]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
mm: Add a vmf_insert_mixed_prot() function
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
1da177e4 74
b3d1411b
JFG
75#include <trace/events/kmem.h>
76
6952b61d 77#include <asm/io.h>
33a709b2 78#include <asm/mmu_context.h>
1da177e4 79#include <asm/pgalloc.h>
7c0f6ba6 80#include <linux/uaccess.h>
1da177e4
LT
81#include <asm/tlb.h>
82#include <asm/tlbflush.h>
83#include <asm/pgtable.h>
84
42b77728
JB
85#include "internal.h"
86
af27d940 87#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 88#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
89#endif
90
d41dee36 91#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
92/* use the per-pgdat data instead for discontigmem - mbligh */
93unsigned long max_mapnr;
1da177e4 94EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
95
96struct page *mem_map;
1da177e4
LT
97EXPORT_SYMBOL(mem_map);
98#endif
99
1da177e4
LT
100/*
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105 * and ZONE_HIGHMEM.
106 */
166f61b9 107void *high_memory;
1da177e4 108EXPORT_SYMBOL(high_memory);
1da177e4 109
32a93233
IM
110/*
111 * Randomize the address space (stacks, mmaps, brk, etc.).
112 *
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
115 */
116int randomize_va_space __read_mostly =
117#ifdef CONFIG_COMPAT_BRK
118 1;
119#else
120 2;
121#endif
a62eaf15 122
83d116c5
JH
123#ifndef arch_faults_on_old_pte
124static inline bool arch_faults_on_old_pte(void)
125{
126 /*
127 * Those arches which don't have hw access flag feature need to
128 * implement their own helper. By default, "true" means pagefault
129 * will be hit on old pte.
130 */
131 return true;
132}
133#endif
134
a62eaf15
AK
135static int __init disable_randmaps(char *s)
136{
137 randomize_va_space = 0;
9b41046c 138 return 1;
a62eaf15
AK
139}
140__setup("norandmaps", disable_randmaps);
141
62eede62 142unsigned long zero_pfn __read_mostly;
0b70068e
AB
143EXPORT_SYMBOL(zero_pfn);
144
166f61b9
TH
145unsigned long highest_memmap_pfn __read_mostly;
146
a13ea5b7
HD
147/*
148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149 */
150static int __init init_zero_pfn(void)
151{
152 zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 return 0;
154}
155core_initcall(init_zero_pfn);
a62eaf15 156
e4dcad20 157void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 158{
e4dcad20 159 trace_rss_stat(mm, member, count);
b3d1411b 160}
d559db08 161
34e55232
KH
162#if defined(SPLIT_RSS_COUNTING)
163
ea48cf78 164void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
165{
166 int i;
167
168 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
169 if (current->rss_stat.count[i]) {
170 add_mm_counter(mm, i, current->rss_stat.count[i]);
171 current->rss_stat.count[i] = 0;
34e55232
KH
172 }
173 }
05af2e10 174 current->rss_stat.events = 0;
34e55232
KH
175}
176
177static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178{
179 struct task_struct *task = current;
180
181 if (likely(task->mm == mm))
182 task->rss_stat.count[member] += val;
183 else
184 add_mm_counter(mm, member, val);
185}
186#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189/* sync counter once per 64 page faults */
190#define TASK_RSS_EVENTS_THRESH (64)
191static void check_sync_rss_stat(struct task_struct *task)
192{
193 if (unlikely(task != current))
194 return;
195 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 196 sync_mm_rss(task->mm);
34e55232 197}
9547d01b 198#else /* SPLIT_RSS_COUNTING */
34e55232
KH
199
200#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203static void check_sync_rss_stat(struct task_struct *task)
204{
205}
206
9547d01b
PZ
207#endif /* SPLIT_RSS_COUNTING */
208
1da177e4
LT
209/*
210 * Note: this doesn't free the actual pages themselves. That
211 * has been handled earlier when unmapping all the memory regions.
212 */
9e1b32ca
BH
213static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214 unsigned long addr)
1da177e4 215{
2f569afd 216 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 217 pmd_clear(pmd);
9e1b32ca 218 pte_free_tlb(tlb, token, addr);
c4812909 219 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
220}
221
e0da382c
HD
222static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 unsigned long addr, unsigned long end,
224 unsigned long floor, unsigned long ceiling)
1da177e4
LT
225{
226 pmd_t *pmd;
227 unsigned long next;
e0da382c 228 unsigned long start;
1da177e4 229
e0da382c 230 start = addr;
1da177e4 231 pmd = pmd_offset(pud, addr);
1da177e4
LT
232 do {
233 next = pmd_addr_end(addr, end);
234 if (pmd_none_or_clear_bad(pmd))
235 continue;
9e1b32ca 236 free_pte_range(tlb, pmd, addr);
1da177e4
LT
237 } while (pmd++, addr = next, addr != end);
238
e0da382c
HD
239 start &= PUD_MASK;
240 if (start < floor)
241 return;
242 if (ceiling) {
243 ceiling &= PUD_MASK;
244 if (!ceiling)
245 return;
1da177e4 246 }
e0da382c
HD
247 if (end - 1 > ceiling - 1)
248 return;
249
250 pmd = pmd_offset(pud, start);
251 pud_clear(pud);
9e1b32ca 252 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 253 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
254}
255
c2febafc 256static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
257 unsigned long addr, unsigned long end,
258 unsigned long floor, unsigned long ceiling)
1da177e4
LT
259{
260 pud_t *pud;
261 unsigned long next;
e0da382c 262 unsigned long start;
1da177e4 263
e0da382c 264 start = addr;
c2febafc 265 pud = pud_offset(p4d, addr);
1da177e4
LT
266 do {
267 next = pud_addr_end(addr, end);
268 if (pud_none_or_clear_bad(pud))
269 continue;
e0da382c 270 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
271 } while (pud++, addr = next, addr != end);
272
c2febafc
KS
273 start &= P4D_MASK;
274 if (start < floor)
275 return;
276 if (ceiling) {
277 ceiling &= P4D_MASK;
278 if (!ceiling)
279 return;
280 }
281 if (end - 1 > ceiling - 1)
282 return;
283
284 pud = pud_offset(p4d, start);
285 p4d_clear(p4d);
286 pud_free_tlb(tlb, pud, start);
b4e98d9a 287 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
288}
289
290static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 unsigned long addr, unsigned long end,
292 unsigned long floor, unsigned long ceiling)
293{
294 p4d_t *p4d;
295 unsigned long next;
296 unsigned long start;
297
298 start = addr;
299 p4d = p4d_offset(pgd, addr);
300 do {
301 next = p4d_addr_end(addr, end);
302 if (p4d_none_or_clear_bad(p4d))
303 continue;
304 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 } while (p4d++, addr = next, addr != end);
306
e0da382c
HD
307 start &= PGDIR_MASK;
308 if (start < floor)
309 return;
310 if (ceiling) {
311 ceiling &= PGDIR_MASK;
312 if (!ceiling)
313 return;
1da177e4 314 }
e0da382c
HD
315 if (end - 1 > ceiling - 1)
316 return;
317
c2febafc 318 p4d = p4d_offset(pgd, start);
e0da382c 319 pgd_clear(pgd);
c2febafc 320 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
321}
322
323/*
e0da382c 324 * This function frees user-level page tables of a process.
1da177e4 325 */
42b77728 326void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
327 unsigned long addr, unsigned long end,
328 unsigned long floor, unsigned long ceiling)
1da177e4
LT
329{
330 pgd_t *pgd;
331 unsigned long next;
e0da382c
HD
332
333 /*
334 * The next few lines have given us lots of grief...
335 *
336 * Why are we testing PMD* at this top level? Because often
337 * there will be no work to do at all, and we'd prefer not to
338 * go all the way down to the bottom just to discover that.
339 *
340 * Why all these "- 1"s? Because 0 represents both the bottom
341 * of the address space and the top of it (using -1 for the
342 * top wouldn't help much: the masks would do the wrong thing).
343 * The rule is that addr 0 and floor 0 refer to the bottom of
344 * the address space, but end 0 and ceiling 0 refer to the top
345 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 * that end 0 case should be mythical).
347 *
348 * Wherever addr is brought up or ceiling brought down, we must
349 * be careful to reject "the opposite 0" before it confuses the
350 * subsequent tests. But what about where end is brought down
351 * by PMD_SIZE below? no, end can't go down to 0 there.
352 *
353 * Whereas we round start (addr) and ceiling down, by different
354 * masks at different levels, in order to test whether a table
355 * now has no other vmas using it, so can be freed, we don't
356 * bother to round floor or end up - the tests don't need that.
357 */
1da177e4 358
e0da382c
HD
359 addr &= PMD_MASK;
360 if (addr < floor) {
361 addr += PMD_SIZE;
362 if (!addr)
363 return;
364 }
365 if (ceiling) {
366 ceiling &= PMD_MASK;
367 if (!ceiling)
368 return;
369 }
370 if (end - 1 > ceiling - 1)
371 end -= PMD_SIZE;
372 if (addr > end - 1)
373 return;
07e32661
AK
374 /*
375 * We add page table cache pages with PAGE_SIZE,
376 * (see pte_free_tlb()), flush the tlb if we need
377 */
ed6a7935 378 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 379 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
380 do {
381 next = pgd_addr_end(addr, end);
382 if (pgd_none_or_clear_bad(pgd))
383 continue;
c2febafc 384 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 385 } while (pgd++, addr = next, addr != end);
e0da382c
HD
386}
387
42b77728 388void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 389 unsigned long floor, unsigned long ceiling)
e0da382c
HD
390{
391 while (vma) {
392 struct vm_area_struct *next = vma->vm_next;
393 unsigned long addr = vma->vm_start;
394
8f4f8c16 395 /*
25d9e2d1
NP
396 * Hide vma from rmap and truncate_pagecache before freeing
397 * pgtables
8f4f8c16 398 */
5beb4930 399 unlink_anon_vmas(vma);
8f4f8c16
HD
400 unlink_file_vma(vma);
401
9da61aef 402 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 403 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 404 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
405 } else {
406 /*
407 * Optimization: gather nearby vmas into one call down
408 */
409 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 410 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
411 vma = next;
412 next = vma->vm_next;
5beb4930 413 unlink_anon_vmas(vma);
8f4f8c16 414 unlink_file_vma(vma);
3bf5ee95
HD
415 }
416 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 417 floor, next ? next->vm_start : ceiling);
3bf5ee95 418 }
e0da382c
HD
419 vma = next;
420 }
1da177e4
LT
421}
422
4cf58924 423int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 424{
c4088ebd 425 spinlock_t *ptl;
4cf58924 426 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
427 if (!new)
428 return -ENOMEM;
429
362a61ad
NP
430 /*
431 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 * visible before the pte is made visible to other CPUs by being
433 * put into page tables.
434 *
435 * The other side of the story is the pointer chasing in the page
436 * table walking code (when walking the page table without locking;
437 * ie. most of the time). Fortunately, these data accesses consist
438 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 * being the notable exception) will already guarantee loads are
440 * seen in-order. See the alpha page table accessors for the
441 * smp_read_barrier_depends() barriers in page table walking code.
442 */
443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
c4088ebd 445 ptl = pmd_lock(mm, pmd);
8ac1f832 446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 447 mm_inc_nr_ptes(mm);
1da177e4 448 pmd_populate(mm, pmd, new);
2f569afd 449 new = NULL;
4b471e88 450 }
c4088ebd 451 spin_unlock(ptl);
2f569afd
MS
452 if (new)
453 pte_free(mm, new);
1bb3630e 454 return 0;
1da177e4
LT
455}
456
4cf58924 457int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 458{
4cf58924 459 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
460 if (!new)
461 return -ENOMEM;
462
362a61ad
NP
463 smp_wmb(); /* See comment in __pte_alloc */
464
1bb3630e 465 spin_lock(&init_mm.page_table_lock);
8ac1f832 466 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 467 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 468 new = NULL;
4b471e88 469 }
1bb3630e 470 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
471 if (new)
472 pte_free_kernel(&init_mm, new);
1bb3630e 473 return 0;
1da177e4
LT
474}
475
d559db08
KH
476static inline void init_rss_vec(int *rss)
477{
478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479}
480
481static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 482{
d559db08
KH
483 int i;
484
34e55232 485 if (current->mm == mm)
05af2e10 486 sync_mm_rss(mm);
d559db08
KH
487 for (i = 0; i < NR_MM_COUNTERS; i++)
488 if (rss[i])
489 add_mm_counter(mm, i, rss[i]);
ae859762
HD
490}
491
b5810039 492/*
6aab341e
LT
493 * This function is called to print an error when a bad pte
494 * is found. For example, we might have a PFN-mapped pte in
495 * a region that doesn't allow it.
b5810039
NP
496 *
497 * The calling function must still handle the error.
498 */
3dc14741
HD
499static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 pte_t pte, struct page *page)
b5810039 501{
3dc14741 502 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
503 p4d_t *p4d = p4d_offset(pgd, addr);
504 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
505 pmd_t *pmd = pmd_offset(pud, addr);
506 struct address_space *mapping;
507 pgoff_t index;
d936cf9b
HD
508 static unsigned long resume;
509 static unsigned long nr_shown;
510 static unsigned long nr_unshown;
511
512 /*
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
515 */
516 if (nr_shown == 60) {
517 if (time_before(jiffies, resume)) {
518 nr_unshown++;
519 return;
520 }
521 if (nr_unshown) {
1170532b
JP
522 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523 nr_unshown);
d936cf9b
HD
524 nr_unshown = 0;
525 }
526 nr_shown = 0;
527 }
528 if (nr_shown++ == 0)
529 resume = jiffies + 60 * HZ;
3dc14741
HD
530
531 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 index = linear_page_index(vma, addr);
533
1170532b
JP
534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
535 current->comm,
536 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 537 if (page)
f0b791a3 538 dump_page(page, "bad pte");
6aa9b8b2 539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 540 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
542 vma->vm_file,
543 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 mapping ? mapping->a_ops->readpage : NULL);
b5810039 546 dump_stack();
373d4d09 547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
548}
549
ee498ed7 550/*
7e675137 551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 552 *
7e675137
NP
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 556 *
7e675137
NP
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
560 * described below.
561 *
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 565 *
b379d790
JH
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
6aab341e
LT
570 *
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572 *
7e675137
NP
573 * And for normal mappings this is false.
574 *
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
b379d790 579 *
b379d790 580 *
7e675137 581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
582 *
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
590 *
ee498ed7 591 */
25b2995a
CH
592struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 pte_t pte)
ee498ed7 594{
22b31eec 595 unsigned long pfn = pte_pfn(pte);
7e675137 596
00b3a331 597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 598 if (likely(!pte_special(pte)))
22b31eec 599 goto check_pfn;
667a0a06
DV
600 if (vma->vm_ops && vma->vm_ops->find_special_page)
601 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 return NULL;
df6ad698
JG
604 if (is_zero_pfn(pfn))
605 return NULL;
e1fb4a08
DJ
606 if (pte_devmap(pte))
607 return NULL;
608
df6ad698 609 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
610 return NULL;
611 }
612
00b3a331 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 614
b379d790
JH
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
617 if (!pfn_valid(pfn))
618 return NULL;
619 goto out;
620 } else {
7e675137
NP
621 unsigned long off;
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
623 if (pfn == vma->vm_pgoff + off)
624 return NULL;
625 if (!is_cow_mapping(vma->vm_flags))
626 return NULL;
627 }
6aab341e
LT
628 }
629
b38af472
HD
630 if (is_zero_pfn(pfn))
631 return NULL;
00b3a331 632
22b31eec
HD
633check_pfn:
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
636 return NULL;
637 }
6aab341e
LT
638
639 /*
7e675137 640 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 641 * eg. VDSO mappings can cause them to exist.
6aab341e 642 */
b379d790 643out:
6aab341e 644 return pfn_to_page(pfn);
ee498ed7
HD
645}
646
28093f9f
GS
647#ifdef CONFIG_TRANSPARENT_HUGEPAGE
648struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649 pmd_t pmd)
650{
651 unsigned long pfn = pmd_pfn(pmd);
652
653 /*
654 * There is no pmd_special() but there may be special pmds, e.g.
655 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
657 */
658 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 if (vma->vm_flags & VM_MIXEDMAP) {
660 if (!pfn_valid(pfn))
661 return NULL;
662 goto out;
663 } else {
664 unsigned long off;
665 off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 if (pfn == vma->vm_pgoff + off)
667 return NULL;
668 if (!is_cow_mapping(vma->vm_flags))
669 return NULL;
670 }
671 }
672
e1fb4a08
DJ
673 if (pmd_devmap(pmd))
674 return NULL;
3cde287b 675 if (is_huge_zero_pmd(pmd))
28093f9f
GS
676 return NULL;
677 if (unlikely(pfn > highest_memmap_pfn))
678 return NULL;
679
680 /*
681 * NOTE! We still have PageReserved() pages in the page tables.
682 * eg. VDSO mappings can cause them to exist.
683 */
684out:
685 return pfn_to_page(pfn);
686}
687#endif
688
1da177e4
LT
689/*
690 * copy one vm_area from one task to the other. Assumes the page tables
691 * already present in the new task to be cleared in the whole range
692 * covered by this vma.
1da177e4
LT
693 */
694
570a335b 695static inline unsigned long
1da177e4 696copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 697 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 698 unsigned long addr, int *rss)
1da177e4 699{
b5810039 700 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
701 pte_t pte = *src_pte;
702 struct page *page;
1da177e4
LT
703
704 /* pte contains position in swap or file, so copy. */
705 if (unlikely(!pte_present(pte))) {
0661a336
KS
706 swp_entry_t entry = pte_to_swp_entry(pte);
707
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
710 return entry.val;
711
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
717 &src_mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 rss[MM_SWAPENTS]++;
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
723
eca56ff9 724 rss[mm_counter(page)]++;
0661a336
KS
725
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
728 /*
729 * COW mappings require pages in both
730 * parent and child to be set to read.
731 */
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
736 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 737 }
5042db43
JG
738 } else if (is_device_private_entry(entry)) {
739 page = device_private_entry_to_page(entry);
740
741 /*
742 * Update rss count even for unaddressable pages, as
743 * they should treated just like normal pages in this
744 * respect.
745 *
746 * We will likely want to have some new rss counters
747 * for unaddressable pages, at some point. But for now
748 * keep things as they are.
749 */
750 get_page(page);
751 rss[mm_counter(page)]++;
752 page_dup_rmap(page, false);
753
754 /*
755 * We do not preserve soft-dirty information, because so
756 * far, checkpoint/restore is the only feature that
757 * requires that. And checkpoint/restore does not work
758 * when a device driver is involved (you cannot easily
759 * save and restore device driver state).
760 */
761 if (is_write_device_private_entry(entry) &&
762 is_cow_mapping(vm_flags)) {
763 make_device_private_entry_read(&entry);
764 pte = swp_entry_to_pte(entry);
765 set_pte_at(src_mm, addr, src_pte, pte);
766 }
1da177e4 767 }
ae859762 768 goto out_set_pte;
1da177e4
LT
769 }
770
1da177e4
LT
771 /*
772 * If it's a COW mapping, write protect it both
773 * in the parent and the child
774 */
1b2de5d0 775 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 776 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 777 pte = pte_wrprotect(pte);
1da177e4
LT
778 }
779
780 /*
781 * If it's a shared mapping, mark it clean in
782 * the child
783 */
784 if (vm_flags & VM_SHARED)
785 pte = pte_mkclean(pte);
786 pte = pte_mkold(pte);
6aab341e
LT
787
788 page = vm_normal_page(vma, addr, pte);
789 if (page) {
790 get_page(page);
53f9263b 791 page_dup_rmap(page, false);
eca56ff9 792 rss[mm_counter(page)]++;
df6ad698
JG
793 } else if (pte_devmap(pte)) {
794 page = pte_page(pte);
6aab341e 795 }
ae859762
HD
796
797out_set_pte:
798 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 799 return 0;
1da177e4
LT
800}
801
21bda264 802static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
803 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
804 unsigned long addr, unsigned long end)
1da177e4 805{
c36987e2 806 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 807 pte_t *src_pte, *dst_pte;
c74df32c 808 spinlock_t *src_ptl, *dst_ptl;
e040f218 809 int progress = 0;
d559db08 810 int rss[NR_MM_COUNTERS];
570a335b 811 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
812
813again:
d559db08
KH
814 init_rss_vec(rss);
815
c74df32c 816 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
817 if (!dst_pte)
818 return -ENOMEM;
ece0e2b6 819 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 820 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 821 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
822 orig_src_pte = src_pte;
823 orig_dst_pte = dst_pte;
6606c3e0 824 arch_enter_lazy_mmu_mode();
1da177e4 825
1da177e4
LT
826 do {
827 /*
828 * We are holding two locks at this point - either of them
829 * could generate latencies in another task on another CPU.
830 */
e040f218
HD
831 if (progress >= 32) {
832 progress = 0;
833 if (need_resched() ||
95c354fe 834 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
835 break;
836 }
1da177e4
LT
837 if (pte_none(*src_pte)) {
838 progress++;
839 continue;
840 }
570a335b
HD
841 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
842 vma, addr, rss);
843 if (entry.val)
844 break;
1da177e4
LT
845 progress += 8;
846 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 847
6606c3e0 848 arch_leave_lazy_mmu_mode();
c74df32c 849 spin_unlock(src_ptl);
ece0e2b6 850 pte_unmap(orig_src_pte);
d559db08 851 add_mm_rss_vec(dst_mm, rss);
c36987e2 852 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 853 cond_resched();
570a335b
HD
854
855 if (entry.val) {
856 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
857 return -ENOMEM;
858 progress = 0;
859 }
1da177e4
LT
860 if (addr != end)
861 goto again;
862 return 0;
863}
864
865static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
866 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
867 unsigned long addr, unsigned long end)
868{
869 pmd_t *src_pmd, *dst_pmd;
870 unsigned long next;
871
872 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
873 if (!dst_pmd)
874 return -ENOMEM;
875 src_pmd = pmd_offset(src_pud, addr);
876 do {
877 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
878 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
879 || pmd_devmap(*src_pmd)) {
71e3aac0 880 int err;
a00cc7d9 881 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
882 err = copy_huge_pmd(dst_mm, src_mm,
883 dst_pmd, src_pmd, addr, vma);
884 if (err == -ENOMEM)
885 return -ENOMEM;
886 if (!err)
887 continue;
888 /* fall through */
889 }
1da177e4
LT
890 if (pmd_none_or_clear_bad(src_pmd))
891 continue;
892 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
893 vma, addr, next))
894 return -ENOMEM;
895 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
896 return 0;
897}
898
899static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 900 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
901 unsigned long addr, unsigned long end)
902{
903 pud_t *src_pud, *dst_pud;
904 unsigned long next;
905
c2febafc 906 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
907 if (!dst_pud)
908 return -ENOMEM;
c2febafc 909 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
910 do {
911 next = pud_addr_end(addr, end);
a00cc7d9
MW
912 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
913 int err;
914
915 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
916 err = copy_huge_pud(dst_mm, src_mm,
917 dst_pud, src_pud, addr, vma);
918 if (err == -ENOMEM)
919 return -ENOMEM;
920 if (!err)
921 continue;
922 /* fall through */
923 }
1da177e4
LT
924 if (pud_none_or_clear_bad(src_pud))
925 continue;
926 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
927 vma, addr, next))
928 return -ENOMEM;
929 } while (dst_pud++, src_pud++, addr = next, addr != end);
930 return 0;
931}
932
c2febafc
KS
933static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
934 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
935 unsigned long addr, unsigned long end)
936{
937 p4d_t *src_p4d, *dst_p4d;
938 unsigned long next;
939
940 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
941 if (!dst_p4d)
942 return -ENOMEM;
943 src_p4d = p4d_offset(src_pgd, addr);
944 do {
945 next = p4d_addr_end(addr, end);
946 if (p4d_none_or_clear_bad(src_p4d))
947 continue;
948 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
949 vma, addr, next))
950 return -ENOMEM;
951 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
952 return 0;
953}
954
1da177e4
LT
955int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
956 struct vm_area_struct *vma)
957{
958 pgd_t *src_pgd, *dst_pgd;
959 unsigned long next;
960 unsigned long addr = vma->vm_start;
961 unsigned long end = vma->vm_end;
ac46d4f3 962 struct mmu_notifier_range range;
2ec74c3e 963 bool is_cow;
cddb8a5c 964 int ret;
1da177e4 965
d992895b
NP
966 /*
967 * Don't copy ptes where a page fault will fill them correctly.
968 * Fork becomes much lighter when there are big shared or private
969 * readonly mappings. The tradeoff is that copy_page_range is more
970 * efficient than faulting.
971 */
0661a336
KS
972 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
973 !vma->anon_vma)
974 return 0;
d992895b 975
1da177e4
LT
976 if (is_vm_hugetlb_page(vma))
977 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
978
b3b9c293 979 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 980 /*
981 * We do not free on error cases below as remove_vma
982 * gets called on error from higher level routine
983 */
5180da41 984 ret = track_pfn_copy(vma);
2ab64037 985 if (ret)
986 return ret;
987 }
988
cddb8a5c
AA
989 /*
990 * We need to invalidate the secondary MMU mappings only when
991 * there could be a permission downgrade on the ptes of the
992 * parent mm. And a permission downgrade will only happen if
993 * is_cow_mapping() returns true.
994 */
2ec74c3e 995 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
996
997 if (is_cow) {
7269f999
JG
998 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
999 0, vma, src_mm, addr, end);
ac46d4f3
JG
1000 mmu_notifier_invalidate_range_start(&range);
1001 }
cddb8a5c
AA
1002
1003 ret = 0;
1da177e4
LT
1004 dst_pgd = pgd_offset(dst_mm, addr);
1005 src_pgd = pgd_offset(src_mm, addr);
1006 do {
1007 next = pgd_addr_end(addr, end);
1008 if (pgd_none_or_clear_bad(src_pgd))
1009 continue;
c2febafc 1010 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1011 vma, addr, next))) {
1012 ret = -ENOMEM;
1013 break;
1014 }
1da177e4 1015 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1016
2ec74c3e 1017 if (is_cow)
ac46d4f3 1018 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1019 return ret;
1da177e4
LT
1020}
1021
51c6f666 1022static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1023 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1024 unsigned long addr, unsigned long end,
97a89413 1025 struct zap_details *details)
1da177e4 1026{
b5810039 1027 struct mm_struct *mm = tlb->mm;
d16dfc55 1028 int force_flush = 0;
d559db08 1029 int rss[NR_MM_COUNTERS];
97a89413 1030 spinlock_t *ptl;
5f1a1907 1031 pte_t *start_pte;
97a89413 1032 pte_t *pte;
8a5f14a2 1033 swp_entry_t entry;
d559db08 1034
ed6a7935 1035 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1036again:
e303297e 1037 init_rss_vec(rss);
5f1a1907
SR
1038 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1039 pte = start_pte;
3ea27719 1040 flush_tlb_batched_pending(mm);
6606c3e0 1041 arch_enter_lazy_mmu_mode();
1da177e4
LT
1042 do {
1043 pte_t ptent = *pte;
166f61b9 1044 if (pte_none(ptent))
1da177e4 1045 continue;
6f5e6b9e 1046
7b167b68
MK
1047 if (need_resched())
1048 break;
1049
1da177e4 1050 if (pte_present(ptent)) {
ee498ed7 1051 struct page *page;
51c6f666 1052
25b2995a 1053 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1054 if (unlikely(details) && page) {
1055 /*
1056 * unmap_shared_mapping_pages() wants to
1057 * invalidate cache without truncating:
1058 * unmap shared but keep private pages.
1059 */
1060 if (details->check_mapping &&
800d8c63 1061 details->check_mapping != page_rmapping(page))
1da177e4 1062 continue;
1da177e4 1063 }
b5810039 1064 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1065 tlb->fullmm);
1da177e4
LT
1066 tlb_remove_tlb_entry(tlb, pte, addr);
1067 if (unlikely(!page))
1068 continue;
eca56ff9
JM
1069
1070 if (!PageAnon(page)) {
1cf35d47
LT
1071 if (pte_dirty(ptent)) {
1072 force_flush = 1;
6237bcd9 1073 set_page_dirty(page);
1cf35d47 1074 }
4917e5d0 1075 if (pte_young(ptent) &&
64363aad 1076 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1077 mark_page_accessed(page);
6237bcd9 1078 }
eca56ff9 1079 rss[mm_counter(page)]--;
d281ee61 1080 page_remove_rmap(page, false);
3dc14741
HD
1081 if (unlikely(page_mapcount(page) < 0))
1082 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1083 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1084 force_flush = 1;
ce9ec37b 1085 addr += PAGE_SIZE;
d16dfc55 1086 break;
1cf35d47 1087 }
1da177e4
LT
1088 continue;
1089 }
5042db43
JG
1090
1091 entry = pte_to_swp_entry(ptent);
1092 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1093 struct page *page = device_private_entry_to_page(entry);
1094
1095 if (unlikely(details && details->check_mapping)) {
1096 /*
1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages.
1100 */
1101 if (details->check_mapping !=
1102 page_rmapping(page))
1103 continue;
1104 }
1105
1106 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1107 rss[mm_counter(page)]--;
1108 page_remove_rmap(page, false);
1109 put_page(page);
1110 continue;
1111 }
1112
3e8715fd
KS
1113 /* If details->check_mapping, we leave swap entries. */
1114 if (unlikely(details))
1da177e4 1115 continue;
b084d435 1116
8a5f14a2
KS
1117 if (!non_swap_entry(entry))
1118 rss[MM_SWAPENTS]--;
1119 else if (is_migration_entry(entry)) {
1120 struct page *page;
9f9f1acd 1121
8a5f14a2 1122 page = migration_entry_to_page(entry);
eca56ff9 1123 rss[mm_counter(page)]--;
b084d435 1124 }
8a5f14a2
KS
1125 if (unlikely(!free_swap_and_cache(entry)))
1126 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1127 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1128 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1129
d559db08 1130 add_mm_rss_vec(mm, rss);
6606c3e0 1131 arch_leave_lazy_mmu_mode();
51c6f666 1132
1cf35d47 1133 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1134 if (force_flush)
1cf35d47 1135 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1136 pte_unmap_unlock(start_pte, ptl);
1137
1138 /*
1139 * If we forced a TLB flush (either due to running out of
1140 * batch buffers or because we needed to flush dirty TLB
1141 * entries before releasing the ptl), free the batched
1142 * memory too. Restart if we didn't do everything.
1143 */
1144 if (force_flush) {
1145 force_flush = 0;
fa0aafb8 1146 tlb_flush_mmu(tlb);
7b167b68
MK
1147 }
1148
1149 if (addr != end) {
1150 cond_resched();
1151 goto again;
d16dfc55
PZ
1152 }
1153
51c6f666 1154 return addr;
1da177e4
LT
1155}
1156
51c6f666 1157static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1158 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1159 unsigned long addr, unsigned long end,
97a89413 1160 struct zap_details *details)
1da177e4
LT
1161{
1162 pmd_t *pmd;
1163 unsigned long next;
1164
1165 pmd = pmd_offset(pud, addr);
1166 do {
1167 next = pmd_addr_end(addr, end);
84c3fc4e 1168 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1169 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1170 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1171 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1172 goto next;
71e3aac0
AA
1173 /* fall through */
1174 }
1a5a9906
AA
1175 /*
1176 * Here there can be other concurrent MADV_DONTNEED or
1177 * trans huge page faults running, and if the pmd is
1178 * none or trans huge it can change under us. This is
1179 * because MADV_DONTNEED holds the mmap_sem in read
1180 * mode.
1181 */
1182 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1183 goto next;
97a89413 1184 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1185next:
97a89413
PZ
1186 cond_resched();
1187 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1188
1189 return addr;
1da177e4
LT
1190}
1191
51c6f666 1192static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1193 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1194 unsigned long addr, unsigned long end,
97a89413 1195 struct zap_details *details)
1da177e4
LT
1196{
1197 pud_t *pud;
1198 unsigned long next;
1199
c2febafc 1200 pud = pud_offset(p4d, addr);
1da177e4
LT
1201 do {
1202 next = pud_addr_end(addr, end);
a00cc7d9
MW
1203 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1204 if (next - addr != HPAGE_PUD_SIZE) {
1205 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1206 split_huge_pud(vma, pud, addr);
1207 } else if (zap_huge_pud(tlb, vma, pud, addr))
1208 goto next;
1209 /* fall through */
1210 }
97a89413 1211 if (pud_none_or_clear_bad(pud))
1da177e4 1212 continue;
97a89413 1213 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1214next:
1215 cond_resched();
97a89413 1216 } while (pud++, addr = next, addr != end);
51c6f666
RH
1217
1218 return addr;
1da177e4
LT
1219}
1220
c2febafc
KS
1221static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1222 struct vm_area_struct *vma, pgd_t *pgd,
1223 unsigned long addr, unsigned long end,
1224 struct zap_details *details)
1225{
1226 p4d_t *p4d;
1227 unsigned long next;
1228
1229 p4d = p4d_offset(pgd, addr);
1230 do {
1231 next = p4d_addr_end(addr, end);
1232 if (p4d_none_or_clear_bad(p4d))
1233 continue;
1234 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1235 } while (p4d++, addr = next, addr != end);
1236
1237 return addr;
1238}
1239
aac45363 1240void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1241 struct vm_area_struct *vma,
1242 unsigned long addr, unsigned long end,
1243 struct zap_details *details)
1da177e4
LT
1244{
1245 pgd_t *pgd;
1246 unsigned long next;
1247
1da177e4
LT
1248 BUG_ON(addr >= end);
1249 tlb_start_vma(tlb, vma);
1250 pgd = pgd_offset(vma->vm_mm, addr);
1251 do {
1252 next = pgd_addr_end(addr, end);
97a89413 1253 if (pgd_none_or_clear_bad(pgd))
1da177e4 1254 continue;
c2febafc 1255 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1256 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1257 tlb_end_vma(tlb, vma);
1258}
51c6f666 1259
f5cc4eef
AV
1260
1261static void unmap_single_vma(struct mmu_gather *tlb,
1262 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1263 unsigned long end_addr,
f5cc4eef
AV
1264 struct zap_details *details)
1265{
1266 unsigned long start = max(vma->vm_start, start_addr);
1267 unsigned long end;
1268
1269 if (start >= vma->vm_end)
1270 return;
1271 end = min(vma->vm_end, end_addr);
1272 if (end <= vma->vm_start)
1273 return;
1274
cbc91f71
SD
1275 if (vma->vm_file)
1276 uprobe_munmap(vma, start, end);
1277
b3b9c293 1278 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1279 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1280
1281 if (start != end) {
1282 if (unlikely(is_vm_hugetlb_page(vma))) {
1283 /*
1284 * It is undesirable to test vma->vm_file as it
1285 * should be non-null for valid hugetlb area.
1286 * However, vm_file will be NULL in the error
7aa6b4ad 1287 * cleanup path of mmap_region. When
f5cc4eef 1288 * hugetlbfs ->mmap method fails,
7aa6b4ad 1289 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1290 * before calling this function to clean up.
1291 * Since no pte has actually been setup, it is
1292 * safe to do nothing in this case.
1293 */
24669e58 1294 if (vma->vm_file) {
83cde9e8 1295 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1296 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1297 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1298 }
f5cc4eef
AV
1299 } else
1300 unmap_page_range(tlb, vma, start, end, details);
1301 }
1da177e4
LT
1302}
1303
1da177e4
LT
1304/**
1305 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1306 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1307 * @vma: the starting vma
1308 * @start_addr: virtual address at which to start unmapping
1309 * @end_addr: virtual address at which to end unmapping
1da177e4 1310 *
508034a3 1311 * Unmap all pages in the vma list.
1da177e4 1312 *
1da177e4
LT
1313 * Only addresses between `start' and `end' will be unmapped.
1314 *
1315 * The VMA list must be sorted in ascending virtual address order.
1316 *
1317 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318 * range after unmap_vmas() returns. So the only responsibility here is to
1319 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320 * drops the lock and schedules.
1321 */
6e8bb019 1322void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1323 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1324 unsigned long end_addr)
1da177e4 1325{
ac46d4f3 1326 struct mmu_notifier_range range;
1da177e4 1327
6f4f13e8
JG
1328 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1329 start_addr, end_addr);
ac46d4f3 1330 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1331 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1332 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1333 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1334}
1335
1336/**
1337 * zap_page_range - remove user pages in a given range
1338 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1339 * @start: starting address of pages to zap
1da177e4 1340 * @size: number of bytes to zap
f5cc4eef
AV
1341 *
1342 * Caller must protect the VMA list
1da177e4 1343 */
7e027b14 1344void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1345 unsigned long size)
1da177e4 1346{
ac46d4f3 1347 struct mmu_notifier_range range;
d16dfc55 1348 struct mmu_gather tlb;
1da177e4 1349
1da177e4 1350 lru_add_drain();
7269f999 1351 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1352 start, start + size);
ac46d4f3
JG
1353 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1354 update_hiwater_rss(vma->vm_mm);
1355 mmu_notifier_invalidate_range_start(&range);
1356 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1357 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1358 mmu_notifier_invalidate_range_end(&range);
1359 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1360}
1361
f5cc4eef
AV
1362/**
1363 * zap_page_range_single - remove user pages in a given range
1364 * @vma: vm_area_struct holding the applicable pages
1365 * @address: starting address of pages to zap
1366 * @size: number of bytes to zap
8a5f14a2 1367 * @details: details of shared cache invalidation
f5cc4eef
AV
1368 *
1369 * The range must fit into one VMA.
1da177e4 1370 */
f5cc4eef 1371static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1372 unsigned long size, struct zap_details *details)
1373{
ac46d4f3 1374 struct mmu_notifier_range range;
d16dfc55 1375 struct mmu_gather tlb;
1da177e4 1376
1da177e4 1377 lru_add_drain();
7269f999 1378 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1379 address, address + size);
ac46d4f3
JG
1380 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1381 update_hiwater_rss(vma->vm_mm);
1382 mmu_notifier_invalidate_range_start(&range);
1383 unmap_single_vma(&tlb, vma, address, range.end, details);
1384 mmu_notifier_invalidate_range_end(&range);
1385 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1386}
1387
c627f9cc
JS
1388/**
1389 * zap_vma_ptes - remove ptes mapping the vma
1390 * @vma: vm_area_struct holding ptes to be zapped
1391 * @address: starting address of pages to zap
1392 * @size: number of bytes to zap
1393 *
1394 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1395 *
1396 * The entire address range must be fully contained within the vma.
1397 *
c627f9cc 1398 */
27d036e3 1399void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1400 unsigned long size)
1401{
1402 if (address < vma->vm_start || address + size > vma->vm_end ||
1403 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1404 return;
1405
f5cc4eef 1406 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1407}
1408EXPORT_SYMBOL_GPL(zap_vma_ptes);
1409
25ca1d6c 1410pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1411 spinlock_t **ptl)
c9cfcddf 1412{
c2febafc
KS
1413 pgd_t *pgd;
1414 p4d_t *p4d;
1415 pud_t *pud;
1416 pmd_t *pmd;
1417
1418 pgd = pgd_offset(mm, addr);
1419 p4d = p4d_alloc(mm, pgd, addr);
1420 if (!p4d)
1421 return NULL;
1422 pud = pud_alloc(mm, p4d, addr);
1423 if (!pud)
1424 return NULL;
1425 pmd = pmd_alloc(mm, pud, addr);
1426 if (!pmd)
1427 return NULL;
1428
1429 VM_BUG_ON(pmd_trans_huge(*pmd));
1430 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1431}
1432
238f58d8
LT
1433/*
1434 * This is the old fallback for page remapping.
1435 *
1436 * For historical reasons, it only allows reserved pages. Only
1437 * old drivers should use this, and they needed to mark their
1438 * pages reserved for the old functions anyway.
1439 */
423bad60
NP
1440static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441 struct page *page, pgprot_t prot)
238f58d8 1442{
423bad60 1443 struct mm_struct *mm = vma->vm_mm;
238f58d8 1444 int retval;
c9cfcddf 1445 pte_t *pte;
8a9f3ccd
BS
1446 spinlock_t *ptl;
1447
238f58d8 1448 retval = -EINVAL;
0ee930e6 1449 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
5b4e655e 1450 goto out;
238f58d8
LT
1451 retval = -ENOMEM;
1452 flush_dcache_page(page);
c9cfcddf 1453 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1454 if (!pte)
5b4e655e 1455 goto out;
238f58d8
LT
1456 retval = -EBUSY;
1457 if (!pte_none(*pte))
1458 goto out_unlock;
1459
1460 /* Ok, finally just insert the thing.. */
1461 get_page(page);
eca56ff9 1462 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1463 page_add_file_rmap(page, false);
238f58d8
LT
1464 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1465
1466 retval = 0;
1467out_unlock:
1468 pte_unmap_unlock(pte, ptl);
1469out:
1470 return retval;
1471}
1472
bfa5bf6d
REB
1473/**
1474 * vm_insert_page - insert single page into user vma
1475 * @vma: user vma to map to
1476 * @addr: target user address of this page
1477 * @page: source kernel page
1478 *
a145dd41
LT
1479 * This allows drivers to insert individual pages they've allocated
1480 * into a user vma.
1481 *
1482 * The page has to be a nice clean _individual_ kernel allocation.
1483 * If you allocate a compound page, you need to have marked it as
1484 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1485 * (see split_page()).
a145dd41
LT
1486 *
1487 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1488 * took an arbitrary page protection parameter. This doesn't allow
1489 * that. Your vma protection will have to be set up correctly, which
1490 * means that if you want a shared writable mapping, you'd better
1491 * ask for a shared writable mapping!
1492 *
1493 * The page does not need to be reserved.
4b6e1e37
KK
1494 *
1495 * Usually this function is called from f_op->mmap() handler
1496 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1497 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1498 * function from other places, for example from page-fault handler.
a862f68a
MR
1499 *
1500 * Return: %0 on success, negative error code otherwise.
a145dd41 1501 */
423bad60
NP
1502int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1503 struct page *page)
a145dd41
LT
1504{
1505 if (addr < vma->vm_start || addr >= vma->vm_end)
1506 return -EFAULT;
1507 if (!page_count(page))
1508 return -EINVAL;
4b6e1e37
KK
1509 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511 BUG_ON(vma->vm_flags & VM_PFNMAP);
1512 vma->vm_flags |= VM_MIXEDMAP;
1513 }
423bad60 1514 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1515}
e3c3374f 1516EXPORT_SYMBOL(vm_insert_page);
a145dd41 1517
a667d745
SJ
1518/*
1519 * __vm_map_pages - maps range of kernel pages into user vma
1520 * @vma: user vma to map to
1521 * @pages: pointer to array of source kernel pages
1522 * @num: number of pages in page array
1523 * @offset: user's requested vm_pgoff
1524 *
1525 * This allows drivers to map range of kernel pages into a user vma.
1526 *
1527 * Return: 0 on success and error code otherwise.
1528 */
1529static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1530 unsigned long num, unsigned long offset)
1531{
1532 unsigned long count = vma_pages(vma);
1533 unsigned long uaddr = vma->vm_start;
1534 int ret, i;
1535
1536 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1537 if (offset >= num)
a667d745
SJ
1538 return -ENXIO;
1539
1540 /* Fail if the user requested size exceeds available object size */
1541 if (count > num - offset)
1542 return -ENXIO;
1543
1544 for (i = 0; i < count; i++) {
1545 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1546 if (ret < 0)
1547 return ret;
1548 uaddr += PAGE_SIZE;
1549 }
1550
1551 return 0;
1552}
1553
1554/**
1555 * vm_map_pages - maps range of kernel pages starts with non zero offset
1556 * @vma: user vma to map to
1557 * @pages: pointer to array of source kernel pages
1558 * @num: number of pages in page array
1559 *
1560 * Maps an object consisting of @num pages, catering for the user's
1561 * requested vm_pgoff
1562 *
1563 * If we fail to insert any page into the vma, the function will return
1564 * immediately leaving any previously inserted pages present. Callers
1565 * from the mmap handler may immediately return the error as their caller
1566 * will destroy the vma, removing any successfully inserted pages. Other
1567 * callers should make their own arrangements for calling unmap_region().
1568 *
1569 * Context: Process context. Called by mmap handlers.
1570 * Return: 0 on success and error code otherwise.
1571 */
1572int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1573 unsigned long num)
1574{
1575 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1576}
1577EXPORT_SYMBOL(vm_map_pages);
1578
1579/**
1580 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1581 * @vma: user vma to map to
1582 * @pages: pointer to array of source kernel pages
1583 * @num: number of pages in page array
1584 *
1585 * Similar to vm_map_pages(), except that it explicitly sets the offset
1586 * to 0. This function is intended for the drivers that did not consider
1587 * vm_pgoff.
1588 *
1589 * Context: Process context. Called by mmap handlers.
1590 * Return: 0 on success and error code otherwise.
1591 */
1592int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1593 unsigned long num)
1594{
1595 return __vm_map_pages(vma, pages, num, 0);
1596}
1597EXPORT_SYMBOL(vm_map_pages_zero);
1598
9b5a8e00 1599static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1600 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1601{
1602 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1603 pte_t *pte, entry;
1604 spinlock_t *ptl;
1605
423bad60
NP
1606 pte = get_locked_pte(mm, addr, &ptl);
1607 if (!pte)
9b5a8e00 1608 return VM_FAULT_OOM;
b2770da6
RZ
1609 if (!pte_none(*pte)) {
1610 if (mkwrite) {
1611 /*
1612 * For read faults on private mappings the PFN passed
1613 * in may not match the PFN we have mapped if the
1614 * mapped PFN is a writeable COW page. In the mkwrite
1615 * case we are creating a writable PTE for a shared
f2c57d91
JK
1616 * mapping and we expect the PFNs to match. If they
1617 * don't match, we are likely racing with block
1618 * allocation and mapping invalidation so just skip the
1619 * update.
b2770da6 1620 */
f2c57d91
JK
1621 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1622 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1623 goto out_unlock;
f2c57d91 1624 }
cae85cb8
JK
1625 entry = pte_mkyoung(*pte);
1626 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1627 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1628 update_mmu_cache(vma, addr, pte);
1629 }
1630 goto out_unlock;
b2770da6 1631 }
423bad60
NP
1632
1633 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1634 if (pfn_t_devmap(pfn))
1635 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1636 else
1637 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1638
b2770da6
RZ
1639 if (mkwrite) {
1640 entry = pte_mkyoung(entry);
1641 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1642 }
1643
423bad60 1644 set_pte_at(mm, addr, pte, entry);
4b3073e1 1645 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1646
423bad60
NP
1647out_unlock:
1648 pte_unmap_unlock(pte, ptl);
9b5a8e00 1649 return VM_FAULT_NOPAGE;
423bad60
NP
1650}
1651
f5e6d1d5
MW
1652/**
1653 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1654 * @vma: user vma to map to
1655 * @addr: target user address of this page
1656 * @pfn: source kernel pfn
1657 * @pgprot: pgprot flags for the inserted page
1658 *
1659 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1660 * to override pgprot on a per-page basis.
1661 *
1662 * This only makes sense for IO mappings, and it makes no sense for
1663 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1664 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1665 * impractical.
1666 *
574c5b3d
TH
1667 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1668 * a value of @pgprot different from that of @vma->vm_page_prot.
1669 *
ae2b01f3 1670 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1671 * Return: vm_fault_t value.
1672 */
1673vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1674 unsigned long pfn, pgprot_t pgprot)
1675{
6d958546
MW
1676 /*
1677 * Technically, architectures with pte_special can avoid all these
1678 * restrictions (same for remap_pfn_range). However we would like
1679 * consistency in testing and feature parity among all, so we should
1680 * try to keep these invariants in place for everybody.
1681 */
1682 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1683 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1684 (VM_PFNMAP|VM_MIXEDMAP));
1685 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1686 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1687
1688 if (addr < vma->vm_start || addr >= vma->vm_end)
1689 return VM_FAULT_SIGBUS;
1690
1691 if (!pfn_modify_allowed(pfn, pgprot))
1692 return VM_FAULT_SIGBUS;
1693
1694 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1695
9b5a8e00 1696 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1697 false);
f5e6d1d5
MW
1698}
1699EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1700
ae2b01f3
MW
1701/**
1702 * vmf_insert_pfn - insert single pfn into user vma
1703 * @vma: user vma to map to
1704 * @addr: target user address of this page
1705 * @pfn: source kernel pfn
1706 *
1707 * Similar to vm_insert_page, this allows drivers to insert individual pages
1708 * they've allocated into a user vma. Same comments apply.
1709 *
1710 * This function should only be called from a vm_ops->fault handler, and
1711 * in that case the handler should return the result of this function.
1712 *
1713 * vma cannot be a COW mapping.
1714 *
1715 * As this is called only for pages that do not currently exist, we
1716 * do not need to flush old virtual caches or the TLB.
1717 *
1718 * Context: Process context. May allocate using %GFP_KERNEL.
1719 * Return: vm_fault_t value.
1720 */
1721vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1722 unsigned long pfn)
1723{
1724 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1725}
1726EXPORT_SYMBOL(vmf_insert_pfn);
1727
785a3fab
DW
1728static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1729{
1730 /* these checks mirror the abort conditions in vm_normal_page */
1731 if (vma->vm_flags & VM_MIXEDMAP)
1732 return true;
1733 if (pfn_t_devmap(pfn))
1734 return true;
1735 if (pfn_t_special(pfn))
1736 return true;
1737 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1738 return true;
1739 return false;
1740}
1741
79f3aa5b 1742static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
1743 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1744 bool mkwrite)
423bad60 1745{
79f3aa5b 1746 int err;
87744ab3 1747
785a3fab 1748 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1749
423bad60 1750 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1751 return VM_FAULT_SIGBUS;
308a047c
BP
1752
1753 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1754
42e4089c 1755 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1756 return VM_FAULT_SIGBUS;
42e4089c 1757
423bad60
NP
1758 /*
1759 * If we don't have pte special, then we have to use the pfn_valid()
1760 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1761 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1762 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1763 * without pte special, it would there be refcounted as a normal page.
423bad60 1764 */
00b3a331
LD
1765 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1766 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1767 struct page *page;
1768
03fc2da6
DW
1769 /*
1770 * At this point we are committed to insert_page()
1771 * regardless of whether the caller specified flags that
1772 * result in pfn_t_has_page() == false.
1773 */
1774 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1775 err = insert_page(vma, addr, page, pgprot);
1776 } else {
9b5a8e00 1777 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1778 }
b2770da6 1779
5d747637
MW
1780 if (err == -ENOMEM)
1781 return VM_FAULT_OOM;
1782 if (err < 0 && err != -EBUSY)
1783 return VM_FAULT_SIGBUS;
1784
1785 return VM_FAULT_NOPAGE;
e0dc0d8f 1786}
79f3aa5b 1787
574c5b3d
TH
1788/**
1789 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1790 * @vma: user vma to map to
1791 * @addr: target user address of this page
1792 * @pfn: source kernel pfn
1793 * @pgprot: pgprot flags for the inserted page
1794 *
1795 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1796 * to override pgprot on a per-page basis.
1797 *
1798 * Typically this function should be used by drivers to set caching- and
1799 * encryption bits different than those of @vma->vm_page_prot, because
1800 * the caching- or encryption mode may not be known at mmap() time.
1801 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1802 * to set caching and encryption bits for those vmas (except for COW pages).
1803 * This is ensured by core vm only modifying these page table entries using
1804 * functions that don't touch caching- or encryption bits, using pte_modify()
1805 * if needed. (See for example mprotect()).
1806 * Also when new page-table entries are created, this is only done using the
1807 * fault() callback, and never using the value of vma->vm_page_prot,
1808 * except for page-table entries that point to anonymous pages as the result
1809 * of COW.
1810 *
1811 * Context: Process context. May allocate using %GFP_KERNEL.
1812 * Return: vm_fault_t value.
1813 */
1814vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1815 pfn_t pfn, pgprot_t pgprot)
1816{
1817 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1818}
1819
79f3aa5b
MW
1820vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1821 pfn_t pfn)
1822{
574c5b3d 1823 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 1824}
5d747637 1825EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1826
ab77dab4
SJ
1827/*
1828 * If the insertion of PTE failed because someone else already added a
1829 * different entry in the mean time, we treat that as success as we assume
1830 * the same entry was actually inserted.
1831 */
ab77dab4
SJ
1832vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1833 unsigned long addr, pfn_t pfn)
b2770da6 1834{
574c5b3d 1835 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 1836}
ab77dab4 1837EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1838
1da177e4
LT
1839/*
1840 * maps a range of physical memory into the requested pages. the old
1841 * mappings are removed. any references to nonexistent pages results
1842 * in null mappings (currently treated as "copy-on-access")
1843 */
1844static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1845 unsigned long addr, unsigned long end,
1846 unsigned long pfn, pgprot_t prot)
1847{
1848 pte_t *pte;
c74df32c 1849 spinlock_t *ptl;
42e4089c 1850 int err = 0;
1da177e4 1851
c74df32c 1852 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1853 if (!pte)
1854 return -ENOMEM;
6606c3e0 1855 arch_enter_lazy_mmu_mode();
1da177e4
LT
1856 do {
1857 BUG_ON(!pte_none(*pte));
42e4089c
AK
1858 if (!pfn_modify_allowed(pfn, prot)) {
1859 err = -EACCES;
1860 break;
1861 }
7e675137 1862 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1863 pfn++;
1864 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1865 arch_leave_lazy_mmu_mode();
c74df32c 1866 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1867 return err;
1da177e4
LT
1868}
1869
1870static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1871 unsigned long addr, unsigned long end,
1872 unsigned long pfn, pgprot_t prot)
1873{
1874 pmd_t *pmd;
1875 unsigned long next;
42e4089c 1876 int err;
1da177e4
LT
1877
1878 pfn -= addr >> PAGE_SHIFT;
1879 pmd = pmd_alloc(mm, pud, addr);
1880 if (!pmd)
1881 return -ENOMEM;
f66055ab 1882 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1883 do {
1884 next = pmd_addr_end(addr, end);
42e4089c
AK
1885 err = remap_pte_range(mm, pmd, addr, next,
1886 pfn + (addr >> PAGE_SHIFT), prot);
1887 if (err)
1888 return err;
1da177e4
LT
1889 } while (pmd++, addr = next, addr != end);
1890 return 0;
1891}
1892
c2febafc 1893static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1894 unsigned long addr, unsigned long end,
1895 unsigned long pfn, pgprot_t prot)
1896{
1897 pud_t *pud;
1898 unsigned long next;
42e4089c 1899 int err;
1da177e4
LT
1900
1901 pfn -= addr >> PAGE_SHIFT;
c2febafc 1902 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1903 if (!pud)
1904 return -ENOMEM;
1905 do {
1906 next = pud_addr_end(addr, end);
42e4089c
AK
1907 err = remap_pmd_range(mm, pud, addr, next,
1908 pfn + (addr >> PAGE_SHIFT), prot);
1909 if (err)
1910 return err;
1da177e4
LT
1911 } while (pud++, addr = next, addr != end);
1912 return 0;
1913}
1914
c2febafc
KS
1915static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1916 unsigned long addr, unsigned long end,
1917 unsigned long pfn, pgprot_t prot)
1918{
1919 p4d_t *p4d;
1920 unsigned long next;
42e4089c 1921 int err;
c2febafc
KS
1922
1923 pfn -= addr >> PAGE_SHIFT;
1924 p4d = p4d_alloc(mm, pgd, addr);
1925 if (!p4d)
1926 return -ENOMEM;
1927 do {
1928 next = p4d_addr_end(addr, end);
42e4089c
AK
1929 err = remap_pud_range(mm, p4d, addr, next,
1930 pfn + (addr >> PAGE_SHIFT), prot);
1931 if (err)
1932 return err;
c2febafc
KS
1933 } while (p4d++, addr = next, addr != end);
1934 return 0;
1935}
1936
bfa5bf6d
REB
1937/**
1938 * remap_pfn_range - remap kernel memory to userspace
1939 * @vma: user vma to map to
1940 * @addr: target user address to start at
1941 * @pfn: physical address of kernel memory
1942 * @size: size of map area
1943 * @prot: page protection flags for this mapping
1944 *
a862f68a
MR
1945 * Note: this is only safe if the mm semaphore is held when called.
1946 *
1947 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 1948 */
1da177e4
LT
1949int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1950 unsigned long pfn, unsigned long size, pgprot_t prot)
1951{
1952 pgd_t *pgd;
1953 unsigned long next;
2d15cab8 1954 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1955 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1956 unsigned long remap_pfn = pfn;
1da177e4
LT
1957 int err;
1958
1959 /*
1960 * Physically remapped pages are special. Tell the
1961 * rest of the world about it:
1962 * VM_IO tells people not to look at these pages
1963 * (accesses can have side effects).
6aab341e
LT
1964 * VM_PFNMAP tells the core MM that the base pages are just
1965 * raw PFN mappings, and do not have a "struct page" associated
1966 * with them.
314e51b9
KK
1967 * VM_DONTEXPAND
1968 * Disable vma merging and expanding with mremap().
1969 * VM_DONTDUMP
1970 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1971 *
1972 * There's a horrible special case to handle copy-on-write
1973 * behaviour that some programs depend on. We mark the "original"
1974 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1975 * See vm_normal_page() for details.
1da177e4 1976 */
b3b9c293
KK
1977 if (is_cow_mapping(vma->vm_flags)) {
1978 if (addr != vma->vm_start || end != vma->vm_end)
1979 return -EINVAL;
fb155c16 1980 vma->vm_pgoff = pfn;
b3b9c293
KK
1981 }
1982
d5957d2f 1983 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1984 if (err)
3c8bb73a 1985 return -EINVAL;
fb155c16 1986
314e51b9 1987 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1988
1989 BUG_ON(addr >= end);
1990 pfn -= addr >> PAGE_SHIFT;
1991 pgd = pgd_offset(mm, addr);
1992 flush_cache_range(vma, addr, end);
1da177e4
LT
1993 do {
1994 next = pgd_addr_end(addr, end);
c2febafc 1995 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1996 pfn + (addr >> PAGE_SHIFT), prot);
1997 if (err)
1998 break;
1999 } while (pgd++, addr = next, addr != end);
2ab64037 2000
2001 if (err)
d5957d2f 2002 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2003
1da177e4
LT
2004 return err;
2005}
2006EXPORT_SYMBOL(remap_pfn_range);
2007
b4cbb197
LT
2008/**
2009 * vm_iomap_memory - remap memory to userspace
2010 * @vma: user vma to map to
2011 * @start: start of area
2012 * @len: size of area
2013 *
2014 * This is a simplified io_remap_pfn_range() for common driver use. The
2015 * driver just needs to give us the physical memory range to be mapped,
2016 * we'll figure out the rest from the vma information.
2017 *
2018 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2019 * whatever write-combining details or similar.
a862f68a
MR
2020 *
2021 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2022 */
2023int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2024{
2025 unsigned long vm_len, pfn, pages;
2026
2027 /* Check that the physical memory area passed in looks valid */
2028 if (start + len < start)
2029 return -EINVAL;
2030 /*
2031 * You *really* shouldn't map things that aren't page-aligned,
2032 * but we've historically allowed it because IO memory might
2033 * just have smaller alignment.
2034 */
2035 len += start & ~PAGE_MASK;
2036 pfn = start >> PAGE_SHIFT;
2037 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2038 if (pfn + pages < pfn)
2039 return -EINVAL;
2040
2041 /* We start the mapping 'vm_pgoff' pages into the area */
2042 if (vma->vm_pgoff > pages)
2043 return -EINVAL;
2044 pfn += vma->vm_pgoff;
2045 pages -= vma->vm_pgoff;
2046
2047 /* Can we fit all of the mapping? */
2048 vm_len = vma->vm_end - vma->vm_start;
2049 if (vm_len >> PAGE_SHIFT > pages)
2050 return -EINVAL;
2051
2052 /* Ok, let it rip */
2053 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2054}
2055EXPORT_SYMBOL(vm_iomap_memory);
2056
aee16b3c
JF
2057static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2058 unsigned long addr, unsigned long end,
2059 pte_fn_t fn, void *data)
2060{
2061 pte_t *pte;
2062 int err;
94909914 2063 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2064
2065 pte = (mm == &init_mm) ?
2066 pte_alloc_kernel(pmd, addr) :
2067 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2068 if (!pte)
2069 return -ENOMEM;
2070
2071 BUG_ON(pmd_huge(*pmd));
2072
38e0edb1
JF
2073 arch_enter_lazy_mmu_mode();
2074
aee16b3c 2075 do {
8b1e0f81 2076 err = fn(pte++, addr, data);
aee16b3c
JF
2077 if (err)
2078 break;
c36987e2 2079 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2080
38e0edb1
JF
2081 arch_leave_lazy_mmu_mode();
2082
aee16b3c
JF
2083 if (mm != &init_mm)
2084 pte_unmap_unlock(pte-1, ptl);
2085 return err;
2086}
2087
2088static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2089 unsigned long addr, unsigned long end,
2090 pte_fn_t fn, void *data)
2091{
2092 pmd_t *pmd;
2093 unsigned long next;
2094 int err;
2095
ceb86879
AK
2096 BUG_ON(pud_huge(*pud));
2097
aee16b3c
JF
2098 pmd = pmd_alloc(mm, pud, addr);
2099 if (!pmd)
2100 return -ENOMEM;
2101 do {
2102 next = pmd_addr_end(addr, end);
2103 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2104 if (err)
2105 break;
2106 } while (pmd++, addr = next, addr != end);
2107 return err;
2108}
2109
c2febafc 2110static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2111 unsigned long addr, unsigned long end,
2112 pte_fn_t fn, void *data)
2113{
2114 pud_t *pud;
2115 unsigned long next;
2116 int err;
2117
c2febafc 2118 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2119 if (!pud)
2120 return -ENOMEM;
2121 do {
2122 next = pud_addr_end(addr, end);
2123 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2124 if (err)
2125 break;
2126 } while (pud++, addr = next, addr != end);
2127 return err;
2128}
2129
c2febafc
KS
2130static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2131 unsigned long addr, unsigned long end,
2132 pte_fn_t fn, void *data)
2133{
2134 p4d_t *p4d;
2135 unsigned long next;
2136 int err;
2137
2138 p4d = p4d_alloc(mm, pgd, addr);
2139 if (!p4d)
2140 return -ENOMEM;
2141 do {
2142 next = p4d_addr_end(addr, end);
2143 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2144 if (err)
2145 break;
2146 } while (p4d++, addr = next, addr != end);
2147 return err;
2148}
2149
aee16b3c
JF
2150/*
2151 * Scan a region of virtual memory, filling in page tables as necessary
2152 * and calling a provided function on each leaf page table.
2153 */
2154int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2155 unsigned long size, pte_fn_t fn, void *data)
2156{
2157 pgd_t *pgd;
2158 unsigned long next;
57250a5b 2159 unsigned long end = addr + size;
aee16b3c
JF
2160 int err;
2161
9cb65bc3
MP
2162 if (WARN_ON(addr >= end))
2163 return -EINVAL;
2164
aee16b3c
JF
2165 pgd = pgd_offset(mm, addr);
2166 do {
2167 next = pgd_addr_end(addr, end);
c2febafc 2168 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2169 if (err)
2170 break;
2171 } while (pgd++, addr = next, addr != end);
57250a5b 2172
aee16b3c
JF
2173 return err;
2174}
2175EXPORT_SYMBOL_GPL(apply_to_page_range);
2176
8f4e2101 2177/*
9b4bdd2f
KS
2178 * handle_pte_fault chooses page fault handler according to an entry which was
2179 * read non-atomically. Before making any commitment, on those architectures
2180 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2181 * parts, do_swap_page must check under lock before unmapping the pte and
2182 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2183 * and do_anonymous_page can safely check later on).
8f4e2101 2184 */
4c21e2f2 2185static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2186 pte_t *page_table, pte_t orig_pte)
2187{
2188 int same = 1;
2189#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2190 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2191 spinlock_t *ptl = pte_lockptr(mm, pmd);
2192 spin_lock(ptl);
8f4e2101 2193 same = pte_same(*page_table, orig_pte);
4c21e2f2 2194 spin_unlock(ptl);
8f4e2101
HD
2195 }
2196#endif
2197 pte_unmap(page_table);
2198 return same;
2199}
2200
83d116c5
JH
2201static inline bool cow_user_page(struct page *dst, struct page *src,
2202 struct vm_fault *vmf)
6aab341e 2203{
83d116c5
JH
2204 bool ret;
2205 void *kaddr;
2206 void __user *uaddr;
2207 bool force_mkyoung;
2208 struct vm_area_struct *vma = vmf->vma;
2209 struct mm_struct *mm = vma->vm_mm;
2210 unsigned long addr = vmf->address;
2211
0abdd7a8
DW
2212 debug_dma_assert_idle(src);
2213
83d116c5
JH
2214 if (likely(src)) {
2215 copy_user_highpage(dst, src, addr, vma);
2216 return true;
2217 }
2218
6aab341e
LT
2219 /*
2220 * If the source page was a PFN mapping, we don't have
2221 * a "struct page" for it. We do a best-effort copy by
2222 * just copying from the original user address. If that
2223 * fails, we just zero-fill it. Live with it.
2224 */
83d116c5
JH
2225 kaddr = kmap_atomic(dst);
2226 uaddr = (void __user *)(addr & PAGE_MASK);
2227
2228 /*
2229 * On architectures with software "accessed" bits, we would
2230 * take a double page fault, so mark it accessed here.
2231 */
2232 force_mkyoung = arch_faults_on_old_pte() && !pte_young(vmf->orig_pte);
2233 if (force_mkyoung) {
2234 pte_t entry;
5d2a2dbb 2235
83d116c5
JH
2236 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2237 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2238 /*
2239 * Other thread has already handled the fault
2240 * and we don't need to do anything. If it's
2241 * not the case, the fault will be triggered
2242 * again on the same address.
2243 */
2244 ret = false;
2245 goto pte_unlock;
2246 }
2247
2248 entry = pte_mkyoung(vmf->orig_pte);
2249 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2250 update_mmu_cache(vma, addr, vmf->pte);
2251 }
2252
2253 /*
2254 * This really shouldn't fail, because the page is there
2255 * in the page tables. But it might just be unreadable,
2256 * in which case we just give up and fill the result with
2257 * zeroes.
2258 */
2259 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
5d2a2dbb 2260 /*
83d116c5
JH
2261 * Give a warn in case there can be some obscure
2262 * use-case
5d2a2dbb 2263 */
83d116c5
JH
2264 WARN_ON_ONCE(1);
2265 clear_page(kaddr);
2266 }
2267
2268 ret = true;
2269
2270pte_unlock:
2271 if (force_mkyoung)
2272 pte_unmap_unlock(vmf->pte, vmf->ptl);
2273 kunmap_atomic(kaddr);
2274 flush_dcache_page(dst);
2275
2276 return ret;
6aab341e
LT
2277}
2278
c20cd45e
MH
2279static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2280{
2281 struct file *vm_file = vma->vm_file;
2282
2283 if (vm_file)
2284 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2285
2286 /*
2287 * Special mappings (e.g. VDSO) do not have any file so fake
2288 * a default GFP_KERNEL for them.
2289 */
2290 return GFP_KERNEL;
2291}
2292
fb09a464
KS
2293/*
2294 * Notify the address space that the page is about to become writable so that
2295 * it can prohibit this or wait for the page to get into an appropriate state.
2296 *
2297 * We do this without the lock held, so that it can sleep if it needs to.
2298 */
2b740303 2299static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2300{
2b740303 2301 vm_fault_t ret;
38b8cb7f
JK
2302 struct page *page = vmf->page;
2303 unsigned int old_flags = vmf->flags;
fb09a464 2304
38b8cb7f 2305 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2306
dc617f29
DW
2307 if (vmf->vma->vm_file &&
2308 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2309 return VM_FAULT_SIGBUS;
2310
11bac800 2311 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2312 /* Restore original flags so that caller is not surprised */
2313 vmf->flags = old_flags;
fb09a464
KS
2314 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2315 return ret;
2316 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2317 lock_page(page);
2318 if (!page->mapping) {
2319 unlock_page(page);
2320 return 0; /* retry */
2321 }
2322 ret |= VM_FAULT_LOCKED;
2323 } else
2324 VM_BUG_ON_PAGE(!PageLocked(page), page);
2325 return ret;
2326}
2327
97ba0c2b
JK
2328/*
2329 * Handle dirtying of a page in shared file mapping on a write fault.
2330 *
2331 * The function expects the page to be locked and unlocks it.
2332 */
89b15332 2333static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2334{
89b15332 2335 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2336 struct address_space *mapping;
89b15332 2337 struct page *page = vmf->page;
97ba0c2b
JK
2338 bool dirtied;
2339 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2340
2341 dirtied = set_page_dirty(page);
2342 VM_BUG_ON_PAGE(PageAnon(page), page);
2343 /*
2344 * Take a local copy of the address_space - page.mapping may be zeroed
2345 * by truncate after unlock_page(). The address_space itself remains
2346 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2347 * release semantics to prevent the compiler from undoing this copying.
2348 */
2349 mapping = page_rmapping(page);
2350 unlock_page(page);
2351
89b15332
JW
2352 if (!page_mkwrite)
2353 file_update_time(vma->vm_file);
2354
2355 /*
2356 * Throttle page dirtying rate down to writeback speed.
2357 *
2358 * mapping may be NULL here because some device drivers do not
2359 * set page.mapping but still dirty their pages
2360 *
2361 * Drop the mmap_sem before waiting on IO, if we can. The file
2362 * is pinning the mapping, as per above.
2363 */
97ba0c2b 2364 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2365 struct file *fpin;
2366
2367 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2368 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2369 if (fpin) {
2370 fput(fpin);
2371 return VM_FAULT_RETRY;
2372 }
97ba0c2b
JK
2373 }
2374
89b15332 2375 return 0;
97ba0c2b
JK
2376}
2377
4e047f89
SR
2378/*
2379 * Handle write page faults for pages that can be reused in the current vma
2380 *
2381 * This can happen either due to the mapping being with the VM_SHARED flag,
2382 * or due to us being the last reference standing to the page. In either
2383 * case, all we need to do here is to mark the page as writable and update
2384 * any related book-keeping.
2385 */
997dd98d 2386static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2387 __releases(vmf->ptl)
4e047f89 2388{
82b0f8c3 2389 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2390 struct page *page = vmf->page;
4e047f89
SR
2391 pte_t entry;
2392 /*
2393 * Clear the pages cpupid information as the existing
2394 * information potentially belongs to a now completely
2395 * unrelated process.
2396 */
2397 if (page)
2398 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2399
2994302b
JK
2400 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2401 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2402 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2403 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2404 update_mmu_cache(vma, vmf->address, vmf->pte);
2405 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2406}
2407
2f38ab2c
SR
2408/*
2409 * Handle the case of a page which we actually need to copy to a new page.
2410 *
2411 * Called with mmap_sem locked and the old page referenced, but
2412 * without the ptl held.
2413 *
2414 * High level logic flow:
2415 *
2416 * - Allocate a page, copy the content of the old page to the new one.
2417 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2418 * - Take the PTL. If the pte changed, bail out and release the allocated page
2419 * - If the pte is still the way we remember it, update the page table and all
2420 * relevant references. This includes dropping the reference the page-table
2421 * held to the old page, as well as updating the rmap.
2422 * - In any case, unlock the PTL and drop the reference we took to the old page.
2423 */
2b740303 2424static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2425{
82b0f8c3 2426 struct vm_area_struct *vma = vmf->vma;
bae473a4 2427 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2428 struct page *old_page = vmf->page;
2f38ab2c 2429 struct page *new_page = NULL;
2f38ab2c
SR
2430 pte_t entry;
2431 int page_copied = 0;
2f38ab2c 2432 struct mem_cgroup *memcg;
ac46d4f3 2433 struct mmu_notifier_range range;
2f38ab2c
SR
2434
2435 if (unlikely(anon_vma_prepare(vma)))
2436 goto oom;
2437
2994302b 2438 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2439 new_page = alloc_zeroed_user_highpage_movable(vma,
2440 vmf->address);
2f38ab2c
SR
2441 if (!new_page)
2442 goto oom;
2443 } else {
bae473a4 2444 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2445 vmf->address);
2f38ab2c
SR
2446 if (!new_page)
2447 goto oom;
83d116c5
JH
2448
2449 if (!cow_user_page(new_page, old_page, vmf)) {
2450 /*
2451 * COW failed, if the fault was solved by other,
2452 * it's fine. If not, userspace would re-fault on
2453 * the same address and we will handle the fault
2454 * from the second attempt.
2455 */
2456 put_page(new_page);
2457 if (old_page)
2458 put_page(old_page);
2459 return 0;
2460 }
2f38ab2c 2461 }
2f38ab2c 2462
2cf85583 2463 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2464 goto oom_free_new;
2465
eb3c24f3
MG
2466 __SetPageUptodate(new_page);
2467
7269f999 2468 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2469 vmf->address & PAGE_MASK,
ac46d4f3
JG
2470 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2471 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2472
2473 /*
2474 * Re-check the pte - we dropped the lock
2475 */
82b0f8c3 2476 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2477 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2478 if (old_page) {
2479 if (!PageAnon(old_page)) {
eca56ff9
JM
2480 dec_mm_counter_fast(mm,
2481 mm_counter_file(old_page));
2f38ab2c
SR
2482 inc_mm_counter_fast(mm, MM_ANONPAGES);
2483 }
2484 } else {
2485 inc_mm_counter_fast(mm, MM_ANONPAGES);
2486 }
2994302b 2487 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2488 entry = mk_pte(new_page, vma->vm_page_prot);
2489 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2490 /*
2491 * Clear the pte entry and flush it first, before updating the
2492 * pte with the new entry. This will avoid a race condition
2493 * seen in the presence of one thread doing SMC and another
2494 * thread doing COW.
2495 */
82b0f8c3
JK
2496 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2497 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2498 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2499 lru_cache_add_active_or_unevictable(new_page, vma);
2500 /*
2501 * We call the notify macro here because, when using secondary
2502 * mmu page tables (such as kvm shadow page tables), we want the
2503 * new page to be mapped directly into the secondary page table.
2504 */
82b0f8c3
JK
2505 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2506 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2507 if (old_page) {
2508 /*
2509 * Only after switching the pte to the new page may
2510 * we remove the mapcount here. Otherwise another
2511 * process may come and find the rmap count decremented
2512 * before the pte is switched to the new page, and
2513 * "reuse" the old page writing into it while our pte
2514 * here still points into it and can be read by other
2515 * threads.
2516 *
2517 * The critical issue is to order this
2518 * page_remove_rmap with the ptp_clear_flush above.
2519 * Those stores are ordered by (if nothing else,)
2520 * the barrier present in the atomic_add_negative
2521 * in page_remove_rmap.
2522 *
2523 * Then the TLB flush in ptep_clear_flush ensures that
2524 * no process can access the old page before the
2525 * decremented mapcount is visible. And the old page
2526 * cannot be reused until after the decremented
2527 * mapcount is visible. So transitively, TLBs to
2528 * old page will be flushed before it can be reused.
2529 */
d281ee61 2530 page_remove_rmap(old_page, false);
2f38ab2c
SR
2531 }
2532
2533 /* Free the old page.. */
2534 new_page = old_page;
2535 page_copied = 1;
2536 } else {
f627c2f5 2537 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2538 }
2539
2540 if (new_page)
09cbfeaf 2541 put_page(new_page);
2f38ab2c 2542
82b0f8c3 2543 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2544 /*
2545 * No need to double call mmu_notifier->invalidate_range() callback as
2546 * the above ptep_clear_flush_notify() did already call it.
2547 */
ac46d4f3 2548 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2549 if (old_page) {
2550 /*
2551 * Don't let another task, with possibly unlocked vma,
2552 * keep the mlocked page.
2553 */
2554 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2555 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2556 if (PageMlocked(old_page))
2557 munlock_vma_page(old_page);
2f38ab2c
SR
2558 unlock_page(old_page);
2559 }
09cbfeaf 2560 put_page(old_page);
2f38ab2c
SR
2561 }
2562 return page_copied ? VM_FAULT_WRITE : 0;
2563oom_free_new:
09cbfeaf 2564 put_page(new_page);
2f38ab2c
SR
2565oom:
2566 if (old_page)
09cbfeaf 2567 put_page(old_page);
2f38ab2c
SR
2568 return VM_FAULT_OOM;
2569}
2570
66a6197c
JK
2571/**
2572 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2573 * writeable once the page is prepared
2574 *
2575 * @vmf: structure describing the fault
2576 *
2577 * This function handles all that is needed to finish a write page fault in a
2578 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2579 * It handles locking of PTE and modifying it.
66a6197c
JK
2580 *
2581 * The function expects the page to be locked or other protection against
2582 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2583 *
2584 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2585 * we acquired PTE lock.
66a6197c 2586 */
2b740303 2587vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2588{
2589 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2590 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2591 &vmf->ptl);
2592 /*
2593 * We might have raced with another page fault while we released the
2594 * pte_offset_map_lock.
2595 */
2596 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2597 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2598 return VM_FAULT_NOPAGE;
66a6197c
JK
2599 }
2600 wp_page_reuse(vmf);
a19e2553 2601 return 0;
66a6197c
JK
2602}
2603
dd906184
BH
2604/*
2605 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2606 * mapping
2607 */
2b740303 2608static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2609{
82b0f8c3 2610 struct vm_area_struct *vma = vmf->vma;
bae473a4 2611
dd906184 2612 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2613 vm_fault_t ret;
dd906184 2614
82b0f8c3 2615 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2616 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2617 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2618 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2619 return ret;
66a6197c 2620 return finish_mkwrite_fault(vmf);
dd906184 2621 }
997dd98d
JK
2622 wp_page_reuse(vmf);
2623 return VM_FAULT_WRITE;
dd906184
BH
2624}
2625
2b740303 2626static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2627 __releases(vmf->ptl)
93e478d4 2628{
82b0f8c3 2629 struct vm_area_struct *vma = vmf->vma;
89b15332 2630 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 2631
a41b70d6 2632 get_page(vmf->page);
93e478d4 2633
93e478d4 2634 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2635 vm_fault_t tmp;
93e478d4 2636
82b0f8c3 2637 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2638 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2639 if (unlikely(!tmp || (tmp &
2640 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2641 put_page(vmf->page);
93e478d4
SR
2642 return tmp;
2643 }
66a6197c 2644 tmp = finish_mkwrite_fault(vmf);
a19e2553 2645 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2646 unlock_page(vmf->page);
a41b70d6 2647 put_page(vmf->page);
66a6197c 2648 return tmp;
93e478d4 2649 }
66a6197c
JK
2650 } else {
2651 wp_page_reuse(vmf);
997dd98d 2652 lock_page(vmf->page);
93e478d4 2653 }
89b15332 2654 ret |= fault_dirty_shared_page(vmf);
997dd98d 2655 put_page(vmf->page);
93e478d4 2656
89b15332 2657 return ret;
93e478d4
SR
2658}
2659
1da177e4
LT
2660/*
2661 * This routine handles present pages, when users try to write
2662 * to a shared page. It is done by copying the page to a new address
2663 * and decrementing the shared-page counter for the old page.
2664 *
1da177e4
LT
2665 * Note that this routine assumes that the protection checks have been
2666 * done by the caller (the low-level page fault routine in most cases).
2667 * Thus we can safely just mark it writable once we've done any necessary
2668 * COW.
2669 *
2670 * We also mark the page dirty at this point even though the page will
2671 * change only once the write actually happens. This avoids a few races,
2672 * and potentially makes it more efficient.
2673 *
8f4e2101
HD
2674 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2675 * but allow concurrent faults), with pte both mapped and locked.
2676 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2677 */
2b740303 2678static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2679 __releases(vmf->ptl)
1da177e4 2680{
82b0f8c3 2681 struct vm_area_struct *vma = vmf->vma;
1da177e4 2682
a41b70d6
JK
2683 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2684 if (!vmf->page) {
251b97f5 2685 /*
64e45507
PF
2686 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2687 * VM_PFNMAP VMA.
251b97f5
PZ
2688 *
2689 * We should not cow pages in a shared writeable mapping.
dd906184 2690 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2691 */
2692 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2693 (VM_WRITE|VM_SHARED))
2994302b 2694 return wp_pfn_shared(vmf);
2f38ab2c 2695
82b0f8c3 2696 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2697 return wp_page_copy(vmf);
251b97f5 2698 }
1da177e4 2699
d08b3851 2700 /*
ee6a6457
PZ
2701 * Take out anonymous pages first, anonymous shared vmas are
2702 * not dirty accountable.
d08b3851 2703 */
52d1e606 2704 if (PageAnon(vmf->page)) {
ba3c4ce6 2705 int total_map_swapcount;
52d1e606
KT
2706 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2707 page_count(vmf->page) != 1))
2708 goto copy;
a41b70d6
JK
2709 if (!trylock_page(vmf->page)) {
2710 get_page(vmf->page);
82b0f8c3 2711 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2712 lock_page(vmf->page);
82b0f8c3
JK
2713 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2714 vmf->address, &vmf->ptl);
2994302b 2715 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2716 unlock_page(vmf->page);
82b0f8c3 2717 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2718 put_page(vmf->page);
28766805 2719 return 0;
ab967d86 2720 }
a41b70d6 2721 put_page(vmf->page);
ee6a6457 2722 }
52d1e606
KT
2723 if (PageKsm(vmf->page)) {
2724 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2725 vmf->address);
2726 unlock_page(vmf->page);
2727 if (!reused)
2728 goto copy;
2729 wp_page_reuse(vmf);
2730 return VM_FAULT_WRITE;
2731 }
ba3c4ce6
HY
2732 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2733 if (total_map_swapcount == 1) {
6d0a07ed
AA
2734 /*
2735 * The page is all ours. Move it to
2736 * our anon_vma so the rmap code will
2737 * not search our parent or siblings.
2738 * Protected against the rmap code by
2739 * the page lock.
2740 */
a41b70d6 2741 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2742 }
a41b70d6 2743 unlock_page(vmf->page);
997dd98d
JK
2744 wp_page_reuse(vmf);
2745 return VM_FAULT_WRITE;
b009c024 2746 }
a41b70d6 2747 unlock_page(vmf->page);
ee6a6457 2748 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2749 (VM_WRITE|VM_SHARED))) {
a41b70d6 2750 return wp_page_shared(vmf);
1da177e4 2751 }
52d1e606 2752copy:
1da177e4
LT
2753 /*
2754 * Ok, we need to copy. Oh, well..
2755 */
a41b70d6 2756 get_page(vmf->page);
28766805 2757
82b0f8c3 2758 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2759 return wp_page_copy(vmf);
1da177e4
LT
2760}
2761
97a89413 2762static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2763 unsigned long start_addr, unsigned long end_addr,
2764 struct zap_details *details)
2765{
f5cc4eef 2766 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2767}
2768
f808c13f 2769static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2770 struct zap_details *details)
2771{
2772 struct vm_area_struct *vma;
1da177e4
LT
2773 pgoff_t vba, vea, zba, zea;
2774
6b2dbba8 2775 vma_interval_tree_foreach(vma, root,
1da177e4 2776 details->first_index, details->last_index) {
1da177e4
LT
2777
2778 vba = vma->vm_pgoff;
d6e93217 2779 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2780 zba = details->first_index;
2781 if (zba < vba)
2782 zba = vba;
2783 zea = details->last_index;
2784 if (zea > vea)
2785 zea = vea;
2786
97a89413 2787 unmap_mapping_range_vma(vma,
1da177e4
LT
2788 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2789 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2790 details);
1da177e4
LT
2791 }
2792}
2793
977fbdcd
MW
2794/**
2795 * unmap_mapping_pages() - Unmap pages from processes.
2796 * @mapping: The address space containing pages to be unmapped.
2797 * @start: Index of first page to be unmapped.
2798 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2799 * @even_cows: Whether to unmap even private COWed pages.
2800 *
2801 * Unmap the pages in this address space from any userspace process which
2802 * has them mmaped. Generally, you want to remove COWed pages as well when
2803 * a file is being truncated, but not when invalidating pages from the page
2804 * cache.
2805 */
2806void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2807 pgoff_t nr, bool even_cows)
2808{
2809 struct zap_details details = { };
2810
2811 details.check_mapping = even_cows ? NULL : mapping;
2812 details.first_index = start;
2813 details.last_index = start + nr - 1;
2814 if (details.last_index < details.first_index)
2815 details.last_index = ULONG_MAX;
2816
2817 i_mmap_lock_write(mapping);
2818 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2819 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2820 i_mmap_unlock_write(mapping);
2821}
2822
1da177e4 2823/**
8a5f14a2 2824 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2825 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2826 * file.
2827 *
3d41088f 2828 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2829 * @holebegin: byte in first page to unmap, relative to the start of
2830 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2831 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2832 * must keep the partial page. In contrast, we must get rid of
2833 * partial pages.
2834 * @holelen: size of prospective hole in bytes. This will be rounded
2835 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2836 * end of the file.
2837 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2838 * but 0 when invalidating pagecache, don't throw away private data.
2839 */
2840void unmap_mapping_range(struct address_space *mapping,
2841 loff_t const holebegin, loff_t const holelen, int even_cows)
2842{
1da177e4
LT
2843 pgoff_t hba = holebegin >> PAGE_SHIFT;
2844 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2845
2846 /* Check for overflow. */
2847 if (sizeof(holelen) > sizeof(hlen)) {
2848 long long holeend =
2849 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2850 if (holeend & ~(long long)ULONG_MAX)
2851 hlen = ULONG_MAX - hba + 1;
2852 }
2853
977fbdcd 2854 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2855}
2856EXPORT_SYMBOL(unmap_mapping_range);
2857
1da177e4 2858/*
8f4e2101
HD
2859 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2860 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2861 * We return with pte unmapped and unlocked.
2862 *
2863 * We return with the mmap_sem locked or unlocked in the same cases
2864 * as does filemap_fault().
1da177e4 2865 */
2b740303 2866vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2867{
82b0f8c3 2868 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2869 struct page *page = NULL, *swapcache;
00501b53 2870 struct mem_cgroup *memcg;
65500d23 2871 swp_entry_t entry;
1da177e4 2872 pte_t pte;
d065bd81 2873 int locked;
ad8c2ee8 2874 int exclusive = 0;
2b740303 2875 vm_fault_t ret = 0;
1da177e4 2876
eaf649eb 2877 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2878 goto out;
65500d23 2879
2994302b 2880 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2881 if (unlikely(non_swap_entry(entry))) {
2882 if (is_migration_entry(entry)) {
82b0f8c3
JK
2883 migration_entry_wait(vma->vm_mm, vmf->pmd,
2884 vmf->address);
5042db43 2885 } else if (is_device_private_entry(entry)) {
897e6365
CH
2886 vmf->page = device_private_entry_to_page(entry);
2887 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
2888 } else if (is_hwpoison_entry(entry)) {
2889 ret = VM_FAULT_HWPOISON;
2890 } else {
2994302b 2891 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2892 ret = VM_FAULT_SIGBUS;
d1737fdb 2893 }
0697212a
CL
2894 goto out;
2895 }
0bcac06f
MK
2896
2897
0ff92245 2898 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2899 page = lookup_swap_cache(entry, vma, vmf->address);
2900 swapcache = page;
f8020772 2901
1da177e4 2902 if (!page) {
0bcac06f
MK
2903 struct swap_info_struct *si = swp_swap_info(entry);
2904
aa8d22a1 2905 if (si->flags & SWP_SYNCHRONOUS_IO &&
eb085574 2906 __swap_count(entry) == 1) {
0bcac06f 2907 /* skip swapcache */
e9e9b7ec
MK
2908 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2909 vmf->address);
0bcac06f
MK
2910 if (page) {
2911 __SetPageLocked(page);
2912 __SetPageSwapBacked(page);
2913 set_page_private(page, entry.val);
2914 lru_cache_add_anon(page);
2915 swap_readpage(page, true);
2916 }
aa8d22a1 2917 } else {
e9e9b7ec
MK
2918 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2919 vmf);
aa8d22a1 2920 swapcache = page;
0bcac06f
MK
2921 }
2922
1da177e4
LT
2923 if (!page) {
2924 /*
8f4e2101
HD
2925 * Back out if somebody else faulted in this pte
2926 * while we released the pte lock.
1da177e4 2927 */
82b0f8c3
JK
2928 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2929 vmf->address, &vmf->ptl);
2994302b 2930 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2931 ret = VM_FAULT_OOM;
0ff92245 2932 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2933 goto unlock;
1da177e4
LT
2934 }
2935
2936 /* Had to read the page from swap area: Major fault */
2937 ret = VM_FAULT_MAJOR;
f8891e5e 2938 count_vm_event(PGMAJFAULT);
2262185c 2939 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2940 } else if (PageHWPoison(page)) {
71f72525
WF
2941 /*
2942 * hwpoisoned dirty swapcache pages are kept for killing
2943 * owner processes (which may be unknown at hwpoison time)
2944 */
d1737fdb
AK
2945 ret = VM_FAULT_HWPOISON;
2946 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2947 goto out_release;
1da177e4
LT
2948 }
2949
82b0f8c3 2950 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2951
073e587e 2952 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2953 if (!locked) {
2954 ret |= VM_FAULT_RETRY;
2955 goto out_release;
2956 }
073e587e 2957
4969c119 2958 /*
31c4a3d3
HD
2959 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2960 * release the swapcache from under us. The page pin, and pte_same
2961 * test below, are not enough to exclude that. Even if it is still
2962 * swapcache, we need to check that the page's swap has not changed.
4969c119 2963 */
0bcac06f
MK
2964 if (unlikely((!PageSwapCache(page) ||
2965 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2966 goto out_page;
2967
82b0f8c3 2968 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2969 if (unlikely(!page)) {
2970 ret = VM_FAULT_OOM;
2971 page = swapcache;
cbf86cfe 2972 goto out_page;
5ad64688
HD
2973 }
2974
2cf85583
TH
2975 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2976 &memcg, false)) {
8a9f3ccd 2977 ret = VM_FAULT_OOM;
bc43f75c 2978 goto out_page;
8a9f3ccd
BS
2979 }
2980
1da177e4 2981 /*
8f4e2101 2982 * Back out if somebody else already faulted in this pte.
1da177e4 2983 */
82b0f8c3
JK
2984 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2985 &vmf->ptl);
2994302b 2986 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2987 goto out_nomap;
b8107480
KK
2988
2989 if (unlikely(!PageUptodate(page))) {
2990 ret = VM_FAULT_SIGBUS;
2991 goto out_nomap;
1da177e4
LT
2992 }
2993
8c7c6e34
KH
2994 /*
2995 * The page isn't present yet, go ahead with the fault.
2996 *
2997 * Be careful about the sequence of operations here.
2998 * To get its accounting right, reuse_swap_page() must be called
2999 * while the page is counted on swap but not yet in mapcount i.e.
3000 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3001 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3002 */
1da177e4 3003
bae473a4
KS
3004 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3005 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3006 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3007 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3008 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3009 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3010 ret |= VM_FAULT_WRITE;
d281ee61 3011 exclusive = RMAP_EXCLUSIVE;
1da177e4 3012 }
1da177e4 3013 flush_icache_page(vma, page);
2994302b 3014 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3015 pte = pte_mksoft_dirty(pte);
82b0f8c3 3016 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3017 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3018 vmf->orig_pte = pte;
0bcac06f
MK
3019
3020 /* ksm created a completely new copy */
3021 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3022 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3023 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3024 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
3025 } else {
3026 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3027 mem_cgroup_commit_charge(page, memcg, true, false);
3028 activate_page(page);
00501b53 3029 }
1da177e4 3030
c475a8ab 3031 swap_free(entry);
5ccc5aba
VD
3032 if (mem_cgroup_swap_full(page) ||
3033 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3034 try_to_free_swap(page);
c475a8ab 3035 unlock_page(page);
0bcac06f 3036 if (page != swapcache && swapcache) {
4969c119
AA
3037 /*
3038 * Hold the lock to avoid the swap entry to be reused
3039 * until we take the PT lock for the pte_same() check
3040 * (to avoid false positives from pte_same). For
3041 * further safety release the lock after the swap_free
3042 * so that the swap count won't change under a
3043 * parallel locked swapcache.
3044 */
3045 unlock_page(swapcache);
09cbfeaf 3046 put_page(swapcache);
4969c119 3047 }
c475a8ab 3048
82b0f8c3 3049 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3050 ret |= do_wp_page(vmf);
61469f1d
HD
3051 if (ret & VM_FAULT_ERROR)
3052 ret &= VM_FAULT_ERROR;
1da177e4
LT
3053 goto out;
3054 }
3055
3056 /* No need to invalidate - it was non-present before */
82b0f8c3 3057 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3058unlock:
82b0f8c3 3059 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3060out:
3061 return ret;
b8107480 3062out_nomap:
f627c2f5 3063 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 3064 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3065out_page:
b8107480 3066 unlock_page(page);
4779cb31 3067out_release:
09cbfeaf 3068 put_page(page);
0bcac06f 3069 if (page != swapcache && swapcache) {
4969c119 3070 unlock_page(swapcache);
09cbfeaf 3071 put_page(swapcache);
4969c119 3072 }
65500d23 3073 return ret;
1da177e4
LT
3074}
3075
3076/*
8f4e2101
HD
3077 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3078 * but allow concurrent faults), and pte mapped but not yet locked.
3079 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3080 */
2b740303 3081static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3082{
82b0f8c3 3083 struct vm_area_struct *vma = vmf->vma;
00501b53 3084 struct mem_cgroup *memcg;
8f4e2101 3085 struct page *page;
2b740303 3086 vm_fault_t ret = 0;
1da177e4 3087 pte_t entry;
1da177e4 3088
6b7339f4
KS
3089 /* File mapping without ->vm_ops ? */
3090 if (vma->vm_flags & VM_SHARED)
3091 return VM_FAULT_SIGBUS;
3092
7267ec00
KS
3093 /*
3094 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3095 * pte_offset_map() on pmds where a huge pmd might be created
3096 * from a different thread.
3097 *
3098 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3099 * parallel threads are excluded by other means.
3100 *
3101 * Here we only have down_read(mmap_sem).
3102 */
4cf58924 3103 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3104 return VM_FAULT_OOM;
3105
3106 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3107 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3108 return 0;
3109
11ac5524 3110 /* Use the zero-page for reads */
82b0f8c3 3111 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3112 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3113 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3114 vma->vm_page_prot));
82b0f8c3
JK
3115 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3116 vmf->address, &vmf->ptl);
3117 if (!pte_none(*vmf->pte))
a13ea5b7 3118 goto unlock;
6b31d595
MH
3119 ret = check_stable_address_space(vma->vm_mm);
3120 if (ret)
3121 goto unlock;
6b251fc9
AA
3122 /* Deliver the page fault to userland, check inside PT lock */
3123 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3124 pte_unmap_unlock(vmf->pte, vmf->ptl);
3125 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3126 }
a13ea5b7
HD
3127 goto setpte;
3128 }
3129
557ed1fa 3130 /* Allocate our own private page. */
557ed1fa
NP
3131 if (unlikely(anon_vma_prepare(vma)))
3132 goto oom;
82b0f8c3 3133 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3134 if (!page)
3135 goto oom;
eb3c24f3 3136
2cf85583
TH
3137 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3138 false))
eb3c24f3
MG
3139 goto oom_free_page;
3140
52f37629
MK
3141 /*
3142 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3143 * preceding stores to the page contents become visible before
52f37629
MK
3144 * the set_pte_at() write.
3145 */
0ed361de 3146 __SetPageUptodate(page);
8f4e2101 3147
557ed1fa 3148 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3149 if (vma->vm_flags & VM_WRITE)
3150 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3151
82b0f8c3
JK
3152 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3153 &vmf->ptl);
3154 if (!pte_none(*vmf->pte))
557ed1fa 3155 goto release;
9ba69294 3156
6b31d595
MH
3157 ret = check_stable_address_space(vma->vm_mm);
3158 if (ret)
3159 goto release;
3160
6b251fc9
AA
3161 /* Deliver the page fault to userland, check inside PT lock */
3162 if (userfaultfd_missing(vma)) {
82b0f8c3 3163 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3164 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3165 put_page(page);
82b0f8c3 3166 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3167 }
3168
bae473a4 3169 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3170 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3171 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3172 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3173setpte:
82b0f8c3 3174 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3175
3176 /* No need to invalidate - it was non-present before */
82b0f8c3 3177 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3178unlock:
82b0f8c3 3179 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3180 return ret;
8f4e2101 3181release:
f627c2f5 3182 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3183 put_page(page);
8f4e2101 3184 goto unlock;
8a9f3ccd 3185oom_free_page:
09cbfeaf 3186 put_page(page);
65500d23 3187oom:
1da177e4
LT
3188 return VM_FAULT_OOM;
3189}
3190
9a95f3cf
PC
3191/*
3192 * The mmap_sem must have been held on entry, and may have been
3193 * released depending on flags and vma->vm_ops->fault() return value.
3194 * See filemap_fault() and __lock_page_retry().
3195 */
2b740303 3196static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3197{
82b0f8c3 3198 struct vm_area_struct *vma = vmf->vma;
2b740303 3199 vm_fault_t ret;
7eae74af 3200
63f3655f
MH
3201 /*
3202 * Preallocate pte before we take page_lock because this might lead to
3203 * deadlocks for memcg reclaim which waits for pages under writeback:
3204 * lock_page(A)
3205 * SetPageWriteback(A)
3206 * unlock_page(A)
3207 * lock_page(B)
3208 * lock_page(B)
3209 * pte_alloc_pne
3210 * shrink_page_list
3211 * wait_on_page_writeback(A)
3212 * SetPageWriteback(B)
3213 * unlock_page(B)
3214 * # flush A, B to clear the writeback
3215 */
3216 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3217 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3218 if (!vmf->prealloc_pte)
3219 return VM_FAULT_OOM;
3220 smp_wmb(); /* See comment in __pte_alloc() */
3221 }
3222
11bac800 3223 ret = vma->vm_ops->fault(vmf);
3917048d 3224 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3225 VM_FAULT_DONE_COW)))
bc2466e4 3226 return ret;
7eae74af 3227
667240e0 3228 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3229 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3230 unlock_page(vmf->page);
3231 put_page(vmf->page);
936ca80d 3232 vmf->page = NULL;
7eae74af
KS
3233 return VM_FAULT_HWPOISON;
3234 }
3235
3236 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3237 lock_page(vmf->page);
7eae74af 3238 else
667240e0 3239 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3240
7eae74af
KS
3241 return ret;
3242}
3243
d0f0931d
RZ
3244/*
3245 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3246 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3247 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3248 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3249 */
3250static int pmd_devmap_trans_unstable(pmd_t *pmd)
3251{
3252 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3253}
3254
2b740303 3255static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3256{
82b0f8c3 3257 struct vm_area_struct *vma = vmf->vma;
7267ec00 3258
82b0f8c3 3259 if (!pmd_none(*vmf->pmd))
7267ec00 3260 goto map_pte;
82b0f8c3
JK
3261 if (vmf->prealloc_pte) {
3262 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3263 if (unlikely(!pmd_none(*vmf->pmd))) {
3264 spin_unlock(vmf->ptl);
7267ec00
KS
3265 goto map_pte;
3266 }
3267
c4812909 3268 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3269 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3270 spin_unlock(vmf->ptl);
7f2b6ce8 3271 vmf->prealloc_pte = NULL;
4cf58924 3272 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3273 return VM_FAULT_OOM;
3274 }
3275map_pte:
3276 /*
3277 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3278 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3279 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3280 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3281 * running immediately after a huge pmd fault in a different thread of
3282 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3283 * All we have to ensure is that it is a regular pmd that we can walk
3284 * with pte_offset_map() and we can do that through an atomic read in
3285 * C, which is what pmd_trans_unstable() provides.
7267ec00 3286 */
d0f0931d 3287 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3288 return VM_FAULT_NOPAGE;
3289
d0f0931d
RZ
3290 /*
3291 * At this point we know that our vmf->pmd points to a page of ptes
3292 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3293 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3294 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3295 * be valid and we will re-check to make sure the vmf->pte isn't
3296 * pte_none() under vmf->ptl protection when we return to
3297 * alloc_set_pte().
3298 */
82b0f8c3
JK
3299 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3300 &vmf->ptl);
7267ec00
KS
3301 return 0;
3302}
3303
e496cf3d 3304#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
82b0f8c3 3305static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3306{
82b0f8c3 3307 struct vm_area_struct *vma = vmf->vma;
953c66c2 3308
82b0f8c3 3309 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3310 /*
3311 * We are going to consume the prealloc table,
3312 * count that as nr_ptes.
3313 */
c4812909 3314 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3315 vmf->prealloc_pte = NULL;
953c66c2
AK
3316}
3317
2b740303 3318static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3319{
82b0f8c3
JK
3320 struct vm_area_struct *vma = vmf->vma;
3321 bool write = vmf->flags & FAULT_FLAG_WRITE;
3322 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3323 pmd_t entry;
2b740303
SJ
3324 int i;
3325 vm_fault_t ret;
10102459
KS
3326
3327 if (!transhuge_vma_suitable(vma, haddr))
3328 return VM_FAULT_FALLBACK;
3329
3330 ret = VM_FAULT_FALLBACK;
3331 page = compound_head(page);
3332
953c66c2
AK
3333 /*
3334 * Archs like ppc64 need additonal space to store information
3335 * related to pte entry. Use the preallocated table for that.
3336 */
82b0f8c3 3337 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3338 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3339 if (!vmf->prealloc_pte)
953c66c2
AK
3340 return VM_FAULT_OOM;
3341 smp_wmb(); /* See comment in __pte_alloc() */
3342 }
3343
82b0f8c3
JK
3344 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3345 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3346 goto out;
3347
3348 for (i = 0; i < HPAGE_PMD_NR; i++)
3349 flush_icache_page(vma, page + i);
3350
3351 entry = mk_huge_pmd(page, vma->vm_page_prot);
3352 if (write)
f55e1014 3353 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3354
fadae295 3355 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3356 page_add_file_rmap(page, true);
953c66c2
AK
3357 /*
3358 * deposit and withdraw with pmd lock held
3359 */
3360 if (arch_needs_pgtable_deposit())
82b0f8c3 3361 deposit_prealloc_pte(vmf);
10102459 3362
82b0f8c3 3363 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3364
82b0f8c3 3365 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3366
3367 /* fault is handled */
3368 ret = 0;
95ecedcd 3369 count_vm_event(THP_FILE_MAPPED);
10102459 3370out:
82b0f8c3 3371 spin_unlock(vmf->ptl);
10102459
KS
3372 return ret;
3373}
3374#else
2b740303 3375static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3376{
3377 BUILD_BUG();
3378 return 0;
3379}
3380#endif
3381
8c6e50b0 3382/**
7267ec00
KS
3383 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3384 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3385 *
82b0f8c3 3386 * @vmf: fault environment
7267ec00 3387 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3388 * @page: page to map
8c6e50b0 3389 *
82b0f8c3
JK
3390 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3391 * return.
8c6e50b0
KS
3392 *
3393 * Target users are page handler itself and implementations of
3394 * vm_ops->map_pages.
a862f68a
MR
3395 *
3396 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3397 */
2b740303 3398vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3399 struct page *page)
3bb97794 3400{
82b0f8c3
JK
3401 struct vm_area_struct *vma = vmf->vma;
3402 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3403 pte_t entry;
2b740303 3404 vm_fault_t ret;
10102459 3405
82b0f8c3 3406 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3407 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3408 /* THP on COW? */
3409 VM_BUG_ON_PAGE(memcg, page);
3410
82b0f8c3 3411 ret = do_set_pmd(vmf, page);
10102459 3412 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3413 return ret;
10102459 3414 }
3bb97794 3415
82b0f8c3
JK
3416 if (!vmf->pte) {
3417 ret = pte_alloc_one_map(vmf);
7267ec00 3418 if (ret)
b0b9b3df 3419 return ret;
7267ec00
KS
3420 }
3421
3422 /* Re-check under ptl */
b0b9b3df
HD
3423 if (unlikely(!pte_none(*vmf->pte)))
3424 return VM_FAULT_NOPAGE;
7267ec00 3425
3bb97794
KS
3426 flush_icache_page(vma, page);
3427 entry = mk_pte(page, vma->vm_page_prot);
3428 if (write)
3429 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3430 /* copy-on-write page */
3431 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3432 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3433 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3434 mem_cgroup_commit_charge(page, memcg, false, false);
3435 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3436 } else {
eca56ff9 3437 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3438 page_add_file_rmap(page, false);
3bb97794 3439 }
82b0f8c3 3440 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3441
3442 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3443 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3444
b0b9b3df 3445 return 0;
3bb97794
KS
3446}
3447
9118c0cb
JK
3448
3449/**
3450 * finish_fault - finish page fault once we have prepared the page to fault
3451 *
3452 * @vmf: structure describing the fault
3453 *
3454 * This function handles all that is needed to finish a page fault once the
3455 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3456 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3457 * addition.
9118c0cb
JK
3458 *
3459 * The function expects the page to be locked and on success it consumes a
3460 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3461 *
3462 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3463 */
2b740303 3464vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3465{
3466 struct page *page;
2b740303 3467 vm_fault_t ret = 0;
9118c0cb
JK
3468
3469 /* Did we COW the page? */
3470 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3471 !(vmf->vma->vm_flags & VM_SHARED))
3472 page = vmf->cow_page;
3473 else
3474 page = vmf->page;
6b31d595
MH
3475
3476 /*
3477 * check even for read faults because we might have lost our CoWed
3478 * page
3479 */
3480 if (!(vmf->vma->vm_flags & VM_SHARED))
3481 ret = check_stable_address_space(vmf->vma->vm_mm);
3482 if (!ret)
3483 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3484 if (vmf->pte)
3485 pte_unmap_unlock(vmf->pte, vmf->ptl);
3486 return ret;
3487}
3488
3a91053a
KS
3489static unsigned long fault_around_bytes __read_mostly =
3490 rounddown_pow_of_two(65536);
a9b0f861 3491
a9b0f861
KS
3492#ifdef CONFIG_DEBUG_FS
3493static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3494{
a9b0f861 3495 *val = fault_around_bytes;
1592eef0
KS
3496 return 0;
3497}
3498
b4903d6e 3499/*
da391d64
WK
3500 * fault_around_bytes must be rounded down to the nearest page order as it's
3501 * what do_fault_around() expects to see.
b4903d6e 3502 */
a9b0f861 3503static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3504{
a9b0f861 3505 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3506 return -EINVAL;
b4903d6e
AR
3507 if (val > PAGE_SIZE)
3508 fault_around_bytes = rounddown_pow_of_two(val);
3509 else
3510 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3511 return 0;
3512}
0a1345f8 3513DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3514 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3515
3516static int __init fault_around_debugfs(void)
3517{
d9f7979c
GKH
3518 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3519 &fault_around_bytes_fops);
1592eef0
KS
3520 return 0;
3521}
3522late_initcall(fault_around_debugfs);
1592eef0 3523#endif
8c6e50b0 3524
1fdb412b
KS
3525/*
3526 * do_fault_around() tries to map few pages around the fault address. The hope
3527 * is that the pages will be needed soon and this will lower the number of
3528 * faults to handle.
3529 *
3530 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3531 * not ready to be mapped: not up-to-date, locked, etc.
3532 *
3533 * This function is called with the page table lock taken. In the split ptlock
3534 * case the page table lock only protects only those entries which belong to
3535 * the page table corresponding to the fault address.
3536 *
3537 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3538 * only once.
3539 *
da391d64
WK
3540 * fault_around_bytes defines how many bytes we'll try to map.
3541 * do_fault_around() expects it to be set to a power of two less than or equal
3542 * to PTRS_PER_PTE.
1fdb412b 3543 *
da391d64
WK
3544 * The virtual address of the area that we map is naturally aligned to
3545 * fault_around_bytes rounded down to the machine page size
3546 * (and therefore to page order). This way it's easier to guarantee
3547 * that we don't cross page table boundaries.
1fdb412b 3548 */
2b740303 3549static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3550{
82b0f8c3 3551 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3552 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3553 pgoff_t end_pgoff;
2b740303
SJ
3554 int off;
3555 vm_fault_t ret = 0;
8c6e50b0 3556
4db0c3c2 3557 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3558 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3559
82b0f8c3
JK
3560 vmf->address = max(address & mask, vmf->vma->vm_start);
3561 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3562 start_pgoff -= off;
8c6e50b0
KS
3563
3564 /*
da391d64
WK
3565 * end_pgoff is either the end of the page table, the end of
3566 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3567 */
bae473a4 3568 end_pgoff = start_pgoff -
82b0f8c3 3569 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3570 PTRS_PER_PTE - 1;
82b0f8c3 3571 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3572 start_pgoff + nr_pages - 1);
8c6e50b0 3573
82b0f8c3 3574 if (pmd_none(*vmf->pmd)) {
4cf58924 3575 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3576 if (!vmf->prealloc_pte)
c5f88bd2 3577 goto out;
7267ec00 3578 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3579 }
3580
82b0f8c3 3581 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3582
7267ec00 3583 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3584 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3585 ret = VM_FAULT_NOPAGE;
3586 goto out;
3587 }
3588
3589 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3590 if (!vmf->pte)
7267ec00
KS
3591 goto out;
3592
3593 /* check if the page fault is solved */
82b0f8c3
JK
3594 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3595 if (!pte_none(*vmf->pte))
7267ec00 3596 ret = VM_FAULT_NOPAGE;
82b0f8c3 3597 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3598out:
82b0f8c3
JK
3599 vmf->address = address;
3600 vmf->pte = NULL;
7267ec00 3601 return ret;
8c6e50b0
KS
3602}
3603
2b740303 3604static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3605{
82b0f8c3 3606 struct vm_area_struct *vma = vmf->vma;
2b740303 3607 vm_fault_t ret = 0;
8c6e50b0
KS
3608
3609 /*
3610 * Let's call ->map_pages() first and use ->fault() as fallback
3611 * if page by the offset is not ready to be mapped (cold cache or
3612 * something).
3613 */
9b4bdd2f 3614 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3615 ret = do_fault_around(vmf);
7267ec00
KS
3616 if (ret)
3617 return ret;
8c6e50b0 3618 }
e655fb29 3619
936ca80d 3620 ret = __do_fault(vmf);
e655fb29
KS
3621 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3622 return ret;
3623
9118c0cb 3624 ret |= finish_fault(vmf);
936ca80d 3625 unlock_page(vmf->page);
7267ec00 3626 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3627 put_page(vmf->page);
e655fb29
KS
3628 return ret;
3629}
3630
2b740303 3631static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3632{
82b0f8c3 3633 struct vm_area_struct *vma = vmf->vma;
2b740303 3634 vm_fault_t ret;
ec47c3b9
KS
3635
3636 if (unlikely(anon_vma_prepare(vma)))
3637 return VM_FAULT_OOM;
3638
936ca80d
JK
3639 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3640 if (!vmf->cow_page)
ec47c3b9
KS
3641 return VM_FAULT_OOM;
3642
2cf85583 3643 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3644 &vmf->memcg, false)) {
936ca80d 3645 put_page(vmf->cow_page);
ec47c3b9
KS
3646 return VM_FAULT_OOM;
3647 }
3648
936ca80d 3649 ret = __do_fault(vmf);
ec47c3b9
KS
3650 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3651 goto uncharge_out;
3917048d
JK
3652 if (ret & VM_FAULT_DONE_COW)
3653 return ret;
ec47c3b9 3654
b1aa812b 3655 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3656 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3657
9118c0cb 3658 ret |= finish_fault(vmf);
b1aa812b
JK
3659 unlock_page(vmf->page);
3660 put_page(vmf->page);
7267ec00
KS
3661 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3662 goto uncharge_out;
ec47c3b9
KS
3663 return ret;
3664uncharge_out:
3917048d 3665 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3666 put_page(vmf->cow_page);
ec47c3b9
KS
3667 return ret;
3668}
3669
2b740303 3670static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3671{
82b0f8c3 3672 struct vm_area_struct *vma = vmf->vma;
2b740303 3673 vm_fault_t ret, tmp;
1d65f86d 3674
936ca80d 3675 ret = __do_fault(vmf);
7eae74af 3676 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3677 return ret;
1da177e4
LT
3678
3679 /*
f0c6d4d2
KS
3680 * Check if the backing address space wants to know that the page is
3681 * about to become writable
1da177e4 3682 */
fb09a464 3683 if (vma->vm_ops->page_mkwrite) {
936ca80d 3684 unlock_page(vmf->page);
38b8cb7f 3685 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3686 if (unlikely(!tmp ||
3687 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3688 put_page(vmf->page);
fb09a464 3689 return tmp;
4294621f 3690 }
fb09a464
KS
3691 }
3692
9118c0cb 3693 ret |= finish_fault(vmf);
7267ec00
KS
3694 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3695 VM_FAULT_RETRY))) {
936ca80d
JK
3696 unlock_page(vmf->page);
3697 put_page(vmf->page);
f0c6d4d2 3698 return ret;
1da177e4 3699 }
b827e496 3700
89b15332 3701 ret |= fault_dirty_shared_page(vmf);
1d65f86d 3702 return ret;
54cb8821 3703}
d00806b1 3704
9a95f3cf
PC
3705/*
3706 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3707 * but allow concurrent faults).
3708 * The mmap_sem may have been released depending on flags and our
3709 * return value. See filemap_fault() and __lock_page_or_retry().
fc8efd2d
JS
3710 * If mmap_sem is released, vma may become invalid (for example
3711 * by other thread calling munmap()).
9a95f3cf 3712 */
2b740303 3713static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3714{
82b0f8c3 3715 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3716 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3717 vm_fault_t ret;
54cb8821 3718
ff09d7ec
AK
3719 /*
3720 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3721 */
3722 if (!vma->vm_ops->fault) {
3723 /*
3724 * If we find a migration pmd entry or a none pmd entry, which
3725 * should never happen, return SIGBUS
3726 */
3727 if (unlikely(!pmd_present(*vmf->pmd)))
3728 ret = VM_FAULT_SIGBUS;
3729 else {
3730 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3731 vmf->pmd,
3732 vmf->address,
3733 &vmf->ptl);
3734 /*
3735 * Make sure this is not a temporary clearing of pte
3736 * by holding ptl and checking again. A R/M/W update
3737 * of pte involves: take ptl, clearing the pte so that
3738 * we don't have concurrent modification by hardware
3739 * followed by an update.
3740 */
3741 if (unlikely(pte_none(*vmf->pte)))
3742 ret = VM_FAULT_SIGBUS;
3743 else
3744 ret = VM_FAULT_NOPAGE;
3745
3746 pte_unmap_unlock(vmf->pte, vmf->ptl);
3747 }
3748 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3749 ret = do_read_fault(vmf);
3750 else if (!(vma->vm_flags & VM_SHARED))
3751 ret = do_cow_fault(vmf);
3752 else
3753 ret = do_shared_fault(vmf);
3754
3755 /* preallocated pagetable is unused: free it */
3756 if (vmf->prealloc_pte) {
fc8efd2d 3757 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3758 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3759 }
3760 return ret;
54cb8821
NP
3761}
3762
b19a9939 3763static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3764 unsigned long addr, int page_nid,
3765 int *flags)
9532fec1
MG
3766{
3767 get_page(page);
3768
3769 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3770 if (page_nid == numa_node_id()) {
9532fec1 3771 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3772 *flags |= TNF_FAULT_LOCAL;
3773 }
9532fec1
MG
3774
3775 return mpol_misplaced(page, vma, addr);
3776}
3777
2b740303 3778static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3779{
82b0f8c3 3780 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3781 struct page *page = NULL;
98fa15f3 3782 int page_nid = NUMA_NO_NODE;
90572890 3783 int last_cpupid;
cbee9f88 3784 int target_nid;
b8593bfd 3785 bool migrated = false;
04a86453 3786 pte_t pte, old_pte;
288bc549 3787 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3788 int flags = 0;
d10e63f2
MG
3789
3790 /*
166f61b9
TH
3791 * The "pte" at this point cannot be used safely without
3792 * validation through pte_unmap_same(). It's of NUMA type but
3793 * the pfn may be screwed if the read is non atomic.
166f61b9 3794 */
82b0f8c3
JK
3795 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3796 spin_lock(vmf->ptl);
cee216a6 3797 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3798 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3799 goto out;
3800 }
3801
cee216a6
AK
3802 /*
3803 * Make it present again, Depending on how arch implementes non
3804 * accessible ptes, some can allow access by kernel mode.
3805 */
04a86453
AK
3806 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3807 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 3808 pte = pte_mkyoung(pte);
b191f9b1
MG
3809 if (was_writable)
3810 pte = pte_mkwrite(pte);
04a86453 3811 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 3812 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3813
82b0f8c3 3814 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3815 if (!page) {
82b0f8c3 3816 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3817 return 0;
3818 }
3819
e81c4802
KS
3820 /* TODO: handle PTE-mapped THP */
3821 if (PageCompound(page)) {
82b0f8c3 3822 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3823 return 0;
3824 }
3825
6688cc05 3826 /*
bea66fbd
MG
3827 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3828 * much anyway since they can be in shared cache state. This misses
3829 * the case where a mapping is writable but the process never writes
3830 * to it but pte_write gets cleared during protection updates and
3831 * pte_dirty has unpredictable behaviour between PTE scan updates,
3832 * background writeback, dirty balancing and application behaviour.
6688cc05 3833 */
d59dc7bc 3834 if (!pte_write(pte))
6688cc05
PZ
3835 flags |= TNF_NO_GROUP;
3836
dabe1d99
RR
3837 /*
3838 * Flag if the page is shared between multiple address spaces. This
3839 * is later used when determining whether to group tasks together
3840 */
3841 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3842 flags |= TNF_SHARED;
3843
90572890 3844 last_cpupid = page_cpupid_last(page);
8191acbd 3845 page_nid = page_to_nid(page);
82b0f8c3 3846 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3847 &flags);
82b0f8c3 3848 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 3849 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
3850 put_page(page);
3851 goto out;
3852 }
3853
3854 /* Migrate to the requested node */
1bc115d8 3855 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3856 if (migrated) {
8191acbd 3857 page_nid = target_nid;
6688cc05 3858 flags |= TNF_MIGRATED;
074c2381
MG
3859 } else
3860 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3861
3862out:
98fa15f3 3863 if (page_nid != NUMA_NO_NODE)
6688cc05 3864 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3865 return 0;
3866}
3867
2b740303 3868static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3869{
f4200391 3870 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3871 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3872 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3873 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3874 return VM_FAULT_FALLBACK;
3875}
3876
183f24aa 3877/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3878static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3879{
82b0f8c3
JK
3880 if (vma_is_anonymous(vmf->vma))
3881 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3882 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3883 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3884
3885 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3886 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3887 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3888
b96375f7
MW
3889 return VM_FAULT_FALLBACK;
3890}
3891
38e08854
LS
3892static inline bool vma_is_accessible(struct vm_area_struct *vma)
3893{
3894 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3895}
3896
2b740303 3897static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3898{
3899#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3900 /* No support for anonymous transparent PUD pages yet */
3901 if (vma_is_anonymous(vmf->vma))
3902 return VM_FAULT_FALLBACK;
3903 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3904 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3905#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3906 return VM_FAULT_FALLBACK;
3907}
3908
2b740303 3909static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3910{
3911#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3912 /* No support for anonymous transparent PUD pages yet */
3913 if (vma_is_anonymous(vmf->vma))
3914 return VM_FAULT_FALLBACK;
3915 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3916 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3917#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3918 return VM_FAULT_FALLBACK;
3919}
3920
1da177e4
LT
3921/*
3922 * These routines also need to handle stuff like marking pages dirty
3923 * and/or accessed for architectures that don't do it in hardware (most
3924 * RISC architectures). The early dirtying is also good on the i386.
3925 *
3926 * There is also a hook called "update_mmu_cache()" that architectures
3927 * with external mmu caches can use to update those (ie the Sparc or
3928 * PowerPC hashed page tables that act as extended TLBs).
3929 *
7267ec00
KS
3930 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3931 * concurrent faults).
9a95f3cf 3932 *
7267ec00
KS
3933 * The mmap_sem may have been released depending on flags and our return value.
3934 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3935 */
2b740303 3936static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3937{
3938 pte_t entry;
3939
82b0f8c3 3940 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3941 /*
3942 * Leave __pte_alloc() until later: because vm_ops->fault may
3943 * want to allocate huge page, and if we expose page table
3944 * for an instant, it will be difficult to retract from
3945 * concurrent faults and from rmap lookups.
3946 */
82b0f8c3 3947 vmf->pte = NULL;
7267ec00
KS
3948 } else {
3949 /* See comment in pte_alloc_one_map() */
d0f0931d 3950 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3951 return 0;
3952 /*
3953 * A regular pmd is established and it can't morph into a huge
3954 * pmd from under us anymore at this point because we hold the
3955 * mmap_sem read mode and khugepaged takes it in write mode.
3956 * So now it's safe to run pte_offset_map().
3957 */
82b0f8c3 3958 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3959 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3960
3961 /*
3962 * some architectures can have larger ptes than wordsize,
3963 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3964 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3965 * accesses. The code below just needs a consistent view
3966 * for the ifs and we later double check anyway with the
7267ec00
KS
3967 * ptl lock held. So here a barrier will do.
3968 */
3969 barrier();
2994302b 3970 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3971 pte_unmap(vmf->pte);
3972 vmf->pte = NULL;
65500d23 3973 }
1da177e4
LT
3974 }
3975
82b0f8c3
JK
3976 if (!vmf->pte) {
3977 if (vma_is_anonymous(vmf->vma))
3978 return do_anonymous_page(vmf);
7267ec00 3979 else
82b0f8c3 3980 return do_fault(vmf);
7267ec00
KS
3981 }
3982
2994302b
JK
3983 if (!pte_present(vmf->orig_pte))
3984 return do_swap_page(vmf);
7267ec00 3985
2994302b
JK
3986 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3987 return do_numa_page(vmf);
d10e63f2 3988
82b0f8c3
JK
3989 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3990 spin_lock(vmf->ptl);
2994302b 3991 entry = vmf->orig_pte;
82b0f8c3 3992 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3993 goto unlock;
82b0f8c3 3994 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3995 if (!pte_write(entry))
2994302b 3996 return do_wp_page(vmf);
1da177e4
LT
3997 entry = pte_mkdirty(entry);
3998 }
3999 entry = pte_mkyoung(entry);
82b0f8c3
JK
4000 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4001 vmf->flags & FAULT_FLAG_WRITE)) {
4002 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
4003 } else {
4004 /*
4005 * This is needed only for protection faults but the arch code
4006 * is not yet telling us if this is a protection fault or not.
4007 * This still avoids useless tlb flushes for .text page faults
4008 * with threads.
4009 */
82b0f8c3
JK
4010 if (vmf->flags & FAULT_FLAG_WRITE)
4011 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4012 }
8f4e2101 4013unlock:
82b0f8c3 4014 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4015 return 0;
1da177e4
LT
4016}
4017
4018/*
4019 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
4020 *
4021 * The mmap_sem may have been released depending on flags and our
4022 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4023 */
2b740303
SJ
4024static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4025 unsigned long address, unsigned int flags)
1da177e4 4026{
82b0f8c3 4027 struct vm_fault vmf = {
bae473a4 4028 .vma = vma,
1a29d85e 4029 .address = address & PAGE_MASK,
bae473a4 4030 .flags = flags,
0721ec8b 4031 .pgoff = linear_page_index(vma, address),
667240e0 4032 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4033 };
fde26bed 4034 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4035 struct mm_struct *mm = vma->vm_mm;
1da177e4 4036 pgd_t *pgd;
c2febafc 4037 p4d_t *p4d;
2b740303 4038 vm_fault_t ret;
1da177e4 4039
1da177e4 4040 pgd = pgd_offset(mm, address);
c2febafc
KS
4041 p4d = p4d_alloc(mm, pgd, address);
4042 if (!p4d)
4043 return VM_FAULT_OOM;
a00cc7d9 4044
c2febafc 4045 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4046 if (!vmf.pud)
c74df32c 4047 return VM_FAULT_OOM;
625110b5 4048retry_pud:
7635d9cb 4049 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4050 ret = create_huge_pud(&vmf);
4051 if (!(ret & VM_FAULT_FALLBACK))
4052 return ret;
4053 } else {
4054 pud_t orig_pud = *vmf.pud;
4055
4056 barrier();
4057 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4058
a00cc7d9
MW
4059 /* NUMA case for anonymous PUDs would go here */
4060
f6f37321 4061 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4062 ret = wp_huge_pud(&vmf, orig_pud);
4063 if (!(ret & VM_FAULT_FALLBACK))
4064 return ret;
4065 } else {
4066 huge_pud_set_accessed(&vmf, orig_pud);
4067 return 0;
4068 }
4069 }
4070 }
4071
4072 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4073 if (!vmf.pmd)
c74df32c 4074 return VM_FAULT_OOM;
625110b5
TH
4075
4076 /* Huge pud page fault raced with pmd_alloc? */
4077 if (pud_trans_unstable(vmf.pud))
4078 goto retry_pud;
4079
7635d9cb 4080 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4081 ret = create_huge_pmd(&vmf);
c0292554
KS
4082 if (!(ret & VM_FAULT_FALLBACK))
4083 return ret;
71e3aac0 4084 } else {
82b0f8c3 4085 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4086
71e3aac0 4087 barrier();
84c3fc4e
ZY
4088 if (unlikely(is_swap_pmd(orig_pmd))) {
4089 VM_BUG_ON(thp_migration_supported() &&
4090 !is_pmd_migration_entry(orig_pmd));
4091 if (is_pmd_migration_entry(orig_pmd))
4092 pmd_migration_entry_wait(mm, vmf.pmd);
4093 return 0;
4094 }
5c7fb56e 4095 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4096 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4097 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4098
f6f37321 4099 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4100 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4101 if (!(ret & VM_FAULT_FALLBACK))
4102 return ret;
a1dd450b 4103 } else {
82b0f8c3 4104 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4105 return 0;
1f1d06c3 4106 }
71e3aac0
AA
4107 }
4108 }
4109
82b0f8c3 4110 return handle_pte_fault(&vmf);
1da177e4
LT
4111}
4112
9a95f3cf
PC
4113/*
4114 * By the time we get here, we already hold the mm semaphore
4115 *
4116 * The mmap_sem may have been released depending on flags and our
4117 * return value. See filemap_fault() and __lock_page_or_retry().
4118 */
2b740303 4119vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 4120 unsigned int flags)
519e5247 4121{
2b740303 4122 vm_fault_t ret;
519e5247
JW
4123
4124 __set_current_state(TASK_RUNNING);
4125
4126 count_vm_event(PGFAULT);
2262185c 4127 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4128
4129 /* do counter updates before entering really critical section. */
4130 check_sync_rss_stat(current);
4131
de0c799b
LD
4132 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4133 flags & FAULT_FLAG_INSTRUCTION,
4134 flags & FAULT_FLAG_REMOTE))
4135 return VM_FAULT_SIGSEGV;
4136
519e5247
JW
4137 /*
4138 * Enable the memcg OOM handling for faults triggered in user
4139 * space. Kernel faults are handled more gracefully.
4140 */
4141 if (flags & FAULT_FLAG_USER)
29ef680a 4142 mem_cgroup_enter_user_fault();
519e5247 4143
bae473a4
KS
4144 if (unlikely(is_vm_hugetlb_page(vma)))
4145 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4146 else
4147 ret = __handle_mm_fault(vma, address, flags);
519e5247 4148
49426420 4149 if (flags & FAULT_FLAG_USER) {
29ef680a 4150 mem_cgroup_exit_user_fault();
166f61b9
TH
4151 /*
4152 * The task may have entered a memcg OOM situation but
4153 * if the allocation error was handled gracefully (no
4154 * VM_FAULT_OOM), there is no need to kill anything.
4155 * Just clean up the OOM state peacefully.
4156 */
4157 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4158 mem_cgroup_oom_synchronize(false);
49426420 4159 }
3812c8c8 4160
519e5247
JW
4161 return ret;
4162}
e1d6d01a 4163EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4164
90eceff1
KS
4165#ifndef __PAGETABLE_P4D_FOLDED
4166/*
4167 * Allocate p4d page table.
4168 * We've already handled the fast-path in-line.
4169 */
4170int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4171{
4172 p4d_t *new = p4d_alloc_one(mm, address);
4173 if (!new)
4174 return -ENOMEM;
4175
4176 smp_wmb(); /* See comment in __pte_alloc */
4177
4178 spin_lock(&mm->page_table_lock);
4179 if (pgd_present(*pgd)) /* Another has populated it */
4180 p4d_free(mm, new);
4181 else
4182 pgd_populate(mm, pgd, new);
4183 spin_unlock(&mm->page_table_lock);
4184 return 0;
4185}
4186#endif /* __PAGETABLE_P4D_FOLDED */
4187
1da177e4
LT
4188#ifndef __PAGETABLE_PUD_FOLDED
4189/*
4190 * Allocate page upper directory.
872fec16 4191 * We've already handled the fast-path in-line.
1da177e4 4192 */
c2febafc 4193int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4194{
c74df32c
HD
4195 pud_t *new = pud_alloc_one(mm, address);
4196 if (!new)
1bb3630e 4197 return -ENOMEM;
1da177e4 4198
362a61ad
NP
4199 smp_wmb(); /* See comment in __pte_alloc */
4200
872fec16 4201 spin_lock(&mm->page_table_lock);
c2febafc 4202#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4203 if (!p4d_present(*p4d)) {
4204 mm_inc_nr_puds(mm);
c2febafc 4205 p4d_populate(mm, p4d, new);
b4e98d9a 4206 } else /* Another has populated it */
5e541973 4207 pud_free(mm, new);
b4e98d9a
KS
4208#else
4209 if (!pgd_present(*p4d)) {
4210 mm_inc_nr_puds(mm);
c2febafc 4211 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4212 } else /* Another has populated it */
4213 pud_free(mm, new);
c2febafc 4214#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4215 spin_unlock(&mm->page_table_lock);
1bb3630e 4216 return 0;
1da177e4
LT
4217}
4218#endif /* __PAGETABLE_PUD_FOLDED */
4219
4220#ifndef __PAGETABLE_PMD_FOLDED
4221/*
4222 * Allocate page middle directory.
872fec16 4223 * We've already handled the fast-path in-line.
1da177e4 4224 */
1bb3630e 4225int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4226{
a00cc7d9 4227 spinlock_t *ptl;
c74df32c
HD
4228 pmd_t *new = pmd_alloc_one(mm, address);
4229 if (!new)
1bb3630e 4230 return -ENOMEM;
1da177e4 4231
362a61ad
NP
4232 smp_wmb(); /* See comment in __pte_alloc */
4233
a00cc7d9 4234 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4235 if (!pud_present(*pud)) {
4236 mm_inc_nr_pmds(mm);
1bb3630e 4237 pud_populate(mm, pud, new);
dc6c9a35 4238 } else /* Another has populated it */
5e541973 4239 pmd_free(mm, new);
a00cc7d9 4240 spin_unlock(ptl);
1bb3630e 4241 return 0;
e0f39591 4242}
1da177e4
LT
4243#endif /* __PAGETABLE_PMD_FOLDED */
4244
09796395 4245static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4246 struct mmu_notifier_range *range,
a4d1a885 4247 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4248{
4249 pgd_t *pgd;
c2febafc 4250 p4d_t *p4d;
f8ad0f49
JW
4251 pud_t *pud;
4252 pmd_t *pmd;
4253 pte_t *ptep;
4254
4255 pgd = pgd_offset(mm, address);
4256 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4257 goto out;
4258
c2febafc
KS
4259 p4d = p4d_offset(pgd, address);
4260 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4261 goto out;
4262
4263 pud = pud_offset(p4d, address);
f8ad0f49
JW
4264 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4265 goto out;
4266
4267 pmd = pmd_offset(pud, address);
f66055ab 4268 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4269
09796395
RZ
4270 if (pmd_huge(*pmd)) {
4271 if (!pmdpp)
4272 goto out;
4273
ac46d4f3 4274 if (range) {
7269f999 4275 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4276 NULL, mm, address & PMD_MASK,
4277 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4278 mmu_notifier_invalidate_range_start(range);
a4d1a885 4279 }
09796395
RZ
4280 *ptlp = pmd_lock(mm, pmd);
4281 if (pmd_huge(*pmd)) {
4282 *pmdpp = pmd;
4283 return 0;
4284 }
4285 spin_unlock(*ptlp);
ac46d4f3
JG
4286 if (range)
4287 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4288 }
4289
4290 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4291 goto out;
4292
ac46d4f3 4293 if (range) {
7269f999 4294 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4295 address & PAGE_MASK,
4296 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4297 mmu_notifier_invalidate_range_start(range);
a4d1a885 4298 }
f8ad0f49 4299 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4300 if (!pte_present(*ptep))
4301 goto unlock;
4302 *ptepp = ptep;
4303 return 0;
4304unlock:
4305 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4306 if (range)
4307 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4308out:
4309 return -EINVAL;
4310}
4311
f729c8c9
RZ
4312static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4313 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4314{
4315 int res;
4316
4317 /* (void) is needed to make gcc happy */
4318 (void) __cond_lock(*ptlp,
ac46d4f3 4319 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4320 ptepp, NULL, ptlp)));
09796395
RZ
4321 return res;
4322}
4323
4324int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4325 struct mmu_notifier_range *range,
4326 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4327{
4328 int res;
4329
4330 /* (void) is needed to make gcc happy */
4331 (void) __cond_lock(*ptlp,
ac46d4f3 4332 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4333 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4334 return res;
4335}
09796395 4336EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4337
3b6748e2
JW
4338/**
4339 * follow_pfn - look up PFN at a user virtual address
4340 * @vma: memory mapping
4341 * @address: user virtual address
4342 * @pfn: location to store found PFN
4343 *
4344 * Only IO mappings and raw PFN mappings are allowed.
4345 *
a862f68a 4346 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4347 */
4348int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4349 unsigned long *pfn)
4350{
4351 int ret = -EINVAL;
4352 spinlock_t *ptl;
4353 pte_t *ptep;
4354
4355 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4356 return ret;
4357
4358 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4359 if (ret)
4360 return ret;
4361 *pfn = pte_pfn(*ptep);
4362 pte_unmap_unlock(ptep, ptl);
4363 return 0;
4364}
4365EXPORT_SYMBOL(follow_pfn);
4366
28b2ee20 4367#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4368int follow_phys(struct vm_area_struct *vma,
4369 unsigned long address, unsigned int flags,
4370 unsigned long *prot, resource_size_t *phys)
28b2ee20 4371{
03668a4d 4372 int ret = -EINVAL;
28b2ee20
RR
4373 pte_t *ptep, pte;
4374 spinlock_t *ptl;
28b2ee20 4375
d87fe660 4376 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4377 goto out;
28b2ee20 4378
03668a4d 4379 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4380 goto out;
28b2ee20 4381 pte = *ptep;
03668a4d 4382
f6f37321 4383 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4384 goto unlock;
28b2ee20
RR
4385
4386 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4387 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4388
03668a4d 4389 ret = 0;
28b2ee20
RR
4390unlock:
4391 pte_unmap_unlock(ptep, ptl);
4392out:
d87fe660 4393 return ret;
28b2ee20
RR
4394}
4395
4396int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4397 void *buf, int len, int write)
4398{
4399 resource_size_t phys_addr;
4400 unsigned long prot = 0;
2bc7273b 4401 void __iomem *maddr;
28b2ee20
RR
4402 int offset = addr & (PAGE_SIZE-1);
4403
d87fe660 4404 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4405 return -EINVAL;
4406
9cb12d7b 4407 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4408 if (!maddr)
4409 return -ENOMEM;
4410
28b2ee20
RR
4411 if (write)
4412 memcpy_toio(maddr + offset, buf, len);
4413 else
4414 memcpy_fromio(buf, maddr + offset, len);
4415 iounmap(maddr);
4416
4417 return len;
4418}
5a73633e 4419EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4420#endif
4421
0ec76a11 4422/*
206cb636
SW
4423 * Access another process' address space as given in mm. If non-NULL, use the
4424 * given task for page fault accounting.
0ec76a11 4425 */
84d77d3f 4426int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4427 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4428{
0ec76a11 4429 struct vm_area_struct *vma;
0ec76a11 4430 void *old_buf = buf;
442486ec 4431 int write = gup_flags & FOLL_WRITE;
0ec76a11 4432
1e426fe2
KK
4433 if (down_read_killable(&mm->mmap_sem))
4434 return 0;
4435
183ff22b 4436 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4437 while (len) {
4438 int bytes, ret, offset;
4439 void *maddr;
28b2ee20 4440 struct page *page = NULL;
0ec76a11 4441
1e987790 4442 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4443 gup_flags, &page, &vma, NULL);
28b2ee20 4444 if (ret <= 0) {
dbffcd03
RR
4445#ifndef CONFIG_HAVE_IOREMAP_PROT
4446 break;
4447#else
28b2ee20
RR
4448 /*
4449 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4450 * we can access using slightly different code.
4451 */
28b2ee20 4452 vma = find_vma(mm, addr);
fe936dfc 4453 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4454 break;
4455 if (vma->vm_ops && vma->vm_ops->access)
4456 ret = vma->vm_ops->access(vma, addr, buf,
4457 len, write);
4458 if (ret <= 0)
28b2ee20
RR
4459 break;
4460 bytes = ret;
dbffcd03 4461#endif
0ec76a11 4462 } else {
28b2ee20
RR
4463 bytes = len;
4464 offset = addr & (PAGE_SIZE-1);
4465 if (bytes > PAGE_SIZE-offset)
4466 bytes = PAGE_SIZE-offset;
4467
4468 maddr = kmap(page);
4469 if (write) {
4470 copy_to_user_page(vma, page, addr,
4471 maddr + offset, buf, bytes);
4472 set_page_dirty_lock(page);
4473 } else {
4474 copy_from_user_page(vma, page, addr,
4475 buf, maddr + offset, bytes);
4476 }
4477 kunmap(page);
09cbfeaf 4478 put_page(page);
0ec76a11 4479 }
0ec76a11
DH
4480 len -= bytes;
4481 buf += bytes;
4482 addr += bytes;
4483 }
4484 up_read(&mm->mmap_sem);
0ec76a11
DH
4485
4486 return buf - old_buf;
4487}
03252919 4488
5ddd36b9 4489/**
ae91dbfc 4490 * access_remote_vm - access another process' address space
5ddd36b9
SW
4491 * @mm: the mm_struct of the target address space
4492 * @addr: start address to access
4493 * @buf: source or destination buffer
4494 * @len: number of bytes to transfer
6347e8d5 4495 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4496 *
4497 * The caller must hold a reference on @mm.
a862f68a
MR
4498 *
4499 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4500 */
4501int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4502 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4503{
6347e8d5 4504 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4505}
4506
206cb636
SW
4507/*
4508 * Access another process' address space.
4509 * Source/target buffer must be kernel space,
4510 * Do not walk the page table directly, use get_user_pages
4511 */
4512int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4513 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4514{
4515 struct mm_struct *mm;
4516 int ret;
4517
4518 mm = get_task_mm(tsk);
4519 if (!mm)
4520 return 0;
4521
f307ab6d 4522 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4523
206cb636
SW
4524 mmput(mm);
4525
4526 return ret;
4527}
fcd35857 4528EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4529
03252919
AK
4530/*
4531 * Print the name of a VMA.
4532 */
4533void print_vma_addr(char *prefix, unsigned long ip)
4534{
4535 struct mm_struct *mm = current->mm;
4536 struct vm_area_struct *vma;
4537
e8bff74a 4538 /*
0a7f682d 4539 * we might be running from an atomic context so we cannot sleep
e8bff74a 4540 */
0a7f682d 4541 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4542 return;
4543
03252919
AK
4544 vma = find_vma(mm, ip);
4545 if (vma && vma->vm_file) {
4546 struct file *f = vma->vm_file;
0a7f682d 4547 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4548 if (buf) {
2fbc57c5 4549 char *p;
03252919 4550
9bf39ab2 4551 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4552 if (IS_ERR(p))
4553 p = "?";
2fbc57c5 4554 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4555 vma->vm_start,
4556 vma->vm_end - vma->vm_start);
4557 free_page((unsigned long)buf);
4558 }
4559 }
51a07e50 4560 up_read(&mm->mmap_sem);
03252919 4561}
3ee1afa3 4562
662bbcb2 4563#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4564void __might_fault(const char *file, int line)
3ee1afa3 4565{
95156f00
PZ
4566 /*
4567 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4568 * holding the mmap_sem, this is safe because kernel memory doesn't
4569 * get paged out, therefore we'll never actually fault, and the
4570 * below annotations will generate false positives.
4571 */
db68ce10 4572 if (uaccess_kernel())
95156f00 4573 return;
9ec23531 4574 if (pagefault_disabled())
662bbcb2 4575 return;
9ec23531
DH
4576 __might_sleep(file, line, 0);
4577#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4578 if (current->mm)
3ee1afa3 4579 might_lock_read(&current->mm->mmap_sem);
9ec23531 4580#endif
3ee1afa3 4581}
9ec23531 4582EXPORT_SYMBOL(__might_fault);
3ee1afa3 4583#endif
47ad8475
AA
4584
4585#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4586/*
4587 * Process all subpages of the specified huge page with the specified
4588 * operation. The target subpage will be processed last to keep its
4589 * cache lines hot.
4590 */
4591static inline void process_huge_page(
4592 unsigned long addr_hint, unsigned int pages_per_huge_page,
4593 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4594 void *arg)
47ad8475 4595{
c79b57e4
HY
4596 int i, n, base, l;
4597 unsigned long addr = addr_hint &
4598 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4599
c6ddfb6c 4600 /* Process target subpage last to keep its cache lines hot */
47ad8475 4601 might_sleep();
c79b57e4
HY
4602 n = (addr_hint - addr) / PAGE_SIZE;
4603 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4604 /* If target subpage in first half of huge page */
c79b57e4
HY
4605 base = 0;
4606 l = n;
c6ddfb6c 4607 /* Process subpages at the end of huge page */
c79b57e4
HY
4608 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4609 cond_resched();
c6ddfb6c 4610 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4611 }
4612 } else {
c6ddfb6c 4613 /* If target subpage in second half of huge page */
c79b57e4
HY
4614 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4615 l = pages_per_huge_page - n;
c6ddfb6c 4616 /* Process subpages at the begin of huge page */
c79b57e4
HY
4617 for (i = 0; i < base; i++) {
4618 cond_resched();
c6ddfb6c 4619 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4620 }
4621 }
4622 /*
c6ddfb6c
HY
4623 * Process remaining subpages in left-right-left-right pattern
4624 * towards the target subpage
c79b57e4
HY
4625 */
4626 for (i = 0; i < l; i++) {
4627 int left_idx = base + i;
4628 int right_idx = base + 2 * l - 1 - i;
4629
4630 cond_resched();
c6ddfb6c 4631 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4632 cond_resched();
c6ddfb6c 4633 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4634 }
4635}
4636
c6ddfb6c
HY
4637static void clear_gigantic_page(struct page *page,
4638 unsigned long addr,
4639 unsigned int pages_per_huge_page)
4640{
4641 int i;
4642 struct page *p = page;
4643
4644 might_sleep();
4645 for (i = 0; i < pages_per_huge_page;
4646 i++, p = mem_map_next(p, page, i)) {
4647 cond_resched();
4648 clear_user_highpage(p, addr + i * PAGE_SIZE);
4649 }
4650}
4651
4652static void clear_subpage(unsigned long addr, int idx, void *arg)
4653{
4654 struct page *page = arg;
4655
4656 clear_user_highpage(page + idx, addr);
4657}
4658
4659void clear_huge_page(struct page *page,
4660 unsigned long addr_hint, unsigned int pages_per_huge_page)
4661{
4662 unsigned long addr = addr_hint &
4663 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4664
4665 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4666 clear_gigantic_page(page, addr, pages_per_huge_page);
4667 return;
4668 }
4669
4670 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4671}
4672
47ad8475
AA
4673static void copy_user_gigantic_page(struct page *dst, struct page *src,
4674 unsigned long addr,
4675 struct vm_area_struct *vma,
4676 unsigned int pages_per_huge_page)
4677{
4678 int i;
4679 struct page *dst_base = dst;
4680 struct page *src_base = src;
4681
4682 for (i = 0; i < pages_per_huge_page; ) {
4683 cond_resched();
4684 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4685
4686 i++;
4687 dst = mem_map_next(dst, dst_base, i);
4688 src = mem_map_next(src, src_base, i);
4689 }
4690}
4691
c9f4cd71
HY
4692struct copy_subpage_arg {
4693 struct page *dst;
4694 struct page *src;
4695 struct vm_area_struct *vma;
4696};
4697
4698static void copy_subpage(unsigned long addr, int idx, void *arg)
4699{
4700 struct copy_subpage_arg *copy_arg = arg;
4701
4702 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4703 addr, copy_arg->vma);
4704}
4705
47ad8475 4706void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4707 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4708 unsigned int pages_per_huge_page)
4709{
c9f4cd71
HY
4710 unsigned long addr = addr_hint &
4711 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4712 struct copy_subpage_arg arg = {
4713 .dst = dst,
4714 .src = src,
4715 .vma = vma,
4716 };
47ad8475
AA
4717
4718 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4719 copy_user_gigantic_page(dst, src, addr, vma,
4720 pages_per_huge_page);
4721 return;
4722 }
4723
c9f4cd71 4724 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4725}
fa4d75c1
MK
4726
4727long copy_huge_page_from_user(struct page *dst_page,
4728 const void __user *usr_src,
810a56b9
MK
4729 unsigned int pages_per_huge_page,
4730 bool allow_pagefault)
fa4d75c1
MK
4731{
4732 void *src = (void *)usr_src;
4733 void *page_kaddr;
4734 unsigned long i, rc = 0;
4735 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4736
4737 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4738 if (allow_pagefault)
4739 page_kaddr = kmap(dst_page + i);
4740 else
4741 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4742 rc = copy_from_user(page_kaddr,
4743 (const void __user *)(src + i * PAGE_SIZE),
4744 PAGE_SIZE);
810a56b9
MK
4745 if (allow_pagefault)
4746 kunmap(dst_page + i);
4747 else
4748 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4749
4750 ret_val -= (PAGE_SIZE - rc);
4751 if (rc)
4752 break;
4753
4754 cond_resched();
4755 }
4756 return ret_val;
4757}
47ad8475 4758#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4759
40b64acd 4760#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4761
4762static struct kmem_cache *page_ptl_cachep;
4763
4764void __init ptlock_cache_init(void)
4765{
4766 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4767 SLAB_PANIC, NULL);
4768}
4769
539edb58 4770bool ptlock_alloc(struct page *page)
49076ec2
KS
4771{
4772 spinlock_t *ptl;
4773
b35f1819 4774 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4775 if (!ptl)
4776 return false;
539edb58 4777 page->ptl = ptl;
49076ec2
KS
4778 return true;
4779}
4780
539edb58 4781void ptlock_free(struct page *page)
49076ec2 4782{
b35f1819 4783 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4784}
4785#endif