zap_work, struct zap_details *details)
1da177e4
LT
994{
995 pmd_t *pmd;
996 unsigned long next;
997
998 pmd = pmd_offset(pud, addr);
999 do {
1000 next = pmd_addr_end(addr, end);
51c6f666
RH
1001 if (pmd_none_or_clear_bad(pmd)) {
1002 (*zap_work)--;
1da177e4 1003 continue;
51c6f666
RH
1004 }
1005 next = zap_pte_range(tlb, vma, pmd, addr, next,
1006 zap_work, details);
1007 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1008
1009 return addr;
1da177e4
LT
1010}
1011
51c6f666 1012static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1013 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1014 unsigned long addr, unsigned long end,
51c6f666 1015 long *zap_work, struct zap_details *details)
1da177e4
LT
1016{
1017 pud_t *pud;
1018 unsigned long next;
1019
1020 pud = pud_offset(pgd, addr);
1021 do {
1022 next = pud_addr_end(addr, end);
51c6f666
RH
1023 if (pud_none_or_clear_bad(pud)) {
1024 (*zap_work)--;
1da177e4 1025 continue;
51c6f666
RH
1026 }
1027 next = zap_pmd_range(tlb, vma, pud, addr, next,
1028 zap_work, details);
1029 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1030
1031 return addr;
1da177e4
LT
1032}
1033
51c6f666
RH
1034static unsigned long unmap_page_range(struct mmu_gather *tlb,
1035 struct vm_area_struct *vma,
1da177e4 1036 unsigned long addr, unsigned long end,
51c6f666 1037 long *zap_work, struct zap_details *details)
1da177e4
LT
1038{
1039 pgd_t *pgd;
1040 unsigned long next;
1041
1042 if (details && !details->check_mapping && !details->nonlinear_vma)
1043 details = NULL;
1044
1045 BUG_ON(addr >= end);
569b846d 1046 mem_cgroup_uncharge_start();
1da177e4
LT
1047 tlb_start_vma(tlb, vma);
1048 pgd = pgd_offset(vma->vm_mm, addr);
1049 do {
1050 next = pgd_addr_end(addr, end);
51c6f666
RH
1051 if (pgd_none_or_clear_bad(pgd)) {
1052 (*zap_work)--;
1da177e4 1053 continue;
51c6f666
RH
1054 }
1055 next = zap_pud_range(tlb, vma, pgd, addr, next,
1056 zap_work, details);
1057 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 1058 tlb_end_vma(tlb, vma);
569b846d 1059 mem_cgroup_uncharge_end();
51c6f666
RH
1060
1061 return addr;
1da177e4
LT
1062}
1063
1064#ifdef CONFIG_PREEMPT
1065# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1066#else
1067/* No preempt: go for improved straight-line efficiency */
1068# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1069#endif
1070
1071/**
1072 * unmap_vmas - unmap a range of memory covered by a list of vma's
1073 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
1074 * @vma: the starting vma
1075 * @start_addr: virtual address at which to start unmapping
1076 * @end_addr: virtual address at which to end unmapping
1077 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1078 * @details: details of nonlinear truncation or shared cache invalidation
1079 *
ee39b37b 1080 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 1081 *
508034a3 1082 * Unmap all pages in the vma list.
1da177e4 1083 *
508034a3
HD
1084 * We aim to not hold locks for too long (for scheduling latency reasons).
1085 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
1086 * return the ending mmu_gather to the caller.
1087 *
1088 * Only addresses between `start' and `end' will be unmapped.
1089 *
1090 * The VMA list must be sorted in ascending virtual address order.
1091 *
1092 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1093 * range after unmap_vmas() returns. So the only responsibility here is to
1094 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1095 * drops the lock and schedules.
1096 */
508034a3 1097unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
1098 struct vm_area_struct *vma, unsigned long start_addr,
1099 unsigned long end_addr, unsigned long *nr_accounted,
1100 struct zap_details *details)
1101{
51c6f666 1102 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1103 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1104 int tlb_start_valid = 0;
ee39b37b 1105 unsigned long start = start_addr;
1da177e4 1106 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 1107 int fullmm = (*tlbp)->fullmm;
cddb8a5c 1108 struct mm_struct *mm = vma->vm_mm;
1da177e4 1109
cddb8a5c 1110 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 1111 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
1112 unsigned long end;
1113
1114 start = max(vma->vm_start, start_addr);
1115 if (start >= vma->vm_end)
1116 continue;
1117 end = min(vma->vm_end, end_addr);
1118 if (end <= vma->vm_start)
1119 continue;
1120
1121 if (vma->vm_flags & VM_ACCOUNT)
1122 *nr_accounted += (end - start) >> PAGE_SHIFT;
1123
34801ba9 1124 if (unlikely(is_pfn_mapping(vma)))
2ab64037 1125 untrack_pfn_vma(vma, 0, 0);
1126
1da177e4 1127 while (start != end) {
1da177e4
LT
1128 if (!tlb_start_valid) {
1129 tlb_start = start;
1130 tlb_start_valid = 1;
1131 }
1132
51c6f666 1133 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
1134 /*
1135 * It is undesirable to test vma->vm_file as it
1136 * should be non-null for valid hugetlb area.
1137 * However, vm_file will be NULL in the error
1138 * cleanup path of do_mmap_pgoff. When
1139 * hugetlbfs ->mmap method fails,
1140 * do_mmap_pgoff() nullifies vma->vm_file
1141 * before calling this function to clean up.
1142 * Since no pte has actually been setup, it is
1143 * safe to do nothing in this case.
1144 */
1145 if (vma->vm_file) {
1146 unmap_hugepage_range(vma, start, end, NULL);
1147 zap_work -= (end - start) /
a5516438 1148 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
1149 }
1150
51c6f666
RH
1151 start = end;
1152 } else
1153 start = unmap_page_range(*tlbp, vma,
1154 start, end, &zap_work, details);
1155
1156 if (zap_work > 0) {
1157 BUG_ON(start != end);
1158 break;
1da177e4
LT
1159 }
1160
1da177e4
LT
1161 tlb_finish_mmu(*tlbp, tlb_start, start);
1162
1163 if (need_resched() ||
95c354fe 1164 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1165 if (i_mmap_lock) {
508034a3 1166 *tlbp = NULL;
1da177e4
LT
1167 goto out;
1168 }
1da177e4 1169 cond_resched();
1da177e4
LT
1170 }
1171
508034a3 1172 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1173 tlb_start_valid = 0;
51c6f666 1174 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1175 }
1176 }
1177out:
cddb8a5c 1178 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1179 return start; /* which is now the end (or restart) address */
1da177e4
LT
1180}
1181
1182/**
1183 * zap_page_range - remove user pages in a given range
1184 * @vma: vm_area_struct holding the applicable pages
1185 * @address: starting address of pages to zap
1186 * @size: number of bytes to zap
1187 * @details: details of nonlinear truncation or shared cache invalidation
1188 */
ee39b37b 1189unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1190 unsigned long size, struct zap_details *details)
1191{
1192 struct mm_struct *mm = vma->vm_mm;
1193 struct mmu_gather *tlb;
1194 unsigned long end = address + size;
1195 unsigned long nr_accounted = 0;
1196
1da177e4 1197 lru_add_drain();
1da177e4 1198 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1199 update_hiwater_rss(mm);
508034a3
HD
1200 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1201 if (tlb)
1202 tlb_finish_mmu(tlb, address, end);
ee39b37b 1203 return end;
1da177e4
LT
1204}
1205
c627f9cc
JS
1206/**
1207 * zap_vma_ptes - remove ptes mapping the vma
1208 * @vma: vm_area_struct holding ptes to be zapped
1209 * @address: starting address of pages to zap
1210 * @size: number of bytes to zap
1211 *
1212 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1213 *
1214 * The entire address range must be fully contained within the vma.
1215 *
1216 * Returns 0 if successful.
1217 */
1218int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1219 unsigned long size)
1220{
1221 if (address < vma->vm_start || address + size > vma->vm_end ||
1222 !(vma->vm_flags & VM_PFNMAP))
1223 return -1;
1224 zap_page_range(vma, address, size, NULL);
1225 return 0;
1226}
1227EXPORT_SYMBOL_GPL(zap_vma_ptes);
1228
1da177e4
LT
1229/*
1230 * Do a quick page-table lookup for a single page.
1da177e4 1231 */
6aab341e 1232struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1233 unsigned int flags)
1da177e4
LT
1234{
1235 pgd_t *pgd;
1236 pud_t *pud;
1237 pmd_t *pmd;
1238 pte_t *ptep, pte;
deceb6cd 1239 spinlock_t *ptl;
1da177e4 1240 struct page *page;
6aab341e 1241 struct mm_struct *mm = vma->vm_mm;
1da177e4 1242
deceb6cd
HD
1243 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1244 if (!IS_ERR(page)) {
1245 BUG_ON(flags & FOLL_GET);
1246 goto out;
1247 }
1da177e4 1248
deceb6cd 1249 page = NULL;
1da177e4
LT
1250 pgd = pgd_offset(mm, address);
1251 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1252 goto no_page_table;
1da177e4
LT
1253
1254 pud = pud_offset(pgd, address);
ceb86879 1255 if (pud_none(*pud))
deceb6cd 1256 goto no_page_table;
ceb86879
AK
1257 if (pud_huge(*pud)) {
1258 BUG_ON(flags & FOLL_GET);
1259 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1260 goto out;
1261 }
1262 if (unlikely(pud_bad(*pud)))
1263 goto no_page_table;
1264
1da177e4 1265 pmd = pmd_offset(pud, address);
aeed5fce 1266 if (pmd_none(*pmd))
deceb6cd 1267 goto no_page_table;
deceb6cd
HD
1268 if (pmd_huge(*pmd)) {
1269 BUG_ON(flags & FOLL_GET);
1270 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1271 goto out;
deceb6cd 1272 }
aeed5fce
HD
1273 if (unlikely(pmd_bad(*pmd)))
1274 goto no_page_table;
1275
deceb6cd 1276 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1277
1278 pte = *ptep;
deceb6cd 1279 if (!pte_present(pte))
89f5b7da 1280 goto no_page;
deceb6cd
HD
1281 if ((flags & FOLL_WRITE) && !pte_write(pte))
1282 goto unlock;
a13ea5b7 1283
6aab341e 1284 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1285 if (unlikely(!page)) {
1286 if ((flags & FOLL_DUMP) ||
62eede62 1287 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1288 goto bad_page;
1289 page = pte_page(pte);
1290 }
1da177e4 1291
deceb6cd
HD
1292 if (flags & FOLL_GET)
1293 get_page(page);
1294 if (flags & FOLL_TOUCH) {
1295 if ((flags & FOLL_WRITE) &&
1296 !pte_dirty(pte) && !PageDirty(page))
1297 set_page_dirty(page);
bd775c42
KM
1298 /*
1299 * pte_mkyoung() would be more correct here, but atomic care
1300 * is needed to avoid losing the dirty bit: it is easier to use
1301 * mark_page_accessed().
1302 */
deceb6cd
HD
1303 mark_page_accessed(page);
1304 }
1305unlock:
1306 pte_unmap_unlock(ptep, ptl);
1da177e4 1307out:
deceb6cd 1308 return page;
1da177e4 1309
89f5b7da
LT
1310bad_page:
1311 pte_unmap_unlock(ptep, ptl);
1312 return ERR_PTR(-EFAULT);
1313
1314no_page:
1315 pte_unmap_unlock(ptep, ptl);
1316 if (!pte_none(pte))
1317 return page;
8e4b9a60 1318
deceb6cd
HD
1319no_page_table:
1320 /*
1321 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1322 * has touched so far, we don't want to allocate unnecessary pages or
1323 * page tables. Return error instead of NULL to skip handle_mm_fault,
1324 * then get_dump_page() will return NULL to leave a hole in the dump.
1325 * But we can only make this optimization where a hole would surely
1326 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1327 */
8e4b9a60
HD
1328 if ((flags & FOLL_DUMP) &&
1329 (!vma->vm_ops || !vma->vm_ops->fault))
1330 return ERR_PTR(-EFAULT);
deceb6cd 1331 return page;
1da177e4
LT
1332}
1333
b291f000 1334int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1335 unsigned long start, int nr_pages, unsigned int gup_flags,
9d73777e 1336 struct page **pages, struct vm_area_struct **vmas)
1da177e4
LT
1337{
1338 int i;
58fa879e 1339 unsigned long vm_flags;
1da177e4 1340
9d73777e 1341 if (nr_pages <= 0)
900cf086 1342 return 0;
58fa879e
HD
1343
1344 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1345
1da177e4
LT
1346 /*
1347 * Require read or write permissions.
58fa879e 1348 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1349 */
58fa879e
HD
1350 vm_flags = (gup_flags & FOLL_WRITE) ?
1351 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1352 vm_flags &= (gup_flags & FOLL_FORCE) ?
1353 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1354 i = 0;
1355
1356 do {
deceb6cd 1357 struct vm_area_struct *vma;
1da177e4
LT
1358
1359 vma = find_extend_vma(mm, start);
1360 if (!vma && in_gate_area(tsk, start)) {
1361 unsigned long pg = start & PAGE_MASK;
1362 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1363 pgd_t *pgd;
1364 pud_t *pud;
1365 pmd_t *pmd;
1366 pte_t *pte;
b291f000
NP
1367
1368 /* user gate pages are read-only */
58fa879e 1369 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1370 return i ? : -EFAULT;
1371 if (pg > TASK_SIZE)
1372 pgd = pgd_offset_k(pg);
1373 else
1374 pgd = pgd_offset_gate(mm, pg);
1375 BUG_ON(pgd_none(*pgd));
1376 pud = pud_offset(pgd, pg);
1377 BUG_ON(pud_none(*pud));
1378 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1379 if (pmd_none(*pmd))
1380 return i ? : -EFAULT;
1da177e4 1381 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1382 if (pte_none(*pte)) {
1383 pte_unmap(pte);
1384 return i ? : -EFAULT;
1385 }
1da177e4 1386 if (pages) {
fa2a455b 1387 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1388 pages[i] = page;
1389 if (page)
1390 get_page(page);
1da177e4
LT
1391 }
1392 pte_unmap(pte);
1393 if (vmas)
1394 vmas[i] = gate_vma;
1395 i++;
1396 start += PAGE_SIZE;
9d73777e 1397 nr_pages--;
1da177e4
LT
1398 continue;
1399 }
1400
b291f000
NP
1401 if (!vma ||
1402 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1403 !(vm_flags & vma->vm_flags))
1da177e4
LT
1404 return i ? : -EFAULT;
1405
2a15efc9
HD
1406 if (is_vm_hugetlb_page(vma)) {
1407 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1408 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1409 continue;
1410 }
deceb6cd 1411
1da177e4 1412 do {
08ef4729 1413 struct page *page;
58fa879e 1414 unsigned int foll_flags = gup_flags;
1da177e4 1415
462e00cc 1416 /*
4779280d 1417 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1418 * pages and potentially allocating memory.
462e00cc 1419 */
1c3aff1c 1420 if (unlikely(fatal_signal_pending(current)))
4779280d 1421 return i ? i : -ERESTARTSYS;
462e00cc 1422
deceb6cd 1423 cond_resched();
6aab341e 1424 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1425 int ret;
d06063cc 1426
d26ed650
HD
1427 ret = handle_mm_fault(mm, vma, start,
1428 (foll_flags & FOLL_WRITE) ?
1429 FAULT_FLAG_WRITE : 0);
1430
83c54070
NP
1431 if (ret & VM_FAULT_ERROR) {
1432 if (ret & VM_FAULT_OOM)
1433 return i ? i : -ENOMEM;
d1737fdb
AK
1434 if (ret &
1435 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
83c54070
NP
1436 return i ? i : -EFAULT;
1437 BUG();
1438 }
1439 if (ret & VM_FAULT_MAJOR)
1440 tsk->maj_flt++;
1441 else
1442 tsk->min_flt++;
1443
a68d2ebc 1444 /*
83c54070
NP
1445 * The VM_FAULT_WRITE bit tells us that
1446 * do_wp_page has broken COW when necessary,
1447 * even if maybe_mkwrite decided not to set
1448 * pte_write. We can thus safely do subsequent
878b63ac
HD
1449 * page lookups as if they were reads. But only
1450 * do so when looping for pte_write is futile:
1451 * in some cases userspace may also be wanting
1452 * to write to the gotten user page, which a
1453 * read fault here might prevent (a readonly
1454 * page might get reCOWed by userspace write).
a68d2ebc 1455 */
878b63ac
HD
1456 if ((ret & VM_FAULT_WRITE) &&
1457 !(vma->vm_flags & VM_WRITE))
deceb6cd 1458 foll_flags &= ~FOLL_WRITE;
83c54070 1459
7f7bbbe5 1460 cond_resched();
1da177e4 1461 }
89f5b7da
LT
1462 if (IS_ERR(page))
1463 return i ? i : PTR_ERR(page);
1da177e4 1464 if (pages) {
08ef4729 1465 pages[i] = page;
03beb076 1466
a6f36be3 1467 flush_anon_page(vma, page, start);
08ef4729 1468 flush_dcache_page(page);
1da177e4
LT
1469 }
1470 if (vmas)
1471 vmas[i] = vma;
1472 i++;
1473 start += PAGE_SIZE;
9d73777e
PZ
1474 nr_pages--;
1475 } while (nr_pages && start < vma->vm_end);
1476 } while (nr_pages);
1da177e4
LT
1477 return i;
1478}
b291f000 1479
d2bf6be8
NP
1480/**
1481 * get_user_pages() - pin user pages in memory
1482 * @tsk: task_struct of target task
1483 * @mm: mm_struct of target mm
1484 * @start: starting user address
9d73777e 1485 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1486 * @write: whether pages will be written to by the caller
1487 * @force: whether to force write access even if user mapping is
1488 * readonly. This will result in the page being COWed even
1489 * in MAP_SHARED mappings. You do not want this.
1490 * @pages: array that receives pointers to the pages pinned.
1491 * Should be at least nr_pages long. Or NULL, if caller
1492 * only intends to ensure the pages are faulted in.
1493 * @vmas: array of pointers to vmas corresponding to each page.
1494 * Or NULL if the caller does not require them.
1495 *
1496 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1497 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1498 * were pinned, returns -errno. Each page returned must be released
1499 * with a put_page() call when it is finished with. vmas will only
1500 * remain valid while mmap_sem is held.
1501 *
1502 * Must be called with mmap_sem held for read or write.
1503 *
1504 * get_user_pages walks a process's page tables and takes a reference to
1505 * each struct page that each user address corresponds to at a given
1506 * instant. That is, it takes the page that would be accessed if a user
1507 * thread accesses the given user virtual address at that instant.
1508 *
1509 * This does not guarantee that the page exists in the user mappings when
1510 * get_user_pages returns, and there may even be a completely different
1511 * page there in some cases (eg. if mmapped pagecache has been invalidated
1512 * and subsequently re faulted). However it does guarantee that the page
1513 * won't be freed completely. And mostly callers simply care that the page
1514 * contains data that was valid *at some point in time*. Typically, an IO
1515 * or similar operation cannot guarantee anything stronger anyway because
1516 * locks can't be held over the syscall boundary.
1517 *
1518 * If write=0, the page must not be written to. If the page is written to,
1519 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1520 * after the page is finished with, and before put_page is called.
1521 *
1522 * get_user_pages is typically used for fewer-copy IO operations, to get a
1523 * handle on the memory by some means other than accesses via the user virtual
1524 * addresses. The pages may be submitted for DMA to devices or accessed via
1525 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1526 * use the correct cache flushing APIs.
1527 *
1528 * See also get_user_pages_fast, for performance critical applications.
1529 */
b291f000 1530int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1531 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1532 struct page **pages, struct vm_area_struct **vmas)
1533{
58fa879e 1534 int flags = FOLL_TOUCH;
b291f000 1535
58fa879e
HD
1536 if (pages)
1537 flags |= FOLL_GET;
b291f000 1538 if (write)
58fa879e 1539 flags |= FOLL_WRITE;
b291f000 1540 if (force)
58fa879e 1541 flags |= FOLL_FORCE;
b291f000 1542
9d73777e 1543 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
b291f000 1544}
1da177e4
LT
1545EXPORT_SYMBOL(get_user_pages);
1546
f3e8fccd
HD
1547/**
1548 * get_dump_page() - pin user page in memory while writing it to core dump
1549 * @addr: user address
1550 *
1551 * Returns struct page pointer of user page pinned for dump,
1552 * to be freed afterwards by page_cache_release() or put_page().
1553 *
1554 * Returns NULL on any kind of failure - a hole must then be inserted into
1555 * the corefile, to preserve alignment with its headers; and also returns
1556 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1557 * allowing a hole to be left in the corefile to save diskspace.
1558 *
1559 * Called without mmap_sem, but after all other threads have been killed.
1560 */
1561#ifdef CONFIG_ELF_CORE
1562struct page *get_dump_page(unsigned long addr)
1563{
1564 struct vm_area_struct *vma;
1565 struct page *page;
1566
1567 if (__get_user_pages(current, current->mm, addr, 1,
58fa879e 1568 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
f3e8fccd 1569 return NULL;
f3e8fccd
HD
1570 flush_cache_page(vma, addr, page_to_pfn(page));
1571 return page;
1572}
1573#endif /* CONFIG_ELF_CORE */
1574
920c7a5d
HH
1575pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1576 spinlock_t **ptl)
c9cfcddf
LT
1577{
1578 pgd_t * pgd = pgd_offset(mm, addr);
1579 pud_t * pud = pud_alloc(mm, pgd, addr);
1580 if (pud) {
49c91fb0 1581 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1582 if (pmd)
1583 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1584 }
1585 return NULL;
1586}
1587
238f58d8
LT
1588/*
1589 * This is the old fallback for page remapping.
1590 *
1591 * For historical reasons, it only allows reserved pages. Only
1592 * old drivers should use this, and they needed to mark their
1593 * pages reserved for the old functions anyway.
1594 */
423bad60
NP
1595static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1596 struct page *page, pgprot_t prot)
238f58d8 1597{
423bad60 1598 struct mm_struct *mm = vma->vm_mm;
238f58d8 1599 int retval;
c9cfcddf 1600 pte_t *pte;
8a9f3ccd
BS
1601 spinlock_t *ptl;
1602
238f58d8 1603 retval = -EINVAL;
a145dd41 1604 if (PageAnon(page))
5b4e655e 1605 goto out;
238f58d8
LT
1606 retval = -ENOMEM;
1607 flush_dcache_page(page);
c9cfcddf 1608 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1609 if (!pte)
5b4e655e 1610 goto out;
238f58d8
LT
1611 retval = -EBUSY;
1612 if (!pte_none(*pte))
1613 goto out_unlock;
1614
1615 /* Ok, finally just insert the thing.. */
1616 get_page(page);
34e55232 1617 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
1618 page_add_file_rmap(page);
1619 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1620
1621 retval = 0;
8a9f3ccd
BS
1622 pte_unmap_unlock(pte, ptl);
1623 return retval;
238f58d8
LT
1624out_unlock:
1625 pte_unmap_unlock(pte, ptl);
1626out:
1627 return retval;
1628}
1629
bfa5bf6d
REB
1630/**
1631 * vm_insert_page - insert single page into user vma
1632 * @vma: user vma to map to
1633 * @addr: target user address of this page
1634 * @page: source kernel page
1635 *
a145dd41
LT
1636 * This allows drivers to insert individual pages they've allocated
1637 * into a user vma.
1638 *
1639 * The page has to be a nice clean _individual_ kernel allocation.
1640 * If you allocate a compound page, you need to have marked it as
1641 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1642 * (see split_page()).
a145dd41
LT
1643 *
1644 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1645 * took an arbitrary page protection parameter. This doesn't allow
1646 * that. Your vma protection will have to be set up correctly, which
1647 * means that if you want a shared writable mapping, you'd better
1648 * ask for a shared writable mapping!
1649 *
1650 * The page does not need to be reserved.
1651 */
423bad60
NP
1652int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1653 struct page *page)
a145dd41
LT
1654{
1655 if (addr < vma->vm_start || addr >= vma->vm_end)
1656 return -EFAULT;
1657 if (!page_count(page))
1658 return -EINVAL;
4d7672b4 1659 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1660 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1661}
e3c3374f 1662EXPORT_SYMBOL(vm_insert_page);
a145dd41 1663
423bad60
NP
1664static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1665 unsigned long pfn, pgprot_t prot)
1666{
1667 struct mm_struct *mm = vma->vm_mm;
1668 int retval;
1669 pte_t *pte, entry;
1670 spinlock_t *ptl;
1671
1672 retval = -ENOMEM;
1673 pte = get_locked_pte(mm, addr, &ptl);
1674 if (!pte)
1675 goto out;
1676 retval = -EBUSY;
1677 if (!pte_none(*pte))
1678 goto out_unlock;
1679
1680 /* Ok, finally just insert the thing.. */
1681 entry = pte_mkspecial(pfn_pte(pfn, prot));
1682 set_pte_at(mm, addr, pte, entry);
4b3073e1 1683 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1684
1685 retval = 0;
1686out_unlock:
1687 pte_unmap_unlock(pte, ptl);
1688out:
1689 return retval;
1690}
1691
e0dc0d8f
NP
1692/**
1693 * vm_insert_pfn - insert single pfn into user vma
1694 * @vma: user vma to map to
1695 * @addr: target user address of this page
1696 * @pfn: source kernel pfn
1697 *
1698 * Similar to vm_inert_page, this allows drivers to insert individual pages
1699 * they've allocated into a user vma. Same comments apply.
1700 *
1701 * This function should only be called from a vm_ops->fault handler, and
1702 * in that case the handler should return NULL.
0d71d10a
NP
1703 *
1704 * vma cannot be a COW mapping.
1705 *
1706 * As this is called only for pages that do not currently exist, we
1707 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1708 */
1709int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1710 unsigned long pfn)
e0dc0d8f 1711{
2ab64037 1712 int ret;
e4b866ed 1713 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1714 /*
1715 * Technically, architectures with pte_special can avoid all these
1716 * restrictions (same for remap_pfn_range). However we would like
1717 * consistency in testing and feature parity among all, so we should
1718 * try to keep these invariants in place for everybody.
1719 */
b379d790
JH
1720 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1721 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1722 (VM_PFNMAP|VM_MIXEDMAP));
1723 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1724 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1725
423bad60
NP
1726 if (addr < vma->vm_start || addr >= vma->vm_end)
1727 return -EFAULT;
e4b866ed 1728 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 1729 return -EINVAL;
1730
e4b866ed 1731 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1732
1733 if (ret)
1734 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1735
1736 return ret;
423bad60
NP
1737}
1738EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1739
423bad60
NP
1740int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1741 unsigned long pfn)
1742{
1743 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1744
423bad60
NP
1745 if (addr < vma->vm_start || addr >= vma->vm_end)
1746 return -EFAULT;
e0dc0d8f 1747
423bad60
NP
1748 /*
1749 * If we don't have pte special, then we have to use the pfn_valid()
1750 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1751 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1752 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1753 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1754 */
1755 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1756 struct page *page;
1757
1758 page = pfn_to_page(pfn);
1759 return insert_page(vma, addr, page, vma->vm_page_prot);
1760 }
1761 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1762}
423bad60 1763EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1764
1da177e4
LT
1765/*
1766 * maps a range of physical memory into the requested pages. the old
1767 * mappings are removed. any references to nonexistent pages results
1768 * in null mappings (currently treated as "copy-on-access")
1769 */
1770static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1771 unsigned long addr, unsigned long end,
1772 unsigned long pfn, pgprot_t prot)
1773{
1774 pte_t *pte;
c74df32c 1775 spinlock_t *ptl;
1da177e4 1776
c74df32c 1777 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1778 if (!pte)
1779 return -ENOMEM;
6606c3e0 1780 arch_enter_lazy_mmu_mode();
1da177e4
LT
1781 do {
1782 BUG_ON(!pte_none(*pte));
7e675137 1783 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1784 pfn++;
1785 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1786 arch_leave_lazy_mmu_mode();
c74df32c 1787 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1788 return 0;
1789}
1790
1791static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1792 unsigned long addr, unsigned long end,
1793 unsigned long pfn, pgprot_t prot)
1794{
1795 pmd_t *pmd;
1796 unsigned long next;
1797
1798 pfn -= addr >> PAGE_SHIFT;
1799 pmd = pmd_alloc(mm, pud, addr);
1800 if (!pmd)
1801 return -ENOMEM;
1802 do {
1803 next = pmd_addr_end(addr, end);
1804 if (remap_pte_range(mm, pmd, addr, next,
1805 pfn + (addr >> PAGE_SHIFT), prot))
1806 return -ENOMEM;
1807 } while (pmd++, addr = next, addr != end);
1808 return 0;
1809}
1810
1811static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1812 unsigned long addr, unsigned long end,
1813 unsigned long pfn, pgprot_t prot)
1814{
1815 pud_t *pud;
1816 unsigned long next;
1817
1818 pfn -= addr >> PAGE_SHIFT;
1819 pud = pud_alloc(mm, pgd, addr);
1820 if (!pud)
1821 return -ENOMEM;
1822 do {
1823 next = pud_addr_end(addr, end);
1824 if (remap_pmd_range(mm, pud, addr, next,
1825 pfn + (addr >> PAGE_SHIFT), prot))
1826 return -ENOMEM;
1827 } while (pud++, addr = next, addr != end);
1828 return 0;
1829}
1830
bfa5bf6d
REB
1831/**
1832 * remap_pfn_range - remap kernel memory to userspace
1833 * @vma: user vma to map to
1834 * @addr: target user address to start at
1835 * @pfn: physical address of kernel memory
1836 * @size: size of map area
1837 * @prot: page protection flags for this mapping
1838 *
1839 * Note: this is only safe if the mm semaphore is held when called.
1840 */
1da177e4
LT
1841int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1842 unsigned long pfn, unsigned long size, pgprot_t prot)
1843{
1844 pgd_t *pgd;
1845 unsigned long next;
2d15cab8 1846 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1847 struct mm_struct *mm = vma->vm_mm;
1848 int err;
1849
1850 /*
1851 * Physically remapped pages are special. Tell the
1852 * rest of the world about it:
1853 * VM_IO tells people not to look at these pages
1854 * (accesses can have side effects).
0b14c179
HD
1855 * VM_RESERVED is specified all over the place, because
1856 * in 2.4 it kept swapout's vma scan off this vma; but
1857 * in 2.6 the LRU scan won't even find its pages, so this
1858 * flag means no more than count its pages in reserved_vm,
1859 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1860 * VM_PFNMAP tells the core MM that the base pages are just
1861 * raw PFN mappings, and do not have a "struct page" associated
1862 * with them.
fb155c16
LT
1863 *
1864 * There's a horrible special case to handle copy-on-write
1865 * behaviour that some programs depend on. We mark the "original"
1866 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1867 */
4bb9c5c0 1868 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 1869 vma->vm_pgoff = pfn;
895791da 1870 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 1871 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 1872 return -EINVAL;
fb155c16 1873
6aab341e 1874 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1875
e4b866ed 1876 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 1877 if (err) {
1878 /*
1879 * To indicate that track_pfn related cleanup is not
1880 * needed from higher level routine calling unmap_vmas
1881 */
1882 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 1883 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 1884 return -EINVAL;
a3670613 1885 }
2ab64037 1886
1da177e4
LT
1887 BUG_ON(addr >= end);
1888 pfn -= addr >> PAGE_SHIFT;
1889 pgd = pgd_offset(mm, addr);
1890 flush_cache_range(vma, addr, end);
1da177e4
LT
1891 do {
1892 next = pgd_addr_end(addr, end);
1893 err = remap_pud_range(mm, pgd, addr, next,
1894 pfn + (addr >> PAGE_SHIFT), prot);
1895 if (err)
1896 break;
1897 } while (pgd++, addr = next, addr != end);
2ab64037 1898
1899 if (err)
1900 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1901
1da177e4
LT
1902 return err;
1903}
1904EXPORT_SYMBOL(remap_pfn_range);
1905
aee16b3c
JF
1906static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1907 unsigned long addr, unsigned long end,
1908 pte_fn_t fn, void *data)
1909{
1910 pte_t *pte;
1911 int err;
2f569afd 1912 pgtable_t token;
94909914 1913 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1914
1915 pte = (mm == &init_mm) ?
1916 pte_alloc_kernel(pmd, addr) :
1917 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1918 if (!pte)
1919 return -ENOMEM;
1920
1921 BUG_ON(pmd_huge(*pmd));
1922
38e0edb1
JF
1923 arch_enter_lazy_mmu_mode();
1924
2f569afd 1925 token = pmd_pgtable(*pmd);
aee16b3c
JF
1926
1927 do {
c36987e2 1928 err = fn(pte++, token, addr, data);
aee16b3c
JF
1929 if (err)
1930 break;
c36987e2 1931 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1932
38e0edb1
JF
1933 arch_leave_lazy_mmu_mode();
1934
aee16b3c
JF
1935 if (mm != &init_mm)
1936 pte_unmap_unlock(pte-1, ptl);
1937 return err;
1938}
1939
1940static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1941 unsigned long addr, unsigned long end,
1942 pte_fn_t fn, void *data)
1943{
1944 pmd_t *pmd;
1945 unsigned long next;
1946 int err;
1947
ceb86879
AK
1948 BUG_ON(pud_huge(*pud));
1949
aee16b3c
JF
1950 pmd = pmd_alloc(mm, pud, addr);
1951 if (!pmd)
1952 return -ENOMEM;
1953 do {
1954 next = pmd_addr_end(addr, end);
1955 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1956 if (err)
1957 break;
1958 } while (pmd++, addr = next, addr != end);
1959 return err;
1960}
1961
1962static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1963 unsigned long addr, unsigned long end,
1964 pte_fn_t fn, void *data)
1965{
1966 pud_t *pud;
1967 unsigned long next;
1968 int err;
1969
1970 pud = pud_alloc(mm, pgd, addr);
1971 if (!pud)
1972 return -ENOMEM;
1973 do {
1974 next = pud_addr_end(addr, end);
1975 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1976 if (err)
1977 break;
1978 } while (pud++, addr = next, addr != end);
1979 return err;
1980}
1981
1982/*
1983 * Scan a region of virtual memory, filling in page tables as necessary
1984 * and calling a provided function on each leaf page table.
1985 */
1986int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1987 unsigned long size, pte_fn_t fn, void *data)
1988{
1989 pgd_t *pgd;
1990 unsigned long next;
cddb8a5c 1991 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1992 int err;
1993
1994 BUG_ON(addr >= end);
cddb8a5c 1995 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1996 pgd = pgd_offset(mm, addr);
1997 do {
1998 next = pgd_addr_end(addr, end);
1999 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2000 if (err)
2001 break;
2002 } while (pgd++, addr = next, addr != end);
cddb8a5c 2003 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
2004 return err;
2005}
2006EXPORT_SYMBOL_GPL(apply_to_page_range);
2007
8f4e2101
HD
2008/*
2009 * handle_pte_fault chooses page fault handler according to an entry
2010 * which was read non-atomically. Before making any commitment, on
2011 * those architectures or configurations (e.g. i386 with PAE) which
2012 * might give a mix of unmatched parts, do_swap_page and do_file_page
2013 * must check under lock before unmapping the pte and proceeding
2014 * (but do_wp_page is only called after already making such a check;
2015 * and do_anonymous_page and do_no_page can safely check later on).
2016 */
4c21e2f2 2017static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2018 pte_t *page_table, pte_t orig_pte)
2019{
2020 int same = 1;
2021#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2022 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2023 spinlock_t *ptl = pte_lockptr(mm, pmd);
2024 spin_lock(ptl);
8f4e2101 2025 same = pte_same(*page_table, orig_pte);
4c21e2f2 2026 spin_unlock(ptl);
8f4e2101
HD
2027 }
2028#endif
2029 pte_unmap(page_table);
2030 return same;
2031}
2032
1da177e4
LT
2033/*
2034 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
2035 * servicing faults for write access. In the normal case, do always want
2036 * pte_mkwrite. But get_user_pages can cause write faults for mappings
2037 * that do not have writing enabled, when used by access_process_vm.
2038 */
2039static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2040{
2041 if (likely(vma->vm_flags & VM_WRITE))
2042 pte = pte_mkwrite(pte);
2043 return pte;
2044}
2045
9de455b2 2046static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2047{
2048 /*
2049 * If the source page was a PFN mapping, we don't have
2050 * a "struct page" for it. We do a best-effort copy by
2051 * just copying from the original user address. If that
2052 * fails, we just zero-fill it. Live with it.
2053 */
2054 if (unlikely(!src)) {
2055 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
2056 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2057
2058 /*
2059 * This really shouldn't fail, because the page is there
2060 * in the page tables. But it might just be unreadable,
2061 * in which case we just give up and fill the result with
2062 * zeroes.
2063 */
2064 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
2065 memset(kaddr, 0, PAGE_SIZE);
2066 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 2067 flush_dcache_page(dst);
0ed361de
NP
2068 } else
2069 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2070}
2071
1da177e4
LT
2072/*
2073 * This routine handles present pages, when users try to write
2074 * to a shared page. It is done by copying the page to a new address
2075 * and decrementing the shared-page counter for the old page.
2076 *
1da177e4
LT
2077 * Note that this routine assumes that the protection checks have been
2078 * done by the caller (the low-level page fault routine in most cases).
2079 * Thus we can safely just mark it writable once we've done any necessary
2080 * COW.
2081 *
2082 * We also mark the page dirty at this point even though the page will
2083 * change only once the write actually happens. This avoids a few races,
2084 * and potentially makes it more efficient.
2085 *
8f4e2101
HD
2086 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2087 * but allow concurrent faults), with pte both mapped and locked.
2088 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2089 */
65500d23
HD
2090static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2091 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2092 spinlock_t *ptl, pte_t orig_pte)
1da177e4 2093{
e5bbe4df 2094 struct page *old_page, *new_page;
1da177e4 2095 pte_t entry;
83c54070 2096 int reuse = 0, ret = 0;
a200ee18 2097 int page_mkwrite = 0;
d08b3851 2098 struct page *dirty_page = NULL;
1da177e4 2099
6aab341e 2100 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2101 if (!old_page) {
2102 /*
2103 * VM_MIXEDMAP !pfn_valid() case
2104 *
2105 * We should not cow pages in a shared writeable mapping.
2106 * Just mark the pages writable as we can't do any dirty
2107 * accounting on raw pfn maps.
2108 */
2109 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2110 (VM_WRITE|VM_SHARED))
2111 goto reuse;
6aab341e 2112 goto gotten;
251b97f5 2113 }
1da177e4 2114
d08b3851 2115 /*
ee6a6457
PZ
2116 * Take out anonymous pages first, anonymous shared vmas are
2117 * not dirty accountable.
d08b3851 2118 */
9a840895 2119 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2120 if (!trylock_page(old_page)) {
2121 page_cache_get(old_page);
2122 pte_unmap_unlock(page_table, ptl);
2123 lock_page(old_page);
2124 page_table = pte_offset_map_lock(mm, pmd, address,
2125 &ptl);
2126 if (!pte_same(*page_table, orig_pte)) {
2127 unlock_page(old_page);
2128 page_cache_release(old_page);
2129 goto unlock;
2130 }
2131 page_cache_release(old_page);
ee6a6457 2132 }
7b1fe597 2133 reuse = reuse_swap_page(old_page);
ab967d86 2134 unlock_page(old_page);
ee6a6457 2135 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2136 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2137 /*
2138 * Only catch write-faults on shared writable pages,
2139 * read-only shared pages can get COWed by
2140 * get_user_pages(.write=1, .force=1).
2141 */
9637a5ef 2142 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2143 struct vm_fault vmf;
2144 int tmp;
2145
2146 vmf.virtual_address = (void __user *)(address &
2147 PAGE_MASK);
2148 vmf.pgoff = old_page->index;
2149 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2150 vmf.page = old_page;
2151
9637a5ef
DH
2152 /*
2153 * Notify the address space that the page is about to
2154 * become writable so that it can prohibit this or wait
2155 * for the page to get into an appropriate state.
2156 *
2157 * We do this without the lock held, so that it can
2158 * sleep if it needs to.
2159 */
2160 page_cache_get(old_page);
2161 pte_unmap_unlock(page_table, ptl);
2162
c2ec175c
NP
2163 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2164 if (unlikely(tmp &
2165 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2166 ret = tmp;
9637a5ef 2167 goto unwritable_page;
c2ec175c 2168 }
b827e496
NP
2169 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2170 lock_page(old_page);
2171 if (!old_page->mapping) {
2172 ret = 0; /* retry the fault */
2173 unlock_page(old_page);
2174 goto unwritable_page;
2175 }
2176 } else
2177 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2178
9637a5ef
DH
2179 /*
2180 * Since we dropped the lock we need to revalidate
2181 * the PTE as someone else may have changed it. If
2182 * they did, we just return, as we can count on the
2183 * MMU to tell us if they didn't also make it writable.
2184 */
2185 page_table = pte_offset_map_lock(mm, pmd, address,
2186 &ptl);
b827e496
NP
2187 if (!pte_same(*page_table, orig_pte)) {
2188 unlock_page(old_page);
2189 page_cache_release(old_page);
9637a5ef 2190 goto unlock;
b827e496 2191 }
a200ee18
PZ
2192
2193 page_mkwrite = 1;
1da177e4 2194 }
d08b3851
PZ
2195 dirty_page = old_page;
2196 get_page(dirty_page);
9637a5ef 2197 reuse = 1;
9637a5ef
DH
2198 }
2199
2200 if (reuse) {
251b97f5 2201reuse:
9637a5ef
DH
2202 flush_cache_page(vma, address, pte_pfn(orig_pte));
2203 entry = pte_mkyoung(orig_pte);
2204 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2205 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2206 update_mmu_cache(vma, address, page_table);
9637a5ef
DH
2207 ret |= VM_FAULT_WRITE;
2208 goto unlock;
1da177e4 2209 }
1da177e4
LT
2210
2211 /*
2212 * Ok, we need to copy. Oh, well..
2213 */
b5810039 2214 page_cache_get(old_page);
920fc356 2215gotten:
8f4e2101 2216 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2217
2218 if (unlikely(anon_vma_prepare(vma)))
65500d23 2219 goto oom;
a13ea5b7 2220
62eede62 2221 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2222 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2223 if (!new_page)
2224 goto oom;
2225 } else {
2226 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2227 if (!new_page)
2228 goto oom;
2229 cow_user_page(new_page, old_page, address, vma);
2230 }
2231 __SetPageUptodate(new_page);
2232
b291f000
NP
2233 /*
2234 * Don't let another task, with possibly unlocked vma,
2235 * keep the mlocked page.
2236 */
ab92661d 2237 if ((vma->vm_flags & VM_LOCKED) && old_page) {
b291f000
NP
2238 lock_page(old_page); /* for LRU manipulation */
2239 clear_page_mlock(old_page);
2240 unlock_page(old_page);
2241 }
65500d23 2242
2c26fdd7 2243 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2244 goto oom_free_new;
2245
1da177e4
LT
2246 /*
2247 * Re-check the pte - we dropped the lock
2248 */
8f4e2101 2249 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2250 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2251 if (old_page) {
920fc356 2252 if (!PageAnon(old_page)) {
34e55232
KH
2253 dec_mm_counter_fast(mm, MM_FILEPAGES);
2254 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2255 }
2256 } else
34e55232 2257 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2258 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2259 entry = mk_pte(new_page, vma->vm_page_prot);
2260 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2261 /*
2262 * Clear the pte entry and flush it first, before updating the
2263 * pte with the new entry. This will avoid a race condition
2264 * seen in the presence of one thread doing SMC and another
2265 * thread doing COW.
2266 */
828502d3 2267 ptep_clear_flush(vma, address, page_table);
9617d95e 2268 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2269 /*
2270 * We call the notify macro here because, when using secondary
2271 * mmu page tables (such as kvm shadow page tables), we want the
2272 * new page to be mapped directly into the secondary page table.
2273 */
2274 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2275 update_mmu_cache(vma, address, page_table);
945754a1
NP
2276 if (old_page) {
2277 /*
2278 * Only after switching the pte to the new page may
2279 * we remove the mapcount here. Otherwise another
2280 * process may come and find the rmap count decremented
2281 * before the pte is switched to the new page, and
2282 * "reuse" the old page writing into it while our pte
2283 * here still points into it and can be read by other
2284 * threads.
2285 *
2286 * The critical issue is to order this
2287 * page_remove_rmap with the ptp_clear_flush above.
2288 * Those stores are ordered by (if nothing else,)
2289 * the barrier present in the atomic_add_negative
2290 * in page_remove_rmap.
2291 *
2292 * Then the TLB flush in ptep_clear_flush ensures that
2293 * no process can access the old page before the
2294 * decremented mapcount is visible. And the old page
2295 * cannot be reused until after the decremented
2296 * mapcount is visible. So transitively, TLBs to
2297 * old page will be flushed before it can be reused.
2298 */
edc315fd 2299 page_remove_rmap(old_page);
945754a1
NP
2300 }
2301
1da177e4
LT
2302 /* Free the old page.. */
2303 new_page = old_page;
f33ea7f4 2304 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2305 } else
2306 mem_cgroup_uncharge_page(new_page);
2307
920fc356
HD
2308 if (new_page)
2309 page_cache_release(new_page);
2310 if (old_page)
2311 page_cache_release(old_page);
65500d23 2312unlock:
8f4e2101 2313 pte_unmap_unlock(page_table, ptl);
d08b3851 2314 if (dirty_page) {
79352894
NP
2315 /*
2316 * Yes, Virginia, this is actually required to prevent a race
2317 * with clear_page_dirty_for_io() from clearing the page dirty
2318 * bit after it clear all dirty ptes, but before a racing
2319 * do_wp_page installs a dirty pte.
2320 *
2321 * do_no_page is protected similarly.
2322 */
b827e496
NP
2323 if (!page_mkwrite) {
2324 wait_on_page_locked(dirty_page);
2325 set_page_dirty_balance(dirty_page, page_mkwrite);
2326 }
d08b3851 2327 put_page(dirty_page);
b827e496
NP
2328 if (page_mkwrite) {
2329 struct address_space *mapping = dirty_page->mapping;
2330
2331 set_page_dirty(dirty_page);
2332 unlock_page(dirty_page);
2333 page_cache_release(dirty_page);
2334 if (mapping) {
2335 /*
2336 * Some device drivers do not set page.mapping
2337 * but still dirty their pages
2338 */
2339 balance_dirty_pages_ratelimited(mapping);
2340 }
2341 }
2342
2343 /* file_update_time outside page_lock */
2344 if (vma->vm_file)
2345 file_update_time(vma->vm_file);
d08b3851 2346 }
f33ea7f4 2347 return ret;
8a9f3ccd 2348oom_free_new:
6dbf6d3b 2349 page_cache_release(new_page);
65500d23 2350oom:
b827e496
NP
2351 if (old_page) {
2352 if (page_mkwrite) {
2353 unlock_page(old_page);
2354 page_cache_release(old_page);
2355 }
920fc356 2356 page_cache_release(old_page);
b827e496 2357 }
1da177e4 2358 return VM_FAULT_OOM;
9637a5ef
DH
2359
2360unwritable_page:
2361 page_cache_release(old_page);
c2ec175c 2362 return ret;
1da177e4
LT
2363}
2364
2365/*
2366 * Helper functions for unmap_mapping_range().
2367 *
2368 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2369 *
2370 * We have to restart searching the prio_tree whenever we drop the lock,
2371 * since the iterator is only valid while the lock is held, and anyway
2372 * a later vma might be split and reinserted earlier while lock dropped.
2373 *
2374 * The list of nonlinear vmas could be handled more efficiently, using
2375 * a placeholder, but handle it in the same way until a need is shown.
2376 * It is important to search the prio_tree before nonlinear list: a vma
2377 * may become nonlinear and be shifted from prio_tree to nonlinear list
2378 * while the lock is dropped; but never shifted from list to prio_tree.
2379 *
2380 * In order to make forward progress despite restarting the search,
2381 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2382 * quickly skip it next time around. Since the prio_tree search only
2383 * shows us those vmas affected by unmapping the range in question, we
2384 * can't efficiently keep all vmas in step with mapping->truncate_count:
2385 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2386 * mapping->truncate_count and vma->vm_truncate_count are protected by
2387 * i_mmap_lock.
2388 *
2389 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2390 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2391 * and restart from that address when we reach that vma again. It might
2392 * have been split or merged, shrunk or extended, but never shifted: so
2393 * restart_addr remains valid so long as it remains in the vma's range.
2394 * unmap_mapping_range forces truncate_count to leap over page-aligned
2395 * values so we can save vma's restart_addr in its truncate_count field.
2396 */
2397#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2398
2399static void reset_vma_truncate_counts(struct address_space *mapping)
2400{
2401 struct vm_area_struct *vma;
2402 struct prio_tree_iter iter;
2403
2404 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2405 vma->vm_truncate_count = 0;
2406 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2407 vma->vm_truncate_count = 0;
2408}
2409
2410static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2411 unsigned long start_addr, unsigned long end_addr,
2412 struct zap_details *details)
2413{
2414 unsigned long restart_addr;
2415 int need_break;
2416
d00806b1
NP
2417 /*
2418 * files that support invalidating or truncating portions of the
d0217ac0 2419 * file from under mmaped areas must have their ->fault function
83c54070
NP
2420 * return a locked page (and set VM_FAULT_LOCKED in the return).
2421 * This provides synchronisation against concurrent unmapping here.
d00806b1 2422 */
d00806b1 2423
1da177e4
LT
2424again:
2425 restart_addr = vma->vm_truncate_count;
2426 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2427 start_addr = restart_addr;
2428 if (start_addr >= end_addr) {
2429 /* Top of vma has been split off since last time */
2430 vma->vm_truncate_count = details->truncate_count;
2431 return 0;
2432 }
2433 }
2434
ee39b37b
HD
2435 restart_addr = zap_page_range(vma, start_addr,
2436 end_addr - start_addr, details);
95c354fe 2437 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2438
ee39b37b 2439 if (restart_addr >= end_addr) {
1da177e4
LT
2440 /* We have now completed this vma: mark it so */
2441 vma->vm_truncate_count = details->truncate_count;
2442 if (!need_break)
2443 return 0;
2444 } else {
2445 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2446 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2447 if (!need_break)
2448 goto again;
2449 }
2450
2451 spin_unlock(details->i_mmap_lock);
2452 cond_resched();
2453 spin_lock(details->i_mmap_lock);
2454 return -EINTR;
2455}
2456
2457static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2458 struct zap_details *details)
2459{
2460 struct vm_area_struct *vma;
2461 struct prio_tree_iter iter;
2462 pgoff_t vba, vea, zba, zea;
2463
2464restart:
2465 vma_prio_tree_foreach(vma, &iter, root,
2466 details->first_index, details->last_index) {
2467 /* Skip quickly over those we have already dealt with */
2468 if (vma->vm_truncate_count == details->truncate_count)
2469 continue;
2470
2471 vba = vma->vm_pgoff;
2472 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2473 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2474 zba = details->first_index;
2475 if (zba < vba)
2476 zba = vba;
2477 zea = details->last_index;
2478 if (zea > vea)
2479 zea = vea;
2480
2481 if (unmap_mapping_range_vma(vma,
2482 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2483 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2484 details) < 0)
2485 goto restart;
2486 }
2487}
2488
2489static inline void unmap_mapping_range_list(struct list_head *head,
2490 struct zap_details *details)
2491{
2492 struct vm_area_struct *vma;
2493
2494 /*
2495 * In nonlinear VMAs there is no correspondence between virtual address
2496 * offset and file offset. So we must perform an exhaustive search
2497 * across *all* the pages in each nonlinear VMA, not just the pages
2498 * whose virtual address lies outside the file truncation point.
2499 */
2500restart:
2501 list_for_each_entry(vma, head, shared.vm_set.list) {
2502 /* Skip quickly over those we have already dealt with */
2503 if (vma->vm_truncate_count == details->truncate_count)
2504 continue;
2505 details->nonlinear_vma = vma;
2506 if (unmap_mapping_range_vma(vma, vma->vm_start,
2507 vma->vm_end, details) < 0)
2508 goto restart;
2509 }
2510}
2511
2512/**
72fd4a35 2513 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2514 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2515 * @holebegin: byte in first page to unmap, relative to the start of
2516 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2517 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2518 * must keep the partial page. In contrast, we must get rid of
2519 * partial pages.
2520 * @holelen: size of prospective hole in bytes. This will be rounded
2521 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2522 * end of the file.
2523 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2524 * but 0 when invalidating pagecache, don't throw away private data.
2525 */
2526void unmap_mapping_range(struct address_space *mapping,
2527 loff_t const holebegin, loff_t const holelen, int even_cows)
2528{
2529 struct zap_details details;
2530 pgoff_t hba = holebegin >> PAGE_SHIFT;
2531 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2532
2533 /* Check for overflow. */
2534 if (sizeof(holelen) > sizeof(hlen)) {
2535 long long holeend =
2536 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2537 if (holeend & ~(long long)ULONG_MAX)
2538 hlen = ULONG_MAX - hba + 1;
2539 }
2540
2541 details.check_mapping = even_cows? NULL: mapping;
2542 details.nonlinear_vma = NULL;
2543 details.first_index = hba;
2544 details.last_index = hba + hlen - 1;
2545 if (details.last_index < details.first_index)
2546 details.last_index = ULONG_MAX;
2547 details.i_mmap_lock = &mapping->i_mmap_lock;
2548
2549 spin_lock(&mapping->i_mmap_lock);
2550
d00806b1 2551 /* Protect against endless unmapping loops */
1da177e4 2552 mapping->truncate_count++;
1da177e4
LT
2553 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2554 if (mapping->truncate_count == 0)
2555 reset_vma_truncate_counts(mapping);
2556 mapping->truncate_count++;
2557 }
2558 details.truncate_count = mapping->truncate_count;
2559
2560 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2561 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2562 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2563 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2564 spin_unlock(&mapping->i_mmap_lock);
2565}
2566EXPORT_SYMBOL(unmap_mapping_range);
2567
f6b3ec23
BP
2568int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2569{
2570 struct address_space *mapping = inode->i_mapping;
2571
2572 /*
2573 * If the underlying filesystem is not going to provide
2574 * a way to truncate a range of blocks (punch a hole) -
2575 * we should return failure right now.
2576 */
acfa4380 2577 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2578 return -ENOSYS;
2579
1b1dcc1b 2580 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2581 down_write(&inode->i_alloc_sem);
2582 unmap_mapping_range(mapping, offset, (end - offset), 1);
2583 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2584 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2585 inode->i_op->truncate_range(inode, offset, end);
2586 up_write(&inode->i_alloc_sem);
1b1dcc1b 2587 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2588
2589 return 0;
2590}
f6b3ec23 2591
1da177e4 2592/*
8f4e2101
HD
2593 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2594 * but allow concurrent faults), and pte mapped but not yet locked.
2595 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2596 */
65500d23
HD
2597static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2598 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2599 unsigned int flags, pte_t orig_pte)
1da177e4 2600{
8f4e2101 2601 spinlock_t *ptl;
1da177e4 2602 struct page *page;
65500d23 2603 swp_entry_t entry;
1da177e4 2604 pte_t pte;
7a81b88c 2605 struct mem_cgroup *ptr = NULL;
83c54070 2606 int ret = 0;
1da177e4 2607
4c21e2f2 2608 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2609 goto out;
65500d23
HD
2610
2611 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2612 if (unlikely(non_swap_entry(entry))) {
2613 if (is_migration_entry(entry)) {
2614 migration_entry_wait(mm, pmd, address);
2615 } else if (is_hwpoison_entry(entry)) {
2616 ret = VM_FAULT_HWPOISON;
2617 } else {
2618 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2619 ret = VM_FAULT_SIGBUS;
d1737fdb 2620 }
0697212a
CL
2621 goto out;
2622 }
0ff92245 2623 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2624 page = lookup_swap_cache(entry);
2625 if (!page) {
a5c9b696 2626 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2627 page = swapin_readahead(entry,
2628 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2629 if (!page) {
2630 /*
8f4e2101
HD
2631 * Back out if somebody else faulted in this pte
2632 * while we released the pte lock.
1da177e4 2633 */
8f4e2101 2634 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2635 if (likely(pte_same(*page_table, orig_pte)))
2636 ret = VM_FAULT_OOM;
0ff92245 2637 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2638 goto unlock;
1da177e4
LT
2639 }
2640
2641 /* Had to read the page from swap area: Major fault */
2642 ret = VM_FAULT_MAJOR;
f8891e5e 2643 count_vm_event(PGMAJFAULT);
d1737fdb 2644 } else if (PageHWPoison(page)) {
71f72525
WF
2645 /*
2646 * hwpoisoned dirty swapcache pages are kept for killing
2647 * owner processes (which may be unknown at hwpoison time)
2648 */
d1737fdb
AK
2649 ret = VM_FAULT_HWPOISON;
2650 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2651 goto out_release;
1da177e4
LT
2652 }
2653
073e587e
KH
2654 lock_page(page);
2655 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2656
5ad64688
HD
2657 page = ksm_might_need_to_copy(page, vma, address);
2658 if (!page) {
2659 ret = VM_FAULT_OOM;
2660 goto out;
2661 }
2662
2c26fdd7 2663 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2664 ret = VM_FAULT_OOM;
bc43f75c 2665 goto out_page;
8a9f3ccd
BS
2666 }
2667
1da177e4 2668 /*
8f4e2101 2669 * Back out if somebody else already faulted in this pte.
1da177e4 2670 */
8f4e2101 2671 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2672 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2673 goto out_nomap;
b8107480
KK
2674
2675 if (unlikely(!PageUptodate(page))) {
2676 ret = VM_FAULT_SIGBUS;
2677 goto out_nomap;
1da177e4
LT
2678 }
2679
8c7c6e34
KH
2680 /*
2681 * The page isn't present yet, go ahead with the fault.
2682 *
2683 * Be careful about the sequence of operations here.
2684 * To get its accounting right, reuse_swap_page() must be called
2685 * while the page is counted on swap but not yet in mapcount i.e.
2686 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2687 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2688 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2689 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2690 * in page->private. In this case, a record in swap_cgroup is silently
2691 * discarded at swap_free().
8c7c6e34 2692 */
1da177e4 2693
34e55232 2694 inc_mm_counter_fast(mm, MM_ANONPAGES);
1da177e4 2695 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2696 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2697 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2698 flags &= ~FAULT_FLAG_WRITE;
1da177e4 2699 }
1da177e4
LT
2700 flush_icache_page(vma, page);
2701 set_pte_at(mm, address, page_table, pte);
2702 page_add_anon_rmap(page, vma, address);
03f3c433
KH
2703 /* It's better to call commit-charge after rmap is established */
2704 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2705
c475a8ab 2706 swap_free(entry);
b291f000 2707 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2708 try_to_free_swap(page);
c475a8ab
HD
2709 unlock_page(page);
2710
30c9f3a9 2711 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2712 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2713 if (ret & VM_FAULT_ERROR)
2714 ret &= VM_FAULT_ERROR;
1da177e4
LT
2715 goto out;
2716 }
2717
2718 /* No need to invalidate - it was non-present before */
4b3073e1 2719 update_mmu_cache(vma, address, page_table);
65500d23 2720unlock:
8f4e2101 2721 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2722out:
2723 return ret;
b8107480 2724out_nomap:
7a81b88c 2725 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 2726 pte_unmap_unlock(page_table, ptl);
bc43f75c 2727out_page:
b8107480 2728 unlock_page(page);
4779cb31 2729out_release:
b8107480 2730 page_cache_release(page);
65500d23 2731 return ret;
1da177e4
LT
2732}
2733
2734/*
8f4e2101
HD
2735 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2736 * but allow concurrent faults), and pte mapped but not yet locked.
2737 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2738 */
65500d23
HD
2739static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2740 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2741 unsigned int flags)
1da177e4 2742{
8f4e2101
HD
2743 struct page *page;
2744 spinlock_t *ptl;
1da177e4 2745 pte_t entry;
1da177e4 2746
62eede62
HD
2747 if (!(flags & FAULT_FLAG_WRITE)) {
2748 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2749 vma->vm_page_prot));
a13ea5b7
HD
2750 ptl = pte_lockptr(mm, pmd);
2751 spin_lock(ptl);
2752 if (!pte_none(*page_table))
2753 goto unlock;
2754 goto setpte;
2755 }
2756
557ed1fa
NP
2757 /* Allocate our own private page. */
2758 pte_unmap(page_table);
8f4e2101 2759
557ed1fa
NP
2760 if (unlikely(anon_vma_prepare(vma)))
2761 goto oom;
2762 page = alloc_zeroed_user_highpage_movable(vma, address);
2763 if (!page)
2764 goto oom;
0ed361de 2765 __SetPageUptodate(page);
8f4e2101 2766
2c26fdd7 2767 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2768 goto oom_free_page;
2769
557ed1fa 2770 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2771 if (vma->vm_flags & VM_WRITE)
2772 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2773
557ed1fa 2774 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2775 if (!pte_none(*page_table))
557ed1fa 2776 goto release;
9ba69294 2777
34e55232 2778 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 2779 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 2780setpte:
65500d23 2781 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2782
2783 /* No need to invalidate - it was non-present before */
4b3073e1 2784 update_mmu_cache(vma, address, page_table);
65500d23 2785unlock:
8f4e2101 2786 pte_unmap_unlock(page_table, ptl);
83c54070 2787 return 0;
8f4e2101 2788release:
8a9f3ccd 2789 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2790 page_cache_release(page);
2791 goto unlock;
8a9f3ccd 2792oom_free_page:
6dbf6d3b 2793 page_cache_release(page);
65500d23 2794oom:
1da177e4
LT
2795 return VM_FAULT_OOM;
2796}
2797
2798/*
54cb8821 2799 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2800 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2801 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2802 * the next page fault.
1da177e4
LT
2803 *
2804 * As this is called only for pages that do not currently exist, we
2805 * do not need to flush old virtual caches or the TLB.
2806 *
8f4e2101 2807 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2808 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2809 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2810 */
54cb8821 2811static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2812 unsigned long address, pmd_t *pmd,
54cb8821 2813 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2814{
16abfa08 2815 pte_t *page_table;
8f4e2101 2816 spinlock_t *ptl;
d0217ac0 2817 struct page *page;
1da177e4 2818 pte_t entry;
1da177e4 2819 int anon = 0;
5b4e655e 2820 int charged = 0;
d08b3851 2821 struct page *dirty_page = NULL;
d0217ac0
NP
2822 struct vm_fault vmf;
2823 int ret;
a200ee18 2824 int page_mkwrite = 0;
54cb8821 2825
d0217ac0
NP
2826 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2827 vmf.pgoff = pgoff;
2828 vmf.flags = flags;
2829 vmf.page = NULL;
1da177e4 2830
3c18ddd1
NP
2831 ret = vma->vm_ops->fault(vma, &vmf);
2832 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2833 return ret;
1da177e4 2834
a3b947ea
AK
2835 if (unlikely(PageHWPoison(vmf.page))) {
2836 if (ret & VM_FAULT_LOCKED)
2837 unlock_page(vmf.page);
2838 return VM_FAULT_HWPOISON;
2839 }
2840
d00806b1 2841 /*
d0217ac0 2842 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2843 * locked.
2844 */
83c54070 2845 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2846 lock_page(vmf.page);
54cb8821 2847 else
d0217ac0 2848 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2849
1da177e4
LT
2850 /*
2851 * Should we do an early C-O-W break?
2852 */
d0217ac0 2853 page = vmf.page;
54cb8821 2854 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2855 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2856 anon = 1;
d00806b1 2857 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2858 ret = VM_FAULT_OOM;
54cb8821 2859 goto out;
d00806b1 2860 }
83c54070
NP
2861 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2862 vma, address);
d00806b1 2863 if (!page) {
d0217ac0 2864 ret = VM_FAULT_OOM;
54cb8821 2865 goto out;
d00806b1 2866 }
2c26fdd7 2867 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
5b4e655e
KH
2868 ret = VM_FAULT_OOM;
2869 page_cache_release(page);
2870 goto out;
2871 }
2872 charged = 1;
b291f000
NP
2873 /*
2874 * Don't let another task, with possibly unlocked vma,
2875 * keep the mlocked page.
2876 */
2877 if (vma->vm_flags & VM_LOCKED)
2878 clear_page_mlock(vmf.page);
d0217ac0 2879 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2880 __SetPageUptodate(page);
9637a5ef 2881 } else {
54cb8821
NP
2882 /*
2883 * If the page will be shareable, see if the backing
9637a5ef 2884 * address space wants to know that the page is about
54cb8821
NP
2885 * to become writable
2886 */
69676147 2887 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2888 int tmp;
2889
69676147 2890 unlock_page(page);
b827e496 2891 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
2892 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2893 if (unlikely(tmp &
2894 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2895 ret = tmp;
b827e496 2896 goto unwritable_page;
d0217ac0 2897 }
b827e496
NP
2898 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2899 lock_page(page);
2900 if (!page->mapping) {
2901 ret = 0; /* retry the fault */
2902 unlock_page(page);
2903 goto unwritable_page;
2904 }
2905 } else
2906 VM_BUG_ON(!PageLocked(page));
a200ee18 2907 page_mkwrite = 1;
9637a5ef
DH
2908 }
2909 }
54cb8821 2910
1da177e4
LT
2911 }
2912
8f4e2101 2913 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2914
2915 /*
2916 * This silly early PAGE_DIRTY setting removes a race
2917 * due to the bad i386 page protection. But it's valid
2918 * for other architectures too.
2919 *
30c9f3a9 2920 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
2921 * an exclusive copy of the page, or this is a shared mapping,
2922 * so we can make it writable and dirty to avoid having to
2923 * handle that later.
2924 */
2925 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 2926 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2927 flush_icache_page(vma, page);
2928 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2929 if (flags & FAULT_FLAG_WRITE)
1da177e4 2930 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2931 if (anon) {
34e55232 2932 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 2933 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2934 } else {
34e55232 2935 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 2936 page_add_file_rmap(page);
54cb8821 2937 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2938 dirty_page = page;
d08b3851
PZ
2939 get_page(dirty_page);
2940 }
4294621f 2941 }
64d6519d 2942 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2943
2944 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 2945 update_mmu_cache(vma, address, page_table);
1da177e4 2946 } else {
5b4e655e
KH
2947 if (charged)
2948 mem_cgroup_uncharge_page(page);
d00806b1
NP
2949 if (anon)
2950 page_cache_release(page);
2951 else
54cb8821 2952 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2953 }
2954
8f4e2101 2955 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2956
2957out:
b827e496
NP
2958 if (dirty_page) {
2959 struct address_space *mapping = page->mapping;
8f7b3d15 2960
b827e496
NP
2961 if (set_page_dirty(dirty_page))
2962 page_mkwrite = 1;
2963 unlock_page(dirty_page);
d08b3851 2964 put_page(dirty_page);
b827e496
NP
2965 if (page_mkwrite && mapping) {
2966 /*
2967 * Some device drivers do not set page.mapping but still
2968 * dirty their pages
2969 */
2970 balance_dirty_pages_ratelimited(mapping);
2971 }
2972
2973 /* file_update_time outside page_lock */
2974 if (vma->vm_file)
2975 file_update_time(vma->vm_file);
2976 } else {
2977 unlock_page(vmf.page);
2978 if (anon)
2979 page_cache_release(vmf.page);
d08b3851 2980 }
d00806b1 2981
83c54070 2982 return ret;
b827e496
NP
2983
2984unwritable_page:
2985 page_cache_release(page);
2986 return ret;
54cb8821 2987}
d00806b1 2988
54cb8821
NP
2989static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2990 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2991 unsigned int flags, pte_t orig_pte)
54cb8821
NP
2992{
2993 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2994 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 2995
16abfa08
HD
2996 pte_unmap(page_table);
2997 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2998}
2999
1da177e4
LT
3000/*
3001 * Fault of a previously existing named mapping. Repopulate the pte
3002 * from the encoded file_pte if possible. This enables swappable
3003 * nonlinear vmas.
8f4e2101
HD
3004 *
3005 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3006 * but allow concurrent faults), and pte mapped but not yet locked.
3007 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3008 */
d0217ac0 3009static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3010 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3011 unsigned int flags, pte_t orig_pte)
1da177e4 3012{
65500d23 3013 pgoff_t pgoff;
1da177e4 3014
30c9f3a9
LT
3015 flags |= FAULT_FLAG_NONLINEAR;
3016
4c21e2f2 3017 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3018 return 0;
1da177e4 3019
2509ef26 3020 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3021 /*
3022 * Page table corrupted: show pte and kill process.
3023 */
3dc14741 3024 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3025 return VM_FAULT_SIGBUS;
65500d23 3026 }
65500d23
HD
3027
3028 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3029 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3030}
3031
3032/*
3033 * These routines also need to handle stuff like marking pages dirty
3034 * and/or accessed for architectures that don't do it in hardware (most
3035 * RISC architectures). The early dirtying is also good on the i386.
3036 *
3037 * There is also a hook called "update_mmu_cache()" that architectures
3038 * with external mmu caches can use to update those (ie the Sparc or
3039 * PowerPC hashed page tables that act as extended TLBs).
3040 *
c74df32c
HD
3041 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3042 * but allow concurrent faults), and pte mapped but not yet locked.
3043 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
3044 */
3045static inline int handle_pte_fault(struct mm_struct *mm,
65500d23 3046 struct vm_area_struct *vma, unsigned long address,
30c9f3a9 3047 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3048{
3049 pte_t entry;
8f4e2101 3050 spinlock_t *ptl;
1da177e4 3051
8dab5241 3052 entry = *pte;
1da177e4 3053 if (!pte_present(entry)) {
65500d23 3054 if (pte_none(entry)) {
f4b81804 3055 if (vma->vm_ops) {
3c18ddd1 3056 if (likely(vma->vm_ops->fault))
54cb8821 3057 return do_linear_fault(mm, vma, address,
30c9f3a9 3058 pte, pmd, flags, entry);
f4b81804
JS
3059 }
3060 return do_anonymous_page(mm, vma, address,
30c9f3a9 3061 pte, pmd, flags);
65500d23 3062 }
1da177e4 3063 if (pte_file(entry))
d0217ac0 3064 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3065 pte, pmd, flags, entry);
65500d23 3066 return do_swap_page(mm, vma, address,
30c9f3a9 3067 pte, pmd, flags, entry);
1da177e4
LT
3068 }
3069
4c21e2f2 3070 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3071 spin_lock(ptl);
3072 if (unlikely(!pte_same(*pte, entry)))
3073 goto unlock;
30c9f3a9 3074 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3075 if (!pte_write(entry))
8f4e2101
HD
3076 return do_wp_page(mm, vma, address,
3077 pte, pmd, ptl, entry);
1da177e4
LT
3078 entry = pte_mkdirty(entry);
3079 }
3080 entry = pte_mkyoung(entry);
30c9f3a9 3081 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3082 update_mmu_cache(vma, address, pte);
1a44e149
AA
3083 } else {
3084 /*
3085 * This is needed only for protection faults but the arch code
3086 * is not yet telling us if this is a protection fault or not.
3087 * This still avoids useless tlb flushes for .text page faults
3088 * with threads.
3089 */
30c9f3a9 3090 if (flags & FAULT_FLAG_WRITE)
1a44e149
AA
3091 flush_tlb_page(vma, address);
3092 }
8f4e2101
HD
3093unlock:
3094 pte_unmap_unlock(pte, ptl);
83c54070 3095 return 0;
1da177e4
LT
3096}
3097
3098/*
3099 * By the time we get here, we already hold the mm semaphore
3100 */
83c54070 3101int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3102 unsigned long address, unsigned int flags)
1da177e4
LT
3103{
3104 pgd_t *pgd;
3105 pud_t *pud;
3106 pmd_t *pmd;
3107 pte_t *pte;
3108
3109 __set_current_state(TASK_RUNNING);
3110
f8891e5e 3111 count_vm_event(PGFAULT);
1da177e4 3112
34e55232
KH
3113 /* do counter updates before entering really critical section. */
3114 check_sync_rss_stat(current);
3115
ac9b9c66 3116 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3117 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3118
1da177e4 3119 pgd = pgd_offset(mm, address);
1da177e4
LT
3120 pud = pud_alloc(mm, pgd, address);
3121 if (!pud)
c74df32c 3122 return VM_FAULT_OOM;
1da177e4
LT
3123 pmd = pmd_alloc(mm, pud, address);
3124 if (!pmd)
c74df32c 3125 return VM_FAULT_OOM;
1da177e4
LT
3126 pte = pte_alloc_map(mm, pmd, address);
3127 if (!pte)
c74df32c 3128 return VM_FAULT_OOM;
1da177e4 3129
30c9f3a9 3130 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3131}
3132
3133#ifndef __PAGETABLE_PUD_FOLDED
3134/*
3135 * Allocate page upper directory.
872fec16 3136 * We've already handled the fast-path in-line.
1da177e4 3137 */
1bb3630e 3138int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3139{
c74df32c
HD
3140 pud_t *new = pud_alloc_one(mm, address);
3141 if (!new)
1bb3630e 3142 return -ENOMEM;
1da177e4 3143
362a61ad
NP
3144 smp_wmb(); /* See comment in __pte_alloc */
3145
872fec16 3146 spin_lock(&mm->page_table_lock);
1bb3630e 3147 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3148 pud_free(mm, new);
1bb3630e
HD
3149 else
3150 pgd_populate(mm, pgd, new);
c74df32c 3151 spin_unlock(&mm->page_table_lock);
1bb3630e 3152 return 0;
1da177e4
LT
3153}
3154#endif /* __PAGETABLE_PUD_FOLDED */
3155
3156#ifndef __PAGETABLE_PMD_FOLDED
3157/*
3158 * Allocate page middle directory.
872fec16 3159 * We've already handled the fast-path in-line.
1da177e4 3160 */
1bb3630e 3161int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3162{
c74df32c
HD
3163 pmd_t *new = pmd_alloc_one(mm, address);
3164 if (!new)
1bb3630e 3165 return -ENOMEM;
1da177e4 3166
362a61ad
NP
3167 smp_wmb(); /* See comment in __pte_alloc */
3168
872fec16 3169 spin_lock(&mm->page_table_lock);
1da177e4 3170#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3171 if (pud_present(*pud)) /* Another has populated it */
5e541973 3172 pmd_free(mm, new);
1bb3630e
HD
3173 else
3174 pud_populate(mm, pud, new);
1da177e4 3175#else
1bb3630e 3176 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3177 pmd_free(mm, new);
1bb3630e
HD
3178 else
3179 pgd_populate(mm, pud, new);
1da177e4 3180#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3181 spin_unlock(&mm->page_table_lock);
1bb3630e 3182 return 0;
e0f39591 3183}
1da177e4
LT
3184#endif /* __PAGETABLE_PMD_FOLDED */
3185
3186int make_pages_present(unsigned long addr, unsigned long end)
3187{
3188 int ret, len, write;
3189 struct vm_area_struct * vma;
3190
3191 vma = find_vma(current->mm, addr);
3192 if (!vma)
a477097d 3193 return -ENOMEM;
1da177e4 3194 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
3195 BUG_ON(addr >= end);
3196 BUG_ON(end > vma->vm_end);
68e116a3 3197 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3198 ret = get_user_pages(current, current->mm, addr,
3199 len, write, 0, NULL, NULL);
c11d69d8 3200 if (ret < 0)
1da177e4 3201 return ret;
9978ad58 3202 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3203}
3204
1da177e4
LT
3205#if !defined(__HAVE_ARCH_GATE_AREA)
3206
3207#if defined(AT_SYSINFO_EHDR)
5ce7852c 3208static struct vm_area_struct gate_vma;
1da177e4
LT
3209
3210static int __init gate_vma_init(void)
3211{
3212 gate_vma.vm_mm = NULL;
3213 gate_vma.vm_start = FIXADDR_USER_START;
3214 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3215 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3216 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3217 /*
3218 * Make sure the vDSO gets into every core dump.
3219 * Dumping its contents makes post-mortem fully interpretable later
3220 * without matching up the same kernel and hardware config to see
3221 * what PC values meant.
3222 */
3223 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3224 return 0;
3225}
3226__initcall(gate_vma_init);
3227#endif
3228
3229struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3230{
3231#ifdef AT_SYSINFO_EHDR
3232 return &gate_vma;
3233#else
3234 return NULL;
3235#endif
3236}
3237
3238int in_gate_area_no_task(unsigned long addr)
3239{
3240#ifdef AT_SYSINFO_EHDR
3241 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3242 return 1;
3243#endif
3244 return 0;
3245}
3246
3247#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3248
f8ad0f49
JW
3249static int follow_pte(struct mm_struct *mm, unsigned long address,
3250 pte_t **ptepp, spinlock_t **ptlp)
3251{
3252 pgd_t *pgd;
3253 pud_t *pud;
3254 pmd_t *pmd;
3255 pte_t *ptep;
3256
3257 pgd = pgd_offset(mm, address);
3258 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3259 goto out;
3260
3261 pud = pud_offset(pgd, address);
3262 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3263 goto out;
3264
3265 pmd = pmd_offset(pud, address);
3266 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3267 goto out;
3268
3269 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3270 if (pmd_huge(*pmd))
3271 goto out;
3272
3273 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3274 if (!ptep)
3275 goto out;
3276 if (!pte_present(*ptep))
3277 goto unlock;
3278 *ptepp = ptep;
3279 return 0;
3280unlock:
3281 pte_unmap_unlock(ptep, *ptlp);
3282out:
3283 return -EINVAL;
3284}
3285
3b6748e2
JW
3286/**
3287 * follow_pfn - look up PFN at a user virtual address
3288 * @vma: memory mapping
3289 * @address: user virtual address
3290 * @pfn: location to store found PFN
3291 *
3292 * Only IO mappings and raw PFN mappings are allowed.
3293 *
3294 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3295 */
3296int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3297 unsigned long *pfn)
3298{
3299 int ret = -EINVAL;
3300 spinlock_t *ptl;
3301 pte_t *ptep;
3302
3303 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3304 return ret;
3305
3306 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3307 if (ret)
3308 return ret;
3309 *pfn = pte_pfn(*ptep);
3310 pte_unmap_unlock(ptep, ptl);
3311 return 0;
3312}
3313EXPORT_SYMBOL(follow_pfn);
3314
28b2ee20 3315#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3316int follow_phys(struct vm_area_struct *vma,
3317 unsigned long address, unsigned int flags,
3318 unsigned long *prot, resource_size_t *phys)
28b2ee20 3319{
03668a4d 3320 int ret = -EINVAL;
28b2ee20
RR
3321 pte_t *ptep, pte;
3322 spinlock_t *ptl;
28b2ee20 3323
d87fe660 3324 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3325 goto out;
28b2ee20 3326
03668a4d 3327 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3328 goto out;
28b2ee20 3329 pte = *ptep;
03668a4d 3330
28b2ee20
RR
3331 if ((flags & FOLL_WRITE) && !pte_write(pte))
3332 goto unlock;
28b2ee20
RR
3333
3334 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3335 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3336
03668a4d 3337 ret = 0;
28b2ee20
RR
3338unlock:
3339 pte_unmap_unlock(ptep, ptl);
3340out:
d87fe660 3341 return ret;
28b2ee20
RR
3342}
3343
3344int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3345 void *buf, int len, int write)
3346{
3347 resource_size_t phys_addr;
3348 unsigned long prot = 0;
2bc7273b 3349 void __iomem *maddr;
28b2ee20
RR
3350 int offset = addr & (PAGE_SIZE-1);
3351
d87fe660 3352 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3353 return -EINVAL;
3354
3355 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3356 if (write)
3357 memcpy_toio(maddr + offset, buf, len);
3358 else
3359 memcpy_fromio(buf, maddr + offset, len);
3360 iounmap(maddr);
3361
3362 return len;
3363}
3364#endif
3365
0ec76a11
DH
3366/*
3367 * Access another process' address space.
3368 * Source/target buffer must be kernel space,
3369 * Do not walk the page table directly, use get_user_pages
3370 */
3371int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3372{
3373 struct mm_struct *mm;
3374 struct vm_area_struct *vma;
0ec76a11
DH
3375 void *old_buf = buf;
3376
3377 mm = get_task_mm(tsk);
3378 if (!mm)
3379 return 0;
3380
3381 down_read(&mm->mmap_sem);
183ff22b 3382 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3383 while (len) {
3384 int bytes, ret, offset;
3385 void *maddr;
28b2ee20 3386 struct page *page = NULL;
0ec76a11
DH
3387
3388 ret = get_user_pages(tsk, mm, addr, 1,
3389 write, 1, &page, &vma);
28b2ee20
RR
3390 if (ret <= 0) {
3391 /*
3392 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3393 * we can access using slightly different code.
3394 */
3395#ifdef CONFIG_HAVE_IOREMAP_PROT
3396 vma = find_vma(mm, addr);
3397 if (!vma)
3398 break;
3399 if (vma->vm_ops && vma->vm_ops->access)
3400 ret = vma->vm_ops->access(vma, addr, buf,
3401 len, write);
3402 if (ret <= 0)
3403#endif
3404 break;
3405 bytes = ret;
0ec76a11 3406 } else {
28b2ee20
RR
3407 bytes = len;
3408 offset = addr & (PAGE_SIZE-1);
3409 if (bytes > PAGE_SIZE-offset)
3410 bytes = PAGE_SIZE-offset;
3411
3412 maddr = kmap(page);
3413 if (write) {
3414 copy_to_user_page(vma, page, addr,
3415 maddr + offset, buf, bytes);
3416 set_page_dirty_lock(page);
3417 } else {
3418 copy_from_user_page(vma, page, addr,
3419 buf, maddr + offset, bytes);
3420 }
3421 kunmap(page);
3422 page_cache_release(page);
0ec76a11 3423 }
0ec76a11
DH
3424 len -= bytes;
3425 buf += bytes;
3426 addr += bytes;
3427 }
3428 up_read(&mm->mmap_sem);
3429 mmput(mm);
3430
3431 return buf - old_buf;
3432}
03252919
AK
3433
3434/*
3435 * Print the name of a VMA.
3436 */
3437void print_vma_addr(char *prefix, unsigned long ip)
3438{
3439 struct mm_struct *mm = current->mm;
3440 struct vm_area_struct *vma;
3441
e8bff74a
IM
3442 /*
3443 * Do not print if we are in atomic
3444 * contexts (in exception stacks, etc.):
3445 */
3446 if (preempt_count())
3447 return;
3448
03252919
AK
3449 down_read(&mm->mmap_sem);
3450 vma = find_vma(mm, ip);
3451 if (vma && vma->vm_file) {
3452 struct file *f = vma->vm_file;
3453 char *buf = (char *)__get_free_page(GFP_KERNEL);
3454 if (buf) {
3455 char *p, *s;
3456
cf28b486 3457 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3458 if (IS_ERR(p))
3459 p = "?";
3460 s = strrchr(p, '/');
3461 if (s)
3462 p = s+1;
3463 printk("%s%s[%lx+%lx]", prefix, p,
3464 vma->vm_start,
3465 vma->vm_end - vma->vm_start);
3466 free_page((unsigned long)buf);
3467 }
3468 }
3469 up_read(&current->mm->mmap_sem);
3470}
3ee1afa3
NP
3471
3472#ifdef CONFIG_PROVE_LOCKING
3473void might_fault(void)
3474{
95156f00
PZ
3475 /*
3476 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3477 * holding the mmap_sem, this is safe because kernel memory doesn't
3478 * get paged out, therefore we'll never actually fault, and the
3479 * below annotations will generate false positives.
3480 */
3481 if (segment_eq(get_fs(), KERNEL_DS))
3482 return;
3483
3ee1afa3
NP
3484 might_sleep();
3485 /*
3486 * it would be nicer only to annotate paths which are not under
3487 * pagefault_disable, however that requires a larger audit and
3488 * providing helpers like get_user_atomic.
3489 */
3490 if (!in_atomic() && current->mm)
3491 might_lock_read(&current->mm->mmap_sem);
3492}
3493EXPORT_SYMBOL(might_fault);
3494#endif