]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
mm,hwpoison: unmap poisoned page before invalidation
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
bce617ed
PX
73#include <linux/perf_event.h>
74#include <linux/ptrace.h>
e80d3909 75#include <linux/vmalloc.h>
1da177e4 76
b3d1411b
JFG
77#include <trace/events/kmem.h>
78
6952b61d 79#include <asm/io.h>
33a709b2 80#include <asm/mmu_context.h>
1da177e4 81#include <asm/pgalloc.h>
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4
LT
83#include <asm/tlb.h>
84#include <asm/tlbflush.h>
1da177e4 85
e80d3909 86#include "pgalloc-track.h"
42b77728
JB
87#include "internal.h"
88
af27d940 89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
91#endif
92
a9ee6cf5 93#ifndef CONFIG_NUMA
1da177e4 94unsigned long max_mapnr;
1da177e4 95EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
96
97struct page *mem_map;
1da177e4
LT
98EXPORT_SYMBOL(mem_map);
99#endif
100
1da177e4
LT
101/*
102 * A number of key systems in x86 including ioremap() rely on the assumption
103 * that high_memory defines the upper bound on direct map memory, then end
104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106 * and ZONE_HIGHMEM.
107 */
166f61b9 108void *high_memory;
1da177e4 109EXPORT_SYMBOL(high_memory);
1da177e4 110
32a93233
IM
111/*
112 * Randomize the address space (stacks, mmaps, brk, etc.).
113 *
114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115 * as ancient (libc5 based) binaries can segfault. )
116 */
117int randomize_va_space __read_mostly =
118#ifdef CONFIG_COMPAT_BRK
119 1;
120#else
121 2;
122#endif
a62eaf15 123
83d116c5
JH
124#ifndef arch_faults_on_old_pte
125static inline bool arch_faults_on_old_pte(void)
126{
127 /*
128 * Those arches which don't have hw access flag feature need to
129 * implement their own helper. By default, "true" means pagefault
130 * will be hit on old pte.
131 */
132 return true;
133}
134#endif
135
46bdb427
WD
136#ifndef arch_wants_old_prefaulted_pte
137static inline bool arch_wants_old_prefaulted_pte(void)
138{
139 /*
140 * Transitioning a PTE from 'old' to 'young' can be expensive on
141 * some architectures, even if it's performed in hardware. By
142 * default, "false" means prefaulted entries will be 'young'.
143 */
144 return false;
145}
146#endif
147
a62eaf15
AK
148static int __init disable_randmaps(char *s)
149{
150 randomize_va_space = 0;
9b41046c 151 return 1;
a62eaf15
AK
152}
153__setup("norandmaps", disable_randmaps);
154
62eede62 155unsigned long zero_pfn __read_mostly;
0b70068e
AB
156EXPORT_SYMBOL(zero_pfn);
157
166f61b9
TH
158unsigned long highest_memmap_pfn __read_mostly;
159
a13ea5b7
HD
160/*
161 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162 */
163static int __init init_zero_pfn(void)
164{
165 zero_pfn = page_to_pfn(ZERO_PAGE(0));
166 return 0;
167}
e720e7d0 168early_initcall(init_zero_pfn);
a62eaf15 169
e4dcad20 170void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 171{
e4dcad20 172 trace_rss_stat(mm, member, count);
b3d1411b 173}
d559db08 174
34e55232
KH
175#if defined(SPLIT_RSS_COUNTING)
176
ea48cf78 177void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
178{
179 int i;
180
181 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
182 if (current->rss_stat.count[i]) {
183 add_mm_counter(mm, i, current->rss_stat.count[i]);
184 current->rss_stat.count[i] = 0;
34e55232
KH
185 }
186 }
05af2e10 187 current->rss_stat.events = 0;
34e55232
KH
188}
189
190static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191{
192 struct task_struct *task = current;
193
194 if (likely(task->mm == mm))
195 task->rss_stat.count[member] += val;
196 else
197 add_mm_counter(mm, member, val);
198}
199#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201
202/* sync counter once per 64 page faults */
203#define TASK_RSS_EVENTS_THRESH (64)
204static void check_sync_rss_stat(struct task_struct *task)
205{
206 if (unlikely(task != current))
207 return;
208 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 209 sync_mm_rss(task->mm);
34e55232 210}
9547d01b 211#else /* SPLIT_RSS_COUNTING */
34e55232
KH
212
213#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215
216static void check_sync_rss_stat(struct task_struct *task)
217{
218}
219
9547d01b
PZ
220#endif /* SPLIT_RSS_COUNTING */
221
1da177e4
LT
222/*
223 * Note: this doesn't free the actual pages themselves. That
224 * has been handled earlier when unmapping all the memory regions.
225 */
9e1b32ca
BH
226static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227 unsigned long addr)
1da177e4 228{
2f569afd 229 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 230 pmd_clear(pmd);
9e1b32ca 231 pte_free_tlb(tlb, token, addr);
c4812909 232 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
233}
234
e0da382c
HD
235static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 unsigned long addr, unsigned long end,
237 unsigned long floor, unsigned long ceiling)
1da177e4
LT
238{
239 pmd_t *pmd;
240 unsigned long next;
e0da382c 241 unsigned long start;
1da177e4 242
e0da382c 243 start = addr;
1da177e4 244 pmd = pmd_offset(pud, addr);
1da177e4
LT
245 do {
246 next = pmd_addr_end(addr, end);
247 if (pmd_none_or_clear_bad(pmd))
248 continue;
9e1b32ca 249 free_pte_range(tlb, pmd, addr);
1da177e4
LT
250 } while (pmd++, addr = next, addr != end);
251
e0da382c
HD
252 start &= PUD_MASK;
253 if (start < floor)
254 return;
255 if (ceiling) {
256 ceiling &= PUD_MASK;
257 if (!ceiling)
258 return;
1da177e4 259 }
e0da382c
HD
260 if (end - 1 > ceiling - 1)
261 return;
262
263 pmd = pmd_offset(pud, start);
264 pud_clear(pud);
9e1b32ca 265 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 266 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
267}
268
c2febafc 269static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
270 unsigned long addr, unsigned long end,
271 unsigned long floor, unsigned long ceiling)
1da177e4
LT
272{
273 pud_t *pud;
274 unsigned long next;
e0da382c 275 unsigned long start;
1da177e4 276
e0da382c 277 start = addr;
c2febafc 278 pud = pud_offset(p4d, addr);
1da177e4
LT
279 do {
280 next = pud_addr_end(addr, end);
281 if (pud_none_or_clear_bad(pud))
282 continue;
e0da382c 283 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
284 } while (pud++, addr = next, addr != end);
285
c2febafc
KS
286 start &= P4D_MASK;
287 if (start < floor)
288 return;
289 if (ceiling) {
290 ceiling &= P4D_MASK;
291 if (!ceiling)
292 return;
293 }
294 if (end - 1 > ceiling - 1)
295 return;
296
297 pud = pud_offset(p4d, start);
298 p4d_clear(p4d);
299 pud_free_tlb(tlb, pud, start);
b4e98d9a 300 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
301}
302
303static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304 unsigned long addr, unsigned long end,
305 unsigned long floor, unsigned long ceiling)
306{
307 p4d_t *p4d;
308 unsigned long next;
309 unsigned long start;
310
311 start = addr;
312 p4d = p4d_offset(pgd, addr);
313 do {
314 next = p4d_addr_end(addr, end);
315 if (p4d_none_or_clear_bad(p4d))
316 continue;
317 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318 } while (p4d++, addr = next, addr != end);
319
e0da382c
HD
320 start &= PGDIR_MASK;
321 if (start < floor)
322 return;
323 if (ceiling) {
324 ceiling &= PGDIR_MASK;
325 if (!ceiling)
326 return;
1da177e4 327 }
e0da382c
HD
328 if (end - 1 > ceiling - 1)
329 return;
330
c2febafc 331 p4d = p4d_offset(pgd, start);
e0da382c 332 pgd_clear(pgd);
c2febafc 333 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
334}
335
336/*
e0da382c 337 * This function frees user-level page tables of a process.
1da177e4 338 */
42b77728 339void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
340 unsigned long addr, unsigned long end,
341 unsigned long floor, unsigned long ceiling)
1da177e4
LT
342{
343 pgd_t *pgd;
344 unsigned long next;
e0da382c
HD
345
346 /*
347 * The next few lines have given us lots of grief...
348 *
349 * Why are we testing PMD* at this top level? Because often
350 * there will be no work to do at all, and we'd prefer not to
351 * go all the way down to the bottom just to discover that.
352 *
353 * Why all these "- 1"s? Because 0 represents both the bottom
354 * of the address space and the top of it (using -1 for the
355 * top wouldn't help much: the masks would do the wrong thing).
356 * The rule is that addr 0 and floor 0 refer to the bottom of
357 * the address space, but end 0 and ceiling 0 refer to the top
358 * Comparisons need to use "end - 1" and "ceiling - 1" (though
359 * that end 0 case should be mythical).
360 *
361 * Wherever addr is brought up or ceiling brought down, we must
362 * be careful to reject "the opposite 0" before it confuses the
363 * subsequent tests. But what about where end is brought down
364 * by PMD_SIZE below? no, end can't go down to 0 there.
365 *
366 * Whereas we round start (addr) and ceiling down, by different
367 * masks at different levels, in order to test whether a table
368 * now has no other vmas using it, so can be freed, we don't
369 * bother to round floor or end up - the tests don't need that.
370 */
1da177e4 371
e0da382c
HD
372 addr &= PMD_MASK;
373 if (addr < floor) {
374 addr += PMD_SIZE;
375 if (!addr)
376 return;
377 }
378 if (ceiling) {
379 ceiling &= PMD_MASK;
380 if (!ceiling)
381 return;
382 }
383 if (end - 1 > ceiling - 1)
384 end -= PMD_SIZE;
385 if (addr > end - 1)
386 return;
07e32661
AK
387 /*
388 * We add page table cache pages with PAGE_SIZE,
389 * (see pte_free_tlb()), flush the tlb if we need
390 */
ed6a7935 391 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 392 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
393 do {
394 next = pgd_addr_end(addr, end);
395 if (pgd_none_or_clear_bad(pgd))
396 continue;
c2febafc 397 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 398 } while (pgd++, addr = next, addr != end);
e0da382c
HD
399}
400
42b77728 401void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 402 unsigned long floor, unsigned long ceiling)
e0da382c
HD
403{
404 while (vma) {
405 struct vm_area_struct *next = vma->vm_next;
406 unsigned long addr = vma->vm_start;
407
8f4f8c16 408 /*
25d9e2d1
NP
409 * Hide vma from rmap and truncate_pagecache before freeing
410 * pgtables
8f4f8c16 411 */
5beb4930 412 unlink_anon_vmas(vma);
8f4f8c16
HD
413 unlink_file_vma(vma);
414
9da61aef 415 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 416 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 417 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
418 } else {
419 /*
420 * Optimization: gather nearby vmas into one call down
421 */
422 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 423 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
424 vma = next;
425 next = vma->vm_next;
5beb4930 426 unlink_anon_vmas(vma);
8f4f8c16 427 unlink_file_vma(vma);
3bf5ee95
HD
428 }
429 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 430 floor, next ? next->vm_start : ceiling);
3bf5ee95 431 }
e0da382c
HD
432 vma = next;
433 }
1da177e4
LT
434}
435
4cf58924 436int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 437{
c4088ebd 438 spinlock_t *ptl;
4cf58924 439 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
440 if (!new)
441 return -ENOMEM;
442
362a61ad
NP
443 /*
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
447 *
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
bb7cdd38 454 * smp_rmb() barriers in page table walking code.
362a61ad
NP
455 */
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457
c4088ebd 458 ptl = pmd_lock(mm, pmd);
8ac1f832 459 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 460 mm_inc_nr_ptes(mm);
1da177e4 461 pmd_populate(mm, pmd, new);
2f569afd 462 new = NULL;
4b471e88 463 }
c4088ebd 464 spin_unlock(ptl);
2f569afd
MS
465 if (new)
466 pte_free(mm, new);
1bb3630e 467 return 0;
1da177e4
LT
468}
469
4cf58924 470int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 471{
4cf58924 472 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
473 if (!new)
474 return -ENOMEM;
475
362a61ad
NP
476 smp_wmb(); /* See comment in __pte_alloc */
477
1bb3630e 478 spin_lock(&init_mm.page_table_lock);
8ac1f832 479 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 480 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 481 new = NULL;
4b471e88 482 }
1bb3630e 483 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
484 if (new)
485 pte_free_kernel(&init_mm, new);
1bb3630e 486 return 0;
1da177e4
LT
487}
488
d559db08
KH
489static inline void init_rss_vec(int *rss)
490{
491 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492}
493
494static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 495{
d559db08
KH
496 int i;
497
34e55232 498 if (current->mm == mm)
05af2e10 499 sync_mm_rss(mm);
d559db08
KH
500 for (i = 0; i < NR_MM_COUNTERS; i++)
501 if (rss[i])
502 add_mm_counter(mm, i, rss[i]);
ae859762
HD
503}
504
b5810039 505/*
6aab341e
LT
506 * This function is called to print an error when a bad pte
507 * is found. For example, we might have a PFN-mapped pte in
508 * a region that doesn't allow it.
b5810039
NP
509 *
510 * The calling function must still handle the error.
511 */
3dc14741
HD
512static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513 pte_t pte, struct page *page)
b5810039 514{
3dc14741 515 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
516 p4d_t *p4d = p4d_offset(pgd, addr);
517 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
518 pmd_t *pmd = pmd_offset(pud, addr);
519 struct address_space *mapping;
520 pgoff_t index;
d936cf9b
HD
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 return;
533 }
534 if (nr_unshown) {
1170532b
JP
535 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536 nr_unshown);
d936cf9b
HD
537 nr_unshown = 0;
538 }
539 nr_shown = 0;
540 }
541 if (nr_shown++ == 0)
542 resume = jiffies + 60 * HZ;
3dc14741
HD
543
544 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545 index = linear_page_index(vma, addr);
546
1170532b
JP
547 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
548 current->comm,
549 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 550 if (page)
f0b791a3 551 dump_page(page, "bad pte");
6aa9b8b2 552 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 553 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 554 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
555 vma->vm_file,
556 vma->vm_ops ? vma->vm_ops->fault : NULL,
557 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558 mapping ? mapping->a_ops->readpage : NULL);
b5810039 559 dump_stack();
373d4d09 560 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
561}
562
ee498ed7 563/*
7e675137 564 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 565 *
7e675137
NP
566 * "Special" mappings do not wish to be associated with a "struct page" (either
567 * it doesn't exist, or it exists but they don't want to touch it). In this
568 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 569 *
7e675137
NP
570 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571 * pte bit, in which case this function is trivial. Secondly, an architecture
572 * may not have a spare pte bit, which requires a more complicated scheme,
573 * described below.
574 *
575 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576 * special mapping (even if there are underlying and valid "struct pages").
577 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 578 *
b379d790
JH
579 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
581 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582 * mapping will always honor the rule
6aab341e
LT
583 *
584 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585 *
7e675137
NP
586 * And for normal mappings this is false.
587 *
588 * This restricts such mappings to be a linear translation from virtual address
589 * to pfn. To get around this restriction, we allow arbitrary mappings so long
590 * as the vma is not a COW mapping; in that case, we know that all ptes are
591 * special (because none can have been COWed).
b379d790 592 *
b379d790 593 *
7e675137 594 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
595 *
596 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597 * page" backing, however the difference is that _all_ pages with a struct
598 * page (that is, those where pfn_valid is true) are refcounted and considered
599 * normal pages by the VM. The disadvantage is that pages are refcounted
600 * (which can be slower and simply not an option for some PFNMAP users). The
601 * advantage is that we don't have to follow the strict linearity rule of
602 * PFNMAP mappings in order to support COWable mappings.
603 *
ee498ed7 604 */
25b2995a
CH
605struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606 pte_t pte)
ee498ed7 607{
22b31eec 608 unsigned long pfn = pte_pfn(pte);
7e675137 609
00b3a331 610 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 611 if (likely(!pte_special(pte)))
22b31eec 612 goto check_pfn;
667a0a06
DV
613 if (vma->vm_ops && vma->vm_ops->find_special_page)
614 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
615 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616 return NULL;
df6ad698
JG
617 if (is_zero_pfn(pfn))
618 return NULL;
e1fb4a08
DJ
619 if (pte_devmap(pte))
620 return NULL;
621
df6ad698 622 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
623 return NULL;
624 }
625
00b3a331 626 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 627
b379d790
JH
628 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629 if (vma->vm_flags & VM_MIXEDMAP) {
630 if (!pfn_valid(pfn))
631 return NULL;
632 goto out;
633 } else {
7e675137
NP
634 unsigned long off;
635 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
636 if (pfn == vma->vm_pgoff + off)
637 return NULL;
638 if (!is_cow_mapping(vma->vm_flags))
639 return NULL;
640 }
6aab341e
LT
641 }
642
b38af472
HD
643 if (is_zero_pfn(pfn))
644 return NULL;
00b3a331 645
22b31eec
HD
646check_pfn:
647 if (unlikely(pfn > highest_memmap_pfn)) {
648 print_bad_pte(vma, addr, pte, NULL);
649 return NULL;
650 }
6aab341e
LT
651
652 /*
7e675137 653 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 654 * eg. VDSO mappings can cause them to exist.
6aab341e 655 */
b379d790 656out:
6aab341e 657 return pfn_to_page(pfn);
ee498ed7
HD
658}
659
28093f9f
GS
660#ifdef CONFIG_TRANSPARENT_HUGEPAGE
661struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662 pmd_t pmd)
663{
664 unsigned long pfn = pmd_pfn(pmd);
665
666 /*
667 * There is no pmd_special() but there may be special pmds, e.g.
668 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 669 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
670 */
671 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672 if (vma->vm_flags & VM_MIXEDMAP) {
673 if (!pfn_valid(pfn))
674 return NULL;
675 goto out;
676 } else {
677 unsigned long off;
678 off = (addr - vma->vm_start) >> PAGE_SHIFT;
679 if (pfn == vma->vm_pgoff + off)
680 return NULL;
681 if (!is_cow_mapping(vma->vm_flags))
682 return NULL;
683 }
684 }
685
e1fb4a08
DJ
686 if (pmd_devmap(pmd))
687 return NULL;
3cde287b 688 if (is_huge_zero_pmd(pmd))
28093f9f
GS
689 return NULL;
690 if (unlikely(pfn > highest_memmap_pfn))
691 return NULL;
692
693 /*
694 * NOTE! We still have PageReserved() pages in the page tables.
695 * eg. VDSO mappings can cause them to exist.
696 */
697out:
698 return pfn_to_page(pfn);
699}
700#endif
701
b756a3b5
AP
702static void restore_exclusive_pte(struct vm_area_struct *vma,
703 struct page *page, unsigned long address,
704 pte_t *ptep)
705{
706 pte_t pte;
707 swp_entry_t entry;
708
709 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
710 if (pte_swp_soft_dirty(*ptep))
711 pte = pte_mksoft_dirty(pte);
712
713 entry = pte_to_swp_entry(*ptep);
714 if (pte_swp_uffd_wp(*ptep))
715 pte = pte_mkuffd_wp(pte);
716 else if (is_writable_device_exclusive_entry(entry))
717 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
718
719 set_pte_at(vma->vm_mm, address, ptep, pte);
720
721 /*
722 * No need to take a page reference as one was already
723 * created when the swap entry was made.
724 */
725 if (PageAnon(page))
726 page_add_anon_rmap(page, vma, address, false);
727 else
728 /*
729 * Currently device exclusive access only supports anonymous
730 * memory so the entry shouldn't point to a filebacked page.
731 */
732 WARN_ON_ONCE(!PageAnon(page));
733
734 if (vma->vm_flags & VM_LOCKED)
735 mlock_vma_page(page);
736
737 /*
738 * No need to invalidate - it was non-present before. However
739 * secondary CPUs may have mappings that need invalidating.
740 */
741 update_mmu_cache(vma, address, ptep);
742}
743
744/*
745 * Tries to restore an exclusive pte if the page lock can be acquired without
746 * sleeping.
747 */
748static int
749try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
750 unsigned long addr)
751{
752 swp_entry_t entry = pte_to_swp_entry(*src_pte);
753 struct page *page = pfn_swap_entry_to_page(entry);
754
755 if (trylock_page(page)) {
756 restore_exclusive_pte(vma, page, addr, src_pte);
757 unlock_page(page);
758 return 0;
759 }
760
761 return -EBUSY;
762}
763
1da177e4
LT
764/*
765 * copy one vm_area from one task to the other. Assumes the page tables
766 * already present in the new task to be cleared in the whole range
767 * covered by this vma.
1da177e4
LT
768 */
769
df3a57d1
LT
770static unsigned long
771copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
772 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
773 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 774{
8f34f1ea 775 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
776 pte_t pte = *src_pte;
777 struct page *page;
df3a57d1
LT
778 swp_entry_t entry = pte_to_swp_entry(pte);
779
780 if (likely(!non_swap_entry(entry))) {
781 if (swap_duplicate(entry) < 0)
9a5cc85c 782 return -EIO;
df3a57d1
LT
783
784 /* make sure dst_mm is on swapoff's mmlist. */
785 if (unlikely(list_empty(&dst_mm->mmlist))) {
786 spin_lock(&mmlist_lock);
787 if (list_empty(&dst_mm->mmlist))
788 list_add(&dst_mm->mmlist,
789 &src_mm->mmlist);
790 spin_unlock(&mmlist_lock);
791 }
792 rss[MM_SWAPENTS]++;
793 } else if (is_migration_entry(entry)) {
af5cdaf8 794 page = pfn_swap_entry_to_page(entry);
1da177e4 795
df3a57d1 796 rss[mm_counter(page)]++;
5042db43 797
4dd845b5 798 if (is_writable_migration_entry(entry) &&
df3a57d1 799 is_cow_mapping(vm_flags)) {
5042db43 800 /*
df3a57d1
LT
801 * COW mappings require pages in both
802 * parent and child to be set to read.
5042db43 803 */
4dd845b5
AP
804 entry = make_readable_migration_entry(
805 swp_offset(entry));
df3a57d1
LT
806 pte = swp_entry_to_pte(entry);
807 if (pte_swp_soft_dirty(*src_pte))
808 pte = pte_swp_mksoft_dirty(pte);
809 if (pte_swp_uffd_wp(*src_pte))
810 pte = pte_swp_mkuffd_wp(pte);
811 set_pte_at(src_mm, addr, src_pte, pte);
812 }
813 } else if (is_device_private_entry(entry)) {
af5cdaf8 814 page = pfn_swap_entry_to_page(entry);
5042db43 815
df3a57d1
LT
816 /*
817 * Update rss count even for unaddressable pages, as
818 * they should treated just like normal pages in this
819 * respect.
820 *
821 * We will likely want to have some new rss counters
822 * for unaddressable pages, at some point. But for now
823 * keep things as they are.
824 */
825 get_page(page);
826 rss[mm_counter(page)]++;
827 page_dup_rmap(page, false);
828
829 /*
830 * We do not preserve soft-dirty information, because so
831 * far, checkpoint/restore is the only feature that
832 * requires that. And checkpoint/restore does not work
833 * when a device driver is involved (you cannot easily
834 * save and restore device driver state).
835 */
4dd845b5 836 if (is_writable_device_private_entry(entry) &&
df3a57d1 837 is_cow_mapping(vm_flags)) {
4dd845b5
AP
838 entry = make_readable_device_private_entry(
839 swp_offset(entry));
df3a57d1
LT
840 pte = swp_entry_to_pte(entry);
841 if (pte_swp_uffd_wp(*src_pte))
842 pte = pte_swp_mkuffd_wp(pte);
843 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 844 }
b756a3b5
AP
845 } else if (is_device_exclusive_entry(entry)) {
846 /*
847 * Make device exclusive entries present by restoring the
848 * original entry then copying as for a present pte. Device
849 * exclusive entries currently only support private writable
850 * (ie. COW) mappings.
851 */
852 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
853 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
854 return -EBUSY;
855 return -ENOENT;
1da177e4 856 }
8f34f1ea
PX
857 if (!userfaultfd_wp(dst_vma))
858 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
859 set_pte_at(dst_mm, addr, dst_pte, pte);
860 return 0;
861}
862
70e806e4
PX
863/*
864 * Copy a present and normal page if necessary.
865 *
866 * NOTE! The usual case is that this doesn't need to do
867 * anything, and can just return a positive value. That
868 * will let the caller know that it can just increase
869 * the page refcount and re-use the pte the traditional
870 * way.
871 *
872 * But _if_ we need to copy it because it needs to be
873 * pinned in the parent (and the child should get its own
874 * copy rather than just a reference to the same page),
875 * we'll do that here and return zero to let the caller
876 * know we're done.
877 *
878 * And if we need a pre-allocated page but don't yet have
879 * one, return a negative error to let the preallocation
880 * code know so that it can do so outside the page table
881 * lock.
882 */
883static inline int
c78f4636
PX
884copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
885 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
886 struct page **prealloc, pte_t pte, struct page *page)
70e806e4
PX
887{
888 struct page *new_page;
889
70e806e4 890 /*
70e806e4
PX
891 * What we want to do is to check whether this page may
892 * have been pinned by the parent process. If so,
893 * instead of wrprotect the pte on both sides, we copy
894 * the page immediately so that we'll always guarantee
895 * the pinned page won't be randomly replaced in the
896 * future.
897 *
f3c64eda
LT
898 * The page pinning checks are just "has this mm ever
899 * seen pinning", along with the (inexact) check of
900 * the page count. That might give false positives for
901 * for pinning, but it will work correctly.
70e806e4 902 */
97a7e473 903 if (likely(!page_needs_cow_for_dma(src_vma, page)))
70e806e4
PX
904 return 1;
905
70e806e4
PX
906 new_page = *prealloc;
907 if (!new_page)
908 return -EAGAIN;
909
910 /*
911 * We have a prealloc page, all good! Take it
912 * over and copy the page & arm it.
913 */
914 *prealloc = NULL;
c78f4636 915 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 916 __SetPageUptodate(new_page);
c78f4636
PX
917 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
918 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
919 rss[mm_counter(new_page)]++;
920
921 /* All done, just insert the new page copy in the child */
c78f4636
PX
922 pte = mk_pte(new_page, dst_vma->vm_page_prot);
923 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
924 if (userfaultfd_pte_wp(dst_vma, *src_pte))
925 /* Uffd-wp needs to be delivered to dest pte as well */
926 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 927 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
928 return 0;
929}
930
931/*
932 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
933 * is required to copy this pte.
934 */
935static inline int
c78f4636
PX
936copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
937 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
938 struct page **prealloc)
df3a57d1 939{
c78f4636
PX
940 struct mm_struct *src_mm = src_vma->vm_mm;
941 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
942 pte_t pte = *src_pte;
943 struct page *page;
944
c78f4636 945 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
946 if (page) {
947 int retval;
948
c78f4636
PX
949 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
950 addr, rss, prealloc, pte, page);
70e806e4
PX
951 if (retval <= 0)
952 return retval;
953
954 get_page(page);
955 page_dup_rmap(page, false);
956 rss[mm_counter(page)]++;
957 }
958
1da177e4
LT
959 /*
960 * If it's a COW mapping, write protect it both
961 * in the parent and the child
962 */
1b2de5d0 963 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 964 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 965 pte = pte_wrprotect(pte);
1da177e4
LT
966 }
967
968 /*
969 * If it's a shared mapping, mark it clean in
970 * the child
971 */
972 if (vm_flags & VM_SHARED)
973 pte = pte_mkclean(pte);
974 pte = pte_mkold(pte);
6aab341e 975
8f34f1ea 976 if (!userfaultfd_wp(dst_vma))
b569a176
PX
977 pte = pte_clear_uffd_wp(pte);
978
c78f4636 979 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
980 return 0;
981}
982
983static inline struct page *
984page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
985 unsigned long addr)
986{
987 struct page *new_page;
988
989 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
990 if (!new_page)
991 return NULL;
992
993 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
994 put_page(new_page);
995 return NULL;
6aab341e 996 }
70e806e4 997 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 998
70e806e4 999 return new_page;
1da177e4
LT
1000}
1001
c78f4636
PX
1002static int
1003copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005 unsigned long end)
1da177e4 1006{
c78f4636
PX
1007 struct mm_struct *dst_mm = dst_vma->vm_mm;
1008 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1009 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1010 pte_t *src_pte, *dst_pte;
c74df32c 1011 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1012 int progress, ret = 0;
d559db08 1013 int rss[NR_MM_COUNTERS];
570a335b 1014 swp_entry_t entry = (swp_entry_t){0};
70e806e4 1015 struct page *prealloc = NULL;
1da177e4
LT
1016
1017again:
70e806e4 1018 progress = 0;
d559db08
KH
1019 init_rss_vec(rss);
1020
c74df32c 1021 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1022 if (!dst_pte) {
1023 ret = -ENOMEM;
1024 goto out;
1025 }
ece0e2b6 1026 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1027 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1028 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1029 orig_src_pte = src_pte;
1030 orig_dst_pte = dst_pte;
6606c3e0 1031 arch_enter_lazy_mmu_mode();
1da177e4 1032
1da177e4
LT
1033 do {
1034 /*
1035 * We are holding two locks at this point - either of them
1036 * could generate latencies in another task on another CPU.
1037 */
e040f218
HD
1038 if (progress >= 32) {
1039 progress = 0;
1040 if (need_resched() ||
95c354fe 1041 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1042 break;
1043 }
1da177e4
LT
1044 if (pte_none(*src_pte)) {
1045 progress++;
1046 continue;
1047 }
79a1971c 1048 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1049 ret = copy_nonpresent_pte(dst_mm, src_mm,
1050 dst_pte, src_pte,
1051 dst_vma, src_vma,
1052 addr, rss);
1053 if (ret == -EIO) {
1054 entry = pte_to_swp_entry(*src_pte);
79a1971c 1055 break;
b756a3b5
AP
1056 } else if (ret == -EBUSY) {
1057 break;
1058 } else if (!ret) {
1059 progress += 8;
1060 continue;
9a5cc85c 1061 }
b756a3b5
AP
1062
1063 /*
1064 * Device exclusive entry restored, continue by copying
1065 * the now present pte.
1066 */
1067 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1068 }
70e806e4 1069 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1070 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1071 addr, rss, &prealloc);
70e806e4
PX
1072 /*
1073 * If we need a pre-allocated page for this pte, drop the
1074 * locks, allocate, and try again.
1075 */
1076 if (unlikely(ret == -EAGAIN))
1077 break;
1078 if (unlikely(prealloc)) {
1079 /*
1080 * pre-alloc page cannot be reused by next time so as
1081 * to strictly follow mempolicy (e.g., alloc_page_vma()
1082 * will allocate page according to address). This
1083 * could only happen if one pinned pte changed.
1084 */
1085 put_page(prealloc);
1086 prealloc = NULL;
1087 }
1da177e4
LT
1088 progress += 8;
1089 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1090
6606c3e0 1091 arch_leave_lazy_mmu_mode();
c74df32c 1092 spin_unlock(src_ptl);
ece0e2b6 1093 pte_unmap(orig_src_pte);
d559db08 1094 add_mm_rss_vec(dst_mm, rss);
c36987e2 1095 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1096 cond_resched();
570a335b 1097
9a5cc85c
AP
1098 if (ret == -EIO) {
1099 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1100 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1101 ret = -ENOMEM;
1102 goto out;
1103 }
1104 entry.val = 0;
b756a3b5
AP
1105 } else if (ret == -EBUSY) {
1106 goto out;
9a5cc85c 1107 } else if (ret == -EAGAIN) {
c78f4636 1108 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1109 if (!prealloc)
570a335b 1110 return -ENOMEM;
9a5cc85c
AP
1111 } else if (ret) {
1112 VM_WARN_ON_ONCE(1);
570a335b 1113 }
9a5cc85c
AP
1114
1115 /* We've captured and resolved the error. Reset, try again. */
1116 ret = 0;
1117
1da177e4
LT
1118 if (addr != end)
1119 goto again;
70e806e4
PX
1120out:
1121 if (unlikely(prealloc))
1122 put_page(prealloc);
1123 return ret;
1da177e4
LT
1124}
1125
c78f4636
PX
1126static inline int
1127copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1128 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1129 unsigned long end)
1da177e4 1130{
c78f4636
PX
1131 struct mm_struct *dst_mm = dst_vma->vm_mm;
1132 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1133 pmd_t *src_pmd, *dst_pmd;
1134 unsigned long next;
1135
1136 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1137 if (!dst_pmd)
1138 return -ENOMEM;
1139 src_pmd = pmd_offset(src_pud, addr);
1140 do {
1141 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1142 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1143 || pmd_devmap(*src_pmd)) {
71e3aac0 1144 int err;
c78f4636 1145 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1146 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1147 addr, dst_vma, src_vma);
71e3aac0
AA
1148 if (err == -ENOMEM)
1149 return -ENOMEM;
1150 if (!err)
1151 continue;
1152 /* fall through */
1153 }
1da177e4
LT
1154 if (pmd_none_or_clear_bad(src_pmd))
1155 continue;
c78f4636
PX
1156 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1157 addr, next))
1da177e4
LT
1158 return -ENOMEM;
1159 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1160 return 0;
1161}
1162
c78f4636
PX
1163static inline int
1164copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1165 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1166 unsigned long end)
1da177e4 1167{
c78f4636
PX
1168 struct mm_struct *dst_mm = dst_vma->vm_mm;
1169 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1170 pud_t *src_pud, *dst_pud;
1171 unsigned long next;
1172
c2febafc 1173 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1174 if (!dst_pud)
1175 return -ENOMEM;
c2febafc 1176 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1177 do {
1178 next = pud_addr_end(addr, end);
a00cc7d9
MW
1179 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1180 int err;
1181
c78f4636 1182 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1183 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1184 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1185 if (err == -ENOMEM)
1186 return -ENOMEM;
1187 if (!err)
1188 continue;
1189 /* fall through */
1190 }
1da177e4
LT
1191 if (pud_none_or_clear_bad(src_pud))
1192 continue;
c78f4636
PX
1193 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1194 addr, next))
1da177e4
LT
1195 return -ENOMEM;
1196 } while (dst_pud++, src_pud++, addr = next, addr != end);
1197 return 0;
1198}
1199
c78f4636
PX
1200static inline int
1201copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1202 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1203 unsigned long end)
c2febafc 1204{
c78f4636 1205 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1206 p4d_t *src_p4d, *dst_p4d;
1207 unsigned long next;
1208
1209 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1210 if (!dst_p4d)
1211 return -ENOMEM;
1212 src_p4d = p4d_offset(src_pgd, addr);
1213 do {
1214 next = p4d_addr_end(addr, end);
1215 if (p4d_none_or_clear_bad(src_p4d))
1216 continue;
c78f4636
PX
1217 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1218 addr, next))
c2febafc
KS
1219 return -ENOMEM;
1220 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1221 return 0;
1222}
1223
c78f4636
PX
1224int
1225copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1226{
1227 pgd_t *src_pgd, *dst_pgd;
1228 unsigned long next;
c78f4636
PX
1229 unsigned long addr = src_vma->vm_start;
1230 unsigned long end = src_vma->vm_end;
1231 struct mm_struct *dst_mm = dst_vma->vm_mm;
1232 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1233 struct mmu_notifier_range range;
2ec74c3e 1234 bool is_cow;
cddb8a5c 1235 int ret;
1da177e4 1236
d992895b
NP
1237 /*
1238 * Don't copy ptes where a page fault will fill them correctly.
1239 * Fork becomes much lighter when there are big shared or private
1240 * readonly mappings. The tradeoff is that copy_page_range is more
1241 * efficient than faulting.
1242 */
c78f4636
PX
1243 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1244 !src_vma->anon_vma)
0661a336 1245 return 0;
d992895b 1246
c78f4636
PX
1247 if (is_vm_hugetlb_page(src_vma))
1248 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1249
c78f4636 1250 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1251 /*
1252 * We do not free on error cases below as remove_vma
1253 * gets called on error from higher level routine
1254 */
c78f4636 1255 ret = track_pfn_copy(src_vma);
2ab64037 1256 if (ret)
1257 return ret;
1258 }
1259
cddb8a5c
AA
1260 /*
1261 * We need to invalidate the secondary MMU mappings only when
1262 * there could be a permission downgrade on the ptes of the
1263 * parent mm. And a permission downgrade will only happen if
1264 * is_cow_mapping() returns true.
1265 */
c78f4636 1266 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1267
1268 if (is_cow) {
7269f999 1269 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1270 0, src_vma, src_mm, addr, end);
ac46d4f3 1271 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1272 /*
1273 * Disabling preemption is not needed for the write side, as
1274 * the read side doesn't spin, but goes to the mmap_lock.
1275 *
1276 * Use the raw variant of the seqcount_t write API to avoid
1277 * lockdep complaining about preemptibility.
1278 */
1279 mmap_assert_write_locked(src_mm);
1280 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1281 }
cddb8a5c
AA
1282
1283 ret = 0;
1da177e4
LT
1284 dst_pgd = pgd_offset(dst_mm, addr);
1285 src_pgd = pgd_offset(src_mm, addr);
1286 do {
1287 next = pgd_addr_end(addr, end);
1288 if (pgd_none_or_clear_bad(src_pgd))
1289 continue;
c78f4636
PX
1290 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1291 addr, next))) {
cddb8a5c
AA
1292 ret = -ENOMEM;
1293 break;
1294 }
1da177e4 1295 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1296
57efa1fe
JG
1297 if (is_cow) {
1298 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1299 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1300 }
cddb8a5c 1301 return ret;
1da177e4
LT
1302}
1303
51c6f666 1304static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1305 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1306 unsigned long addr, unsigned long end,
97a89413 1307 struct zap_details *details)
1da177e4 1308{
b5810039 1309 struct mm_struct *mm = tlb->mm;
d16dfc55 1310 int force_flush = 0;
d559db08 1311 int rss[NR_MM_COUNTERS];
97a89413 1312 spinlock_t *ptl;
5f1a1907 1313 pte_t *start_pte;
97a89413 1314 pte_t *pte;
8a5f14a2 1315 swp_entry_t entry;
d559db08 1316
ed6a7935 1317 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1318again:
e303297e 1319 init_rss_vec(rss);
5f1a1907
SR
1320 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1321 pte = start_pte;
3ea27719 1322 flush_tlb_batched_pending(mm);
6606c3e0 1323 arch_enter_lazy_mmu_mode();
1da177e4
LT
1324 do {
1325 pte_t ptent = *pte;
166f61b9 1326 if (pte_none(ptent))
1da177e4 1327 continue;
6f5e6b9e 1328
7b167b68
MK
1329 if (need_resched())
1330 break;
1331
1da177e4 1332 if (pte_present(ptent)) {
ee498ed7 1333 struct page *page;
51c6f666 1334
25b2995a 1335 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1336 if (unlikely(details) && page) {
1337 /*
1338 * unmap_shared_mapping_pages() wants to
1339 * invalidate cache without truncating:
1340 * unmap shared but keep private pages.
1341 */
1342 if (details->check_mapping &&
800d8c63 1343 details->check_mapping != page_rmapping(page))
1da177e4 1344 continue;
1da177e4 1345 }
b5810039 1346 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1347 tlb->fullmm);
1da177e4
LT
1348 tlb_remove_tlb_entry(tlb, pte, addr);
1349 if (unlikely(!page))
1350 continue;
eca56ff9
JM
1351
1352 if (!PageAnon(page)) {
1cf35d47
LT
1353 if (pte_dirty(ptent)) {
1354 force_flush = 1;
6237bcd9 1355 set_page_dirty(page);
1cf35d47 1356 }
4917e5d0 1357 if (pte_young(ptent) &&
64363aad 1358 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1359 mark_page_accessed(page);
6237bcd9 1360 }
eca56ff9 1361 rss[mm_counter(page)]--;
d281ee61 1362 page_remove_rmap(page, false);
3dc14741
HD
1363 if (unlikely(page_mapcount(page) < 0))
1364 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1365 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1366 force_flush = 1;
ce9ec37b 1367 addr += PAGE_SIZE;
d16dfc55 1368 break;
1cf35d47 1369 }
1da177e4
LT
1370 continue;
1371 }
5042db43
JG
1372
1373 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1374 if (is_device_private_entry(entry) ||
1375 is_device_exclusive_entry(entry)) {
af5cdaf8 1376 struct page *page = pfn_swap_entry_to_page(entry);
5042db43
JG
1377
1378 if (unlikely(details && details->check_mapping)) {
1379 /*
1380 * unmap_shared_mapping_pages() wants to
1381 * invalidate cache without truncating:
1382 * unmap shared but keep private pages.
1383 */
1384 if (details->check_mapping !=
1385 page_rmapping(page))
1386 continue;
1387 }
1388
1389 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1390 rss[mm_counter(page)]--;
b756a3b5
AP
1391
1392 if (is_device_private_entry(entry))
1393 page_remove_rmap(page, false);
1394
5042db43
JG
1395 put_page(page);
1396 continue;
1397 }
1398
3e8715fd
KS
1399 /* If details->check_mapping, we leave swap entries. */
1400 if (unlikely(details))
1da177e4 1401 continue;
b084d435 1402
8a5f14a2
KS
1403 if (!non_swap_entry(entry))
1404 rss[MM_SWAPENTS]--;
1405 else if (is_migration_entry(entry)) {
1406 struct page *page;
9f9f1acd 1407
af5cdaf8 1408 page = pfn_swap_entry_to_page(entry);
eca56ff9 1409 rss[mm_counter(page)]--;
b084d435 1410 }
8a5f14a2
KS
1411 if (unlikely(!free_swap_and_cache(entry)))
1412 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1413 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1414 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1415
d559db08 1416 add_mm_rss_vec(mm, rss);
6606c3e0 1417 arch_leave_lazy_mmu_mode();
51c6f666 1418
1cf35d47 1419 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1420 if (force_flush)
1cf35d47 1421 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1422 pte_unmap_unlock(start_pte, ptl);
1423
1424 /*
1425 * If we forced a TLB flush (either due to running out of
1426 * batch buffers or because we needed to flush dirty TLB
1427 * entries before releasing the ptl), free the batched
1428 * memory too. Restart if we didn't do everything.
1429 */
1430 if (force_flush) {
1431 force_flush = 0;
fa0aafb8 1432 tlb_flush_mmu(tlb);
7b167b68
MK
1433 }
1434
1435 if (addr != end) {
1436 cond_resched();
1437 goto again;
d16dfc55
PZ
1438 }
1439
51c6f666 1440 return addr;
1da177e4
LT
1441}
1442
51c6f666 1443static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1444 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1445 unsigned long addr, unsigned long end,
97a89413 1446 struct zap_details *details)
1da177e4
LT
1447{
1448 pmd_t *pmd;
1449 unsigned long next;
1450
1451 pmd = pmd_offset(pud, addr);
1452 do {
1453 next = pmd_addr_end(addr, end);
84c3fc4e 1454 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1455 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1456 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1457 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1458 goto next;
71e3aac0 1459 /* fall through */
22061a1f
HD
1460 } else if (details && details->single_page &&
1461 PageTransCompound(details->single_page) &&
1462 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1463 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1464 /*
1465 * Take and drop THP pmd lock so that we cannot return
1466 * prematurely, while zap_huge_pmd() has cleared *pmd,
1467 * but not yet decremented compound_mapcount().
1468 */
1469 spin_unlock(ptl);
71e3aac0 1470 }
22061a1f 1471
1a5a9906
AA
1472 /*
1473 * Here there can be other concurrent MADV_DONTNEED or
1474 * trans huge page faults running, and if the pmd is
1475 * none or trans huge it can change under us. This is
c1e8d7c6 1476 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1477 * mode.
1478 */
1479 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1480 goto next;
97a89413 1481 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1482next:
97a89413
PZ
1483 cond_resched();
1484 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1485
1486 return addr;
1da177e4
LT
1487}
1488
51c6f666 1489static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1490 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1491 unsigned long addr, unsigned long end,
97a89413 1492 struct zap_details *details)
1da177e4
LT
1493{
1494 pud_t *pud;
1495 unsigned long next;
1496
c2febafc 1497 pud = pud_offset(p4d, addr);
1da177e4
LT
1498 do {
1499 next = pud_addr_end(addr, end);
a00cc7d9
MW
1500 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1501 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1502 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1503 split_huge_pud(vma, pud, addr);
1504 } else if (zap_huge_pud(tlb, vma, pud, addr))
1505 goto next;
1506 /* fall through */
1507 }
97a89413 1508 if (pud_none_or_clear_bad(pud))
1da177e4 1509 continue;
97a89413 1510 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1511next:
1512 cond_resched();
97a89413 1513 } while (pud++, addr = next, addr != end);
51c6f666
RH
1514
1515 return addr;
1da177e4
LT
1516}
1517
c2febafc
KS
1518static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1519 struct vm_area_struct *vma, pgd_t *pgd,
1520 unsigned long addr, unsigned long end,
1521 struct zap_details *details)
1522{
1523 p4d_t *p4d;
1524 unsigned long next;
1525
1526 p4d = p4d_offset(pgd, addr);
1527 do {
1528 next = p4d_addr_end(addr, end);
1529 if (p4d_none_or_clear_bad(p4d))
1530 continue;
1531 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1532 } while (p4d++, addr = next, addr != end);
1533
1534 return addr;
1535}
1536
aac45363 1537void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1538 struct vm_area_struct *vma,
1539 unsigned long addr, unsigned long end,
1540 struct zap_details *details)
1da177e4
LT
1541{
1542 pgd_t *pgd;
1543 unsigned long next;
1544
1da177e4
LT
1545 BUG_ON(addr >= end);
1546 tlb_start_vma(tlb, vma);
1547 pgd = pgd_offset(vma->vm_mm, addr);
1548 do {
1549 next = pgd_addr_end(addr, end);
97a89413 1550 if (pgd_none_or_clear_bad(pgd))
1da177e4 1551 continue;
c2febafc 1552 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1553 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1554 tlb_end_vma(tlb, vma);
1555}
51c6f666 1556
f5cc4eef
AV
1557
1558static void unmap_single_vma(struct mmu_gather *tlb,
1559 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1560 unsigned long end_addr,
f5cc4eef
AV
1561 struct zap_details *details)
1562{
1563 unsigned long start = max(vma->vm_start, start_addr);
1564 unsigned long end;
1565
1566 if (start >= vma->vm_end)
1567 return;
1568 end = min(vma->vm_end, end_addr);
1569 if (end <= vma->vm_start)
1570 return;
1571
cbc91f71
SD
1572 if (vma->vm_file)
1573 uprobe_munmap(vma, start, end);
1574
b3b9c293 1575 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1576 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1577
1578 if (start != end) {
1579 if (unlikely(is_vm_hugetlb_page(vma))) {
1580 /*
1581 * It is undesirable to test vma->vm_file as it
1582 * should be non-null for valid hugetlb area.
1583 * However, vm_file will be NULL in the error
7aa6b4ad 1584 * cleanup path of mmap_region. When
f5cc4eef 1585 * hugetlbfs ->mmap method fails,
7aa6b4ad 1586 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1587 * before calling this function to clean up.
1588 * Since no pte has actually been setup, it is
1589 * safe to do nothing in this case.
1590 */
24669e58 1591 if (vma->vm_file) {
83cde9e8 1592 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1593 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1594 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1595 }
f5cc4eef
AV
1596 } else
1597 unmap_page_range(tlb, vma, start, end, details);
1598 }
1da177e4
LT
1599}
1600
1da177e4
LT
1601/**
1602 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1603 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1604 * @vma: the starting vma
1605 * @start_addr: virtual address at which to start unmapping
1606 * @end_addr: virtual address at which to end unmapping
1da177e4 1607 *
508034a3 1608 * Unmap all pages in the vma list.
1da177e4 1609 *
1da177e4
LT
1610 * Only addresses between `start' and `end' will be unmapped.
1611 *
1612 * The VMA list must be sorted in ascending virtual address order.
1613 *
1614 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1615 * range after unmap_vmas() returns. So the only responsibility here is to
1616 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1617 * drops the lock and schedules.
1618 */
6e8bb019 1619void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1620 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1621 unsigned long end_addr)
1da177e4 1622{
ac46d4f3 1623 struct mmu_notifier_range range;
1da177e4 1624
6f4f13e8
JG
1625 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1626 start_addr, end_addr);
ac46d4f3 1627 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1628 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1629 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1630 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1631}
1632
1633/**
1634 * zap_page_range - remove user pages in a given range
1635 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1636 * @start: starting address of pages to zap
1da177e4 1637 * @size: number of bytes to zap
f5cc4eef
AV
1638 *
1639 * Caller must protect the VMA list
1da177e4 1640 */
7e027b14 1641void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1642 unsigned long size)
1da177e4 1643{
ac46d4f3 1644 struct mmu_notifier_range range;
d16dfc55 1645 struct mmu_gather tlb;
1da177e4 1646
1da177e4 1647 lru_add_drain();
7269f999 1648 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1649 start, start + size);
a72afd87 1650 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1651 update_hiwater_rss(vma->vm_mm);
1652 mmu_notifier_invalidate_range_start(&range);
1653 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1654 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1655 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1656 tlb_finish_mmu(&tlb);
1da177e4 1657}
ebafbcf7 1658EXPORT_SYMBOL(zap_page_range);
1da177e4 1659
f5cc4eef
AV
1660/**
1661 * zap_page_range_single - remove user pages in a given range
1662 * @vma: vm_area_struct holding the applicable pages
1663 * @address: starting address of pages to zap
1664 * @size: number of bytes to zap
8a5f14a2 1665 * @details: details of shared cache invalidation
f5cc4eef
AV
1666 *
1667 * The range must fit into one VMA.
1da177e4 1668 */
f5cc4eef 1669static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1670 unsigned long size, struct zap_details *details)
1671{
ac46d4f3 1672 struct mmu_notifier_range range;
d16dfc55 1673 struct mmu_gather tlb;
1da177e4 1674
1da177e4 1675 lru_add_drain();
7269f999 1676 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1677 address, address + size);
a72afd87 1678 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1679 update_hiwater_rss(vma->vm_mm);
1680 mmu_notifier_invalidate_range_start(&range);
1681 unmap_single_vma(&tlb, vma, address, range.end, details);
1682 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1683 tlb_finish_mmu(&tlb);
1da177e4
LT
1684}
1685
c627f9cc
JS
1686/**
1687 * zap_vma_ptes - remove ptes mapping the vma
1688 * @vma: vm_area_struct holding ptes to be zapped
1689 * @address: starting address of pages to zap
1690 * @size: number of bytes to zap
1691 *
1692 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1693 *
1694 * The entire address range must be fully contained within the vma.
1695 *
c627f9cc 1696 */
27d036e3 1697void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1698 unsigned long size)
1699{
1700 if (address < vma->vm_start || address + size > vma->vm_end ||
1701 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1702 return;
1703
f5cc4eef 1704 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1705}
1706EXPORT_SYMBOL_GPL(zap_vma_ptes);
1707
8cd3984d 1708static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1709{
c2febafc
KS
1710 pgd_t *pgd;
1711 p4d_t *p4d;
1712 pud_t *pud;
1713 pmd_t *pmd;
1714
1715 pgd = pgd_offset(mm, addr);
1716 p4d = p4d_alloc(mm, pgd, addr);
1717 if (!p4d)
1718 return NULL;
1719 pud = pud_alloc(mm, p4d, addr);
1720 if (!pud)
1721 return NULL;
1722 pmd = pmd_alloc(mm, pud, addr);
1723 if (!pmd)
1724 return NULL;
1725
1726 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1727 return pmd;
1728}
1729
1730pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1731 spinlock_t **ptl)
1732{
1733 pmd_t *pmd = walk_to_pmd(mm, addr);
1734
1735 if (!pmd)
1736 return NULL;
c2febafc 1737 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1738}
1739
8efd6f5b
AR
1740static int validate_page_before_insert(struct page *page)
1741{
1742 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1743 return -EINVAL;
1744 flush_dcache_page(page);
1745 return 0;
1746}
1747
1748static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1749 unsigned long addr, struct page *page, pgprot_t prot)
1750{
1751 if (!pte_none(*pte))
1752 return -EBUSY;
1753 /* Ok, finally just insert the thing.. */
1754 get_page(page);
1755 inc_mm_counter_fast(mm, mm_counter_file(page));
1756 page_add_file_rmap(page, false);
1757 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1758 return 0;
1759}
1760
238f58d8
LT
1761/*
1762 * This is the old fallback for page remapping.
1763 *
1764 * For historical reasons, it only allows reserved pages. Only
1765 * old drivers should use this, and they needed to mark their
1766 * pages reserved for the old functions anyway.
1767 */
423bad60
NP
1768static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1769 struct page *page, pgprot_t prot)
238f58d8 1770{
423bad60 1771 struct mm_struct *mm = vma->vm_mm;
238f58d8 1772 int retval;
c9cfcddf 1773 pte_t *pte;
8a9f3ccd
BS
1774 spinlock_t *ptl;
1775
8efd6f5b
AR
1776 retval = validate_page_before_insert(page);
1777 if (retval)
5b4e655e 1778 goto out;
238f58d8 1779 retval = -ENOMEM;
c9cfcddf 1780 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1781 if (!pte)
5b4e655e 1782 goto out;
8efd6f5b 1783 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1784 pte_unmap_unlock(pte, ptl);
1785out:
1786 return retval;
1787}
1788
8cd3984d 1789#ifdef pte_index
7f70c2a6 1790static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1791 unsigned long addr, struct page *page, pgprot_t prot)
1792{
1793 int err;
1794
1795 if (!page_count(page))
1796 return -EINVAL;
1797 err = validate_page_before_insert(page);
7f70c2a6
AR
1798 if (err)
1799 return err;
1800 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1801}
1802
1803/* insert_pages() amortizes the cost of spinlock operations
1804 * when inserting pages in a loop. Arch *must* define pte_index.
1805 */
1806static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1807 struct page **pages, unsigned long *num, pgprot_t prot)
1808{
1809 pmd_t *pmd = NULL;
7f70c2a6
AR
1810 pte_t *start_pte, *pte;
1811 spinlock_t *pte_lock;
8cd3984d
AR
1812 struct mm_struct *const mm = vma->vm_mm;
1813 unsigned long curr_page_idx = 0;
1814 unsigned long remaining_pages_total = *num;
1815 unsigned long pages_to_write_in_pmd;
1816 int ret;
1817more:
1818 ret = -EFAULT;
1819 pmd = walk_to_pmd(mm, addr);
1820 if (!pmd)
1821 goto out;
1822
1823 pages_to_write_in_pmd = min_t(unsigned long,
1824 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1825
1826 /* Allocate the PTE if necessary; takes PMD lock once only. */
1827 ret = -ENOMEM;
1828 if (pte_alloc(mm, pmd))
1829 goto out;
8cd3984d
AR
1830
1831 while (pages_to_write_in_pmd) {
1832 int pte_idx = 0;
1833 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1834
7f70c2a6
AR
1835 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1836 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1837 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1838 addr, pages[curr_page_idx], prot);
1839 if (unlikely(err)) {
7f70c2a6 1840 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1841 ret = err;
1842 remaining_pages_total -= pte_idx;
1843 goto out;
1844 }
1845 addr += PAGE_SIZE;
1846 ++curr_page_idx;
1847 }
7f70c2a6 1848 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1849 pages_to_write_in_pmd -= batch_size;
1850 remaining_pages_total -= batch_size;
1851 }
1852 if (remaining_pages_total)
1853 goto more;
1854 ret = 0;
1855out:
1856 *num = remaining_pages_total;
1857 return ret;
1858}
1859#endif /* ifdef pte_index */
1860
1861/**
1862 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1863 * @vma: user vma to map to
1864 * @addr: target start user address of these pages
1865 * @pages: source kernel pages
1866 * @num: in: number of pages to map. out: number of pages that were *not*
1867 * mapped. (0 means all pages were successfully mapped).
1868 *
1869 * Preferred over vm_insert_page() when inserting multiple pages.
1870 *
1871 * In case of error, we may have mapped a subset of the provided
1872 * pages. It is the caller's responsibility to account for this case.
1873 *
1874 * The same restrictions apply as in vm_insert_page().
1875 */
1876int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1877 struct page **pages, unsigned long *num)
1878{
1879#ifdef pte_index
1880 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1881
1882 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1883 return -EFAULT;
1884 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1885 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1886 BUG_ON(vma->vm_flags & VM_PFNMAP);
1887 vma->vm_flags |= VM_MIXEDMAP;
1888 }
1889 /* Defer page refcount checking till we're about to map that page. */
1890 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1891#else
1892 unsigned long idx = 0, pgcount = *num;
45779b03 1893 int err = -EINVAL;
8cd3984d
AR
1894
1895 for (; idx < pgcount; ++idx) {
1896 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1897 if (err)
1898 break;
1899 }
1900 *num = pgcount - idx;
1901 return err;
1902#endif /* ifdef pte_index */
1903}
1904EXPORT_SYMBOL(vm_insert_pages);
1905
bfa5bf6d
REB
1906/**
1907 * vm_insert_page - insert single page into user vma
1908 * @vma: user vma to map to
1909 * @addr: target user address of this page
1910 * @page: source kernel page
1911 *
a145dd41
LT
1912 * This allows drivers to insert individual pages they've allocated
1913 * into a user vma.
1914 *
1915 * The page has to be a nice clean _individual_ kernel allocation.
1916 * If you allocate a compound page, you need to have marked it as
1917 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1918 * (see split_page()).
a145dd41
LT
1919 *
1920 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1921 * took an arbitrary page protection parameter. This doesn't allow
1922 * that. Your vma protection will have to be set up correctly, which
1923 * means that if you want a shared writable mapping, you'd better
1924 * ask for a shared writable mapping!
1925 *
1926 * The page does not need to be reserved.
4b6e1e37
KK
1927 *
1928 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1929 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1930 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1931 * function from other places, for example from page-fault handler.
a862f68a
MR
1932 *
1933 * Return: %0 on success, negative error code otherwise.
a145dd41 1934 */
423bad60
NP
1935int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1936 struct page *page)
a145dd41
LT
1937{
1938 if (addr < vma->vm_start || addr >= vma->vm_end)
1939 return -EFAULT;
1940 if (!page_count(page))
1941 return -EINVAL;
4b6e1e37 1942 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1943 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1944 BUG_ON(vma->vm_flags & VM_PFNMAP);
1945 vma->vm_flags |= VM_MIXEDMAP;
1946 }
423bad60 1947 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1948}
e3c3374f 1949EXPORT_SYMBOL(vm_insert_page);
a145dd41 1950
a667d745
SJ
1951/*
1952 * __vm_map_pages - maps range of kernel pages into user vma
1953 * @vma: user vma to map to
1954 * @pages: pointer to array of source kernel pages
1955 * @num: number of pages in page array
1956 * @offset: user's requested vm_pgoff
1957 *
1958 * This allows drivers to map range of kernel pages into a user vma.
1959 *
1960 * Return: 0 on success and error code otherwise.
1961 */
1962static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1963 unsigned long num, unsigned long offset)
1964{
1965 unsigned long count = vma_pages(vma);
1966 unsigned long uaddr = vma->vm_start;
1967 int ret, i;
1968
1969 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1970 if (offset >= num)
a667d745
SJ
1971 return -ENXIO;
1972
1973 /* Fail if the user requested size exceeds available object size */
1974 if (count > num - offset)
1975 return -ENXIO;
1976
1977 for (i = 0; i < count; i++) {
1978 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1979 if (ret < 0)
1980 return ret;
1981 uaddr += PAGE_SIZE;
1982 }
1983
1984 return 0;
1985}
1986
1987/**
1988 * vm_map_pages - maps range of kernel pages starts with non zero offset
1989 * @vma: user vma to map to
1990 * @pages: pointer to array of source kernel pages
1991 * @num: number of pages in page array
1992 *
1993 * Maps an object consisting of @num pages, catering for the user's
1994 * requested vm_pgoff
1995 *
1996 * If we fail to insert any page into the vma, the function will return
1997 * immediately leaving any previously inserted pages present. Callers
1998 * from the mmap handler may immediately return the error as their caller
1999 * will destroy the vma, removing any successfully inserted pages. Other
2000 * callers should make their own arrangements for calling unmap_region().
2001 *
2002 * Context: Process context. Called by mmap handlers.
2003 * Return: 0 on success and error code otherwise.
2004 */
2005int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2006 unsigned long num)
2007{
2008 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2009}
2010EXPORT_SYMBOL(vm_map_pages);
2011
2012/**
2013 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2014 * @vma: user vma to map to
2015 * @pages: pointer to array of source kernel pages
2016 * @num: number of pages in page array
2017 *
2018 * Similar to vm_map_pages(), except that it explicitly sets the offset
2019 * to 0. This function is intended for the drivers that did not consider
2020 * vm_pgoff.
2021 *
2022 * Context: Process context. Called by mmap handlers.
2023 * Return: 0 on success and error code otherwise.
2024 */
2025int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2026 unsigned long num)
2027{
2028 return __vm_map_pages(vma, pages, num, 0);
2029}
2030EXPORT_SYMBOL(vm_map_pages_zero);
2031
9b5a8e00 2032static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2033 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2034{
2035 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2036 pte_t *pte, entry;
2037 spinlock_t *ptl;
2038
423bad60
NP
2039 pte = get_locked_pte(mm, addr, &ptl);
2040 if (!pte)
9b5a8e00 2041 return VM_FAULT_OOM;
b2770da6
RZ
2042 if (!pte_none(*pte)) {
2043 if (mkwrite) {
2044 /*
2045 * For read faults on private mappings the PFN passed
2046 * in may not match the PFN we have mapped if the
2047 * mapped PFN is a writeable COW page. In the mkwrite
2048 * case we are creating a writable PTE for a shared
f2c57d91
JK
2049 * mapping and we expect the PFNs to match. If they
2050 * don't match, we are likely racing with block
2051 * allocation and mapping invalidation so just skip the
2052 * update.
b2770da6 2053 */
f2c57d91
JK
2054 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2055 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2056 goto out_unlock;
f2c57d91 2057 }
cae85cb8
JK
2058 entry = pte_mkyoung(*pte);
2059 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2060 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2061 update_mmu_cache(vma, addr, pte);
2062 }
2063 goto out_unlock;
b2770da6 2064 }
423bad60
NP
2065
2066 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2067 if (pfn_t_devmap(pfn))
2068 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2069 else
2070 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2071
b2770da6
RZ
2072 if (mkwrite) {
2073 entry = pte_mkyoung(entry);
2074 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2075 }
2076
423bad60 2077 set_pte_at(mm, addr, pte, entry);
4b3073e1 2078 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2079
423bad60
NP
2080out_unlock:
2081 pte_unmap_unlock(pte, ptl);
9b5a8e00 2082 return VM_FAULT_NOPAGE;
423bad60
NP
2083}
2084
f5e6d1d5
MW
2085/**
2086 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2087 * @vma: user vma to map to
2088 * @addr: target user address of this page
2089 * @pfn: source kernel pfn
2090 * @pgprot: pgprot flags for the inserted page
2091 *
a1a0aea5 2092 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2093 * to override pgprot on a per-page basis.
2094 *
2095 * This only makes sense for IO mappings, and it makes no sense for
2096 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2097 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2098 * impractical.
2099 *
574c5b3d
TH
2100 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2101 * a value of @pgprot different from that of @vma->vm_page_prot.
2102 *
ae2b01f3 2103 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2104 * Return: vm_fault_t value.
2105 */
2106vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2107 unsigned long pfn, pgprot_t pgprot)
2108{
6d958546
MW
2109 /*
2110 * Technically, architectures with pte_special can avoid all these
2111 * restrictions (same for remap_pfn_range). However we would like
2112 * consistency in testing and feature parity among all, so we should
2113 * try to keep these invariants in place for everybody.
2114 */
2115 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2116 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2117 (VM_PFNMAP|VM_MIXEDMAP));
2118 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2119 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2120
2121 if (addr < vma->vm_start || addr >= vma->vm_end)
2122 return VM_FAULT_SIGBUS;
2123
2124 if (!pfn_modify_allowed(pfn, pgprot))
2125 return VM_FAULT_SIGBUS;
2126
2127 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2128
9b5a8e00 2129 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2130 false);
f5e6d1d5
MW
2131}
2132EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2133
ae2b01f3
MW
2134/**
2135 * vmf_insert_pfn - insert single pfn into user vma
2136 * @vma: user vma to map to
2137 * @addr: target user address of this page
2138 * @pfn: source kernel pfn
2139 *
2140 * Similar to vm_insert_page, this allows drivers to insert individual pages
2141 * they've allocated into a user vma. Same comments apply.
2142 *
2143 * This function should only be called from a vm_ops->fault handler, and
2144 * in that case the handler should return the result of this function.
2145 *
2146 * vma cannot be a COW mapping.
2147 *
2148 * As this is called only for pages that do not currently exist, we
2149 * do not need to flush old virtual caches or the TLB.
2150 *
2151 * Context: Process context. May allocate using %GFP_KERNEL.
2152 * Return: vm_fault_t value.
2153 */
2154vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2155 unsigned long pfn)
2156{
2157 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2158}
2159EXPORT_SYMBOL(vmf_insert_pfn);
2160
785a3fab
DW
2161static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2162{
2163 /* these checks mirror the abort conditions in vm_normal_page */
2164 if (vma->vm_flags & VM_MIXEDMAP)
2165 return true;
2166 if (pfn_t_devmap(pfn))
2167 return true;
2168 if (pfn_t_special(pfn))
2169 return true;
2170 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2171 return true;
2172 return false;
2173}
2174
79f3aa5b 2175static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2176 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2177 bool mkwrite)
423bad60 2178{
79f3aa5b 2179 int err;
87744ab3 2180
785a3fab 2181 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2182
423bad60 2183 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2184 return VM_FAULT_SIGBUS;
308a047c
BP
2185
2186 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2187
42e4089c 2188 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2189 return VM_FAULT_SIGBUS;
42e4089c 2190
423bad60
NP
2191 /*
2192 * If we don't have pte special, then we have to use the pfn_valid()
2193 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2194 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2195 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2196 * without pte special, it would there be refcounted as a normal page.
423bad60 2197 */
00b3a331
LD
2198 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2199 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2200 struct page *page;
2201
03fc2da6
DW
2202 /*
2203 * At this point we are committed to insert_page()
2204 * regardless of whether the caller specified flags that
2205 * result in pfn_t_has_page() == false.
2206 */
2207 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2208 err = insert_page(vma, addr, page, pgprot);
2209 } else {
9b5a8e00 2210 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2211 }
b2770da6 2212
5d747637
MW
2213 if (err == -ENOMEM)
2214 return VM_FAULT_OOM;
2215 if (err < 0 && err != -EBUSY)
2216 return VM_FAULT_SIGBUS;
2217
2218 return VM_FAULT_NOPAGE;
e0dc0d8f 2219}
79f3aa5b 2220
574c5b3d
TH
2221/**
2222 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2223 * @vma: user vma to map to
2224 * @addr: target user address of this page
2225 * @pfn: source kernel pfn
2226 * @pgprot: pgprot flags for the inserted page
2227 *
a1a0aea5 2228 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2229 * to override pgprot on a per-page basis.
2230 *
2231 * Typically this function should be used by drivers to set caching- and
2232 * encryption bits different than those of @vma->vm_page_prot, because
2233 * the caching- or encryption mode may not be known at mmap() time.
2234 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2235 * to set caching and encryption bits for those vmas (except for COW pages).
2236 * This is ensured by core vm only modifying these page table entries using
2237 * functions that don't touch caching- or encryption bits, using pte_modify()
2238 * if needed. (See for example mprotect()).
2239 * Also when new page-table entries are created, this is only done using the
2240 * fault() callback, and never using the value of vma->vm_page_prot,
2241 * except for page-table entries that point to anonymous pages as the result
2242 * of COW.
2243 *
2244 * Context: Process context. May allocate using %GFP_KERNEL.
2245 * Return: vm_fault_t value.
2246 */
2247vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2248 pfn_t pfn, pgprot_t pgprot)
2249{
2250 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2251}
5379e4dd 2252EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2253
79f3aa5b
MW
2254vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2255 pfn_t pfn)
2256{
574c5b3d 2257 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2258}
5d747637 2259EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2260
ab77dab4
SJ
2261/*
2262 * If the insertion of PTE failed because someone else already added a
2263 * different entry in the mean time, we treat that as success as we assume
2264 * the same entry was actually inserted.
2265 */
ab77dab4
SJ
2266vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2267 unsigned long addr, pfn_t pfn)
b2770da6 2268{
574c5b3d 2269 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2270}
ab77dab4 2271EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2272
1da177e4
LT
2273/*
2274 * maps a range of physical memory into the requested pages. the old
2275 * mappings are removed. any references to nonexistent pages results
2276 * in null mappings (currently treated as "copy-on-access")
2277 */
2278static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2279 unsigned long addr, unsigned long end,
2280 unsigned long pfn, pgprot_t prot)
2281{
90a3e375 2282 pte_t *pte, *mapped_pte;
c74df32c 2283 spinlock_t *ptl;
42e4089c 2284 int err = 0;
1da177e4 2285
90a3e375 2286 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2287 if (!pte)
2288 return -ENOMEM;
6606c3e0 2289 arch_enter_lazy_mmu_mode();
1da177e4
LT
2290 do {
2291 BUG_ON(!pte_none(*pte));
42e4089c
AK
2292 if (!pfn_modify_allowed(pfn, prot)) {
2293 err = -EACCES;
2294 break;
2295 }
7e675137 2296 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2297 pfn++;
2298 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2299 arch_leave_lazy_mmu_mode();
90a3e375 2300 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2301 return err;
1da177e4
LT
2302}
2303
2304static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2305 unsigned long addr, unsigned long end,
2306 unsigned long pfn, pgprot_t prot)
2307{
2308 pmd_t *pmd;
2309 unsigned long next;
42e4089c 2310 int err;
1da177e4
LT
2311
2312 pfn -= addr >> PAGE_SHIFT;
2313 pmd = pmd_alloc(mm, pud, addr);
2314 if (!pmd)
2315 return -ENOMEM;
f66055ab 2316 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2317 do {
2318 next = pmd_addr_end(addr, end);
42e4089c
AK
2319 err = remap_pte_range(mm, pmd, addr, next,
2320 pfn + (addr >> PAGE_SHIFT), prot);
2321 if (err)
2322 return err;
1da177e4
LT
2323 } while (pmd++, addr = next, addr != end);
2324 return 0;
2325}
2326
c2febafc 2327static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2328 unsigned long addr, unsigned long end,
2329 unsigned long pfn, pgprot_t prot)
2330{
2331 pud_t *pud;
2332 unsigned long next;
42e4089c 2333 int err;
1da177e4
LT
2334
2335 pfn -= addr >> PAGE_SHIFT;
c2febafc 2336 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2337 if (!pud)
2338 return -ENOMEM;
2339 do {
2340 next = pud_addr_end(addr, end);
42e4089c
AK
2341 err = remap_pmd_range(mm, pud, addr, next,
2342 pfn + (addr >> PAGE_SHIFT), prot);
2343 if (err)
2344 return err;
1da177e4
LT
2345 } while (pud++, addr = next, addr != end);
2346 return 0;
2347}
2348
c2febafc
KS
2349static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2350 unsigned long addr, unsigned long end,
2351 unsigned long pfn, pgprot_t prot)
2352{
2353 p4d_t *p4d;
2354 unsigned long next;
42e4089c 2355 int err;
c2febafc
KS
2356
2357 pfn -= addr >> PAGE_SHIFT;
2358 p4d = p4d_alloc(mm, pgd, addr);
2359 if (!p4d)
2360 return -ENOMEM;
2361 do {
2362 next = p4d_addr_end(addr, end);
42e4089c
AK
2363 err = remap_pud_range(mm, p4d, addr, next,
2364 pfn + (addr >> PAGE_SHIFT), prot);
2365 if (err)
2366 return err;
c2febafc
KS
2367 } while (p4d++, addr = next, addr != end);
2368 return 0;
2369}
2370
74ffa5a3
CH
2371/*
2372 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2373 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2374 */
74ffa5a3
CH
2375int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2376 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2377{
2378 pgd_t *pgd;
2379 unsigned long next;
2d15cab8 2380 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2381 struct mm_struct *mm = vma->vm_mm;
2382 int err;
2383
0c4123e3
AZ
2384 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2385 return -EINVAL;
2386
1da177e4
LT
2387 /*
2388 * Physically remapped pages are special. Tell the
2389 * rest of the world about it:
2390 * VM_IO tells people not to look at these pages
2391 * (accesses can have side effects).
6aab341e
LT
2392 * VM_PFNMAP tells the core MM that the base pages are just
2393 * raw PFN mappings, and do not have a "struct page" associated
2394 * with them.
314e51b9
KK
2395 * VM_DONTEXPAND
2396 * Disable vma merging and expanding with mremap().
2397 * VM_DONTDUMP
2398 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2399 *
2400 * There's a horrible special case to handle copy-on-write
2401 * behaviour that some programs depend on. We mark the "original"
2402 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2403 * See vm_normal_page() for details.
1da177e4 2404 */
b3b9c293
KK
2405 if (is_cow_mapping(vma->vm_flags)) {
2406 if (addr != vma->vm_start || end != vma->vm_end)
2407 return -EINVAL;
fb155c16 2408 vma->vm_pgoff = pfn;
b3b9c293
KK
2409 }
2410
314e51b9 2411 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2412
2413 BUG_ON(addr >= end);
2414 pfn -= addr >> PAGE_SHIFT;
2415 pgd = pgd_offset(mm, addr);
2416 flush_cache_range(vma, addr, end);
1da177e4
LT
2417 do {
2418 next = pgd_addr_end(addr, end);
c2febafc 2419 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2420 pfn + (addr >> PAGE_SHIFT), prot);
2421 if (err)
74ffa5a3 2422 return err;
1da177e4 2423 } while (pgd++, addr = next, addr != end);
2ab64037 2424
74ffa5a3
CH
2425 return 0;
2426}
2427
2428/**
2429 * remap_pfn_range - remap kernel memory to userspace
2430 * @vma: user vma to map to
2431 * @addr: target page aligned user address to start at
2432 * @pfn: page frame number of kernel physical memory address
2433 * @size: size of mapping area
2434 * @prot: page protection flags for this mapping
2435 *
2436 * Note: this is only safe if the mm semaphore is held when called.
2437 *
2438 * Return: %0 on success, negative error code otherwise.
2439 */
2440int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2441 unsigned long pfn, unsigned long size, pgprot_t prot)
2442{
2443 int err;
2444
2445 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2446 if (err)
74ffa5a3 2447 return -EINVAL;
2ab64037 2448
74ffa5a3
CH
2449 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2450 if (err)
2451 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2452 return err;
2453}
2454EXPORT_SYMBOL(remap_pfn_range);
2455
b4cbb197
LT
2456/**
2457 * vm_iomap_memory - remap memory to userspace
2458 * @vma: user vma to map to
abd69b9e 2459 * @start: start of the physical memory to be mapped
b4cbb197
LT
2460 * @len: size of area
2461 *
2462 * This is a simplified io_remap_pfn_range() for common driver use. The
2463 * driver just needs to give us the physical memory range to be mapped,
2464 * we'll figure out the rest from the vma information.
2465 *
2466 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2467 * whatever write-combining details or similar.
a862f68a
MR
2468 *
2469 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2470 */
2471int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2472{
2473 unsigned long vm_len, pfn, pages;
2474
2475 /* Check that the physical memory area passed in looks valid */
2476 if (start + len < start)
2477 return -EINVAL;
2478 /*
2479 * You *really* shouldn't map things that aren't page-aligned,
2480 * but we've historically allowed it because IO memory might
2481 * just have smaller alignment.
2482 */
2483 len += start & ~PAGE_MASK;
2484 pfn = start >> PAGE_SHIFT;
2485 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2486 if (pfn + pages < pfn)
2487 return -EINVAL;
2488
2489 /* We start the mapping 'vm_pgoff' pages into the area */
2490 if (vma->vm_pgoff > pages)
2491 return -EINVAL;
2492 pfn += vma->vm_pgoff;
2493 pages -= vma->vm_pgoff;
2494
2495 /* Can we fit all of the mapping? */
2496 vm_len = vma->vm_end - vma->vm_start;
2497 if (vm_len >> PAGE_SHIFT > pages)
2498 return -EINVAL;
2499
2500 /* Ok, let it rip */
2501 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2502}
2503EXPORT_SYMBOL(vm_iomap_memory);
2504
aee16b3c
JF
2505static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2506 unsigned long addr, unsigned long end,
e80d3909
JR
2507 pte_fn_t fn, void *data, bool create,
2508 pgtbl_mod_mask *mask)
aee16b3c 2509{
8abb50c7 2510 pte_t *pte, *mapped_pte;
be1db475 2511 int err = 0;
3f649ab7 2512 spinlock_t *ptl;
aee16b3c 2513
be1db475 2514 if (create) {
8abb50c7 2515 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2516 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2517 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2518 if (!pte)
2519 return -ENOMEM;
2520 } else {
8abb50c7 2521 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2522 pte_offset_kernel(pmd, addr) :
2523 pte_offset_map_lock(mm, pmd, addr, &ptl);
2524 }
aee16b3c
JF
2525
2526 BUG_ON(pmd_huge(*pmd));
2527
38e0edb1
JF
2528 arch_enter_lazy_mmu_mode();
2529
eeb4a05f
CH
2530 if (fn) {
2531 do {
2532 if (create || !pte_none(*pte)) {
2533 err = fn(pte++, addr, data);
2534 if (err)
2535 break;
2536 }
2537 } while (addr += PAGE_SIZE, addr != end);
2538 }
e80d3909 2539 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2540
38e0edb1
JF
2541 arch_leave_lazy_mmu_mode();
2542
aee16b3c 2543 if (mm != &init_mm)
8abb50c7 2544 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2545 return err;
2546}
2547
2548static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2549 unsigned long addr, unsigned long end,
e80d3909
JR
2550 pte_fn_t fn, void *data, bool create,
2551 pgtbl_mod_mask *mask)
aee16b3c
JF
2552{
2553 pmd_t *pmd;
2554 unsigned long next;
be1db475 2555 int err = 0;
aee16b3c 2556
ceb86879
AK
2557 BUG_ON(pud_huge(*pud));
2558
be1db475 2559 if (create) {
e80d3909 2560 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2561 if (!pmd)
2562 return -ENOMEM;
2563 } else {
2564 pmd = pmd_offset(pud, addr);
2565 }
aee16b3c
JF
2566 do {
2567 next = pmd_addr_end(addr, end);
0c95cba4
NP
2568 if (pmd_none(*pmd) && !create)
2569 continue;
2570 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2571 return -EINVAL;
2572 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2573 if (!create)
2574 continue;
2575 pmd_clear_bad(pmd);
be1db475 2576 }
0c95cba4
NP
2577 err = apply_to_pte_range(mm, pmd, addr, next,
2578 fn, data, create, mask);
2579 if (err)
2580 break;
aee16b3c 2581 } while (pmd++, addr = next, addr != end);
0c95cba4 2582
aee16b3c
JF
2583 return err;
2584}
2585
c2febafc 2586static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2587 unsigned long addr, unsigned long end,
e80d3909
JR
2588 pte_fn_t fn, void *data, bool create,
2589 pgtbl_mod_mask *mask)
aee16b3c
JF
2590{
2591 pud_t *pud;
2592 unsigned long next;
be1db475 2593 int err = 0;
aee16b3c 2594
be1db475 2595 if (create) {
e80d3909 2596 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2597 if (!pud)
2598 return -ENOMEM;
2599 } else {
2600 pud = pud_offset(p4d, addr);
2601 }
aee16b3c
JF
2602 do {
2603 next = pud_addr_end(addr, end);
0c95cba4
NP
2604 if (pud_none(*pud) && !create)
2605 continue;
2606 if (WARN_ON_ONCE(pud_leaf(*pud)))
2607 return -EINVAL;
2608 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2609 if (!create)
2610 continue;
2611 pud_clear_bad(pud);
be1db475 2612 }
0c95cba4
NP
2613 err = apply_to_pmd_range(mm, pud, addr, next,
2614 fn, data, create, mask);
2615 if (err)
2616 break;
aee16b3c 2617 } while (pud++, addr = next, addr != end);
0c95cba4 2618
aee16b3c
JF
2619 return err;
2620}
2621
c2febafc
KS
2622static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2623 unsigned long addr, unsigned long end,
e80d3909
JR
2624 pte_fn_t fn, void *data, bool create,
2625 pgtbl_mod_mask *mask)
c2febafc
KS
2626{
2627 p4d_t *p4d;
2628 unsigned long next;
be1db475 2629 int err = 0;
c2febafc 2630
be1db475 2631 if (create) {
e80d3909 2632 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2633 if (!p4d)
2634 return -ENOMEM;
2635 } else {
2636 p4d = p4d_offset(pgd, addr);
2637 }
c2febafc
KS
2638 do {
2639 next = p4d_addr_end(addr, end);
0c95cba4
NP
2640 if (p4d_none(*p4d) && !create)
2641 continue;
2642 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2643 return -EINVAL;
2644 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2645 if (!create)
2646 continue;
2647 p4d_clear_bad(p4d);
be1db475 2648 }
0c95cba4
NP
2649 err = apply_to_pud_range(mm, p4d, addr, next,
2650 fn, data, create, mask);
2651 if (err)
2652 break;
c2febafc 2653 } while (p4d++, addr = next, addr != end);
0c95cba4 2654
c2febafc
KS
2655 return err;
2656}
2657
be1db475
DA
2658static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2659 unsigned long size, pte_fn_t fn,
2660 void *data, bool create)
aee16b3c
JF
2661{
2662 pgd_t *pgd;
e80d3909 2663 unsigned long start = addr, next;
57250a5b 2664 unsigned long end = addr + size;
e80d3909 2665 pgtbl_mod_mask mask = 0;
be1db475 2666 int err = 0;
aee16b3c 2667
9cb65bc3
MP
2668 if (WARN_ON(addr >= end))
2669 return -EINVAL;
2670
aee16b3c
JF
2671 pgd = pgd_offset(mm, addr);
2672 do {
2673 next = pgd_addr_end(addr, end);
0c95cba4 2674 if (pgd_none(*pgd) && !create)
be1db475 2675 continue;
0c95cba4
NP
2676 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2677 return -EINVAL;
2678 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2679 if (!create)
2680 continue;
2681 pgd_clear_bad(pgd);
2682 }
2683 err = apply_to_p4d_range(mm, pgd, addr, next,
2684 fn, data, create, &mask);
aee16b3c
JF
2685 if (err)
2686 break;
2687 } while (pgd++, addr = next, addr != end);
57250a5b 2688
e80d3909
JR
2689 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2690 arch_sync_kernel_mappings(start, start + size);
2691
aee16b3c
JF
2692 return err;
2693}
be1db475
DA
2694
2695/*
2696 * Scan a region of virtual memory, filling in page tables as necessary
2697 * and calling a provided function on each leaf page table.
2698 */
2699int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2700 unsigned long size, pte_fn_t fn, void *data)
2701{
2702 return __apply_to_page_range(mm, addr, size, fn, data, true);
2703}
aee16b3c
JF
2704EXPORT_SYMBOL_GPL(apply_to_page_range);
2705
be1db475
DA
2706/*
2707 * Scan a region of virtual memory, calling a provided function on
2708 * each leaf page table where it exists.
2709 *
2710 * Unlike apply_to_page_range, this does _not_ fill in page tables
2711 * where they are absent.
2712 */
2713int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2714 unsigned long size, pte_fn_t fn, void *data)
2715{
2716 return __apply_to_page_range(mm, addr, size, fn, data, false);
2717}
2718EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2719
8f4e2101 2720/*
9b4bdd2f
KS
2721 * handle_pte_fault chooses page fault handler according to an entry which was
2722 * read non-atomically. Before making any commitment, on those architectures
2723 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2724 * parts, do_swap_page must check under lock before unmapping the pte and
2725 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2726 * and do_anonymous_page can safely check later on).
8f4e2101 2727 */
4c21e2f2 2728static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2729 pte_t *page_table, pte_t orig_pte)
2730{
2731 int same = 1;
923717cb 2732#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2733 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2734 spinlock_t *ptl = pte_lockptr(mm, pmd);
2735 spin_lock(ptl);
8f4e2101 2736 same = pte_same(*page_table, orig_pte);
4c21e2f2 2737 spin_unlock(ptl);
8f4e2101
HD
2738 }
2739#endif
2740 pte_unmap(page_table);
2741 return same;
2742}
2743
83d116c5
JH
2744static inline bool cow_user_page(struct page *dst, struct page *src,
2745 struct vm_fault *vmf)
6aab341e 2746{
83d116c5
JH
2747 bool ret;
2748 void *kaddr;
2749 void __user *uaddr;
c3e5ea6e 2750 bool locked = false;
83d116c5
JH
2751 struct vm_area_struct *vma = vmf->vma;
2752 struct mm_struct *mm = vma->vm_mm;
2753 unsigned long addr = vmf->address;
2754
83d116c5
JH
2755 if (likely(src)) {
2756 copy_user_highpage(dst, src, addr, vma);
2757 return true;
2758 }
2759
6aab341e
LT
2760 /*
2761 * If the source page was a PFN mapping, we don't have
2762 * a "struct page" for it. We do a best-effort copy by
2763 * just copying from the original user address. If that
2764 * fails, we just zero-fill it. Live with it.
2765 */
83d116c5
JH
2766 kaddr = kmap_atomic(dst);
2767 uaddr = (void __user *)(addr & PAGE_MASK);
2768
2769 /*
2770 * On architectures with software "accessed" bits, we would
2771 * take a double page fault, so mark it accessed here.
2772 */
c3e5ea6e 2773 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2774 pte_t entry;
5d2a2dbb 2775
83d116c5 2776 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2777 locked = true;
83d116c5
JH
2778 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2779 /*
2780 * Other thread has already handled the fault
7df67697 2781 * and update local tlb only
83d116c5 2782 */
7df67697 2783 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2784 ret = false;
2785 goto pte_unlock;
2786 }
2787
2788 entry = pte_mkyoung(vmf->orig_pte);
2789 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2790 update_mmu_cache(vma, addr, vmf->pte);
2791 }
2792
2793 /*
2794 * This really shouldn't fail, because the page is there
2795 * in the page tables. But it might just be unreadable,
2796 * in which case we just give up and fill the result with
2797 * zeroes.
2798 */
2799 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2800 if (locked)
2801 goto warn;
2802
2803 /* Re-validate under PTL if the page is still mapped */
2804 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2805 locked = true;
2806 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2807 /* The PTE changed under us, update local tlb */
2808 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2809 ret = false;
2810 goto pte_unlock;
2811 }
2812
5d2a2dbb 2813 /*
985ba004 2814 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2815 * Try to copy again under PTL.
5d2a2dbb 2816 */
c3e5ea6e
KS
2817 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2818 /*
2819 * Give a warn in case there can be some obscure
2820 * use-case
2821 */
2822warn:
2823 WARN_ON_ONCE(1);
2824 clear_page(kaddr);
2825 }
83d116c5
JH
2826 }
2827
2828 ret = true;
2829
2830pte_unlock:
c3e5ea6e 2831 if (locked)
83d116c5
JH
2832 pte_unmap_unlock(vmf->pte, vmf->ptl);
2833 kunmap_atomic(kaddr);
2834 flush_dcache_page(dst);
2835
2836 return ret;
6aab341e
LT
2837}
2838
c20cd45e
MH
2839static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2840{
2841 struct file *vm_file = vma->vm_file;
2842
2843 if (vm_file)
2844 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2845
2846 /*
2847 * Special mappings (e.g. VDSO) do not have any file so fake
2848 * a default GFP_KERNEL for them.
2849 */
2850 return GFP_KERNEL;
2851}
2852
fb09a464
KS
2853/*
2854 * Notify the address space that the page is about to become writable so that
2855 * it can prohibit this or wait for the page to get into an appropriate state.
2856 *
2857 * We do this without the lock held, so that it can sleep if it needs to.
2858 */
2b740303 2859static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2860{
2b740303 2861 vm_fault_t ret;
38b8cb7f
JK
2862 struct page *page = vmf->page;
2863 unsigned int old_flags = vmf->flags;
fb09a464 2864
38b8cb7f 2865 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2866
dc617f29
DW
2867 if (vmf->vma->vm_file &&
2868 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2869 return VM_FAULT_SIGBUS;
2870
11bac800 2871 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2872 /* Restore original flags so that caller is not surprised */
2873 vmf->flags = old_flags;
fb09a464
KS
2874 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2875 return ret;
2876 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2877 lock_page(page);
2878 if (!page->mapping) {
2879 unlock_page(page);
2880 return 0; /* retry */
2881 }
2882 ret |= VM_FAULT_LOCKED;
2883 } else
2884 VM_BUG_ON_PAGE(!PageLocked(page), page);
2885 return ret;
2886}
2887
97ba0c2b
JK
2888/*
2889 * Handle dirtying of a page in shared file mapping on a write fault.
2890 *
2891 * The function expects the page to be locked and unlocks it.
2892 */
89b15332 2893static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2894{
89b15332 2895 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2896 struct address_space *mapping;
89b15332 2897 struct page *page = vmf->page;
97ba0c2b
JK
2898 bool dirtied;
2899 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2900
2901 dirtied = set_page_dirty(page);
2902 VM_BUG_ON_PAGE(PageAnon(page), page);
2903 /*
2904 * Take a local copy of the address_space - page.mapping may be zeroed
2905 * by truncate after unlock_page(). The address_space itself remains
2906 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2907 * release semantics to prevent the compiler from undoing this copying.
2908 */
2909 mapping = page_rmapping(page);
2910 unlock_page(page);
2911
89b15332
JW
2912 if (!page_mkwrite)
2913 file_update_time(vma->vm_file);
2914
2915 /*
2916 * Throttle page dirtying rate down to writeback speed.
2917 *
2918 * mapping may be NULL here because some device drivers do not
2919 * set page.mapping but still dirty their pages
2920 *
c1e8d7c6 2921 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2922 * is pinning the mapping, as per above.
2923 */
97ba0c2b 2924 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2925 struct file *fpin;
2926
2927 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2928 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2929 if (fpin) {
2930 fput(fpin);
2931 return VM_FAULT_RETRY;
2932 }
97ba0c2b
JK
2933 }
2934
89b15332 2935 return 0;
97ba0c2b
JK
2936}
2937
4e047f89
SR
2938/*
2939 * Handle write page faults for pages that can be reused in the current vma
2940 *
2941 * This can happen either due to the mapping being with the VM_SHARED flag,
2942 * or due to us being the last reference standing to the page. In either
2943 * case, all we need to do here is to mark the page as writable and update
2944 * any related book-keeping.
2945 */
997dd98d 2946static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2947 __releases(vmf->ptl)
4e047f89 2948{
82b0f8c3 2949 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2950 struct page *page = vmf->page;
4e047f89
SR
2951 pte_t entry;
2952 /*
2953 * Clear the pages cpupid information as the existing
2954 * information potentially belongs to a now completely
2955 * unrelated process.
2956 */
2957 if (page)
2958 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2959
2994302b
JK
2960 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2961 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2962 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2963 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2964 update_mmu_cache(vma, vmf->address, vmf->pte);
2965 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2966 count_vm_event(PGREUSE);
4e047f89
SR
2967}
2968
2f38ab2c
SR
2969/*
2970 * Handle the case of a page which we actually need to copy to a new page.
2971 *
c1e8d7c6 2972 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2973 * without the ptl held.
2974 *
2975 * High level logic flow:
2976 *
2977 * - Allocate a page, copy the content of the old page to the new one.
2978 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2979 * - Take the PTL. If the pte changed, bail out and release the allocated page
2980 * - If the pte is still the way we remember it, update the page table and all
2981 * relevant references. This includes dropping the reference the page-table
2982 * held to the old page, as well as updating the rmap.
2983 * - In any case, unlock the PTL and drop the reference we took to the old page.
2984 */
2b740303 2985static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2986{
82b0f8c3 2987 struct vm_area_struct *vma = vmf->vma;
bae473a4 2988 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2989 struct page *old_page = vmf->page;
2f38ab2c 2990 struct page *new_page = NULL;
2f38ab2c
SR
2991 pte_t entry;
2992 int page_copied = 0;
ac46d4f3 2993 struct mmu_notifier_range range;
2f38ab2c
SR
2994
2995 if (unlikely(anon_vma_prepare(vma)))
2996 goto oom;
2997
2994302b 2998 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2999 new_page = alloc_zeroed_user_highpage_movable(vma,
3000 vmf->address);
2f38ab2c
SR
3001 if (!new_page)
3002 goto oom;
3003 } else {
bae473a4 3004 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 3005 vmf->address);
2f38ab2c
SR
3006 if (!new_page)
3007 goto oom;
83d116c5
JH
3008
3009 if (!cow_user_page(new_page, old_page, vmf)) {
3010 /*
3011 * COW failed, if the fault was solved by other,
3012 * it's fine. If not, userspace would re-fault on
3013 * the same address and we will handle the fault
3014 * from the second attempt.
3015 */
3016 put_page(new_page);
3017 if (old_page)
3018 put_page(old_page);
3019 return 0;
3020 }
2f38ab2c 3021 }
2f38ab2c 3022
d9eb1ea2 3023 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 3024 goto oom_free_new;
9d82c694 3025 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3026
eb3c24f3
MG
3027 __SetPageUptodate(new_page);
3028
7269f999 3029 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 3030 vmf->address & PAGE_MASK,
ac46d4f3
JG
3031 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3032 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3033
3034 /*
3035 * Re-check the pte - we dropped the lock
3036 */
82b0f8c3 3037 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3038 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3039 if (old_page) {
3040 if (!PageAnon(old_page)) {
eca56ff9
JM
3041 dec_mm_counter_fast(mm,
3042 mm_counter_file(old_page));
2f38ab2c
SR
3043 inc_mm_counter_fast(mm, MM_ANONPAGES);
3044 }
3045 } else {
3046 inc_mm_counter_fast(mm, MM_ANONPAGES);
3047 }
2994302b 3048 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3049 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3050 entry = pte_sw_mkyoung(entry);
2f38ab2c 3051 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 3052
2f38ab2c
SR
3053 /*
3054 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3055 * pte with the new entry, to keep TLBs on different CPUs in
3056 * sync. This code used to set the new PTE then flush TLBs, but
3057 * that left a window where the new PTE could be loaded into
3058 * some TLBs while the old PTE remains in others.
2f38ab2c 3059 */
82b0f8c3
JK
3060 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3061 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 3062 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3063 /*
3064 * We call the notify macro here because, when using secondary
3065 * mmu page tables (such as kvm shadow page tables), we want the
3066 * new page to be mapped directly into the secondary page table.
3067 */
82b0f8c3
JK
3068 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3069 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3070 if (old_page) {
3071 /*
3072 * Only after switching the pte to the new page may
3073 * we remove the mapcount here. Otherwise another
3074 * process may come and find the rmap count decremented
3075 * before the pte is switched to the new page, and
3076 * "reuse" the old page writing into it while our pte
3077 * here still points into it and can be read by other
3078 * threads.
3079 *
3080 * The critical issue is to order this
3081 * page_remove_rmap with the ptp_clear_flush above.
3082 * Those stores are ordered by (if nothing else,)
3083 * the barrier present in the atomic_add_negative
3084 * in page_remove_rmap.
3085 *
3086 * Then the TLB flush in ptep_clear_flush ensures that
3087 * no process can access the old page before the
3088 * decremented mapcount is visible. And the old page
3089 * cannot be reused until after the decremented
3090 * mapcount is visible. So transitively, TLBs to
3091 * old page will be flushed before it can be reused.
3092 */
d281ee61 3093 page_remove_rmap(old_page, false);
2f38ab2c
SR
3094 }
3095
3096 /* Free the old page.. */
3097 new_page = old_page;
3098 page_copied = 1;
3099 } else {
7df67697 3100 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3101 }
3102
3103 if (new_page)
09cbfeaf 3104 put_page(new_page);
2f38ab2c 3105
82b0f8c3 3106 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3107 /*
3108 * No need to double call mmu_notifier->invalidate_range() callback as
3109 * the above ptep_clear_flush_notify() did already call it.
3110 */
ac46d4f3 3111 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
3112 if (old_page) {
3113 /*
3114 * Don't let another task, with possibly unlocked vma,
3115 * keep the mlocked page.
3116 */
3117 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3118 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
3119 if (PageMlocked(old_page))
3120 munlock_vma_page(old_page);
2f38ab2c
SR
3121 unlock_page(old_page);
3122 }
f4c4a3f4
HY
3123 if (page_copied)
3124 free_swap_cache(old_page);
09cbfeaf 3125 put_page(old_page);
2f38ab2c
SR
3126 }
3127 return page_copied ? VM_FAULT_WRITE : 0;
3128oom_free_new:
09cbfeaf 3129 put_page(new_page);
2f38ab2c
SR
3130oom:
3131 if (old_page)
09cbfeaf 3132 put_page(old_page);
2f38ab2c
SR
3133 return VM_FAULT_OOM;
3134}
3135
66a6197c
JK
3136/**
3137 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3138 * writeable once the page is prepared
3139 *
3140 * @vmf: structure describing the fault
3141 *
3142 * This function handles all that is needed to finish a write page fault in a
3143 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3144 * It handles locking of PTE and modifying it.
66a6197c
JK
3145 *
3146 * The function expects the page to be locked or other protection against
3147 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3148 *
2797e79f 3149 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3150 * we acquired PTE lock.
66a6197c 3151 */
2b740303 3152vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3153{
3154 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3155 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3156 &vmf->ptl);
3157 /*
3158 * We might have raced with another page fault while we released the
3159 * pte_offset_map_lock.
3160 */
3161 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3162 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3163 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3164 return VM_FAULT_NOPAGE;
66a6197c
JK
3165 }
3166 wp_page_reuse(vmf);
a19e2553 3167 return 0;
66a6197c
JK
3168}
3169
dd906184
BH
3170/*
3171 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3172 * mapping
3173 */
2b740303 3174static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3175{
82b0f8c3 3176 struct vm_area_struct *vma = vmf->vma;
bae473a4 3177
dd906184 3178 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3179 vm_fault_t ret;
dd906184 3180
82b0f8c3 3181 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3182 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3183 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3184 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3185 return ret;
66a6197c 3186 return finish_mkwrite_fault(vmf);
dd906184 3187 }
997dd98d
JK
3188 wp_page_reuse(vmf);
3189 return VM_FAULT_WRITE;
dd906184
BH
3190}
3191
2b740303 3192static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3193 __releases(vmf->ptl)
93e478d4 3194{
82b0f8c3 3195 struct vm_area_struct *vma = vmf->vma;
89b15332 3196 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3197
a41b70d6 3198 get_page(vmf->page);
93e478d4 3199
93e478d4 3200 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3201 vm_fault_t tmp;
93e478d4 3202
82b0f8c3 3203 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3204 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3205 if (unlikely(!tmp || (tmp &
3206 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3207 put_page(vmf->page);
93e478d4
SR
3208 return tmp;
3209 }
66a6197c 3210 tmp = finish_mkwrite_fault(vmf);
a19e2553 3211 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3212 unlock_page(vmf->page);
a41b70d6 3213 put_page(vmf->page);
66a6197c 3214 return tmp;
93e478d4 3215 }
66a6197c
JK
3216 } else {
3217 wp_page_reuse(vmf);
997dd98d 3218 lock_page(vmf->page);
93e478d4 3219 }
89b15332 3220 ret |= fault_dirty_shared_page(vmf);
997dd98d 3221 put_page(vmf->page);
93e478d4 3222
89b15332 3223 return ret;
93e478d4
SR
3224}
3225
1da177e4
LT
3226/*
3227 * This routine handles present pages, when users try to write
3228 * to a shared page. It is done by copying the page to a new address
3229 * and decrementing the shared-page counter for the old page.
3230 *
1da177e4
LT
3231 * Note that this routine assumes that the protection checks have been
3232 * done by the caller (the low-level page fault routine in most cases).
3233 * Thus we can safely just mark it writable once we've done any necessary
3234 * COW.
3235 *
3236 * We also mark the page dirty at this point even though the page will
3237 * change only once the write actually happens. This avoids a few races,
3238 * and potentially makes it more efficient.
3239 *
c1e8d7c6 3240 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3241 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3242 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3243 */
2b740303 3244static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3245 __releases(vmf->ptl)
1da177e4 3246{
82b0f8c3 3247 struct vm_area_struct *vma = vmf->vma;
1da177e4 3248
292924b2 3249 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3250 pte_unmap_unlock(vmf->pte, vmf->ptl);
3251 return handle_userfault(vmf, VM_UFFD_WP);
3252 }
3253
6ce64428
NA
3254 /*
3255 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3256 * is flushed in this case before copying.
3257 */
3258 if (unlikely(userfaultfd_wp(vmf->vma) &&
3259 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3260 flush_tlb_page(vmf->vma, vmf->address);
3261
a41b70d6
JK
3262 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3263 if (!vmf->page) {
251b97f5 3264 /*
64e45507
PF
3265 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3266 * VM_PFNMAP VMA.
251b97f5
PZ
3267 *
3268 * We should not cow pages in a shared writeable mapping.
dd906184 3269 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3270 */
3271 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3272 (VM_WRITE|VM_SHARED))
2994302b 3273 return wp_pfn_shared(vmf);
2f38ab2c 3274
82b0f8c3 3275 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3276 return wp_page_copy(vmf);
251b97f5 3277 }
1da177e4 3278
d08b3851 3279 /*
ee6a6457
PZ
3280 * Take out anonymous pages first, anonymous shared vmas are
3281 * not dirty accountable.
d08b3851 3282 */
52d1e606 3283 if (PageAnon(vmf->page)) {
09854ba9
LT
3284 struct page *page = vmf->page;
3285
3286 /* PageKsm() doesn't necessarily raise the page refcount */
3287 if (PageKsm(page) || page_count(page) != 1)
3288 goto copy;
3289 if (!trylock_page(page))
3290 goto copy;
3291 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3292 unlock_page(page);
52d1e606 3293 goto copy;
b009c024 3294 }
09854ba9
LT
3295 /*
3296 * Ok, we've got the only map reference, and the only
3297 * page count reference, and the page is locked,
3298 * it's dark out, and we're wearing sunglasses. Hit it.
3299 */
09854ba9 3300 unlock_page(page);
be068f29 3301 wp_page_reuse(vmf);
09854ba9 3302 return VM_FAULT_WRITE;
ee6a6457 3303 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3304 (VM_WRITE|VM_SHARED))) {
a41b70d6 3305 return wp_page_shared(vmf);
1da177e4 3306 }
52d1e606 3307copy:
1da177e4
LT
3308 /*
3309 * Ok, we need to copy. Oh, well..
3310 */
a41b70d6 3311 get_page(vmf->page);
28766805 3312
82b0f8c3 3313 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3314 return wp_page_copy(vmf);
1da177e4
LT
3315}
3316
97a89413 3317static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3318 unsigned long start_addr, unsigned long end_addr,
3319 struct zap_details *details)
3320{
f5cc4eef 3321 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3322}
3323
f808c13f 3324static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
3325 struct zap_details *details)
3326{
3327 struct vm_area_struct *vma;
1da177e4
LT
3328 pgoff_t vba, vea, zba, zea;
3329
6b2dbba8 3330 vma_interval_tree_foreach(vma, root,
1da177e4 3331 details->first_index, details->last_index) {
1da177e4
LT
3332
3333 vba = vma->vm_pgoff;
d6e93217 3334 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3335 zba = details->first_index;
3336 if (zba < vba)
3337 zba = vba;
3338 zea = details->last_index;
3339 if (zea > vea)
3340 zea = vea;
3341
97a89413 3342 unmap_mapping_range_vma(vma,
1da177e4
LT
3343 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3344 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3345 details);
1da177e4
LT
3346 }
3347}
3348
22061a1f
HD
3349/**
3350 * unmap_mapping_page() - Unmap single page from processes.
3351 * @page: The locked page to be unmapped.
3352 *
3353 * Unmap this page from any userspace process which still has it mmaped.
3354 * Typically, for efficiency, the range of nearby pages has already been
3355 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3356 * truncation or invalidation holds the lock on a page, it may find that
3357 * the page has been remapped again: and then uses unmap_mapping_page()
3358 * to unmap it finally.
3359 */
3360void unmap_mapping_page(struct page *page)
3361{
3362 struct address_space *mapping = page->mapping;
3363 struct zap_details details = { };
3364
3365 VM_BUG_ON(!PageLocked(page));
3366 VM_BUG_ON(PageTail(page));
3367
3368 details.check_mapping = mapping;
3369 details.first_index = page->index;
3370 details.last_index = page->index + thp_nr_pages(page) - 1;
3371 details.single_page = page;
3372
3373 i_mmap_lock_write(mapping);
3374 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3375 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3376 i_mmap_unlock_write(mapping);
3377}
3378
977fbdcd
MW
3379/**
3380 * unmap_mapping_pages() - Unmap pages from processes.
3381 * @mapping: The address space containing pages to be unmapped.
3382 * @start: Index of first page to be unmapped.
3383 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3384 * @even_cows: Whether to unmap even private COWed pages.
3385 *
3386 * Unmap the pages in this address space from any userspace process which
3387 * has them mmaped. Generally, you want to remove COWed pages as well when
3388 * a file is being truncated, but not when invalidating pages from the page
3389 * cache.
3390 */
3391void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3392 pgoff_t nr, bool even_cows)
3393{
3394 struct zap_details details = { };
3395
3396 details.check_mapping = even_cows ? NULL : mapping;
3397 details.first_index = start;
3398 details.last_index = start + nr - 1;
3399 if (details.last_index < details.first_index)
3400 details.last_index = ULONG_MAX;
3401
3402 i_mmap_lock_write(mapping);
3403 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3404 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3405 i_mmap_unlock_write(mapping);
3406}
6e0e99d5 3407EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3408
1da177e4 3409/**
8a5f14a2 3410 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3411 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3412 * file.
3413 *
3d41088f 3414 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3415 * @holebegin: byte in first page to unmap, relative to the start of
3416 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3417 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3418 * must keep the partial page. In contrast, we must get rid of
3419 * partial pages.
3420 * @holelen: size of prospective hole in bytes. This will be rounded
3421 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3422 * end of the file.
3423 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3424 * but 0 when invalidating pagecache, don't throw away private data.
3425 */
3426void unmap_mapping_range(struct address_space *mapping,
3427 loff_t const holebegin, loff_t const holelen, int even_cows)
3428{
1da177e4
LT
3429 pgoff_t hba = holebegin >> PAGE_SHIFT;
3430 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3431
3432 /* Check for overflow. */
3433 if (sizeof(holelen) > sizeof(hlen)) {
3434 long long holeend =
3435 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3436 if (holeend & ~(long long)ULONG_MAX)
3437 hlen = ULONG_MAX - hba + 1;
3438 }
3439
977fbdcd 3440 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3441}
3442EXPORT_SYMBOL(unmap_mapping_range);
3443
b756a3b5
AP
3444/*
3445 * Restore a potential device exclusive pte to a working pte entry
3446 */
3447static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3448{
3449 struct page *page = vmf->page;
3450 struct vm_area_struct *vma = vmf->vma;
3451 struct mmu_notifier_range range;
3452
3453 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3454 return VM_FAULT_RETRY;
3455 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3456 vma->vm_mm, vmf->address & PAGE_MASK,
3457 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3458 mmu_notifier_invalidate_range_start(&range);
3459
3460 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3461 &vmf->ptl);
3462 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3463 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3464
3465 pte_unmap_unlock(vmf->pte, vmf->ptl);
3466 unlock_page(page);
3467
3468 mmu_notifier_invalidate_range_end(&range);
3469 return 0;
3470}
3471
1da177e4 3472/*
c1e8d7c6 3473 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3474 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3475 * We return with pte unmapped and unlocked.
3476 *
c1e8d7c6 3477 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3478 * as does filemap_fault().
1da177e4 3479 */
2b740303 3480vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3481{
82b0f8c3 3482 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3483 struct page *page = NULL, *swapcache;
2799e775 3484 struct swap_info_struct *si = NULL;
65500d23 3485 swp_entry_t entry;
1da177e4 3486 pte_t pte;
d065bd81 3487 int locked;
ad8c2ee8 3488 int exclusive = 0;
2b740303 3489 vm_fault_t ret = 0;
aae466b0 3490 void *shadow = NULL;
1da177e4 3491
eaf649eb 3492 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3493 goto out;
65500d23 3494
2994302b 3495 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3496 if (unlikely(non_swap_entry(entry))) {
3497 if (is_migration_entry(entry)) {
82b0f8c3
JK
3498 migration_entry_wait(vma->vm_mm, vmf->pmd,
3499 vmf->address);
b756a3b5
AP
3500 } else if (is_device_exclusive_entry(entry)) {
3501 vmf->page = pfn_swap_entry_to_page(entry);
3502 ret = remove_device_exclusive_entry(vmf);
5042db43 3503 } else if (is_device_private_entry(entry)) {
af5cdaf8 3504 vmf->page = pfn_swap_entry_to_page(entry);
897e6365 3505 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3506 } else if (is_hwpoison_entry(entry)) {
3507 ret = VM_FAULT_HWPOISON;
3508 } else {
2994302b 3509 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3510 ret = VM_FAULT_SIGBUS;
d1737fdb 3511 }
0697212a
CL
3512 goto out;
3513 }
0bcac06f 3514
2799e775
ML
3515 /* Prevent swapoff from happening to us. */
3516 si = get_swap_device(entry);
3517 if (unlikely(!si))
3518 goto out;
0bcac06f 3519
3d1c7fd9 3520 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3521 page = lookup_swap_cache(entry, vma, vmf->address);
3522 swapcache = page;
f8020772 3523
1da177e4 3524 if (!page) {
a449bf58
QC
3525 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3526 __swap_count(entry) == 1) {
0bcac06f 3527 /* skip swapcache */
e9e9b7ec
MK
3528 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3529 vmf->address);
0bcac06f
MK
3530 if (page) {
3531 __SetPageLocked(page);
3532 __SetPageSwapBacked(page);
4c6355b2 3533
0add0c77
SB
3534 if (mem_cgroup_swapin_charge_page(page,
3535 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3536 ret = VM_FAULT_OOM;
4c6355b2 3537 goto out_page;
545b1b07 3538 }
0add0c77 3539 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3540
aae466b0
JK
3541 shadow = get_shadow_from_swap_cache(entry);
3542 if (shadow)
3543 workingset_refault(page, shadow);
0076f029 3544
6058eaec 3545 lru_cache_add(page);
0add0c77
SB
3546
3547 /* To provide entry to swap_readpage() */
3548 set_page_private(page, entry.val);
0bcac06f 3549 swap_readpage(page, true);
0add0c77 3550 set_page_private(page, 0);
0bcac06f 3551 }
aa8d22a1 3552 } else {
e9e9b7ec
MK
3553 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3554 vmf);
aa8d22a1 3555 swapcache = page;
0bcac06f
MK
3556 }
3557
1da177e4
LT
3558 if (!page) {
3559 /*
8f4e2101
HD
3560 * Back out if somebody else faulted in this pte
3561 * while we released the pte lock.
1da177e4 3562 */
82b0f8c3
JK
3563 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3564 vmf->address, &vmf->ptl);
2994302b 3565 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3566 ret = VM_FAULT_OOM;
3d1c7fd9 3567 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
65500d23 3568 goto unlock;
1da177e4
LT
3569 }
3570
3571 /* Had to read the page from swap area: Major fault */
3572 ret = VM_FAULT_MAJOR;
f8891e5e 3573 count_vm_event(PGMAJFAULT);
2262185c 3574 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3575 } else if (PageHWPoison(page)) {
71f72525
WF
3576 /*
3577 * hwpoisoned dirty swapcache pages are kept for killing
3578 * owner processes (which may be unknown at hwpoison time)
3579 */
d1737fdb 3580 ret = VM_FAULT_HWPOISON;
3d1c7fd9 3581 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
4779cb31 3582 goto out_release;
1da177e4
LT
3583 }
3584
82b0f8c3 3585 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3586
3d1c7fd9 3587 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
d065bd81
ML
3588 if (!locked) {
3589 ret |= VM_FAULT_RETRY;
3590 goto out_release;
3591 }
073e587e 3592
4969c119 3593 /*
31c4a3d3
HD
3594 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3595 * release the swapcache from under us. The page pin, and pte_same
3596 * test below, are not enough to exclude that. Even if it is still
3597 * swapcache, we need to check that the page's swap has not changed.
4969c119 3598 */
0bcac06f
MK
3599 if (unlikely((!PageSwapCache(page) ||
3600 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3601 goto out_page;
3602
82b0f8c3 3603 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3604 if (unlikely(!page)) {
3605 ret = VM_FAULT_OOM;
3606 page = swapcache;
cbf86cfe 3607 goto out_page;
5ad64688
HD
3608 }
3609
9d82c694 3610 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3611
1da177e4 3612 /*
8f4e2101 3613 * Back out if somebody else already faulted in this pte.
1da177e4 3614 */
82b0f8c3
JK
3615 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3616 &vmf->ptl);
2994302b 3617 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3618 goto out_nomap;
b8107480
KK
3619
3620 if (unlikely(!PageUptodate(page))) {
3621 ret = VM_FAULT_SIGBUS;
3622 goto out_nomap;
1da177e4
LT
3623 }
3624
8c7c6e34
KH
3625 /*
3626 * The page isn't present yet, go ahead with the fault.
3627 *
3628 * Be careful about the sequence of operations here.
3629 * To get its accounting right, reuse_swap_page() must be called
3630 * while the page is counted on swap but not yet in mapcount i.e.
3631 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3632 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3633 */
1da177e4 3634
bae473a4
KS
3635 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3636 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3637 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3638 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3639 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3640 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3641 ret |= VM_FAULT_WRITE;
d281ee61 3642 exclusive = RMAP_EXCLUSIVE;
1da177e4 3643 }
1da177e4 3644 flush_icache_page(vma, page);
2994302b 3645 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3646 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3647 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3648 pte = pte_mkuffd_wp(pte);
3649 pte = pte_wrprotect(pte);
3650 }
82b0f8c3 3651 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3652 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3653 vmf->orig_pte = pte;
0bcac06f
MK
3654
3655 /* ksm created a completely new copy */
3656 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3657 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3658 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3659 } else {
3660 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3661 }
1da177e4 3662
c475a8ab 3663 swap_free(entry);
5ccc5aba
VD
3664 if (mem_cgroup_swap_full(page) ||
3665 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3666 try_to_free_swap(page);
c475a8ab 3667 unlock_page(page);
0bcac06f 3668 if (page != swapcache && swapcache) {
4969c119
AA
3669 /*
3670 * Hold the lock to avoid the swap entry to be reused
3671 * until we take the PT lock for the pte_same() check
3672 * (to avoid false positives from pte_same). For
3673 * further safety release the lock after the swap_free
3674 * so that the swap count won't change under a
3675 * parallel locked swapcache.
3676 */
3677 unlock_page(swapcache);
09cbfeaf 3678 put_page(swapcache);
4969c119 3679 }
c475a8ab 3680
82b0f8c3 3681 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3682 ret |= do_wp_page(vmf);
61469f1d
HD
3683 if (ret & VM_FAULT_ERROR)
3684 ret &= VM_FAULT_ERROR;
1da177e4
LT
3685 goto out;
3686 }
3687
3688 /* No need to invalidate - it was non-present before */
82b0f8c3 3689 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3690unlock:
82b0f8c3 3691 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3692out:
2799e775
ML
3693 if (si)
3694 put_swap_device(si);
1da177e4 3695 return ret;
b8107480 3696out_nomap:
82b0f8c3 3697 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3698out_page:
b8107480 3699 unlock_page(page);
4779cb31 3700out_release:
09cbfeaf 3701 put_page(page);
0bcac06f 3702 if (page != swapcache && swapcache) {
4969c119 3703 unlock_page(swapcache);
09cbfeaf 3704 put_page(swapcache);
4969c119 3705 }
2799e775
ML
3706 if (si)
3707 put_swap_device(si);
65500d23 3708 return ret;
1da177e4
LT
3709}
3710
3711/*
c1e8d7c6 3712 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3713 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3714 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3715 */
2b740303 3716static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3717{
82b0f8c3 3718 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3719 struct page *page;
2b740303 3720 vm_fault_t ret = 0;
1da177e4 3721 pte_t entry;
1da177e4 3722
6b7339f4
KS
3723 /* File mapping without ->vm_ops ? */
3724 if (vma->vm_flags & VM_SHARED)
3725 return VM_FAULT_SIGBUS;
3726
7267ec00
KS
3727 /*
3728 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3729 * pte_offset_map() on pmds where a huge pmd might be created
3730 * from a different thread.
3731 *
3e4e28c5 3732 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3733 * parallel threads are excluded by other means.
3734 *
3e4e28c5 3735 * Here we only have mmap_read_lock(mm).
7267ec00 3736 */
4cf58924 3737 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3738 return VM_FAULT_OOM;
3739
f9ce0be7 3740 /* See comment in handle_pte_fault() */
82b0f8c3 3741 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3742 return 0;
3743
11ac5524 3744 /* Use the zero-page for reads */
82b0f8c3 3745 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3746 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3747 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3748 vma->vm_page_prot));
82b0f8c3
JK
3749 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3750 vmf->address, &vmf->ptl);
7df67697
BM
3751 if (!pte_none(*vmf->pte)) {
3752 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3753 goto unlock;
7df67697 3754 }
6b31d595
MH
3755 ret = check_stable_address_space(vma->vm_mm);
3756 if (ret)
3757 goto unlock;
6b251fc9
AA
3758 /* Deliver the page fault to userland, check inside PT lock */
3759 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3760 pte_unmap_unlock(vmf->pte, vmf->ptl);
3761 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3762 }
a13ea5b7
HD
3763 goto setpte;
3764 }
3765
557ed1fa 3766 /* Allocate our own private page. */
557ed1fa
NP
3767 if (unlikely(anon_vma_prepare(vma)))
3768 goto oom;
82b0f8c3 3769 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3770 if (!page)
3771 goto oom;
eb3c24f3 3772
d9eb1ea2 3773 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3774 goto oom_free_page;
9d82c694 3775 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3776
52f37629
MK
3777 /*
3778 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3779 * preceding stores to the page contents become visible before
52f37629
MK
3780 * the set_pte_at() write.
3781 */
0ed361de 3782 __SetPageUptodate(page);
8f4e2101 3783
557ed1fa 3784 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 3785 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3786 if (vma->vm_flags & VM_WRITE)
3787 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3788
82b0f8c3
JK
3789 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3790 &vmf->ptl);
7df67697
BM
3791 if (!pte_none(*vmf->pte)) {
3792 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3793 goto release;
7df67697 3794 }
9ba69294 3795
6b31d595
MH
3796 ret = check_stable_address_space(vma->vm_mm);
3797 if (ret)
3798 goto release;
3799
6b251fc9
AA
3800 /* Deliver the page fault to userland, check inside PT lock */
3801 if (userfaultfd_missing(vma)) {
82b0f8c3 3802 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3803 put_page(page);
82b0f8c3 3804 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3805 }
3806
bae473a4 3807 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3808 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3809 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3810setpte:
82b0f8c3 3811 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3812
3813 /* No need to invalidate - it was non-present before */
82b0f8c3 3814 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3815unlock:
82b0f8c3 3816 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3817 return ret;
8f4e2101 3818release:
09cbfeaf 3819 put_page(page);
8f4e2101 3820 goto unlock;
8a9f3ccd 3821oom_free_page:
09cbfeaf 3822 put_page(page);
65500d23 3823oom:
1da177e4
LT
3824 return VM_FAULT_OOM;
3825}
3826
9a95f3cf 3827/*
c1e8d7c6 3828 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3829 * released depending on flags and vma->vm_ops->fault() return value.
3830 * See filemap_fault() and __lock_page_retry().
3831 */
2b740303 3832static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3833{
82b0f8c3 3834 struct vm_area_struct *vma = vmf->vma;
2b740303 3835 vm_fault_t ret;
7eae74af 3836
63f3655f
MH
3837 /*
3838 * Preallocate pte before we take page_lock because this might lead to
3839 * deadlocks for memcg reclaim which waits for pages under writeback:
3840 * lock_page(A)
3841 * SetPageWriteback(A)
3842 * unlock_page(A)
3843 * lock_page(B)
3844 * lock_page(B)
d383807a 3845 * pte_alloc_one
63f3655f
MH
3846 * shrink_page_list
3847 * wait_on_page_writeback(A)
3848 * SetPageWriteback(B)
3849 * unlock_page(B)
3850 * # flush A, B to clear the writeback
3851 */
3852 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3853 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3854 if (!vmf->prealloc_pte)
3855 return VM_FAULT_OOM;
3856 smp_wmb(); /* See comment in __pte_alloc() */
3857 }
3858
11bac800 3859 ret = vma->vm_ops->fault(vmf);
3917048d 3860 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3861 VM_FAULT_DONE_COW)))
bc2466e4 3862 return ret;
7eae74af 3863
667240e0 3864 if (unlikely(PageHWPoison(vmf->page))) {
421b79ba 3865 struct page *page = vmf->page;
39992523
RR
3866 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3867 if (ret & VM_FAULT_LOCKED) {
421b79ba
RR
3868 if (page_mapped(page))
3869 unmap_mapping_pages(page_mapping(page),
3870 page->index, 1, false);
39992523 3871 /* Retry if a clean page was removed from the cache. */
421b79ba
RR
3872 if (invalidate_inode_page(page))
3873 poisonret = VM_FAULT_NOPAGE;
3874 unlock_page(page);
39992523 3875 }
421b79ba 3876 put_page(page);
936ca80d 3877 vmf->page = NULL;
39992523 3878 return poisonret;
7eae74af
KS
3879 }
3880
3881 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3882 lock_page(vmf->page);
7eae74af 3883 else
667240e0 3884 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3885
7eae74af
KS
3886 return ret;
3887}
3888
396bcc52 3889#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3890static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3891{
82b0f8c3 3892 struct vm_area_struct *vma = vmf->vma;
953c66c2 3893
82b0f8c3 3894 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3895 /*
3896 * We are going to consume the prealloc table,
3897 * count that as nr_ptes.
3898 */
c4812909 3899 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3900 vmf->prealloc_pte = NULL;
953c66c2
AK
3901}
3902
f9ce0be7 3903vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3904{
82b0f8c3
JK
3905 struct vm_area_struct *vma = vmf->vma;
3906 bool write = vmf->flags & FAULT_FLAG_WRITE;
3907 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3908 pmd_t entry;
2b740303 3909 int i;
d01ac3c3 3910 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3911
3912 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3913 return ret;
10102459 3914
10102459 3915 page = compound_head(page);
d01ac3c3
MWO
3916 if (compound_order(page) != HPAGE_PMD_ORDER)
3917 return ret;
10102459 3918
eac96c3e
YS
3919 /*
3920 * Just backoff if any subpage of a THP is corrupted otherwise
3921 * the corrupted page may mapped by PMD silently to escape the
3922 * check. This kind of THP just can be PTE mapped. Access to
3923 * the corrupted subpage should trigger SIGBUS as expected.
3924 */
3925 if (unlikely(PageHasHWPoisoned(page)))
3926 return ret;
3927
953c66c2 3928 /*
f0953a1b 3929 * Archs like ppc64 need additional space to store information
953c66c2
AK
3930 * related to pte entry. Use the preallocated table for that.
3931 */
82b0f8c3 3932 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3933 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3934 if (!vmf->prealloc_pte)
953c66c2
AK
3935 return VM_FAULT_OOM;
3936 smp_wmb(); /* See comment in __pte_alloc() */
3937 }
3938
82b0f8c3
JK
3939 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3940 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3941 goto out;
3942
3943 for (i = 0; i < HPAGE_PMD_NR; i++)
3944 flush_icache_page(vma, page + i);
3945
3946 entry = mk_huge_pmd(page, vma->vm_page_prot);
3947 if (write)
f55e1014 3948 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3949
fadae295 3950 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3951 page_add_file_rmap(page, true);
953c66c2
AK
3952 /*
3953 * deposit and withdraw with pmd lock held
3954 */
3955 if (arch_needs_pgtable_deposit())
82b0f8c3 3956 deposit_prealloc_pte(vmf);
10102459 3957
82b0f8c3 3958 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3959
82b0f8c3 3960 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3961
3962 /* fault is handled */
3963 ret = 0;
95ecedcd 3964 count_vm_event(THP_FILE_MAPPED);
10102459 3965out:
82b0f8c3 3966 spin_unlock(vmf->ptl);
10102459
KS
3967 return ret;
3968}
3969#else
f9ce0be7 3970vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3971{
f9ce0be7 3972 return VM_FAULT_FALLBACK;
10102459
KS
3973}
3974#endif
3975
9d3af4b4 3976void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 3977{
82b0f8c3
JK
3978 struct vm_area_struct *vma = vmf->vma;
3979 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 3980 bool prefault = vmf->address != addr;
3bb97794 3981 pte_t entry;
7267ec00 3982
3bb97794
KS
3983 flush_icache_page(vma, page);
3984 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
3985
3986 if (prefault && arch_wants_old_prefaulted_pte())
3987 entry = pte_mkold(entry);
50c25ee9
TB
3988 else
3989 entry = pte_sw_mkyoung(entry);
46bdb427 3990
3bb97794
KS
3991 if (write)
3992 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3993 /* copy-on-write page */
3994 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3995 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
9d3af4b4 3996 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 3997 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3998 } else {
eca56ff9 3999 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 4000 page_add_file_rmap(page, false);
3bb97794 4001 }
9d3af4b4 4002 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4003}
4004
9118c0cb
JK
4005/**
4006 * finish_fault - finish page fault once we have prepared the page to fault
4007 *
4008 * @vmf: structure describing the fault
4009 *
4010 * This function handles all that is needed to finish a page fault once the
4011 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4012 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4013 * addition.
9118c0cb
JK
4014 *
4015 * The function expects the page to be locked and on success it consumes a
4016 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4017 *
4018 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4019 */
2b740303 4020vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4021{
f9ce0be7 4022 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4023 struct page *page;
f9ce0be7 4024 vm_fault_t ret;
9118c0cb
JK
4025
4026 /* Did we COW the page? */
f9ce0be7 4027 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4028 page = vmf->cow_page;
4029 else
4030 page = vmf->page;
6b31d595
MH
4031
4032 /*
4033 * check even for read faults because we might have lost our CoWed
4034 * page
4035 */
f9ce0be7
KS
4036 if (!(vma->vm_flags & VM_SHARED)) {
4037 ret = check_stable_address_space(vma->vm_mm);
4038 if (ret)
4039 return ret;
4040 }
4041
4042 if (pmd_none(*vmf->pmd)) {
4043 if (PageTransCompound(page)) {
4044 ret = do_set_pmd(vmf, page);
4045 if (ret != VM_FAULT_FALLBACK)
4046 return ret;
4047 }
4048
e4dc3489
QZ
4049 if (vmf->prealloc_pte) {
4050 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4051 if (likely(pmd_none(*vmf->pmd))) {
4052 mm_inc_nr_ptes(vma->vm_mm);
4053 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4054 vmf->prealloc_pte = NULL;
4055 }
4056 spin_unlock(vmf->ptl);
4057 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
f9ce0be7 4058 return VM_FAULT_OOM;
e4dc3489 4059 }
f9ce0be7
KS
4060 }
4061
4062 /* See comment in handle_pte_fault() */
4063 if (pmd_devmap_trans_unstable(vmf->pmd))
4064 return 0;
4065
4066 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4067 vmf->address, &vmf->ptl);
4068 ret = 0;
4069 /* Re-check under ptl */
4070 if (likely(pte_none(*vmf->pte)))
9d3af4b4 4071 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
4072 else
4073 ret = VM_FAULT_NOPAGE;
4074
4075 update_mmu_tlb(vma, vmf->address, vmf->pte);
4076 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4077 return ret;
4078}
4079
3a91053a
KS
4080static unsigned long fault_around_bytes __read_mostly =
4081 rounddown_pow_of_two(65536);
a9b0f861 4082
a9b0f861
KS
4083#ifdef CONFIG_DEBUG_FS
4084static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4085{
a9b0f861 4086 *val = fault_around_bytes;
1592eef0
KS
4087 return 0;
4088}
4089
b4903d6e 4090/*
da391d64
WK
4091 * fault_around_bytes must be rounded down to the nearest page order as it's
4092 * what do_fault_around() expects to see.
b4903d6e 4093 */
a9b0f861 4094static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4095{
a9b0f861 4096 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4097 return -EINVAL;
b4903d6e
AR
4098 if (val > PAGE_SIZE)
4099 fault_around_bytes = rounddown_pow_of_two(val);
4100 else
4101 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4102 return 0;
4103}
0a1345f8 4104DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4105 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4106
4107static int __init fault_around_debugfs(void)
4108{
d9f7979c
GKH
4109 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4110 &fault_around_bytes_fops);
1592eef0
KS
4111 return 0;
4112}
4113late_initcall(fault_around_debugfs);
1592eef0 4114#endif
8c6e50b0 4115
1fdb412b
KS
4116/*
4117 * do_fault_around() tries to map few pages around the fault address. The hope
4118 * is that the pages will be needed soon and this will lower the number of
4119 * faults to handle.
4120 *
4121 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4122 * not ready to be mapped: not up-to-date, locked, etc.
4123 *
4124 * This function is called with the page table lock taken. In the split ptlock
4125 * case the page table lock only protects only those entries which belong to
4126 * the page table corresponding to the fault address.
4127 *
4128 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4129 * only once.
4130 *
da391d64
WK
4131 * fault_around_bytes defines how many bytes we'll try to map.
4132 * do_fault_around() expects it to be set to a power of two less than or equal
4133 * to PTRS_PER_PTE.
1fdb412b 4134 *
da391d64
WK
4135 * The virtual address of the area that we map is naturally aligned to
4136 * fault_around_bytes rounded down to the machine page size
4137 * (and therefore to page order). This way it's easier to guarantee
4138 * that we don't cross page table boundaries.
1fdb412b 4139 */
2b740303 4140static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4141{
82b0f8c3 4142 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4143 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4144 pgoff_t end_pgoff;
2b740303 4145 int off;
8c6e50b0 4146
4db0c3c2 4147 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4148 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4149
f9ce0be7
KS
4150 address = max(address & mask, vmf->vma->vm_start);
4151 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4152 start_pgoff -= off;
8c6e50b0
KS
4153
4154 /*
da391d64
WK
4155 * end_pgoff is either the end of the page table, the end of
4156 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4157 */
bae473a4 4158 end_pgoff = start_pgoff -
f9ce0be7 4159 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4160 PTRS_PER_PTE - 1;
82b0f8c3 4161 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4162 start_pgoff + nr_pages - 1);
8c6e50b0 4163
82b0f8c3 4164 if (pmd_none(*vmf->pmd)) {
4cf58924 4165 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4166 if (!vmf->prealloc_pte)
f9ce0be7 4167 return VM_FAULT_OOM;
7267ec00 4168 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
4169 }
4170
f9ce0be7 4171 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4172}
4173
2b740303 4174static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4175{
82b0f8c3 4176 struct vm_area_struct *vma = vmf->vma;
2b740303 4177 vm_fault_t ret = 0;
8c6e50b0
KS
4178
4179 /*
4180 * Let's call ->map_pages() first and use ->fault() as fallback
4181 * if page by the offset is not ready to be mapped (cold cache or
4182 * something).
4183 */
9b4bdd2f 4184 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
c949b097
AR
4185 if (likely(!userfaultfd_minor(vmf->vma))) {
4186 ret = do_fault_around(vmf);
4187 if (ret)
4188 return ret;
4189 }
8c6e50b0 4190 }
e655fb29 4191
936ca80d 4192 ret = __do_fault(vmf);
e655fb29
KS
4193 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4194 return ret;
4195
9118c0cb 4196 ret |= finish_fault(vmf);
936ca80d 4197 unlock_page(vmf->page);
7267ec00 4198 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4199 put_page(vmf->page);
e655fb29
KS
4200 return ret;
4201}
4202
2b740303 4203static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4204{
82b0f8c3 4205 struct vm_area_struct *vma = vmf->vma;
2b740303 4206 vm_fault_t ret;
ec47c3b9
KS
4207
4208 if (unlikely(anon_vma_prepare(vma)))
4209 return VM_FAULT_OOM;
4210
936ca80d
JK
4211 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4212 if (!vmf->cow_page)
ec47c3b9
KS
4213 return VM_FAULT_OOM;
4214
d9eb1ea2 4215 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 4216 put_page(vmf->cow_page);
ec47c3b9
KS
4217 return VM_FAULT_OOM;
4218 }
9d82c694 4219 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4220
936ca80d 4221 ret = __do_fault(vmf);
ec47c3b9
KS
4222 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4223 goto uncharge_out;
3917048d
JK
4224 if (ret & VM_FAULT_DONE_COW)
4225 return ret;
ec47c3b9 4226
b1aa812b 4227 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4228 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4229
9118c0cb 4230 ret |= finish_fault(vmf);
b1aa812b
JK
4231 unlock_page(vmf->page);
4232 put_page(vmf->page);
7267ec00
KS
4233 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4234 goto uncharge_out;
ec47c3b9
KS
4235 return ret;
4236uncharge_out:
936ca80d 4237 put_page(vmf->cow_page);
ec47c3b9
KS
4238 return ret;
4239}
4240
2b740303 4241static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4242{
82b0f8c3 4243 struct vm_area_struct *vma = vmf->vma;
2b740303 4244 vm_fault_t ret, tmp;
1d65f86d 4245
936ca80d 4246 ret = __do_fault(vmf);
7eae74af 4247 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4248 return ret;
1da177e4
LT
4249
4250 /*
f0c6d4d2
KS
4251 * Check if the backing address space wants to know that the page is
4252 * about to become writable
1da177e4 4253 */
fb09a464 4254 if (vma->vm_ops->page_mkwrite) {
936ca80d 4255 unlock_page(vmf->page);
38b8cb7f 4256 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4257 if (unlikely(!tmp ||
4258 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4259 put_page(vmf->page);
fb09a464 4260 return tmp;
4294621f 4261 }
fb09a464
KS
4262 }
4263
9118c0cb 4264 ret |= finish_fault(vmf);
7267ec00
KS
4265 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4266 VM_FAULT_RETRY))) {
936ca80d
JK
4267 unlock_page(vmf->page);
4268 put_page(vmf->page);
f0c6d4d2 4269 return ret;
1da177e4 4270 }
b827e496 4271
89b15332 4272 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4273 return ret;
54cb8821 4274}
d00806b1 4275
9a95f3cf 4276/*
c1e8d7c6 4277 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4278 * but allow concurrent faults).
c1e8d7c6 4279 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4280 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 4281 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4282 * by other thread calling munmap()).
9a95f3cf 4283 */
2b740303 4284static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4285{
82b0f8c3 4286 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4287 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4288 vm_fault_t ret;
54cb8821 4289
ff09d7ec
AK
4290 /*
4291 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4292 */
4293 if (!vma->vm_ops->fault) {
4294 /*
4295 * If we find a migration pmd entry or a none pmd entry, which
4296 * should never happen, return SIGBUS
4297 */
4298 if (unlikely(!pmd_present(*vmf->pmd)))
4299 ret = VM_FAULT_SIGBUS;
4300 else {
4301 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4302 vmf->pmd,
4303 vmf->address,
4304 &vmf->ptl);
4305 /*
4306 * Make sure this is not a temporary clearing of pte
4307 * by holding ptl and checking again. A R/M/W update
4308 * of pte involves: take ptl, clearing the pte so that
4309 * we don't have concurrent modification by hardware
4310 * followed by an update.
4311 */
4312 if (unlikely(pte_none(*vmf->pte)))
4313 ret = VM_FAULT_SIGBUS;
4314 else
4315 ret = VM_FAULT_NOPAGE;
4316
4317 pte_unmap_unlock(vmf->pte, vmf->ptl);
4318 }
4319 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4320 ret = do_read_fault(vmf);
4321 else if (!(vma->vm_flags & VM_SHARED))
4322 ret = do_cow_fault(vmf);
4323 else
4324 ret = do_shared_fault(vmf);
4325
4326 /* preallocated pagetable is unused: free it */
4327 if (vmf->prealloc_pte) {
fc8efd2d 4328 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4329 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4330 }
4331 return ret;
54cb8821
NP
4332}
4333
f4c0d836
YS
4334int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4335 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4336{
4337 get_page(page);
4338
4339 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4340 if (page_nid == numa_node_id()) {
9532fec1 4341 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4342 *flags |= TNF_FAULT_LOCAL;
4343 }
9532fec1
MG
4344
4345 return mpol_misplaced(page, vma, addr);
4346}
4347
2b740303 4348static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4349{
82b0f8c3 4350 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4351 struct page *page = NULL;
98fa15f3 4352 int page_nid = NUMA_NO_NODE;
90572890 4353 int last_cpupid;
cbee9f88 4354 int target_nid;
04a86453 4355 pte_t pte, old_pte;
288bc549 4356 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4357 int flags = 0;
d10e63f2
MG
4358
4359 /*
166f61b9
TH
4360 * The "pte" at this point cannot be used safely without
4361 * validation through pte_unmap_same(). It's of NUMA type but
4362 * the pfn may be screwed if the read is non atomic.
166f61b9 4363 */
82b0f8c3
JK
4364 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4365 spin_lock(vmf->ptl);
cee216a6 4366 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4367 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4368 goto out;
4369 }
4370
b99a342d
HY
4371 /* Get the normal PTE */
4372 old_pte = ptep_get(vmf->pte);
04a86453 4373 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4374
82b0f8c3 4375 page = vm_normal_page(vma, vmf->address, pte);
b99a342d
HY
4376 if (!page)
4377 goto out_map;
d10e63f2 4378
e81c4802 4379 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4380 if (PageCompound(page))
4381 goto out_map;
e81c4802 4382
6688cc05 4383 /*
bea66fbd
MG
4384 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4385 * much anyway since they can be in shared cache state. This misses
4386 * the case where a mapping is writable but the process never writes
4387 * to it but pte_write gets cleared during protection updates and
4388 * pte_dirty has unpredictable behaviour between PTE scan updates,
4389 * background writeback, dirty balancing and application behaviour.
6688cc05 4390 */
b99a342d 4391 if (!was_writable)
6688cc05
PZ
4392 flags |= TNF_NO_GROUP;
4393
dabe1d99
RR
4394 /*
4395 * Flag if the page is shared between multiple address spaces. This
4396 * is later used when determining whether to group tasks together
4397 */
4398 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4399 flags |= TNF_SHARED;
4400
90572890 4401 last_cpupid = page_cpupid_last(page);
8191acbd 4402 page_nid = page_to_nid(page);
82b0f8c3 4403 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4404 &flags);
98fa15f3 4405 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4406 put_page(page);
b99a342d 4407 goto out_map;
4daae3b4 4408 }
b99a342d 4409 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4410
4411 /* Migrate to the requested node */
bf90ac19 4412 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4413 page_nid = target_nid;
6688cc05 4414 flags |= TNF_MIGRATED;
b99a342d 4415 } else {
074c2381 4416 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4417 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4418 spin_lock(vmf->ptl);
4419 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4420 pte_unmap_unlock(vmf->pte, vmf->ptl);
4421 goto out;
4422 }
4423 goto out_map;
4424 }
4daae3b4
MG
4425
4426out:
98fa15f3 4427 if (page_nid != NUMA_NO_NODE)
6688cc05 4428 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4429 return 0;
b99a342d
HY
4430out_map:
4431 /*
4432 * Make it present again, depending on how arch implements
4433 * non-accessible ptes, some can allow access by kernel mode.
4434 */
4435 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4436 pte = pte_modify(old_pte, vma->vm_page_prot);
4437 pte = pte_mkyoung(pte);
4438 if (was_writable)
4439 pte = pte_mkwrite(pte);
4440 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4441 update_mmu_cache(vma, vmf->address, vmf->pte);
4442 pte_unmap_unlock(vmf->pte, vmf->ptl);
4443 goto out;
d10e63f2
MG
4444}
4445
2b740303 4446static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4447{
f4200391 4448 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4449 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4450 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4451 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4452 return VM_FAULT_FALLBACK;
4453}
4454
183f24aa 4455/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4456static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4457{
529b930b 4458 if (vma_is_anonymous(vmf->vma)) {
5db4f15c 4459 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4460 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4461 return do_huge_pmd_wp_page(vmf);
529b930b 4462 }
327e9fd4
THV
4463 if (vmf->vma->vm_ops->huge_fault) {
4464 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4465
4466 if (!(ret & VM_FAULT_FALLBACK))
4467 return ret;
4468 }
af9e4d5f 4469
327e9fd4 4470 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4471 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4472
b96375f7
MW
4473 return VM_FAULT_FALLBACK;
4474}
4475
2b740303 4476static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4477{
327e9fd4
THV
4478#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4479 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4480 /* No support for anonymous transparent PUD pages yet */
4481 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4482 goto split;
4483 if (vmf->vma->vm_ops->huge_fault) {
4484 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4485
4486 if (!(ret & VM_FAULT_FALLBACK))
4487 return ret;
4488 }
4489split:
4490 /* COW or write-notify not handled on PUD level: split pud.*/
4491 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4492#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4493 return VM_FAULT_FALLBACK;
4494}
4495
2b740303 4496static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4497{
4498#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4499 /* No support for anonymous transparent PUD pages yet */
4500 if (vma_is_anonymous(vmf->vma))
4501 return VM_FAULT_FALLBACK;
4502 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4503 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4504#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4505 return VM_FAULT_FALLBACK;
4506}
4507
1da177e4
LT
4508/*
4509 * These routines also need to handle stuff like marking pages dirty
4510 * and/or accessed for architectures that don't do it in hardware (most
4511 * RISC architectures). The early dirtying is also good on the i386.
4512 *
4513 * There is also a hook called "update_mmu_cache()" that architectures
4514 * with external mmu caches can use to update those (ie the Sparc or
4515 * PowerPC hashed page tables that act as extended TLBs).
4516 *
c1e8d7c6 4517 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4518 * concurrent faults).
9a95f3cf 4519 *
c1e8d7c6 4520 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4521 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4522 */
2b740303 4523static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4524{
4525 pte_t entry;
4526
82b0f8c3 4527 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4528 /*
4529 * Leave __pte_alloc() until later: because vm_ops->fault may
4530 * want to allocate huge page, and if we expose page table
4531 * for an instant, it will be difficult to retract from
4532 * concurrent faults and from rmap lookups.
4533 */
82b0f8c3 4534 vmf->pte = NULL;
7267ec00 4535 } else {
f9ce0be7
KS
4536 /*
4537 * If a huge pmd materialized under us just retry later. Use
4538 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4539 * of pmd_trans_huge() to ensure the pmd didn't become
4540 * pmd_trans_huge under us and then back to pmd_none, as a
4541 * result of MADV_DONTNEED running immediately after a huge pmd
4542 * fault in a different thread of this mm, in turn leading to a
4543 * misleading pmd_trans_huge() retval. All we have to ensure is
4544 * that it is a regular pmd that we can walk with
4545 * pte_offset_map() and we can do that through an atomic read
4546 * in C, which is what pmd_trans_unstable() provides.
4547 */
d0f0931d 4548 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4549 return 0;
4550 /*
4551 * A regular pmd is established and it can't morph into a huge
4552 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4553 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4554 * So now it's safe to run pte_offset_map().
4555 */
82b0f8c3 4556 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4557 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4558
4559 /*
4560 * some architectures can have larger ptes than wordsize,
4561 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4562 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4563 * accesses. The code below just needs a consistent view
4564 * for the ifs and we later double check anyway with the
7267ec00
KS
4565 * ptl lock held. So here a barrier will do.
4566 */
4567 barrier();
2994302b 4568 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4569 pte_unmap(vmf->pte);
4570 vmf->pte = NULL;
65500d23 4571 }
1da177e4
LT
4572 }
4573
82b0f8c3
JK
4574 if (!vmf->pte) {
4575 if (vma_is_anonymous(vmf->vma))
4576 return do_anonymous_page(vmf);
7267ec00 4577 else
82b0f8c3 4578 return do_fault(vmf);
7267ec00
KS
4579 }
4580
2994302b
JK
4581 if (!pte_present(vmf->orig_pte))
4582 return do_swap_page(vmf);
7267ec00 4583
2994302b
JK
4584 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4585 return do_numa_page(vmf);
d10e63f2 4586
82b0f8c3
JK
4587 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4588 spin_lock(vmf->ptl);
2994302b 4589 entry = vmf->orig_pte;
7df67697
BM
4590 if (unlikely(!pte_same(*vmf->pte, entry))) {
4591 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4592 goto unlock;
7df67697 4593 }
82b0f8c3 4594 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4595 if (!pte_write(entry))
2994302b 4596 return do_wp_page(vmf);
1da177e4
LT
4597 entry = pte_mkdirty(entry);
4598 }
4599 entry = pte_mkyoung(entry);
82b0f8c3
JK
4600 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4601 vmf->flags & FAULT_FLAG_WRITE)) {
4602 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4603 } else {
b7333b58
YS
4604 /* Skip spurious TLB flush for retried page fault */
4605 if (vmf->flags & FAULT_FLAG_TRIED)
4606 goto unlock;
1a44e149
AA
4607 /*
4608 * This is needed only for protection faults but the arch code
4609 * is not yet telling us if this is a protection fault or not.
4610 * This still avoids useless tlb flushes for .text page faults
4611 * with threads.
4612 */
82b0f8c3
JK
4613 if (vmf->flags & FAULT_FLAG_WRITE)
4614 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4615 }
8f4e2101 4616unlock:
82b0f8c3 4617 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4618 return 0;
1da177e4
LT
4619}
4620
4621/*
4622 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4623 *
c1e8d7c6 4624 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4625 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4626 */
2b740303
SJ
4627static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4628 unsigned long address, unsigned int flags)
1da177e4 4629{
82b0f8c3 4630 struct vm_fault vmf = {
bae473a4 4631 .vma = vma,
1a29d85e 4632 .address = address & PAGE_MASK,
bae473a4 4633 .flags = flags,
0721ec8b 4634 .pgoff = linear_page_index(vma, address),
667240e0 4635 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4636 };
fde26bed 4637 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4638 struct mm_struct *mm = vma->vm_mm;
1da177e4 4639 pgd_t *pgd;
c2febafc 4640 p4d_t *p4d;
2b740303 4641 vm_fault_t ret;
1da177e4 4642
1da177e4 4643 pgd = pgd_offset(mm, address);
c2febafc
KS
4644 p4d = p4d_alloc(mm, pgd, address);
4645 if (!p4d)
4646 return VM_FAULT_OOM;
a00cc7d9 4647
c2febafc 4648 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4649 if (!vmf.pud)
c74df32c 4650 return VM_FAULT_OOM;
625110b5 4651retry_pud:
7635d9cb 4652 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4653 ret = create_huge_pud(&vmf);
4654 if (!(ret & VM_FAULT_FALLBACK))
4655 return ret;
4656 } else {
4657 pud_t orig_pud = *vmf.pud;
4658
4659 barrier();
4660 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4661
a00cc7d9
MW
4662 /* NUMA case for anonymous PUDs would go here */
4663
f6f37321 4664 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4665 ret = wp_huge_pud(&vmf, orig_pud);
4666 if (!(ret & VM_FAULT_FALLBACK))
4667 return ret;
4668 } else {
4669 huge_pud_set_accessed(&vmf, orig_pud);
4670 return 0;
4671 }
4672 }
4673 }
4674
4675 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4676 if (!vmf.pmd)
c74df32c 4677 return VM_FAULT_OOM;
625110b5
TH
4678
4679 /* Huge pud page fault raced with pmd_alloc? */
4680 if (pud_trans_unstable(vmf.pud))
4681 goto retry_pud;
4682
7635d9cb 4683 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4684 ret = create_huge_pmd(&vmf);
c0292554
KS
4685 if (!(ret & VM_FAULT_FALLBACK))
4686 return ret;
71e3aac0 4687 } else {
5db4f15c 4688 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 4689
71e3aac0 4690 barrier();
5db4f15c 4691 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 4692 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
4693 !is_pmd_migration_entry(vmf.orig_pmd));
4694 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
4695 pmd_migration_entry_wait(mm, vmf.pmd);
4696 return 0;
4697 }
5db4f15c
YS
4698 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4699 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4700 return do_huge_pmd_numa_page(&vmf);
d10e63f2 4701
5db4f15c
YS
4702 if (dirty && !pmd_write(vmf.orig_pmd)) {
4703 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
4704 if (!(ret & VM_FAULT_FALLBACK))
4705 return ret;
a1dd450b 4706 } else {
5db4f15c 4707 huge_pmd_set_accessed(&vmf);
9845cbbd 4708 return 0;
1f1d06c3 4709 }
71e3aac0
AA
4710 }
4711 }
4712
82b0f8c3 4713 return handle_pte_fault(&vmf);
1da177e4
LT
4714}
4715
bce617ed 4716/**
f0953a1b 4717 * mm_account_fault - Do page fault accounting
bce617ed
PX
4718 *
4719 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4720 * of perf event counters, but we'll still do the per-task accounting to
4721 * the task who triggered this page fault.
4722 * @address: the faulted address.
4723 * @flags: the fault flags.
4724 * @ret: the fault retcode.
4725 *
f0953a1b 4726 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 4727 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 4728 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
4729 * still be in per-arch page fault handlers at the entry of page fault.
4730 */
4731static inline void mm_account_fault(struct pt_regs *regs,
4732 unsigned long address, unsigned int flags,
4733 vm_fault_t ret)
4734{
4735 bool major;
4736
4737 /*
4738 * We don't do accounting for some specific faults:
4739 *
4740 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4741 * includes arch_vma_access_permitted() failing before reaching here.
4742 * So this is not a "this many hardware page faults" counter. We
4743 * should use the hw profiling for that.
4744 *
4745 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4746 * once they're completed.
4747 */
4748 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4749 return;
4750
4751 /*
4752 * We define the fault as a major fault when the final successful fault
4753 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4754 * handle it immediately previously).
4755 */
4756 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4757
a2beb5f1
PX
4758 if (major)
4759 current->maj_flt++;
4760 else
4761 current->min_flt++;
4762
bce617ed 4763 /*
a2beb5f1
PX
4764 * If the fault is done for GUP, regs will be NULL. We only do the
4765 * accounting for the per thread fault counters who triggered the
4766 * fault, and we skip the perf event updates.
bce617ed
PX
4767 */
4768 if (!regs)
4769 return;
4770
a2beb5f1 4771 if (major)
bce617ed 4772 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4773 else
bce617ed 4774 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4775}
4776
9a95f3cf
PC
4777/*
4778 * By the time we get here, we already hold the mm semaphore
4779 *
c1e8d7c6 4780 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4781 * return value. See filemap_fault() and __lock_page_or_retry().
4782 */
2b740303 4783vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4784 unsigned int flags, struct pt_regs *regs)
519e5247 4785{
2b740303 4786 vm_fault_t ret;
519e5247
JW
4787
4788 __set_current_state(TASK_RUNNING);
4789
4790 count_vm_event(PGFAULT);
2262185c 4791 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4792
4793 /* do counter updates before entering really critical section. */
4794 check_sync_rss_stat(current);
4795
de0c799b
LD
4796 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4797 flags & FAULT_FLAG_INSTRUCTION,
4798 flags & FAULT_FLAG_REMOTE))
4799 return VM_FAULT_SIGSEGV;
4800
519e5247
JW
4801 /*
4802 * Enable the memcg OOM handling for faults triggered in user
4803 * space. Kernel faults are handled more gracefully.
4804 */
4805 if (flags & FAULT_FLAG_USER)
29ef680a 4806 mem_cgroup_enter_user_fault();
519e5247 4807
bae473a4
KS
4808 if (unlikely(is_vm_hugetlb_page(vma)))
4809 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4810 else
4811 ret = __handle_mm_fault(vma, address, flags);
519e5247 4812
49426420 4813 if (flags & FAULT_FLAG_USER) {
29ef680a 4814 mem_cgroup_exit_user_fault();
166f61b9
TH
4815 /*
4816 * The task may have entered a memcg OOM situation but
4817 * if the allocation error was handled gracefully (no
4818 * VM_FAULT_OOM), there is no need to kill anything.
4819 * Just clean up the OOM state peacefully.
4820 */
4821 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4822 mem_cgroup_oom_synchronize(false);
49426420 4823 }
3812c8c8 4824
bce617ed
PX
4825 mm_account_fault(regs, address, flags, ret);
4826
519e5247
JW
4827 return ret;
4828}
e1d6d01a 4829EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4830
90eceff1
KS
4831#ifndef __PAGETABLE_P4D_FOLDED
4832/*
4833 * Allocate p4d page table.
4834 * We've already handled the fast-path in-line.
4835 */
4836int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4837{
4838 p4d_t *new = p4d_alloc_one(mm, address);
4839 if (!new)
4840 return -ENOMEM;
4841
4842 smp_wmb(); /* See comment in __pte_alloc */
4843
4844 spin_lock(&mm->page_table_lock);
4845 if (pgd_present(*pgd)) /* Another has populated it */
4846 p4d_free(mm, new);
4847 else
4848 pgd_populate(mm, pgd, new);
4849 spin_unlock(&mm->page_table_lock);
4850 return 0;
4851}
4852#endif /* __PAGETABLE_P4D_FOLDED */
4853
1da177e4
LT
4854#ifndef __PAGETABLE_PUD_FOLDED
4855/*
4856 * Allocate page upper directory.
872fec16 4857 * We've already handled the fast-path in-line.
1da177e4 4858 */
c2febafc 4859int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4860{
c74df32c
HD
4861 pud_t *new = pud_alloc_one(mm, address);
4862 if (!new)
1bb3630e 4863 return -ENOMEM;
1da177e4 4864
362a61ad
NP
4865 smp_wmb(); /* See comment in __pte_alloc */
4866
872fec16 4867 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4868 if (!p4d_present(*p4d)) {
4869 mm_inc_nr_puds(mm);
c2febafc 4870 p4d_populate(mm, p4d, new);
b4e98d9a 4871 } else /* Another has populated it */
5e541973 4872 pud_free(mm, new);
c74df32c 4873 spin_unlock(&mm->page_table_lock);
1bb3630e 4874 return 0;
1da177e4
LT
4875}
4876#endif /* __PAGETABLE_PUD_FOLDED */
4877
4878#ifndef __PAGETABLE_PMD_FOLDED
4879/*
4880 * Allocate page middle directory.
872fec16 4881 * We've already handled the fast-path in-line.
1da177e4 4882 */
1bb3630e 4883int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4884{
a00cc7d9 4885 spinlock_t *ptl;
c74df32c
HD
4886 pmd_t *new = pmd_alloc_one(mm, address);
4887 if (!new)
1bb3630e 4888 return -ENOMEM;
1da177e4 4889
362a61ad
NP
4890 smp_wmb(); /* See comment in __pte_alloc */
4891
a00cc7d9 4892 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4893 if (!pud_present(*pud)) {
4894 mm_inc_nr_pmds(mm);
1bb3630e 4895 pud_populate(mm, pud, new);
dc6c9a35 4896 } else /* Another has populated it */
5e541973 4897 pmd_free(mm, new);
a00cc7d9 4898 spin_unlock(ptl);
1bb3630e 4899 return 0;
e0f39591 4900}
1da177e4
LT
4901#endif /* __PAGETABLE_PMD_FOLDED */
4902
9fd6dad1
PB
4903int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4904 struct mmu_notifier_range *range, pte_t **ptepp,
4905 pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4906{
4907 pgd_t *pgd;
c2febafc 4908 p4d_t *p4d;
f8ad0f49
JW
4909 pud_t *pud;
4910 pmd_t *pmd;
4911 pte_t *ptep;
4912
4913 pgd = pgd_offset(mm, address);
4914 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4915 goto out;
4916
c2febafc
KS
4917 p4d = p4d_offset(pgd, address);
4918 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4919 goto out;
4920
4921 pud = pud_offset(p4d, address);
f8ad0f49
JW
4922 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4923 goto out;
4924
4925 pmd = pmd_offset(pud, address);
f66055ab 4926 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4927
09796395
RZ
4928 if (pmd_huge(*pmd)) {
4929 if (!pmdpp)
4930 goto out;
4931
ac46d4f3 4932 if (range) {
7269f999 4933 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4934 NULL, mm, address & PMD_MASK,
4935 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4936 mmu_notifier_invalidate_range_start(range);
a4d1a885 4937 }
09796395
RZ
4938 *ptlp = pmd_lock(mm, pmd);
4939 if (pmd_huge(*pmd)) {
4940 *pmdpp = pmd;
4941 return 0;
4942 }
4943 spin_unlock(*ptlp);
ac46d4f3
JG
4944 if (range)
4945 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4946 }
4947
4948 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4949 goto out;
4950
ac46d4f3 4951 if (range) {
7269f999 4952 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4953 address & PAGE_MASK,
4954 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4955 mmu_notifier_invalidate_range_start(range);
a4d1a885 4956 }
f8ad0f49 4957 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4958 if (!pte_present(*ptep))
4959 goto unlock;
4960 *ptepp = ptep;
4961 return 0;
4962unlock:
4963 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4964 if (range)
4965 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4966out:
4967 return -EINVAL;
4968}
4969
9fd6dad1
PB
4970/**
4971 * follow_pte - look up PTE at a user virtual address
4972 * @mm: the mm_struct of the target address space
4973 * @address: user virtual address
4974 * @ptepp: location to store found PTE
4975 * @ptlp: location to store the lock for the PTE
4976 *
4977 * On a successful return, the pointer to the PTE is stored in @ptepp;
4978 * the corresponding lock is taken and its location is stored in @ptlp.
4979 * The contents of the PTE are only stable until @ptlp is released;
4980 * any further use, if any, must be protected against invalidation
4981 * with MMU notifiers.
4982 *
4983 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4984 * should be taken for read.
4985 *
4986 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4987 * it is not a good general-purpose API.
4988 *
4989 * Return: zero on success, -ve otherwise.
4990 */
4991int follow_pte(struct mm_struct *mm, unsigned long address,
4992 pte_t **ptepp, spinlock_t **ptlp)
4993{
4994 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4995}
4996EXPORT_SYMBOL_GPL(follow_pte);
4997
3b6748e2
JW
4998/**
4999 * follow_pfn - look up PFN at a user virtual address
5000 * @vma: memory mapping
5001 * @address: user virtual address
5002 * @pfn: location to store found PFN
5003 *
5004 * Only IO mappings and raw PFN mappings are allowed.
5005 *
9fd6dad1
PB
5006 * This function does not allow the caller to read the permissions
5007 * of the PTE. Do not use it.
5008 *
a862f68a 5009 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5010 */
5011int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5012 unsigned long *pfn)
5013{
5014 int ret = -EINVAL;
5015 spinlock_t *ptl;
5016 pte_t *ptep;
5017
5018 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5019 return ret;
5020
9fd6dad1 5021 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5022 if (ret)
5023 return ret;
5024 *pfn = pte_pfn(*ptep);
5025 pte_unmap_unlock(ptep, ptl);
5026 return 0;
5027}
5028EXPORT_SYMBOL(follow_pfn);
5029
28b2ee20 5030#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5031int follow_phys(struct vm_area_struct *vma,
5032 unsigned long address, unsigned int flags,
5033 unsigned long *prot, resource_size_t *phys)
28b2ee20 5034{
03668a4d 5035 int ret = -EINVAL;
28b2ee20
RR
5036 pte_t *ptep, pte;
5037 spinlock_t *ptl;
28b2ee20 5038
d87fe660 5039 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5040 goto out;
28b2ee20 5041
9fd6dad1 5042 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5043 goto out;
28b2ee20 5044 pte = *ptep;
03668a4d 5045
f6f37321 5046 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5047 goto unlock;
28b2ee20
RR
5048
5049 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5050 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5051
03668a4d 5052 ret = 0;
28b2ee20
RR
5053unlock:
5054 pte_unmap_unlock(ptep, ptl);
5055out:
d87fe660 5056 return ret;
28b2ee20
RR
5057}
5058
96667f8a
DV
5059/**
5060 * generic_access_phys - generic implementation for iomem mmap access
5061 * @vma: the vma to access
f0953a1b 5062 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
5063 * @buf: buffer to read/write
5064 * @len: length of transfer
5065 * @write: set to FOLL_WRITE when writing, otherwise reading
5066 *
5067 * This is a generic implementation for &vm_operations_struct.access for an
5068 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5069 * not page based.
5070 */
28b2ee20
RR
5071int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5072 void *buf, int len, int write)
5073{
5074 resource_size_t phys_addr;
5075 unsigned long prot = 0;
2bc7273b 5076 void __iomem *maddr;
96667f8a
DV
5077 pte_t *ptep, pte;
5078 spinlock_t *ptl;
5079 int offset = offset_in_page(addr);
5080 int ret = -EINVAL;
5081
5082 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5083 return -EINVAL;
5084
5085retry:
e913a8cd 5086 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5087 return -EINVAL;
5088 pte = *ptep;
5089 pte_unmap_unlock(ptep, ptl);
28b2ee20 5090
96667f8a
DV
5091 prot = pgprot_val(pte_pgprot(pte));
5092 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5093
5094 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5095 return -EINVAL;
5096
9cb12d7b 5097 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5098 if (!maddr)
5099 return -ENOMEM;
5100
e913a8cd 5101 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5102 goto out_unmap;
5103
5104 if (!pte_same(pte, *ptep)) {
5105 pte_unmap_unlock(ptep, ptl);
5106 iounmap(maddr);
5107
5108 goto retry;
5109 }
5110
28b2ee20
RR
5111 if (write)
5112 memcpy_toio(maddr + offset, buf, len);
5113 else
5114 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
5115 ret = len;
5116 pte_unmap_unlock(ptep, ptl);
5117out_unmap:
28b2ee20
RR
5118 iounmap(maddr);
5119
96667f8a 5120 return ret;
28b2ee20 5121}
5a73633e 5122EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5123#endif
5124
0ec76a11 5125/*
d3f5ffca 5126 * Access another process' address space as given in mm.
0ec76a11 5127 */
d3f5ffca
JH
5128int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5129 int len, unsigned int gup_flags)
0ec76a11 5130{
0ec76a11 5131 struct vm_area_struct *vma;
0ec76a11 5132 void *old_buf = buf;
442486ec 5133 int write = gup_flags & FOLL_WRITE;
0ec76a11 5134
d8ed45c5 5135 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5136 return 0;
5137
183ff22b 5138 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5139 while (len) {
5140 int bytes, ret, offset;
5141 void *maddr;
28b2ee20 5142 struct page *page = NULL;
0ec76a11 5143
64019a2e 5144 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5145 gup_flags, &page, &vma, NULL);
28b2ee20 5146 if (ret <= 0) {
dbffcd03
RR
5147#ifndef CONFIG_HAVE_IOREMAP_PROT
5148 break;
5149#else
28b2ee20
RR
5150 /*
5151 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5152 * we can access using slightly different code.
5153 */
3e418f98
LH
5154 vma = vma_lookup(mm, addr);
5155 if (!vma)
28b2ee20
RR
5156 break;
5157 if (vma->vm_ops && vma->vm_ops->access)
5158 ret = vma->vm_ops->access(vma, addr, buf,
5159 len, write);
5160 if (ret <= 0)
28b2ee20
RR
5161 break;
5162 bytes = ret;
dbffcd03 5163#endif
0ec76a11 5164 } else {
28b2ee20
RR
5165 bytes = len;
5166 offset = addr & (PAGE_SIZE-1);
5167 if (bytes > PAGE_SIZE-offset)
5168 bytes = PAGE_SIZE-offset;
5169
5170 maddr = kmap(page);
5171 if (write) {
5172 copy_to_user_page(vma, page, addr,
5173 maddr + offset, buf, bytes);
5174 set_page_dirty_lock(page);
5175 } else {
5176 copy_from_user_page(vma, page, addr,
5177 buf, maddr + offset, bytes);
5178 }
5179 kunmap(page);
09cbfeaf 5180 put_page(page);
0ec76a11 5181 }
0ec76a11
DH
5182 len -= bytes;
5183 buf += bytes;
5184 addr += bytes;
5185 }
d8ed45c5 5186 mmap_read_unlock(mm);
0ec76a11
DH
5187
5188 return buf - old_buf;
5189}
03252919 5190
5ddd36b9 5191/**
ae91dbfc 5192 * access_remote_vm - access another process' address space
5ddd36b9
SW
5193 * @mm: the mm_struct of the target address space
5194 * @addr: start address to access
5195 * @buf: source or destination buffer
5196 * @len: number of bytes to transfer
6347e8d5 5197 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5198 *
5199 * The caller must hold a reference on @mm.
a862f68a
MR
5200 *
5201 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5202 */
5203int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5204 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5205{
d3f5ffca 5206 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5207}
5208
206cb636
SW
5209/*
5210 * Access another process' address space.
5211 * Source/target buffer must be kernel space,
5212 * Do not walk the page table directly, use get_user_pages
5213 */
5214int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5215 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5216{
5217 struct mm_struct *mm;
5218 int ret;
5219
5220 mm = get_task_mm(tsk);
5221 if (!mm)
5222 return 0;
5223
d3f5ffca 5224 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5225
206cb636
SW
5226 mmput(mm);
5227
5228 return ret;
5229}
fcd35857 5230EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5231
03252919
AK
5232/*
5233 * Print the name of a VMA.
5234 */
5235void print_vma_addr(char *prefix, unsigned long ip)
5236{
5237 struct mm_struct *mm = current->mm;
5238 struct vm_area_struct *vma;
5239
e8bff74a 5240 /*
0a7f682d 5241 * we might be running from an atomic context so we cannot sleep
e8bff74a 5242 */
d8ed45c5 5243 if (!mmap_read_trylock(mm))
e8bff74a
IM
5244 return;
5245
03252919
AK
5246 vma = find_vma(mm, ip);
5247 if (vma && vma->vm_file) {
5248 struct file *f = vma->vm_file;
0a7f682d 5249 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5250 if (buf) {
2fbc57c5 5251 char *p;
03252919 5252
9bf39ab2 5253 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5254 if (IS_ERR(p))
5255 p = "?";
2fbc57c5 5256 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5257 vma->vm_start,
5258 vma->vm_end - vma->vm_start);
5259 free_page((unsigned long)buf);
5260 }
5261 }
d8ed45c5 5262 mmap_read_unlock(mm);
03252919 5263}
3ee1afa3 5264
662bbcb2 5265#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5266void __might_fault(const char *file, int line)
3ee1afa3 5267{
95156f00
PZ
5268 /*
5269 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5270 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5271 * get paged out, therefore we'll never actually fault, and the
5272 * below annotations will generate false positives.
5273 */
db68ce10 5274 if (uaccess_kernel())
95156f00 5275 return;
9ec23531 5276 if (pagefault_disabled())
662bbcb2 5277 return;
9ec23531
DH
5278 __might_sleep(file, line, 0);
5279#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5280 if (current->mm)
da1c55f1 5281 might_lock_read(&current->mm->mmap_lock);
9ec23531 5282#endif
3ee1afa3 5283}
9ec23531 5284EXPORT_SYMBOL(__might_fault);
3ee1afa3 5285#endif
47ad8475
AA
5286
5287#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5288/*
5289 * Process all subpages of the specified huge page with the specified
5290 * operation. The target subpage will be processed last to keep its
5291 * cache lines hot.
5292 */
5293static inline void process_huge_page(
5294 unsigned long addr_hint, unsigned int pages_per_huge_page,
5295 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5296 void *arg)
47ad8475 5297{
c79b57e4
HY
5298 int i, n, base, l;
5299 unsigned long addr = addr_hint &
5300 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5301
c6ddfb6c 5302 /* Process target subpage last to keep its cache lines hot */
47ad8475 5303 might_sleep();
c79b57e4
HY
5304 n = (addr_hint - addr) / PAGE_SIZE;
5305 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5306 /* If target subpage in first half of huge page */
c79b57e4
HY
5307 base = 0;
5308 l = n;
c6ddfb6c 5309 /* Process subpages at the end of huge page */
c79b57e4
HY
5310 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5311 cond_resched();
c6ddfb6c 5312 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5313 }
5314 } else {
c6ddfb6c 5315 /* If target subpage in second half of huge page */
c79b57e4
HY
5316 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5317 l = pages_per_huge_page - n;
c6ddfb6c 5318 /* Process subpages at the begin of huge page */
c79b57e4
HY
5319 for (i = 0; i < base; i++) {
5320 cond_resched();
c6ddfb6c 5321 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5322 }
5323 }
5324 /*
c6ddfb6c
HY
5325 * Process remaining subpages in left-right-left-right pattern
5326 * towards the target subpage
c79b57e4
HY
5327 */
5328 for (i = 0; i < l; i++) {
5329 int left_idx = base + i;
5330 int right_idx = base + 2 * l - 1 - i;
5331
5332 cond_resched();
c6ddfb6c 5333 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5334 cond_resched();
c6ddfb6c 5335 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5336 }
5337}
5338
c6ddfb6c
HY
5339static void clear_gigantic_page(struct page *page,
5340 unsigned long addr,
5341 unsigned int pages_per_huge_page)
5342{
5343 int i;
5344 struct page *p = page;
5345
5346 might_sleep();
5347 for (i = 0; i < pages_per_huge_page;
5348 i++, p = mem_map_next(p, page, i)) {
5349 cond_resched();
5350 clear_user_highpage(p, addr + i * PAGE_SIZE);
5351 }
5352}
5353
5354static void clear_subpage(unsigned long addr, int idx, void *arg)
5355{
5356 struct page *page = arg;
5357
5358 clear_user_highpage(page + idx, addr);
5359}
5360
5361void clear_huge_page(struct page *page,
5362 unsigned long addr_hint, unsigned int pages_per_huge_page)
5363{
5364 unsigned long addr = addr_hint &
5365 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5366
5367 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5368 clear_gigantic_page(page, addr, pages_per_huge_page);
5369 return;
5370 }
5371
5372 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5373}
5374
47ad8475
AA
5375static void copy_user_gigantic_page(struct page *dst, struct page *src,
5376 unsigned long addr,
5377 struct vm_area_struct *vma,
5378 unsigned int pages_per_huge_page)
5379{
5380 int i;
5381 struct page *dst_base = dst;
5382 struct page *src_base = src;
5383
5384 for (i = 0; i < pages_per_huge_page; ) {
5385 cond_resched();
5386 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5387
5388 i++;
5389 dst = mem_map_next(dst, dst_base, i);
5390 src = mem_map_next(src, src_base, i);
5391 }
5392}
5393
c9f4cd71
HY
5394struct copy_subpage_arg {
5395 struct page *dst;
5396 struct page *src;
5397 struct vm_area_struct *vma;
5398};
5399
5400static void copy_subpage(unsigned long addr, int idx, void *arg)
5401{
5402 struct copy_subpage_arg *copy_arg = arg;
5403
5404 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5405 addr, copy_arg->vma);
5406}
5407
47ad8475 5408void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5409 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5410 unsigned int pages_per_huge_page)
5411{
c9f4cd71
HY
5412 unsigned long addr = addr_hint &
5413 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5414 struct copy_subpage_arg arg = {
5415 .dst = dst,
5416 .src = src,
5417 .vma = vma,
5418 };
47ad8475
AA
5419
5420 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5421 copy_user_gigantic_page(dst, src, addr, vma,
5422 pages_per_huge_page);
5423 return;
5424 }
5425
c9f4cd71 5426 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5427}
fa4d75c1
MK
5428
5429long copy_huge_page_from_user(struct page *dst_page,
5430 const void __user *usr_src,
810a56b9
MK
5431 unsigned int pages_per_huge_page,
5432 bool allow_pagefault)
fa4d75c1
MK
5433{
5434 void *src = (void *)usr_src;
5435 void *page_kaddr;
5436 unsigned long i, rc = 0;
5437 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5438 struct page *subpage = dst_page;
fa4d75c1 5439
3272cfc2
MK
5440 for (i = 0; i < pages_per_huge_page;
5441 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5442 if (allow_pagefault)
3272cfc2 5443 page_kaddr = kmap(subpage);
810a56b9 5444 else
3272cfc2 5445 page_kaddr = kmap_atomic(subpage);
fa4d75c1
MK
5446 rc = copy_from_user(page_kaddr,
5447 (const void __user *)(src + i * PAGE_SIZE),
5448 PAGE_SIZE);
810a56b9 5449 if (allow_pagefault)
3272cfc2 5450 kunmap(subpage);
810a56b9
MK
5451 else
5452 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5453
5454 ret_val -= (PAGE_SIZE - rc);
5455 if (rc)
5456 break;
5457
5458 cond_resched();
5459 }
5460 return ret_val;
5461}
47ad8475 5462#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5463
40b64acd 5464#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5465
5466static struct kmem_cache *page_ptl_cachep;
5467
5468void __init ptlock_cache_init(void)
5469{
5470 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5471 SLAB_PANIC, NULL);
5472}
5473
539edb58 5474bool ptlock_alloc(struct page *page)
49076ec2
KS
5475{
5476 spinlock_t *ptl;
5477
b35f1819 5478 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5479 if (!ptl)
5480 return false;
539edb58 5481 page->ptl = ptl;
49076ec2
KS
5482 return true;
5483}
5484
539edb58 5485void ptlock_free(struct page *page)
49076ec2 5486{
b35f1819 5487 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5488}
5489#endif