]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memory.c
mm: fix double mmap_sem unlock on MMF_UNSTABLE enforced SIGBUS
[mirror_ubuntu-artful-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
9a840895 52#include <linux/ksm.h>
1da177e4 53#include <linux/rmap.h>
b95f1b31 54#include <linux/export.h>
0ff92245 55#include <linux/delayacct.h>
1da177e4 56#include <linux/init.h>
01c8f1c4 57#include <linux/pfn_t.h>
edc79b2a 58#include <linux/writeback.h>
8a9f3ccd 59#include <linux/memcontrol.h>
cddb8a5c 60#include <linux/mmu_notifier.h>
3dc14741
HD
61#include <linux/kallsyms.h>
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
1da177e4 71
6952b61d 72#include <asm/io.h>
33a709b2 73#include <asm/mmu_context.h>
1da177e4 74#include <asm/pgalloc.h>
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4
LT
76#include <asm/tlb.h>
77#include <asm/tlbflush.h>
78#include <asm/pgtable.h>
79
42b77728
JB
80#include "internal.h"
81
90572890
PZ
82#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
83#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
84#endif
85
d41dee36 86#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
87/* use the per-pgdat data instead for discontigmem - mbligh */
88unsigned long max_mapnr;
1da177e4 89EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
90
91struct page *mem_map;
1da177e4
LT
92EXPORT_SYMBOL(mem_map);
93#endif
94
1da177e4
LT
95/*
96 * A number of key systems in x86 including ioremap() rely on the assumption
97 * that high_memory defines the upper bound on direct map memory, then end
98 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
99 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
100 * and ZONE_HIGHMEM.
101 */
166f61b9 102void *high_memory;
1da177e4 103EXPORT_SYMBOL(high_memory);
1da177e4 104
32a93233
IM
105/*
106 * Randomize the address space (stacks, mmaps, brk, etc.).
107 *
108 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
109 * as ancient (libc5 based) binaries can segfault. )
110 */
111int randomize_va_space __read_mostly =
112#ifdef CONFIG_COMPAT_BRK
113 1;
114#else
115 2;
116#endif
a62eaf15
AK
117
118static int __init disable_randmaps(char *s)
119{
120 randomize_va_space = 0;
9b41046c 121 return 1;
a62eaf15
AK
122}
123__setup("norandmaps", disable_randmaps);
124
62eede62 125unsigned long zero_pfn __read_mostly;
0b70068e
AB
126EXPORT_SYMBOL(zero_pfn);
127
166f61b9
TH
128unsigned long highest_memmap_pfn __read_mostly;
129
a13ea5b7
HD
130/*
131 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
132 */
133static int __init init_zero_pfn(void)
134{
135 zero_pfn = page_to_pfn(ZERO_PAGE(0));
136 return 0;
137}
138core_initcall(init_zero_pfn);
a62eaf15 139
d559db08 140
34e55232
KH
141#if defined(SPLIT_RSS_COUNTING)
142
ea48cf78 143void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
144{
145 int i;
146
147 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
148 if (current->rss_stat.count[i]) {
149 add_mm_counter(mm, i, current->rss_stat.count[i]);
150 current->rss_stat.count[i] = 0;
34e55232
KH
151 }
152 }
05af2e10 153 current->rss_stat.events = 0;
34e55232
KH
154}
155
156static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
157{
158 struct task_struct *task = current;
159
160 if (likely(task->mm == mm))
161 task->rss_stat.count[member] += val;
162 else
163 add_mm_counter(mm, member, val);
164}
165#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
166#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
167
168/* sync counter once per 64 page faults */
169#define TASK_RSS_EVENTS_THRESH (64)
170static void check_sync_rss_stat(struct task_struct *task)
171{
172 if (unlikely(task != current))
173 return;
174 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 175 sync_mm_rss(task->mm);
34e55232 176}
9547d01b 177#else /* SPLIT_RSS_COUNTING */
34e55232
KH
178
179#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
180#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
181
182static void check_sync_rss_stat(struct task_struct *task)
183{
184}
185
9547d01b
PZ
186#endif /* SPLIT_RSS_COUNTING */
187
188#ifdef HAVE_GENERIC_MMU_GATHER
189
ca1d6c7d 190static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
191{
192 struct mmu_gather_batch *batch;
193
194 batch = tlb->active;
195 if (batch->next) {
196 tlb->active = batch->next;
ca1d6c7d 197 return true;
9547d01b
PZ
198 }
199
53a59fc6 200 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 201 return false;
53a59fc6 202
9547d01b
PZ
203 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
204 if (!batch)
ca1d6c7d 205 return false;
9547d01b 206
53a59fc6 207 tlb->batch_count++;
9547d01b
PZ
208 batch->next = NULL;
209 batch->nr = 0;
210 batch->max = MAX_GATHER_BATCH;
211
212 tlb->active->next = batch;
213 tlb->active = batch;
214
ca1d6c7d 215 return true;
9547d01b
PZ
216}
217
56236a59
MK
218void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
219 unsigned long start, unsigned long end)
9547d01b
PZ
220{
221 tlb->mm = mm;
222
2b047252
LT
223 /* Is it from 0 to ~0? */
224 tlb->fullmm = !(start | (end+1));
1de14c3c 225 tlb->need_flush_all = 0;
9547d01b
PZ
226 tlb->local.next = NULL;
227 tlb->local.nr = 0;
228 tlb->local.max = ARRAY_SIZE(tlb->__pages);
229 tlb->active = &tlb->local;
53a59fc6 230 tlb->batch_count = 0;
9547d01b
PZ
231
232#ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 tlb->batch = NULL;
234#endif
e77b0852 235 tlb->page_size = 0;
fb7332a9
WD
236
237 __tlb_reset_range(tlb);
9547d01b
PZ
238}
239
1cf35d47 240static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 241{
721c21c1
WD
242 if (!tlb->end)
243 return;
244
9547d01b 245 tlb_flush(tlb);
34ee645e 246 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
247#ifdef CONFIG_HAVE_RCU_TABLE_FREE
248 tlb_table_flush(tlb);
34e55232 249#endif
fb7332a9 250 __tlb_reset_range(tlb);
1cf35d47
LT
251}
252
253static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254{
255 struct mmu_gather_batch *batch;
34e55232 256
721c21c1 257 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
258 free_pages_and_swap_cache(batch->pages, batch->nr);
259 batch->nr = 0;
260 }
261 tlb->active = &tlb->local;
262}
263
1cf35d47
LT
264void tlb_flush_mmu(struct mmu_gather *tlb)
265{
1cf35d47
LT
266 tlb_flush_mmu_tlbonly(tlb);
267 tlb_flush_mmu_free(tlb);
268}
269
9547d01b
PZ
270/* tlb_finish_mmu
271 * Called at the end of the shootdown operation to free up any resources
272 * that were required.
273 */
56236a59 274void arch_tlb_finish_mmu(struct mmu_gather *tlb,
99baac21 275 unsigned long start, unsigned long end, bool force)
9547d01b
PZ
276{
277 struct mmu_gather_batch *batch, *next;
278
99baac21
MK
279 if (force)
280 __tlb_adjust_range(tlb, start, end - start);
281
9547d01b
PZ
282 tlb_flush_mmu(tlb);
283
284 /* keep the page table cache within bounds */
285 check_pgt_cache();
286
287 for (batch = tlb->local.next; batch; batch = next) {
288 next = batch->next;
289 free_pages((unsigned long)batch, 0);
290 }
291 tlb->local.next = NULL;
292}
293
294/* __tlb_remove_page
295 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
296 * handling the additional races in SMP caused by other CPUs caching valid
297 * mappings in their TLBs. Returns the number of free page slots left.
298 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 299 *returns true if the caller should flush.
9547d01b 300 */
e77b0852 301bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
9547d01b
PZ
302{
303 struct mmu_gather_batch *batch;
304
fb7332a9 305 VM_BUG_ON(!tlb->end);
692a68c1 306 VM_WARN_ON(tlb->page_size != page_size);
e77b0852 307
9547d01b 308 batch = tlb->active;
692a68c1
AK
309 /*
310 * Add the page and check if we are full. If so
311 * force a flush.
312 */
313 batch->pages[batch->nr++] = page;
9547d01b
PZ
314 if (batch->nr == batch->max) {
315 if (!tlb_next_batch(tlb))
e9d55e15 316 return true;
0b43c3aa 317 batch = tlb->active;
9547d01b 318 }
309381fe 319 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 320
e9d55e15 321 return false;
9547d01b
PZ
322}
323
324#endif /* HAVE_GENERIC_MMU_GATHER */
325
26723911
PZ
326#ifdef CONFIG_HAVE_RCU_TABLE_FREE
327
328/*
329 * See the comment near struct mmu_table_batch.
330 */
331
332static void tlb_remove_table_smp_sync(void *arg)
333{
334 /* Simply deliver the interrupt */
335}
336
337static void tlb_remove_table_one(void *table)
338{
339 /*
340 * This isn't an RCU grace period and hence the page-tables cannot be
341 * assumed to be actually RCU-freed.
342 *
343 * It is however sufficient for software page-table walkers that rely on
344 * IRQ disabling. See the comment near struct mmu_table_batch.
345 */
346 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
347 __tlb_remove_table(table);
348}
349
350static void tlb_remove_table_rcu(struct rcu_head *head)
351{
352 struct mmu_table_batch *batch;
353 int i;
354
355 batch = container_of(head, struct mmu_table_batch, rcu);
356
357 for (i = 0; i < batch->nr; i++)
358 __tlb_remove_table(batch->tables[i]);
359
360 free_page((unsigned long)batch);
361}
362
363void tlb_table_flush(struct mmu_gather *tlb)
364{
365 struct mmu_table_batch **batch = &tlb->batch;
366
367 if (*batch) {
368 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
369 *batch = NULL;
370 }
371}
372
373void tlb_remove_table(struct mmu_gather *tlb, void *table)
374{
375 struct mmu_table_batch **batch = &tlb->batch;
376
26723911
PZ
377 /*
378 * When there's less then two users of this mm there cannot be a
379 * concurrent page-table walk.
380 */
381 if (atomic_read(&tlb->mm->mm_users) < 2) {
382 __tlb_remove_table(table);
383 return;
384 }
385
386 if (*batch == NULL) {
387 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
388 if (*batch == NULL) {
389 tlb_remove_table_one(table);
390 return;
391 }
392 (*batch)->nr = 0;
393 }
394 (*batch)->tables[(*batch)->nr++] = table;
395 if ((*batch)->nr == MAX_TABLE_BATCH)
396 tlb_table_flush(tlb);
397}
398
9547d01b 399#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 400
56236a59
MK
401/* tlb_gather_mmu
402 * Called to initialize an (on-stack) mmu_gather structure for page-table
403 * tear-down from @mm. The @fullmm argument is used when @mm is without
404 * users and we're going to destroy the full address space (exit/execve).
405 */
406void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
407 unsigned long start, unsigned long end)
408{
409 arch_tlb_gather_mmu(tlb, mm, start, end);
99baac21 410 inc_tlb_flush_pending(tlb->mm);
56236a59
MK
411}
412
413void tlb_finish_mmu(struct mmu_gather *tlb,
414 unsigned long start, unsigned long end)
415{
99baac21
MK
416 /*
417 * If there are parallel threads are doing PTE changes on same range
418 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
419 * flush by batching, a thread has stable TLB entry can fail to flush
420 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
421 * forcefully if we detect parallel PTE batching threads.
422 */
423 bool force = mm_tlb_flush_nested(tlb->mm);
424
425 arch_tlb_finish_mmu(tlb, start, end, force);
426 dec_tlb_flush_pending(tlb->mm);
56236a59
MK
427}
428
1da177e4
LT
429/*
430 * Note: this doesn't free the actual pages themselves. That
431 * has been handled earlier when unmapping all the memory regions.
432 */
9e1b32ca
BH
433static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
434 unsigned long addr)
1da177e4 435{
2f569afd 436 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 437 pmd_clear(pmd);
9e1b32ca 438 pte_free_tlb(tlb, token, addr);
e1f56c89 439 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
440}
441
e0da382c
HD
442static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
443 unsigned long addr, unsigned long end,
444 unsigned long floor, unsigned long ceiling)
1da177e4
LT
445{
446 pmd_t *pmd;
447 unsigned long next;
e0da382c 448 unsigned long start;
1da177e4 449
e0da382c 450 start = addr;
1da177e4 451 pmd = pmd_offset(pud, addr);
1da177e4
LT
452 do {
453 next = pmd_addr_end(addr, end);
454 if (pmd_none_or_clear_bad(pmd))
455 continue;
9e1b32ca 456 free_pte_range(tlb, pmd, addr);
1da177e4
LT
457 } while (pmd++, addr = next, addr != end);
458
e0da382c
HD
459 start &= PUD_MASK;
460 if (start < floor)
461 return;
462 if (ceiling) {
463 ceiling &= PUD_MASK;
464 if (!ceiling)
465 return;
1da177e4 466 }
e0da382c
HD
467 if (end - 1 > ceiling - 1)
468 return;
469
470 pmd = pmd_offset(pud, start);
471 pud_clear(pud);
9e1b32ca 472 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 473 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
474}
475
c2febafc 476static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
477 unsigned long addr, unsigned long end,
478 unsigned long floor, unsigned long ceiling)
1da177e4
LT
479{
480 pud_t *pud;
481 unsigned long next;
e0da382c 482 unsigned long start;
1da177e4 483
e0da382c 484 start = addr;
c2febafc 485 pud = pud_offset(p4d, addr);
1da177e4
LT
486 do {
487 next = pud_addr_end(addr, end);
488 if (pud_none_or_clear_bad(pud))
489 continue;
e0da382c 490 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
491 } while (pud++, addr = next, addr != end);
492
c2febafc
KS
493 start &= P4D_MASK;
494 if (start < floor)
495 return;
496 if (ceiling) {
497 ceiling &= P4D_MASK;
498 if (!ceiling)
499 return;
500 }
501 if (end - 1 > ceiling - 1)
502 return;
503
504 pud = pud_offset(p4d, start);
505 p4d_clear(p4d);
506 pud_free_tlb(tlb, pud, start);
507}
508
509static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
510 unsigned long addr, unsigned long end,
511 unsigned long floor, unsigned long ceiling)
512{
513 p4d_t *p4d;
514 unsigned long next;
515 unsigned long start;
516
517 start = addr;
518 p4d = p4d_offset(pgd, addr);
519 do {
520 next = p4d_addr_end(addr, end);
521 if (p4d_none_or_clear_bad(p4d))
522 continue;
523 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
524 } while (p4d++, addr = next, addr != end);
525
e0da382c
HD
526 start &= PGDIR_MASK;
527 if (start < floor)
528 return;
529 if (ceiling) {
530 ceiling &= PGDIR_MASK;
531 if (!ceiling)
532 return;
1da177e4 533 }
e0da382c
HD
534 if (end - 1 > ceiling - 1)
535 return;
536
c2febafc 537 p4d = p4d_offset(pgd, start);
e0da382c 538 pgd_clear(pgd);
c2febafc 539 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
540}
541
542/*
e0da382c 543 * This function frees user-level page tables of a process.
1da177e4 544 */
42b77728 545void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
546 unsigned long addr, unsigned long end,
547 unsigned long floor, unsigned long ceiling)
1da177e4
LT
548{
549 pgd_t *pgd;
550 unsigned long next;
e0da382c
HD
551
552 /*
553 * The next few lines have given us lots of grief...
554 *
555 * Why are we testing PMD* at this top level? Because often
556 * there will be no work to do at all, and we'd prefer not to
557 * go all the way down to the bottom just to discover that.
558 *
559 * Why all these "- 1"s? Because 0 represents both the bottom
560 * of the address space and the top of it (using -1 for the
561 * top wouldn't help much: the masks would do the wrong thing).
562 * The rule is that addr 0 and floor 0 refer to the bottom of
563 * the address space, but end 0 and ceiling 0 refer to the top
564 * Comparisons need to use "end - 1" and "ceiling - 1" (though
565 * that end 0 case should be mythical).
566 *
567 * Wherever addr is brought up or ceiling brought down, we must
568 * be careful to reject "the opposite 0" before it confuses the
569 * subsequent tests. But what about where end is brought down
570 * by PMD_SIZE below? no, end can't go down to 0 there.
571 *
572 * Whereas we round start (addr) and ceiling down, by different
573 * masks at different levels, in order to test whether a table
574 * now has no other vmas using it, so can be freed, we don't
575 * bother to round floor or end up - the tests don't need that.
576 */
1da177e4 577
e0da382c
HD
578 addr &= PMD_MASK;
579 if (addr < floor) {
580 addr += PMD_SIZE;
581 if (!addr)
582 return;
583 }
584 if (ceiling) {
585 ceiling &= PMD_MASK;
586 if (!ceiling)
587 return;
588 }
589 if (end - 1 > ceiling - 1)
590 end -= PMD_SIZE;
591 if (addr > end - 1)
592 return;
07e32661
AK
593 /*
594 * We add page table cache pages with PAGE_SIZE,
595 * (see pte_free_tlb()), flush the tlb if we need
596 */
597 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 598 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
599 do {
600 next = pgd_addr_end(addr, end);
601 if (pgd_none_or_clear_bad(pgd))
602 continue;
c2febafc 603 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 604 } while (pgd++, addr = next, addr != end);
e0da382c
HD
605}
606
42b77728 607void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 608 unsigned long floor, unsigned long ceiling)
e0da382c
HD
609{
610 while (vma) {
611 struct vm_area_struct *next = vma->vm_next;
612 unsigned long addr = vma->vm_start;
613
8f4f8c16 614 /*
25d9e2d1 615 * Hide vma from rmap and truncate_pagecache before freeing
616 * pgtables
8f4f8c16 617 */
5beb4930 618 unlink_anon_vmas(vma);
8f4f8c16
HD
619 unlink_file_vma(vma);
620
9da61aef 621 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 622 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 623 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
624 } else {
625 /*
626 * Optimization: gather nearby vmas into one call down
627 */
628 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 629 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
630 vma = next;
631 next = vma->vm_next;
5beb4930 632 unlink_anon_vmas(vma);
8f4f8c16 633 unlink_file_vma(vma);
3bf5ee95
HD
634 }
635 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 636 floor, next ? next->vm_start : ceiling);
3bf5ee95 637 }
e0da382c
HD
638 vma = next;
639 }
1da177e4
LT
640}
641
3ed3a4f0 642int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 643{
c4088ebd 644 spinlock_t *ptl;
2f569afd 645 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
646 if (!new)
647 return -ENOMEM;
648
362a61ad
NP
649 /*
650 * Ensure all pte setup (eg. pte page lock and page clearing) are
651 * visible before the pte is made visible to other CPUs by being
652 * put into page tables.
653 *
654 * The other side of the story is the pointer chasing in the page
655 * table walking code (when walking the page table without locking;
656 * ie. most of the time). Fortunately, these data accesses consist
657 * of a chain of data-dependent loads, meaning most CPUs (alpha
658 * being the notable exception) will already guarantee loads are
659 * seen in-order. See the alpha page table accessors for the
660 * smp_read_barrier_depends() barriers in page table walking code.
661 */
662 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
663
c4088ebd 664 ptl = pmd_lock(mm, pmd);
8ac1f832 665 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 666 atomic_long_inc(&mm->nr_ptes);
1da177e4 667 pmd_populate(mm, pmd, new);
2f569afd 668 new = NULL;
4b471e88 669 }
c4088ebd 670 spin_unlock(ptl);
2f569afd
MS
671 if (new)
672 pte_free(mm, new);
1bb3630e 673 return 0;
1da177e4
LT
674}
675
1bb3630e 676int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 677{
1bb3630e
HD
678 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
679 if (!new)
680 return -ENOMEM;
681
362a61ad
NP
682 smp_wmb(); /* See comment in __pte_alloc */
683
1bb3630e 684 spin_lock(&init_mm.page_table_lock);
8ac1f832 685 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 686 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 687 new = NULL;
4b471e88 688 }
1bb3630e 689 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
690 if (new)
691 pte_free_kernel(&init_mm, new);
1bb3630e 692 return 0;
1da177e4
LT
693}
694
d559db08
KH
695static inline void init_rss_vec(int *rss)
696{
697 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
698}
699
700static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 701{
d559db08
KH
702 int i;
703
34e55232 704 if (current->mm == mm)
05af2e10 705 sync_mm_rss(mm);
d559db08
KH
706 for (i = 0; i < NR_MM_COUNTERS; i++)
707 if (rss[i])
708 add_mm_counter(mm, i, rss[i]);
ae859762
HD
709}
710
b5810039 711/*
6aab341e
LT
712 * This function is called to print an error when a bad pte
713 * is found. For example, we might have a PFN-mapped pte in
714 * a region that doesn't allow it.
b5810039
NP
715 *
716 * The calling function must still handle the error.
717 */
3dc14741
HD
718static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
719 pte_t pte, struct page *page)
b5810039 720{
3dc14741 721 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
722 p4d_t *p4d = p4d_offset(pgd, addr);
723 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
724 pmd_t *pmd = pmd_offset(pud, addr);
725 struct address_space *mapping;
726 pgoff_t index;
d936cf9b
HD
727 static unsigned long resume;
728 static unsigned long nr_shown;
729 static unsigned long nr_unshown;
730
731 /*
732 * Allow a burst of 60 reports, then keep quiet for that minute;
733 * or allow a steady drip of one report per second.
734 */
735 if (nr_shown == 60) {
736 if (time_before(jiffies, resume)) {
737 nr_unshown++;
738 return;
739 }
740 if (nr_unshown) {
1170532b
JP
741 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
742 nr_unshown);
d936cf9b
HD
743 nr_unshown = 0;
744 }
745 nr_shown = 0;
746 }
747 if (nr_shown++ == 0)
748 resume = jiffies + 60 * HZ;
3dc14741
HD
749
750 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
751 index = linear_page_index(vma, addr);
752
1170532b
JP
753 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
754 current->comm,
755 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 756 if (page)
f0b791a3 757 dump_page(page, "bad pte");
1170532b
JP
758 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
759 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
3dc14741
HD
760 /*
761 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
762 */
2682582a
KK
763 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
764 vma->vm_file,
765 vma->vm_ops ? vma->vm_ops->fault : NULL,
766 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
767 mapping ? mapping->a_ops->readpage : NULL);
b5810039 768 dump_stack();
373d4d09 769 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
770}
771
ee498ed7 772/*
7e675137 773 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 774 *
7e675137
NP
775 * "Special" mappings do not wish to be associated with a "struct page" (either
776 * it doesn't exist, or it exists but they don't want to touch it). In this
777 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 778 *
7e675137
NP
779 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
780 * pte bit, in which case this function is trivial. Secondly, an architecture
781 * may not have a spare pte bit, which requires a more complicated scheme,
782 * described below.
783 *
784 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
785 * special mapping (even if there are underlying and valid "struct pages").
786 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 787 *
b379d790
JH
788 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
789 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
790 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
791 * mapping will always honor the rule
6aab341e
LT
792 *
793 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
794 *
7e675137
NP
795 * And for normal mappings this is false.
796 *
797 * This restricts such mappings to be a linear translation from virtual address
798 * to pfn. To get around this restriction, we allow arbitrary mappings so long
799 * as the vma is not a COW mapping; in that case, we know that all ptes are
800 * special (because none can have been COWed).
b379d790 801 *
b379d790 802 *
7e675137 803 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
804 *
805 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
806 * page" backing, however the difference is that _all_ pages with a struct
807 * page (that is, those where pfn_valid is true) are refcounted and considered
808 * normal pages by the VM. The disadvantage is that pages are refcounted
809 * (which can be slower and simply not an option for some PFNMAP users). The
810 * advantage is that we don't have to follow the strict linearity rule of
811 * PFNMAP mappings in order to support COWable mappings.
812 *
ee498ed7 813 */
7e675137
NP
814#ifdef __HAVE_ARCH_PTE_SPECIAL
815# define HAVE_PTE_SPECIAL 1
816#else
817# define HAVE_PTE_SPECIAL 0
818#endif
819struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
820 pte_t pte)
ee498ed7 821{
22b31eec 822 unsigned long pfn = pte_pfn(pte);
7e675137
NP
823
824 if (HAVE_PTE_SPECIAL) {
b38af472 825 if (likely(!pte_special(pte)))
22b31eec 826 goto check_pfn;
667a0a06
DV
827 if (vma->vm_ops && vma->vm_ops->find_special_page)
828 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
829 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
830 return NULL;
62eede62 831 if (!is_zero_pfn(pfn))
22b31eec 832 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
833 return NULL;
834 }
835
836 /* !HAVE_PTE_SPECIAL case follows: */
837
b379d790
JH
838 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
839 if (vma->vm_flags & VM_MIXEDMAP) {
840 if (!pfn_valid(pfn))
841 return NULL;
842 goto out;
843 } else {
7e675137
NP
844 unsigned long off;
845 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
846 if (pfn == vma->vm_pgoff + off)
847 return NULL;
848 if (!is_cow_mapping(vma->vm_flags))
849 return NULL;
850 }
6aab341e
LT
851 }
852
b38af472
HD
853 if (is_zero_pfn(pfn))
854 return NULL;
22b31eec
HD
855check_pfn:
856 if (unlikely(pfn > highest_memmap_pfn)) {
857 print_bad_pte(vma, addr, pte, NULL);
858 return NULL;
859 }
6aab341e
LT
860
861 /*
7e675137 862 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 863 * eg. VDSO mappings can cause them to exist.
6aab341e 864 */
b379d790 865out:
6aab341e 866 return pfn_to_page(pfn);
ee498ed7
HD
867}
868
28093f9f
GS
869#ifdef CONFIG_TRANSPARENT_HUGEPAGE
870struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
871 pmd_t pmd)
872{
873 unsigned long pfn = pmd_pfn(pmd);
874
875 /*
876 * There is no pmd_special() but there may be special pmds, e.g.
877 * in a direct-access (dax) mapping, so let's just replicate the
878 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
879 */
880 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
881 if (vma->vm_flags & VM_MIXEDMAP) {
882 if (!pfn_valid(pfn))
883 return NULL;
884 goto out;
885 } else {
886 unsigned long off;
887 off = (addr - vma->vm_start) >> PAGE_SHIFT;
888 if (pfn == vma->vm_pgoff + off)
889 return NULL;
890 if (!is_cow_mapping(vma->vm_flags))
891 return NULL;
892 }
893 }
894
895 if (is_zero_pfn(pfn))
896 return NULL;
897 if (unlikely(pfn > highest_memmap_pfn))
898 return NULL;
899
900 /*
901 * NOTE! We still have PageReserved() pages in the page tables.
902 * eg. VDSO mappings can cause them to exist.
903 */
904out:
905 return pfn_to_page(pfn);
906}
907#endif
908
1da177e4
LT
909/*
910 * copy one vm_area from one task to the other. Assumes the page tables
911 * already present in the new task to be cleared in the whole range
912 * covered by this vma.
1da177e4
LT
913 */
914
570a335b 915static inline unsigned long
1da177e4 916copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 917 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 918 unsigned long addr, int *rss)
1da177e4 919{
b5810039 920 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
921 pte_t pte = *src_pte;
922 struct page *page;
1da177e4
LT
923
924 /* pte contains position in swap or file, so copy. */
925 if (unlikely(!pte_present(pte))) {
0661a336
KS
926 swp_entry_t entry = pte_to_swp_entry(pte);
927
928 if (likely(!non_swap_entry(entry))) {
929 if (swap_duplicate(entry) < 0)
930 return entry.val;
931
932 /* make sure dst_mm is on swapoff's mmlist. */
933 if (unlikely(list_empty(&dst_mm->mmlist))) {
934 spin_lock(&mmlist_lock);
935 if (list_empty(&dst_mm->mmlist))
936 list_add(&dst_mm->mmlist,
937 &src_mm->mmlist);
938 spin_unlock(&mmlist_lock);
939 }
940 rss[MM_SWAPENTS]++;
941 } else if (is_migration_entry(entry)) {
942 page = migration_entry_to_page(entry);
943
eca56ff9 944 rss[mm_counter(page)]++;
0661a336
KS
945
946 if (is_write_migration_entry(entry) &&
947 is_cow_mapping(vm_flags)) {
948 /*
949 * COW mappings require pages in both
950 * parent and child to be set to read.
951 */
952 make_migration_entry_read(&entry);
953 pte = swp_entry_to_pte(entry);
954 if (pte_swp_soft_dirty(*src_pte))
955 pte = pte_swp_mksoft_dirty(pte);
956 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 957 }
1da177e4 958 }
ae859762 959 goto out_set_pte;
1da177e4
LT
960 }
961
1da177e4
LT
962 /*
963 * If it's a COW mapping, write protect it both
964 * in the parent and the child
965 */
67121172 966 if (is_cow_mapping(vm_flags)) {
1da177e4 967 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 968 pte = pte_wrprotect(pte);
1da177e4
LT
969 }
970
971 /*
972 * If it's a shared mapping, mark it clean in
973 * the child
974 */
975 if (vm_flags & VM_SHARED)
976 pte = pte_mkclean(pte);
977 pte = pte_mkold(pte);
6aab341e
LT
978
979 page = vm_normal_page(vma, addr, pte);
980 if (page) {
981 get_page(page);
53f9263b 982 page_dup_rmap(page, false);
eca56ff9 983 rss[mm_counter(page)]++;
6aab341e 984 }
ae859762
HD
985
986out_set_pte:
987 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 988 return 0;
1da177e4
LT
989}
990
21bda264 991static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
992 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
993 unsigned long addr, unsigned long end)
1da177e4 994{
c36987e2 995 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 996 pte_t *src_pte, *dst_pte;
c74df32c 997 spinlock_t *src_ptl, *dst_ptl;
e040f218 998 int progress = 0;
d559db08 999 int rss[NR_MM_COUNTERS];
570a335b 1000 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
1001
1002again:
d559db08
KH
1003 init_rss_vec(rss);
1004
c74df32c 1005 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
1006 if (!dst_pte)
1007 return -ENOMEM;
ece0e2b6 1008 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1009 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1010 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1011 orig_src_pte = src_pte;
1012 orig_dst_pte = dst_pte;
6606c3e0 1013 arch_enter_lazy_mmu_mode();
1da177e4 1014
1da177e4
LT
1015 do {
1016 /*
1017 * We are holding two locks at this point - either of them
1018 * could generate latencies in another task on another CPU.
1019 */
e040f218
HD
1020 if (progress >= 32) {
1021 progress = 0;
1022 if (need_resched() ||
95c354fe 1023 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1024 break;
1025 }
1da177e4
LT
1026 if (pte_none(*src_pte)) {
1027 progress++;
1028 continue;
1029 }
570a335b
HD
1030 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1031 vma, addr, rss);
1032 if (entry.val)
1033 break;
1da177e4
LT
1034 progress += 8;
1035 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1036
6606c3e0 1037 arch_leave_lazy_mmu_mode();
c74df32c 1038 spin_unlock(src_ptl);
ece0e2b6 1039 pte_unmap(orig_src_pte);
d559db08 1040 add_mm_rss_vec(dst_mm, rss);
c36987e2 1041 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1042 cond_resched();
570a335b
HD
1043
1044 if (entry.val) {
1045 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1046 return -ENOMEM;
1047 progress = 0;
1048 }
1da177e4
LT
1049 if (addr != end)
1050 goto again;
1051 return 0;
1052}
1053
1054static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1055 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1056 unsigned long addr, unsigned long end)
1057{
1058 pmd_t *src_pmd, *dst_pmd;
1059 unsigned long next;
1060
1061 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1062 if (!dst_pmd)
1063 return -ENOMEM;
1064 src_pmd = pmd_offset(src_pud, addr);
1065 do {
1066 next = pmd_addr_end(addr, end);
5c7fb56e 1067 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 1068 int err;
a00cc7d9 1069 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
1070 err = copy_huge_pmd(dst_mm, src_mm,
1071 dst_pmd, src_pmd, addr, vma);
1072 if (err == -ENOMEM)
1073 return -ENOMEM;
1074 if (!err)
1075 continue;
1076 /* fall through */
1077 }
1da177e4
LT
1078 if (pmd_none_or_clear_bad(src_pmd))
1079 continue;
1080 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1081 vma, addr, next))
1082 return -ENOMEM;
1083 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1084 return 0;
1085}
1086
1087static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 1088 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
1089 unsigned long addr, unsigned long end)
1090{
1091 pud_t *src_pud, *dst_pud;
1092 unsigned long next;
1093
c2febafc 1094 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1095 if (!dst_pud)
1096 return -ENOMEM;
c2febafc 1097 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1098 do {
1099 next = pud_addr_end(addr, end);
a00cc7d9
MW
1100 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1101 int err;
1102
1103 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1104 err = copy_huge_pud(dst_mm, src_mm,
1105 dst_pud, src_pud, addr, vma);
1106 if (err == -ENOMEM)
1107 return -ENOMEM;
1108 if (!err)
1109 continue;
1110 /* fall through */
1111 }
1da177e4
LT
1112 if (pud_none_or_clear_bad(src_pud))
1113 continue;
1114 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1115 vma, addr, next))
1116 return -ENOMEM;
1117 } while (dst_pud++, src_pud++, addr = next, addr != end);
1118 return 0;
1119}
1120
c2febafc
KS
1121static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1122 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1123 unsigned long addr, unsigned long end)
1124{
1125 p4d_t *src_p4d, *dst_p4d;
1126 unsigned long next;
1127
1128 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1129 if (!dst_p4d)
1130 return -ENOMEM;
1131 src_p4d = p4d_offset(src_pgd, addr);
1132 do {
1133 next = p4d_addr_end(addr, end);
1134 if (p4d_none_or_clear_bad(src_p4d))
1135 continue;
1136 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1137 vma, addr, next))
1138 return -ENOMEM;
1139 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1140 return 0;
1141}
1142
1da177e4
LT
1143int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1144 struct vm_area_struct *vma)
1145{
1146 pgd_t *src_pgd, *dst_pgd;
1147 unsigned long next;
1148 unsigned long addr = vma->vm_start;
1149 unsigned long end = vma->vm_end;
2ec74c3e
SG
1150 unsigned long mmun_start; /* For mmu_notifiers */
1151 unsigned long mmun_end; /* For mmu_notifiers */
1152 bool is_cow;
cddb8a5c 1153 int ret;
1da177e4 1154
d992895b
NP
1155 /*
1156 * Don't copy ptes where a page fault will fill them correctly.
1157 * Fork becomes much lighter when there are big shared or private
1158 * readonly mappings. The tradeoff is that copy_page_range is more
1159 * efficient than faulting.
1160 */
0661a336
KS
1161 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1162 !vma->anon_vma)
1163 return 0;
d992895b 1164
1da177e4
LT
1165 if (is_vm_hugetlb_page(vma))
1166 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1167
b3b9c293 1168 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1169 /*
1170 * We do not free on error cases below as remove_vma
1171 * gets called on error from higher level routine
1172 */
5180da41 1173 ret = track_pfn_copy(vma);
2ab64037 1174 if (ret)
1175 return ret;
1176 }
1177
cddb8a5c
AA
1178 /*
1179 * We need to invalidate the secondary MMU mappings only when
1180 * there could be a permission downgrade on the ptes of the
1181 * parent mm. And a permission downgrade will only happen if
1182 * is_cow_mapping() returns true.
1183 */
2ec74c3e
SG
1184 is_cow = is_cow_mapping(vma->vm_flags);
1185 mmun_start = addr;
1186 mmun_end = end;
1187 if (is_cow)
1188 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1189 mmun_end);
cddb8a5c
AA
1190
1191 ret = 0;
1da177e4
LT
1192 dst_pgd = pgd_offset(dst_mm, addr);
1193 src_pgd = pgd_offset(src_mm, addr);
1194 do {
1195 next = pgd_addr_end(addr, end);
1196 if (pgd_none_or_clear_bad(src_pgd))
1197 continue;
c2febafc 1198 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1199 vma, addr, next))) {
1200 ret = -ENOMEM;
1201 break;
1202 }
1da177e4 1203 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1204
2ec74c3e
SG
1205 if (is_cow)
1206 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1207 return ret;
1da177e4
LT
1208}
1209
51c6f666 1210static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1211 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1212 unsigned long addr, unsigned long end,
97a89413 1213 struct zap_details *details)
1da177e4 1214{
b5810039 1215 struct mm_struct *mm = tlb->mm;
d16dfc55 1216 int force_flush = 0;
d559db08 1217 int rss[NR_MM_COUNTERS];
97a89413 1218 spinlock_t *ptl;
5f1a1907 1219 pte_t *start_pte;
97a89413 1220 pte_t *pte;
8a5f14a2 1221 swp_entry_t entry;
d559db08 1222
07e32661 1223 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1224again:
e303297e 1225 init_rss_vec(rss);
5f1a1907
SR
1226 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1227 pte = start_pte;
3ea27719 1228 flush_tlb_batched_pending(mm);
6606c3e0 1229 arch_enter_lazy_mmu_mode();
1da177e4
LT
1230 do {
1231 pte_t ptent = *pte;
166f61b9 1232 if (pte_none(ptent))
1da177e4 1233 continue;
6f5e6b9e 1234
1da177e4 1235 if (pte_present(ptent)) {
ee498ed7 1236 struct page *page;
51c6f666 1237
6aab341e 1238 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1239 if (unlikely(details) && page) {
1240 /*
1241 * unmap_shared_mapping_pages() wants to
1242 * invalidate cache without truncating:
1243 * unmap shared but keep private pages.
1244 */
1245 if (details->check_mapping &&
800d8c63 1246 details->check_mapping != page_rmapping(page))
1da177e4 1247 continue;
1da177e4 1248 }
b5810039 1249 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1250 tlb->fullmm);
1da177e4
LT
1251 tlb_remove_tlb_entry(tlb, pte, addr);
1252 if (unlikely(!page))
1253 continue;
eca56ff9
JM
1254
1255 if (!PageAnon(page)) {
1cf35d47
LT
1256 if (pte_dirty(ptent)) {
1257 force_flush = 1;
6237bcd9 1258 set_page_dirty(page);
1cf35d47 1259 }
4917e5d0 1260 if (pte_young(ptent) &&
64363aad 1261 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1262 mark_page_accessed(page);
6237bcd9 1263 }
eca56ff9 1264 rss[mm_counter(page)]--;
d281ee61 1265 page_remove_rmap(page, false);
3dc14741
HD
1266 if (unlikely(page_mapcount(page) < 0))
1267 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1268 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1269 force_flush = 1;
ce9ec37b 1270 addr += PAGE_SIZE;
d16dfc55 1271 break;
1cf35d47 1272 }
1da177e4
LT
1273 continue;
1274 }
3e8715fd
KS
1275 /* If details->check_mapping, we leave swap entries. */
1276 if (unlikely(details))
1da177e4 1277 continue;
b084d435 1278
8a5f14a2
KS
1279 entry = pte_to_swp_entry(ptent);
1280 if (!non_swap_entry(entry))
1281 rss[MM_SWAPENTS]--;
1282 else if (is_migration_entry(entry)) {
1283 struct page *page;
9f9f1acd 1284
8a5f14a2 1285 page = migration_entry_to_page(entry);
eca56ff9 1286 rss[mm_counter(page)]--;
b084d435 1287 }
8a5f14a2
KS
1288 if (unlikely(!free_swap_and_cache(entry)))
1289 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1290 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1291 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1292
d559db08 1293 add_mm_rss_vec(mm, rss);
6606c3e0 1294 arch_leave_lazy_mmu_mode();
51c6f666 1295
1cf35d47 1296 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1297 if (force_flush)
1cf35d47 1298 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1299 pte_unmap_unlock(start_pte, ptl);
1300
1301 /*
1302 * If we forced a TLB flush (either due to running out of
1303 * batch buffers or because we needed to flush dirty TLB
1304 * entries before releasing the ptl), free the batched
1305 * memory too. Restart if we didn't do everything.
1306 */
1307 if (force_flush) {
1308 force_flush = 0;
1309 tlb_flush_mmu_free(tlb);
2b047252 1310 if (addr != end)
d16dfc55
PZ
1311 goto again;
1312 }
1313
51c6f666 1314 return addr;
1da177e4
LT
1315}
1316
51c6f666 1317static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1318 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1319 unsigned long addr, unsigned long end,
97a89413 1320 struct zap_details *details)
1da177e4
LT
1321{
1322 pmd_t *pmd;
1323 unsigned long next;
1324
1325 pmd = pmd_offset(pud, addr);
1326 do {
1327 next = pmd_addr_end(addr, end);
5c7fb56e 1328 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1329 if (next - addr != HPAGE_PMD_SIZE) {
68428398
HD
1330 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1331 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
fd60775a 1332 __split_huge_pmd(vma, pmd, addr, false, NULL);
f21760b1 1333 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1334 goto next;
71e3aac0
AA
1335 /* fall through */
1336 }
1a5a9906
AA
1337 /*
1338 * Here there can be other concurrent MADV_DONTNEED or
1339 * trans huge page faults running, and if the pmd is
1340 * none or trans huge it can change under us. This is
1341 * because MADV_DONTNEED holds the mmap_sem in read
1342 * mode.
1343 */
1344 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1345 goto next;
97a89413 1346 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1347next:
97a89413
PZ
1348 cond_resched();
1349 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1350
1351 return addr;
1da177e4
LT
1352}
1353
51c6f666 1354static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1355 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1356 unsigned long addr, unsigned long end,
97a89413 1357 struct zap_details *details)
1da177e4
LT
1358{
1359 pud_t *pud;
1360 unsigned long next;
1361
c2febafc 1362 pud = pud_offset(p4d, addr);
1da177e4
LT
1363 do {
1364 next = pud_addr_end(addr, end);
a00cc7d9
MW
1365 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1366 if (next - addr != HPAGE_PUD_SIZE) {
1367 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1368 split_huge_pud(vma, pud, addr);
1369 } else if (zap_huge_pud(tlb, vma, pud, addr))
1370 goto next;
1371 /* fall through */
1372 }
97a89413 1373 if (pud_none_or_clear_bad(pud))
1da177e4 1374 continue;
97a89413 1375 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1376next:
1377 cond_resched();
97a89413 1378 } while (pud++, addr = next, addr != end);
51c6f666
RH
1379
1380 return addr;
1da177e4
LT
1381}
1382
c2febafc
KS
1383static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1384 struct vm_area_struct *vma, pgd_t *pgd,
1385 unsigned long addr, unsigned long end,
1386 struct zap_details *details)
1387{
1388 p4d_t *p4d;
1389 unsigned long next;
1390
1391 p4d = p4d_offset(pgd, addr);
1392 do {
1393 next = p4d_addr_end(addr, end);
1394 if (p4d_none_or_clear_bad(p4d))
1395 continue;
1396 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1397 } while (p4d++, addr = next, addr != end);
1398
1399 return addr;
1400}
1401
aac45363 1402void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1403 struct vm_area_struct *vma,
1404 unsigned long addr, unsigned long end,
1405 struct zap_details *details)
1da177e4
LT
1406{
1407 pgd_t *pgd;
1408 unsigned long next;
1409
1da177e4
LT
1410 BUG_ON(addr >= end);
1411 tlb_start_vma(tlb, vma);
1412 pgd = pgd_offset(vma->vm_mm, addr);
1413 do {
1414 next = pgd_addr_end(addr, end);
97a89413 1415 if (pgd_none_or_clear_bad(pgd))
1da177e4 1416 continue;
c2febafc 1417 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1418 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1419 tlb_end_vma(tlb, vma);
1420}
51c6f666 1421
f5cc4eef
AV
1422
1423static void unmap_single_vma(struct mmu_gather *tlb,
1424 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1425 unsigned long end_addr,
f5cc4eef
AV
1426 struct zap_details *details)
1427{
1428 unsigned long start = max(vma->vm_start, start_addr);
1429 unsigned long end;
1430
1431 if (start >= vma->vm_end)
1432 return;
1433 end = min(vma->vm_end, end_addr);
1434 if (end <= vma->vm_start)
1435 return;
1436
cbc91f71
SD
1437 if (vma->vm_file)
1438 uprobe_munmap(vma, start, end);
1439
b3b9c293 1440 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1441 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1442
1443 if (start != end) {
1444 if (unlikely(is_vm_hugetlb_page(vma))) {
1445 /*
1446 * It is undesirable to test vma->vm_file as it
1447 * should be non-null for valid hugetlb area.
1448 * However, vm_file will be NULL in the error
7aa6b4ad 1449 * cleanup path of mmap_region. When
f5cc4eef 1450 * hugetlbfs ->mmap method fails,
7aa6b4ad 1451 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1452 * before calling this function to clean up.
1453 * Since no pte has actually been setup, it is
1454 * safe to do nothing in this case.
1455 */
24669e58 1456 if (vma->vm_file) {
83cde9e8 1457 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1458 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1459 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1460 }
f5cc4eef
AV
1461 } else
1462 unmap_page_range(tlb, vma, start, end, details);
1463 }
1da177e4
LT
1464}
1465
1da177e4
LT
1466/**
1467 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1468 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1469 * @vma: the starting vma
1470 * @start_addr: virtual address at which to start unmapping
1471 * @end_addr: virtual address at which to end unmapping
1da177e4 1472 *
508034a3 1473 * Unmap all pages in the vma list.
1da177e4 1474 *
1da177e4
LT
1475 * Only addresses between `start' and `end' will be unmapped.
1476 *
1477 * The VMA list must be sorted in ascending virtual address order.
1478 *
1479 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1480 * range after unmap_vmas() returns. So the only responsibility here is to
1481 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1482 * drops the lock and schedules.
1483 */
6e8bb019 1484void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1485 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1486 unsigned long end_addr)
1da177e4 1487{
cddb8a5c 1488 struct mm_struct *mm = vma->vm_mm;
1da177e4 1489
cddb8a5c 1490 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1491 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1492 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1493 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1494}
1495
1496/**
1497 * zap_page_range - remove user pages in a given range
1498 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1499 * @start: starting address of pages to zap
1da177e4 1500 * @size: number of bytes to zap
f5cc4eef
AV
1501 *
1502 * Caller must protect the VMA list
1da177e4 1503 */
7e027b14 1504void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1505 unsigned long size)
1da177e4
LT
1506{
1507 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1508 struct mmu_gather tlb;
7e027b14 1509 unsigned long end = start + size;
1da177e4 1510
1da177e4 1511 lru_add_drain();
2b047252 1512 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1513 update_hiwater_rss(mm);
7e027b14
LT
1514 mmu_notifier_invalidate_range_start(mm, start, end);
1515 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
ecf1385d 1516 unmap_single_vma(&tlb, vma, start, end, NULL);
7e027b14
LT
1517 mmu_notifier_invalidate_range_end(mm, start, end);
1518 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1519}
1520
f5cc4eef
AV
1521/**
1522 * zap_page_range_single - remove user pages in a given range
1523 * @vma: vm_area_struct holding the applicable pages
1524 * @address: starting address of pages to zap
1525 * @size: number of bytes to zap
8a5f14a2 1526 * @details: details of shared cache invalidation
f5cc4eef
AV
1527 *
1528 * The range must fit into one VMA.
1da177e4 1529 */
f5cc4eef 1530static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1531 unsigned long size, struct zap_details *details)
1532{
1533 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1534 struct mmu_gather tlb;
1da177e4 1535 unsigned long end = address + size;
1da177e4 1536
1da177e4 1537 lru_add_drain();
2b047252 1538 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1539 update_hiwater_rss(mm);
f5cc4eef 1540 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1541 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1542 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1543 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1544}
1545
c627f9cc
JS
1546/**
1547 * zap_vma_ptes - remove ptes mapping the vma
1548 * @vma: vm_area_struct holding ptes to be zapped
1549 * @address: starting address of pages to zap
1550 * @size: number of bytes to zap
1551 *
1552 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1553 *
1554 * The entire address range must be fully contained within the vma.
1555 *
1556 * Returns 0 if successful.
1557 */
1558int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1559 unsigned long size)
1560{
1561 if (address < vma->vm_start || address + size > vma->vm_end ||
1562 !(vma->vm_flags & VM_PFNMAP))
1563 return -1;
f5cc4eef 1564 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1565 return 0;
1566}
1567EXPORT_SYMBOL_GPL(zap_vma_ptes);
1568
25ca1d6c 1569pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1570 spinlock_t **ptl)
c9cfcddf 1571{
c2febafc
KS
1572 pgd_t *pgd;
1573 p4d_t *p4d;
1574 pud_t *pud;
1575 pmd_t *pmd;
1576
1577 pgd = pgd_offset(mm, addr);
1578 p4d = p4d_alloc(mm, pgd, addr);
1579 if (!p4d)
1580 return NULL;
1581 pud = pud_alloc(mm, p4d, addr);
1582 if (!pud)
1583 return NULL;
1584 pmd = pmd_alloc(mm, pud, addr);
1585 if (!pmd)
1586 return NULL;
1587
1588 VM_BUG_ON(pmd_trans_huge(*pmd));
1589 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1590}
1591
238f58d8
LT
1592/*
1593 * This is the old fallback for page remapping.
1594 *
1595 * For historical reasons, it only allows reserved pages. Only
1596 * old drivers should use this, and they needed to mark their
1597 * pages reserved for the old functions anyway.
1598 */
423bad60
NP
1599static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1600 struct page *page, pgprot_t prot)
238f58d8 1601{
423bad60 1602 struct mm_struct *mm = vma->vm_mm;
238f58d8 1603 int retval;
c9cfcddf 1604 pte_t *pte;
8a9f3ccd
BS
1605 spinlock_t *ptl;
1606
238f58d8 1607 retval = -EINVAL;
a145dd41 1608 if (PageAnon(page))
5b4e655e 1609 goto out;
238f58d8
LT
1610 retval = -ENOMEM;
1611 flush_dcache_page(page);
c9cfcddf 1612 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1613 if (!pte)
5b4e655e 1614 goto out;
238f58d8
LT
1615 retval = -EBUSY;
1616 if (!pte_none(*pte))
1617 goto out_unlock;
1618
1619 /* Ok, finally just insert the thing.. */
1620 get_page(page);
eca56ff9 1621 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1622 page_add_file_rmap(page, false);
238f58d8
LT
1623 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1624
1625 retval = 0;
8a9f3ccd
BS
1626 pte_unmap_unlock(pte, ptl);
1627 return retval;
238f58d8
LT
1628out_unlock:
1629 pte_unmap_unlock(pte, ptl);
1630out:
1631 return retval;
1632}
1633
bfa5bf6d
REB
1634/**
1635 * vm_insert_page - insert single page into user vma
1636 * @vma: user vma to map to
1637 * @addr: target user address of this page
1638 * @page: source kernel page
1639 *
a145dd41
LT
1640 * This allows drivers to insert individual pages they've allocated
1641 * into a user vma.
1642 *
1643 * The page has to be a nice clean _individual_ kernel allocation.
1644 * If you allocate a compound page, you need to have marked it as
1645 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1646 * (see split_page()).
a145dd41
LT
1647 *
1648 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1649 * took an arbitrary page protection parameter. This doesn't allow
1650 * that. Your vma protection will have to be set up correctly, which
1651 * means that if you want a shared writable mapping, you'd better
1652 * ask for a shared writable mapping!
1653 *
1654 * The page does not need to be reserved.
4b6e1e37
KK
1655 *
1656 * Usually this function is called from f_op->mmap() handler
1657 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1658 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1659 * function from other places, for example from page-fault handler.
a145dd41 1660 */
423bad60
NP
1661int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1662 struct page *page)
a145dd41
LT
1663{
1664 if (addr < vma->vm_start || addr >= vma->vm_end)
1665 return -EFAULT;
1666 if (!page_count(page))
1667 return -EINVAL;
4b6e1e37
KK
1668 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1669 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1670 BUG_ON(vma->vm_flags & VM_PFNMAP);
1671 vma->vm_flags |= VM_MIXEDMAP;
1672 }
423bad60 1673 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1674}
e3c3374f 1675EXPORT_SYMBOL(vm_insert_page);
a145dd41 1676
423bad60 1677static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1678 pfn_t pfn, pgprot_t prot)
423bad60
NP
1679{
1680 struct mm_struct *mm = vma->vm_mm;
1681 int retval;
1682 pte_t *pte, entry;
1683 spinlock_t *ptl;
1684
1685 retval = -ENOMEM;
1686 pte = get_locked_pte(mm, addr, &ptl);
1687 if (!pte)
1688 goto out;
1689 retval = -EBUSY;
1690 if (!pte_none(*pte))
1691 goto out_unlock;
1692
1693 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1694 if (pfn_t_devmap(pfn))
1695 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1696 else
1697 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
423bad60 1698 set_pte_at(mm, addr, pte, entry);
4b3073e1 1699 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1700
1701 retval = 0;
1702out_unlock:
1703 pte_unmap_unlock(pte, ptl);
1704out:
1705 return retval;
1706}
1707
e0dc0d8f
NP
1708/**
1709 * vm_insert_pfn - insert single pfn into user vma
1710 * @vma: user vma to map to
1711 * @addr: target user address of this page
1712 * @pfn: source kernel pfn
1713 *
c462f179 1714 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1715 * they've allocated into a user vma. Same comments apply.
1716 *
1717 * This function should only be called from a vm_ops->fault handler, and
1718 * in that case the handler should return NULL.
0d71d10a
NP
1719 *
1720 * vma cannot be a COW mapping.
1721 *
1722 * As this is called only for pages that do not currently exist, we
1723 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1724 */
1725int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1726 unsigned long pfn)
1745cbc5
AL
1727{
1728 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1729}
1730EXPORT_SYMBOL(vm_insert_pfn);
1731
1732/**
1733 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1734 * @vma: user vma to map to
1735 * @addr: target user address of this page
1736 * @pfn: source kernel pfn
1737 * @pgprot: pgprot flags for the inserted page
1738 *
1739 * This is exactly like vm_insert_pfn, except that it allows drivers to
1740 * to override pgprot on a per-page basis.
1741 *
1742 * This only makes sense for IO mappings, and it makes no sense for
1743 * cow mappings. In general, using multiple vmas is preferable;
1744 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1745 * impractical.
1746 */
1747int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1748 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1749{
2ab64037 1750 int ret;
7e675137
NP
1751 /*
1752 * Technically, architectures with pte_special can avoid all these
1753 * restrictions (same for remap_pfn_range). However we would like
1754 * consistency in testing and feature parity among all, so we should
1755 * try to keep these invariants in place for everybody.
1756 */
b379d790
JH
1757 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1758 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1759 (VM_PFNMAP|VM_MIXEDMAP));
1760 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1761 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1762
423bad60
NP
1763 if (addr < vma->vm_start || addr >= vma->vm_end)
1764 return -EFAULT;
308a047c
BP
1765
1766 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1767
01c8f1c4 1768 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
2ab64037 1769
2ab64037 1770 return ret;
423bad60 1771}
1745cbc5 1772EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1773
423bad60 1774int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1775 pfn_t pfn)
423bad60 1776{
87744ab3
DW
1777 pgprot_t pgprot = vma->vm_page_prot;
1778
423bad60 1779 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1780
423bad60
NP
1781 if (addr < vma->vm_start || addr >= vma->vm_end)
1782 return -EFAULT;
308a047c
BP
1783
1784 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1785
423bad60
NP
1786 /*
1787 * If we don't have pte special, then we have to use the pfn_valid()
1788 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1789 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1790 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1791 * without pte special, it would there be refcounted as a normal page.
423bad60 1792 */
03fc2da6 1793 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1794 struct page *page;
1795
03fc2da6
DW
1796 /*
1797 * At this point we are committed to insert_page()
1798 * regardless of whether the caller specified flags that
1799 * result in pfn_t_has_page() == false.
1800 */
1801 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1802 return insert_page(vma, addr, page, pgprot);
423bad60 1803 }
87744ab3 1804 return insert_pfn(vma, addr, pfn, pgprot);
e0dc0d8f 1805}
423bad60 1806EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1807
1da177e4
LT
1808/*
1809 * maps a range of physical memory into the requested pages. the old
1810 * mappings are removed. any references to nonexistent pages results
1811 * in null mappings (currently treated as "copy-on-access")
1812 */
1813static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1814 unsigned long addr, unsigned long end,
1815 unsigned long pfn, pgprot_t prot)
1816{
1817 pte_t *pte;
c74df32c 1818 spinlock_t *ptl;
1da177e4 1819
c74df32c 1820 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1821 if (!pte)
1822 return -ENOMEM;
6606c3e0 1823 arch_enter_lazy_mmu_mode();
1da177e4
LT
1824 do {
1825 BUG_ON(!pte_none(*pte));
7e675137 1826 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1827 pfn++;
1828 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1829 arch_leave_lazy_mmu_mode();
c74df32c 1830 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1831 return 0;
1832}
1833
1834static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1835 unsigned long addr, unsigned long end,
1836 unsigned long pfn, pgprot_t prot)
1837{
1838 pmd_t *pmd;
1839 unsigned long next;
1840
1841 pfn -= addr >> PAGE_SHIFT;
1842 pmd = pmd_alloc(mm, pud, addr);
1843 if (!pmd)
1844 return -ENOMEM;
f66055ab 1845 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1846 do {
1847 next = pmd_addr_end(addr, end);
1848 if (remap_pte_range(mm, pmd, addr, next,
1849 pfn + (addr >> PAGE_SHIFT), prot))
1850 return -ENOMEM;
1851 } while (pmd++, addr = next, addr != end);
1852 return 0;
1853}
1854
c2febafc 1855static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1856 unsigned long addr, unsigned long end,
1857 unsigned long pfn, pgprot_t prot)
1858{
1859 pud_t *pud;
1860 unsigned long next;
1861
1862 pfn -= addr >> PAGE_SHIFT;
c2febafc 1863 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1864 if (!pud)
1865 return -ENOMEM;
1866 do {
1867 next = pud_addr_end(addr, end);
1868 if (remap_pmd_range(mm, pud, addr, next,
1869 pfn + (addr >> PAGE_SHIFT), prot))
1870 return -ENOMEM;
1871 } while (pud++, addr = next, addr != end);
1872 return 0;
1873}
1874
c2febafc
KS
1875static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1876 unsigned long addr, unsigned long end,
1877 unsigned long pfn, pgprot_t prot)
1878{
1879 p4d_t *p4d;
1880 unsigned long next;
1881
1882 pfn -= addr >> PAGE_SHIFT;
1883 p4d = p4d_alloc(mm, pgd, addr);
1884 if (!p4d)
1885 return -ENOMEM;
1886 do {
1887 next = p4d_addr_end(addr, end);
1888 if (remap_pud_range(mm, p4d, addr, next,
1889 pfn + (addr >> PAGE_SHIFT), prot))
1890 return -ENOMEM;
1891 } while (p4d++, addr = next, addr != end);
1892 return 0;
1893}
1894
bfa5bf6d
REB
1895/**
1896 * remap_pfn_range - remap kernel memory to userspace
1897 * @vma: user vma to map to
1898 * @addr: target user address to start at
1899 * @pfn: physical address of kernel memory
1900 * @size: size of map area
1901 * @prot: page protection flags for this mapping
1902 *
1903 * Note: this is only safe if the mm semaphore is held when called.
1904 */
1da177e4
LT
1905int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1906 unsigned long pfn, unsigned long size, pgprot_t prot)
1907{
1908 pgd_t *pgd;
1909 unsigned long next;
2d15cab8 1910 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1911 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1912 unsigned long remap_pfn = pfn;
1da177e4
LT
1913 int err;
1914
1915 /*
1916 * Physically remapped pages are special. Tell the
1917 * rest of the world about it:
1918 * VM_IO tells people not to look at these pages
1919 * (accesses can have side effects).
6aab341e
LT
1920 * VM_PFNMAP tells the core MM that the base pages are just
1921 * raw PFN mappings, and do not have a "struct page" associated
1922 * with them.
314e51b9
KK
1923 * VM_DONTEXPAND
1924 * Disable vma merging and expanding with mremap().
1925 * VM_DONTDUMP
1926 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1927 *
1928 * There's a horrible special case to handle copy-on-write
1929 * behaviour that some programs depend on. We mark the "original"
1930 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1931 * See vm_normal_page() for details.
1da177e4 1932 */
b3b9c293
KK
1933 if (is_cow_mapping(vma->vm_flags)) {
1934 if (addr != vma->vm_start || end != vma->vm_end)
1935 return -EINVAL;
fb155c16 1936 vma->vm_pgoff = pfn;
b3b9c293
KK
1937 }
1938
d5957d2f 1939 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1940 if (err)
3c8bb73a 1941 return -EINVAL;
fb155c16 1942
314e51b9 1943 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1944
1945 BUG_ON(addr >= end);
1946 pfn -= addr >> PAGE_SHIFT;
1947 pgd = pgd_offset(mm, addr);
1948 flush_cache_range(vma, addr, end);
1da177e4
LT
1949 do {
1950 next = pgd_addr_end(addr, end);
c2febafc 1951 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1952 pfn + (addr >> PAGE_SHIFT), prot);
1953 if (err)
1954 break;
1955 } while (pgd++, addr = next, addr != end);
2ab64037 1956
1957 if (err)
d5957d2f 1958 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1959
1da177e4
LT
1960 return err;
1961}
1962EXPORT_SYMBOL(remap_pfn_range);
1963
b4cbb197
LT
1964/**
1965 * vm_iomap_memory - remap memory to userspace
1966 * @vma: user vma to map to
1967 * @start: start of area
1968 * @len: size of area
1969 *
1970 * This is a simplified io_remap_pfn_range() for common driver use. The
1971 * driver just needs to give us the physical memory range to be mapped,
1972 * we'll figure out the rest from the vma information.
1973 *
1974 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1975 * whatever write-combining details or similar.
1976 */
1977int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1978{
1979 unsigned long vm_len, pfn, pages;
1980
1981 /* Check that the physical memory area passed in looks valid */
1982 if (start + len < start)
1983 return -EINVAL;
1984 /*
1985 * You *really* shouldn't map things that aren't page-aligned,
1986 * but we've historically allowed it because IO memory might
1987 * just have smaller alignment.
1988 */
1989 len += start & ~PAGE_MASK;
1990 pfn = start >> PAGE_SHIFT;
1991 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1992 if (pfn + pages < pfn)
1993 return -EINVAL;
1994
1995 /* We start the mapping 'vm_pgoff' pages into the area */
1996 if (vma->vm_pgoff > pages)
1997 return -EINVAL;
1998 pfn += vma->vm_pgoff;
1999 pages -= vma->vm_pgoff;
2000
2001 /* Can we fit all of the mapping? */
2002 vm_len = vma->vm_end - vma->vm_start;
2003 if (vm_len >> PAGE_SHIFT > pages)
2004 return -EINVAL;
2005
2006 /* Ok, let it rip */
2007 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2008}
2009EXPORT_SYMBOL(vm_iomap_memory);
2010
aee16b3c
JF
2011static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2012 unsigned long addr, unsigned long end,
2013 pte_fn_t fn, void *data)
2014{
2015 pte_t *pte;
2016 int err;
2f569afd 2017 pgtable_t token;
94909914 2018 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2019
2020 pte = (mm == &init_mm) ?
2021 pte_alloc_kernel(pmd, addr) :
2022 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2023 if (!pte)
2024 return -ENOMEM;
2025
2026 BUG_ON(pmd_huge(*pmd));
2027
38e0edb1
JF
2028 arch_enter_lazy_mmu_mode();
2029
2f569afd 2030 token = pmd_pgtable(*pmd);
aee16b3c
JF
2031
2032 do {
c36987e2 2033 err = fn(pte++, token, addr, data);
aee16b3c
JF
2034 if (err)
2035 break;
c36987e2 2036 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2037
38e0edb1
JF
2038 arch_leave_lazy_mmu_mode();
2039
aee16b3c
JF
2040 if (mm != &init_mm)
2041 pte_unmap_unlock(pte-1, ptl);
2042 return err;
2043}
2044
2045static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2046 unsigned long addr, unsigned long end,
2047 pte_fn_t fn, void *data)
2048{
2049 pmd_t *pmd;
2050 unsigned long next;
2051 int err;
2052
ceb86879
AK
2053 BUG_ON(pud_huge(*pud));
2054
aee16b3c
JF
2055 pmd = pmd_alloc(mm, pud, addr);
2056 if (!pmd)
2057 return -ENOMEM;
2058 do {
2059 next = pmd_addr_end(addr, end);
2060 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2061 if (err)
2062 break;
2063 } while (pmd++, addr = next, addr != end);
2064 return err;
2065}
2066
c2febafc 2067static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2068 unsigned long addr, unsigned long end,
2069 pte_fn_t fn, void *data)
2070{
2071 pud_t *pud;
2072 unsigned long next;
2073 int err;
2074
c2febafc 2075 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2076 if (!pud)
2077 return -ENOMEM;
2078 do {
2079 next = pud_addr_end(addr, end);
2080 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2081 if (err)
2082 break;
2083 } while (pud++, addr = next, addr != end);
2084 return err;
2085}
2086
c2febafc
KS
2087static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2088 unsigned long addr, unsigned long end,
2089 pte_fn_t fn, void *data)
2090{
2091 p4d_t *p4d;
2092 unsigned long next;
2093 int err;
2094
2095 p4d = p4d_alloc(mm, pgd, addr);
2096 if (!p4d)
2097 return -ENOMEM;
2098 do {
2099 next = p4d_addr_end(addr, end);
2100 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2101 if (err)
2102 break;
2103 } while (p4d++, addr = next, addr != end);
2104 return err;
2105}
2106
aee16b3c
JF
2107/*
2108 * Scan a region of virtual memory, filling in page tables as necessary
2109 * and calling a provided function on each leaf page table.
2110 */
2111int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2112 unsigned long size, pte_fn_t fn, void *data)
2113{
2114 pgd_t *pgd;
2115 unsigned long next;
57250a5b 2116 unsigned long end = addr + size;
aee16b3c
JF
2117 int err;
2118
9cb65bc3
MP
2119 if (WARN_ON(addr >= end))
2120 return -EINVAL;
2121
aee16b3c
JF
2122 pgd = pgd_offset(mm, addr);
2123 do {
2124 next = pgd_addr_end(addr, end);
c2febafc 2125 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2126 if (err)
2127 break;
2128 } while (pgd++, addr = next, addr != end);
57250a5b 2129
aee16b3c
JF
2130 return err;
2131}
2132EXPORT_SYMBOL_GPL(apply_to_page_range);
2133
8f4e2101 2134/*
9b4bdd2f
KS
2135 * handle_pte_fault chooses page fault handler according to an entry which was
2136 * read non-atomically. Before making any commitment, on those architectures
2137 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2138 * parts, do_swap_page must check under lock before unmapping the pte and
2139 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2140 * and do_anonymous_page can safely check later on).
8f4e2101 2141 */
4c21e2f2 2142static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2143 pte_t *page_table, pte_t orig_pte)
2144{
2145 int same = 1;
2146#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2147 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2148 spinlock_t *ptl = pte_lockptr(mm, pmd);
2149 spin_lock(ptl);
8f4e2101 2150 same = pte_same(*page_table, orig_pte);
4c21e2f2 2151 spin_unlock(ptl);
8f4e2101
HD
2152 }
2153#endif
2154 pte_unmap(page_table);
2155 return same;
2156}
2157
9de455b2 2158static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2159{
0abdd7a8
DW
2160 debug_dma_assert_idle(src);
2161
6aab341e
LT
2162 /*
2163 * If the source page was a PFN mapping, we don't have
2164 * a "struct page" for it. We do a best-effort copy by
2165 * just copying from the original user address. If that
2166 * fails, we just zero-fill it. Live with it.
2167 */
2168 if (unlikely(!src)) {
9b04c5fe 2169 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2170 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2171
2172 /*
2173 * This really shouldn't fail, because the page is there
2174 * in the page tables. But it might just be unreadable,
2175 * in which case we just give up and fill the result with
2176 * zeroes.
2177 */
2178 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2179 clear_page(kaddr);
9b04c5fe 2180 kunmap_atomic(kaddr);
c4ec7b0d 2181 flush_dcache_page(dst);
0ed361de
NP
2182 } else
2183 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2184}
2185
c20cd45e
MH
2186static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2187{
2188 struct file *vm_file = vma->vm_file;
2189
2190 if (vm_file)
2191 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2192
2193 /*
2194 * Special mappings (e.g. VDSO) do not have any file so fake
2195 * a default GFP_KERNEL for them.
2196 */
2197 return GFP_KERNEL;
2198}
2199
fb09a464
KS
2200/*
2201 * Notify the address space that the page is about to become writable so that
2202 * it can prohibit this or wait for the page to get into an appropriate state.
2203 *
2204 * We do this without the lock held, so that it can sleep if it needs to.
2205 */
38b8cb7f 2206static int do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2207{
fb09a464 2208 int ret;
38b8cb7f
JK
2209 struct page *page = vmf->page;
2210 unsigned int old_flags = vmf->flags;
fb09a464 2211
38b8cb7f 2212 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2213
11bac800 2214 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2215 /* Restore original flags so that caller is not surprised */
2216 vmf->flags = old_flags;
fb09a464
KS
2217 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2218 return ret;
2219 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2220 lock_page(page);
2221 if (!page->mapping) {
2222 unlock_page(page);
2223 return 0; /* retry */
2224 }
2225 ret |= VM_FAULT_LOCKED;
2226 } else
2227 VM_BUG_ON_PAGE(!PageLocked(page), page);
2228 return ret;
2229}
2230
97ba0c2b
JK
2231/*
2232 * Handle dirtying of a page in shared file mapping on a write fault.
2233 *
2234 * The function expects the page to be locked and unlocks it.
2235 */
2236static void fault_dirty_shared_page(struct vm_area_struct *vma,
2237 struct page *page)
2238{
2239 struct address_space *mapping;
2240 bool dirtied;
2241 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2242
2243 dirtied = set_page_dirty(page);
2244 VM_BUG_ON_PAGE(PageAnon(page), page);
2245 /*
2246 * Take a local copy of the address_space - page.mapping may be zeroed
2247 * by truncate after unlock_page(). The address_space itself remains
2248 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2249 * release semantics to prevent the compiler from undoing this copying.
2250 */
2251 mapping = page_rmapping(page);
2252 unlock_page(page);
2253
2254 if ((dirtied || page_mkwrite) && mapping) {
2255 /*
2256 * Some device drivers do not set page.mapping
2257 * but still dirty their pages
2258 */
2259 balance_dirty_pages_ratelimited(mapping);
2260 }
2261
2262 if (!page_mkwrite)
2263 file_update_time(vma->vm_file);
2264}
2265
4e047f89
SR
2266/*
2267 * Handle write page faults for pages that can be reused in the current vma
2268 *
2269 * This can happen either due to the mapping being with the VM_SHARED flag,
2270 * or due to us being the last reference standing to the page. In either
2271 * case, all we need to do here is to mark the page as writable and update
2272 * any related book-keeping.
2273 */
997dd98d 2274static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2275 __releases(vmf->ptl)
4e047f89 2276{
82b0f8c3 2277 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2278 struct page *page = vmf->page;
4e047f89
SR
2279 pte_t entry;
2280 /*
2281 * Clear the pages cpupid information as the existing
2282 * information potentially belongs to a now completely
2283 * unrelated process.
2284 */
2285 if (page)
2286 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2287
2994302b
JK
2288 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2289 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2290 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2291 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2292 update_mmu_cache(vma, vmf->address, vmf->pte);
2293 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2294}
2295
2f38ab2c
SR
2296/*
2297 * Handle the case of a page which we actually need to copy to a new page.
2298 *
2299 * Called with mmap_sem locked and the old page referenced, but
2300 * without the ptl held.
2301 *
2302 * High level logic flow:
2303 *
2304 * - Allocate a page, copy the content of the old page to the new one.
2305 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2306 * - Take the PTL. If the pte changed, bail out and release the allocated page
2307 * - If the pte is still the way we remember it, update the page table and all
2308 * relevant references. This includes dropping the reference the page-table
2309 * held to the old page, as well as updating the rmap.
2310 * - In any case, unlock the PTL and drop the reference we took to the old page.
2311 */
a41b70d6 2312static int wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2313{
82b0f8c3 2314 struct vm_area_struct *vma = vmf->vma;
bae473a4 2315 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2316 struct page *old_page = vmf->page;
2f38ab2c 2317 struct page *new_page = NULL;
2f38ab2c
SR
2318 pte_t entry;
2319 int page_copied = 0;
82b0f8c3 2320 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2321 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2322 struct mem_cgroup *memcg;
2323
2324 if (unlikely(anon_vma_prepare(vma)))
2325 goto oom;
2326
2994302b 2327 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2328 new_page = alloc_zeroed_user_highpage_movable(vma,
2329 vmf->address);
2f38ab2c
SR
2330 if (!new_page)
2331 goto oom;
2332 } else {
bae473a4 2333 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2334 vmf->address);
2f38ab2c
SR
2335 if (!new_page)
2336 goto oom;
82b0f8c3 2337 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2338 }
2f38ab2c 2339
f627c2f5 2340 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2341 goto oom_free_new;
2342
eb3c24f3
MG
2343 __SetPageUptodate(new_page);
2344
2f38ab2c
SR
2345 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2346
2347 /*
2348 * Re-check the pte - we dropped the lock
2349 */
82b0f8c3 2350 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2351 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2352 if (old_page) {
2353 if (!PageAnon(old_page)) {
eca56ff9
JM
2354 dec_mm_counter_fast(mm,
2355 mm_counter_file(old_page));
2f38ab2c
SR
2356 inc_mm_counter_fast(mm, MM_ANONPAGES);
2357 }
2358 } else {
2359 inc_mm_counter_fast(mm, MM_ANONPAGES);
2360 }
2994302b 2361 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2362 entry = mk_pte(new_page, vma->vm_page_prot);
2363 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2364 /*
2365 * Clear the pte entry and flush it first, before updating the
2366 * pte with the new entry. This will avoid a race condition
2367 * seen in the presence of one thread doing SMC and another
2368 * thread doing COW.
2369 */
82b0f8c3
JK
2370 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2371 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2372 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2373 lru_cache_add_active_or_unevictable(new_page, vma);
2374 /*
2375 * We call the notify macro here because, when using secondary
2376 * mmu page tables (such as kvm shadow page tables), we want the
2377 * new page to be mapped directly into the secondary page table.
2378 */
82b0f8c3
JK
2379 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2380 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2381 if (old_page) {
2382 /*
2383 * Only after switching the pte to the new page may
2384 * we remove the mapcount here. Otherwise another
2385 * process may come and find the rmap count decremented
2386 * before the pte is switched to the new page, and
2387 * "reuse" the old page writing into it while our pte
2388 * here still points into it and can be read by other
2389 * threads.
2390 *
2391 * The critical issue is to order this
2392 * page_remove_rmap with the ptp_clear_flush above.
2393 * Those stores are ordered by (if nothing else,)
2394 * the barrier present in the atomic_add_negative
2395 * in page_remove_rmap.
2396 *
2397 * Then the TLB flush in ptep_clear_flush ensures that
2398 * no process can access the old page before the
2399 * decremented mapcount is visible. And the old page
2400 * cannot be reused until after the decremented
2401 * mapcount is visible. So transitively, TLBs to
2402 * old page will be flushed before it can be reused.
2403 */
d281ee61 2404 page_remove_rmap(old_page, false);
2f38ab2c
SR
2405 }
2406
2407 /* Free the old page.. */
2408 new_page = old_page;
2409 page_copied = 1;
2410 } else {
f627c2f5 2411 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2412 }
2413
2414 if (new_page)
09cbfeaf 2415 put_page(new_page);
2f38ab2c 2416
82b0f8c3 2417 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
2418 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2419 if (old_page) {
2420 /*
2421 * Don't let another task, with possibly unlocked vma,
2422 * keep the mlocked page.
2423 */
2424 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2425 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2426 if (PageMlocked(old_page))
2427 munlock_vma_page(old_page);
2f38ab2c
SR
2428 unlock_page(old_page);
2429 }
09cbfeaf 2430 put_page(old_page);
2f38ab2c
SR
2431 }
2432 return page_copied ? VM_FAULT_WRITE : 0;
2433oom_free_new:
09cbfeaf 2434 put_page(new_page);
2f38ab2c
SR
2435oom:
2436 if (old_page)
09cbfeaf 2437 put_page(old_page);
2f38ab2c
SR
2438 return VM_FAULT_OOM;
2439}
2440
66a6197c
JK
2441/**
2442 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2443 * writeable once the page is prepared
2444 *
2445 * @vmf: structure describing the fault
2446 *
2447 * This function handles all that is needed to finish a write page fault in a
2448 * shared mapping due to PTE being read-only once the mapped page is prepared.
2449 * It handles locking of PTE and modifying it. The function returns
2450 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2451 * lock.
2452 *
2453 * The function expects the page to be locked or other protection against
2454 * concurrent faults / writeback (such as DAX radix tree locks).
2455 */
2456int finish_mkwrite_fault(struct vm_fault *vmf)
2457{
2458 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2459 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2460 &vmf->ptl);
2461 /*
2462 * We might have raced with another page fault while we released the
2463 * pte_offset_map_lock.
2464 */
2465 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2466 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2467 return VM_FAULT_NOPAGE;
66a6197c
JK
2468 }
2469 wp_page_reuse(vmf);
a19e2553 2470 return 0;
66a6197c
JK
2471}
2472
dd906184
BH
2473/*
2474 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2475 * mapping
2476 */
2994302b 2477static int wp_pfn_shared(struct vm_fault *vmf)
dd906184 2478{
82b0f8c3 2479 struct vm_area_struct *vma = vmf->vma;
bae473a4 2480
dd906184 2481 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
dd906184
BH
2482 int ret;
2483
82b0f8c3 2484 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2485 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2486 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2487 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2488 return ret;
66a6197c 2489 return finish_mkwrite_fault(vmf);
dd906184 2490 }
997dd98d
JK
2491 wp_page_reuse(vmf);
2492 return VM_FAULT_WRITE;
dd906184
BH
2493}
2494
a41b70d6 2495static int wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2496 __releases(vmf->ptl)
93e478d4 2497{
82b0f8c3 2498 struct vm_area_struct *vma = vmf->vma;
93e478d4 2499
a41b70d6 2500 get_page(vmf->page);
93e478d4 2501
93e478d4
SR
2502 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2503 int tmp;
2504
82b0f8c3 2505 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2506 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2507 if (unlikely(!tmp || (tmp &
2508 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2509 put_page(vmf->page);
93e478d4
SR
2510 return tmp;
2511 }
66a6197c 2512 tmp = finish_mkwrite_fault(vmf);
a19e2553 2513 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2514 unlock_page(vmf->page);
a41b70d6 2515 put_page(vmf->page);
66a6197c 2516 return tmp;
93e478d4 2517 }
66a6197c
JK
2518 } else {
2519 wp_page_reuse(vmf);
997dd98d 2520 lock_page(vmf->page);
93e478d4 2521 }
997dd98d
JK
2522 fault_dirty_shared_page(vma, vmf->page);
2523 put_page(vmf->page);
93e478d4 2524
997dd98d 2525 return VM_FAULT_WRITE;
93e478d4
SR
2526}
2527
1da177e4
LT
2528/*
2529 * This routine handles present pages, when users try to write
2530 * to a shared page. It is done by copying the page to a new address
2531 * and decrementing the shared-page counter for the old page.
2532 *
1da177e4
LT
2533 * Note that this routine assumes that the protection checks have been
2534 * done by the caller (the low-level page fault routine in most cases).
2535 * Thus we can safely just mark it writable once we've done any necessary
2536 * COW.
2537 *
2538 * We also mark the page dirty at this point even though the page will
2539 * change only once the write actually happens. This avoids a few races,
2540 * and potentially makes it more efficient.
2541 *
8f4e2101
HD
2542 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2543 * but allow concurrent faults), with pte both mapped and locked.
2544 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2545 */
2994302b 2546static int do_wp_page(struct vm_fault *vmf)
82b0f8c3 2547 __releases(vmf->ptl)
1da177e4 2548{
82b0f8c3 2549 struct vm_area_struct *vma = vmf->vma;
1da177e4 2550
a41b70d6
JK
2551 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2552 if (!vmf->page) {
251b97f5 2553 /*
64e45507
PF
2554 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2555 * VM_PFNMAP VMA.
251b97f5
PZ
2556 *
2557 * We should not cow pages in a shared writeable mapping.
dd906184 2558 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2559 */
2560 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2561 (VM_WRITE|VM_SHARED))
2994302b 2562 return wp_pfn_shared(vmf);
2f38ab2c 2563
82b0f8c3 2564 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2565 return wp_page_copy(vmf);
251b97f5 2566 }
1da177e4 2567
d08b3851 2568 /*
ee6a6457
PZ
2569 * Take out anonymous pages first, anonymous shared vmas are
2570 * not dirty accountable.
d08b3851 2571 */
a41b70d6 2572 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
6d0a07ed 2573 int total_mapcount;
a41b70d6
JK
2574 if (!trylock_page(vmf->page)) {
2575 get_page(vmf->page);
82b0f8c3 2576 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2577 lock_page(vmf->page);
82b0f8c3
JK
2578 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2579 vmf->address, &vmf->ptl);
2994302b 2580 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2581 unlock_page(vmf->page);
82b0f8c3 2582 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2583 put_page(vmf->page);
28766805 2584 return 0;
ab967d86 2585 }
a41b70d6 2586 put_page(vmf->page);
ee6a6457 2587 }
a41b70d6 2588 if (reuse_swap_page(vmf->page, &total_mapcount)) {
6d0a07ed
AA
2589 if (total_mapcount == 1) {
2590 /*
2591 * The page is all ours. Move it to
2592 * our anon_vma so the rmap code will
2593 * not search our parent or siblings.
2594 * Protected against the rmap code by
2595 * the page lock.
2596 */
a41b70d6 2597 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2598 }
a41b70d6 2599 unlock_page(vmf->page);
997dd98d
JK
2600 wp_page_reuse(vmf);
2601 return VM_FAULT_WRITE;
b009c024 2602 }
a41b70d6 2603 unlock_page(vmf->page);
ee6a6457 2604 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2605 (VM_WRITE|VM_SHARED))) {
a41b70d6 2606 return wp_page_shared(vmf);
1da177e4 2607 }
1da177e4
LT
2608
2609 /*
2610 * Ok, we need to copy. Oh, well..
2611 */
a41b70d6 2612 get_page(vmf->page);
28766805 2613
82b0f8c3 2614 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2615 return wp_page_copy(vmf);
1da177e4
LT
2616}
2617
97a89413 2618static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2619 unsigned long start_addr, unsigned long end_addr,
2620 struct zap_details *details)
2621{
f5cc4eef 2622 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2623}
2624
6b2dbba8 2625static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2626 struct zap_details *details)
2627{
2628 struct vm_area_struct *vma;
1da177e4
LT
2629 pgoff_t vba, vea, zba, zea;
2630
6b2dbba8 2631 vma_interval_tree_foreach(vma, root,
1da177e4 2632 details->first_index, details->last_index) {
1da177e4
LT
2633
2634 vba = vma->vm_pgoff;
d6e93217 2635 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2636 zba = details->first_index;
2637 if (zba < vba)
2638 zba = vba;
2639 zea = details->last_index;
2640 if (zea > vea)
2641 zea = vea;
2642
97a89413 2643 unmap_mapping_range_vma(vma,
1da177e4
LT
2644 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2645 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2646 details);
1da177e4
LT
2647 }
2648}
2649
1da177e4 2650/**
8a5f14a2
KS
2651 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2652 * address_space corresponding to the specified page range in the underlying
2653 * file.
2654 *
3d41088f 2655 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2656 * @holebegin: byte in first page to unmap, relative to the start of
2657 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2658 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2659 * must keep the partial page. In contrast, we must get rid of
2660 * partial pages.
2661 * @holelen: size of prospective hole in bytes. This will be rounded
2662 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2663 * end of the file.
2664 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2665 * but 0 when invalidating pagecache, don't throw away private data.
2666 */
2667void unmap_mapping_range(struct address_space *mapping,
2668 loff_t const holebegin, loff_t const holelen, int even_cows)
2669{
aac45363 2670 struct zap_details details = { };
1da177e4
LT
2671 pgoff_t hba = holebegin >> PAGE_SHIFT;
2672 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2673
2674 /* Check for overflow. */
2675 if (sizeof(holelen) > sizeof(hlen)) {
2676 long long holeend =
2677 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2678 if (holeend & ~(long long)ULONG_MAX)
2679 hlen = ULONG_MAX - hba + 1;
2680 }
2681
166f61b9 2682 details.check_mapping = even_cows ? NULL : mapping;
1da177e4
LT
2683 details.first_index = hba;
2684 details.last_index = hba + hlen - 1;
2685 if (details.last_index < details.first_index)
2686 details.last_index = ULONG_MAX;
1da177e4 2687
46c043ed 2688 i_mmap_lock_write(mapping);
6b2dbba8 2689 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2690 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2691 i_mmap_unlock_write(mapping);
1da177e4
LT
2692}
2693EXPORT_SYMBOL(unmap_mapping_range);
2694
1da177e4 2695/*
8f4e2101
HD
2696 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2697 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2698 * We return with pte unmapped and unlocked.
2699 *
2700 * We return with the mmap_sem locked or unlocked in the same cases
2701 * as does filemap_fault().
1da177e4 2702 */
2994302b 2703int do_swap_page(struct vm_fault *vmf)
1da177e4 2704{
82b0f8c3 2705 struct vm_area_struct *vma = vmf->vma;
56f31801 2706 struct page *page, *swapcache;
00501b53 2707 struct mem_cgroup *memcg;
65500d23 2708 swp_entry_t entry;
1da177e4 2709 pte_t pte;
d065bd81 2710 int locked;
ad8c2ee8 2711 int exclusive = 0;
83c54070 2712 int ret = 0;
1da177e4 2713
2994302b 2714 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2715 goto out;
65500d23 2716
2994302b 2717 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2718 if (unlikely(non_swap_entry(entry))) {
2719 if (is_migration_entry(entry)) {
82b0f8c3
JK
2720 migration_entry_wait(vma->vm_mm, vmf->pmd,
2721 vmf->address);
d1737fdb
AK
2722 } else if (is_hwpoison_entry(entry)) {
2723 ret = VM_FAULT_HWPOISON;
2724 } else {
2994302b 2725 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2726 ret = VM_FAULT_SIGBUS;
d1737fdb 2727 }
0697212a
CL
2728 goto out;
2729 }
0ff92245 2730 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2731 page = lookup_swap_cache(entry);
2732 if (!page) {
82b0f8c3
JK
2733 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2734 vmf->address);
1da177e4
LT
2735 if (!page) {
2736 /*
8f4e2101
HD
2737 * Back out if somebody else faulted in this pte
2738 * while we released the pte lock.
1da177e4 2739 */
82b0f8c3
JK
2740 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2741 vmf->address, &vmf->ptl);
2994302b 2742 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2743 ret = VM_FAULT_OOM;
0ff92245 2744 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2745 goto unlock;
1da177e4
LT
2746 }
2747
2748 /* Had to read the page from swap area: Major fault */
2749 ret = VM_FAULT_MAJOR;
f8891e5e 2750 count_vm_event(PGMAJFAULT);
2262185c 2751 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2752 } else if (PageHWPoison(page)) {
71f72525
WF
2753 /*
2754 * hwpoisoned dirty swapcache pages are kept for killing
2755 * owner processes (which may be unknown at hwpoison time)
2756 */
d1737fdb
AK
2757 ret = VM_FAULT_HWPOISON;
2758 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2759 swapcache = page;
4779cb31 2760 goto out_release;
1da177e4
LT
2761 }
2762
56f31801 2763 swapcache = page;
82b0f8c3 2764 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2765
073e587e 2766 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2767 if (!locked) {
2768 ret |= VM_FAULT_RETRY;
2769 goto out_release;
2770 }
073e587e 2771
4969c119 2772 /*
31c4a3d3
HD
2773 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2774 * release the swapcache from under us. The page pin, and pte_same
2775 * test below, are not enough to exclude that. Even if it is still
2776 * swapcache, we need to check that the page's swap has not changed.
4969c119 2777 */
31c4a3d3 2778 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2779 goto out_page;
2780
82b0f8c3 2781 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2782 if (unlikely(!page)) {
2783 ret = VM_FAULT_OOM;
2784 page = swapcache;
cbf86cfe 2785 goto out_page;
5ad64688
HD
2786 }
2787
bae473a4
KS
2788 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2789 &memcg, false)) {
8a9f3ccd 2790 ret = VM_FAULT_OOM;
bc43f75c 2791 goto out_page;
8a9f3ccd
BS
2792 }
2793
1da177e4 2794 /*
8f4e2101 2795 * Back out if somebody else already faulted in this pte.
1da177e4 2796 */
82b0f8c3
JK
2797 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2798 &vmf->ptl);
2994302b 2799 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2800 goto out_nomap;
b8107480
KK
2801
2802 if (unlikely(!PageUptodate(page))) {
2803 ret = VM_FAULT_SIGBUS;
2804 goto out_nomap;
1da177e4
LT
2805 }
2806
8c7c6e34
KH
2807 /*
2808 * The page isn't present yet, go ahead with the fault.
2809 *
2810 * Be careful about the sequence of operations here.
2811 * To get its accounting right, reuse_swap_page() must be called
2812 * while the page is counted on swap but not yet in mapcount i.e.
2813 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2814 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2815 */
1da177e4 2816
bae473a4
KS
2817 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2818 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2819 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2820 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2821 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2822 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2823 ret |= VM_FAULT_WRITE;
d281ee61 2824 exclusive = RMAP_EXCLUSIVE;
1da177e4 2825 }
1da177e4 2826 flush_icache_page(vma, page);
2994302b 2827 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2828 pte = pte_mksoft_dirty(pte);
82b0f8c3 2829 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2994302b 2830 vmf->orig_pte = pte;
00501b53 2831 if (page == swapcache) {
82b0f8c3 2832 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
f627c2f5 2833 mem_cgroup_commit_charge(page, memcg, true, false);
1a8018fb 2834 activate_page(page);
00501b53 2835 } else { /* ksm created a completely new copy */
82b0f8c3 2836 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2837 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2838 lru_cache_add_active_or_unevictable(page, vma);
2839 }
1da177e4 2840
c475a8ab 2841 swap_free(entry);
5ccc5aba
VD
2842 if (mem_cgroup_swap_full(page) ||
2843 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2844 try_to_free_swap(page);
c475a8ab 2845 unlock_page(page);
56f31801 2846 if (page != swapcache) {
4969c119
AA
2847 /*
2848 * Hold the lock to avoid the swap entry to be reused
2849 * until we take the PT lock for the pte_same() check
2850 * (to avoid false positives from pte_same). For
2851 * further safety release the lock after the swap_free
2852 * so that the swap count won't change under a
2853 * parallel locked swapcache.
2854 */
2855 unlock_page(swapcache);
09cbfeaf 2856 put_page(swapcache);
4969c119 2857 }
c475a8ab 2858
82b0f8c3 2859 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2860 ret |= do_wp_page(vmf);
61469f1d
HD
2861 if (ret & VM_FAULT_ERROR)
2862 ret &= VM_FAULT_ERROR;
1da177e4
LT
2863 goto out;
2864 }
2865
2866 /* No need to invalidate - it was non-present before */
82b0f8c3 2867 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2868unlock:
82b0f8c3 2869 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2870out:
2871 return ret;
b8107480 2872out_nomap:
f627c2f5 2873 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2874 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2875out_page:
b8107480 2876 unlock_page(page);
4779cb31 2877out_release:
09cbfeaf 2878 put_page(page);
56f31801 2879 if (page != swapcache) {
4969c119 2880 unlock_page(swapcache);
09cbfeaf 2881 put_page(swapcache);
4969c119 2882 }
65500d23 2883 return ret;
1da177e4
LT
2884}
2885
2886/*
8f4e2101
HD
2887 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2888 * but allow concurrent faults), and pte mapped but not yet locked.
2889 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2890 */
82b0f8c3 2891static int do_anonymous_page(struct vm_fault *vmf)
1da177e4 2892{
82b0f8c3 2893 struct vm_area_struct *vma = vmf->vma;
00501b53 2894 struct mem_cgroup *memcg;
8f4e2101 2895 struct page *page;
1da177e4 2896 pte_t entry;
1da177e4 2897
6b7339f4
KS
2898 /* File mapping without ->vm_ops ? */
2899 if (vma->vm_flags & VM_SHARED)
2900 return VM_FAULT_SIGBUS;
2901
7267ec00
KS
2902 /*
2903 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2904 * pte_offset_map() on pmds where a huge pmd might be created
2905 * from a different thread.
2906 *
2907 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2908 * parallel threads are excluded by other means.
2909 *
2910 * Here we only have down_read(mmap_sem).
2911 */
82b0f8c3 2912 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
2913 return VM_FAULT_OOM;
2914
2915 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2916 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2917 return 0;
2918
11ac5524 2919 /* Use the zero-page for reads */
82b0f8c3 2920 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2921 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2922 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2923 vma->vm_page_prot));
82b0f8c3
JK
2924 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2925 vmf->address, &vmf->ptl);
2926 if (!pte_none(*vmf->pte))
a13ea5b7 2927 goto unlock;
6b251fc9
AA
2928 /* Deliver the page fault to userland, check inside PT lock */
2929 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2930 pte_unmap_unlock(vmf->pte, vmf->ptl);
2931 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2932 }
a13ea5b7
HD
2933 goto setpte;
2934 }
2935
557ed1fa 2936 /* Allocate our own private page. */
557ed1fa
NP
2937 if (unlikely(anon_vma_prepare(vma)))
2938 goto oom;
82b0f8c3 2939 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2940 if (!page)
2941 goto oom;
eb3c24f3 2942
bae473a4 2943 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2944 goto oom_free_page;
2945
52f37629
MK
2946 /*
2947 * The memory barrier inside __SetPageUptodate makes sure that
2948 * preceeding stores to the page contents become visible before
2949 * the set_pte_at() write.
2950 */
0ed361de 2951 __SetPageUptodate(page);
8f4e2101 2952
557ed1fa 2953 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2954 if (vma->vm_flags & VM_WRITE)
2955 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2956
82b0f8c3
JK
2957 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2958 &vmf->ptl);
2959 if (!pte_none(*vmf->pte))
557ed1fa 2960 goto release;
9ba69294 2961
6b251fc9
AA
2962 /* Deliver the page fault to userland, check inside PT lock */
2963 if (userfaultfd_missing(vma)) {
82b0f8c3 2964 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 2965 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2966 put_page(page);
82b0f8c3 2967 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
2968 }
2969
bae473a4 2970 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 2971 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2972 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2973 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2974setpte:
82b0f8c3 2975 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
2976
2977 /* No need to invalidate - it was non-present before */
82b0f8c3 2978 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2979unlock:
82b0f8c3 2980 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 2981 return 0;
8f4e2101 2982release:
f627c2f5 2983 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2984 put_page(page);
8f4e2101 2985 goto unlock;
8a9f3ccd 2986oom_free_page:
09cbfeaf 2987 put_page(page);
65500d23 2988oom:
1da177e4
LT
2989 return VM_FAULT_OOM;
2990}
2991
9a95f3cf
PC
2992/*
2993 * The mmap_sem must have been held on entry, and may have been
2994 * released depending on flags and vma->vm_ops->fault() return value.
2995 * See filemap_fault() and __lock_page_retry().
2996 */
936ca80d 2997static int __do_fault(struct vm_fault *vmf)
7eae74af 2998{
82b0f8c3 2999 struct vm_area_struct *vma = vmf->vma;
7eae74af
KS
3000 int ret;
3001
11bac800 3002 ret = vma->vm_ops->fault(vmf);
3917048d 3003 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3004 VM_FAULT_DONE_COW)))
bc2466e4 3005 return ret;
7eae74af 3006
667240e0 3007 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3008 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3009 unlock_page(vmf->page);
3010 put_page(vmf->page);
936ca80d 3011 vmf->page = NULL;
7eae74af
KS
3012 return VM_FAULT_HWPOISON;
3013 }
3014
3015 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3016 lock_page(vmf->page);
7eae74af 3017 else
667240e0 3018 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3019
7eae74af
KS
3020 return ret;
3021}
3022
d0f0931d
RZ
3023/*
3024 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3025 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3026 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3027 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3028 */
3029static int pmd_devmap_trans_unstable(pmd_t *pmd)
3030{
3031 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3032}
3033
82b0f8c3 3034static int pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3035{
82b0f8c3 3036 struct vm_area_struct *vma = vmf->vma;
7267ec00 3037
82b0f8c3 3038 if (!pmd_none(*vmf->pmd))
7267ec00 3039 goto map_pte;
82b0f8c3
JK
3040 if (vmf->prealloc_pte) {
3041 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3042 if (unlikely(!pmd_none(*vmf->pmd))) {
3043 spin_unlock(vmf->ptl);
7267ec00
KS
3044 goto map_pte;
3045 }
3046
3047 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3
JK
3048 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3049 spin_unlock(vmf->ptl);
7f2b6ce8 3050 vmf->prealloc_pte = NULL;
82b0f8c3 3051 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
3052 return VM_FAULT_OOM;
3053 }
3054map_pte:
3055 /*
3056 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3057 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3058 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3059 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3060 * running immediately after a huge pmd fault in a different thread of
3061 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3062 * All we have to ensure is that it is a regular pmd that we can walk
3063 * with pte_offset_map() and we can do that through an atomic read in
3064 * C, which is what pmd_trans_unstable() provides.
7267ec00 3065 */
d0f0931d 3066 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3067 return VM_FAULT_NOPAGE;
3068
d0f0931d
RZ
3069 /*
3070 * At this point we know that our vmf->pmd points to a page of ptes
3071 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3072 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3073 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3074 * be valid and we will re-check to make sure the vmf->pte isn't
3075 * pte_none() under vmf->ptl protection when we return to
3076 * alloc_set_pte().
3077 */
82b0f8c3
JK
3078 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3079 &vmf->ptl);
7267ec00
KS
3080 return 0;
3081}
3082
e496cf3d 3083#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3084
3085#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3086static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3087 unsigned long haddr)
3088{
3089 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3090 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3091 return false;
3092 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3093 return false;
3094 return true;
3095}
3096
82b0f8c3 3097static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3098{
82b0f8c3 3099 struct vm_area_struct *vma = vmf->vma;
953c66c2 3100
82b0f8c3 3101 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3102 /*
3103 * We are going to consume the prealloc table,
3104 * count that as nr_ptes.
3105 */
3106 atomic_long_inc(&vma->vm_mm->nr_ptes);
7f2b6ce8 3107 vmf->prealloc_pte = NULL;
953c66c2
AK
3108}
3109
82b0f8c3 3110static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3111{
82b0f8c3
JK
3112 struct vm_area_struct *vma = vmf->vma;
3113 bool write = vmf->flags & FAULT_FLAG_WRITE;
3114 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459
KS
3115 pmd_t entry;
3116 int i, ret;
3117
3118 if (!transhuge_vma_suitable(vma, haddr))
3119 return VM_FAULT_FALLBACK;
3120
3121 ret = VM_FAULT_FALLBACK;
3122 page = compound_head(page);
3123
953c66c2
AK
3124 /*
3125 * Archs like ppc64 need additonal space to store information
3126 * related to pte entry. Use the preallocated table for that.
3127 */
82b0f8c3
JK
3128 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3129 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3130 if (!vmf->prealloc_pte)
953c66c2
AK
3131 return VM_FAULT_OOM;
3132 smp_wmb(); /* See comment in __pte_alloc() */
3133 }
3134
82b0f8c3
JK
3135 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3136 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3137 goto out;
3138
3139 for (i = 0; i < HPAGE_PMD_NR; i++)
3140 flush_icache_page(vma, page + i);
3141
3142 entry = mk_huge_pmd(page, vma->vm_page_prot);
3143 if (write)
3144 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3145
3146 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3147 page_add_file_rmap(page, true);
953c66c2
AK
3148 /*
3149 * deposit and withdraw with pmd lock held
3150 */
3151 if (arch_needs_pgtable_deposit())
82b0f8c3 3152 deposit_prealloc_pte(vmf);
10102459 3153
82b0f8c3 3154 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3155
82b0f8c3 3156 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3157
3158 /* fault is handled */
3159 ret = 0;
95ecedcd 3160 count_vm_event(THP_FILE_MAPPED);
10102459 3161out:
82b0f8c3 3162 spin_unlock(vmf->ptl);
10102459
KS
3163 return ret;
3164}
3165#else
82b0f8c3 3166static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3167{
3168 BUILD_BUG();
3169 return 0;
3170}
3171#endif
3172
8c6e50b0 3173/**
7267ec00
KS
3174 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3175 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3176 *
82b0f8c3 3177 * @vmf: fault environment
7267ec00 3178 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3179 * @page: page to map
8c6e50b0 3180 *
82b0f8c3
JK
3181 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3182 * return.
8c6e50b0
KS
3183 *
3184 * Target users are page handler itself and implementations of
3185 * vm_ops->map_pages.
3186 */
82b0f8c3 3187int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3188 struct page *page)
3bb97794 3189{
82b0f8c3
JK
3190 struct vm_area_struct *vma = vmf->vma;
3191 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3192 pte_t entry;
10102459
KS
3193 int ret;
3194
82b0f8c3 3195 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3196 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3197 /* THP on COW? */
3198 VM_BUG_ON_PAGE(memcg, page);
3199
82b0f8c3 3200 ret = do_set_pmd(vmf, page);
10102459 3201 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3202 return ret;
10102459 3203 }
3bb97794 3204
82b0f8c3
JK
3205 if (!vmf->pte) {
3206 ret = pte_alloc_one_map(vmf);
7267ec00 3207 if (ret)
b0b9b3df 3208 return ret;
7267ec00
KS
3209 }
3210
3211 /* Re-check under ptl */
b0b9b3df
HD
3212 if (unlikely(!pte_none(*vmf->pte)))
3213 return VM_FAULT_NOPAGE;
7267ec00 3214
3bb97794
KS
3215 flush_icache_page(vma, page);
3216 entry = mk_pte(page, vma->vm_page_prot);
3217 if (write)
3218 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3219 /* copy-on-write page */
3220 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3221 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3222 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3223 mem_cgroup_commit_charge(page, memcg, false, false);
3224 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3225 } else {
eca56ff9 3226 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3227 page_add_file_rmap(page, false);
3bb97794 3228 }
82b0f8c3 3229 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3230
3231 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3232 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3233
b0b9b3df 3234 return 0;
3bb97794
KS
3235}
3236
9118c0cb
JK
3237
3238/**
3239 * finish_fault - finish page fault once we have prepared the page to fault
3240 *
3241 * @vmf: structure describing the fault
3242 *
3243 * This function handles all that is needed to finish a page fault once the
3244 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3245 * given page, adds reverse page mapping, handles memcg charges and LRU
3246 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3247 * error.
3248 *
3249 * The function expects the page to be locked and on success it consumes a
3250 * reference of a page being mapped (for the PTE which maps it).
3251 */
3252int finish_fault(struct vm_fault *vmf)
3253{
3254 struct page *page;
3255 int ret;
3256
3257 /* Did we COW the page? */
3258 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3259 !(vmf->vma->vm_flags & VM_SHARED))
3260 page = vmf->cow_page;
3261 else
3262 page = vmf->page;
3263 ret = alloc_set_pte(vmf, vmf->memcg, page);
3264 if (vmf->pte)
3265 pte_unmap_unlock(vmf->pte, vmf->ptl);
3266 return ret;
3267}
3268
3a91053a
KS
3269static unsigned long fault_around_bytes __read_mostly =
3270 rounddown_pow_of_two(65536);
a9b0f861 3271
a9b0f861
KS
3272#ifdef CONFIG_DEBUG_FS
3273static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3274{
a9b0f861 3275 *val = fault_around_bytes;
1592eef0
KS
3276 return 0;
3277}
3278
b4903d6e
AR
3279/*
3280 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3281 * rounded down to nearest page order. It's what do_fault_around() expects to
3282 * see.
3283 */
a9b0f861 3284static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3285{
a9b0f861 3286 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3287 return -EINVAL;
b4903d6e
AR
3288 if (val > PAGE_SIZE)
3289 fault_around_bytes = rounddown_pow_of_two(val);
3290 else
3291 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3292 return 0;
3293}
0a1345f8 3294DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3295 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3296
3297static int __init fault_around_debugfs(void)
3298{
3299 void *ret;
3300
0a1345f8 3301 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
a9b0f861 3302 &fault_around_bytes_fops);
1592eef0 3303 if (!ret)
a9b0f861 3304 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3305 return 0;
3306}
3307late_initcall(fault_around_debugfs);
1592eef0 3308#endif
8c6e50b0 3309
1fdb412b
KS
3310/*
3311 * do_fault_around() tries to map few pages around the fault address. The hope
3312 * is that the pages will be needed soon and this will lower the number of
3313 * faults to handle.
3314 *
3315 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3316 * not ready to be mapped: not up-to-date, locked, etc.
3317 *
3318 * This function is called with the page table lock taken. In the split ptlock
3319 * case the page table lock only protects only those entries which belong to
3320 * the page table corresponding to the fault address.
3321 *
3322 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3323 * only once.
3324 *
3325 * fault_around_pages() defines how many pages we'll try to map.
3326 * do_fault_around() expects it to return a power of two less than or equal to
3327 * PTRS_PER_PTE.
3328 *
3329 * The virtual address of the area that we map is naturally aligned to the
3330 * fault_around_pages() value (and therefore to page order). This way it's
3331 * easier to guarantee that we don't cross page table boundaries.
3332 */
0721ec8b 3333static int do_fault_around(struct vm_fault *vmf)
8c6e50b0 3334{
82b0f8c3 3335 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3336 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3337 pgoff_t end_pgoff;
7267ec00 3338 int off, ret = 0;
8c6e50b0 3339
4db0c3c2 3340 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3341 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3342
82b0f8c3
JK
3343 vmf->address = max(address & mask, vmf->vma->vm_start);
3344 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3345 start_pgoff -= off;
8c6e50b0
KS
3346
3347 /*
bae473a4
KS
3348 * end_pgoff is either end of page table or end of vma
3349 * or fault_around_pages() from start_pgoff, depending what is nearest.
8c6e50b0 3350 */
bae473a4 3351 end_pgoff = start_pgoff -
82b0f8c3 3352 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3353 PTRS_PER_PTE - 1;
82b0f8c3 3354 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3355 start_pgoff + nr_pages - 1);
8c6e50b0 3356
82b0f8c3
JK
3357 if (pmd_none(*vmf->pmd)) {
3358 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3359 vmf->address);
3360 if (!vmf->prealloc_pte)
c5f88bd2 3361 goto out;
7267ec00 3362 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3363 }
3364
82b0f8c3 3365 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3366
7267ec00 3367 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3368 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3369 ret = VM_FAULT_NOPAGE;
3370 goto out;
3371 }
3372
3373 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3374 if (!vmf->pte)
7267ec00
KS
3375 goto out;
3376
3377 /* check if the page fault is solved */
82b0f8c3
JK
3378 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3379 if (!pte_none(*vmf->pte))
7267ec00 3380 ret = VM_FAULT_NOPAGE;
82b0f8c3 3381 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3382out:
82b0f8c3
JK
3383 vmf->address = address;
3384 vmf->pte = NULL;
7267ec00 3385 return ret;
8c6e50b0
KS
3386}
3387
0721ec8b 3388static int do_read_fault(struct vm_fault *vmf)
e655fb29 3389{
82b0f8c3 3390 struct vm_area_struct *vma = vmf->vma;
8c6e50b0
KS
3391 int ret = 0;
3392
3393 /*
3394 * Let's call ->map_pages() first and use ->fault() as fallback
3395 * if page by the offset is not ready to be mapped (cold cache or
3396 * something).
3397 */
9b4bdd2f 3398 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3399 ret = do_fault_around(vmf);
7267ec00
KS
3400 if (ret)
3401 return ret;
8c6e50b0 3402 }
e655fb29 3403
936ca80d 3404 ret = __do_fault(vmf);
e655fb29
KS
3405 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3406 return ret;
3407
9118c0cb 3408 ret |= finish_fault(vmf);
936ca80d 3409 unlock_page(vmf->page);
7267ec00 3410 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3411 put_page(vmf->page);
e655fb29
KS
3412 return ret;
3413}
3414
0721ec8b 3415static int do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3416{
82b0f8c3 3417 struct vm_area_struct *vma = vmf->vma;
ec47c3b9
KS
3418 int ret;
3419
3420 if (unlikely(anon_vma_prepare(vma)))
3421 return VM_FAULT_OOM;
3422
936ca80d
JK
3423 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3424 if (!vmf->cow_page)
ec47c3b9
KS
3425 return VM_FAULT_OOM;
3426
936ca80d 3427 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3428 &vmf->memcg, false)) {
936ca80d 3429 put_page(vmf->cow_page);
ec47c3b9
KS
3430 return VM_FAULT_OOM;
3431 }
3432
936ca80d 3433 ret = __do_fault(vmf);
ec47c3b9
KS
3434 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3435 goto uncharge_out;
3917048d
JK
3436 if (ret & VM_FAULT_DONE_COW)
3437 return ret;
ec47c3b9 3438
b1aa812b 3439 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3440 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3441
9118c0cb 3442 ret |= finish_fault(vmf);
b1aa812b
JK
3443 unlock_page(vmf->page);
3444 put_page(vmf->page);
7267ec00
KS
3445 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3446 goto uncharge_out;
ec47c3b9
KS
3447 return ret;
3448uncharge_out:
3917048d 3449 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3450 put_page(vmf->cow_page);
ec47c3b9
KS
3451 return ret;
3452}
3453
0721ec8b 3454static int do_shared_fault(struct vm_fault *vmf)
1da177e4 3455{
82b0f8c3 3456 struct vm_area_struct *vma = vmf->vma;
f0c6d4d2 3457 int ret, tmp;
1d65f86d 3458
936ca80d 3459 ret = __do_fault(vmf);
7eae74af 3460 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3461 return ret;
1da177e4
LT
3462
3463 /*
f0c6d4d2
KS
3464 * Check if the backing address space wants to know that the page is
3465 * about to become writable
1da177e4 3466 */
fb09a464 3467 if (vma->vm_ops->page_mkwrite) {
936ca80d 3468 unlock_page(vmf->page);
38b8cb7f 3469 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3470 if (unlikely(!tmp ||
3471 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3472 put_page(vmf->page);
fb09a464 3473 return tmp;
4294621f 3474 }
fb09a464
KS
3475 }
3476
9118c0cb 3477 ret |= finish_fault(vmf);
7267ec00
KS
3478 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3479 VM_FAULT_RETRY))) {
936ca80d
JK
3480 unlock_page(vmf->page);
3481 put_page(vmf->page);
f0c6d4d2 3482 return ret;
1da177e4 3483 }
b827e496 3484
97ba0c2b 3485 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3486 return ret;
54cb8821 3487}
d00806b1 3488
9a95f3cf
PC
3489/*
3490 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3491 * but allow concurrent faults).
3492 * The mmap_sem may have been released depending on flags and our
3493 * return value. See filemap_fault() and __lock_page_or_retry().
3494 */
82b0f8c3 3495static int do_fault(struct vm_fault *vmf)
54cb8821 3496{
82b0f8c3 3497 struct vm_area_struct *vma = vmf->vma;
b0b9b3df 3498 int ret;
54cb8821 3499
6b7339f4
KS
3500 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3501 if (!vma->vm_ops->fault)
b0b9b3df
HD
3502 ret = VM_FAULT_SIGBUS;
3503 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3504 ret = do_read_fault(vmf);
3505 else if (!(vma->vm_flags & VM_SHARED))
3506 ret = do_cow_fault(vmf);
3507 else
3508 ret = do_shared_fault(vmf);
3509
3510 /* preallocated pagetable is unused: free it */
3511 if (vmf->prealloc_pte) {
3512 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3513 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3514 }
3515 return ret;
54cb8821
NP
3516}
3517
b19a9939 3518static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3519 unsigned long addr, int page_nid,
3520 int *flags)
9532fec1
MG
3521{
3522 get_page(page);
3523
3524 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3525 if (page_nid == numa_node_id()) {
9532fec1 3526 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3527 *flags |= TNF_FAULT_LOCAL;
3528 }
9532fec1
MG
3529
3530 return mpol_misplaced(page, vma, addr);
3531}
3532
2994302b 3533static int do_numa_page(struct vm_fault *vmf)
d10e63f2 3534{
82b0f8c3 3535 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3536 struct page *page = NULL;
8191acbd 3537 int page_nid = -1;
90572890 3538 int last_cpupid;
cbee9f88 3539 int target_nid;
b8593bfd 3540 bool migrated = false;
cee216a6 3541 pte_t pte;
288bc549 3542 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3543 int flags = 0;
d10e63f2
MG
3544
3545 /*
166f61b9
TH
3546 * The "pte" at this point cannot be used safely without
3547 * validation through pte_unmap_same(). It's of NUMA type but
3548 * the pfn may be screwed if the read is non atomic.
166f61b9 3549 */
82b0f8c3
JK
3550 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3551 spin_lock(vmf->ptl);
cee216a6 3552 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3553 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3554 goto out;
3555 }
3556
cee216a6
AK
3557 /*
3558 * Make it present again, Depending on how arch implementes non
3559 * accessible ptes, some can allow access by kernel mode.
3560 */
3561 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4d942466
MG
3562 pte = pte_modify(pte, vma->vm_page_prot);
3563 pte = pte_mkyoung(pte);
b191f9b1
MG
3564 if (was_writable)
3565 pte = pte_mkwrite(pte);
cee216a6 3566 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
82b0f8c3 3567 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3568
82b0f8c3 3569 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3570 if (!page) {
82b0f8c3 3571 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3572 return 0;
3573 }
3574
e81c4802
KS
3575 /* TODO: handle PTE-mapped THP */
3576 if (PageCompound(page)) {
82b0f8c3 3577 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3578 return 0;
3579 }
3580
6688cc05 3581 /*
bea66fbd
MG
3582 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3583 * much anyway since they can be in shared cache state. This misses
3584 * the case where a mapping is writable but the process never writes
3585 * to it but pte_write gets cleared during protection updates and
3586 * pte_dirty has unpredictable behaviour between PTE scan updates,
3587 * background writeback, dirty balancing and application behaviour.
6688cc05 3588 */
d59dc7bc 3589 if (!pte_write(pte))
6688cc05
PZ
3590 flags |= TNF_NO_GROUP;
3591
dabe1d99
RR
3592 /*
3593 * Flag if the page is shared between multiple address spaces. This
3594 * is later used when determining whether to group tasks together
3595 */
3596 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3597 flags |= TNF_SHARED;
3598
90572890 3599 last_cpupid = page_cpupid_last(page);
8191acbd 3600 page_nid = page_to_nid(page);
82b0f8c3 3601 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3602 &flags);
82b0f8c3 3603 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3604 if (target_nid == -1) {
4daae3b4
MG
3605 put_page(page);
3606 goto out;
3607 }
3608
3609 /* Migrate to the requested node */
1bc115d8 3610 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3611 if (migrated) {
8191acbd 3612 page_nid = target_nid;
6688cc05 3613 flags |= TNF_MIGRATED;
074c2381
MG
3614 } else
3615 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3616
3617out:
8191acbd 3618 if (page_nid != -1)
6688cc05 3619 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3620 return 0;
3621}
3622
91a90140 3623static inline int create_huge_pmd(struct vm_fault *vmf)
b96375f7 3624{
f4200391 3625 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3626 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3627 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3628 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3629 return VM_FAULT_FALLBACK;
3630}
3631
82b0f8c3 3632static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3633{
82b0f8c3
JK
3634 if (vma_is_anonymous(vmf->vma))
3635 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3636 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3637 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3638
3639 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3640 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3641 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3642
b96375f7
MW
3643 return VM_FAULT_FALLBACK;
3644}
3645
38e08854
LS
3646static inline bool vma_is_accessible(struct vm_area_struct *vma)
3647{
3648 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3649}
3650
a00cc7d9
MW
3651static int create_huge_pud(struct vm_fault *vmf)
3652{
3653#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3654 /* No support for anonymous transparent PUD pages yet */
3655 if (vma_is_anonymous(vmf->vma))
3656 return VM_FAULT_FALLBACK;
3657 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3658 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3659#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3660 return VM_FAULT_FALLBACK;
3661}
3662
3663static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3664{
3665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3666 /* No support for anonymous transparent PUD pages yet */
3667 if (vma_is_anonymous(vmf->vma))
3668 return VM_FAULT_FALLBACK;
3669 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3670 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3671#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3672 return VM_FAULT_FALLBACK;
3673}
3674
1da177e4
LT
3675/*
3676 * These routines also need to handle stuff like marking pages dirty
3677 * and/or accessed for architectures that don't do it in hardware (most
3678 * RISC architectures). The early dirtying is also good on the i386.
3679 *
3680 * There is also a hook called "update_mmu_cache()" that architectures
3681 * with external mmu caches can use to update those (ie the Sparc or
3682 * PowerPC hashed page tables that act as extended TLBs).
3683 *
7267ec00
KS
3684 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3685 * concurrent faults).
9a95f3cf 3686 *
7267ec00
KS
3687 * The mmap_sem may have been released depending on flags and our return value.
3688 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3689 */
82b0f8c3 3690static int handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3691{
3692 pte_t entry;
3693
82b0f8c3 3694 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3695 /*
3696 * Leave __pte_alloc() until later: because vm_ops->fault may
3697 * want to allocate huge page, and if we expose page table
3698 * for an instant, it will be difficult to retract from
3699 * concurrent faults and from rmap lookups.
3700 */
82b0f8c3 3701 vmf->pte = NULL;
7267ec00
KS
3702 } else {
3703 /* See comment in pte_alloc_one_map() */
d0f0931d 3704 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3705 return 0;
3706 /*
3707 * A regular pmd is established and it can't morph into a huge
3708 * pmd from under us anymore at this point because we hold the
3709 * mmap_sem read mode and khugepaged takes it in write mode.
3710 * So now it's safe to run pte_offset_map().
3711 */
82b0f8c3 3712 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3713 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3714
3715 /*
3716 * some architectures can have larger ptes than wordsize,
3717 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3718 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3719 * atomic accesses. The code below just needs a consistent
3720 * view for the ifs and we later double check anyway with the
3721 * ptl lock held. So here a barrier will do.
3722 */
3723 barrier();
2994302b 3724 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3725 pte_unmap(vmf->pte);
3726 vmf->pte = NULL;
65500d23 3727 }
1da177e4
LT
3728 }
3729
82b0f8c3
JK
3730 if (!vmf->pte) {
3731 if (vma_is_anonymous(vmf->vma))
3732 return do_anonymous_page(vmf);
7267ec00 3733 else
82b0f8c3 3734 return do_fault(vmf);
7267ec00
KS
3735 }
3736
2994302b
JK
3737 if (!pte_present(vmf->orig_pte))
3738 return do_swap_page(vmf);
7267ec00 3739
2994302b
JK
3740 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3741 return do_numa_page(vmf);
d10e63f2 3742
82b0f8c3
JK
3743 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3744 spin_lock(vmf->ptl);
2994302b 3745 entry = vmf->orig_pte;
82b0f8c3 3746 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3747 goto unlock;
82b0f8c3 3748 if (vmf->flags & FAULT_FLAG_WRITE) {
1da177e4 3749 if (!pte_write(entry))
2994302b 3750 return do_wp_page(vmf);
1da177e4
LT
3751 entry = pte_mkdirty(entry);
3752 }
3753 entry = pte_mkyoung(entry);
82b0f8c3
JK
3754 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3755 vmf->flags & FAULT_FLAG_WRITE)) {
3756 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3757 } else {
3758 /*
3759 * This is needed only for protection faults but the arch code
3760 * is not yet telling us if this is a protection fault or not.
3761 * This still avoids useless tlb flushes for .text page faults
3762 * with threads.
3763 */
82b0f8c3
JK
3764 if (vmf->flags & FAULT_FLAG_WRITE)
3765 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3766 }
8f4e2101 3767unlock:
82b0f8c3 3768 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3769 return 0;
1da177e4
LT
3770}
3771
3772/*
3773 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3774 *
3775 * The mmap_sem may have been released depending on flags and our
3776 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3777 */
dcddffd4
KS
3778static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3779 unsigned int flags)
1da177e4 3780{
82b0f8c3 3781 struct vm_fault vmf = {
bae473a4 3782 .vma = vma,
1a29d85e 3783 .address = address & PAGE_MASK,
bae473a4 3784 .flags = flags,
0721ec8b 3785 .pgoff = linear_page_index(vma, address),
667240e0 3786 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3787 };
dcddffd4 3788 struct mm_struct *mm = vma->vm_mm;
1da177e4 3789 pgd_t *pgd;
c2febafc 3790 p4d_t *p4d;
a2d58167 3791 int ret;
1da177e4 3792
1da177e4 3793 pgd = pgd_offset(mm, address);
c2febafc
KS
3794 p4d = p4d_alloc(mm, pgd, address);
3795 if (!p4d)
3796 return VM_FAULT_OOM;
a00cc7d9 3797
c2febafc 3798 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3799 if (!vmf.pud)
c74df32c 3800 return VM_FAULT_OOM;
a00cc7d9 3801 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3802 ret = create_huge_pud(&vmf);
3803 if (!(ret & VM_FAULT_FALLBACK))
3804 return ret;
3805 } else {
3806 pud_t orig_pud = *vmf.pud;
3807
3808 barrier();
3809 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3810 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3811
a00cc7d9
MW
3812 /* NUMA case for anonymous PUDs would go here */
3813
3814 if (dirty && !pud_write(orig_pud)) {
3815 ret = wp_huge_pud(&vmf, orig_pud);
3816 if (!(ret & VM_FAULT_FALLBACK))
3817 return ret;
3818 } else {
3819 huge_pud_set_accessed(&vmf, orig_pud);
3820 return 0;
3821 }
3822 }
3823 }
3824
3825 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3826 if (!vmf.pmd)
c74df32c 3827 return VM_FAULT_OOM;
82b0f8c3 3828 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
a2d58167 3829 ret = create_huge_pmd(&vmf);
c0292554
KS
3830 if (!(ret & VM_FAULT_FALLBACK))
3831 return ret;
71e3aac0 3832 } else {
82b0f8c3 3833 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3834
71e3aac0 3835 barrier();
5c7fb56e 3836 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3837 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3838 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3839
82b0f8c3 3840 if ((vmf.flags & FAULT_FLAG_WRITE) &&
bae473a4 3841 !pmd_write(orig_pmd)) {
82b0f8c3 3842 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3843 if (!(ret & VM_FAULT_FALLBACK))
3844 return ret;
a1dd450b 3845 } else {
82b0f8c3 3846 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3847 return 0;
1f1d06c3 3848 }
71e3aac0
AA
3849 }
3850 }
3851
82b0f8c3 3852 return handle_pte_fault(&vmf);
1da177e4
LT
3853}
3854
9a95f3cf
PC
3855/*
3856 * By the time we get here, we already hold the mm semaphore
3857 *
3858 * The mmap_sem may have been released depending on flags and our
3859 * return value. See filemap_fault() and __lock_page_or_retry().
3860 */
dcddffd4
KS
3861int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3862 unsigned int flags)
519e5247
JW
3863{
3864 int ret;
3865
3866 __set_current_state(TASK_RUNNING);
3867
3868 count_vm_event(PGFAULT);
2262185c 3869 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
3870
3871 /* do counter updates before entering really critical section. */
3872 check_sync_rss_stat(current);
3873
3874 /*
3875 * Enable the memcg OOM handling for faults triggered in user
3876 * space. Kernel faults are handled more gracefully.
3877 */
3878 if (flags & FAULT_FLAG_USER)
49426420 3879 mem_cgroup_oom_enable();
519e5247 3880
bae473a4
KS
3881 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3882 flags & FAULT_FLAG_INSTRUCTION,
3883 flags & FAULT_FLAG_REMOTE))
3884 return VM_FAULT_SIGSEGV;
3885
3886 if (unlikely(is_vm_hugetlb_page(vma)))
3887 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3888 else
3889 ret = __handle_mm_fault(vma, address, flags);
519e5247 3890
49426420
JW
3891 if (flags & FAULT_FLAG_USER) {
3892 mem_cgroup_oom_disable();
166f61b9
TH
3893 /*
3894 * The task may have entered a memcg OOM situation but
3895 * if the allocation error was handled gracefully (no
3896 * VM_FAULT_OOM), there is no need to kill anything.
3897 * Just clean up the OOM state peacefully.
3898 */
3899 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3900 mem_cgroup_oom_synchronize(false);
49426420 3901 }
3812c8c8 3902
3f70dc38
MH
3903 /*
3904 * This mm has been already reaped by the oom reaper and so the
3905 * refault cannot be trusted in general. Anonymous refaults would
3906 * lose data and give a zero page instead e.g. This is especially
3907 * problem for use_mm() because regular tasks will just die and
3908 * the corrupted data will not be visible anywhere while kthread
3909 * will outlive the oom victim and potentially propagate the date
3910 * further.
3911 */
3912 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
5b53a6ea
MH
3913 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags))) {
3914
3915 /*
3916 * We are going to enforce SIGBUS but the PF path might have
3917 * dropped the mmap_sem already so take it again so that
3918 * we do not break expectations of all arch specific PF paths
3919 * and g-u-p
3920 */
3921 if (ret & VM_FAULT_RETRY)
3922 down_read(&vma->vm_mm->mmap_sem);
3f70dc38 3923 ret = VM_FAULT_SIGBUS;
5b53a6ea 3924 }
3f70dc38 3925
519e5247
JW
3926 return ret;
3927}
e1d6d01a 3928EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3929
90eceff1
KS
3930#ifndef __PAGETABLE_P4D_FOLDED
3931/*
3932 * Allocate p4d page table.
3933 * We've already handled the fast-path in-line.
3934 */
3935int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3936{
3937 p4d_t *new = p4d_alloc_one(mm, address);
3938 if (!new)
3939 return -ENOMEM;
3940
3941 smp_wmb(); /* See comment in __pte_alloc */
3942
3943 spin_lock(&mm->page_table_lock);
3944 if (pgd_present(*pgd)) /* Another has populated it */
3945 p4d_free(mm, new);
3946 else
3947 pgd_populate(mm, pgd, new);
3948 spin_unlock(&mm->page_table_lock);
3949 return 0;
3950}
3951#endif /* __PAGETABLE_P4D_FOLDED */
3952
1da177e4
LT
3953#ifndef __PAGETABLE_PUD_FOLDED
3954/*
3955 * Allocate page upper directory.
872fec16 3956 * We've already handled the fast-path in-line.
1da177e4 3957 */
c2febafc 3958int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 3959{
c74df32c
HD
3960 pud_t *new = pud_alloc_one(mm, address);
3961 if (!new)
1bb3630e 3962 return -ENOMEM;
1da177e4 3963
362a61ad
NP
3964 smp_wmb(); /* See comment in __pte_alloc */
3965
872fec16 3966 spin_lock(&mm->page_table_lock);
c2febafc
KS
3967#ifndef __ARCH_HAS_5LEVEL_HACK
3968 if (p4d_present(*p4d)) /* Another has populated it */
5e541973 3969 pud_free(mm, new);
1bb3630e 3970 else
c2febafc
KS
3971 p4d_populate(mm, p4d, new);
3972#else
3973 if (pgd_present(*p4d)) /* Another has populated it */
5e541973 3974 pud_free(mm, new);
1bb3630e 3975 else
c2febafc
KS
3976 pgd_populate(mm, p4d, new);
3977#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 3978 spin_unlock(&mm->page_table_lock);
1bb3630e 3979 return 0;
1da177e4
LT
3980}
3981#endif /* __PAGETABLE_PUD_FOLDED */
3982
3983#ifndef __PAGETABLE_PMD_FOLDED
3984/*
3985 * Allocate page middle directory.
872fec16 3986 * We've already handled the fast-path in-line.
1da177e4 3987 */
1bb3630e 3988int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3989{
a00cc7d9 3990 spinlock_t *ptl;
c74df32c
HD
3991 pmd_t *new = pmd_alloc_one(mm, address);
3992 if (!new)
1bb3630e 3993 return -ENOMEM;
1da177e4 3994
362a61ad
NP
3995 smp_wmb(); /* See comment in __pte_alloc */
3996
a00cc7d9 3997 ptl = pud_lock(mm, pud);
1da177e4 3998#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3999 if (!pud_present(*pud)) {
4000 mm_inc_nr_pmds(mm);
1bb3630e 4001 pud_populate(mm, pud, new);
dc6c9a35 4002 } else /* Another has populated it */
5e541973 4003 pmd_free(mm, new);
dc6c9a35
KS
4004#else
4005 if (!pgd_present(*pud)) {
4006 mm_inc_nr_pmds(mm);
1bb3630e 4007 pgd_populate(mm, pud, new);
dc6c9a35
KS
4008 } else /* Another has populated it */
4009 pmd_free(mm, new);
1da177e4 4010#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4011 spin_unlock(ptl);
1bb3630e 4012 return 0;
e0f39591 4013}
1da177e4
LT
4014#endif /* __PAGETABLE_PMD_FOLDED */
4015
09796395
RZ
4016static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4017 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4018{
4019 pgd_t *pgd;
c2febafc 4020 p4d_t *p4d;
f8ad0f49
JW
4021 pud_t *pud;
4022 pmd_t *pmd;
4023 pte_t *ptep;
4024
4025 pgd = pgd_offset(mm, address);
4026 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4027 goto out;
4028
c2febafc
KS
4029 p4d = p4d_offset(pgd, address);
4030 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4031 goto out;
4032
4033 pud = pud_offset(p4d, address);
f8ad0f49
JW
4034 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4035 goto out;
4036
4037 pmd = pmd_offset(pud, address);
f66055ab 4038 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4039
09796395
RZ
4040 if (pmd_huge(*pmd)) {
4041 if (!pmdpp)
4042 goto out;
4043
4044 *ptlp = pmd_lock(mm, pmd);
4045 if (pmd_huge(*pmd)) {
4046 *pmdpp = pmd;
4047 return 0;
4048 }
4049 spin_unlock(*ptlp);
4050 }
4051
4052 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4053 goto out;
4054
4055 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4056 if (!pte_present(*ptep))
4057 goto unlock;
4058 *ptepp = ptep;
4059 return 0;
4060unlock:
4061 pte_unmap_unlock(ptep, *ptlp);
4062out:
4063 return -EINVAL;
4064}
4065
f729c8c9
RZ
4066static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4067 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4068{
4069 int res;
4070
4071 /* (void) is needed to make gcc happy */
4072 (void) __cond_lock(*ptlp,
09796395
RZ
4073 !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
4074 ptlp)));
4075 return res;
4076}
4077
4078int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4079 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4080{
4081 int res;
4082
4083 /* (void) is needed to make gcc happy */
4084 (void) __cond_lock(*ptlp,
4085 !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
4086 ptlp)));
1b36ba81
NK
4087 return res;
4088}
09796395 4089EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4090
3b6748e2
JW
4091/**
4092 * follow_pfn - look up PFN at a user virtual address
4093 * @vma: memory mapping
4094 * @address: user virtual address
4095 * @pfn: location to store found PFN
4096 *
4097 * Only IO mappings and raw PFN mappings are allowed.
4098 *
4099 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4100 */
4101int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4102 unsigned long *pfn)
4103{
4104 int ret = -EINVAL;
4105 spinlock_t *ptl;
4106 pte_t *ptep;
4107
4108 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4109 return ret;
4110
4111 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4112 if (ret)
4113 return ret;
4114 *pfn = pte_pfn(*ptep);
4115 pte_unmap_unlock(ptep, ptl);
4116 return 0;
4117}
4118EXPORT_SYMBOL(follow_pfn);
4119
28b2ee20 4120#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4121int follow_phys(struct vm_area_struct *vma,
4122 unsigned long address, unsigned int flags,
4123 unsigned long *prot, resource_size_t *phys)
28b2ee20 4124{
03668a4d 4125 int ret = -EINVAL;
28b2ee20
RR
4126 pte_t *ptep, pte;
4127 spinlock_t *ptl;
28b2ee20 4128
d87fe660 4129 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4130 goto out;
28b2ee20 4131
03668a4d 4132 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4133 goto out;
28b2ee20 4134 pte = *ptep;
03668a4d 4135
28b2ee20
RR
4136 if ((flags & FOLL_WRITE) && !pte_write(pte))
4137 goto unlock;
28b2ee20
RR
4138
4139 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4140 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4141
03668a4d 4142 ret = 0;
28b2ee20
RR
4143unlock:
4144 pte_unmap_unlock(ptep, ptl);
4145out:
d87fe660 4146 return ret;
28b2ee20
RR
4147}
4148
4149int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4150 void *buf, int len, int write)
4151{
4152 resource_size_t phys_addr;
4153 unsigned long prot = 0;
2bc7273b 4154 void __iomem *maddr;
28b2ee20
RR
4155 int offset = addr & (PAGE_SIZE-1);
4156
d87fe660 4157 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4158 return -EINVAL;
4159
9cb12d7b 4160 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
4161 if (write)
4162 memcpy_toio(maddr + offset, buf, len);
4163 else
4164 memcpy_fromio(buf, maddr + offset, len);
4165 iounmap(maddr);
4166
4167 return len;
4168}
5a73633e 4169EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4170#endif
4171
0ec76a11 4172/*
206cb636
SW
4173 * Access another process' address space as given in mm. If non-NULL, use the
4174 * given task for page fault accounting.
0ec76a11 4175 */
84d77d3f 4176int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4177 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4178{
0ec76a11 4179 struct vm_area_struct *vma;
0ec76a11 4180 void *old_buf = buf;
442486ec 4181 int write = gup_flags & FOLL_WRITE;
0ec76a11 4182
0ec76a11 4183 down_read(&mm->mmap_sem);
183ff22b 4184 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4185 while (len) {
4186 int bytes, ret, offset;
4187 void *maddr;
28b2ee20 4188 struct page *page = NULL;
0ec76a11 4189
1e987790 4190 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4191 gup_flags, &page, &vma, NULL);
28b2ee20 4192 if (ret <= 0) {
dbffcd03
RR
4193#ifndef CONFIG_HAVE_IOREMAP_PROT
4194 break;
4195#else
28b2ee20
RR
4196 /*
4197 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4198 * we can access using slightly different code.
4199 */
28b2ee20 4200 vma = find_vma(mm, addr);
fe936dfc 4201 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4202 break;
4203 if (vma->vm_ops && vma->vm_ops->access)
4204 ret = vma->vm_ops->access(vma, addr, buf,
4205 len, write);
4206 if (ret <= 0)
28b2ee20
RR
4207 break;
4208 bytes = ret;
dbffcd03 4209#endif
0ec76a11 4210 } else {
28b2ee20
RR
4211 bytes = len;
4212 offset = addr & (PAGE_SIZE-1);
4213 if (bytes > PAGE_SIZE-offset)
4214 bytes = PAGE_SIZE-offset;
4215
4216 maddr = kmap(page);
4217 if (write) {
4218 copy_to_user_page(vma, page, addr,
4219 maddr + offset, buf, bytes);
4220 set_page_dirty_lock(page);
4221 } else {
4222 copy_from_user_page(vma, page, addr,
4223 buf, maddr + offset, bytes);
4224 }
4225 kunmap(page);
09cbfeaf 4226 put_page(page);
0ec76a11 4227 }
0ec76a11
DH
4228 len -= bytes;
4229 buf += bytes;
4230 addr += bytes;
4231 }
4232 up_read(&mm->mmap_sem);
0ec76a11
DH
4233
4234 return buf - old_buf;
4235}
03252919 4236
5ddd36b9 4237/**
ae91dbfc 4238 * access_remote_vm - access another process' address space
5ddd36b9
SW
4239 * @mm: the mm_struct of the target address space
4240 * @addr: start address to access
4241 * @buf: source or destination buffer
4242 * @len: number of bytes to transfer
6347e8d5 4243 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4244 *
4245 * The caller must hold a reference on @mm.
4246 */
4247int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4248 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4249{
6347e8d5 4250 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4251}
4252
206cb636
SW
4253/*
4254 * Access another process' address space.
4255 * Source/target buffer must be kernel space,
4256 * Do not walk the page table directly, use get_user_pages
4257 */
4258int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4259 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4260{
4261 struct mm_struct *mm;
4262 int ret;
4263
4264 mm = get_task_mm(tsk);
4265 if (!mm)
4266 return 0;
4267
f307ab6d 4268 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4269
206cb636
SW
4270 mmput(mm);
4271
4272 return ret;
4273}
fcd35857 4274EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4275
03252919
AK
4276/*
4277 * Print the name of a VMA.
4278 */
4279void print_vma_addr(char *prefix, unsigned long ip)
4280{
4281 struct mm_struct *mm = current->mm;
4282 struct vm_area_struct *vma;
4283
e8bff74a
IM
4284 /*
4285 * Do not print if we are in atomic
4286 * contexts (in exception stacks, etc.):
4287 */
4288 if (preempt_count())
4289 return;
4290
03252919
AK
4291 down_read(&mm->mmap_sem);
4292 vma = find_vma(mm, ip);
4293 if (vma && vma->vm_file) {
4294 struct file *f = vma->vm_file;
4295 char *buf = (char *)__get_free_page(GFP_KERNEL);
4296 if (buf) {
2fbc57c5 4297 char *p;
03252919 4298
9bf39ab2 4299 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4300 if (IS_ERR(p))
4301 p = "?";
2fbc57c5 4302 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4303 vma->vm_start,
4304 vma->vm_end - vma->vm_start);
4305 free_page((unsigned long)buf);
4306 }
4307 }
51a07e50 4308 up_read(&mm->mmap_sem);
03252919 4309}
3ee1afa3 4310
662bbcb2 4311#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4312void __might_fault(const char *file, int line)
3ee1afa3 4313{
95156f00
PZ
4314 /*
4315 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4316 * holding the mmap_sem, this is safe because kernel memory doesn't
4317 * get paged out, therefore we'll never actually fault, and the
4318 * below annotations will generate false positives.
4319 */
db68ce10 4320 if (uaccess_kernel())
95156f00 4321 return;
9ec23531 4322 if (pagefault_disabled())
662bbcb2 4323 return;
9ec23531
DH
4324 __might_sleep(file, line, 0);
4325#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4326 if (current->mm)
3ee1afa3 4327 might_lock_read(&current->mm->mmap_sem);
9ec23531 4328#endif
3ee1afa3 4329}
9ec23531 4330EXPORT_SYMBOL(__might_fault);
3ee1afa3 4331#endif
47ad8475
AA
4332
4333#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4334static void clear_gigantic_page(struct page *page,
4335 unsigned long addr,
4336 unsigned int pages_per_huge_page)
4337{
4338 int i;
4339 struct page *p = page;
4340
4341 might_sleep();
4342 for (i = 0; i < pages_per_huge_page;
4343 i++, p = mem_map_next(p, page, i)) {
4344 cond_resched();
4345 clear_user_highpage(p, addr + i * PAGE_SIZE);
4346 }
4347}
4348void clear_huge_page(struct page *page,
4349 unsigned long addr, unsigned int pages_per_huge_page)
4350{
4351 int i;
4352
4353 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4354 clear_gigantic_page(page, addr, pages_per_huge_page);
4355 return;
4356 }
4357
4358 might_sleep();
4359 for (i = 0; i < pages_per_huge_page; i++) {
4360 cond_resched();
4361 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4362 }
4363}
4364
4365static void copy_user_gigantic_page(struct page *dst, struct page *src,
4366 unsigned long addr,
4367 struct vm_area_struct *vma,
4368 unsigned int pages_per_huge_page)
4369{
4370 int i;
4371 struct page *dst_base = dst;
4372 struct page *src_base = src;
4373
4374 for (i = 0; i < pages_per_huge_page; ) {
4375 cond_resched();
4376 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4377
4378 i++;
4379 dst = mem_map_next(dst, dst_base, i);
4380 src = mem_map_next(src, src_base, i);
4381 }
4382}
4383
4384void copy_user_huge_page(struct page *dst, struct page *src,
4385 unsigned long addr, struct vm_area_struct *vma,
4386 unsigned int pages_per_huge_page)
4387{
4388 int i;
4389
4390 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4391 copy_user_gigantic_page(dst, src, addr, vma,
4392 pages_per_huge_page);
4393 return;
4394 }
4395
4396 might_sleep();
4397 for (i = 0; i < pages_per_huge_page; i++) {
4398 cond_resched();
4399 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4400 }
4401}
fa4d75c1
MK
4402
4403long copy_huge_page_from_user(struct page *dst_page,
4404 const void __user *usr_src,
810a56b9
MK
4405 unsigned int pages_per_huge_page,
4406 bool allow_pagefault)
fa4d75c1
MK
4407{
4408 void *src = (void *)usr_src;
4409 void *page_kaddr;
4410 unsigned long i, rc = 0;
4411 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4412
4413 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4414 if (allow_pagefault)
4415 page_kaddr = kmap(dst_page + i);
4416 else
4417 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4418 rc = copy_from_user(page_kaddr,
4419 (const void __user *)(src + i * PAGE_SIZE),
4420 PAGE_SIZE);
810a56b9
MK
4421 if (allow_pagefault)
4422 kunmap(dst_page + i);
4423 else
4424 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4425
4426 ret_val -= (PAGE_SIZE - rc);
4427 if (rc)
4428 break;
4429
4430 cond_resched();
4431 }
4432 return ret_val;
4433}
47ad8475 4434#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4435
40b64acd 4436#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4437
4438static struct kmem_cache *page_ptl_cachep;
4439
4440void __init ptlock_cache_init(void)
4441{
4442 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4443 SLAB_PANIC, NULL);
4444}
4445
539edb58 4446bool ptlock_alloc(struct page *page)
49076ec2
KS
4447{
4448 spinlock_t *ptl;
4449
b35f1819 4450 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4451 if (!ptl)
4452 return false;
539edb58 4453 page->ptl = ptl;
49076ec2
KS
4454 return true;
4455}
4456
539edb58 4457void ptlock_free(struct page *page)
49076ec2 4458{
b35f1819 4459 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4460}
4461#endif