]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memory.c
mm: drop zap_details::check_swap_entries
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
01c8f1c4 53#include <linux/pfn_t.h>
edc79b2a 54#include <linux/writeback.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
3dc14741
HD
57#include <linux/kallsyms.h>
58#include <linux/swapops.h>
59#include <linux/elf.h>
5a0e3ad6 60#include <linux/gfp.h>
4daae3b4 61#include <linux/migrate.h>
2fbc57c5 62#include <linux/string.h>
0abdd7a8 63#include <linux/dma-debug.h>
1592eef0 64#include <linux/debugfs.h>
6b251fc9 65#include <linux/userfaultfd_k.h>
bc2466e4 66#include <linux/dax.h>
1da177e4 67
6952b61d 68#include <asm/io.h>
33a709b2 69#include <asm/mmu_context.h>
1da177e4 70#include <asm/pgalloc.h>
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4
LT
72#include <asm/tlb.h>
73#include <asm/tlbflush.h>
74#include <asm/pgtable.h>
75
42b77728
JB
76#include "internal.h"
77
90572890
PZ
78#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
80#endif
81
d41dee36 82#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
83/* use the per-pgdat data instead for discontigmem - mbligh */
84unsigned long max_mapnr;
85struct page *mem_map;
86
87EXPORT_SYMBOL(max_mapnr);
88EXPORT_SYMBOL(mem_map);
89#endif
90
1da177e4
LT
91/*
92 * A number of key systems in x86 including ioremap() rely on the assumption
93 * that high_memory defines the upper bound on direct map memory, then end
94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 * and ZONE_HIGHMEM.
97 */
98void * high_memory;
1da177e4 99
1da177e4 100EXPORT_SYMBOL(high_memory);
1da177e4 101
32a93233
IM
102/*
103 * Randomize the address space (stacks, mmaps, brk, etc.).
104 *
105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106 * as ancient (libc5 based) binaries can segfault. )
107 */
108int randomize_va_space __read_mostly =
109#ifdef CONFIG_COMPAT_BRK
110 1;
111#else
112 2;
113#endif
a62eaf15
AK
114
115static int __init disable_randmaps(char *s)
116{
117 randomize_va_space = 0;
9b41046c 118 return 1;
a62eaf15
AK
119}
120__setup("norandmaps", disable_randmaps);
121
62eede62 122unsigned long zero_pfn __read_mostly;
03f6462a 123unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 124
0b70068e
AB
125EXPORT_SYMBOL(zero_pfn);
126
a13ea5b7
HD
127/*
128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129 */
130static int __init init_zero_pfn(void)
131{
132 zero_pfn = page_to_pfn(ZERO_PAGE(0));
133 return 0;
134}
135core_initcall(init_zero_pfn);
a62eaf15 136
d559db08 137
34e55232
KH
138#if defined(SPLIT_RSS_COUNTING)
139
ea48cf78 140void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
141{
142 int i;
143
144 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
145 if (current->rss_stat.count[i]) {
146 add_mm_counter(mm, i, current->rss_stat.count[i]);
147 current->rss_stat.count[i] = 0;
34e55232
KH
148 }
149 }
05af2e10 150 current->rss_stat.events = 0;
34e55232
KH
151}
152
153static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154{
155 struct task_struct *task = current;
156
157 if (likely(task->mm == mm))
158 task->rss_stat.count[member] += val;
159 else
160 add_mm_counter(mm, member, val);
161}
162#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164
165/* sync counter once per 64 page faults */
166#define TASK_RSS_EVENTS_THRESH (64)
167static void check_sync_rss_stat(struct task_struct *task)
168{
169 if (unlikely(task != current))
170 return;
171 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 172 sync_mm_rss(task->mm);
34e55232 173}
9547d01b 174#else /* SPLIT_RSS_COUNTING */
34e55232
KH
175
176#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178
179static void check_sync_rss_stat(struct task_struct *task)
180{
181}
182
9547d01b
PZ
183#endif /* SPLIT_RSS_COUNTING */
184
185#ifdef HAVE_GENERIC_MMU_GATHER
186
ca1d6c7d 187static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
188{
189 struct mmu_gather_batch *batch;
190
191 batch = tlb->active;
192 if (batch->next) {
193 tlb->active = batch->next;
ca1d6c7d 194 return true;
9547d01b
PZ
195 }
196
53a59fc6 197 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 198 return false;
53a59fc6 199
9547d01b
PZ
200 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
201 if (!batch)
ca1d6c7d 202 return false;
9547d01b 203
53a59fc6 204 tlb->batch_count++;
9547d01b
PZ
205 batch->next = NULL;
206 batch->nr = 0;
207 batch->max = MAX_GATHER_BATCH;
208
209 tlb->active->next = batch;
210 tlb->active = batch;
211
ca1d6c7d 212 return true;
9547d01b
PZ
213}
214
215/* tlb_gather_mmu
216 * Called to initialize an (on-stack) mmu_gather structure for page-table
217 * tear-down from @mm. The @fullmm argument is used when @mm is without
218 * users and we're going to destroy the full address space (exit/execve).
219 */
2b047252 220void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
221{
222 tlb->mm = mm;
223
2b047252
LT
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
1de14c3c 226 tlb->need_flush_all = 0;
9547d01b
PZ
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
53a59fc6 231 tlb->batch_count = 0;
9547d01b
PZ
232
233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235#endif
e77b0852 236 tlb->page_size = 0;
fb7332a9
WD
237
238 __tlb_reset_range(tlb);
9547d01b
PZ
239}
240
1cf35d47 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 242{
721c21c1
WD
243 if (!tlb->end)
244 return;
245
9547d01b 246 tlb_flush(tlb);
34ee645e 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
34e55232 250#endif
fb7332a9 251 __tlb_reset_range(tlb);
1cf35d47
LT
252}
253
254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255{
256 struct mmu_gather_batch *batch;
34e55232 257
721c21c1 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263}
264
1cf35d47
LT
265void tlb_flush_mmu(struct mmu_gather *tlb)
266{
1cf35d47
LT
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269}
270
9547d01b
PZ
271/* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
275void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
276{
277 struct mmu_gather_batch *batch, *next;
278
279 tlb_flush_mmu(tlb);
280
281 /* keep the page table cache within bounds */
282 check_pgt_cache();
283
284 for (batch = tlb->local.next; batch; batch = next) {
285 next = batch->next;
286 free_pages((unsigned long)batch, 0);
287 }
288 tlb->local.next = NULL;
289}
290
291/* __tlb_remove_page
292 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293 * handling the additional races in SMP caused by other CPUs caching valid
294 * mappings in their TLBs. Returns the number of free page slots left.
295 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 296 *returns true if the caller should flush.
9547d01b 297 */
e77b0852 298bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
9547d01b
PZ
299{
300 struct mmu_gather_batch *batch;
301
fb7332a9 302 VM_BUG_ON(!tlb->end);
692a68c1 303 VM_WARN_ON(tlb->page_size != page_size);
e77b0852 304
9547d01b 305 batch = tlb->active;
692a68c1
AK
306 /*
307 * Add the page and check if we are full. If so
308 * force a flush.
309 */
310 batch->pages[batch->nr++] = page;
9547d01b
PZ
311 if (batch->nr == batch->max) {
312 if (!tlb_next_batch(tlb))
e9d55e15 313 return true;
0b43c3aa 314 batch = tlb->active;
9547d01b 315 }
309381fe 316 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 317
e9d55e15 318 return false;
9547d01b
PZ
319}
320
321#endif /* HAVE_GENERIC_MMU_GATHER */
322
26723911
PZ
323#ifdef CONFIG_HAVE_RCU_TABLE_FREE
324
325/*
326 * See the comment near struct mmu_table_batch.
327 */
328
329static void tlb_remove_table_smp_sync(void *arg)
330{
331 /* Simply deliver the interrupt */
332}
333
334static void tlb_remove_table_one(void *table)
335{
336 /*
337 * This isn't an RCU grace period and hence the page-tables cannot be
338 * assumed to be actually RCU-freed.
339 *
340 * It is however sufficient for software page-table walkers that rely on
341 * IRQ disabling. See the comment near struct mmu_table_batch.
342 */
343 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
344 __tlb_remove_table(table);
345}
346
347static void tlb_remove_table_rcu(struct rcu_head *head)
348{
349 struct mmu_table_batch *batch;
350 int i;
351
352 batch = container_of(head, struct mmu_table_batch, rcu);
353
354 for (i = 0; i < batch->nr; i++)
355 __tlb_remove_table(batch->tables[i]);
356
357 free_page((unsigned long)batch);
358}
359
360void tlb_table_flush(struct mmu_gather *tlb)
361{
362 struct mmu_table_batch **batch = &tlb->batch;
363
364 if (*batch) {
365 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
366 *batch = NULL;
367 }
368}
369
370void tlb_remove_table(struct mmu_gather *tlb, void *table)
371{
372 struct mmu_table_batch **batch = &tlb->batch;
373
26723911
PZ
374 /*
375 * When there's less then two users of this mm there cannot be a
376 * concurrent page-table walk.
377 */
378 if (atomic_read(&tlb->mm->mm_users) < 2) {
379 __tlb_remove_table(table);
380 return;
381 }
382
383 if (*batch == NULL) {
384 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
385 if (*batch == NULL) {
386 tlb_remove_table_one(table);
387 return;
388 }
389 (*batch)->nr = 0;
390 }
391 (*batch)->tables[(*batch)->nr++] = table;
392 if ((*batch)->nr == MAX_TABLE_BATCH)
393 tlb_table_flush(tlb);
394}
395
9547d01b 396#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 397
1da177e4
LT
398/*
399 * Note: this doesn't free the actual pages themselves. That
400 * has been handled earlier when unmapping all the memory regions.
401 */
9e1b32ca
BH
402static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
403 unsigned long addr)
1da177e4 404{
2f569afd 405 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 406 pmd_clear(pmd);
9e1b32ca 407 pte_free_tlb(tlb, token, addr);
e1f56c89 408 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
409}
410
e0da382c
HD
411static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
412 unsigned long addr, unsigned long end,
413 unsigned long floor, unsigned long ceiling)
1da177e4
LT
414{
415 pmd_t *pmd;
416 unsigned long next;
e0da382c 417 unsigned long start;
1da177e4 418
e0da382c 419 start = addr;
1da177e4 420 pmd = pmd_offset(pud, addr);
1da177e4
LT
421 do {
422 next = pmd_addr_end(addr, end);
423 if (pmd_none_or_clear_bad(pmd))
424 continue;
9e1b32ca 425 free_pte_range(tlb, pmd, addr);
1da177e4
LT
426 } while (pmd++, addr = next, addr != end);
427
e0da382c
HD
428 start &= PUD_MASK;
429 if (start < floor)
430 return;
431 if (ceiling) {
432 ceiling &= PUD_MASK;
433 if (!ceiling)
434 return;
1da177e4 435 }
e0da382c
HD
436 if (end - 1 > ceiling - 1)
437 return;
438
439 pmd = pmd_offset(pud, start);
440 pud_clear(pud);
9e1b32ca 441 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 442 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
443}
444
e0da382c
HD
445static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 unsigned long addr, unsigned long end,
447 unsigned long floor, unsigned long ceiling)
1da177e4
LT
448{
449 pud_t *pud;
450 unsigned long next;
e0da382c 451 unsigned long start;
1da177e4 452
e0da382c 453 start = addr;
1da177e4 454 pud = pud_offset(pgd, addr);
1da177e4
LT
455 do {
456 next = pud_addr_end(addr, end);
457 if (pud_none_or_clear_bad(pud))
458 continue;
e0da382c 459 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
460 } while (pud++, addr = next, addr != end);
461
e0da382c
HD
462 start &= PGDIR_MASK;
463 if (start < floor)
464 return;
465 if (ceiling) {
466 ceiling &= PGDIR_MASK;
467 if (!ceiling)
468 return;
1da177e4 469 }
e0da382c
HD
470 if (end - 1 > ceiling - 1)
471 return;
472
473 pud = pud_offset(pgd, start);
474 pgd_clear(pgd);
9e1b32ca 475 pud_free_tlb(tlb, pud, start);
1da177e4
LT
476}
477
478/*
e0da382c 479 * This function frees user-level page tables of a process.
1da177e4 480 */
42b77728 481void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
482 unsigned long addr, unsigned long end,
483 unsigned long floor, unsigned long ceiling)
1da177e4
LT
484{
485 pgd_t *pgd;
486 unsigned long next;
e0da382c
HD
487
488 /*
489 * The next few lines have given us lots of grief...
490 *
491 * Why are we testing PMD* at this top level? Because often
492 * there will be no work to do at all, and we'd prefer not to
493 * go all the way down to the bottom just to discover that.
494 *
495 * Why all these "- 1"s? Because 0 represents both the bottom
496 * of the address space and the top of it (using -1 for the
497 * top wouldn't help much: the masks would do the wrong thing).
498 * The rule is that addr 0 and floor 0 refer to the bottom of
499 * the address space, but end 0 and ceiling 0 refer to the top
500 * Comparisons need to use "end - 1" and "ceiling - 1" (though
501 * that end 0 case should be mythical).
502 *
503 * Wherever addr is brought up or ceiling brought down, we must
504 * be careful to reject "the opposite 0" before it confuses the
505 * subsequent tests. But what about where end is brought down
506 * by PMD_SIZE below? no, end can't go down to 0 there.
507 *
508 * Whereas we round start (addr) and ceiling down, by different
509 * masks at different levels, in order to test whether a table
510 * now has no other vmas using it, so can be freed, we don't
511 * bother to round floor or end up - the tests don't need that.
512 */
1da177e4 513
e0da382c
HD
514 addr &= PMD_MASK;
515 if (addr < floor) {
516 addr += PMD_SIZE;
517 if (!addr)
518 return;
519 }
520 if (ceiling) {
521 ceiling &= PMD_MASK;
522 if (!ceiling)
523 return;
524 }
525 if (end - 1 > ceiling - 1)
526 end -= PMD_SIZE;
527 if (addr > end - 1)
528 return;
07e32661
AK
529 /*
530 * We add page table cache pages with PAGE_SIZE,
531 * (see pte_free_tlb()), flush the tlb if we need
532 */
533 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 534 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
535 do {
536 next = pgd_addr_end(addr, end);
537 if (pgd_none_or_clear_bad(pgd))
538 continue;
42b77728 539 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 540 } while (pgd++, addr = next, addr != end);
e0da382c
HD
541}
542
42b77728 543void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 544 unsigned long floor, unsigned long ceiling)
e0da382c
HD
545{
546 while (vma) {
547 struct vm_area_struct *next = vma->vm_next;
548 unsigned long addr = vma->vm_start;
549
8f4f8c16 550 /*
25d9e2d1 551 * Hide vma from rmap and truncate_pagecache before freeing
552 * pgtables
8f4f8c16 553 */
5beb4930 554 unlink_anon_vmas(vma);
8f4f8c16
HD
555 unlink_file_vma(vma);
556
9da61aef 557 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 558 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 559 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
560 } else {
561 /*
562 * Optimization: gather nearby vmas into one call down
563 */
564 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 565 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
566 vma = next;
567 next = vma->vm_next;
5beb4930 568 unlink_anon_vmas(vma);
8f4f8c16 569 unlink_file_vma(vma);
3bf5ee95
HD
570 }
571 free_pgd_range(tlb, addr, vma->vm_end,
572 floor, next? next->vm_start: ceiling);
573 }
e0da382c
HD
574 vma = next;
575 }
1da177e4
LT
576}
577
3ed3a4f0 578int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 579{
c4088ebd 580 spinlock_t *ptl;
2f569afd 581 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
582 if (!new)
583 return -ENOMEM;
584
362a61ad
NP
585 /*
586 * Ensure all pte setup (eg. pte page lock and page clearing) are
587 * visible before the pte is made visible to other CPUs by being
588 * put into page tables.
589 *
590 * The other side of the story is the pointer chasing in the page
591 * table walking code (when walking the page table without locking;
592 * ie. most of the time). Fortunately, these data accesses consist
593 * of a chain of data-dependent loads, meaning most CPUs (alpha
594 * being the notable exception) will already guarantee loads are
595 * seen in-order. See the alpha page table accessors for the
596 * smp_read_barrier_depends() barriers in page table walking code.
597 */
598 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599
c4088ebd 600 ptl = pmd_lock(mm, pmd);
8ac1f832 601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 602 atomic_long_inc(&mm->nr_ptes);
1da177e4 603 pmd_populate(mm, pmd, new);
2f569afd 604 new = NULL;
4b471e88 605 }
c4088ebd 606 spin_unlock(ptl);
2f569afd
MS
607 if (new)
608 pte_free(mm, new);
1bb3630e 609 return 0;
1da177e4
LT
610}
611
1bb3630e 612int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 613{
1bb3630e
HD
614 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
615 if (!new)
616 return -ENOMEM;
617
362a61ad
NP
618 smp_wmb(); /* See comment in __pte_alloc */
619
1bb3630e 620 spin_lock(&init_mm.page_table_lock);
8ac1f832 621 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 622 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 623 new = NULL;
4b471e88 624 }
1bb3630e 625 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
626 if (new)
627 pte_free_kernel(&init_mm, new);
1bb3630e 628 return 0;
1da177e4
LT
629}
630
d559db08
KH
631static inline void init_rss_vec(int *rss)
632{
633 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
634}
635
636static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 637{
d559db08
KH
638 int i;
639
34e55232 640 if (current->mm == mm)
05af2e10 641 sync_mm_rss(mm);
d559db08
KH
642 for (i = 0; i < NR_MM_COUNTERS; i++)
643 if (rss[i])
644 add_mm_counter(mm, i, rss[i]);
ae859762
HD
645}
646
b5810039 647/*
6aab341e
LT
648 * This function is called to print an error when a bad pte
649 * is found. For example, we might have a PFN-mapped pte in
650 * a region that doesn't allow it.
b5810039
NP
651 *
652 * The calling function must still handle the error.
653 */
3dc14741
HD
654static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655 pte_t pte, struct page *page)
b5810039 656{
3dc14741
HD
657 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658 pud_t *pud = pud_offset(pgd, addr);
659 pmd_t *pmd = pmd_offset(pud, addr);
660 struct address_space *mapping;
661 pgoff_t index;
d936cf9b
HD
662 static unsigned long resume;
663 static unsigned long nr_shown;
664 static unsigned long nr_unshown;
665
666 /*
667 * Allow a burst of 60 reports, then keep quiet for that minute;
668 * or allow a steady drip of one report per second.
669 */
670 if (nr_shown == 60) {
671 if (time_before(jiffies, resume)) {
672 nr_unshown++;
673 return;
674 }
675 if (nr_unshown) {
1170532b
JP
676 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
677 nr_unshown);
d936cf9b
HD
678 nr_unshown = 0;
679 }
680 nr_shown = 0;
681 }
682 if (nr_shown++ == 0)
683 resume = jiffies + 60 * HZ;
3dc14741
HD
684
685 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
686 index = linear_page_index(vma, addr);
687
1170532b
JP
688 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
689 current->comm,
690 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 691 if (page)
f0b791a3 692 dump_page(page, "bad pte");
1170532b
JP
693 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
694 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
3dc14741
HD
695 /*
696 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
697 */
2682582a
KK
698 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
699 vma->vm_file,
700 vma->vm_ops ? vma->vm_ops->fault : NULL,
701 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
702 mapping ? mapping->a_ops->readpage : NULL);
b5810039 703 dump_stack();
373d4d09 704 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
705}
706
ee498ed7 707/*
7e675137 708 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 709 *
7e675137
NP
710 * "Special" mappings do not wish to be associated with a "struct page" (either
711 * it doesn't exist, or it exists but they don't want to touch it). In this
712 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 713 *
7e675137
NP
714 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
715 * pte bit, in which case this function is trivial. Secondly, an architecture
716 * may not have a spare pte bit, which requires a more complicated scheme,
717 * described below.
718 *
719 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
720 * special mapping (even if there are underlying and valid "struct pages").
721 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 722 *
b379d790
JH
723 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
724 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
725 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
726 * mapping will always honor the rule
6aab341e
LT
727 *
728 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
729 *
7e675137
NP
730 * And for normal mappings this is false.
731 *
732 * This restricts such mappings to be a linear translation from virtual address
733 * to pfn. To get around this restriction, we allow arbitrary mappings so long
734 * as the vma is not a COW mapping; in that case, we know that all ptes are
735 * special (because none can have been COWed).
b379d790 736 *
b379d790 737 *
7e675137 738 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
739 *
740 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
741 * page" backing, however the difference is that _all_ pages with a struct
742 * page (that is, those where pfn_valid is true) are refcounted and considered
743 * normal pages by the VM. The disadvantage is that pages are refcounted
744 * (which can be slower and simply not an option for some PFNMAP users). The
745 * advantage is that we don't have to follow the strict linearity rule of
746 * PFNMAP mappings in order to support COWable mappings.
747 *
ee498ed7 748 */
7e675137
NP
749#ifdef __HAVE_ARCH_PTE_SPECIAL
750# define HAVE_PTE_SPECIAL 1
751#else
752# define HAVE_PTE_SPECIAL 0
753#endif
754struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
755 pte_t pte)
ee498ed7 756{
22b31eec 757 unsigned long pfn = pte_pfn(pte);
7e675137
NP
758
759 if (HAVE_PTE_SPECIAL) {
b38af472 760 if (likely(!pte_special(pte)))
22b31eec 761 goto check_pfn;
667a0a06
DV
762 if (vma->vm_ops && vma->vm_ops->find_special_page)
763 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
764 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
765 return NULL;
62eede62 766 if (!is_zero_pfn(pfn))
22b31eec 767 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
768 return NULL;
769 }
770
771 /* !HAVE_PTE_SPECIAL case follows: */
772
b379d790
JH
773 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
774 if (vma->vm_flags & VM_MIXEDMAP) {
775 if (!pfn_valid(pfn))
776 return NULL;
777 goto out;
778 } else {
7e675137
NP
779 unsigned long off;
780 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
781 if (pfn == vma->vm_pgoff + off)
782 return NULL;
783 if (!is_cow_mapping(vma->vm_flags))
784 return NULL;
785 }
6aab341e
LT
786 }
787
b38af472
HD
788 if (is_zero_pfn(pfn))
789 return NULL;
22b31eec
HD
790check_pfn:
791 if (unlikely(pfn > highest_memmap_pfn)) {
792 print_bad_pte(vma, addr, pte, NULL);
793 return NULL;
794 }
6aab341e
LT
795
796 /*
7e675137 797 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 798 * eg. VDSO mappings can cause them to exist.
6aab341e 799 */
b379d790 800out:
6aab341e 801 return pfn_to_page(pfn);
ee498ed7
HD
802}
803
28093f9f
GS
804#ifdef CONFIG_TRANSPARENT_HUGEPAGE
805struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
806 pmd_t pmd)
807{
808 unsigned long pfn = pmd_pfn(pmd);
809
810 /*
811 * There is no pmd_special() but there may be special pmds, e.g.
812 * in a direct-access (dax) mapping, so let's just replicate the
813 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
814 */
815 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
816 if (vma->vm_flags & VM_MIXEDMAP) {
817 if (!pfn_valid(pfn))
818 return NULL;
819 goto out;
820 } else {
821 unsigned long off;
822 off = (addr - vma->vm_start) >> PAGE_SHIFT;
823 if (pfn == vma->vm_pgoff + off)
824 return NULL;
825 if (!is_cow_mapping(vma->vm_flags))
826 return NULL;
827 }
828 }
829
830 if (is_zero_pfn(pfn))
831 return NULL;
832 if (unlikely(pfn > highest_memmap_pfn))
833 return NULL;
834
835 /*
836 * NOTE! We still have PageReserved() pages in the page tables.
837 * eg. VDSO mappings can cause them to exist.
838 */
839out:
840 return pfn_to_page(pfn);
841}
842#endif
843
1da177e4
LT
844/*
845 * copy one vm_area from one task to the other. Assumes the page tables
846 * already present in the new task to be cleared in the whole range
847 * covered by this vma.
1da177e4
LT
848 */
849
570a335b 850static inline unsigned long
1da177e4 851copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 852 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 853 unsigned long addr, int *rss)
1da177e4 854{
b5810039 855 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
856 pte_t pte = *src_pte;
857 struct page *page;
1da177e4
LT
858
859 /* pte contains position in swap or file, so copy. */
860 if (unlikely(!pte_present(pte))) {
0661a336
KS
861 swp_entry_t entry = pte_to_swp_entry(pte);
862
863 if (likely(!non_swap_entry(entry))) {
864 if (swap_duplicate(entry) < 0)
865 return entry.val;
866
867 /* make sure dst_mm is on swapoff's mmlist. */
868 if (unlikely(list_empty(&dst_mm->mmlist))) {
869 spin_lock(&mmlist_lock);
870 if (list_empty(&dst_mm->mmlist))
871 list_add(&dst_mm->mmlist,
872 &src_mm->mmlist);
873 spin_unlock(&mmlist_lock);
874 }
875 rss[MM_SWAPENTS]++;
876 } else if (is_migration_entry(entry)) {
877 page = migration_entry_to_page(entry);
878
eca56ff9 879 rss[mm_counter(page)]++;
0661a336
KS
880
881 if (is_write_migration_entry(entry) &&
882 is_cow_mapping(vm_flags)) {
883 /*
884 * COW mappings require pages in both
885 * parent and child to be set to read.
886 */
887 make_migration_entry_read(&entry);
888 pte = swp_entry_to_pte(entry);
889 if (pte_swp_soft_dirty(*src_pte))
890 pte = pte_swp_mksoft_dirty(pte);
891 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 892 }
1da177e4 893 }
ae859762 894 goto out_set_pte;
1da177e4
LT
895 }
896
1da177e4
LT
897 /*
898 * If it's a COW mapping, write protect it both
899 * in the parent and the child
900 */
67121172 901 if (is_cow_mapping(vm_flags)) {
1da177e4 902 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 903 pte = pte_wrprotect(pte);
1da177e4
LT
904 }
905
906 /*
907 * If it's a shared mapping, mark it clean in
908 * the child
909 */
910 if (vm_flags & VM_SHARED)
911 pte = pte_mkclean(pte);
912 pte = pte_mkold(pte);
6aab341e
LT
913
914 page = vm_normal_page(vma, addr, pte);
915 if (page) {
916 get_page(page);
53f9263b 917 page_dup_rmap(page, false);
eca56ff9 918 rss[mm_counter(page)]++;
6aab341e 919 }
ae859762
HD
920
921out_set_pte:
922 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 923 return 0;
1da177e4
LT
924}
925
21bda264 926static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
927 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
928 unsigned long addr, unsigned long end)
1da177e4 929{
c36987e2 930 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 931 pte_t *src_pte, *dst_pte;
c74df32c 932 spinlock_t *src_ptl, *dst_ptl;
e040f218 933 int progress = 0;
d559db08 934 int rss[NR_MM_COUNTERS];
570a335b 935 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
936
937again:
d559db08
KH
938 init_rss_vec(rss);
939
c74df32c 940 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
941 if (!dst_pte)
942 return -ENOMEM;
ece0e2b6 943 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 944 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 945 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
946 orig_src_pte = src_pte;
947 orig_dst_pte = dst_pte;
6606c3e0 948 arch_enter_lazy_mmu_mode();
1da177e4 949
1da177e4
LT
950 do {
951 /*
952 * We are holding two locks at this point - either of them
953 * could generate latencies in another task on another CPU.
954 */
e040f218
HD
955 if (progress >= 32) {
956 progress = 0;
957 if (need_resched() ||
95c354fe 958 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
959 break;
960 }
1da177e4
LT
961 if (pte_none(*src_pte)) {
962 progress++;
963 continue;
964 }
570a335b
HD
965 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
966 vma, addr, rss);
967 if (entry.val)
968 break;
1da177e4
LT
969 progress += 8;
970 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 971
6606c3e0 972 arch_leave_lazy_mmu_mode();
c74df32c 973 spin_unlock(src_ptl);
ece0e2b6 974 pte_unmap(orig_src_pte);
d559db08 975 add_mm_rss_vec(dst_mm, rss);
c36987e2 976 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 977 cond_resched();
570a335b
HD
978
979 if (entry.val) {
980 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
981 return -ENOMEM;
982 progress = 0;
983 }
1da177e4
LT
984 if (addr != end)
985 goto again;
986 return 0;
987}
988
989static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
990 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
991 unsigned long addr, unsigned long end)
992{
993 pmd_t *src_pmd, *dst_pmd;
994 unsigned long next;
995
996 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
997 if (!dst_pmd)
998 return -ENOMEM;
999 src_pmd = pmd_offset(src_pud, addr);
1000 do {
1001 next = pmd_addr_end(addr, end);
5c7fb56e 1002 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 1003 int err;
14d1a55c 1004 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
1005 err = copy_huge_pmd(dst_mm, src_mm,
1006 dst_pmd, src_pmd, addr, vma);
1007 if (err == -ENOMEM)
1008 return -ENOMEM;
1009 if (!err)
1010 continue;
1011 /* fall through */
1012 }
1da177e4
LT
1013 if (pmd_none_or_clear_bad(src_pmd))
1014 continue;
1015 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1016 vma, addr, next))
1017 return -ENOMEM;
1018 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1019 return 0;
1020}
1021
1022static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1024 unsigned long addr, unsigned long end)
1025{
1026 pud_t *src_pud, *dst_pud;
1027 unsigned long next;
1028
1029 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1030 if (!dst_pud)
1031 return -ENOMEM;
1032 src_pud = pud_offset(src_pgd, addr);
1033 do {
1034 next = pud_addr_end(addr, end);
1035 if (pud_none_or_clear_bad(src_pud))
1036 continue;
1037 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1038 vma, addr, next))
1039 return -ENOMEM;
1040 } while (dst_pud++, src_pud++, addr = next, addr != end);
1041 return 0;
1042}
1043
1044int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045 struct vm_area_struct *vma)
1046{
1047 pgd_t *src_pgd, *dst_pgd;
1048 unsigned long next;
1049 unsigned long addr = vma->vm_start;
1050 unsigned long end = vma->vm_end;
2ec74c3e
SG
1051 unsigned long mmun_start; /* For mmu_notifiers */
1052 unsigned long mmun_end; /* For mmu_notifiers */
1053 bool is_cow;
cddb8a5c 1054 int ret;
1da177e4 1055
d992895b
NP
1056 /*
1057 * Don't copy ptes where a page fault will fill them correctly.
1058 * Fork becomes much lighter when there are big shared or private
1059 * readonly mappings. The tradeoff is that copy_page_range is more
1060 * efficient than faulting.
1061 */
0661a336
KS
1062 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1063 !vma->anon_vma)
1064 return 0;
d992895b 1065
1da177e4
LT
1066 if (is_vm_hugetlb_page(vma))
1067 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1068
b3b9c293 1069 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1070 /*
1071 * We do not free on error cases below as remove_vma
1072 * gets called on error from higher level routine
1073 */
5180da41 1074 ret = track_pfn_copy(vma);
2ab64037 1075 if (ret)
1076 return ret;
1077 }
1078
cddb8a5c
AA
1079 /*
1080 * We need to invalidate the secondary MMU mappings only when
1081 * there could be a permission downgrade on the ptes of the
1082 * parent mm. And a permission downgrade will only happen if
1083 * is_cow_mapping() returns true.
1084 */
2ec74c3e
SG
1085 is_cow = is_cow_mapping(vma->vm_flags);
1086 mmun_start = addr;
1087 mmun_end = end;
1088 if (is_cow)
1089 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1090 mmun_end);
cddb8a5c
AA
1091
1092 ret = 0;
1da177e4
LT
1093 dst_pgd = pgd_offset(dst_mm, addr);
1094 src_pgd = pgd_offset(src_mm, addr);
1095 do {
1096 next = pgd_addr_end(addr, end);
1097 if (pgd_none_or_clear_bad(src_pgd))
1098 continue;
cddb8a5c
AA
1099 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100 vma, addr, next))) {
1101 ret = -ENOMEM;
1102 break;
1103 }
1da177e4 1104 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1105
2ec74c3e
SG
1106 if (is_cow)
1107 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1108 return ret;
1da177e4
LT
1109}
1110
51c6f666 1111static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1112 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1113 unsigned long addr, unsigned long end,
97a89413 1114 struct zap_details *details)
1da177e4 1115{
b5810039 1116 struct mm_struct *mm = tlb->mm;
d16dfc55 1117 int force_flush = 0;
d559db08 1118 int rss[NR_MM_COUNTERS];
97a89413 1119 spinlock_t *ptl;
5f1a1907 1120 pte_t *start_pte;
97a89413 1121 pte_t *pte;
8a5f14a2 1122 swp_entry_t entry;
d559db08 1123
07e32661 1124 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1125again:
e303297e 1126 init_rss_vec(rss);
5f1a1907
SR
1127 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1128 pte = start_pte;
6606c3e0 1129 arch_enter_lazy_mmu_mode();
1da177e4
LT
1130 do {
1131 pte_t ptent = *pte;
51c6f666 1132 if (pte_none(ptent)) {
1da177e4 1133 continue;
51c6f666 1134 }
6f5e6b9e 1135
1da177e4 1136 if (pte_present(ptent)) {
ee498ed7 1137 struct page *page;
51c6f666 1138
6aab341e 1139 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1140 if (unlikely(details) && page) {
1141 /*
1142 * unmap_shared_mapping_pages() wants to
1143 * invalidate cache without truncating:
1144 * unmap shared but keep private pages.
1145 */
1146 if (details->check_mapping &&
800d8c63 1147 details->check_mapping != page_rmapping(page))
1da177e4 1148 continue;
1da177e4 1149 }
b5810039 1150 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1151 tlb->fullmm);
1da177e4
LT
1152 tlb_remove_tlb_entry(tlb, pte, addr);
1153 if (unlikely(!page))
1154 continue;
eca56ff9
JM
1155
1156 if (!PageAnon(page)) {
1cf35d47
LT
1157 if (pte_dirty(ptent)) {
1158 force_flush = 1;
6237bcd9 1159 set_page_dirty(page);
1cf35d47 1160 }
4917e5d0 1161 if (pte_young(ptent) &&
64363aad 1162 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1163 mark_page_accessed(page);
6237bcd9 1164 }
eca56ff9 1165 rss[mm_counter(page)]--;
d281ee61 1166 page_remove_rmap(page, false);
3dc14741
HD
1167 if (unlikely(page_mapcount(page) < 0))
1168 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1169 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1170 force_flush = 1;
ce9ec37b 1171 addr += PAGE_SIZE;
d16dfc55 1172 break;
1cf35d47 1173 }
1da177e4
LT
1174 continue;
1175 }
3e8715fd
KS
1176 /* If details->check_mapping, we leave swap entries. */
1177 if (unlikely(details))
1da177e4 1178 continue;
b084d435 1179
8a5f14a2
KS
1180 entry = pte_to_swp_entry(ptent);
1181 if (!non_swap_entry(entry))
1182 rss[MM_SWAPENTS]--;
1183 else if (is_migration_entry(entry)) {
1184 struct page *page;
9f9f1acd 1185
8a5f14a2 1186 page = migration_entry_to_page(entry);
eca56ff9 1187 rss[mm_counter(page)]--;
b084d435 1188 }
8a5f14a2
KS
1189 if (unlikely(!free_swap_and_cache(entry)))
1190 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1191 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1192 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1193
d559db08 1194 add_mm_rss_vec(mm, rss);
6606c3e0 1195 arch_leave_lazy_mmu_mode();
51c6f666 1196
1cf35d47 1197 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1198 if (force_flush)
1cf35d47 1199 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1200 pte_unmap_unlock(start_pte, ptl);
1201
1202 /*
1203 * If we forced a TLB flush (either due to running out of
1204 * batch buffers or because we needed to flush dirty TLB
1205 * entries before releasing the ptl), free the batched
1206 * memory too. Restart if we didn't do everything.
1207 */
1208 if (force_flush) {
1209 force_flush = 0;
1210 tlb_flush_mmu_free(tlb);
2b047252 1211 if (addr != end)
d16dfc55
PZ
1212 goto again;
1213 }
1214
51c6f666 1215 return addr;
1da177e4
LT
1216}
1217
51c6f666 1218static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1219 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1220 unsigned long addr, unsigned long end,
97a89413 1221 struct zap_details *details)
1da177e4
LT
1222{
1223 pmd_t *pmd;
1224 unsigned long next;
1225
1226 pmd = pmd_offset(pud, addr);
1227 do {
1228 next = pmd_addr_end(addr, end);
5c7fb56e 1229 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1230 if (next - addr != HPAGE_PMD_SIZE) {
68428398
HD
1231 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1232 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
fd60775a 1233 __split_huge_pmd(vma, pmd, addr, false, NULL);
f21760b1 1234 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1235 goto next;
71e3aac0
AA
1236 /* fall through */
1237 }
1a5a9906
AA
1238 /*
1239 * Here there can be other concurrent MADV_DONTNEED or
1240 * trans huge page faults running, and if the pmd is
1241 * none or trans huge it can change under us. This is
1242 * because MADV_DONTNEED holds the mmap_sem in read
1243 * mode.
1244 */
1245 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1246 goto next;
97a89413 1247 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1248next:
97a89413
PZ
1249 cond_resched();
1250 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1251
1252 return addr;
1da177e4
LT
1253}
1254
51c6f666 1255static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1256 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1257 unsigned long addr, unsigned long end,
97a89413 1258 struct zap_details *details)
1da177e4
LT
1259{
1260 pud_t *pud;
1261 unsigned long next;
1262
1263 pud = pud_offset(pgd, addr);
1264 do {
1265 next = pud_addr_end(addr, end);
97a89413 1266 if (pud_none_or_clear_bad(pud))
1da177e4 1267 continue;
97a89413
PZ
1268 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1269 } while (pud++, addr = next, addr != end);
51c6f666
RH
1270
1271 return addr;
1da177e4
LT
1272}
1273
aac45363 1274void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1275 struct vm_area_struct *vma,
1276 unsigned long addr, unsigned long end,
1277 struct zap_details *details)
1da177e4
LT
1278{
1279 pgd_t *pgd;
1280 unsigned long next;
1281
1da177e4
LT
1282 BUG_ON(addr >= end);
1283 tlb_start_vma(tlb, vma);
1284 pgd = pgd_offset(vma->vm_mm, addr);
1285 do {
1286 next = pgd_addr_end(addr, end);
97a89413 1287 if (pgd_none_or_clear_bad(pgd))
1da177e4 1288 continue;
97a89413
PZ
1289 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1290 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1291 tlb_end_vma(tlb, vma);
1292}
51c6f666 1293
f5cc4eef
AV
1294
1295static void unmap_single_vma(struct mmu_gather *tlb,
1296 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1297 unsigned long end_addr,
f5cc4eef
AV
1298 struct zap_details *details)
1299{
1300 unsigned long start = max(vma->vm_start, start_addr);
1301 unsigned long end;
1302
1303 if (start >= vma->vm_end)
1304 return;
1305 end = min(vma->vm_end, end_addr);
1306 if (end <= vma->vm_start)
1307 return;
1308
cbc91f71
SD
1309 if (vma->vm_file)
1310 uprobe_munmap(vma, start, end);
1311
b3b9c293 1312 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1313 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1314
1315 if (start != end) {
1316 if (unlikely(is_vm_hugetlb_page(vma))) {
1317 /*
1318 * It is undesirable to test vma->vm_file as it
1319 * should be non-null for valid hugetlb area.
1320 * However, vm_file will be NULL in the error
7aa6b4ad 1321 * cleanup path of mmap_region. When
f5cc4eef 1322 * hugetlbfs ->mmap method fails,
7aa6b4ad 1323 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1324 * before calling this function to clean up.
1325 * Since no pte has actually been setup, it is
1326 * safe to do nothing in this case.
1327 */
24669e58 1328 if (vma->vm_file) {
83cde9e8 1329 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1330 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1331 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1332 }
f5cc4eef
AV
1333 } else
1334 unmap_page_range(tlb, vma, start, end, details);
1335 }
1da177e4
LT
1336}
1337
1da177e4
LT
1338/**
1339 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1340 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1341 * @vma: the starting vma
1342 * @start_addr: virtual address at which to start unmapping
1343 * @end_addr: virtual address at which to end unmapping
1da177e4 1344 *
508034a3 1345 * Unmap all pages in the vma list.
1da177e4 1346 *
1da177e4
LT
1347 * Only addresses between `start' and `end' will be unmapped.
1348 *
1349 * The VMA list must be sorted in ascending virtual address order.
1350 *
1351 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1352 * range after unmap_vmas() returns. So the only responsibility here is to
1353 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1354 * drops the lock and schedules.
1355 */
6e8bb019 1356void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1357 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1358 unsigned long end_addr)
1da177e4 1359{
cddb8a5c 1360 struct mm_struct *mm = vma->vm_mm;
1da177e4 1361
cddb8a5c 1362 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1363 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1364 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1365 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1366}
1367
1368/**
1369 * zap_page_range - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1371 * @start: starting address of pages to zap
1da177e4 1372 * @size: number of bytes to zap
8a5f14a2 1373 * @details: details of shared cache invalidation
f5cc4eef
AV
1374 *
1375 * Caller must protect the VMA list
1da177e4 1376 */
7e027b14 1377void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1378 unsigned long size, struct zap_details *details)
1379{
1380 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1381 struct mmu_gather tlb;
7e027b14 1382 unsigned long end = start + size;
1da177e4 1383
1da177e4 1384 lru_add_drain();
2b047252 1385 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1386 update_hiwater_rss(mm);
7e027b14
LT
1387 mmu_notifier_invalidate_range_start(mm, start, end);
1388 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1389 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1390 mmu_notifier_invalidate_range_end(mm, start, end);
1391 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1392}
1393
f5cc4eef
AV
1394/**
1395 * zap_page_range_single - remove user pages in a given range
1396 * @vma: vm_area_struct holding the applicable pages
1397 * @address: starting address of pages to zap
1398 * @size: number of bytes to zap
8a5f14a2 1399 * @details: details of shared cache invalidation
f5cc4eef
AV
1400 *
1401 * The range must fit into one VMA.
1da177e4 1402 */
f5cc4eef 1403static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1404 unsigned long size, struct zap_details *details)
1405{
1406 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1407 struct mmu_gather tlb;
1da177e4 1408 unsigned long end = address + size;
1da177e4 1409
1da177e4 1410 lru_add_drain();
2b047252 1411 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1412 update_hiwater_rss(mm);
f5cc4eef 1413 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1414 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1415 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1416 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1417}
1418
c627f9cc
JS
1419/**
1420 * zap_vma_ptes - remove ptes mapping the vma
1421 * @vma: vm_area_struct holding ptes to be zapped
1422 * @address: starting address of pages to zap
1423 * @size: number of bytes to zap
1424 *
1425 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1426 *
1427 * The entire address range must be fully contained within the vma.
1428 *
1429 * Returns 0 if successful.
1430 */
1431int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1432 unsigned long size)
1433{
1434 if (address < vma->vm_start || address + size > vma->vm_end ||
1435 !(vma->vm_flags & VM_PFNMAP))
1436 return -1;
f5cc4eef 1437 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1438 return 0;
1439}
1440EXPORT_SYMBOL_GPL(zap_vma_ptes);
1441
25ca1d6c 1442pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1443 spinlock_t **ptl)
c9cfcddf
LT
1444{
1445 pgd_t * pgd = pgd_offset(mm, addr);
1446 pud_t * pud = pud_alloc(mm, pgd, addr);
1447 if (pud) {
49c91fb0 1448 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1449 if (pmd) {
1450 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1451 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1452 }
c9cfcddf
LT
1453 }
1454 return NULL;
1455}
1456
238f58d8
LT
1457/*
1458 * This is the old fallback for page remapping.
1459 *
1460 * For historical reasons, it only allows reserved pages. Only
1461 * old drivers should use this, and they needed to mark their
1462 * pages reserved for the old functions anyway.
1463 */
423bad60
NP
1464static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1465 struct page *page, pgprot_t prot)
238f58d8 1466{
423bad60 1467 struct mm_struct *mm = vma->vm_mm;
238f58d8 1468 int retval;
c9cfcddf 1469 pte_t *pte;
8a9f3ccd
BS
1470 spinlock_t *ptl;
1471
238f58d8 1472 retval = -EINVAL;
a145dd41 1473 if (PageAnon(page))
5b4e655e 1474 goto out;
238f58d8
LT
1475 retval = -ENOMEM;
1476 flush_dcache_page(page);
c9cfcddf 1477 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1478 if (!pte)
5b4e655e 1479 goto out;
238f58d8
LT
1480 retval = -EBUSY;
1481 if (!pte_none(*pte))
1482 goto out_unlock;
1483
1484 /* Ok, finally just insert the thing.. */
1485 get_page(page);
eca56ff9 1486 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1487 page_add_file_rmap(page, false);
238f58d8
LT
1488 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1489
1490 retval = 0;
8a9f3ccd
BS
1491 pte_unmap_unlock(pte, ptl);
1492 return retval;
238f58d8
LT
1493out_unlock:
1494 pte_unmap_unlock(pte, ptl);
1495out:
1496 return retval;
1497}
1498
bfa5bf6d
REB
1499/**
1500 * vm_insert_page - insert single page into user vma
1501 * @vma: user vma to map to
1502 * @addr: target user address of this page
1503 * @page: source kernel page
1504 *
a145dd41
LT
1505 * This allows drivers to insert individual pages they've allocated
1506 * into a user vma.
1507 *
1508 * The page has to be a nice clean _individual_ kernel allocation.
1509 * If you allocate a compound page, you need to have marked it as
1510 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1511 * (see split_page()).
a145dd41
LT
1512 *
1513 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1514 * took an arbitrary page protection parameter. This doesn't allow
1515 * that. Your vma protection will have to be set up correctly, which
1516 * means that if you want a shared writable mapping, you'd better
1517 * ask for a shared writable mapping!
1518 *
1519 * The page does not need to be reserved.
4b6e1e37
KK
1520 *
1521 * Usually this function is called from f_op->mmap() handler
1522 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1523 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1524 * function from other places, for example from page-fault handler.
a145dd41 1525 */
423bad60
NP
1526int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1527 struct page *page)
a145dd41
LT
1528{
1529 if (addr < vma->vm_start || addr >= vma->vm_end)
1530 return -EFAULT;
1531 if (!page_count(page))
1532 return -EINVAL;
4b6e1e37
KK
1533 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1534 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1535 BUG_ON(vma->vm_flags & VM_PFNMAP);
1536 vma->vm_flags |= VM_MIXEDMAP;
1537 }
423bad60 1538 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1539}
e3c3374f 1540EXPORT_SYMBOL(vm_insert_page);
a145dd41 1541
423bad60 1542static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1543 pfn_t pfn, pgprot_t prot)
423bad60
NP
1544{
1545 struct mm_struct *mm = vma->vm_mm;
1546 int retval;
1547 pte_t *pte, entry;
1548 spinlock_t *ptl;
1549
1550 retval = -ENOMEM;
1551 pte = get_locked_pte(mm, addr, &ptl);
1552 if (!pte)
1553 goto out;
1554 retval = -EBUSY;
1555 if (!pte_none(*pte))
1556 goto out_unlock;
1557
1558 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1559 if (pfn_t_devmap(pfn))
1560 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1561 else
1562 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
423bad60 1563 set_pte_at(mm, addr, pte, entry);
4b3073e1 1564 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1565
1566 retval = 0;
1567out_unlock:
1568 pte_unmap_unlock(pte, ptl);
1569out:
1570 return retval;
1571}
1572
e0dc0d8f
NP
1573/**
1574 * vm_insert_pfn - insert single pfn into user vma
1575 * @vma: user vma to map to
1576 * @addr: target user address of this page
1577 * @pfn: source kernel pfn
1578 *
c462f179 1579 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1580 * they've allocated into a user vma. Same comments apply.
1581 *
1582 * This function should only be called from a vm_ops->fault handler, and
1583 * in that case the handler should return NULL.
0d71d10a
NP
1584 *
1585 * vma cannot be a COW mapping.
1586 *
1587 * As this is called only for pages that do not currently exist, we
1588 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1589 */
1590int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1591 unsigned long pfn)
1745cbc5
AL
1592{
1593 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1594}
1595EXPORT_SYMBOL(vm_insert_pfn);
1596
1597/**
1598 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1599 * @vma: user vma to map to
1600 * @addr: target user address of this page
1601 * @pfn: source kernel pfn
1602 * @pgprot: pgprot flags for the inserted page
1603 *
1604 * This is exactly like vm_insert_pfn, except that it allows drivers to
1605 * to override pgprot on a per-page basis.
1606 *
1607 * This only makes sense for IO mappings, and it makes no sense for
1608 * cow mappings. In general, using multiple vmas is preferable;
1609 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1610 * impractical.
1611 */
1612int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1613 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1614{
2ab64037 1615 int ret;
7e675137
NP
1616 /*
1617 * Technically, architectures with pte_special can avoid all these
1618 * restrictions (same for remap_pfn_range). However we would like
1619 * consistency in testing and feature parity among all, so we should
1620 * try to keep these invariants in place for everybody.
1621 */
b379d790
JH
1622 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1623 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1624 (VM_PFNMAP|VM_MIXEDMAP));
1625 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1626 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1627
423bad60
NP
1628 if (addr < vma->vm_start || addr >= vma->vm_end)
1629 return -EFAULT;
308a047c
BP
1630
1631 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1632
01c8f1c4 1633 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
2ab64037 1634
2ab64037 1635 return ret;
423bad60 1636}
1745cbc5 1637EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1638
423bad60 1639int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1640 pfn_t pfn)
423bad60 1641{
87744ab3
DW
1642 pgprot_t pgprot = vma->vm_page_prot;
1643
423bad60 1644 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1645
423bad60
NP
1646 if (addr < vma->vm_start || addr >= vma->vm_end)
1647 return -EFAULT;
308a047c
BP
1648
1649 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1650
423bad60
NP
1651 /*
1652 * If we don't have pte special, then we have to use the pfn_valid()
1653 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1654 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1655 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1656 * without pte special, it would there be refcounted as a normal page.
423bad60 1657 */
03fc2da6 1658 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1659 struct page *page;
1660
03fc2da6
DW
1661 /*
1662 * At this point we are committed to insert_page()
1663 * regardless of whether the caller specified flags that
1664 * result in pfn_t_has_page() == false.
1665 */
1666 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1667 return insert_page(vma, addr, page, pgprot);
423bad60 1668 }
87744ab3 1669 return insert_pfn(vma, addr, pfn, pgprot);
e0dc0d8f 1670}
423bad60 1671EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1672
1da177e4
LT
1673/*
1674 * maps a range of physical memory into the requested pages. the old
1675 * mappings are removed. any references to nonexistent pages results
1676 * in null mappings (currently treated as "copy-on-access")
1677 */
1678static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1679 unsigned long addr, unsigned long end,
1680 unsigned long pfn, pgprot_t prot)
1681{
1682 pte_t *pte;
c74df32c 1683 spinlock_t *ptl;
1da177e4 1684
c74df32c 1685 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1686 if (!pte)
1687 return -ENOMEM;
6606c3e0 1688 arch_enter_lazy_mmu_mode();
1da177e4
LT
1689 do {
1690 BUG_ON(!pte_none(*pte));
7e675137 1691 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1692 pfn++;
1693 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1694 arch_leave_lazy_mmu_mode();
c74df32c 1695 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1696 return 0;
1697}
1698
1699static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1700 unsigned long addr, unsigned long end,
1701 unsigned long pfn, pgprot_t prot)
1702{
1703 pmd_t *pmd;
1704 unsigned long next;
1705
1706 pfn -= addr >> PAGE_SHIFT;
1707 pmd = pmd_alloc(mm, pud, addr);
1708 if (!pmd)
1709 return -ENOMEM;
f66055ab 1710 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1711 do {
1712 next = pmd_addr_end(addr, end);
1713 if (remap_pte_range(mm, pmd, addr, next,
1714 pfn + (addr >> PAGE_SHIFT), prot))
1715 return -ENOMEM;
1716 } while (pmd++, addr = next, addr != end);
1717 return 0;
1718}
1719
1720static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1721 unsigned long addr, unsigned long end,
1722 unsigned long pfn, pgprot_t prot)
1723{
1724 pud_t *pud;
1725 unsigned long next;
1726
1727 pfn -= addr >> PAGE_SHIFT;
1728 pud = pud_alloc(mm, pgd, addr);
1729 if (!pud)
1730 return -ENOMEM;
1731 do {
1732 next = pud_addr_end(addr, end);
1733 if (remap_pmd_range(mm, pud, addr, next,
1734 pfn + (addr >> PAGE_SHIFT), prot))
1735 return -ENOMEM;
1736 } while (pud++, addr = next, addr != end);
1737 return 0;
1738}
1739
bfa5bf6d
REB
1740/**
1741 * remap_pfn_range - remap kernel memory to userspace
1742 * @vma: user vma to map to
1743 * @addr: target user address to start at
1744 * @pfn: physical address of kernel memory
1745 * @size: size of map area
1746 * @prot: page protection flags for this mapping
1747 *
1748 * Note: this is only safe if the mm semaphore is held when called.
1749 */
1da177e4
LT
1750int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1751 unsigned long pfn, unsigned long size, pgprot_t prot)
1752{
1753 pgd_t *pgd;
1754 unsigned long next;
2d15cab8 1755 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1756 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1757 unsigned long remap_pfn = pfn;
1da177e4
LT
1758 int err;
1759
1760 /*
1761 * Physically remapped pages are special. Tell the
1762 * rest of the world about it:
1763 * VM_IO tells people not to look at these pages
1764 * (accesses can have side effects).
6aab341e
LT
1765 * VM_PFNMAP tells the core MM that the base pages are just
1766 * raw PFN mappings, and do not have a "struct page" associated
1767 * with them.
314e51b9
KK
1768 * VM_DONTEXPAND
1769 * Disable vma merging and expanding with mremap().
1770 * VM_DONTDUMP
1771 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1772 *
1773 * There's a horrible special case to handle copy-on-write
1774 * behaviour that some programs depend on. We mark the "original"
1775 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1776 * See vm_normal_page() for details.
1da177e4 1777 */
b3b9c293
KK
1778 if (is_cow_mapping(vma->vm_flags)) {
1779 if (addr != vma->vm_start || end != vma->vm_end)
1780 return -EINVAL;
fb155c16 1781 vma->vm_pgoff = pfn;
b3b9c293
KK
1782 }
1783
d5957d2f 1784 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1785 if (err)
3c8bb73a 1786 return -EINVAL;
fb155c16 1787
314e51b9 1788 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1789
1790 BUG_ON(addr >= end);
1791 pfn -= addr >> PAGE_SHIFT;
1792 pgd = pgd_offset(mm, addr);
1793 flush_cache_range(vma, addr, end);
1da177e4
LT
1794 do {
1795 next = pgd_addr_end(addr, end);
1796 err = remap_pud_range(mm, pgd, addr, next,
1797 pfn + (addr >> PAGE_SHIFT), prot);
1798 if (err)
1799 break;
1800 } while (pgd++, addr = next, addr != end);
2ab64037 1801
1802 if (err)
d5957d2f 1803 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1804
1da177e4
LT
1805 return err;
1806}
1807EXPORT_SYMBOL(remap_pfn_range);
1808
b4cbb197
LT
1809/**
1810 * vm_iomap_memory - remap memory to userspace
1811 * @vma: user vma to map to
1812 * @start: start of area
1813 * @len: size of area
1814 *
1815 * This is a simplified io_remap_pfn_range() for common driver use. The
1816 * driver just needs to give us the physical memory range to be mapped,
1817 * we'll figure out the rest from the vma information.
1818 *
1819 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1820 * whatever write-combining details or similar.
1821 */
1822int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1823{
1824 unsigned long vm_len, pfn, pages;
1825
1826 /* Check that the physical memory area passed in looks valid */
1827 if (start + len < start)
1828 return -EINVAL;
1829 /*
1830 * You *really* shouldn't map things that aren't page-aligned,
1831 * but we've historically allowed it because IO memory might
1832 * just have smaller alignment.
1833 */
1834 len += start & ~PAGE_MASK;
1835 pfn = start >> PAGE_SHIFT;
1836 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1837 if (pfn + pages < pfn)
1838 return -EINVAL;
1839
1840 /* We start the mapping 'vm_pgoff' pages into the area */
1841 if (vma->vm_pgoff > pages)
1842 return -EINVAL;
1843 pfn += vma->vm_pgoff;
1844 pages -= vma->vm_pgoff;
1845
1846 /* Can we fit all of the mapping? */
1847 vm_len = vma->vm_end - vma->vm_start;
1848 if (vm_len >> PAGE_SHIFT > pages)
1849 return -EINVAL;
1850
1851 /* Ok, let it rip */
1852 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1853}
1854EXPORT_SYMBOL(vm_iomap_memory);
1855
aee16b3c
JF
1856static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1857 unsigned long addr, unsigned long end,
1858 pte_fn_t fn, void *data)
1859{
1860 pte_t *pte;
1861 int err;
2f569afd 1862 pgtable_t token;
94909914 1863 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1864
1865 pte = (mm == &init_mm) ?
1866 pte_alloc_kernel(pmd, addr) :
1867 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1868 if (!pte)
1869 return -ENOMEM;
1870
1871 BUG_ON(pmd_huge(*pmd));
1872
38e0edb1
JF
1873 arch_enter_lazy_mmu_mode();
1874
2f569afd 1875 token = pmd_pgtable(*pmd);
aee16b3c
JF
1876
1877 do {
c36987e2 1878 err = fn(pte++, token, addr, data);
aee16b3c
JF
1879 if (err)
1880 break;
c36987e2 1881 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1882
38e0edb1
JF
1883 arch_leave_lazy_mmu_mode();
1884
aee16b3c
JF
1885 if (mm != &init_mm)
1886 pte_unmap_unlock(pte-1, ptl);
1887 return err;
1888}
1889
1890static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1891 unsigned long addr, unsigned long end,
1892 pte_fn_t fn, void *data)
1893{
1894 pmd_t *pmd;
1895 unsigned long next;
1896 int err;
1897
ceb86879
AK
1898 BUG_ON(pud_huge(*pud));
1899
aee16b3c
JF
1900 pmd = pmd_alloc(mm, pud, addr);
1901 if (!pmd)
1902 return -ENOMEM;
1903 do {
1904 next = pmd_addr_end(addr, end);
1905 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1906 if (err)
1907 break;
1908 } while (pmd++, addr = next, addr != end);
1909 return err;
1910}
1911
1912static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1913 unsigned long addr, unsigned long end,
1914 pte_fn_t fn, void *data)
1915{
1916 pud_t *pud;
1917 unsigned long next;
1918 int err;
1919
1920 pud = pud_alloc(mm, pgd, addr);
1921 if (!pud)
1922 return -ENOMEM;
1923 do {
1924 next = pud_addr_end(addr, end);
1925 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1926 if (err)
1927 break;
1928 } while (pud++, addr = next, addr != end);
1929 return err;
1930}
1931
1932/*
1933 * Scan a region of virtual memory, filling in page tables as necessary
1934 * and calling a provided function on each leaf page table.
1935 */
1936int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1937 unsigned long size, pte_fn_t fn, void *data)
1938{
1939 pgd_t *pgd;
1940 unsigned long next;
57250a5b 1941 unsigned long end = addr + size;
aee16b3c
JF
1942 int err;
1943
9cb65bc3
MP
1944 if (WARN_ON(addr >= end))
1945 return -EINVAL;
1946
aee16b3c
JF
1947 pgd = pgd_offset(mm, addr);
1948 do {
1949 next = pgd_addr_end(addr, end);
1950 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1951 if (err)
1952 break;
1953 } while (pgd++, addr = next, addr != end);
57250a5b 1954
aee16b3c
JF
1955 return err;
1956}
1957EXPORT_SYMBOL_GPL(apply_to_page_range);
1958
8f4e2101 1959/*
9b4bdd2f
KS
1960 * handle_pte_fault chooses page fault handler according to an entry which was
1961 * read non-atomically. Before making any commitment, on those architectures
1962 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1963 * parts, do_swap_page must check under lock before unmapping the pte and
1964 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 1965 * and do_anonymous_page can safely check later on).
8f4e2101 1966 */
4c21e2f2 1967static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1968 pte_t *page_table, pte_t orig_pte)
1969{
1970 int same = 1;
1971#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1972 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1973 spinlock_t *ptl = pte_lockptr(mm, pmd);
1974 spin_lock(ptl);
8f4e2101 1975 same = pte_same(*page_table, orig_pte);
4c21e2f2 1976 spin_unlock(ptl);
8f4e2101
HD
1977 }
1978#endif
1979 pte_unmap(page_table);
1980 return same;
1981}
1982
9de455b2 1983static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1984{
0abdd7a8
DW
1985 debug_dma_assert_idle(src);
1986
6aab341e
LT
1987 /*
1988 * If the source page was a PFN mapping, we don't have
1989 * a "struct page" for it. We do a best-effort copy by
1990 * just copying from the original user address. If that
1991 * fails, we just zero-fill it. Live with it.
1992 */
1993 if (unlikely(!src)) {
9b04c5fe 1994 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1995 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1996
1997 /*
1998 * This really shouldn't fail, because the page is there
1999 * in the page tables. But it might just be unreadable,
2000 * in which case we just give up and fill the result with
2001 * zeroes.
2002 */
2003 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2004 clear_page(kaddr);
9b04c5fe 2005 kunmap_atomic(kaddr);
c4ec7b0d 2006 flush_dcache_page(dst);
0ed361de
NP
2007 } else
2008 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2009}
2010
c20cd45e
MH
2011static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2012{
2013 struct file *vm_file = vma->vm_file;
2014
2015 if (vm_file)
2016 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2017
2018 /*
2019 * Special mappings (e.g. VDSO) do not have any file so fake
2020 * a default GFP_KERNEL for them.
2021 */
2022 return GFP_KERNEL;
2023}
2024
fb09a464
KS
2025/*
2026 * Notify the address space that the page is about to become writable so that
2027 * it can prohibit this or wait for the page to get into an appropriate state.
2028 *
2029 * We do this without the lock held, so that it can sleep if it needs to.
2030 */
38b8cb7f 2031static int do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2032{
fb09a464 2033 int ret;
38b8cb7f
JK
2034 struct page *page = vmf->page;
2035 unsigned int old_flags = vmf->flags;
fb09a464 2036
38b8cb7f 2037 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2038
38b8cb7f
JK
2039 ret = vmf->vma->vm_ops->page_mkwrite(vmf->vma, vmf);
2040 /* Restore original flags so that caller is not surprised */
2041 vmf->flags = old_flags;
fb09a464
KS
2042 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2043 return ret;
2044 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2045 lock_page(page);
2046 if (!page->mapping) {
2047 unlock_page(page);
2048 return 0; /* retry */
2049 }
2050 ret |= VM_FAULT_LOCKED;
2051 } else
2052 VM_BUG_ON_PAGE(!PageLocked(page), page);
2053 return ret;
2054}
2055
97ba0c2b
JK
2056/*
2057 * Handle dirtying of a page in shared file mapping on a write fault.
2058 *
2059 * The function expects the page to be locked and unlocks it.
2060 */
2061static void fault_dirty_shared_page(struct vm_area_struct *vma,
2062 struct page *page)
2063{
2064 struct address_space *mapping;
2065 bool dirtied;
2066 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2067
2068 dirtied = set_page_dirty(page);
2069 VM_BUG_ON_PAGE(PageAnon(page), page);
2070 /*
2071 * Take a local copy of the address_space - page.mapping may be zeroed
2072 * by truncate after unlock_page(). The address_space itself remains
2073 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2074 * release semantics to prevent the compiler from undoing this copying.
2075 */
2076 mapping = page_rmapping(page);
2077 unlock_page(page);
2078
2079 if ((dirtied || page_mkwrite) && mapping) {
2080 /*
2081 * Some device drivers do not set page.mapping
2082 * but still dirty their pages
2083 */
2084 balance_dirty_pages_ratelimited(mapping);
2085 }
2086
2087 if (!page_mkwrite)
2088 file_update_time(vma->vm_file);
2089}
2090
4e047f89
SR
2091/*
2092 * Handle write page faults for pages that can be reused in the current vma
2093 *
2094 * This can happen either due to the mapping being with the VM_SHARED flag,
2095 * or due to us being the last reference standing to the page. In either
2096 * case, all we need to do here is to mark the page as writable and update
2097 * any related book-keeping.
2098 */
997dd98d 2099static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2100 __releases(vmf->ptl)
4e047f89 2101{
82b0f8c3 2102 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2103 struct page *page = vmf->page;
4e047f89
SR
2104 pte_t entry;
2105 /*
2106 * Clear the pages cpupid information as the existing
2107 * information potentially belongs to a now completely
2108 * unrelated process.
2109 */
2110 if (page)
2111 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2112
2994302b
JK
2113 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2114 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2115 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2116 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2117 update_mmu_cache(vma, vmf->address, vmf->pte);
2118 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2119}
2120
2f38ab2c
SR
2121/*
2122 * Handle the case of a page which we actually need to copy to a new page.
2123 *
2124 * Called with mmap_sem locked and the old page referenced, but
2125 * without the ptl held.
2126 *
2127 * High level logic flow:
2128 *
2129 * - Allocate a page, copy the content of the old page to the new one.
2130 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2131 * - Take the PTL. If the pte changed, bail out and release the allocated page
2132 * - If the pte is still the way we remember it, update the page table and all
2133 * relevant references. This includes dropping the reference the page-table
2134 * held to the old page, as well as updating the rmap.
2135 * - In any case, unlock the PTL and drop the reference we took to the old page.
2136 */
a41b70d6 2137static int wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2138{
82b0f8c3 2139 struct vm_area_struct *vma = vmf->vma;
bae473a4 2140 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2141 struct page *old_page = vmf->page;
2f38ab2c 2142 struct page *new_page = NULL;
2f38ab2c
SR
2143 pte_t entry;
2144 int page_copied = 0;
82b0f8c3 2145 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2146 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2147 struct mem_cgroup *memcg;
2148
2149 if (unlikely(anon_vma_prepare(vma)))
2150 goto oom;
2151
2994302b 2152 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2153 new_page = alloc_zeroed_user_highpage_movable(vma,
2154 vmf->address);
2f38ab2c
SR
2155 if (!new_page)
2156 goto oom;
2157 } else {
bae473a4 2158 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2159 vmf->address);
2f38ab2c
SR
2160 if (!new_page)
2161 goto oom;
82b0f8c3 2162 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2163 }
2f38ab2c 2164
f627c2f5 2165 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2166 goto oom_free_new;
2167
eb3c24f3
MG
2168 __SetPageUptodate(new_page);
2169
2f38ab2c
SR
2170 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2171
2172 /*
2173 * Re-check the pte - we dropped the lock
2174 */
82b0f8c3 2175 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2176 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2177 if (old_page) {
2178 if (!PageAnon(old_page)) {
eca56ff9
JM
2179 dec_mm_counter_fast(mm,
2180 mm_counter_file(old_page));
2f38ab2c
SR
2181 inc_mm_counter_fast(mm, MM_ANONPAGES);
2182 }
2183 } else {
2184 inc_mm_counter_fast(mm, MM_ANONPAGES);
2185 }
2994302b 2186 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2187 entry = mk_pte(new_page, vma->vm_page_prot);
2188 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2189 /*
2190 * Clear the pte entry and flush it first, before updating the
2191 * pte with the new entry. This will avoid a race condition
2192 * seen in the presence of one thread doing SMC and another
2193 * thread doing COW.
2194 */
82b0f8c3
JK
2195 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2196 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2197 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2198 lru_cache_add_active_or_unevictable(new_page, vma);
2199 /*
2200 * We call the notify macro here because, when using secondary
2201 * mmu page tables (such as kvm shadow page tables), we want the
2202 * new page to be mapped directly into the secondary page table.
2203 */
82b0f8c3
JK
2204 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2205 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2206 if (old_page) {
2207 /*
2208 * Only after switching the pte to the new page may
2209 * we remove the mapcount here. Otherwise another
2210 * process may come and find the rmap count decremented
2211 * before the pte is switched to the new page, and
2212 * "reuse" the old page writing into it while our pte
2213 * here still points into it and can be read by other
2214 * threads.
2215 *
2216 * The critical issue is to order this
2217 * page_remove_rmap with the ptp_clear_flush above.
2218 * Those stores are ordered by (if nothing else,)
2219 * the barrier present in the atomic_add_negative
2220 * in page_remove_rmap.
2221 *
2222 * Then the TLB flush in ptep_clear_flush ensures that
2223 * no process can access the old page before the
2224 * decremented mapcount is visible. And the old page
2225 * cannot be reused until after the decremented
2226 * mapcount is visible. So transitively, TLBs to
2227 * old page will be flushed before it can be reused.
2228 */
d281ee61 2229 page_remove_rmap(old_page, false);
2f38ab2c
SR
2230 }
2231
2232 /* Free the old page.. */
2233 new_page = old_page;
2234 page_copied = 1;
2235 } else {
f627c2f5 2236 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2237 }
2238
2239 if (new_page)
09cbfeaf 2240 put_page(new_page);
2f38ab2c 2241
82b0f8c3 2242 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
2243 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2244 if (old_page) {
2245 /*
2246 * Don't let another task, with possibly unlocked vma,
2247 * keep the mlocked page.
2248 */
2249 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2250 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2251 if (PageMlocked(old_page))
2252 munlock_vma_page(old_page);
2f38ab2c
SR
2253 unlock_page(old_page);
2254 }
09cbfeaf 2255 put_page(old_page);
2f38ab2c
SR
2256 }
2257 return page_copied ? VM_FAULT_WRITE : 0;
2258oom_free_new:
09cbfeaf 2259 put_page(new_page);
2f38ab2c
SR
2260oom:
2261 if (old_page)
09cbfeaf 2262 put_page(old_page);
2f38ab2c
SR
2263 return VM_FAULT_OOM;
2264}
2265
66a6197c
JK
2266/**
2267 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2268 * writeable once the page is prepared
2269 *
2270 * @vmf: structure describing the fault
2271 *
2272 * This function handles all that is needed to finish a write page fault in a
2273 * shared mapping due to PTE being read-only once the mapped page is prepared.
2274 * It handles locking of PTE and modifying it. The function returns
2275 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2276 * lock.
2277 *
2278 * The function expects the page to be locked or other protection against
2279 * concurrent faults / writeback (such as DAX radix tree locks).
2280 */
2281int finish_mkwrite_fault(struct vm_fault *vmf)
2282{
2283 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2284 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2285 &vmf->ptl);
2286 /*
2287 * We might have raced with another page fault while we released the
2288 * pte_offset_map_lock.
2289 */
2290 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2291 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2292 return VM_FAULT_NOPAGE;
66a6197c
JK
2293 }
2294 wp_page_reuse(vmf);
a19e2553 2295 return 0;
66a6197c
JK
2296}
2297
dd906184
BH
2298/*
2299 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2300 * mapping
2301 */
2994302b 2302static int wp_pfn_shared(struct vm_fault *vmf)
dd906184 2303{
82b0f8c3 2304 struct vm_area_struct *vma = vmf->vma;
bae473a4 2305
dd906184 2306 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
dd906184
BH
2307 int ret;
2308
82b0f8c3 2309 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f
JK
2310 vmf->flags |= FAULT_FLAG_MKWRITE;
2311 ret = vma->vm_ops->pfn_mkwrite(vma, vmf);
2f89dc12 2312 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2313 return ret;
66a6197c 2314 return finish_mkwrite_fault(vmf);
dd906184 2315 }
997dd98d
JK
2316 wp_page_reuse(vmf);
2317 return VM_FAULT_WRITE;
dd906184
BH
2318}
2319
a41b70d6 2320static int wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2321 __releases(vmf->ptl)
93e478d4 2322{
82b0f8c3 2323 struct vm_area_struct *vma = vmf->vma;
93e478d4 2324
a41b70d6 2325 get_page(vmf->page);
93e478d4 2326
93e478d4
SR
2327 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2328 int tmp;
2329
82b0f8c3 2330 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2331 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2332 if (unlikely(!tmp || (tmp &
2333 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2334 put_page(vmf->page);
93e478d4
SR
2335 return tmp;
2336 }
66a6197c 2337 tmp = finish_mkwrite_fault(vmf);
a19e2553 2338 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2339 unlock_page(vmf->page);
a41b70d6 2340 put_page(vmf->page);
66a6197c 2341 return tmp;
93e478d4 2342 }
66a6197c
JK
2343 } else {
2344 wp_page_reuse(vmf);
997dd98d 2345 lock_page(vmf->page);
93e478d4 2346 }
997dd98d
JK
2347 fault_dirty_shared_page(vma, vmf->page);
2348 put_page(vmf->page);
93e478d4 2349
997dd98d 2350 return VM_FAULT_WRITE;
93e478d4
SR
2351}
2352
1da177e4
LT
2353/*
2354 * This routine handles present pages, when users try to write
2355 * to a shared page. It is done by copying the page to a new address
2356 * and decrementing the shared-page counter for the old page.
2357 *
1da177e4
LT
2358 * Note that this routine assumes that the protection checks have been
2359 * done by the caller (the low-level page fault routine in most cases).
2360 * Thus we can safely just mark it writable once we've done any necessary
2361 * COW.
2362 *
2363 * We also mark the page dirty at this point even though the page will
2364 * change only once the write actually happens. This avoids a few races,
2365 * and potentially makes it more efficient.
2366 *
8f4e2101
HD
2367 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2368 * but allow concurrent faults), with pte both mapped and locked.
2369 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2370 */
2994302b 2371static int do_wp_page(struct vm_fault *vmf)
82b0f8c3 2372 __releases(vmf->ptl)
1da177e4 2373{
82b0f8c3 2374 struct vm_area_struct *vma = vmf->vma;
1da177e4 2375
a41b70d6
JK
2376 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2377 if (!vmf->page) {
251b97f5 2378 /*
64e45507
PF
2379 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2380 * VM_PFNMAP VMA.
251b97f5
PZ
2381 *
2382 * We should not cow pages in a shared writeable mapping.
dd906184 2383 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2384 */
2385 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2386 (VM_WRITE|VM_SHARED))
2994302b 2387 return wp_pfn_shared(vmf);
2f38ab2c 2388
82b0f8c3 2389 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2390 return wp_page_copy(vmf);
251b97f5 2391 }
1da177e4 2392
d08b3851 2393 /*
ee6a6457
PZ
2394 * Take out anonymous pages first, anonymous shared vmas are
2395 * not dirty accountable.
d08b3851 2396 */
a41b70d6 2397 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
6d0a07ed 2398 int total_mapcount;
a41b70d6
JK
2399 if (!trylock_page(vmf->page)) {
2400 get_page(vmf->page);
82b0f8c3 2401 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2402 lock_page(vmf->page);
82b0f8c3
JK
2403 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2404 vmf->address, &vmf->ptl);
2994302b 2405 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2406 unlock_page(vmf->page);
82b0f8c3 2407 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2408 put_page(vmf->page);
28766805 2409 return 0;
ab967d86 2410 }
a41b70d6 2411 put_page(vmf->page);
ee6a6457 2412 }
a41b70d6 2413 if (reuse_swap_page(vmf->page, &total_mapcount)) {
6d0a07ed
AA
2414 if (total_mapcount == 1) {
2415 /*
2416 * The page is all ours. Move it to
2417 * our anon_vma so the rmap code will
2418 * not search our parent or siblings.
2419 * Protected against the rmap code by
2420 * the page lock.
2421 */
a41b70d6 2422 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2423 }
a41b70d6 2424 unlock_page(vmf->page);
997dd98d
JK
2425 wp_page_reuse(vmf);
2426 return VM_FAULT_WRITE;
b009c024 2427 }
a41b70d6 2428 unlock_page(vmf->page);
ee6a6457 2429 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2430 (VM_WRITE|VM_SHARED))) {
a41b70d6 2431 return wp_page_shared(vmf);
1da177e4 2432 }
1da177e4
LT
2433
2434 /*
2435 * Ok, we need to copy. Oh, well..
2436 */
a41b70d6 2437 get_page(vmf->page);
28766805 2438
82b0f8c3 2439 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2440 return wp_page_copy(vmf);
1da177e4
LT
2441}
2442
97a89413 2443static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2444 unsigned long start_addr, unsigned long end_addr,
2445 struct zap_details *details)
2446{
f5cc4eef 2447 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2448}
2449
6b2dbba8 2450static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2451 struct zap_details *details)
2452{
2453 struct vm_area_struct *vma;
1da177e4
LT
2454 pgoff_t vba, vea, zba, zea;
2455
6b2dbba8 2456 vma_interval_tree_foreach(vma, root,
1da177e4 2457 details->first_index, details->last_index) {
1da177e4
LT
2458
2459 vba = vma->vm_pgoff;
d6e93217 2460 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2461 zba = details->first_index;
2462 if (zba < vba)
2463 zba = vba;
2464 zea = details->last_index;
2465 if (zea > vea)
2466 zea = vea;
2467
97a89413 2468 unmap_mapping_range_vma(vma,
1da177e4
LT
2469 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2470 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2471 details);
1da177e4
LT
2472 }
2473}
2474
1da177e4 2475/**
8a5f14a2
KS
2476 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2477 * address_space corresponding to the specified page range in the underlying
2478 * file.
2479 *
3d41088f 2480 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2481 * @holebegin: byte in first page to unmap, relative to the start of
2482 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2483 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2484 * must keep the partial page. In contrast, we must get rid of
2485 * partial pages.
2486 * @holelen: size of prospective hole in bytes. This will be rounded
2487 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2488 * end of the file.
2489 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2490 * but 0 when invalidating pagecache, don't throw away private data.
2491 */
2492void unmap_mapping_range(struct address_space *mapping,
2493 loff_t const holebegin, loff_t const holelen, int even_cows)
2494{
aac45363 2495 struct zap_details details = { };
1da177e4
LT
2496 pgoff_t hba = holebegin >> PAGE_SHIFT;
2497 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2498
2499 /* Check for overflow. */
2500 if (sizeof(holelen) > sizeof(hlen)) {
2501 long long holeend =
2502 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2503 if (holeend & ~(long long)ULONG_MAX)
2504 hlen = ULONG_MAX - hba + 1;
2505 }
2506
2507 details.check_mapping = even_cows? NULL: mapping;
1da177e4
LT
2508 details.first_index = hba;
2509 details.last_index = hba + hlen - 1;
2510 if (details.last_index < details.first_index)
2511 details.last_index = ULONG_MAX;
1da177e4 2512
46c043ed 2513 i_mmap_lock_write(mapping);
6b2dbba8 2514 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2515 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2516 i_mmap_unlock_write(mapping);
1da177e4
LT
2517}
2518EXPORT_SYMBOL(unmap_mapping_range);
2519
1da177e4 2520/*
8f4e2101
HD
2521 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2522 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2523 * We return with pte unmapped and unlocked.
2524 *
2525 * We return with the mmap_sem locked or unlocked in the same cases
2526 * as does filemap_fault().
1da177e4 2527 */
2994302b 2528int do_swap_page(struct vm_fault *vmf)
1da177e4 2529{
82b0f8c3 2530 struct vm_area_struct *vma = vmf->vma;
56f31801 2531 struct page *page, *swapcache;
00501b53 2532 struct mem_cgroup *memcg;
65500d23 2533 swp_entry_t entry;
1da177e4 2534 pte_t pte;
d065bd81 2535 int locked;
ad8c2ee8 2536 int exclusive = 0;
83c54070 2537 int ret = 0;
1da177e4 2538
2994302b 2539 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2540 goto out;
65500d23 2541
2994302b 2542 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2543 if (unlikely(non_swap_entry(entry))) {
2544 if (is_migration_entry(entry)) {
82b0f8c3
JK
2545 migration_entry_wait(vma->vm_mm, vmf->pmd,
2546 vmf->address);
d1737fdb
AK
2547 } else if (is_hwpoison_entry(entry)) {
2548 ret = VM_FAULT_HWPOISON;
2549 } else {
2994302b 2550 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2551 ret = VM_FAULT_SIGBUS;
d1737fdb 2552 }
0697212a
CL
2553 goto out;
2554 }
0ff92245 2555 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2556 page = lookup_swap_cache(entry);
2557 if (!page) {
82b0f8c3
JK
2558 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2559 vmf->address);
1da177e4
LT
2560 if (!page) {
2561 /*
8f4e2101
HD
2562 * Back out if somebody else faulted in this pte
2563 * while we released the pte lock.
1da177e4 2564 */
82b0f8c3
JK
2565 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2566 vmf->address, &vmf->ptl);
2994302b 2567 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2568 ret = VM_FAULT_OOM;
0ff92245 2569 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2570 goto unlock;
1da177e4
LT
2571 }
2572
2573 /* Had to read the page from swap area: Major fault */
2574 ret = VM_FAULT_MAJOR;
f8891e5e 2575 count_vm_event(PGMAJFAULT);
bae473a4 2576 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
d1737fdb 2577 } else if (PageHWPoison(page)) {
71f72525
WF
2578 /*
2579 * hwpoisoned dirty swapcache pages are kept for killing
2580 * owner processes (which may be unknown at hwpoison time)
2581 */
d1737fdb
AK
2582 ret = VM_FAULT_HWPOISON;
2583 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2584 swapcache = page;
4779cb31 2585 goto out_release;
1da177e4
LT
2586 }
2587
56f31801 2588 swapcache = page;
82b0f8c3 2589 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2590
073e587e 2591 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2592 if (!locked) {
2593 ret |= VM_FAULT_RETRY;
2594 goto out_release;
2595 }
073e587e 2596
4969c119 2597 /*
31c4a3d3
HD
2598 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2599 * release the swapcache from under us. The page pin, and pte_same
2600 * test below, are not enough to exclude that. Even if it is still
2601 * swapcache, we need to check that the page's swap has not changed.
4969c119 2602 */
31c4a3d3 2603 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2604 goto out_page;
2605
82b0f8c3 2606 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2607 if (unlikely(!page)) {
2608 ret = VM_FAULT_OOM;
2609 page = swapcache;
cbf86cfe 2610 goto out_page;
5ad64688
HD
2611 }
2612
bae473a4
KS
2613 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2614 &memcg, false)) {
8a9f3ccd 2615 ret = VM_FAULT_OOM;
bc43f75c 2616 goto out_page;
8a9f3ccd
BS
2617 }
2618
1da177e4 2619 /*
8f4e2101 2620 * Back out if somebody else already faulted in this pte.
1da177e4 2621 */
82b0f8c3
JK
2622 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2623 &vmf->ptl);
2994302b 2624 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2625 goto out_nomap;
b8107480
KK
2626
2627 if (unlikely(!PageUptodate(page))) {
2628 ret = VM_FAULT_SIGBUS;
2629 goto out_nomap;
1da177e4
LT
2630 }
2631
8c7c6e34
KH
2632 /*
2633 * The page isn't present yet, go ahead with the fault.
2634 *
2635 * Be careful about the sequence of operations here.
2636 * To get its accounting right, reuse_swap_page() must be called
2637 * while the page is counted on swap but not yet in mapcount i.e.
2638 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2639 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2640 */
1da177e4 2641
bae473a4
KS
2642 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2643 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2644 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2645 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2646 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2647 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2648 ret |= VM_FAULT_WRITE;
d281ee61 2649 exclusive = RMAP_EXCLUSIVE;
1da177e4 2650 }
1da177e4 2651 flush_icache_page(vma, page);
2994302b 2652 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2653 pte = pte_mksoft_dirty(pte);
82b0f8c3 2654 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2994302b 2655 vmf->orig_pte = pte;
00501b53 2656 if (page == swapcache) {
82b0f8c3 2657 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
f627c2f5 2658 mem_cgroup_commit_charge(page, memcg, true, false);
1a8018fb 2659 activate_page(page);
00501b53 2660 } else { /* ksm created a completely new copy */
82b0f8c3 2661 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2662 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2663 lru_cache_add_active_or_unevictable(page, vma);
2664 }
1da177e4 2665
c475a8ab 2666 swap_free(entry);
5ccc5aba
VD
2667 if (mem_cgroup_swap_full(page) ||
2668 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2669 try_to_free_swap(page);
c475a8ab 2670 unlock_page(page);
56f31801 2671 if (page != swapcache) {
4969c119
AA
2672 /*
2673 * Hold the lock to avoid the swap entry to be reused
2674 * until we take the PT lock for the pte_same() check
2675 * (to avoid false positives from pte_same). For
2676 * further safety release the lock after the swap_free
2677 * so that the swap count won't change under a
2678 * parallel locked swapcache.
2679 */
2680 unlock_page(swapcache);
09cbfeaf 2681 put_page(swapcache);
4969c119 2682 }
c475a8ab 2683
82b0f8c3 2684 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2685 ret |= do_wp_page(vmf);
61469f1d
HD
2686 if (ret & VM_FAULT_ERROR)
2687 ret &= VM_FAULT_ERROR;
1da177e4
LT
2688 goto out;
2689 }
2690
2691 /* No need to invalidate - it was non-present before */
82b0f8c3 2692 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2693unlock:
82b0f8c3 2694 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2695out:
2696 return ret;
b8107480 2697out_nomap:
f627c2f5 2698 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2699 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2700out_page:
b8107480 2701 unlock_page(page);
4779cb31 2702out_release:
09cbfeaf 2703 put_page(page);
56f31801 2704 if (page != swapcache) {
4969c119 2705 unlock_page(swapcache);
09cbfeaf 2706 put_page(swapcache);
4969c119 2707 }
65500d23 2708 return ret;
1da177e4
LT
2709}
2710
320b2b8d 2711/*
8ca3eb08
TL
2712 * This is like a special single-page "expand_{down|up}wards()",
2713 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2714 * doesn't hit another vma.
320b2b8d
LT
2715 */
2716static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2717{
2718 address &= PAGE_MASK;
2719 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2720 struct vm_area_struct *prev = vma->vm_prev;
2721
2722 /*
2723 * Is there a mapping abutting this one below?
2724 *
2725 * That's only ok if it's the same stack mapping
2726 * that has gotten split..
2727 */
2728 if (prev && prev->vm_end == address)
2729 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2730
fee7e49d 2731 return expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2732 }
8ca3eb08
TL
2733 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2734 struct vm_area_struct *next = vma->vm_next;
2735
2736 /* As VM_GROWSDOWN but s/below/above/ */
2737 if (next && next->vm_start == address + PAGE_SIZE)
2738 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2739
fee7e49d 2740 return expand_upwards(vma, address + PAGE_SIZE);
8ca3eb08 2741 }
320b2b8d
LT
2742 return 0;
2743}
2744
1da177e4 2745/*
8f4e2101
HD
2746 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2747 * but allow concurrent faults), and pte mapped but not yet locked.
2748 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2749 */
82b0f8c3 2750static int do_anonymous_page(struct vm_fault *vmf)
1da177e4 2751{
82b0f8c3 2752 struct vm_area_struct *vma = vmf->vma;
00501b53 2753 struct mem_cgroup *memcg;
8f4e2101 2754 struct page *page;
1da177e4 2755 pte_t entry;
1da177e4 2756
6b7339f4
KS
2757 /* File mapping without ->vm_ops ? */
2758 if (vma->vm_flags & VM_SHARED)
2759 return VM_FAULT_SIGBUS;
2760
11ac5524 2761 /* Check if we need to add a guard page to the stack */
82b0f8c3 2762 if (check_stack_guard_page(vma, vmf->address) < 0)
9c145c56 2763 return VM_FAULT_SIGSEGV;
320b2b8d 2764
7267ec00
KS
2765 /*
2766 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2767 * pte_offset_map() on pmds where a huge pmd might be created
2768 * from a different thread.
2769 *
2770 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2771 * parallel threads are excluded by other means.
2772 *
2773 * Here we only have down_read(mmap_sem).
2774 */
82b0f8c3 2775 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
2776 return VM_FAULT_OOM;
2777
2778 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2779 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2780 return 0;
2781
11ac5524 2782 /* Use the zero-page for reads */
82b0f8c3 2783 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2784 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2785 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2786 vma->vm_page_prot));
82b0f8c3
JK
2787 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2788 vmf->address, &vmf->ptl);
2789 if (!pte_none(*vmf->pte))
a13ea5b7 2790 goto unlock;
6b251fc9
AA
2791 /* Deliver the page fault to userland, check inside PT lock */
2792 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2793 pte_unmap_unlock(vmf->pte, vmf->ptl);
2794 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2795 }
a13ea5b7
HD
2796 goto setpte;
2797 }
2798
557ed1fa 2799 /* Allocate our own private page. */
557ed1fa
NP
2800 if (unlikely(anon_vma_prepare(vma)))
2801 goto oom;
82b0f8c3 2802 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2803 if (!page)
2804 goto oom;
eb3c24f3 2805
bae473a4 2806 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2807 goto oom_free_page;
2808
52f37629
MK
2809 /*
2810 * The memory barrier inside __SetPageUptodate makes sure that
2811 * preceeding stores to the page contents become visible before
2812 * the set_pte_at() write.
2813 */
0ed361de 2814 __SetPageUptodate(page);
8f4e2101 2815
557ed1fa 2816 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2817 if (vma->vm_flags & VM_WRITE)
2818 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2819
82b0f8c3
JK
2820 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2821 &vmf->ptl);
2822 if (!pte_none(*vmf->pte))
557ed1fa 2823 goto release;
9ba69294 2824
6b251fc9
AA
2825 /* Deliver the page fault to userland, check inside PT lock */
2826 if (userfaultfd_missing(vma)) {
82b0f8c3 2827 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 2828 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2829 put_page(page);
82b0f8c3 2830 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
2831 }
2832
bae473a4 2833 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 2834 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2835 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2836 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2837setpte:
82b0f8c3 2838 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
2839
2840 /* No need to invalidate - it was non-present before */
82b0f8c3 2841 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2842unlock:
82b0f8c3 2843 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 2844 return 0;
8f4e2101 2845release:
f627c2f5 2846 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2847 put_page(page);
8f4e2101 2848 goto unlock;
8a9f3ccd 2849oom_free_page:
09cbfeaf 2850 put_page(page);
65500d23 2851oom:
1da177e4
LT
2852 return VM_FAULT_OOM;
2853}
2854
9a95f3cf
PC
2855/*
2856 * The mmap_sem must have been held on entry, and may have been
2857 * released depending on flags and vma->vm_ops->fault() return value.
2858 * See filemap_fault() and __lock_page_retry().
2859 */
936ca80d 2860static int __do_fault(struct vm_fault *vmf)
7eae74af 2861{
82b0f8c3 2862 struct vm_area_struct *vma = vmf->vma;
7eae74af
KS
2863 int ret;
2864
667240e0 2865 ret = vma->vm_ops->fault(vma, vmf);
3917048d 2866 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 2867 VM_FAULT_DONE_COW)))
bc2466e4 2868 return ret;
7eae74af 2869
667240e0 2870 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 2871 if (ret & VM_FAULT_LOCKED)
667240e0
JK
2872 unlock_page(vmf->page);
2873 put_page(vmf->page);
936ca80d 2874 vmf->page = NULL;
7eae74af
KS
2875 return VM_FAULT_HWPOISON;
2876 }
2877
2878 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 2879 lock_page(vmf->page);
7eae74af 2880 else
667240e0 2881 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 2882
7eae74af
KS
2883 return ret;
2884}
2885
82b0f8c3 2886static int pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 2887{
82b0f8c3 2888 struct vm_area_struct *vma = vmf->vma;
7267ec00 2889
82b0f8c3 2890 if (!pmd_none(*vmf->pmd))
7267ec00 2891 goto map_pte;
82b0f8c3
JK
2892 if (vmf->prealloc_pte) {
2893 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2894 if (unlikely(!pmd_none(*vmf->pmd))) {
2895 spin_unlock(vmf->ptl);
7267ec00
KS
2896 goto map_pte;
2897 }
2898
2899 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3
JK
2900 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2901 spin_unlock(vmf->ptl);
2902 vmf->prealloc_pte = 0;
2903 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
2904 return VM_FAULT_OOM;
2905 }
2906map_pte:
2907 /*
2908 * If a huge pmd materialized under us just retry later. Use
2909 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2910 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2911 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2912 * in a different thread of this mm, in turn leading to a misleading
2913 * pmd_trans_huge() retval. All we have to ensure is that it is a
2914 * regular pmd that we can walk with pte_offset_map() and we can do that
2915 * through an atomic read in C, which is what pmd_trans_unstable()
2916 * provides.
2917 */
82b0f8c3 2918 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
7267ec00
KS
2919 return VM_FAULT_NOPAGE;
2920
82b0f8c3
JK
2921 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2922 &vmf->ptl);
7267ec00
KS
2923 return 0;
2924}
2925
e496cf3d 2926#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
2927
2928#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2929static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2930 unsigned long haddr)
2931{
2932 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2933 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2934 return false;
2935 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2936 return false;
2937 return true;
2938}
2939
82b0f8c3 2940static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 2941{
82b0f8c3 2942 struct vm_area_struct *vma = vmf->vma;
953c66c2 2943
82b0f8c3 2944 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
2945 /*
2946 * We are going to consume the prealloc table,
2947 * count that as nr_ptes.
2948 */
2949 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3 2950 vmf->prealloc_pte = 0;
953c66c2
AK
2951}
2952
82b0f8c3 2953static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 2954{
82b0f8c3
JK
2955 struct vm_area_struct *vma = vmf->vma;
2956 bool write = vmf->flags & FAULT_FLAG_WRITE;
2957 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459
KS
2958 pmd_t entry;
2959 int i, ret;
2960
2961 if (!transhuge_vma_suitable(vma, haddr))
2962 return VM_FAULT_FALLBACK;
2963
2964 ret = VM_FAULT_FALLBACK;
2965 page = compound_head(page);
2966
953c66c2
AK
2967 /*
2968 * Archs like ppc64 need additonal space to store information
2969 * related to pte entry. Use the preallocated table for that.
2970 */
82b0f8c3
JK
2971 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2972 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2973 if (!vmf->prealloc_pte)
953c66c2
AK
2974 return VM_FAULT_OOM;
2975 smp_wmb(); /* See comment in __pte_alloc() */
2976 }
2977
82b0f8c3
JK
2978 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2979 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
2980 goto out;
2981
2982 for (i = 0; i < HPAGE_PMD_NR; i++)
2983 flush_icache_page(vma, page + i);
2984
2985 entry = mk_huge_pmd(page, vma->vm_page_prot);
2986 if (write)
2987 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2988
2989 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
2990 page_add_file_rmap(page, true);
953c66c2
AK
2991 /*
2992 * deposit and withdraw with pmd lock held
2993 */
2994 if (arch_needs_pgtable_deposit())
82b0f8c3 2995 deposit_prealloc_pte(vmf);
10102459 2996
82b0f8c3 2997 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 2998
82b0f8c3 2999 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3000
3001 /* fault is handled */
3002 ret = 0;
95ecedcd 3003 count_vm_event(THP_FILE_MAPPED);
10102459 3004out:
82b0f8c3 3005 spin_unlock(vmf->ptl);
10102459
KS
3006 return ret;
3007}
3008#else
82b0f8c3 3009static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3010{
3011 BUILD_BUG();
3012 return 0;
3013}
3014#endif
3015
8c6e50b0 3016/**
7267ec00
KS
3017 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3018 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3019 *
82b0f8c3 3020 * @vmf: fault environment
7267ec00 3021 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3022 * @page: page to map
8c6e50b0 3023 *
82b0f8c3
JK
3024 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3025 * return.
8c6e50b0
KS
3026 *
3027 * Target users are page handler itself and implementations of
3028 * vm_ops->map_pages.
3029 */
82b0f8c3 3030int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3031 struct page *page)
3bb97794 3032{
82b0f8c3
JK
3033 struct vm_area_struct *vma = vmf->vma;
3034 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3035 pte_t entry;
10102459
KS
3036 int ret;
3037
82b0f8c3 3038 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3039 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3040 /* THP on COW? */
3041 VM_BUG_ON_PAGE(memcg, page);
3042
82b0f8c3 3043 ret = do_set_pmd(vmf, page);
10102459 3044 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3045 return ret;
10102459 3046 }
3bb97794 3047
82b0f8c3
JK
3048 if (!vmf->pte) {
3049 ret = pte_alloc_one_map(vmf);
7267ec00 3050 if (ret)
b0b9b3df 3051 return ret;
7267ec00
KS
3052 }
3053
3054 /* Re-check under ptl */
b0b9b3df
HD
3055 if (unlikely(!pte_none(*vmf->pte)))
3056 return VM_FAULT_NOPAGE;
7267ec00 3057
3bb97794
KS
3058 flush_icache_page(vma, page);
3059 entry = mk_pte(page, vma->vm_page_prot);
3060 if (write)
3061 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3062 /* copy-on-write page */
3063 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3064 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3065 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3066 mem_cgroup_commit_charge(page, memcg, false, false);
3067 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3068 } else {
eca56ff9 3069 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3070 page_add_file_rmap(page, false);
3bb97794 3071 }
82b0f8c3 3072 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3073
3074 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3075 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3076
b0b9b3df 3077 return 0;
3bb97794
KS
3078}
3079
9118c0cb
JK
3080
3081/**
3082 * finish_fault - finish page fault once we have prepared the page to fault
3083 *
3084 * @vmf: structure describing the fault
3085 *
3086 * This function handles all that is needed to finish a page fault once the
3087 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3088 * given page, adds reverse page mapping, handles memcg charges and LRU
3089 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3090 * error.
3091 *
3092 * The function expects the page to be locked and on success it consumes a
3093 * reference of a page being mapped (for the PTE which maps it).
3094 */
3095int finish_fault(struct vm_fault *vmf)
3096{
3097 struct page *page;
3098 int ret;
3099
3100 /* Did we COW the page? */
3101 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3102 !(vmf->vma->vm_flags & VM_SHARED))
3103 page = vmf->cow_page;
3104 else
3105 page = vmf->page;
3106 ret = alloc_set_pte(vmf, vmf->memcg, page);
3107 if (vmf->pte)
3108 pte_unmap_unlock(vmf->pte, vmf->ptl);
3109 return ret;
3110}
3111
3a91053a
KS
3112static unsigned long fault_around_bytes __read_mostly =
3113 rounddown_pow_of_two(65536);
a9b0f861 3114
a9b0f861
KS
3115#ifdef CONFIG_DEBUG_FS
3116static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3117{
a9b0f861 3118 *val = fault_around_bytes;
1592eef0
KS
3119 return 0;
3120}
3121
b4903d6e
AR
3122/*
3123 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3124 * rounded down to nearest page order. It's what do_fault_around() expects to
3125 * see.
3126 */
a9b0f861 3127static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3128{
a9b0f861 3129 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3130 return -EINVAL;
b4903d6e
AR
3131 if (val > PAGE_SIZE)
3132 fault_around_bytes = rounddown_pow_of_two(val);
3133 else
3134 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3135 return 0;
3136}
a9b0f861
KS
3137DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3138 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3139
3140static int __init fault_around_debugfs(void)
3141{
3142 void *ret;
3143
a9b0f861
KS
3144 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3145 &fault_around_bytes_fops);
1592eef0 3146 if (!ret)
a9b0f861 3147 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3148 return 0;
3149}
3150late_initcall(fault_around_debugfs);
1592eef0 3151#endif
8c6e50b0 3152
1fdb412b
KS
3153/*
3154 * do_fault_around() tries to map few pages around the fault address. The hope
3155 * is that the pages will be needed soon and this will lower the number of
3156 * faults to handle.
3157 *
3158 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3159 * not ready to be mapped: not up-to-date, locked, etc.
3160 *
3161 * This function is called with the page table lock taken. In the split ptlock
3162 * case the page table lock only protects only those entries which belong to
3163 * the page table corresponding to the fault address.
3164 *
3165 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3166 * only once.
3167 *
3168 * fault_around_pages() defines how many pages we'll try to map.
3169 * do_fault_around() expects it to return a power of two less than or equal to
3170 * PTRS_PER_PTE.
3171 *
3172 * The virtual address of the area that we map is naturally aligned to the
3173 * fault_around_pages() value (and therefore to page order). This way it's
3174 * easier to guarantee that we don't cross page table boundaries.
3175 */
0721ec8b 3176static int do_fault_around(struct vm_fault *vmf)
8c6e50b0 3177{
82b0f8c3 3178 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3179 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3180 pgoff_t end_pgoff;
7267ec00 3181 int off, ret = 0;
8c6e50b0 3182
4db0c3c2 3183 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3184 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3185
82b0f8c3
JK
3186 vmf->address = max(address & mask, vmf->vma->vm_start);
3187 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3188 start_pgoff -= off;
8c6e50b0
KS
3189
3190 /*
bae473a4
KS
3191 * end_pgoff is either end of page table or end of vma
3192 * or fault_around_pages() from start_pgoff, depending what is nearest.
8c6e50b0 3193 */
bae473a4 3194 end_pgoff = start_pgoff -
82b0f8c3 3195 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3196 PTRS_PER_PTE - 1;
82b0f8c3 3197 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3198 start_pgoff + nr_pages - 1);
8c6e50b0 3199
82b0f8c3
JK
3200 if (pmd_none(*vmf->pmd)) {
3201 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3202 vmf->address);
3203 if (!vmf->prealloc_pte)
c5f88bd2 3204 goto out;
7267ec00 3205 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3206 }
3207
82b0f8c3 3208 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3209
7267ec00 3210 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3211 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3212 ret = VM_FAULT_NOPAGE;
3213 goto out;
3214 }
3215
3216 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3217 if (!vmf->pte)
7267ec00
KS
3218 goto out;
3219
3220 /* check if the page fault is solved */
82b0f8c3
JK
3221 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3222 if (!pte_none(*vmf->pte))
7267ec00 3223 ret = VM_FAULT_NOPAGE;
82b0f8c3 3224 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3225out:
82b0f8c3
JK
3226 vmf->address = address;
3227 vmf->pte = NULL;
7267ec00 3228 return ret;
8c6e50b0
KS
3229}
3230
0721ec8b 3231static int do_read_fault(struct vm_fault *vmf)
e655fb29 3232{
82b0f8c3 3233 struct vm_area_struct *vma = vmf->vma;
8c6e50b0
KS
3234 int ret = 0;
3235
3236 /*
3237 * Let's call ->map_pages() first and use ->fault() as fallback
3238 * if page by the offset is not ready to be mapped (cold cache or
3239 * something).
3240 */
9b4bdd2f 3241 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3242 ret = do_fault_around(vmf);
7267ec00
KS
3243 if (ret)
3244 return ret;
8c6e50b0 3245 }
e655fb29 3246
936ca80d 3247 ret = __do_fault(vmf);
e655fb29
KS
3248 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3249 return ret;
3250
9118c0cb 3251 ret |= finish_fault(vmf);
936ca80d 3252 unlock_page(vmf->page);
7267ec00 3253 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3254 put_page(vmf->page);
e655fb29
KS
3255 return ret;
3256}
3257
0721ec8b 3258static int do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3259{
82b0f8c3 3260 struct vm_area_struct *vma = vmf->vma;
ec47c3b9
KS
3261 int ret;
3262
3263 if (unlikely(anon_vma_prepare(vma)))
3264 return VM_FAULT_OOM;
3265
936ca80d
JK
3266 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3267 if (!vmf->cow_page)
ec47c3b9
KS
3268 return VM_FAULT_OOM;
3269
936ca80d 3270 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3271 &vmf->memcg, false)) {
936ca80d 3272 put_page(vmf->cow_page);
ec47c3b9
KS
3273 return VM_FAULT_OOM;
3274 }
3275
936ca80d 3276 ret = __do_fault(vmf);
ec47c3b9
KS
3277 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3278 goto uncharge_out;
3917048d
JK
3279 if (ret & VM_FAULT_DONE_COW)
3280 return ret;
ec47c3b9 3281
b1aa812b 3282 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3283 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3284
9118c0cb 3285 ret |= finish_fault(vmf);
b1aa812b
JK
3286 unlock_page(vmf->page);
3287 put_page(vmf->page);
7267ec00
KS
3288 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3289 goto uncharge_out;
ec47c3b9
KS
3290 return ret;
3291uncharge_out:
3917048d 3292 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3293 put_page(vmf->cow_page);
ec47c3b9
KS
3294 return ret;
3295}
3296
0721ec8b 3297static int do_shared_fault(struct vm_fault *vmf)
1da177e4 3298{
82b0f8c3 3299 struct vm_area_struct *vma = vmf->vma;
f0c6d4d2 3300 int ret, tmp;
1d65f86d 3301
936ca80d 3302 ret = __do_fault(vmf);
7eae74af 3303 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3304 return ret;
1da177e4
LT
3305
3306 /*
f0c6d4d2
KS
3307 * Check if the backing address space wants to know that the page is
3308 * about to become writable
1da177e4 3309 */
fb09a464 3310 if (vma->vm_ops->page_mkwrite) {
936ca80d 3311 unlock_page(vmf->page);
38b8cb7f 3312 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3313 if (unlikely(!tmp ||
3314 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3315 put_page(vmf->page);
fb09a464 3316 return tmp;
4294621f 3317 }
fb09a464
KS
3318 }
3319
9118c0cb 3320 ret |= finish_fault(vmf);
7267ec00
KS
3321 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3322 VM_FAULT_RETRY))) {
936ca80d
JK
3323 unlock_page(vmf->page);
3324 put_page(vmf->page);
f0c6d4d2 3325 return ret;
1da177e4 3326 }
b827e496 3327
97ba0c2b 3328 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3329 return ret;
54cb8821 3330}
d00806b1 3331
9a95f3cf
PC
3332/*
3333 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3334 * but allow concurrent faults).
3335 * The mmap_sem may have been released depending on flags and our
3336 * return value. See filemap_fault() and __lock_page_or_retry().
3337 */
82b0f8c3 3338static int do_fault(struct vm_fault *vmf)
54cb8821 3339{
82b0f8c3 3340 struct vm_area_struct *vma = vmf->vma;
b0b9b3df 3341 int ret;
54cb8821 3342
6b7339f4
KS
3343 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3344 if (!vma->vm_ops->fault)
b0b9b3df
HD
3345 ret = VM_FAULT_SIGBUS;
3346 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3347 ret = do_read_fault(vmf);
3348 else if (!(vma->vm_flags & VM_SHARED))
3349 ret = do_cow_fault(vmf);
3350 else
3351 ret = do_shared_fault(vmf);
3352
3353 /* preallocated pagetable is unused: free it */
3354 if (vmf->prealloc_pte) {
3355 pte_free(vma->vm_mm, vmf->prealloc_pte);
3356 vmf->prealloc_pte = 0;
3357 }
3358 return ret;
54cb8821
NP
3359}
3360
b19a9939 3361static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3362 unsigned long addr, int page_nid,
3363 int *flags)
9532fec1
MG
3364{
3365 get_page(page);
3366
3367 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3368 if (page_nid == numa_node_id()) {
9532fec1 3369 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3370 *flags |= TNF_FAULT_LOCAL;
3371 }
9532fec1
MG
3372
3373 return mpol_misplaced(page, vma, addr);
3374}
3375
2994302b 3376static int do_numa_page(struct vm_fault *vmf)
d10e63f2 3377{
82b0f8c3 3378 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3379 struct page *page = NULL;
8191acbd 3380 int page_nid = -1;
90572890 3381 int last_cpupid;
cbee9f88 3382 int target_nid;
b8593bfd 3383 bool migrated = false;
2994302b 3384 pte_t pte = vmf->orig_pte;
b191f9b1 3385 bool was_writable = pte_write(pte);
6688cc05 3386 int flags = 0;
d10e63f2
MG
3387
3388 /*
3389 * The "pte" at this point cannot be used safely without
3390 * validation through pte_unmap_same(). It's of NUMA type but
3391 * the pfn may be screwed if the read is non atomic.
3392 *
4d942466
MG
3393 * We can safely just do a "set_pte_at()", because the old
3394 * page table entry is not accessible, so there would be no
3395 * concurrent hardware modifications to the PTE.
d10e63f2 3396 */
82b0f8c3
JK
3397 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3398 spin_lock(vmf->ptl);
3399 if (unlikely(!pte_same(*vmf->pte, pte))) {
3400 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3401 goto out;
3402 }
3403
4d942466
MG
3404 /* Make it present again */
3405 pte = pte_modify(pte, vma->vm_page_prot);
3406 pte = pte_mkyoung(pte);
b191f9b1
MG
3407 if (was_writable)
3408 pte = pte_mkwrite(pte);
82b0f8c3
JK
3409 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3410 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3411
82b0f8c3 3412 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3413 if (!page) {
82b0f8c3 3414 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3415 return 0;
3416 }
3417
e81c4802
KS
3418 /* TODO: handle PTE-mapped THP */
3419 if (PageCompound(page)) {
82b0f8c3 3420 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3421 return 0;
3422 }
3423
6688cc05 3424 /*
bea66fbd
MG
3425 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3426 * much anyway since they can be in shared cache state. This misses
3427 * the case where a mapping is writable but the process never writes
3428 * to it but pte_write gets cleared during protection updates and
3429 * pte_dirty has unpredictable behaviour between PTE scan updates,
3430 * background writeback, dirty balancing and application behaviour.
6688cc05 3431 */
d59dc7bc 3432 if (!pte_write(pte))
6688cc05
PZ
3433 flags |= TNF_NO_GROUP;
3434
dabe1d99
RR
3435 /*
3436 * Flag if the page is shared between multiple address spaces. This
3437 * is later used when determining whether to group tasks together
3438 */
3439 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3440 flags |= TNF_SHARED;
3441
90572890 3442 last_cpupid = page_cpupid_last(page);
8191acbd 3443 page_nid = page_to_nid(page);
82b0f8c3 3444 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3445 &flags);
82b0f8c3 3446 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3447 if (target_nid == -1) {
4daae3b4
MG
3448 put_page(page);
3449 goto out;
3450 }
3451
3452 /* Migrate to the requested node */
1bc115d8 3453 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3454 if (migrated) {
8191acbd 3455 page_nid = target_nid;
6688cc05 3456 flags |= TNF_MIGRATED;
074c2381
MG
3457 } else
3458 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3459
3460out:
8191acbd 3461 if (page_nid != -1)
6688cc05 3462 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3463 return 0;
3464}
3465
82b0f8c3 3466static int create_huge_pmd(struct vm_fault *vmf)
b96375f7 3467{
f4200391 3468 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3469 return do_huge_pmd_anonymous_page(vmf);
f4200391
DJ
3470 if (vmf->vma->vm_ops->pmd_fault)
3471 return vmf->vma->vm_ops->pmd_fault(vmf);
b96375f7
MW
3472 return VM_FAULT_FALLBACK;
3473}
3474
82b0f8c3 3475static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3476{
82b0f8c3
JK
3477 if (vma_is_anonymous(vmf->vma))
3478 return do_huge_pmd_wp_page(vmf, orig_pmd);
3479 if (vmf->vma->vm_ops->pmd_fault)
f4200391 3480 return vmf->vma->vm_ops->pmd_fault(vmf);
af9e4d5f
KS
3481
3482 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3483 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3484 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3485
b96375f7
MW
3486 return VM_FAULT_FALLBACK;
3487}
3488
38e08854
LS
3489static inline bool vma_is_accessible(struct vm_area_struct *vma)
3490{
3491 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3492}
3493
1da177e4
LT
3494/*
3495 * These routines also need to handle stuff like marking pages dirty
3496 * and/or accessed for architectures that don't do it in hardware (most
3497 * RISC architectures). The early dirtying is also good on the i386.
3498 *
3499 * There is also a hook called "update_mmu_cache()" that architectures
3500 * with external mmu caches can use to update those (ie the Sparc or
3501 * PowerPC hashed page tables that act as extended TLBs).
3502 *
7267ec00
KS
3503 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3504 * concurrent faults).
9a95f3cf 3505 *
7267ec00
KS
3506 * The mmap_sem may have been released depending on flags and our return value.
3507 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3508 */
82b0f8c3 3509static int handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3510{
3511 pte_t entry;
3512
82b0f8c3 3513 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3514 /*
3515 * Leave __pte_alloc() until later: because vm_ops->fault may
3516 * want to allocate huge page, and if we expose page table
3517 * for an instant, it will be difficult to retract from
3518 * concurrent faults and from rmap lookups.
3519 */
82b0f8c3 3520 vmf->pte = NULL;
7267ec00
KS
3521 } else {
3522 /* See comment in pte_alloc_one_map() */
82b0f8c3 3523 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
7267ec00
KS
3524 return 0;
3525 /*
3526 * A regular pmd is established and it can't morph into a huge
3527 * pmd from under us anymore at this point because we hold the
3528 * mmap_sem read mode and khugepaged takes it in write mode.
3529 * So now it's safe to run pte_offset_map().
3530 */
82b0f8c3 3531 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3532 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3533
3534 /*
3535 * some architectures can have larger ptes than wordsize,
3536 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3537 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3538 * atomic accesses. The code below just needs a consistent
3539 * view for the ifs and we later double check anyway with the
3540 * ptl lock held. So here a barrier will do.
3541 */
3542 barrier();
2994302b 3543 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3544 pte_unmap(vmf->pte);
3545 vmf->pte = NULL;
65500d23 3546 }
1da177e4
LT
3547 }
3548
82b0f8c3
JK
3549 if (!vmf->pte) {
3550 if (vma_is_anonymous(vmf->vma))
3551 return do_anonymous_page(vmf);
7267ec00 3552 else
82b0f8c3 3553 return do_fault(vmf);
7267ec00
KS
3554 }
3555
2994302b
JK
3556 if (!pte_present(vmf->orig_pte))
3557 return do_swap_page(vmf);
7267ec00 3558
2994302b
JK
3559 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3560 return do_numa_page(vmf);
d10e63f2 3561
82b0f8c3
JK
3562 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3563 spin_lock(vmf->ptl);
2994302b 3564 entry = vmf->orig_pte;
82b0f8c3 3565 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3566 goto unlock;
82b0f8c3 3567 if (vmf->flags & FAULT_FLAG_WRITE) {
1da177e4 3568 if (!pte_write(entry))
2994302b 3569 return do_wp_page(vmf);
1da177e4
LT
3570 entry = pte_mkdirty(entry);
3571 }
3572 entry = pte_mkyoung(entry);
82b0f8c3
JK
3573 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3574 vmf->flags & FAULT_FLAG_WRITE)) {
3575 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3576 } else {
3577 /*
3578 * This is needed only for protection faults but the arch code
3579 * is not yet telling us if this is a protection fault or not.
3580 * This still avoids useless tlb flushes for .text page faults
3581 * with threads.
3582 */
82b0f8c3
JK
3583 if (vmf->flags & FAULT_FLAG_WRITE)
3584 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3585 }
8f4e2101 3586unlock:
82b0f8c3 3587 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3588 return 0;
1da177e4
LT
3589}
3590
3591/*
3592 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3593 *
3594 * The mmap_sem may have been released depending on flags and our
3595 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3596 */
dcddffd4
KS
3597static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3598 unsigned int flags)
1da177e4 3599{
82b0f8c3 3600 struct vm_fault vmf = {
bae473a4 3601 .vma = vma,
1a29d85e 3602 .address = address & PAGE_MASK,
bae473a4 3603 .flags = flags,
0721ec8b 3604 .pgoff = linear_page_index(vma, address),
667240e0 3605 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3606 };
dcddffd4 3607 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
3608 pgd_t *pgd;
3609 pud_t *pud;
1da177e4 3610
1da177e4 3611 pgd = pgd_offset(mm, address);
1da177e4
LT
3612 pud = pud_alloc(mm, pgd, address);
3613 if (!pud)
c74df32c 3614 return VM_FAULT_OOM;
82b0f8c3
JK
3615 vmf.pmd = pmd_alloc(mm, pud, address);
3616 if (!vmf.pmd)
c74df32c 3617 return VM_FAULT_OOM;
82b0f8c3
JK
3618 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3619 int ret = create_huge_pmd(&vmf);
c0292554
KS
3620 if (!(ret & VM_FAULT_FALLBACK))
3621 return ret;
71e3aac0 3622 } else {
82b0f8c3 3623 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3
DR
3624 int ret;
3625
71e3aac0 3626 barrier();
5c7fb56e 3627 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3628 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3629 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3630
82b0f8c3 3631 if ((vmf.flags & FAULT_FLAG_WRITE) &&
bae473a4 3632 !pmd_write(orig_pmd)) {
82b0f8c3 3633 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3634 if (!(ret & VM_FAULT_FALLBACK))
3635 return ret;
a1dd450b 3636 } else {
82b0f8c3 3637 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3638 return 0;
1f1d06c3 3639 }
71e3aac0
AA
3640 }
3641 }
3642
82b0f8c3 3643 return handle_pte_fault(&vmf);
1da177e4
LT
3644}
3645
9a95f3cf
PC
3646/*
3647 * By the time we get here, we already hold the mm semaphore
3648 *
3649 * The mmap_sem may have been released depending on flags and our
3650 * return value. See filemap_fault() and __lock_page_or_retry().
3651 */
dcddffd4
KS
3652int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3653 unsigned int flags)
519e5247
JW
3654{
3655 int ret;
3656
3657 __set_current_state(TASK_RUNNING);
3658
3659 count_vm_event(PGFAULT);
dcddffd4 3660 mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
519e5247
JW
3661
3662 /* do counter updates before entering really critical section. */
3663 check_sync_rss_stat(current);
3664
3665 /*
3666 * Enable the memcg OOM handling for faults triggered in user
3667 * space. Kernel faults are handled more gracefully.
3668 */
3669 if (flags & FAULT_FLAG_USER)
49426420 3670 mem_cgroup_oom_enable();
519e5247 3671
bae473a4
KS
3672 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3673 flags & FAULT_FLAG_INSTRUCTION,
3674 flags & FAULT_FLAG_REMOTE))
3675 return VM_FAULT_SIGSEGV;
3676
3677 if (unlikely(is_vm_hugetlb_page(vma)))
3678 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3679 else
3680 ret = __handle_mm_fault(vma, address, flags);
519e5247 3681
49426420
JW
3682 if (flags & FAULT_FLAG_USER) {
3683 mem_cgroup_oom_disable();
3684 /*
3685 * The task may have entered a memcg OOM situation but
3686 * if the allocation error was handled gracefully (no
3687 * VM_FAULT_OOM), there is no need to kill anything.
3688 * Just clean up the OOM state peacefully.
3689 */
3690 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3691 mem_cgroup_oom_synchronize(false);
3692 }
3812c8c8 3693
3f70dc38
MH
3694 /*
3695 * This mm has been already reaped by the oom reaper and so the
3696 * refault cannot be trusted in general. Anonymous refaults would
3697 * lose data and give a zero page instead e.g. This is especially
3698 * problem for use_mm() because regular tasks will just die and
3699 * the corrupted data will not be visible anywhere while kthread
3700 * will outlive the oom victim and potentially propagate the date
3701 * further.
3702 */
3703 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3704 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3705 ret = VM_FAULT_SIGBUS;
3706
519e5247
JW
3707 return ret;
3708}
e1d6d01a 3709EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3710
1da177e4
LT
3711#ifndef __PAGETABLE_PUD_FOLDED
3712/*
3713 * Allocate page upper directory.
872fec16 3714 * We've already handled the fast-path in-line.
1da177e4 3715 */
1bb3630e 3716int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3717{
c74df32c
HD
3718 pud_t *new = pud_alloc_one(mm, address);
3719 if (!new)
1bb3630e 3720 return -ENOMEM;
1da177e4 3721
362a61ad
NP
3722 smp_wmb(); /* See comment in __pte_alloc */
3723
872fec16 3724 spin_lock(&mm->page_table_lock);
1bb3630e 3725 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3726 pud_free(mm, new);
1bb3630e
HD
3727 else
3728 pgd_populate(mm, pgd, new);
c74df32c 3729 spin_unlock(&mm->page_table_lock);
1bb3630e 3730 return 0;
1da177e4
LT
3731}
3732#endif /* __PAGETABLE_PUD_FOLDED */
3733
3734#ifndef __PAGETABLE_PMD_FOLDED
3735/*
3736 * Allocate page middle directory.
872fec16 3737 * We've already handled the fast-path in-line.
1da177e4 3738 */
1bb3630e 3739int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3740{
c74df32c
HD
3741 pmd_t *new = pmd_alloc_one(mm, address);
3742 if (!new)
1bb3630e 3743 return -ENOMEM;
1da177e4 3744
362a61ad
NP
3745 smp_wmb(); /* See comment in __pte_alloc */
3746
872fec16 3747 spin_lock(&mm->page_table_lock);
1da177e4 3748#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3749 if (!pud_present(*pud)) {
3750 mm_inc_nr_pmds(mm);
1bb3630e 3751 pud_populate(mm, pud, new);
dc6c9a35 3752 } else /* Another has populated it */
5e541973 3753 pmd_free(mm, new);
dc6c9a35
KS
3754#else
3755 if (!pgd_present(*pud)) {
3756 mm_inc_nr_pmds(mm);
1bb3630e 3757 pgd_populate(mm, pud, new);
dc6c9a35
KS
3758 } else /* Another has populated it */
3759 pmd_free(mm, new);
1da177e4 3760#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3761 spin_unlock(&mm->page_table_lock);
1bb3630e 3762 return 0;
e0f39591 3763}
1da177e4
LT
3764#endif /* __PAGETABLE_PMD_FOLDED */
3765
09796395
RZ
3766static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3767 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
3768{
3769 pgd_t *pgd;
3770 pud_t *pud;
3771 pmd_t *pmd;
3772 pte_t *ptep;
3773
3774 pgd = pgd_offset(mm, address);
3775 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3776 goto out;
3777
3778 pud = pud_offset(pgd, address);
3779 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3780 goto out;
3781
3782 pmd = pmd_offset(pud, address);
f66055ab 3783 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 3784
09796395
RZ
3785 if (pmd_huge(*pmd)) {
3786 if (!pmdpp)
3787 goto out;
3788
3789 *ptlp = pmd_lock(mm, pmd);
3790 if (pmd_huge(*pmd)) {
3791 *pmdpp = pmd;
3792 return 0;
3793 }
3794 spin_unlock(*ptlp);
3795 }
3796
3797 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
3798 goto out;
3799
3800 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3801 if (!ptep)
3802 goto out;
3803 if (!pte_present(*ptep))
3804 goto unlock;
3805 *ptepp = ptep;
3806 return 0;
3807unlock:
3808 pte_unmap_unlock(ptep, *ptlp);
3809out:
3810 return -EINVAL;
3811}
3812
f729c8c9
RZ
3813static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3814 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
3815{
3816 int res;
3817
3818 /* (void) is needed to make gcc happy */
3819 (void) __cond_lock(*ptlp,
09796395
RZ
3820 !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
3821 ptlp)));
3822 return res;
3823}
3824
3825int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3826 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3827{
3828 int res;
3829
3830 /* (void) is needed to make gcc happy */
3831 (void) __cond_lock(*ptlp,
3832 !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
3833 ptlp)));
1b36ba81
NK
3834 return res;
3835}
09796395 3836EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 3837
3b6748e2
JW
3838/**
3839 * follow_pfn - look up PFN at a user virtual address
3840 * @vma: memory mapping
3841 * @address: user virtual address
3842 * @pfn: location to store found PFN
3843 *
3844 * Only IO mappings and raw PFN mappings are allowed.
3845 *
3846 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3847 */
3848int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3849 unsigned long *pfn)
3850{
3851 int ret = -EINVAL;
3852 spinlock_t *ptl;
3853 pte_t *ptep;
3854
3855 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3856 return ret;
3857
3858 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3859 if (ret)
3860 return ret;
3861 *pfn = pte_pfn(*ptep);
3862 pte_unmap_unlock(ptep, ptl);
3863 return 0;
3864}
3865EXPORT_SYMBOL(follow_pfn);
3866
28b2ee20 3867#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3868int follow_phys(struct vm_area_struct *vma,
3869 unsigned long address, unsigned int flags,
3870 unsigned long *prot, resource_size_t *phys)
28b2ee20 3871{
03668a4d 3872 int ret = -EINVAL;
28b2ee20
RR
3873 pte_t *ptep, pte;
3874 spinlock_t *ptl;
28b2ee20 3875
d87fe660 3876 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3877 goto out;
28b2ee20 3878
03668a4d 3879 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3880 goto out;
28b2ee20 3881 pte = *ptep;
03668a4d 3882
28b2ee20
RR
3883 if ((flags & FOLL_WRITE) && !pte_write(pte))
3884 goto unlock;
28b2ee20
RR
3885
3886 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3887 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3888
03668a4d 3889 ret = 0;
28b2ee20
RR
3890unlock:
3891 pte_unmap_unlock(ptep, ptl);
3892out:
d87fe660 3893 return ret;
28b2ee20
RR
3894}
3895
3896int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3897 void *buf, int len, int write)
3898{
3899 resource_size_t phys_addr;
3900 unsigned long prot = 0;
2bc7273b 3901 void __iomem *maddr;
28b2ee20
RR
3902 int offset = addr & (PAGE_SIZE-1);
3903
d87fe660 3904 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3905 return -EINVAL;
3906
9cb12d7b 3907 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
3908 if (write)
3909 memcpy_toio(maddr + offset, buf, len);
3910 else
3911 memcpy_fromio(buf, maddr + offset, len);
3912 iounmap(maddr);
3913
3914 return len;
3915}
5a73633e 3916EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3917#endif
3918
0ec76a11 3919/*
206cb636
SW
3920 * Access another process' address space as given in mm. If non-NULL, use the
3921 * given task for page fault accounting.
0ec76a11 3922 */
84d77d3f 3923int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 3924 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 3925{
0ec76a11 3926 struct vm_area_struct *vma;
0ec76a11 3927 void *old_buf = buf;
442486ec 3928 int write = gup_flags & FOLL_WRITE;
0ec76a11 3929
0ec76a11 3930 down_read(&mm->mmap_sem);
183ff22b 3931 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3932 while (len) {
3933 int bytes, ret, offset;
3934 void *maddr;
28b2ee20 3935 struct page *page = NULL;
0ec76a11 3936
1e987790 3937 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 3938 gup_flags, &page, &vma, NULL);
28b2ee20 3939 if (ret <= 0) {
dbffcd03
RR
3940#ifndef CONFIG_HAVE_IOREMAP_PROT
3941 break;
3942#else
28b2ee20
RR
3943 /*
3944 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3945 * we can access using slightly different code.
3946 */
28b2ee20 3947 vma = find_vma(mm, addr);
fe936dfc 3948 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3949 break;
3950 if (vma->vm_ops && vma->vm_ops->access)
3951 ret = vma->vm_ops->access(vma, addr, buf,
3952 len, write);
3953 if (ret <= 0)
28b2ee20
RR
3954 break;
3955 bytes = ret;
dbffcd03 3956#endif
0ec76a11 3957 } else {
28b2ee20
RR
3958 bytes = len;
3959 offset = addr & (PAGE_SIZE-1);
3960 if (bytes > PAGE_SIZE-offset)
3961 bytes = PAGE_SIZE-offset;
3962
3963 maddr = kmap(page);
3964 if (write) {
3965 copy_to_user_page(vma, page, addr,
3966 maddr + offset, buf, bytes);
3967 set_page_dirty_lock(page);
3968 } else {
3969 copy_from_user_page(vma, page, addr,
3970 buf, maddr + offset, bytes);
3971 }
3972 kunmap(page);
09cbfeaf 3973 put_page(page);
0ec76a11 3974 }
0ec76a11
DH
3975 len -= bytes;
3976 buf += bytes;
3977 addr += bytes;
3978 }
3979 up_read(&mm->mmap_sem);
0ec76a11
DH
3980
3981 return buf - old_buf;
3982}
03252919 3983
5ddd36b9 3984/**
ae91dbfc 3985 * access_remote_vm - access another process' address space
5ddd36b9
SW
3986 * @mm: the mm_struct of the target address space
3987 * @addr: start address to access
3988 * @buf: source or destination buffer
3989 * @len: number of bytes to transfer
6347e8d5 3990 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
3991 *
3992 * The caller must hold a reference on @mm.
3993 */
3994int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 3995 void *buf, int len, unsigned int gup_flags)
5ddd36b9 3996{
6347e8d5 3997 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
3998}
3999
206cb636
SW
4000/*
4001 * Access another process' address space.
4002 * Source/target buffer must be kernel space,
4003 * Do not walk the page table directly, use get_user_pages
4004 */
4005int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4006 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4007{
4008 struct mm_struct *mm;
4009 int ret;
4010
4011 mm = get_task_mm(tsk);
4012 if (!mm)
4013 return 0;
4014
f307ab6d 4015 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4016
206cb636
SW
4017 mmput(mm);
4018
4019 return ret;
4020}
fcd35857 4021EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4022
03252919
AK
4023/*
4024 * Print the name of a VMA.
4025 */
4026void print_vma_addr(char *prefix, unsigned long ip)
4027{
4028 struct mm_struct *mm = current->mm;
4029 struct vm_area_struct *vma;
4030
e8bff74a
IM
4031 /*
4032 * Do not print if we are in atomic
4033 * contexts (in exception stacks, etc.):
4034 */
4035 if (preempt_count())
4036 return;
4037
03252919
AK
4038 down_read(&mm->mmap_sem);
4039 vma = find_vma(mm, ip);
4040 if (vma && vma->vm_file) {
4041 struct file *f = vma->vm_file;
4042 char *buf = (char *)__get_free_page(GFP_KERNEL);
4043 if (buf) {
2fbc57c5 4044 char *p;
03252919 4045
9bf39ab2 4046 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4047 if (IS_ERR(p))
4048 p = "?";
2fbc57c5 4049 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4050 vma->vm_start,
4051 vma->vm_end - vma->vm_start);
4052 free_page((unsigned long)buf);
4053 }
4054 }
51a07e50 4055 up_read(&mm->mmap_sem);
03252919 4056}
3ee1afa3 4057
662bbcb2 4058#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4059void __might_fault(const char *file, int line)
3ee1afa3 4060{
95156f00
PZ
4061 /*
4062 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4063 * holding the mmap_sem, this is safe because kernel memory doesn't
4064 * get paged out, therefore we'll never actually fault, and the
4065 * below annotations will generate false positives.
4066 */
4067 if (segment_eq(get_fs(), KERNEL_DS))
4068 return;
9ec23531 4069 if (pagefault_disabled())
662bbcb2 4070 return;
9ec23531
DH
4071 __might_sleep(file, line, 0);
4072#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4073 if (current->mm)
3ee1afa3 4074 might_lock_read(&current->mm->mmap_sem);
9ec23531 4075#endif
3ee1afa3 4076}
9ec23531 4077EXPORT_SYMBOL(__might_fault);
3ee1afa3 4078#endif
47ad8475
AA
4079
4080#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4081static void clear_gigantic_page(struct page *page,
4082 unsigned long addr,
4083 unsigned int pages_per_huge_page)
4084{
4085 int i;
4086 struct page *p = page;
4087
4088 might_sleep();
4089 for (i = 0; i < pages_per_huge_page;
4090 i++, p = mem_map_next(p, page, i)) {
4091 cond_resched();
4092 clear_user_highpage(p, addr + i * PAGE_SIZE);
4093 }
4094}
4095void clear_huge_page(struct page *page,
4096 unsigned long addr, unsigned int pages_per_huge_page)
4097{
4098 int i;
4099
4100 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4101 clear_gigantic_page(page, addr, pages_per_huge_page);
4102 return;
4103 }
4104
4105 might_sleep();
4106 for (i = 0; i < pages_per_huge_page; i++) {
4107 cond_resched();
4108 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4109 }
4110}
4111
4112static void copy_user_gigantic_page(struct page *dst, struct page *src,
4113 unsigned long addr,
4114 struct vm_area_struct *vma,
4115 unsigned int pages_per_huge_page)
4116{
4117 int i;
4118 struct page *dst_base = dst;
4119 struct page *src_base = src;
4120
4121 for (i = 0; i < pages_per_huge_page; ) {
4122 cond_resched();
4123 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4124
4125 i++;
4126 dst = mem_map_next(dst, dst_base, i);
4127 src = mem_map_next(src, src_base, i);
4128 }
4129}
4130
4131void copy_user_huge_page(struct page *dst, struct page *src,
4132 unsigned long addr, struct vm_area_struct *vma,
4133 unsigned int pages_per_huge_page)
4134{
4135 int i;
4136
4137 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4138 copy_user_gigantic_page(dst, src, addr, vma,
4139 pages_per_huge_page);
4140 return;
4141 }
4142
4143 might_sleep();
4144 for (i = 0; i < pages_per_huge_page; i++) {
4145 cond_resched();
4146 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4147 }
4148}
fa4d75c1
MK
4149
4150long copy_huge_page_from_user(struct page *dst_page,
4151 const void __user *usr_src,
810a56b9
MK
4152 unsigned int pages_per_huge_page,
4153 bool allow_pagefault)
fa4d75c1
MK
4154{
4155 void *src = (void *)usr_src;
4156 void *page_kaddr;
4157 unsigned long i, rc = 0;
4158 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4159
4160 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4161 if (allow_pagefault)
4162 page_kaddr = kmap(dst_page + i);
4163 else
4164 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4165 rc = copy_from_user(page_kaddr,
4166 (const void __user *)(src + i * PAGE_SIZE),
4167 PAGE_SIZE);
810a56b9
MK
4168 if (allow_pagefault)
4169 kunmap(dst_page + i);
4170 else
4171 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4172
4173 ret_val -= (PAGE_SIZE - rc);
4174 if (rc)
4175 break;
4176
4177 cond_resched();
4178 }
4179 return ret_val;
4180}
47ad8475 4181#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4182
40b64acd 4183#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4184
4185static struct kmem_cache *page_ptl_cachep;
4186
4187void __init ptlock_cache_init(void)
4188{
4189 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4190 SLAB_PANIC, NULL);
4191}
4192
539edb58 4193bool ptlock_alloc(struct page *page)
49076ec2
KS
4194{
4195 spinlock_t *ptl;
4196
b35f1819 4197 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4198 if (!ptl)
4199 return false;
539edb58 4200 page->ptl = ptl;
49076ec2
KS
4201 return true;
4202}
4203
539edb58 4204void ptlock_free(struct page *page)
49076ec2 4205{
b35f1819 4206 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4207}
4208#endif