]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memory.c
[PATCH] mm: rss = file_rss + anon_rss
[mirror_ubuntu-zesty-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
d41dee36 61#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99 pud_ERROR(*pud);
100 pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
e0da382c 113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 114{
e0da382c
HD
115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_free_tlb(tlb, page);
118 dec_page_state(nr_page_table_pages);
119 tlb->mm->nr_ptes--;
1da177e4
LT
120}
121
e0da382c
HD
122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 unsigned long addr, unsigned long end,
124 unsigned long floor, unsigned long ceiling)
1da177e4
LT
125{
126 pmd_t *pmd;
127 unsigned long next;
e0da382c 128 unsigned long start;
1da177e4 129
e0da382c 130 start = addr;
1da177e4 131 pmd = pmd_offset(pud, addr);
1da177e4
LT
132 do {
133 next = pmd_addr_end(addr, end);
134 if (pmd_none_or_clear_bad(pmd))
135 continue;
e0da382c 136 free_pte_range(tlb, pmd);
1da177e4
LT
137 } while (pmd++, addr = next, addr != end);
138
e0da382c
HD
139 start &= PUD_MASK;
140 if (start < floor)
141 return;
142 if (ceiling) {
143 ceiling &= PUD_MASK;
144 if (!ceiling)
145 return;
1da177e4 146 }
e0da382c
HD
147 if (end - 1 > ceiling - 1)
148 return;
149
150 pmd = pmd_offset(pud, start);
151 pud_clear(pud);
152 pmd_free_tlb(tlb, pmd);
1da177e4
LT
153}
154
e0da382c
HD
155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 unsigned long addr, unsigned long end,
157 unsigned long floor, unsigned long ceiling)
1da177e4
LT
158{
159 pud_t *pud;
160 unsigned long next;
e0da382c 161 unsigned long start;
1da177e4 162
e0da382c 163 start = addr;
1da177e4 164 pud = pud_offset(pgd, addr);
1da177e4
LT
165 do {
166 next = pud_addr_end(addr, end);
167 if (pud_none_or_clear_bad(pud))
168 continue;
e0da382c 169 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
170 } while (pud++, addr = next, addr != end);
171
e0da382c
HD
172 start &= PGDIR_MASK;
173 if (start < floor)
174 return;
175 if (ceiling) {
176 ceiling &= PGDIR_MASK;
177 if (!ceiling)
178 return;
1da177e4 179 }
e0da382c
HD
180 if (end - 1 > ceiling - 1)
181 return;
182
183 pud = pud_offset(pgd, start);
184 pgd_clear(pgd);
185 pud_free_tlb(tlb, pud);
1da177e4
LT
186}
187
188/*
e0da382c
HD
189 * This function frees user-level page tables of a process.
190 *
1da177e4
LT
191 * Must be called with pagetable lock held.
192 */
3bf5ee95 193void free_pgd_range(struct mmu_gather **tlb,
e0da382c
HD
194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
1da177e4
LT
196{
197 pgd_t *pgd;
198 unsigned long next;
e0da382c
HD
199 unsigned long start;
200
201 /*
202 * The next few lines have given us lots of grief...
203 *
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
207 *
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
215 *
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
220 *
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
225 */
1da177e4 226
e0da382c
HD
227 addr &= PMD_MASK;
228 if (addr < floor) {
229 addr += PMD_SIZE;
230 if (!addr)
231 return;
232 }
233 if (ceiling) {
234 ceiling &= PMD_MASK;
235 if (!ceiling)
236 return;
237 }
238 if (end - 1 > ceiling - 1)
239 end -= PMD_SIZE;
240 if (addr > end - 1)
241 return;
242
243 start = addr;
3bf5ee95 244 pgd = pgd_offset((*tlb)->mm, addr);
1da177e4
LT
245 do {
246 next = pgd_addr_end(addr, end);
247 if (pgd_none_or_clear_bad(pgd))
248 continue;
3bf5ee95 249 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
1da177e4 250 } while (pgd++, addr = next, addr != end);
e0da382c 251
4d6ddfa9 252 if (!(*tlb)->fullmm)
3bf5ee95 253 flush_tlb_pgtables((*tlb)->mm, start, end);
e0da382c
HD
254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
3bf5ee95 257 unsigned long floor, unsigned long ceiling)
e0da382c
HD
258{
259 while (vma) {
260 struct vm_area_struct *next = vma->vm_next;
261 unsigned long addr = vma->vm_start;
262
3bf5ee95
HD
263 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 265 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
266 } else {
267 /*
268 * Optimization: gather nearby vmas into one call down
269 */
270 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272 HPAGE_SIZE)) {
273 vma = next;
274 next = vma->vm_next;
275 }
276 free_pgd_range(tlb, addr, vma->vm_end,
277 floor, next? next->vm_start: ceiling);
278 }
e0da382c
HD
279 vma = next;
280 }
1da177e4
LT
281}
282
3bf5ee95
HD
283pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284 unsigned long address)
1da177e4
LT
285{
286 if (!pmd_present(*pmd)) {
287 struct page *new;
288
289 spin_unlock(&mm->page_table_lock);
290 new = pte_alloc_one(mm, address);
291 spin_lock(&mm->page_table_lock);
292 if (!new)
293 return NULL;
294 /*
295 * Because we dropped the lock, we should re-check the
296 * entry, as somebody else could have populated it..
297 */
298 if (pmd_present(*pmd)) {
299 pte_free(new);
300 goto out;
301 }
302 mm->nr_ptes++;
303 inc_page_state(nr_page_table_pages);
304 pmd_populate(mm, pmd, new);
305 }
306out:
307 return pte_offset_map(pmd, address);
308}
309
310pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311{
312 if (!pmd_present(*pmd)) {
313 pte_t *new;
314
315 spin_unlock(&mm->page_table_lock);
316 new = pte_alloc_one_kernel(mm, address);
317 spin_lock(&mm->page_table_lock);
318 if (!new)
319 return NULL;
320
321 /*
322 * Because we dropped the lock, we should re-check the
323 * entry, as somebody else could have populated it..
324 */
325 if (pmd_present(*pmd)) {
326 pte_free_kernel(new);
327 goto out;
328 }
329 pmd_populate_kernel(mm, pmd, new);
330 }
331out:
332 return pte_offset_kernel(pmd, address);
333}
334
335/*
336 * copy one vm_area from one task to the other. Assumes the page tables
337 * already present in the new task to be cleared in the whole range
338 * covered by this vma.
339 *
340 * dst->page_table_lock is held on entry and exit,
341 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
342 */
343
344static inline void
345copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
346 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
347 unsigned long addr)
348{
349 pte_t pte = *src_pte;
350 struct page *page;
351 unsigned long pfn;
352
353 /* pte contains position in swap or file, so copy. */
354 if (unlikely(!pte_present(pte))) {
355 if (!pte_file(pte)) {
356 swap_duplicate(pte_to_swp_entry(pte));
357 /* make sure dst_mm is on swapoff's mmlist. */
358 if (unlikely(list_empty(&dst_mm->mmlist))) {
359 spin_lock(&mmlist_lock);
360 list_add(&dst_mm->mmlist, &src_mm->mmlist);
361 spin_unlock(&mmlist_lock);
362 }
363 }
364 set_pte_at(dst_mm, addr, dst_pte, pte);
365 return;
366 }
367
368 pfn = pte_pfn(pte);
369 /* the pte points outside of valid memory, the
370 * mapping is assumed to be good, meaningful
371 * and not mapped via rmap - duplicate the
372 * mapping as is.
373 */
374 page = NULL;
375 if (pfn_valid(pfn))
376 page = pfn_to_page(pfn);
377
378 if (!page || PageReserved(page)) {
379 set_pte_at(dst_mm, addr, dst_pte, pte);
380 return;
381 }
382
383 /*
384 * If it's a COW mapping, write protect it both
385 * in the parent and the child
386 */
387 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
388 ptep_set_wrprotect(src_mm, addr, src_pte);
389 pte = *src_pte;
390 }
391
392 /*
393 * If it's a shared mapping, mark it clean in
394 * the child
395 */
396 if (vm_flags & VM_SHARED)
397 pte = pte_mkclean(pte);
398 pte = pte_mkold(pte);
399 get_page(page);
1da177e4
LT
400 if (PageAnon(page))
401 inc_mm_counter(dst_mm, anon_rss);
4294621f
HD
402 else
403 inc_mm_counter(dst_mm, file_rss);
1da177e4
LT
404 set_pte_at(dst_mm, addr, dst_pte, pte);
405 page_dup_rmap(page);
406}
407
408static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
409 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
410 unsigned long addr, unsigned long end)
411{
412 pte_t *src_pte, *dst_pte;
413 unsigned long vm_flags = vma->vm_flags;
e040f218 414 int progress = 0;
1da177e4
LT
415
416again:
417 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
418 if (!dst_pte)
419 return -ENOMEM;
420 src_pte = pte_offset_map_nested(src_pmd, addr);
421
1da177e4
LT
422 spin_lock(&src_mm->page_table_lock);
423 do {
424 /*
425 * We are holding two locks at this point - either of them
426 * could generate latencies in another task on another CPU.
427 */
e040f218
HD
428 if (progress >= 32) {
429 progress = 0;
430 if (need_resched() ||
431 need_lockbreak(&src_mm->page_table_lock) ||
432 need_lockbreak(&dst_mm->page_table_lock))
433 break;
434 }
1da177e4
LT
435 if (pte_none(*src_pte)) {
436 progress++;
437 continue;
438 }
439 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
440 progress += 8;
441 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
442 spin_unlock(&src_mm->page_table_lock);
443
444 pte_unmap_nested(src_pte - 1);
445 pte_unmap(dst_pte - 1);
446 cond_resched_lock(&dst_mm->page_table_lock);
447 if (addr != end)
448 goto again;
449 return 0;
450}
451
452static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
453 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
454 unsigned long addr, unsigned long end)
455{
456 pmd_t *src_pmd, *dst_pmd;
457 unsigned long next;
458
459 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
460 if (!dst_pmd)
461 return -ENOMEM;
462 src_pmd = pmd_offset(src_pud, addr);
463 do {
464 next = pmd_addr_end(addr, end);
465 if (pmd_none_or_clear_bad(src_pmd))
466 continue;
467 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
468 vma, addr, next))
469 return -ENOMEM;
470 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
471 return 0;
472}
473
474static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
475 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
476 unsigned long addr, unsigned long end)
477{
478 pud_t *src_pud, *dst_pud;
479 unsigned long next;
480
481 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
482 if (!dst_pud)
483 return -ENOMEM;
484 src_pud = pud_offset(src_pgd, addr);
485 do {
486 next = pud_addr_end(addr, end);
487 if (pud_none_or_clear_bad(src_pud))
488 continue;
489 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
490 vma, addr, next))
491 return -ENOMEM;
492 } while (dst_pud++, src_pud++, addr = next, addr != end);
493 return 0;
494}
495
496int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
497 struct vm_area_struct *vma)
498{
499 pgd_t *src_pgd, *dst_pgd;
500 unsigned long next;
501 unsigned long addr = vma->vm_start;
502 unsigned long end = vma->vm_end;
503
d992895b
NP
504 /*
505 * Don't copy ptes where a page fault will fill them correctly.
506 * Fork becomes much lighter when there are big shared or private
507 * readonly mappings. The tradeoff is that copy_page_range is more
508 * efficient than faulting.
509 */
510 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
511 if (!vma->anon_vma)
512 return 0;
513 }
514
1da177e4
LT
515 if (is_vm_hugetlb_page(vma))
516 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
517
518 dst_pgd = pgd_offset(dst_mm, addr);
519 src_pgd = pgd_offset(src_mm, addr);
520 do {
521 next = pgd_addr_end(addr, end);
522 if (pgd_none_or_clear_bad(src_pgd))
523 continue;
524 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
525 vma, addr, next))
526 return -ENOMEM;
527 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
528 return 0;
529}
530
531static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
532 unsigned long addr, unsigned long end,
533 struct zap_details *details)
534{
535 pte_t *pte;
536
537 pte = pte_offset_map(pmd, addr);
538 do {
539 pte_t ptent = *pte;
540 if (pte_none(ptent))
541 continue;
542 if (pte_present(ptent)) {
543 struct page *page = NULL;
544 unsigned long pfn = pte_pfn(ptent);
545 if (pfn_valid(pfn)) {
546 page = pfn_to_page(pfn);
547 if (PageReserved(page))
548 page = NULL;
549 }
550 if (unlikely(details) && page) {
551 /*
552 * unmap_shared_mapping_pages() wants to
553 * invalidate cache without truncating:
554 * unmap shared but keep private pages.
555 */
556 if (details->check_mapping &&
557 details->check_mapping != page->mapping)
558 continue;
559 /*
560 * Each page->index must be checked when
561 * invalidating or truncating nonlinear.
562 */
563 if (details->nonlinear_vma &&
564 (page->index < details->first_index ||
565 page->index > details->last_index))
566 continue;
567 }
a600388d
ZA
568 ptent = ptep_get_and_clear_full(tlb->mm, addr, pte,
569 tlb->fullmm);
1da177e4
LT
570 tlb_remove_tlb_entry(tlb, pte, addr);
571 if (unlikely(!page))
572 continue;
573 if (unlikely(details) && details->nonlinear_vma
574 && linear_page_index(details->nonlinear_vma,
575 addr) != page->index)
576 set_pte_at(tlb->mm, addr, pte,
577 pgoff_to_pte(page->index));
1da177e4
LT
578 if (PageAnon(page))
579 dec_mm_counter(tlb->mm, anon_rss);
6237bcd9
HD
580 else {
581 if (pte_dirty(ptent))
582 set_page_dirty(page);
583 if (pte_young(ptent))
584 mark_page_accessed(page);
4294621f 585 dec_mm_counter(tlb->mm, file_rss);
6237bcd9 586 }
1da177e4
LT
587 page_remove_rmap(page);
588 tlb_remove_page(tlb, page);
589 continue;
590 }
591 /*
592 * If details->check_mapping, we leave swap entries;
593 * if details->nonlinear_vma, we leave file entries.
594 */
595 if (unlikely(details))
596 continue;
597 if (!pte_file(ptent))
598 free_swap_and_cache(pte_to_swp_entry(ptent));
a600388d 599 pte_clear_full(tlb->mm, addr, pte, tlb->fullmm);
1da177e4
LT
600 } while (pte++, addr += PAGE_SIZE, addr != end);
601 pte_unmap(pte - 1);
602}
603
604static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
605 unsigned long addr, unsigned long end,
606 struct zap_details *details)
607{
608 pmd_t *pmd;
609 unsigned long next;
610
611 pmd = pmd_offset(pud, addr);
612 do {
613 next = pmd_addr_end(addr, end);
614 if (pmd_none_or_clear_bad(pmd))
615 continue;
616 zap_pte_range(tlb, pmd, addr, next, details);
617 } while (pmd++, addr = next, addr != end);
618}
619
620static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
621 unsigned long addr, unsigned long end,
622 struct zap_details *details)
623{
624 pud_t *pud;
625 unsigned long next;
626
627 pud = pud_offset(pgd, addr);
628 do {
629 next = pud_addr_end(addr, end);
630 if (pud_none_or_clear_bad(pud))
631 continue;
632 zap_pmd_range(tlb, pud, addr, next, details);
633 } while (pud++, addr = next, addr != end);
634}
635
636static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
637 unsigned long addr, unsigned long end,
638 struct zap_details *details)
639{
640 pgd_t *pgd;
641 unsigned long next;
642
643 if (details && !details->check_mapping && !details->nonlinear_vma)
644 details = NULL;
645
646 BUG_ON(addr >= end);
647 tlb_start_vma(tlb, vma);
648 pgd = pgd_offset(vma->vm_mm, addr);
649 do {
650 next = pgd_addr_end(addr, end);
651 if (pgd_none_or_clear_bad(pgd))
652 continue;
653 zap_pud_range(tlb, pgd, addr, next, details);
654 } while (pgd++, addr = next, addr != end);
655 tlb_end_vma(tlb, vma);
656}
657
658#ifdef CONFIG_PREEMPT
659# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
660#else
661/* No preempt: go for improved straight-line efficiency */
662# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
663#endif
664
665/**
666 * unmap_vmas - unmap a range of memory covered by a list of vma's
667 * @tlbp: address of the caller's struct mmu_gather
668 * @mm: the controlling mm_struct
669 * @vma: the starting vma
670 * @start_addr: virtual address at which to start unmapping
671 * @end_addr: virtual address at which to end unmapping
672 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
673 * @details: details of nonlinear truncation or shared cache invalidation
674 *
ee39b37b 675 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4
LT
676 *
677 * Unmap all pages in the vma list. Called under page_table_lock.
678 *
679 * We aim to not hold page_table_lock for too long (for scheduling latency
680 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
681 * return the ending mmu_gather to the caller.
682 *
683 * Only addresses between `start' and `end' will be unmapped.
684 *
685 * The VMA list must be sorted in ascending virtual address order.
686 *
687 * unmap_vmas() assumes that the caller will flush the whole unmapped address
688 * range after unmap_vmas() returns. So the only responsibility here is to
689 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
690 * drops the lock and schedules.
691 */
ee39b37b 692unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
1da177e4
LT
693 struct vm_area_struct *vma, unsigned long start_addr,
694 unsigned long end_addr, unsigned long *nr_accounted,
695 struct zap_details *details)
696{
697 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
698 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
699 int tlb_start_valid = 0;
ee39b37b 700 unsigned long start = start_addr;
1da177e4 701 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 702 int fullmm = (*tlbp)->fullmm;
1da177e4
LT
703
704 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
705 unsigned long end;
706
707 start = max(vma->vm_start, start_addr);
708 if (start >= vma->vm_end)
709 continue;
710 end = min(vma->vm_end, end_addr);
711 if (end <= vma->vm_start)
712 continue;
713
714 if (vma->vm_flags & VM_ACCOUNT)
715 *nr_accounted += (end - start) >> PAGE_SHIFT;
716
1da177e4
LT
717 while (start != end) {
718 unsigned long block;
719
720 if (!tlb_start_valid) {
721 tlb_start = start;
722 tlb_start_valid = 1;
723 }
724
725 if (is_vm_hugetlb_page(vma)) {
726 block = end - start;
727 unmap_hugepage_range(vma, start, end);
728 } else {
729 block = min(zap_bytes, end - start);
730 unmap_page_range(*tlbp, vma, start,
731 start + block, details);
732 }
733
734 start += block;
735 zap_bytes -= block;
736 if ((long)zap_bytes > 0)
737 continue;
738
739 tlb_finish_mmu(*tlbp, tlb_start, start);
740
741 if (need_resched() ||
742 need_lockbreak(&mm->page_table_lock) ||
743 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
744 if (i_mmap_lock) {
745 /* must reset count of rss freed */
746 *tlbp = tlb_gather_mmu(mm, fullmm);
1da177e4
LT
747 goto out;
748 }
749 spin_unlock(&mm->page_table_lock);
750 cond_resched();
751 spin_lock(&mm->page_table_lock);
752 }
753
754 *tlbp = tlb_gather_mmu(mm, fullmm);
755 tlb_start_valid = 0;
756 zap_bytes = ZAP_BLOCK_SIZE;
757 }
758 }
759out:
ee39b37b 760 return start; /* which is now the end (or restart) address */
1da177e4
LT
761}
762
763/**
764 * zap_page_range - remove user pages in a given range
765 * @vma: vm_area_struct holding the applicable pages
766 * @address: starting address of pages to zap
767 * @size: number of bytes to zap
768 * @details: details of nonlinear truncation or shared cache invalidation
769 */
ee39b37b 770unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
771 unsigned long size, struct zap_details *details)
772{
773 struct mm_struct *mm = vma->vm_mm;
774 struct mmu_gather *tlb;
775 unsigned long end = address + size;
776 unsigned long nr_accounted = 0;
777
778 if (is_vm_hugetlb_page(vma)) {
779 zap_hugepage_range(vma, address, size);
ee39b37b 780 return end;
1da177e4
LT
781 }
782
783 lru_add_drain();
784 spin_lock(&mm->page_table_lock);
785 tlb = tlb_gather_mmu(mm, 0);
ee39b37b 786 end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
1da177e4
LT
787 tlb_finish_mmu(tlb, address, end);
788 spin_unlock(&mm->page_table_lock);
ee39b37b 789 return end;
1da177e4
LT
790}
791
792/*
793 * Do a quick page-table lookup for a single page.
794 * mm->page_table_lock must be held.
795 */
1aaf18ff
AM
796static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
797 int read, int write, int accessed)
1da177e4
LT
798{
799 pgd_t *pgd;
800 pud_t *pud;
801 pmd_t *pmd;
802 pte_t *ptep, pte;
803 unsigned long pfn;
804 struct page *page;
805
806 page = follow_huge_addr(mm, address, write);
807 if (! IS_ERR(page))
808 return page;
809
810 pgd = pgd_offset(mm, address);
811 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
812 goto out;
813
814 pud = pud_offset(pgd, address);
815 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
816 goto out;
817
818 pmd = pmd_offset(pud, address);
819 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
820 goto out;
821 if (pmd_huge(*pmd))
822 return follow_huge_pmd(mm, address, pmd, write);
823
824 ptep = pte_offset_map(pmd, address);
825 if (!ptep)
826 goto out;
827
828 pte = *ptep;
829 pte_unmap(ptep);
830 if (pte_present(pte)) {
f33ea7f4 831 if (write && !pte_write(pte))
1da177e4
LT
832 goto out;
833 if (read && !pte_read(pte))
834 goto out;
835 pfn = pte_pfn(pte);
836 if (pfn_valid(pfn)) {
837 page = pfn_to_page(pfn);
f33ea7f4
NP
838 if (accessed) {
839 if (write && !pte_dirty(pte) &&!PageDirty(page))
840 set_page_dirty(page);
1aaf18ff 841 mark_page_accessed(page);
f33ea7f4 842 }
1da177e4
LT
843 return page;
844 }
845 }
846
847out:
848 return NULL;
849}
850
1aaf18ff 851inline struct page *
1da177e4
LT
852follow_page(struct mm_struct *mm, unsigned long address, int write)
853{
1aaf18ff 854 return __follow_page(mm, address, 0, write, 1);
1da177e4
LT
855}
856
1aaf18ff
AM
857/*
858 * check_user_page_readable() can be called frm niterrupt context by oprofile,
859 * so we need to avoid taking any non-irq-safe locks
860 */
861int check_user_page_readable(struct mm_struct *mm, unsigned long address)
1da177e4 862{
1aaf18ff 863 return __follow_page(mm, address, 1, 0, 0) != NULL;
1da177e4 864}
1da177e4
LT
865EXPORT_SYMBOL(check_user_page_readable);
866
1da177e4
LT
867static inline int
868untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
869 unsigned long address)
870{
871 pgd_t *pgd;
872 pud_t *pud;
873 pmd_t *pmd;
874
875 /* Check if the vma is for an anonymous mapping. */
876 if (vma->vm_ops && vma->vm_ops->nopage)
877 return 0;
878
879 /* Check if page directory entry exists. */
880 pgd = pgd_offset(mm, address);
881 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
882 return 1;
883
884 pud = pud_offset(pgd, address);
885 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
886 return 1;
887
888 /* Check if page middle directory entry exists. */
889 pmd = pmd_offset(pud, address);
890 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
891 return 1;
892
893 /* There is a pte slot for 'address' in 'mm'. */
894 return 0;
895}
896
1da177e4
LT
897int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
898 unsigned long start, int len, int write, int force,
899 struct page **pages, struct vm_area_struct **vmas)
900{
901 int i;
902 unsigned int flags;
903
904 /*
905 * Require read or write permissions.
906 * If 'force' is set, we only require the "MAY" flags.
907 */
908 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
909 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
910 i = 0;
911
912 do {
913 struct vm_area_struct * vma;
914
915 vma = find_extend_vma(mm, start);
916 if (!vma && in_gate_area(tsk, start)) {
917 unsigned long pg = start & PAGE_MASK;
918 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
919 pgd_t *pgd;
920 pud_t *pud;
921 pmd_t *pmd;
922 pte_t *pte;
923 if (write) /* user gate pages are read-only */
924 return i ? : -EFAULT;
925 if (pg > TASK_SIZE)
926 pgd = pgd_offset_k(pg);
927 else
928 pgd = pgd_offset_gate(mm, pg);
929 BUG_ON(pgd_none(*pgd));
930 pud = pud_offset(pgd, pg);
931 BUG_ON(pud_none(*pud));
932 pmd = pmd_offset(pud, pg);
690dbe1c
HD
933 if (pmd_none(*pmd))
934 return i ? : -EFAULT;
1da177e4 935 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
936 if (pte_none(*pte)) {
937 pte_unmap(pte);
938 return i ? : -EFAULT;
939 }
1da177e4
LT
940 if (pages) {
941 pages[i] = pte_page(*pte);
942 get_page(pages[i]);
943 }
944 pte_unmap(pte);
945 if (vmas)
946 vmas[i] = gate_vma;
947 i++;
948 start += PAGE_SIZE;
949 len--;
950 continue;
951 }
952
953 if (!vma || (vma->vm_flags & VM_IO)
954 || !(flags & vma->vm_flags))
955 return i ? : -EFAULT;
956
957 if (is_vm_hugetlb_page(vma)) {
958 i = follow_hugetlb_page(mm, vma, pages, vmas,
959 &start, &len, i);
960 continue;
961 }
962 spin_lock(&mm->page_table_lock);
963 do {
f33ea7f4 964 int write_access = write;
08ef4729 965 struct page *page;
1da177e4
LT
966
967 cond_resched_lock(&mm->page_table_lock);
f33ea7f4 968 while (!(page = follow_page(mm, start, write_access))) {
a68d2ebc
LT
969 int ret;
970
1da177e4
LT
971 /*
972 * Shortcut for anonymous pages. We don't want
973 * to force the creation of pages tables for
08ef4729 974 * insanely big anonymously mapped areas that
1da177e4
LT
975 * nobody touched so far. This is important
976 * for doing a core dump for these mappings.
977 */
4ceb5db9 978 if (!write && untouched_anonymous_page(mm,vma,start)) {
08ef4729 979 page = ZERO_PAGE(start);
1da177e4
LT
980 break;
981 }
982 spin_unlock(&mm->page_table_lock);
a68d2ebc
LT
983 ret = __handle_mm_fault(mm, vma, start, write_access);
984
985 /*
986 * The VM_FAULT_WRITE bit tells us that do_wp_page has
987 * broken COW when necessary, even if maybe_mkwrite
988 * decided not to set pte_write. We can thus safely do
989 * subsequent page lookups as if they were reads.
990 */
991 if (ret & VM_FAULT_WRITE)
f33ea7f4 992 write_access = 0;
a68d2ebc
LT
993
994 switch (ret & ~VM_FAULT_WRITE) {
1da177e4
LT
995 case VM_FAULT_MINOR:
996 tsk->min_flt++;
997 break;
998 case VM_FAULT_MAJOR:
999 tsk->maj_flt++;
1000 break;
1001 case VM_FAULT_SIGBUS:
1002 return i ? i : -EFAULT;
1003 case VM_FAULT_OOM:
1004 return i ? i : -ENOMEM;
1005 default:
1006 BUG();
1007 }
1da177e4
LT
1008 spin_lock(&mm->page_table_lock);
1009 }
1010 if (pages) {
08ef4729
HD
1011 pages[i] = page;
1012 flush_dcache_page(page);
1013 if (!PageReserved(page))
1014 page_cache_get(page);
1da177e4
LT
1015 }
1016 if (vmas)
1017 vmas[i] = vma;
1018 i++;
1019 start += PAGE_SIZE;
1020 len--;
08ef4729 1021 } while (len && start < vma->vm_end);
1da177e4 1022 spin_unlock(&mm->page_table_lock);
08ef4729 1023 } while (len);
1da177e4
LT
1024 return i;
1025}
1da177e4
LT
1026EXPORT_SYMBOL(get_user_pages);
1027
1028static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1029 unsigned long addr, unsigned long end, pgprot_t prot)
1030{
1031 pte_t *pte;
1032
1033 pte = pte_alloc_map(mm, pmd, addr);
1034 if (!pte)
1035 return -ENOMEM;
1036 do {
1037 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1038 BUG_ON(!pte_none(*pte));
1039 set_pte_at(mm, addr, pte, zero_pte);
1040 } while (pte++, addr += PAGE_SIZE, addr != end);
1041 pte_unmap(pte - 1);
1042 return 0;
1043}
1044
1045static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1046 unsigned long addr, unsigned long end, pgprot_t prot)
1047{
1048 pmd_t *pmd;
1049 unsigned long next;
1050
1051 pmd = pmd_alloc(mm, pud, addr);
1052 if (!pmd)
1053 return -ENOMEM;
1054 do {
1055 next = pmd_addr_end(addr, end);
1056 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1057 return -ENOMEM;
1058 } while (pmd++, addr = next, addr != end);
1059 return 0;
1060}
1061
1062static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1063 unsigned long addr, unsigned long end, pgprot_t prot)
1064{
1065 pud_t *pud;
1066 unsigned long next;
1067
1068 pud = pud_alloc(mm, pgd, addr);
1069 if (!pud)
1070 return -ENOMEM;
1071 do {
1072 next = pud_addr_end(addr, end);
1073 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1074 return -ENOMEM;
1075 } while (pud++, addr = next, addr != end);
1076 return 0;
1077}
1078
1079int zeromap_page_range(struct vm_area_struct *vma,
1080 unsigned long addr, unsigned long size, pgprot_t prot)
1081{
1082 pgd_t *pgd;
1083 unsigned long next;
1084 unsigned long end = addr + size;
1085 struct mm_struct *mm = vma->vm_mm;
1086 int err;
1087
1088 BUG_ON(addr >= end);
1089 pgd = pgd_offset(mm, addr);
1090 flush_cache_range(vma, addr, end);
1091 spin_lock(&mm->page_table_lock);
1092 do {
1093 next = pgd_addr_end(addr, end);
1094 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1095 if (err)
1096 break;
1097 } while (pgd++, addr = next, addr != end);
1098 spin_unlock(&mm->page_table_lock);
1099 return err;
1100}
1101
1102/*
1103 * maps a range of physical memory into the requested pages. the old
1104 * mappings are removed. any references to nonexistent pages results
1105 * in null mappings (currently treated as "copy-on-access")
1106 */
1107static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1108 unsigned long addr, unsigned long end,
1109 unsigned long pfn, pgprot_t prot)
1110{
1111 pte_t *pte;
1112
1113 pte = pte_alloc_map(mm, pmd, addr);
1114 if (!pte)
1115 return -ENOMEM;
1116 do {
1117 BUG_ON(!pte_none(*pte));
1118 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1119 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1120 pfn++;
1121 } while (pte++, addr += PAGE_SIZE, addr != end);
1122 pte_unmap(pte - 1);
1123 return 0;
1124}
1125
1126static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1127 unsigned long addr, unsigned long end,
1128 unsigned long pfn, pgprot_t prot)
1129{
1130 pmd_t *pmd;
1131 unsigned long next;
1132
1133 pfn -= addr >> PAGE_SHIFT;
1134 pmd = pmd_alloc(mm, pud, addr);
1135 if (!pmd)
1136 return -ENOMEM;
1137 do {
1138 next = pmd_addr_end(addr, end);
1139 if (remap_pte_range(mm, pmd, addr, next,
1140 pfn + (addr >> PAGE_SHIFT), prot))
1141 return -ENOMEM;
1142 } while (pmd++, addr = next, addr != end);
1143 return 0;
1144}
1145
1146static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1147 unsigned long addr, unsigned long end,
1148 unsigned long pfn, pgprot_t prot)
1149{
1150 pud_t *pud;
1151 unsigned long next;
1152
1153 pfn -= addr >> PAGE_SHIFT;
1154 pud = pud_alloc(mm, pgd, addr);
1155 if (!pud)
1156 return -ENOMEM;
1157 do {
1158 next = pud_addr_end(addr, end);
1159 if (remap_pmd_range(mm, pud, addr, next,
1160 pfn + (addr >> PAGE_SHIFT), prot))
1161 return -ENOMEM;
1162 } while (pud++, addr = next, addr != end);
1163 return 0;
1164}
1165
1166/* Note: this is only safe if the mm semaphore is held when called. */
1167int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1168 unsigned long pfn, unsigned long size, pgprot_t prot)
1169{
1170 pgd_t *pgd;
1171 unsigned long next;
2d15cab8 1172 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1173 struct mm_struct *mm = vma->vm_mm;
1174 int err;
1175
1176 /*
1177 * Physically remapped pages are special. Tell the
1178 * rest of the world about it:
1179 * VM_IO tells people not to look at these pages
1180 * (accesses can have side effects).
1181 * VM_RESERVED tells swapout not to try to touch
1182 * this region.
1183 */
1184 vma->vm_flags |= VM_IO | VM_RESERVED;
1185
1186 BUG_ON(addr >= end);
1187 pfn -= addr >> PAGE_SHIFT;
1188 pgd = pgd_offset(mm, addr);
1189 flush_cache_range(vma, addr, end);
1190 spin_lock(&mm->page_table_lock);
1191 do {
1192 next = pgd_addr_end(addr, end);
1193 err = remap_pud_range(mm, pgd, addr, next,
1194 pfn + (addr >> PAGE_SHIFT), prot);
1195 if (err)
1196 break;
1197 } while (pgd++, addr = next, addr != end);
1198 spin_unlock(&mm->page_table_lock);
1199 return err;
1200}
1201EXPORT_SYMBOL(remap_pfn_range);
1202
1203/*
1204 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1205 * servicing faults for write access. In the normal case, do always want
1206 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1207 * that do not have writing enabled, when used by access_process_vm.
1208 */
1209static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1210{
1211 if (likely(vma->vm_flags & VM_WRITE))
1212 pte = pte_mkwrite(pte);
1213 return pte;
1214}
1215
1da177e4
LT
1216/*
1217 * This routine handles present pages, when users try to write
1218 * to a shared page. It is done by copying the page to a new address
1219 * and decrementing the shared-page counter for the old page.
1220 *
1da177e4
LT
1221 * Note that this routine assumes that the protection checks have been
1222 * done by the caller (the low-level page fault routine in most cases).
1223 * Thus we can safely just mark it writable once we've done any necessary
1224 * COW.
1225 *
1226 * We also mark the page dirty at this point even though the page will
1227 * change only once the write actually happens. This avoids a few races,
1228 * and potentially makes it more efficient.
1229 *
1230 * We hold the mm semaphore and the page_table_lock on entry and exit
1231 * with the page_table_lock released.
1232 */
65500d23
HD
1233static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1234 unsigned long address, pte_t *page_table, pmd_t *pmd,
1235 pte_t orig_pte)
1da177e4
LT
1236{
1237 struct page *old_page, *new_page;
65500d23 1238 unsigned long pfn = pte_pfn(orig_pte);
1da177e4 1239 pte_t entry;
65500d23 1240 int ret = VM_FAULT_MINOR;
1da177e4
LT
1241
1242 if (unlikely(!pfn_valid(pfn))) {
1243 /*
65500d23 1244 * Page table corrupted: show pte and kill process.
1da177e4 1245 */
65500d23
HD
1246 pte_ERROR(orig_pte);
1247 ret = VM_FAULT_OOM;
1248 goto unlock;
1da177e4
LT
1249 }
1250 old_page = pfn_to_page(pfn);
1251
d296e9cd 1252 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1da177e4
LT
1253 int reuse = can_share_swap_page(old_page);
1254 unlock_page(old_page);
1255 if (reuse) {
1256 flush_cache_page(vma, address, pfn);
65500d23
HD
1257 entry = pte_mkyoung(orig_pte);
1258 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4
LT
1259 ptep_set_access_flags(vma, address, page_table, entry, 1);
1260 update_mmu_cache(vma, address, entry);
1261 lazy_mmu_prot_update(entry);
65500d23
HD
1262 ret |= VM_FAULT_WRITE;
1263 goto unlock;
1da177e4
LT
1264 }
1265 }
1da177e4
LT
1266
1267 /*
1268 * Ok, we need to copy. Oh, well..
1269 */
1270 if (!PageReserved(old_page))
1271 page_cache_get(old_page);
65500d23 1272 pte_unmap(page_table);
1da177e4
LT
1273 spin_unlock(&mm->page_table_lock);
1274
1275 if (unlikely(anon_vma_prepare(vma)))
65500d23 1276 goto oom;
1da177e4
LT
1277 if (old_page == ZERO_PAGE(address)) {
1278 new_page = alloc_zeroed_user_highpage(vma, address);
1279 if (!new_page)
65500d23 1280 goto oom;
1da177e4
LT
1281 } else {
1282 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1283 if (!new_page)
65500d23 1284 goto oom;
1da177e4
LT
1285 copy_user_highpage(new_page, old_page, address);
1286 }
65500d23 1287
1da177e4
LT
1288 /*
1289 * Re-check the pte - we dropped the lock
1290 */
1291 spin_lock(&mm->page_table_lock);
1292 page_table = pte_offset_map(pmd, address);
65500d23 1293 if (likely(pte_same(*page_table, orig_pte))) {
1da177e4 1294 if (PageReserved(old_page))
4294621f
HD
1295 inc_mm_counter(mm, anon_rss);
1296 else {
1da177e4 1297 page_remove_rmap(old_page);
4294621f
HD
1298 if (!PageAnon(old_page)) {
1299 inc_mm_counter(mm, anon_rss);
1300 dec_mm_counter(mm, file_rss);
1301 }
1302 }
1da177e4 1303 flush_cache_page(vma, address, pfn);
65500d23
HD
1304 entry = mk_pte(new_page, vma->vm_page_prot);
1305 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1306 ptep_establish(vma, address, page_table, entry);
1307 update_mmu_cache(vma, address, entry);
1308 lazy_mmu_prot_update(entry);
1309
1da177e4
LT
1310 lru_cache_add_active(new_page);
1311 page_add_anon_rmap(new_page, vma, address);
1312
1313 /* Free the old page.. */
1314 new_page = old_page;
f33ea7f4 1315 ret |= VM_FAULT_WRITE;
1da177e4 1316 }
1da177e4
LT
1317 page_cache_release(new_page);
1318 page_cache_release(old_page);
65500d23
HD
1319unlock:
1320 pte_unmap(page_table);
1da177e4 1321 spin_unlock(&mm->page_table_lock);
f33ea7f4 1322 return ret;
65500d23 1323oom:
1da177e4
LT
1324 page_cache_release(old_page);
1325 return VM_FAULT_OOM;
1326}
1327
1328/*
1329 * Helper functions for unmap_mapping_range().
1330 *
1331 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1332 *
1333 * We have to restart searching the prio_tree whenever we drop the lock,
1334 * since the iterator is only valid while the lock is held, and anyway
1335 * a later vma might be split and reinserted earlier while lock dropped.
1336 *
1337 * The list of nonlinear vmas could be handled more efficiently, using
1338 * a placeholder, but handle it in the same way until a need is shown.
1339 * It is important to search the prio_tree before nonlinear list: a vma
1340 * may become nonlinear and be shifted from prio_tree to nonlinear list
1341 * while the lock is dropped; but never shifted from list to prio_tree.
1342 *
1343 * In order to make forward progress despite restarting the search,
1344 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1345 * quickly skip it next time around. Since the prio_tree search only
1346 * shows us those vmas affected by unmapping the range in question, we
1347 * can't efficiently keep all vmas in step with mapping->truncate_count:
1348 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1349 * mapping->truncate_count and vma->vm_truncate_count are protected by
1350 * i_mmap_lock.
1351 *
1352 * In order to make forward progress despite repeatedly restarting some
ee39b37b 1353 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
1354 * and restart from that address when we reach that vma again. It might
1355 * have been split or merged, shrunk or extended, but never shifted: so
1356 * restart_addr remains valid so long as it remains in the vma's range.
1357 * unmap_mapping_range forces truncate_count to leap over page-aligned
1358 * values so we can save vma's restart_addr in its truncate_count field.
1359 */
1360#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1361
1362static void reset_vma_truncate_counts(struct address_space *mapping)
1363{
1364 struct vm_area_struct *vma;
1365 struct prio_tree_iter iter;
1366
1367 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1368 vma->vm_truncate_count = 0;
1369 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1370 vma->vm_truncate_count = 0;
1371}
1372
1373static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1374 unsigned long start_addr, unsigned long end_addr,
1375 struct zap_details *details)
1376{
1377 unsigned long restart_addr;
1378 int need_break;
1379
1380again:
1381 restart_addr = vma->vm_truncate_count;
1382 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1383 start_addr = restart_addr;
1384 if (start_addr >= end_addr) {
1385 /* Top of vma has been split off since last time */
1386 vma->vm_truncate_count = details->truncate_count;
1387 return 0;
1388 }
1389 }
1390
ee39b37b
HD
1391 restart_addr = zap_page_range(vma, start_addr,
1392 end_addr - start_addr, details);
1da177e4
LT
1393
1394 /*
1395 * We cannot rely on the break test in unmap_vmas:
1396 * on the one hand, we don't want to restart our loop
1397 * just because that broke out for the page_table_lock;
1398 * on the other hand, it does no test when vma is small.
1399 */
1400 need_break = need_resched() ||
1401 need_lockbreak(details->i_mmap_lock);
1402
ee39b37b 1403 if (restart_addr >= end_addr) {
1da177e4
LT
1404 /* We have now completed this vma: mark it so */
1405 vma->vm_truncate_count = details->truncate_count;
1406 if (!need_break)
1407 return 0;
1408 } else {
1409 /* Note restart_addr in vma's truncate_count field */
ee39b37b 1410 vma->vm_truncate_count = restart_addr;
1da177e4
LT
1411 if (!need_break)
1412 goto again;
1413 }
1414
1415 spin_unlock(details->i_mmap_lock);
1416 cond_resched();
1417 spin_lock(details->i_mmap_lock);
1418 return -EINTR;
1419}
1420
1421static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1422 struct zap_details *details)
1423{
1424 struct vm_area_struct *vma;
1425 struct prio_tree_iter iter;
1426 pgoff_t vba, vea, zba, zea;
1427
1428restart:
1429 vma_prio_tree_foreach(vma, &iter, root,
1430 details->first_index, details->last_index) {
1431 /* Skip quickly over those we have already dealt with */
1432 if (vma->vm_truncate_count == details->truncate_count)
1433 continue;
1434
1435 vba = vma->vm_pgoff;
1436 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1437 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1438 zba = details->first_index;
1439 if (zba < vba)
1440 zba = vba;
1441 zea = details->last_index;
1442 if (zea > vea)
1443 zea = vea;
1444
1445 if (unmap_mapping_range_vma(vma,
1446 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1447 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1448 details) < 0)
1449 goto restart;
1450 }
1451}
1452
1453static inline void unmap_mapping_range_list(struct list_head *head,
1454 struct zap_details *details)
1455{
1456 struct vm_area_struct *vma;
1457
1458 /*
1459 * In nonlinear VMAs there is no correspondence between virtual address
1460 * offset and file offset. So we must perform an exhaustive search
1461 * across *all* the pages in each nonlinear VMA, not just the pages
1462 * whose virtual address lies outside the file truncation point.
1463 */
1464restart:
1465 list_for_each_entry(vma, head, shared.vm_set.list) {
1466 /* Skip quickly over those we have already dealt with */
1467 if (vma->vm_truncate_count == details->truncate_count)
1468 continue;
1469 details->nonlinear_vma = vma;
1470 if (unmap_mapping_range_vma(vma, vma->vm_start,
1471 vma->vm_end, details) < 0)
1472 goto restart;
1473 }
1474}
1475
1476/**
1477 * unmap_mapping_range - unmap the portion of all mmaps
1478 * in the specified address_space corresponding to the specified
1479 * page range in the underlying file.
3d41088f 1480 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
1481 * @holebegin: byte in first page to unmap, relative to the start of
1482 * the underlying file. This will be rounded down to a PAGE_SIZE
1483 * boundary. Note that this is different from vmtruncate(), which
1484 * must keep the partial page. In contrast, we must get rid of
1485 * partial pages.
1486 * @holelen: size of prospective hole in bytes. This will be rounded
1487 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1488 * end of the file.
1489 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1490 * but 0 when invalidating pagecache, don't throw away private data.
1491 */
1492void unmap_mapping_range(struct address_space *mapping,
1493 loff_t const holebegin, loff_t const holelen, int even_cows)
1494{
1495 struct zap_details details;
1496 pgoff_t hba = holebegin >> PAGE_SHIFT;
1497 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1498
1499 /* Check for overflow. */
1500 if (sizeof(holelen) > sizeof(hlen)) {
1501 long long holeend =
1502 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1503 if (holeend & ~(long long)ULONG_MAX)
1504 hlen = ULONG_MAX - hba + 1;
1505 }
1506
1507 details.check_mapping = even_cows? NULL: mapping;
1508 details.nonlinear_vma = NULL;
1509 details.first_index = hba;
1510 details.last_index = hba + hlen - 1;
1511 if (details.last_index < details.first_index)
1512 details.last_index = ULONG_MAX;
1513 details.i_mmap_lock = &mapping->i_mmap_lock;
1514
1515 spin_lock(&mapping->i_mmap_lock);
1516
1517 /* serialize i_size write against truncate_count write */
1518 smp_wmb();
1519 /* Protect against page faults, and endless unmapping loops */
1520 mapping->truncate_count++;
1521 /*
1522 * For archs where spin_lock has inclusive semantics like ia64
1523 * this smp_mb() will prevent to read pagetable contents
1524 * before the truncate_count increment is visible to
1525 * other cpus.
1526 */
1527 smp_mb();
1528 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1529 if (mapping->truncate_count == 0)
1530 reset_vma_truncate_counts(mapping);
1531 mapping->truncate_count++;
1532 }
1533 details.truncate_count = mapping->truncate_count;
1534
1535 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1536 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1537 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1538 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1539 spin_unlock(&mapping->i_mmap_lock);
1540}
1541EXPORT_SYMBOL(unmap_mapping_range);
1542
1543/*
1544 * Handle all mappings that got truncated by a "truncate()"
1545 * system call.
1546 *
1547 * NOTE! We have to be ready to update the memory sharing
1548 * between the file and the memory map for a potential last
1549 * incomplete page. Ugly, but necessary.
1550 */
1551int vmtruncate(struct inode * inode, loff_t offset)
1552{
1553 struct address_space *mapping = inode->i_mapping;
1554 unsigned long limit;
1555
1556 if (inode->i_size < offset)
1557 goto do_expand;
1558 /*
1559 * truncation of in-use swapfiles is disallowed - it would cause
1560 * subsequent swapout to scribble on the now-freed blocks.
1561 */
1562 if (IS_SWAPFILE(inode))
1563 goto out_busy;
1564 i_size_write(inode, offset);
1565 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1566 truncate_inode_pages(mapping, offset);
1567 goto out_truncate;
1568
1569do_expand:
1570 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1571 if (limit != RLIM_INFINITY && offset > limit)
1572 goto out_sig;
1573 if (offset > inode->i_sb->s_maxbytes)
1574 goto out_big;
1575 i_size_write(inode, offset);
1576
1577out_truncate:
1578 if (inode->i_op && inode->i_op->truncate)
1579 inode->i_op->truncate(inode);
1580 return 0;
1581out_sig:
1582 send_sig(SIGXFSZ, current, 0);
1583out_big:
1584 return -EFBIG;
1585out_busy:
1586 return -ETXTBSY;
1587}
1588
1589EXPORT_SYMBOL(vmtruncate);
1590
1591/*
1592 * Primitive swap readahead code. We simply read an aligned block of
1593 * (1 << page_cluster) entries in the swap area. This method is chosen
1594 * because it doesn't cost us any seek time. We also make sure to queue
1595 * the 'original' request together with the readahead ones...
1596 *
1597 * This has been extended to use the NUMA policies from the mm triggering
1598 * the readahead.
1599 *
1600 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1601 */
1602void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1603{
1604#ifdef CONFIG_NUMA
1605 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1606#endif
1607 int i, num;
1608 struct page *new_page;
1609 unsigned long offset;
1610
1611 /*
1612 * Get the number of handles we should do readahead io to.
1613 */
1614 num = valid_swaphandles(entry, &offset);
1615 for (i = 0; i < num; offset++, i++) {
1616 /* Ok, do the async read-ahead now */
1617 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1618 offset), vma, addr);
1619 if (!new_page)
1620 break;
1621 page_cache_release(new_page);
1622#ifdef CONFIG_NUMA
1623 /*
1624 * Find the next applicable VMA for the NUMA policy.
1625 */
1626 addr += PAGE_SIZE;
1627 if (addr == 0)
1628 vma = NULL;
1629 if (vma) {
1630 if (addr >= vma->vm_end) {
1631 vma = next_vma;
1632 next_vma = vma ? vma->vm_next : NULL;
1633 }
1634 if (vma && addr < vma->vm_start)
1635 vma = NULL;
1636 } else {
1637 if (next_vma && addr >= next_vma->vm_start) {
1638 vma = next_vma;
1639 next_vma = vma->vm_next;
1640 }
1641 }
1642#endif
1643 }
1644 lru_add_drain(); /* Push any new pages onto the LRU now */
1645}
1646
1647/*
1648 * We hold the mm semaphore and the page_table_lock on entry and
1649 * should release the pagetable lock on exit..
1650 */
65500d23
HD
1651static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1652 unsigned long address, pte_t *page_table, pmd_t *pmd,
1653 int write_access, pte_t orig_pte)
1da177e4
LT
1654{
1655 struct page *page;
65500d23 1656 swp_entry_t entry;
1da177e4
LT
1657 pte_t pte;
1658 int ret = VM_FAULT_MINOR;
1659
1660 pte_unmap(page_table);
1661 spin_unlock(&mm->page_table_lock);
65500d23
HD
1662
1663 entry = pte_to_swp_entry(orig_pte);
1da177e4
LT
1664 page = lookup_swap_cache(entry);
1665 if (!page) {
1666 swapin_readahead(entry, address, vma);
1667 page = read_swap_cache_async(entry, vma, address);
1668 if (!page) {
1669 /*
1670 * Back out if somebody else faulted in this pte while
1671 * we released the page table lock.
1672 */
1673 spin_lock(&mm->page_table_lock);
1674 page_table = pte_offset_map(pmd, address);
1675 if (likely(pte_same(*page_table, orig_pte)))
1676 ret = VM_FAULT_OOM;
65500d23 1677 goto unlock;
1da177e4
LT
1678 }
1679
1680 /* Had to read the page from swap area: Major fault */
1681 ret = VM_FAULT_MAJOR;
1682 inc_page_state(pgmajfault);
1683 grab_swap_token();
1684 }
1685
1686 mark_page_accessed(page);
1687 lock_page(page);
1688
1689 /*
1690 * Back out if somebody else faulted in this pte while we
1691 * released the page table lock.
1692 */
1693 spin_lock(&mm->page_table_lock);
1694 page_table = pte_offset_map(pmd, address);
1695 if (unlikely(!pte_same(*page_table, orig_pte))) {
1da177e4 1696 ret = VM_FAULT_MINOR;
b8107480
KK
1697 goto out_nomap;
1698 }
1699
1700 if (unlikely(!PageUptodate(page))) {
1701 ret = VM_FAULT_SIGBUS;
1702 goto out_nomap;
1da177e4
LT
1703 }
1704
1705 /* The page isn't present yet, go ahead with the fault. */
1da177e4 1706
4294621f 1707 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1708 pte = mk_pte(page, vma->vm_page_prot);
1709 if (write_access && can_share_swap_page(page)) {
1710 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1711 write_access = 0;
1712 }
1da177e4
LT
1713
1714 flush_icache_page(vma, page);
1715 set_pte_at(mm, address, page_table, pte);
1716 page_add_anon_rmap(page, vma, address);
1717
c475a8ab
HD
1718 swap_free(entry);
1719 if (vm_swap_full())
1720 remove_exclusive_swap_page(page);
1721 unlock_page(page);
1722
1da177e4
LT
1723 if (write_access) {
1724 if (do_wp_page(mm, vma, address,
1725 page_table, pmd, pte) == VM_FAULT_OOM)
1726 ret = VM_FAULT_OOM;
1727 goto out;
1728 }
1729
1730 /* No need to invalidate - it was non-present before */
1731 update_mmu_cache(vma, address, pte);
1732 lazy_mmu_prot_update(pte);
65500d23 1733unlock:
1da177e4
LT
1734 pte_unmap(page_table);
1735 spin_unlock(&mm->page_table_lock);
1736out:
1737 return ret;
b8107480
KK
1738out_nomap:
1739 pte_unmap(page_table);
1740 spin_unlock(&mm->page_table_lock);
1741 unlock_page(page);
1742 page_cache_release(page);
65500d23 1743 return ret;
1da177e4
LT
1744}
1745
1746/*
1747 * We are called with the MM semaphore and page_table_lock
1748 * spinlock held to protect against concurrent faults in
1749 * multithreaded programs.
1750 */
65500d23
HD
1751static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1752 unsigned long address, pte_t *page_table, pmd_t *pmd,
1753 int write_access)
1da177e4
LT
1754{
1755 pte_t entry;
1da177e4 1756
72866f6f
HD
1757 /* Mapping of ZERO_PAGE - vm_page_prot is readonly */
1758 entry = mk_pte(ZERO_PAGE(addr), vma->vm_page_prot);
1da177e4 1759
1da177e4 1760 if (write_access) {
72866f6f
HD
1761 struct page *page;
1762
1da177e4
LT
1763 /* Allocate our own private page. */
1764 pte_unmap(page_table);
1765 spin_unlock(&mm->page_table_lock);
1766
1767 if (unlikely(anon_vma_prepare(vma)))
65500d23
HD
1768 goto oom;
1769 page = alloc_zeroed_user_highpage(vma, address);
1da177e4 1770 if (!page)
65500d23 1771 goto oom;
1da177e4
LT
1772
1773 spin_lock(&mm->page_table_lock);
65500d23 1774 page_table = pte_offset_map(pmd, address);
1da177e4
LT
1775
1776 if (!pte_none(*page_table)) {
1da177e4 1777 page_cache_release(page);
65500d23 1778 goto unlock;
1da177e4 1779 }
4294621f 1780 inc_mm_counter(mm, anon_rss);
65500d23
HD
1781 entry = mk_pte(page, vma->vm_page_prot);
1782 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4
LT
1783 lru_cache_add_active(page);
1784 SetPageReferenced(page);
65500d23 1785 page_add_anon_rmap(page, vma, address);
1da177e4
LT
1786 }
1787
65500d23 1788 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
1789
1790 /* No need to invalidate - it was non-present before */
65500d23 1791 update_mmu_cache(vma, address, entry);
1da177e4 1792 lazy_mmu_prot_update(entry);
65500d23
HD
1793unlock:
1794 pte_unmap(page_table);
1da177e4 1795 spin_unlock(&mm->page_table_lock);
1da177e4 1796 return VM_FAULT_MINOR;
65500d23 1797oom:
1da177e4
LT
1798 return VM_FAULT_OOM;
1799}
1800
1801/*
1802 * do_no_page() tries to create a new page mapping. It aggressively
1803 * tries to share with existing pages, but makes a separate copy if
1804 * the "write_access" parameter is true in order to avoid the next
1805 * page fault.
1806 *
1807 * As this is called only for pages that do not currently exist, we
1808 * do not need to flush old virtual caches or the TLB.
1809 *
1810 * This is called with the MM semaphore held and the page table
1811 * spinlock held. Exit with the spinlock released.
1812 */
65500d23
HD
1813static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1814 unsigned long address, pte_t *page_table, pmd_t *pmd,
1815 int write_access)
1da177e4 1816{
65500d23 1817 struct page *new_page;
1da177e4
LT
1818 struct address_space *mapping = NULL;
1819 pte_t entry;
1820 unsigned int sequence = 0;
1821 int ret = VM_FAULT_MINOR;
1822 int anon = 0;
1823
1da177e4
LT
1824 pte_unmap(page_table);
1825 spin_unlock(&mm->page_table_lock);
1826
1827 if (vma->vm_file) {
1828 mapping = vma->vm_file->f_mapping;
1829 sequence = mapping->truncate_count;
1830 smp_rmb(); /* serializes i_size against truncate_count */
1831 }
1832retry:
1da177e4
LT
1833 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1834 /*
1835 * No smp_rmb is needed here as long as there's a full
1836 * spin_lock/unlock sequence inside the ->nopage callback
1837 * (for the pagecache lookup) that acts as an implicit
1838 * smp_mb() and prevents the i_size read to happen
1839 * after the next truncate_count read.
1840 */
1841
1842 /* no page was available -- either SIGBUS or OOM */
1843 if (new_page == NOPAGE_SIGBUS)
1844 return VM_FAULT_SIGBUS;
1845 if (new_page == NOPAGE_OOM)
1846 return VM_FAULT_OOM;
1847
1848 /*
1849 * Should we do an early C-O-W break?
1850 */
1851 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1852 struct page *page;
1853
1854 if (unlikely(anon_vma_prepare(vma)))
1855 goto oom;
1856 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1857 if (!page)
1858 goto oom;
1859 copy_user_highpage(page, new_page, address);
1860 page_cache_release(new_page);
1861 new_page = page;
1862 anon = 1;
1863 }
1864
1865 spin_lock(&mm->page_table_lock);
1866 /*
1867 * For a file-backed vma, someone could have truncated or otherwise
1868 * invalidated this page. If unmap_mapping_range got called,
1869 * retry getting the page.
1870 */
1871 if (mapping && unlikely(sequence != mapping->truncate_count)) {
1da177e4
LT
1872 spin_unlock(&mm->page_table_lock);
1873 page_cache_release(new_page);
65500d23
HD
1874 cond_resched();
1875 sequence = mapping->truncate_count;
1876 smp_rmb();
1da177e4
LT
1877 goto retry;
1878 }
1879 page_table = pte_offset_map(pmd, address);
1880
1881 /*
1882 * This silly early PAGE_DIRTY setting removes a race
1883 * due to the bad i386 page protection. But it's valid
1884 * for other architectures too.
1885 *
1886 * Note that if write_access is true, we either now have
1887 * an exclusive copy of the page, or this is a shared mapping,
1888 * so we can make it writable and dirty to avoid having to
1889 * handle that later.
1890 */
1891 /* Only go through if we didn't race with anybody else... */
1892 if (pte_none(*page_table)) {
1da177e4
LT
1893 flush_icache_page(vma, new_page);
1894 entry = mk_pte(new_page, vma->vm_page_prot);
1895 if (write_access)
1896 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1897 set_pte_at(mm, address, page_table, entry);
1898 if (anon) {
4294621f 1899 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1900 lru_cache_add_active(new_page);
1901 page_add_anon_rmap(new_page, vma, address);
4294621f
HD
1902 } else if (!PageReserved(new_page)) {
1903 inc_mm_counter(mm, file_rss);
1da177e4 1904 page_add_file_rmap(new_page);
4294621f 1905 }
1da177e4
LT
1906 } else {
1907 /* One of our sibling threads was faster, back out. */
1da177e4 1908 page_cache_release(new_page);
65500d23 1909 goto unlock;
1da177e4
LT
1910 }
1911
1912 /* no need to invalidate: a not-present page shouldn't be cached */
1913 update_mmu_cache(vma, address, entry);
1914 lazy_mmu_prot_update(entry);
65500d23
HD
1915unlock:
1916 pte_unmap(page_table);
1da177e4 1917 spin_unlock(&mm->page_table_lock);
1da177e4
LT
1918 return ret;
1919oom:
1920 page_cache_release(new_page);
65500d23 1921 return VM_FAULT_OOM;
1da177e4
LT
1922}
1923
1924/*
1925 * Fault of a previously existing named mapping. Repopulate the pte
1926 * from the encoded file_pte if possible. This enables swappable
1927 * nonlinear vmas.
1928 */
65500d23
HD
1929static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1930 unsigned long address, pte_t *page_table, pmd_t *pmd,
1931 int write_access, pte_t orig_pte)
1da177e4 1932{
65500d23 1933 pgoff_t pgoff;
1da177e4
LT
1934 int err;
1935
65500d23 1936 pte_unmap(page_table);
1da177e4
LT
1937 spin_unlock(&mm->page_table_lock);
1938
65500d23
HD
1939 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1940 /*
1941 * Page table corrupted: show pte and kill process.
1942 */
1943 pte_ERROR(orig_pte);
1944 return VM_FAULT_OOM;
1945 }
1946 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1947
1948 pgoff = pte_to_pgoff(orig_pte);
1949 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1950 vma->vm_page_prot, pgoff, 0);
1da177e4
LT
1951 if (err == -ENOMEM)
1952 return VM_FAULT_OOM;
1953 if (err)
1954 return VM_FAULT_SIGBUS;
1955 return VM_FAULT_MAJOR;
1956}
1957
1958/*
1959 * These routines also need to handle stuff like marking pages dirty
1960 * and/or accessed for architectures that don't do it in hardware (most
1961 * RISC architectures). The early dirtying is also good on the i386.
1962 *
1963 * There is also a hook called "update_mmu_cache()" that architectures
1964 * with external mmu caches can use to update those (ie the Sparc or
1965 * PowerPC hashed page tables that act as extended TLBs).
1966 *
1967 * Note the "page_table_lock". It is to protect against kswapd removing
1968 * pages from under us. Note that kswapd only ever _removes_ pages, never
1969 * adds them. As such, once we have noticed that the page is not present,
1970 * we can drop the lock early.
1971 *
1972 * The adding of pages is protected by the MM semaphore (which we hold),
1973 * so we don't need to worry about a page being suddenly been added into
1974 * our VM.
1975 *
1976 * We enter with the pagetable spinlock held, we are supposed to
1977 * release it when done.
1978 */
1979static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
1980 struct vm_area_struct *vma, unsigned long address,
1981 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
1982{
1983 pte_t entry;
1984
1985 entry = *pte;
1986 if (!pte_present(entry)) {
65500d23
HD
1987 if (pte_none(entry)) {
1988 if (!vma->vm_ops || !vma->vm_ops->nopage)
1989 return do_anonymous_page(mm, vma, address,
1990 pte, pmd, write_access);
1991 return do_no_page(mm, vma, address,
1992 pte, pmd, write_access);
1993 }
1da177e4 1994 if (pte_file(entry))
65500d23
HD
1995 return do_file_page(mm, vma, address,
1996 pte, pmd, write_access, entry);
1997 return do_swap_page(mm, vma, address,
1998 pte, pmd, write_access, entry);
1da177e4
LT
1999 }
2000
2001 if (write_access) {
2002 if (!pte_write(entry))
2003 return do_wp_page(mm, vma, address, pte, pmd, entry);
1da177e4
LT
2004 entry = pte_mkdirty(entry);
2005 }
2006 entry = pte_mkyoung(entry);
2007 ptep_set_access_flags(vma, address, pte, entry, write_access);
2008 update_mmu_cache(vma, address, entry);
2009 lazy_mmu_prot_update(entry);
2010 pte_unmap(pte);
2011 spin_unlock(&mm->page_table_lock);
2012 return VM_FAULT_MINOR;
2013}
2014
2015/*
2016 * By the time we get here, we already hold the mm semaphore
2017 */
65500d23 2018int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2019 unsigned long address, int write_access)
2020{
2021 pgd_t *pgd;
2022 pud_t *pud;
2023 pmd_t *pmd;
2024 pte_t *pte;
2025
2026 __set_current_state(TASK_RUNNING);
2027
2028 inc_page_state(pgfault);
2029
ac9b9c66
HD
2030 if (unlikely(is_vm_hugetlb_page(vma)))
2031 return hugetlb_fault(mm, vma, address, write_access);
1da177e4
LT
2032
2033 /*
2034 * We need the page table lock to synchronize with kswapd
2035 * and the SMP-safe atomic PTE updates.
2036 */
2037 pgd = pgd_offset(mm, address);
2038 spin_lock(&mm->page_table_lock);
2039
2040 pud = pud_alloc(mm, pgd, address);
2041 if (!pud)
2042 goto oom;
2043
2044 pmd = pmd_alloc(mm, pud, address);
2045 if (!pmd)
2046 goto oom;
2047
2048 pte = pte_alloc_map(mm, pmd, address);
2049 if (!pte)
2050 goto oom;
2051
65500d23 2052 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2053
2054 oom:
2055 spin_unlock(&mm->page_table_lock);
2056 return VM_FAULT_OOM;
2057}
2058
2059#ifndef __PAGETABLE_PUD_FOLDED
2060/*
2061 * Allocate page upper directory.
2062 *
2063 * We've already handled the fast-path in-line, and we own the
2064 * page table lock.
2065 */
2066pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2067{
2068 pud_t *new;
2069
2070 spin_unlock(&mm->page_table_lock);
2071 new = pud_alloc_one(mm, address);
2072 spin_lock(&mm->page_table_lock);
2073 if (!new)
2074 return NULL;
2075
2076 /*
2077 * Because we dropped the lock, we should re-check the
2078 * entry, as somebody else could have populated it..
2079 */
2080 if (pgd_present(*pgd)) {
2081 pud_free(new);
2082 goto out;
2083 }
2084 pgd_populate(mm, pgd, new);
2085 out:
2086 return pud_offset(pgd, address);
2087}
2088#endif /* __PAGETABLE_PUD_FOLDED */
2089
2090#ifndef __PAGETABLE_PMD_FOLDED
2091/*
2092 * Allocate page middle directory.
2093 *
2094 * We've already handled the fast-path in-line, and we own the
2095 * page table lock.
2096 */
2097pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2098{
2099 pmd_t *new;
2100
2101 spin_unlock(&mm->page_table_lock);
2102 new = pmd_alloc_one(mm, address);
2103 spin_lock(&mm->page_table_lock);
2104 if (!new)
2105 return NULL;
2106
2107 /*
2108 * Because we dropped the lock, we should re-check the
2109 * entry, as somebody else could have populated it..
2110 */
2111#ifndef __ARCH_HAS_4LEVEL_HACK
2112 if (pud_present(*pud)) {
2113 pmd_free(new);
2114 goto out;
2115 }
2116 pud_populate(mm, pud, new);
2117#else
2118 if (pgd_present(*pud)) {
2119 pmd_free(new);
2120 goto out;
2121 }
2122 pgd_populate(mm, pud, new);
2123#endif /* __ARCH_HAS_4LEVEL_HACK */
2124
2125 out:
2126 return pmd_offset(pud, address);
2127}
2128#endif /* __PAGETABLE_PMD_FOLDED */
2129
2130int make_pages_present(unsigned long addr, unsigned long end)
2131{
2132 int ret, len, write;
2133 struct vm_area_struct * vma;
2134
2135 vma = find_vma(current->mm, addr);
2136 if (!vma)
2137 return -1;
2138 write = (vma->vm_flags & VM_WRITE) != 0;
2139 if (addr >= end)
2140 BUG();
2141 if (end > vma->vm_end)
2142 BUG();
2143 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2144 ret = get_user_pages(current, current->mm, addr,
2145 len, write, 0, NULL, NULL);
2146 if (ret < 0)
2147 return ret;
2148 return ret == len ? 0 : -1;
2149}
2150
2151/*
2152 * Map a vmalloc()-space virtual address to the physical page.
2153 */
2154struct page * vmalloc_to_page(void * vmalloc_addr)
2155{
2156 unsigned long addr = (unsigned long) vmalloc_addr;
2157 struct page *page = NULL;
2158 pgd_t *pgd = pgd_offset_k(addr);
2159 pud_t *pud;
2160 pmd_t *pmd;
2161 pte_t *ptep, pte;
2162
2163 if (!pgd_none(*pgd)) {
2164 pud = pud_offset(pgd, addr);
2165 if (!pud_none(*pud)) {
2166 pmd = pmd_offset(pud, addr);
2167 if (!pmd_none(*pmd)) {
2168 ptep = pte_offset_map(pmd, addr);
2169 pte = *ptep;
2170 if (pte_present(pte))
2171 page = pte_page(pte);
2172 pte_unmap(ptep);
2173 }
2174 }
2175 }
2176 return page;
2177}
2178
2179EXPORT_SYMBOL(vmalloc_to_page);
2180
2181/*
2182 * Map a vmalloc()-space virtual address to the physical page frame number.
2183 */
2184unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2185{
2186 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2187}
2188
2189EXPORT_SYMBOL(vmalloc_to_pfn);
2190
2191/*
2192 * update_mem_hiwater
2193 * - update per process rss and vm high water data
2194 */
2195void update_mem_hiwater(struct task_struct *tsk)
2196{
2197 if (tsk->mm) {
4294621f 2198 unsigned long rss = get_mm_rss(tsk->mm);
1da177e4
LT
2199
2200 if (tsk->mm->hiwater_rss < rss)
2201 tsk->mm->hiwater_rss = rss;
2202 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2203 tsk->mm->hiwater_vm = tsk->mm->total_vm;
2204 }
2205}
2206
2207#if !defined(__HAVE_ARCH_GATE_AREA)
2208
2209#if defined(AT_SYSINFO_EHDR)
5ce7852c 2210static struct vm_area_struct gate_vma;
1da177e4
LT
2211
2212static int __init gate_vma_init(void)
2213{
2214 gate_vma.vm_mm = NULL;
2215 gate_vma.vm_start = FIXADDR_USER_START;
2216 gate_vma.vm_end = FIXADDR_USER_END;
2217 gate_vma.vm_page_prot = PAGE_READONLY;
2218 gate_vma.vm_flags = 0;
2219 return 0;
2220}
2221__initcall(gate_vma_init);
2222#endif
2223
2224struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2225{
2226#ifdef AT_SYSINFO_EHDR
2227 return &gate_vma;
2228#else
2229 return NULL;
2230#endif
2231}
2232
2233int in_gate_area_no_task(unsigned long addr)
2234{
2235#ifdef AT_SYSINFO_EHDR
2236 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2237 return 1;
2238#endif
2239 return 0;
2240}
2241
2242#endif /* __HAVE_ARCH_GATE_AREA */