]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/memory.c
mm: remove vm_insert_mixed()
[mirror_ubuntu-focal-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
5042db43 52#include <linux/memremap.h>
9a840895 53#include <linux/ksm.h>
1da177e4 54#include <linux/rmap.h>
b95f1b31 55#include <linux/export.h>
0ff92245 56#include <linux/delayacct.h>
1da177e4 57#include <linux/init.h>
01c8f1c4 58#include <linux/pfn_t.h>
edc79b2a 59#include <linux/writeback.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
3dc14741
HD
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
1da177e4 72
6952b61d 73#include <asm/io.h>
33a709b2 74#include <asm/mmu_context.h>
1da177e4 75#include <asm/pgalloc.h>
7c0f6ba6 76#include <linux/uaccess.h>
1da177e4
LT
77#include <asm/tlb.h>
78#include <asm/tlbflush.h>
79#include <asm/pgtable.h>
80
42b77728
JB
81#include "internal.h"
82
af27d940 83#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
85#endif
86
d41dee36 87#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
88/* use the per-pgdat data instead for discontigmem - mbligh */
89unsigned long max_mapnr;
1da177e4 90EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
91
92struct page *mem_map;
1da177e4
LT
93EXPORT_SYMBOL(mem_map);
94#endif
95
1da177e4
LT
96/*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
166f61b9 103void *high_memory;
1da177e4 104EXPORT_SYMBOL(high_memory);
1da177e4 105
32a93233
IM
106/*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112int randomize_va_space __read_mostly =
113#ifdef CONFIG_COMPAT_BRK
114 1;
115#else
116 2;
117#endif
a62eaf15
AK
118
119static int __init disable_randmaps(char *s)
120{
121 randomize_va_space = 0;
9b41046c 122 return 1;
a62eaf15
AK
123}
124__setup("norandmaps", disable_randmaps);
125
62eede62 126unsigned long zero_pfn __read_mostly;
0b70068e
AB
127EXPORT_SYMBOL(zero_pfn);
128
166f61b9
TH
129unsigned long highest_memmap_pfn __read_mostly;
130
a13ea5b7
HD
131/*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134static int __init init_zero_pfn(void)
135{
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138}
139core_initcall(init_zero_pfn);
a62eaf15 140
d559db08 141
34e55232
KH
142#if defined(SPLIT_RSS_COUNTING)
143
ea48cf78 144void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
145{
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
34e55232
KH
152 }
153 }
05af2e10 154 current->rss_stat.events = 0;
34e55232
KH
155}
156
157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158{
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165}
166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169/* sync counter once per 64 page faults */
170#define TASK_RSS_EVENTS_THRESH (64)
171static void check_sync_rss_stat(struct task_struct *task)
172{
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 176 sync_mm_rss(task->mm);
34e55232 177}
9547d01b 178#else /* SPLIT_RSS_COUNTING */
34e55232
KH
179
180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183static void check_sync_rss_stat(struct task_struct *task)
184{
185}
186
9547d01b
PZ
187#endif /* SPLIT_RSS_COUNTING */
188
1da177e4
LT
189/*
190 * Note: this doesn't free the actual pages themselves. That
191 * has been handled earlier when unmapping all the memory regions.
192 */
9e1b32ca
BH
193static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
194 unsigned long addr)
1da177e4 195{
2f569afd 196 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 197 pmd_clear(pmd);
9e1b32ca 198 pte_free_tlb(tlb, token, addr);
c4812909 199 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
200}
201
e0da382c
HD
202static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
203 unsigned long addr, unsigned long end,
204 unsigned long floor, unsigned long ceiling)
1da177e4
LT
205{
206 pmd_t *pmd;
207 unsigned long next;
e0da382c 208 unsigned long start;
1da177e4 209
e0da382c 210 start = addr;
1da177e4 211 pmd = pmd_offset(pud, addr);
1da177e4
LT
212 do {
213 next = pmd_addr_end(addr, end);
214 if (pmd_none_or_clear_bad(pmd))
215 continue;
9e1b32ca 216 free_pte_range(tlb, pmd, addr);
1da177e4
LT
217 } while (pmd++, addr = next, addr != end);
218
e0da382c
HD
219 start &= PUD_MASK;
220 if (start < floor)
221 return;
222 if (ceiling) {
223 ceiling &= PUD_MASK;
224 if (!ceiling)
225 return;
1da177e4 226 }
e0da382c
HD
227 if (end - 1 > ceiling - 1)
228 return;
229
230 pmd = pmd_offset(pud, start);
231 pud_clear(pud);
9e1b32ca 232 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 233 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
234}
235
c2febafc 236static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
1da177e4
LT
239{
240 pud_t *pud;
241 unsigned long next;
e0da382c 242 unsigned long start;
1da177e4 243
e0da382c 244 start = addr;
c2febafc 245 pud = pud_offset(p4d, addr);
1da177e4
LT
246 do {
247 next = pud_addr_end(addr, end);
248 if (pud_none_or_clear_bad(pud))
249 continue;
e0da382c 250 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
251 } while (pud++, addr = next, addr != end);
252
c2febafc
KS
253 start &= P4D_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= P4D_MASK;
258 if (!ceiling)
259 return;
260 }
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pud = pud_offset(p4d, start);
265 p4d_clear(p4d);
266 pud_free_tlb(tlb, pud, start);
b4e98d9a 267 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
268}
269
270static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
273{
274 p4d_t *p4d;
275 unsigned long next;
276 unsigned long start;
277
278 start = addr;
279 p4d = p4d_offset(pgd, addr);
280 do {
281 next = p4d_addr_end(addr, end);
282 if (p4d_none_or_clear_bad(p4d))
283 continue;
284 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
285 } while (p4d++, addr = next, addr != end);
286
e0da382c
HD
287 start &= PGDIR_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= PGDIR_MASK;
292 if (!ceiling)
293 return;
1da177e4 294 }
e0da382c
HD
295 if (end - 1 > ceiling - 1)
296 return;
297
c2febafc 298 p4d = p4d_offset(pgd, start);
e0da382c 299 pgd_clear(pgd);
c2febafc 300 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
301}
302
303/*
e0da382c 304 * This function frees user-level page tables of a process.
1da177e4 305 */
42b77728 306void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
307 unsigned long addr, unsigned long end,
308 unsigned long floor, unsigned long ceiling)
1da177e4
LT
309{
310 pgd_t *pgd;
311 unsigned long next;
e0da382c
HD
312
313 /*
314 * The next few lines have given us lots of grief...
315 *
316 * Why are we testing PMD* at this top level? Because often
317 * there will be no work to do at all, and we'd prefer not to
318 * go all the way down to the bottom just to discover that.
319 *
320 * Why all these "- 1"s? Because 0 represents both the bottom
321 * of the address space and the top of it (using -1 for the
322 * top wouldn't help much: the masks would do the wrong thing).
323 * The rule is that addr 0 and floor 0 refer to the bottom of
324 * the address space, but end 0 and ceiling 0 refer to the top
325 * Comparisons need to use "end - 1" and "ceiling - 1" (though
326 * that end 0 case should be mythical).
327 *
328 * Wherever addr is brought up or ceiling brought down, we must
329 * be careful to reject "the opposite 0" before it confuses the
330 * subsequent tests. But what about where end is brought down
331 * by PMD_SIZE below? no, end can't go down to 0 there.
332 *
333 * Whereas we round start (addr) and ceiling down, by different
334 * masks at different levels, in order to test whether a table
335 * now has no other vmas using it, so can be freed, we don't
336 * bother to round floor or end up - the tests don't need that.
337 */
1da177e4 338
e0da382c
HD
339 addr &= PMD_MASK;
340 if (addr < floor) {
341 addr += PMD_SIZE;
342 if (!addr)
343 return;
344 }
345 if (ceiling) {
346 ceiling &= PMD_MASK;
347 if (!ceiling)
348 return;
349 }
350 if (end - 1 > ceiling - 1)
351 end -= PMD_SIZE;
352 if (addr > end - 1)
353 return;
07e32661
AK
354 /*
355 * We add page table cache pages with PAGE_SIZE,
356 * (see pte_free_tlb()), flush the tlb if we need
357 */
358 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 359 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
360 do {
361 next = pgd_addr_end(addr, end);
362 if (pgd_none_or_clear_bad(pgd))
363 continue;
c2febafc 364 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 365 } while (pgd++, addr = next, addr != end);
e0da382c
HD
366}
367
42b77728 368void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 369 unsigned long floor, unsigned long ceiling)
e0da382c
HD
370{
371 while (vma) {
372 struct vm_area_struct *next = vma->vm_next;
373 unsigned long addr = vma->vm_start;
374
8f4f8c16 375 /*
25d9e2d1 376 * Hide vma from rmap and truncate_pagecache before freeing
377 * pgtables
8f4f8c16 378 */
5beb4930 379 unlink_anon_vmas(vma);
8f4f8c16
HD
380 unlink_file_vma(vma);
381
9da61aef 382 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 383 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 384 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
385 } else {
386 /*
387 * Optimization: gather nearby vmas into one call down
388 */
389 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 390 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
391 vma = next;
392 next = vma->vm_next;
5beb4930 393 unlink_anon_vmas(vma);
8f4f8c16 394 unlink_file_vma(vma);
3bf5ee95
HD
395 }
396 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 397 floor, next ? next->vm_start : ceiling);
3bf5ee95 398 }
e0da382c
HD
399 vma = next;
400 }
1da177e4
LT
401}
402
3ed3a4f0 403int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 404{
c4088ebd 405 spinlock_t *ptl;
2f569afd 406 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
407 if (!new)
408 return -ENOMEM;
409
362a61ad
NP
410 /*
411 * Ensure all pte setup (eg. pte page lock and page clearing) are
412 * visible before the pte is made visible to other CPUs by being
413 * put into page tables.
414 *
415 * The other side of the story is the pointer chasing in the page
416 * table walking code (when walking the page table without locking;
417 * ie. most of the time). Fortunately, these data accesses consist
418 * of a chain of data-dependent loads, meaning most CPUs (alpha
419 * being the notable exception) will already guarantee loads are
420 * seen in-order. See the alpha page table accessors for the
421 * smp_read_barrier_depends() barriers in page table walking code.
422 */
423 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
424
c4088ebd 425 ptl = pmd_lock(mm, pmd);
8ac1f832 426 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 427 mm_inc_nr_ptes(mm);
1da177e4 428 pmd_populate(mm, pmd, new);
2f569afd 429 new = NULL;
4b471e88 430 }
c4088ebd 431 spin_unlock(ptl);
2f569afd
MS
432 if (new)
433 pte_free(mm, new);
1bb3630e 434 return 0;
1da177e4
LT
435}
436
1bb3630e 437int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 438{
1bb3630e
HD
439 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
440 if (!new)
441 return -ENOMEM;
442
362a61ad
NP
443 smp_wmb(); /* See comment in __pte_alloc */
444
1bb3630e 445 spin_lock(&init_mm.page_table_lock);
8ac1f832 446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 447 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 448 new = NULL;
4b471e88 449 }
1bb3630e 450 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
451 if (new)
452 pte_free_kernel(&init_mm, new);
1bb3630e 453 return 0;
1da177e4
LT
454}
455
d559db08
KH
456static inline void init_rss_vec(int *rss)
457{
458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
459}
460
461static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 462{
d559db08
KH
463 int i;
464
34e55232 465 if (current->mm == mm)
05af2e10 466 sync_mm_rss(mm);
d559db08
KH
467 for (i = 0; i < NR_MM_COUNTERS; i++)
468 if (rss[i])
469 add_mm_counter(mm, i, rss[i]);
ae859762
HD
470}
471
b5810039 472/*
6aab341e
LT
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
b5810039
NP
476 *
477 * The calling function must still handle the error.
478 */
3dc14741
HD
479static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480 pte_t pte, struct page *page)
b5810039 481{
3dc14741 482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
483 p4d_t *p4d = p4d_offset(pgd, addr);
484 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
485 pmd_t *pmd = pmd_offset(pud, addr);
486 struct address_space *mapping;
487 pgoff_t index;
d936cf9b
HD
488 static unsigned long resume;
489 static unsigned long nr_shown;
490 static unsigned long nr_unshown;
491
492 /*
493 * Allow a burst of 60 reports, then keep quiet for that minute;
494 * or allow a steady drip of one report per second.
495 */
496 if (nr_shown == 60) {
497 if (time_before(jiffies, resume)) {
498 nr_unshown++;
499 return;
500 }
501 if (nr_unshown) {
1170532b
JP
502 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
503 nr_unshown);
d936cf9b
HD
504 nr_unshown = 0;
505 }
506 nr_shown = 0;
507 }
508 if (nr_shown++ == 0)
509 resume = jiffies + 60 * HZ;
3dc14741
HD
510
511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512 index = linear_page_index(vma, addr);
513
1170532b
JP
514 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
515 current->comm,
516 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 517 if (page)
f0b791a3 518 dump_page(page, "bad pte");
1170532b
JP
519 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
520 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
2682582a
KK
521 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
522 vma->vm_file,
523 vma->vm_ops ? vma->vm_ops->fault : NULL,
524 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
525 mapping ? mapping->a_ops->readpage : NULL);
b5810039 526 dump_stack();
373d4d09 527 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
528}
529
ee498ed7 530/*
7e675137 531 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 532 *
7e675137
NP
533 * "Special" mappings do not wish to be associated with a "struct page" (either
534 * it doesn't exist, or it exists but they don't want to touch it). In this
535 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 536 *
7e675137
NP
537 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
538 * pte bit, in which case this function is trivial. Secondly, an architecture
539 * may not have a spare pte bit, which requires a more complicated scheme,
540 * described below.
541 *
542 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
543 * special mapping (even if there are underlying and valid "struct pages").
544 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 545 *
b379d790
JH
546 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
547 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
548 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
549 * mapping will always honor the rule
6aab341e
LT
550 *
551 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
552 *
7e675137
NP
553 * And for normal mappings this is false.
554 *
555 * This restricts such mappings to be a linear translation from virtual address
556 * to pfn. To get around this restriction, we allow arbitrary mappings so long
557 * as the vma is not a COW mapping; in that case, we know that all ptes are
558 * special (because none can have been COWed).
b379d790 559 *
b379d790 560 *
7e675137 561 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
562 *
563 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
564 * page" backing, however the difference is that _all_ pages with a struct
565 * page (that is, those where pfn_valid is true) are refcounted and considered
566 * normal pages by the VM. The disadvantage is that pages are refcounted
567 * (which can be slower and simply not an option for some PFNMAP users). The
568 * advantage is that we don't have to follow the strict linearity rule of
569 * PFNMAP mappings in order to support COWable mappings.
570 *
ee498ed7 571 */
df6ad698
JG
572struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
573 pte_t pte, bool with_public_device)
ee498ed7 574{
22b31eec 575 unsigned long pfn = pte_pfn(pte);
7e675137 576
00b3a331 577 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 578 if (likely(!pte_special(pte)))
22b31eec 579 goto check_pfn;
667a0a06
DV
580 if (vma->vm_ops && vma->vm_ops->find_special_page)
581 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
582 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
583 return NULL;
df6ad698
JG
584 if (is_zero_pfn(pfn))
585 return NULL;
586
587 /*
588 * Device public pages are special pages (they are ZONE_DEVICE
589 * pages but different from persistent memory). They behave
590 * allmost like normal pages. The difference is that they are
591 * not on the lru and thus should never be involve with any-
592 * thing that involve lru manipulation (mlock, numa balancing,
593 * ...).
594 *
595 * This is why we still want to return NULL for such page from
596 * vm_normal_page() so that we do not have to special case all
597 * call site of vm_normal_page().
598 */
7d790d2d 599 if (likely(pfn <= highest_memmap_pfn)) {
df6ad698
JG
600 struct page *page = pfn_to_page(pfn);
601
602 if (is_device_public_page(page)) {
603 if (with_public_device)
604 return page;
605 return NULL;
606 }
607 }
e1fb4a08
DJ
608
609 if (pte_devmap(pte))
610 return NULL;
611
df6ad698 612 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
613 return NULL;
614 }
615
00b3a331 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 617
b379d790
JH
618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 if (vma->vm_flags & VM_MIXEDMAP) {
620 if (!pfn_valid(pfn))
621 return NULL;
622 goto out;
623 } else {
7e675137
NP
624 unsigned long off;
625 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
626 if (pfn == vma->vm_pgoff + off)
627 return NULL;
628 if (!is_cow_mapping(vma->vm_flags))
629 return NULL;
630 }
6aab341e
LT
631 }
632
b38af472
HD
633 if (is_zero_pfn(pfn))
634 return NULL;
00b3a331 635
22b31eec
HD
636check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
640 }
6aab341e
LT
641
642 /*
7e675137 643 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 644 * eg. VDSO mappings can cause them to exist.
6aab341e 645 */
b379d790 646out:
6aab341e 647 return pfn_to_page(pfn);
ee498ed7
HD
648}
649
28093f9f
GS
650#ifdef CONFIG_TRANSPARENT_HUGEPAGE
651struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 pmd_t pmd)
653{
654 unsigned long pfn = pmd_pfn(pmd);
655
656 /*
657 * There is no pmd_special() but there may be special pmds, e.g.
658 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
660 */
661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 if (vma->vm_flags & VM_MIXEDMAP) {
663 if (!pfn_valid(pfn))
664 return NULL;
665 goto out;
666 } else {
667 unsigned long off;
668 off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 if (pfn == vma->vm_pgoff + off)
670 return NULL;
671 if (!is_cow_mapping(vma->vm_flags))
672 return NULL;
673 }
674 }
675
e1fb4a08
DJ
676 if (pmd_devmap(pmd))
677 return NULL;
28093f9f
GS
678 if (is_zero_pfn(pfn))
679 return NULL;
680 if (unlikely(pfn > highest_memmap_pfn))
681 return NULL;
682
683 /*
684 * NOTE! We still have PageReserved() pages in the page tables.
685 * eg. VDSO mappings can cause them to exist.
686 */
687out:
688 return pfn_to_page(pfn);
689}
690#endif
691
1da177e4
LT
692/*
693 * copy one vm_area from one task to the other. Assumes the page tables
694 * already present in the new task to be cleared in the whole range
695 * covered by this vma.
1da177e4
LT
696 */
697
570a335b 698static inline unsigned long
1da177e4 699copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 701 unsigned long addr, int *rss)
1da177e4 702{
b5810039 703 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
704 pte_t pte = *src_pte;
705 struct page *page;
1da177e4
LT
706
707 /* pte contains position in swap or file, so copy. */
708 if (unlikely(!pte_present(pte))) {
0661a336
KS
709 swp_entry_t entry = pte_to_swp_entry(pte);
710
711 if (likely(!non_swap_entry(entry))) {
712 if (swap_duplicate(entry) < 0)
713 return entry.val;
714
715 /* make sure dst_mm is on swapoff's mmlist. */
716 if (unlikely(list_empty(&dst_mm->mmlist))) {
717 spin_lock(&mmlist_lock);
718 if (list_empty(&dst_mm->mmlist))
719 list_add(&dst_mm->mmlist,
720 &src_mm->mmlist);
721 spin_unlock(&mmlist_lock);
722 }
723 rss[MM_SWAPENTS]++;
724 } else if (is_migration_entry(entry)) {
725 page = migration_entry_to_page(entry);
726
eca56ff9 727 rss[mm_counter(page)]++;
0661a336
KS
728
729 if (is_write_migration_entry(entry) &&
730 is_cow_mapping(vm_flags)) {
731 /*
732 * COW mappings require pages in both
733 * parent and child to be set to read.
734 */
735 make_migration_entry_read(&entry);
736 pte = swp_entry_to_pte(entry);
737 if (pte_swp_soft_dirty(*src_pte))
738 pte = pte_swp_mksoft_dirty(pte);
739 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 740 }
5042db43
JG
741 } else if (is_device_private_entry(entry)) {
742 page = device_private_entry_to_page(entry);
743
744 /*
745 * Update rss count even for unaddressable pages, as
746 * they should treated just like normal pages in this
747 * respect.
748 *
749 * We will likely want to have some new rss counters
750 * for unaddressable pages, at some point. But for now
751 * keep things as they are.
752 */
753 get_page(page);
754 rss[mm_counter(page)]++;
755 page_dup_rmap(page, false);
756
757 /*
758 * We do not preserve soft-dirty information, because so
759 * far, checkpoint/restore is the only feature that
760 * requires that. And checkpoint/restore does not work
761 * when a device driver is involved (you cannot easily
762 * save and restore device driver state).
763 */
764 if (is_write_device_private_entry(entry) &&
765 is_cow_mapping(vm_flags)) {
766 make_device_private_entry_read(&entry);
767 pte = swp_entry_to_pte(entry);
768 set_pte_at(src_mm, addr, src_pte, pte);
769 }
1da177e4 770 }
ae859762 771 goto out_set_pte;
1da177e4
LT
772 }
773
1da177e4
LT
774 /*
775 * If it's a COW mapping, write protect it both
776 * in the parent and the child
777 */
1b2de5d0 778 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 779 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 780 pte = pte_wrprotect(pte);
1da177e4
LT
781 }
782
783 /*
784 * If it's a shared mapping, mark it clean in
785 * the child
786 */
787 if (vm_flags & VM_SHARED)
788 pte = pte_mkclean(pte);
789 pte = pte_mkold(pte);
6aab341e
LT
790
791 page = vm_normal_page(vma, addr, pte);
792 if (page) {
793 get_page(page);
53f9263b 794 page_dup_rmap(page, false);
eca56ff9 795 rss[mm_counter(page)]++;
df6ad698
JG
796 } else if (pte_devmap(pte)) {
797 page = pte_page(pte);
798
799 /*
800 * Cache coherent device memory behave like regular page and
801 * not like persistent memory page. For more informations see
802 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
803 */
804 if (is_device_public_page(page)) {
805 get_page(page);
806 page_dup_rmap(page, false);
807 rss[mm_counter(page)]++;
808 }
6aab341e 809 }
ae859762
HD
810
811out_set_pte:
812 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 813 return 0;
1da177e4
LT
814}
815
21bda264 816static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
817 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
818 unsigned long addr, unsigned long end)
1da177e4 819{
c36987e2 820 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 821 pte_t *src_pte, *dst_pte;
c74df32c 822 spinlock_t *src_ptl, *dst_ptl;
e040f218 823 int progress = 0;
d559db08 824 int rss[NR_MM_COUNTERS];
570a335b 825 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
826
827again:
d559db08
KH
828 init_rss_vec(rss);
829
c74df32c 830 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
831 if (!dst_pte)
832 return -ENOMEM;
ece0e2b6 833 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 834 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 835 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
836 orig_src_pte = src_pte;
837 orig_dst_pte = dst_pte;
6606c3e0 838 arch_enter_lazy_mmu_mode();
1da177e4 839
1da177e4
LT
840 do {
841 /*
842 * We are holding two locks at this point - either of them
843 * could generate latencies in another task on another CPU.
844 */
e040f218
HD
845 if (progress >= 32) {
846 progress = 0;
847 if (need_resched() ||
95c354fe 848 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
849 break;
850 }
1da177e4
LT
851 if (pte_none(*src_pte)) {
852 progress++;
853 continue;
854 }
570a335b
HD
855 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
856 vma, addr, rss);
857 if (entry.val)
858 break;
1da177e4
LT
859 progress += 8;
860 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 861
6606c3e0 862 arch_leave_lazy_mmu_mode();
c74df32c 863 spin_unlock(src_ptl);
ece0e2b6 864 pte_unmap(orig_src_pte);
d559db08 865 add_mm_rss_vec(dst_mm, rss);
c36987e2 866 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 867 cond_resched();
570a335b
HD
868
869 if (entry.val) {
870 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
871 return -ENOMEM;
872 progress = 0;
873 }
1da177e4
LT
874 if (addr != end)
875 goto again;
876 return 0;
877}
878
879static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
881 unsigned long addr, unsigned long end)
882{
883 pmd_t *src_pmd, *dst_pmd;
884 unsigned long next;
885
886 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
887 if (!dst_pmd)
888 return -ENOMEM;
889 src_pmd = pmd_offset(src_pud, addr);
890 do {
891 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
892 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
893 || pmd_devmap(*src_pmd)) {
71e3aac0 894 int err;
a00cc7d9 895 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
896 err = copy_huge_pmd(dst_mm, src_mm,
897 dst_pmd, src_pmd, addr, vma);
898 if (err == -ENOMEM)
899 return -ENOMEM;
900 if (!err)
901 continue;
902 /* fall through */
903 }
1da177e4
LT
904 if (pmd_none_or_clear_bad(src_pmd))
905 continue;
906 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
907 vma, addr, next))
908 return -ENOMEM;
909 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
910 return 0;
911}
912
913static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 914 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
915 unsigned long addr, unsigned long end)
916{
917 pud_t *src_pud, *dst_pud;
918 unsigned long next;
919
c2febafc 920 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
921 if (!dst_pud)
922 return -ENOMEM;
c2febafc 923 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
924 do {
925 next = pud_addr_end(addr, end);
a00cc7d9
MW
926 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
927 int err;
928
929 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
930 err = copy_huge_pud(dst_mm, src_mm,
931 dst_pud, src_pud, addr, vma);
932 if (err == -ENOMEM)
933 return -ENOMEM;
934 if (!err)
935 continue;
936 /* fall through */
937 }
1da177e4
LT
938 if (pud_none_or_clear_bad(src_pud))
939 continue;
940 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
941 vma, addr, next))
942 return -ENOMEM;
943 } while (dst_pud++, src_pud++, addr = next, addr != end);
944 return 0;
945}
946
c2febafc
KS
947static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
948 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
949 unsigned long addr, unsigned long end)
950{
951 p4d_t *src_p4d, *dst_p4d;
952 unsigned long next;
953
954 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
955 if (!dst_p4d)
956 return -ENOMEM;
957 src_p4d = p4d_offset(src_pgd, addr);
958 do {
959 next = p4d_addr_end(addr, end);
960 if (p4d_none_or_clear_bad(src_p4d))
961 continue;
962 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
963 vma, addr, next))
964 return -ENOMEM;
965 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
966 return 0;
967}
968
1da177e4
LT
969int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970 struct vm_area_struct *vma)
971{
972 pgd_t *src_pgd, *dst_pgd;
973 unsigned long next;
974 unsigned long addr = vma->vm_start;
975 unsigned long end = vma->vm_end;
2ec74c3e
SG
976 unsigned long mmun_start; /* For mmu_notifiers */
977 unsigned long mmun_end; /* For mmu_notifiers */
978 bool is_cow;
cddb8a5c 979 int ret;
1da177e4 980
d992895b
NP
981 /*
982 * Don't copy ptes where a page fault will fill them correctly.
983 * Fork becomes much lighter when there are big shared or private
984 * readonly mappings. The tradeoff is that copy_page_range is more
985 * efficient than faulting.
986 */
0661a336
KS
987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988 !vma->anon_vma)
989 return 0;
d992895b 990
1da177e4
LT
991 if (is_vm_hugetlb_page(vma))
992 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993
b3b9c293 994 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 995 /*
996 * We do not free on error cases below as remove_vma
997 * gets called on error from higher level routine
998 */
5180da41 999 ret = track_pfn_copy(vma);
2ab64037 1000 if (ret)
1001 return ret;
1002 }
1003
cddb8a5c
AA
1004 /*
1005 * We need to invalidate the secondary MMU mappings only when
1006 * there could be a permission downgrade on the ptes of the
1007 * parent mm. And a permission downgrade will only happen if
1008 * is_cow_mapping() returns true.
1009 */
2ec74c3e
SG
1010 is_cow = is_cow_mapping(vma->vm_flags);
1011 mmun_start = addr;
1012 mmun_end = end;
1013 if (is_cow)
1014 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1015 mmun_end);
cddb8a5c
AA
1016
1017 ret = 0;
1da177e4
LT
1018 dst_pgd = pgd_offset(dst_mm, addr);
1019 src_pgd = pgd_offset(src_mm, addr);
1020 do {
1021 next = pgd_addr_end(addr, end);
1022 if (pgd_none_or_clear_bad(src_pgd))
1023 continue;
c2febafc 1024 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1025 vma, addr, next))) {
1026 ret = -ENOMEM;
1027 break;
1028 }
1da177e4 1029 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1030
2ec74c3e
SG
1031 if (is_cow)
1032 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1033 return ret;
1da177e4
LT
1034}
1035
51c6f666 1036static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1037 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1038 unsigned long addr, unsigned long end,
97a89413 1039 struct zap_details *details)
1da177e4 1040{
b5810039 1041 struct mm_struct *mm = tlb->mm;
d16dfc55 1042 int force_flush = 0;
d559db08 1043 int rss[NR_MM_COUNTERS];
97a89413 1044 spinlock_t *ptl;
5f1a1907 1045 pte_t *start_pte;
97a89413 1046 pte_t *pte;
8a5f14a2 1047 swp_entry_t entry;
d559db08 1048
07e32661 1049 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1050again:
e303297e 1051 init_rss_vec(rss);
5f1a1907
SR
1052 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1053 pte = start_pte;
3ea27719 1054 flush_tlb_batched_pending(mm);
6606c3e0 1055 arch_enter_lazy_mmu_mode();
1da177e4
LT
1056 do {
1057 pte_t ptent = *pte;
166f61b9 1058 if (pte_none(ptent))
1da177e4 1059 continue;
6f5e6b9e 1060
1da177e4 1061 if (pte_present(ptent)) {
ee498ed7 1062 struct page *page;
51c6f666 1063
df6ad698 1064 page = _vm_normal_page(vma, addr, ptent, true);
1da177e4
LT
1065 if (unlikely(details) && page) {
1066 /*
1067 * unmap_shared_mapping_pages() wants to
1068 * invalidate cache without truncating:
1069 * unmap shared but keep private pages.
1070 */
1071 if (details->check_mapping &&
800d8c63 1072 details->check_mapping != page_rmapping(page))
1da177e4 1073 continue;
1da177e4 1074 }
b5810039 1075 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1076 tlb->fullmm);
1da177e4
LT
1077 tlb_remove_tlb_entry(tlb, pte, addr);
1078 if (unlikely(!page))
1079 continue;
eca56ff9
JM
1080
1081 if (!PageAnon(page)) {
1cf35d47
LT
1082 if (pte_dirty(ptent)) {
1083 force_flush = 1;
6237bcd9 1084 set_page_dirty(page);
1cf35d47 1085 }
4917e5d0 1086 if (pte_young(ptent) &&
64363aad 1087 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1088 mark_page_accessed(page);
6237bcd9 1089 }
eca56ff9 1090 rss[mm_counter(page)]--;
d281ee61 1091 page_remove_rmap(page, false);
3dc14741
HD
1092 if (unlikely(page_mapcount(page) < 0))
1093 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1094 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1095 force_flush = 1;
ce9ec37b 1096 addr += PAGE_SIZE;
d16dfc55 1097 break;
1cf35d47 1098 }
1da177e4
LT
1099 continue;
1100 }
5042db43
JG
1101
1102 entry = pte_to_swp_entry(ptent);
1103 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1104 struct page *page = device_private_entry_to_page(entry);
1105
1106 if (unlikely(details && details->check_mapping)) {
1107 /*
1108 * unmap_shared_mapping_pages() wants to
1109 * invalidate cache without truncating:
1110 * unmap shared but keep private pages.
1111 */
1112 if (details->check_mapping !=
1113 page_rmapping(page))
1114 continue;
1115 }
1116
1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118 rss[mm_counter(page)]--;
1119 page_remove_rmap(page, false);
1120 put_page(page);
1121 continue;
1122 }
1123
3e8715fd
KS
1124 /* If details->check_mapping, we leave swap entries. */
1125 if (unlikely(details))
1da177e4 1126 continue;
b084d435 1127
8a5f14a2
KS
1128 entry = pte_to_swp_entry(ptent);
1129 if (!non_swap_entry(entry))
1130 rss[MM_SWAPENTS]--;
1131 else if (is_migration_entry(entry)) {
1132 struct page *page;
9f9f1acd 1133
8a5f14a2 1134 page = migration_entry_to_page(entry);
eca56ff9 1135 rss[mm_counter(page)]--;
b084d435 1136 }
8a5f14a2
KS
1137 if (unlikely(!free_swap_and_cache(entry)))
1138 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1140 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1141
d559db08 1142 add_mm_rss_vec(mm, rss);
6606c3e0 1143 arch_leave_lazy_mmu_mode();
51c6f666 1144
1cf35d47 1145 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1146 if (force_flush)
1cf35d47 1147 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1148 pte_unmap_unlock(start_pte, ptl);
1149
1150 /*
1151 * If we forced a TLB flush (either due to running out of
1152 * batch buffers or because we needed to flush dirty TLB
1153 * entries before releasing the ptl), free the batched
1154 * memory too. Restart if we didn't do everything.
1155 */
1156 if (force_flush) {
1157 force_flush = 0;
1158 tlb_flush_mmu_free(tlb);
2b047252 1159 if (addr != end)
d16dfc55
PZ
1160 goto again;
1161 }
1162
51c6f666 1163 return addr;
1da177e4
LT
1164}
1165
51c6f666 1166static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1167 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1168 unsigned long addr, unsigned long end,
97a89413 1169 struct zap_details *details)
1da177e4
LT
1170{
1171 pmd_t *pmd;
1172 unsigned long next;
1173
1174 pmd = pmd_offset(pud, addr);
1175 do {
1176 next = pmd_addr_end(addr, end);
84c3fc4e 1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1178 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1179 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1180 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1181 goto next;
71e3aac0
AA
1182 /* fall through */
1183 }
1a5a9906
AA
1184 /*
1185 * Here there can be other concurrent MADV_DONTNEED or
1186 * trans huge page faults running, and if the pmd is
1187 * none or trans huge it can change under us. This is
1188 * because MADV_DONTNEED holds the mmap_sem in read
1189 * mode.
1190 */
1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 goto next;
97a89413 1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1194next:
97a89413
PZ
1195 cond_resched();
1196 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1197
1198 return addr;
1da177e4
LT
1199}
1200
51c6f666 1201static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1202 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1203 unsigned long addr, unsigned long end,
97a89413 1204 struct zap_details *details)
1da177e4
LT
1205{
1206 pud_t *pud;
1207 unsigned long next;
1208
c2febafc 1209 pud = pud_offset(p4d, addr);
1da177e4
LT
1210 do {
1211 next = pud_addr_end(addr, end);
a00cc7d9
MW
1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 if (next - addr != HPAGE_PUD_SIZE) {
1214 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1215 split_huge_pud(vma, pud, addr);
1216 } else if (zap_huge_pud(tlb, vma, pud, addr))
1217 goto next;
1218 /* fall through */
1219 }
97a89413 1220 if (pud_none_or_clear_bad(pud))
1da177e4 1221 continue;
97a89413 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1223next:
1224 cond_resched();
97a89413 1225 } while (pud++, addr = next, addr != end);
51c6f666
RH
1226
1227 return addr;
1da177e4
LT
1228}
1229
c2febafc
KS
1230static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 struct vm_area_struct *vma, pgd_t *pgd,
1232 unsigned long addr, unsigned long end,
1233 struct zap_details *details)
1234{
1235 p4d_t *p4d;
1236 unsigned long next;
1237
1238 p4d = p4d_offset(pgd, addr);
1239 do {
1240 next = p4d_addr_end(addr, end);
1241 if (p4d_none_or_clear_bad(p4d))
1242 continue;
1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 } while (p4d++, addr = next, addr != end);
1245
1246 return addr;
1247}
1248
aac45363 1249void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1250 struct vm_area_struct *vma,
1251 unsigned long addr, unsigned long end,
1252 struct zap_details *details)
1da177e4
LT
1253{
1254 pgd_t *pgd;
1255 unsigned long next;
1256
1da177e4
LT
1257 BUG_ON(addr >= end);
1258 tlb_start_vma(tlb, vma);
1259 pgd = pgd_offset(vma->vm_mm, addr);
1260 do {
1261 next = pgd_addr_end(addr, end);
97a89413 1262 if (pgd_none_or_clear_bad(pgd))
1da177e4 1263 continue;
c2febafc 1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1265 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1266 tlb_end_vma(tlb, vma);
1267}
51c6f666 1268
f5cc4eef
AV
1269
1270static void unmap_single_vma(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1272 unsigned long end_addr,
f5cc4eef
AV
1273 struct zap_details *details)
1274{
1275 unsigned long start = max(vma->vm_start, start_addr);
1276 unsigned long end;
1277
1278 if (start >= vma->vm_end)
1279 return;
1280 end = min(vma->vm_end, end_addr);
1281 if (end <= vma->vm_start)
1282 return;
1283
cbc91f71
SD
1284 if (vma->vm_file)
1285 uprobe_munmap(vma, start, end);
1286
b3b9c293 1287 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1288 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1289
1290 if (start != end) {
1291 if (unlikely(is_vm_hugetlb_page(vma))) {
1292 /*
1293 * It is undesirable to test vma->vm_file as it
1294 * should be non-null for valid hugetlb area.
1295 * However, vm_file will be NULL in the error
7aa6b4ad 1296 * cleanup path of mmap_region. When
f5cc4eef 1297 * hugetlbfs ->mmap method fails,
7aa6b4ad 1298 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1299 * before calling this function to clean up.
1300 * Since no pte has actually been setup, it is
1301 * safe to do nothing in this case.
1302 */
24669e58 1303 if (vma->vm_file) {
83cde9e8 1304 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1306 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1307 }
f5cc4eef
AV
1308 } else
1309 unmap_page_range(tlb, vma, start, end, details);
1310 }
1da177e4
LT
1311}
1312
1da177e4
LT
1313/**
1314 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1315 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1316 * @vma: the starting vma
1317 * @start_addr: virtual address at which to start unmapping
1318 * @end_addr: virtual address at which to end unmapping
1da177e4 1319 *
508034a3 1320 * Unmap all pages in the vma list.
1da177e4 1321 *
1da177e4
LT
1322 * Only addresses between `start' and `end' will be unmapped.
1323 *
1324 * The VMA list must be sorted in ascending virtual address order.
1325 *
1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327 * range after unmap_vmas() returns. So the only responsibility here is to
1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329 * drops the lock and schedules.
1330 */
6e8bb019 1331void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1332 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1333 unsigned long end_addr)
1da177e4 1334{
cddb8a5c 1335 struct mm_struct *mm = vma->vm_mm;
1da177e4 1336
cddb8a5c 1337 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1338 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1339 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1340 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1341}
1342
1343/**
1344 * zap_page_range - remove user pages in a given range
1345 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1346 * @start: starting address of pages to zap
1da177e4 1347 * @size: number of bytes to zap
f5cc4eef
AV
1348 *
1349 * Caller must protect the VMA list
1da177e4 1350 */
7e027b14 1351void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1352 unsigned long size)
1da177e4
LT
1353{
1354 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1355 struct mmu_gather tlb;
7e027b14 1356 unsigned long end = start + size;
1da177e4 1357
1da177e4 1358 lru_add_drain();
2b047252 1359 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1360 update_hiwater_rss(mm);
7e027b14 1361 mmu_notifier_invalidate_range_start(mm, start, end);
50c150f2 1362 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
ecf1385d 1363 unmap_single_vma(&tlb, vma, start, end, NULL);
7e027b14
LT
1364 mmu_notifier_invalidate_range_end(mm, start, end);
1365 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1366}
1367
f5cc4eef
AV
1368/**
1369 * zap_page_range_single - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @address: starting address of pages to zap
1372 * @size: number of bytes to zap
8a5f14a2 1373 * @details: details of shared cache invalidation
f5cc4eef
AV
1374 *
1375 * The range must fit into one VMA.
1da177e4 1376 */
f5cc4eef 1377static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1378 unsigned long size, struct zap_details *details)
1379{
1380 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1381 struct mmu_gather tlb;
1da177e4 1382 unsigned long end = address + size;
1da177e4 1383
1da177e4 1384 lru_add_drain();
2b047252 1385 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1386 update_hiwater_rss(mm);
f5cc4eef 1387 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1388 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1389 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1390 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1391}
1392
c627f9cc
JS
1393/**
1394 * zap_vma_ptes - remove ptes mapping the vma
1395 * @vma: vm_area_struct holding ptes to be zapped
1396 * @address: starting address of pages to zap
1397 * @size: number of bytes to zap
1398 *
1399 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1400 *
1401 * The entire address range must be fully contained within the vma.
1402 *
c627f9cc 1403 */
27d036e3 1404void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1405 unsigned long size)
1406{
1407 if (address < vma->vm_start || address + size > vma->vm_end ||
1408 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1409 return;
1410
f5cc4eef 1411 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1412}
1413EXPORT_SYMBOL_GPL(zap_vma_ptes);
1414
25ca1d6c 1415pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1416 spinlock_t **ptl)
c9cfcddf 1417{
c2febafc
KS
1418 pgd_t *pgd;
1419 p4d_t *p4d;
1420 pud_t *pud;
1421 pmd_t *pmd;
1422
1423 pgd = pgd_offset(mm, addr);
1424 p4d = p4d_alloc(mm, pgd, addr);
1425 if (!p4d)
1426 return NULL;
1427 pud = pud_alloc(mm, p4d, addr);
1428 if (!pud)
1429 return NULL;
1430 pmd = pmd_alloc(mm, pud, addr);
1431 if (!pmd)
1432 return NULL;
1433
1434 VM_BUG_ON(pmd_trans_huge(*pmd));
1435 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1436}
1437
238f58d8
LT
1438/*
1439 * This is the old fallback for page remapping.
1440 *
1441 * For historical reasons, it only allows reserved pages. Only
1442 * old drivers should use this, and they needed to mark their
1443 * pages reserved for the old functions anyway.
1444 */
423bad60
NP
1445static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1446 struct page *page, pgprot_t prot)
238f58d8 1447{
423bad60 1448 struct mm_struct *mm = vma->vm_mm;
238f58d8 1449 int retval;
c9cfcddf 1450 pte_t *pte;
8a9f3ccd
BS
1451 spinlock_t *ptl;
1452
238f58d8 1453 retval = -EINVAL;
a145dd41 1454 if (PageAnon(page))
5b4e655e 1455 goto out;
238f58d8
LT
1456 retval = -ENOMEM;
1457 flush_dcache_page(page);
c9cfcddf 1458 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1459 if (!pte)
5b4e655e 1460 goto out;
238f58d8
LT
1461 retval = -EBUSY;
1462 if (!pte_none(*pte))
1463 goto out_unlock;
1464
1465 /* Ok, finally just insert the thing.. */
1466 get_page(page);
eca56ff9 1467 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1468 page_add_file_rmap(page, false);
238f58d8
LT
1469 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1470
1471 retval = 0;
8a9f3ccd
BS
1472 pte_unmap_unlock(pte, ptl);
1473 return retval;
238f58d8
LT
1474out_unlock:
1475 pte_unmap_unlock(pte, ptl);
1476out:
1477 return retval;
1478}
1479
bfa5bf6d
REB
1480/**
1481 * vm_insert_page - insert single page into user vma
1482 * @vma: user vma to map to
1483 * @addr: target user address of this page
1484 * @page: source kernel page
1485 *
a145dd41
LT
1486 * This allows drivers to insert individual pages they've allocated
1487 * into a user vma.
1488 *
1489 * The page has to be a nice clean _individual_ kernel allocation.
1490 * If you allocate a compound page, you need to have marked it as
1491 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1492 * (see split_page()).
a145dd41
LT
1493 *
1494 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1495 * took an arbitrary page protection parameter. This doesn't allow
1496 * that. Your vma protection will have to be set up correctly, which
1497 * means that if you want a shared writable mapping, you'd better
1498 * ask for a shared writable mapping!
1499 *
1500 * The page does not need to be reserved.
4b6e1e37
KK
1501 *
1502 * Usually this function is called from f_op->mmap() handler
1503 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1504 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1505 * function from other places, for example from page-fault handler.
a145dd41 1506 */
423bad60
NP
1507int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1508 struct page *page)
a145dd41
LT
1509{
1510 if (addr < vma->vm_start || addr >= vma->vm_end)
1511 return -EFAULT;
1512 if (!page_count(page))
1513 return -EINVAL;
4b6e1e37
KK
1514 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1515 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1516 BUG_ON(vma->vm_flags & VM_PFNMAP);
1517 vma->vm_flags |= VM_MIXEDMAP;
1518 }
423bad60 1519 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1520}
e3c3374f 1521EXPORT_SYMBOL(vm_insert_page);
a145dd41 1522
423bad60 1523static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1524 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1525{
1526 struct mm_struct *mm = vma->vm_mm;
1527 int retval;
1528 pte_t *pte, entry;
1529 spinlock_t *ptl;
1530
1531 retval = -ENOMEM;
1532 pte = get_locked_pte(mm, addr, &ptl);
1533 if (!pte)
1534 goto out;
1535 retval = -EBUSY;
b2770da6
RZ
1536 if (!pte_none(*pte)) {
1537 if (mkwrite) {
1538 /*
1539 * For read faults on private mappings the PFN passed
1540 * in may not match the PFN we have mapped if the
1541 * mapped PFN is a writeable COW page. In the mkwrite
1542 * case we are creating a writable PTE for a shared
1543 * mapping and we expect the PFNs to match.
1544 */
1545 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1546 goto out_unlock;
1547 entry = *pte;
1548 goto out_mkwrite;
1549 } else
1550 goto out_unlock;
1551 }
423bad60
NP
1552
1553 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1554 if (pfn_t_devmap(pfn))
1555 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1556 else
1557 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6
RZ
1558
1559out_mkwrite:
1560 if (mkwrite) {
1561 entry = pte_mkyoung(entry);
1562 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1563 }
1564
423bad60 1565 set_pte_at(mm, addr, pte, entry);
4b3073e1 1566 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1567
1568 retval = 0;
1569out_unlock:
1570 pte_unmap_unlock(pte, ptl);
1571out:
1572 return retval;
1573}
1574
e0dc0d8f
NP
1575/**
1576 * vm_insert_pfn - insert single pfn into user vma
1577 * @vma: user vma to map to
1578 * @addr: target user address of this page
1579 * @pfn: source kernel pfn
1580 *
c462f179 1581 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1582 * they've allocated into a user vma. Same comments apply.
1583 *
1584 * This function should only be called from a vm_ops->fault handler, and
1585 * in that case the handler should return NULL.
0d71d10a
NP
1586 *
1587 * vma cannot be a COW mapping.
1588 *
1589 * As this is called only for pages that do not currently exist, we
1590 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1591 */
1592int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1593 unsigned long pfn)
1745cbc5
AL
1594{
1595 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1596}
1597EXPORT_SYMBOL(vm_insert_pfn);
1598
1599/**
1600 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1601 * @vma: user vma to map to
1602 * @addr: target user address of this page
1603 * @pfn: source kernel pfn
1604 * @pgprot: pgprot flags for the inserted page
1605 *
1606 * This is exactly like vm_insert_pfn, except that it allows drivers to
1607 * to override pgprot on a per-page basis.
1608 *
1609 * This only makes sense for IO mappings, and it makes no sense for
1610 * cow mappings. In general, using multiple vmas is preferable;
1611 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1612 * impractical.
1613 */
1614int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1615 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1616{
2ab64037 1617 int ret;
7e675137
NP
1618 /*
1619 * Technically, architectures with pte_special can avoid all these
1620 * restrictions (same for remap_pfn_range). However we would like
1621 * consistency in testing and feature parity among all, so we should
1622 * try to keep these invariants in place for everybody.
1623 */
b379d790
JH
1624 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1625 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1626 (VM_PFNMAP|VM_MIXEDMAP));
1627 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1628 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1629
423bad60
NP
1630 if (addr < vma->vm_start || addr >= vma->vm_end)
1631 return -EFAULT;
308a047c 1632
42e4089c
AK
1633 if (!pfn_modify_allowed(pfn, pgprot))
1634 return -EACCES;
1635
308a047c 1636 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1637
b2770da6
RZ
1638 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1639 false);
2ab64037 1640
2ab64037 1641 return ret;
423bad60 1642}
1745cbc5 1643EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1644
785a3fab
DW
1645static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1646{
1647 /* these checks mirror the abort conditions in vm_normal_page */
1648 if (vma->vm_flags & VM_MIXEDMAP)
1649 return true;
1650 if (pfn_t_devmap(pfn))
1651 return true;
1652 if (pfn_t_special(pfn))
1653 return true;
1654 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1655 return true;
1656 return false;
1657}
1658
b2770da6
RZ
1659static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1660 pfn_t pfn, bool mkwrite)
423bad60 1661{
87744ab3
DW
1662 pgprot_t pgprot = vma->vm_page_prot;
1663
785a3fab 1664 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1665
423bad60
NP
1666 if (addr < vma->vm_start || addr >= vma->vm_end)
1667 return -EFAULT;
308a047c
BP
1668
1669 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1670
42e4089c
AK
1671 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1672 return -EACCES;
1673
423bad60
NP
1674 /*
1675 * If we don't have pte special, then we have to use the pfn_valid()
1676 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1677 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1678 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1679 * without pte special, it would there be refcounted as a normal page.
423bad60 1680 */
00b3a331
LD
1681 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1682 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1683 struct page *page;
1684
03fc2da6
DW
1685 /*
1686 * At this point we are committed to insert_page()
1687 * regardless of whether the caller specified flags that
1688 * result in pfn_t_has_page() == false.
1689 */
1690 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1691 return insert_page(vma, addr, page, pgprot);
423bad60 1692 }
b2770da6
RZ
1693 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1694}
1695
5d747637
MW
1696vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1697 pfn_t pfn)
b2770da6 1698{
5d747637 1699 int err = __vm_insert_mixed(vma, addr, pfn, false);
b2770da6 1700
5d747637
MW
1701 if (err == -ENOMEM)
1702 return VM_FAULT_OOM;
1703 if (err < 0 && err != -EBUSY)
1704 return VM_FAULT_SIGBUS;
1705
1706 return VM_FAULT_NOPAGE;
e0dc0d8f 1707}
5d747637 1708EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1709
ab77dab4
SJ
1710/*
1711 * If the insertion of PTE failed because someone else already added a
1712 * different entry in the mean time, we treat that as success as we assume
1713 * the same entry was actually inserted.
1714 */
1715
1716vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1717 unsigned long addr, pfn_t pfn)
b2770da6 1718{
ab77dab4
SJ
1719 int err;
1720
1721 err = __vm_insert_mixed(vma, addr, pfn, true);
1722 if (err == -ENOMEM)
1723 return VM_FAULT_OOM;
1724 if (err < 0 && err != -EBUSY)
1725 return VM_FAULT_SIGBUS;
1726 return VM_FAULT_NOPAGE;
b2770da6 1727}
ab77dab4 1728EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1729
1da177e4
LT
1730/*
1731 * maps a range of physical memory into the requested pages. the old
1732 * mappings are removed. any references to nonexistent pages results
1733 * in null mappings (currently treated as "copy-on-access")
1734 */
1735static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1736 unsigned long addr, unsigned long end,
1737 unsigned long pfn, pgprot_t prot)
1738{
1739 pte_t *pte;
c74df32c 1740 spinlock_t *ptl;
42e4089c 1741 int err = 0;
1da177e4 1742
c74df32c 1743 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1744 if (!pte)
1745 return -ENOMEM;
6606c3e0 1746 arch_enter_lazy_mmu_mode();
1da177e4
LT
1747 do {
1748 BUG_ON(!pte_none(*pte));
42e4089c
AK
1749 if (!pfn_modify_allowed(pfn, prot)) {
1750 err = -EACCES;
1751 break;
1752 }
7e675137 1753 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1754 pfn++;
1755 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1756 arch_leave_lazy_mmu_mode();
c74df32c 1757 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1758 return err;
1da177e4
LT
1759}
1760
1761static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1762 unsigned long addr, unsigned long end,
1763 unsigned long pfn, pgprot_t prot)
1764{
1765 pmd_t *pmd;
1766 unsigned long next;
42e4089c 1767 int err;
1da177e4
LT
1768
1769 pfn -= addr >> PAGE_SHIFT;
1770 pmd = pmd_alloc(mm, pud, addr);
1771 if (!pmd)
1772 return -ENOMEM;
f66055ab 1773 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1774 do {
1775 next = pmd_addr_end(addr, end);
42e4089c
AK
1776 err = remap_pte_range(mm, pmd, addr, next,
1777 pfn + (addr >> PAGE_SHIFT), prot);
1778 if (err)
1779 return err;
1da177e4
LT
1780 } while (pmd++, addr = next, addr != end);
1781 return 0;
1782}
1783
c2febafc 1784static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1785 unsigned long addr, unsigned long end,
1786 unsigned long pfn, pgprot_t prot)
1787{
1788 pud_t *pud;
1789 unsigned long next;
42e4089c 1790 int err;
1da177e4
LT
1791
1792 pfn -= addr >> PAGE_SHIFT;
c2febafc 1793 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1794 if (!pud)
1795 return -ENOMEM;
1796 do {
1797 next = pud_addr_end(addr, end);
42e4089c
AK
1798 err = remap_pmd_range(mm, pud, addr, next,
1799 pfn + (addr >> PAGE_SHIFT), prot);
1800 if (err)
1801 return err;
1da177e4
LT
1802 } while (pud++, addr = next, addr != end);
1803 return 0;
1804}
1805
c2febafc
KS
1806static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1807 unsigned long addr, unsigned long end,
1808 unsigned long pfn, pgprot_t prot)
1809{
1810 p4d_t *p4d;
1811 unsigned long next;
42e4089c 1812 int err;
c2febafc
KS
1813
1814 pfn -= addr >> PAGE_SHIFT;
1815 p4d = p4d_alloc(mm, pgd, addr);
1816 if (!p4d)
1817 return -ENOMEM;
1818 do {
1819 next = p4d_addr_end(addr, end);
42e4089c
AK
1820 err = remap_pud_range(mm, p4d, addr, next,
1821 pfn + (addr >> PAGE_SHIFT), prot);
1822 if (err)
1823 return err;
c2febafc
KS
1824 } while (p4d++, addr = next, addr != end);
1825 return 0;
1826}
1827
bfa5bf6d
REB
1828/**
1829 * remap_pfn_range - remap kernel memory to userspace
1830 * @vma: user vma to map to
1831 * @addr: target user address to start at
1832 * @pfn: physical address of kernel memory
1833 * @size: size of map area
1834 * @prot: page protection flags for this mapping
1835 *
1836 * Note: this is only safe if the mm semaphore is held when called.
1837 */
1da177e4
LT
1838int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1839 unsigned long pfn, unsigned long size, pgprot_t prot)
1840{
1841 pgd_t *pgd;
1842 unsigned long next;
2d15cab8 1843 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1844 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1845 unsigned long remap_pfn = pfn;
1da177e4
LT
1846 int err;
1847
1848 /*
1849 * Physically remapped pages are special. Tell the
1850 * rest of the world about it:
1851 * VM_IO tells people not to look at these pages
1852 * (accesses can have side effects).
6aab341e
LT
1853 * VM_PFNMAP tells the core MM that the base pages are just
1854 * raw PFN mappings, and do not have a "struct page" associated
1855 * with them.
314e51b9
KK
1856 * VM_DONTEXPAND
1857 * Disable vma merging and expanding with mremap().
1858 * VM_DONTDUMP
1859 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1860 *
1861 * There's a horrible special case to handle copy-on-write
1862 * behaviour that some programs depend on. We mark the "original"
1863 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1864 * See vm_normal_page() for details.
1da177e4 1865 */
b3b9c293
KK
1866 if (is_cow_mapping(vma->vm_flags)) {
1867 if (addr != vma->vm_start || end != vma->vm_end)
1868 return -EINVAL;
fb155c16 1869 vma->vm_pgoff = pfn;
b3b9c293
KK
1870 }
1871
d5957d2f 1872 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1873 if (err)
3c8bb73a 1874 return -EINVAL;
fb155c16 1875
314e51b9 1876 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1877
1878 BUG_ON(addr >= end);
1879 pfn -= addr >> PAGE_SHIFT;
1880 pgd = pgd_offset(mm, addr);
1881 flush_cache_range(vma, addr, end);
1da177e4
LT
1882 do {
1883 next = pgd_addr_end(addr, end);
c2febafc 1884 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1885 pfn + (addr >> PAGE_SHIFT), prot);
1886 if (err)
1887 break;
1888 } while (pgd++, addr = next, addr != end);
2ab64037 1889
1890 if (err)
d5957d2f 1891 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1892
1da177e4
LT
1893 return err;
1894}
1895EXPORT_SYMBOL(remap_pfn_range);
1896
b4cbb197
LT
1897/**
1898 * vm_iomap_memory - remap memory to userspace
1899 * @vma: user vma to map to
1900 * @start: start of area
1901 * @len: size of area
1902 *
1903 * This is a simplified io_remap_pfn_range() for common driver use. The
1904 * driver just needs to give us the physical memory range to be mapped,
1905 * we'll figure out the rest from the vma information.
1906 *
1907 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1908 * whatever write-combining details or similar.
1909 */
1910int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1911{
1912 unsigned long vm_len, pfn, pages;
1913
1914 /* Check that the physical memory area passed in looks valid */
1915 if (start + len < start)
1916 return -EINVAL;
1917 /*
1918 * You *really* shouldn't map things that aren't page-aligned,
1919 * but we've historically allowed it because IO memory might
1920 * just have smaller alignment.
1921 */
1922 len += start & ~PAGE_MASK;
1923 pfn = start >> PAGE_SHIFT;
1924 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1925 if (pfn + pages < pfn)
1926 return -EINVAL;
1927
1928 /* We start the mapping 'vm_pgoff' pages into the area */
1929 if (vma->vm_pgoff > pages)
1930 return -EINVAL;
1931 pfn += vma->vm_pgoff;
1932 pages -= vma->vm_pgoff;
1933
1934 /* Can we fit all of the mapping? */
1935 vm_len = vma->vm_end - vma->vm_start;
1936 if (vm_len >> PAGE_SHIFT > pages)
1937 return -EINVAL;
1938
1939 /* Ok, let it rip */
1940 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1941}
1942EXPORT_SYMBOL(vm_iomap_memory);
1943
aee16b3c
JF
1944static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1945 unsigned long addr, unsigned long end,
1946 pte_fn_t fn, void *data)
1947{
1948 pte_t *pte;
1949 int err;
2f569afd 1950 pgtable_t token;
94909914 1951 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1952
1953 pte = (mm == &init_mm) ?
1954 pte_alloc_kernel(pmd, addr) :
1955 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1956 if (!pte)
1957 return -ENOMEM;
1958
1959 BUG_ON(pmd_huge(*pmd));
1960
38e0edb1
JF
1961 arch_enter_lazy_mmu_mode();
1962
2f569afd 1963 token = pmd_pgtable(*pmd);
aee16b3c
JF
1964
1965 do {
c36987e2 1966 err = fn(pte++, token, addr, data);
aee16b3c
JF
1967 if (err)
1968 break;
c36987e2 1969 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1970
38e0edb1
JF
1971 arch_leave_lazy_mmu_mode();
1972
aee16b3c
JF
1973 if (mm != &init_mm)
1974 pte_unmap_unlock(pte-1, ptl);
1975 return err;
1976}
1977
1978static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1979 unsigned long addr, unsigned long end,
1980 pte_fn_t fn, void *data)
1981{
1982 pmd_t *pmd;
1983 unsigned long next;
1984 int err;
1985
ceb86879
AK
1986 BUG_ON(pud_huge(*pud));
1987
aee16b3c
JF
1988 pmd = pmd_alloc(mm, pud, addr);
1989 if (!pmd)
1990 return -ENOMEM;
1991 do {
1992 next = pmd_addr_end(addr, end);
1993 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1994 if (err)
1995 break;
1996 } while (pmd++, addr = next, addr != end);
1997 return err;
1998}
1999
c2febafc 2000static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2001 unsigned long addr, unsigned long end,
2002 pte_fn_t fn, void *data)
2003{
2004 pud_t *pud;
2005 unsigned long next;
2006 int err;
2007
c2febafc 2008 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2009 if (!pud)
2010 return -ENOMEM;
2011 do {
2012 next = pud_addr_end(addr, end);
2013 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2014 if (err)
2015 break;
2016 } while (pud++, addr = next, addr != end);
2017 return err;
2018}
2019
c2febafc
KS
2020static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2021 unsigned long addr, unsigned long end,
2022 pte_fn_t fn, void *data)
2023{
2024 p4d_t *p4d;
2025 unsigned long next;
2026 int err;
2027
2028 p4d = p4d_alloc(mm, pgd, addr);
2029 if (!p4d)
2030 return -ENOMEM;
2031 do {
2032 next = p4d_addr_end(addr, end);
2033 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2034 if (err)
2035 break;
2036 } while (p4d++, addr = next, addr != end);
2037 return err;
2038}
2039
aee16b3c
JF
2040/*
2041 * Scan a region of virtual memory, filling in page tables as necessary
2042 * and calling a provided function on each leaf page table.
2043 */
2044int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2045 unsigned long size, pte_fn_t fn, void *data)
2046{
2047 pgd_t *pgd;
2048 unsigned long next;
57250a5b 2049 unsigned long end = addr + size;
aee16b3c
JF
2050 int err;
2051
9cb65bc3
MP
2052 if (WARN_ON(addr >= end))
2053 return -EINVAL;
2054
aee16b3c
JF
2055 pgd = pgd_offset(mm, addr);
2056 do {
2057 next = pgd_addr_end(addr, end);
c2febafc 2058 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2059 if (err)
2060 break;
2061 } while (pgd++, addr = next, addr != end);
57250a5b 2062
aee16b3c
JF
2063 return err;
2064}
2065EXPORT_SYMBOL_GPL(apply_to_page_range);
2066
8f4e2101 2067/*
9b4bdd2f
KS
2068 * handle_pte_fault chooses page fault handler according to an entry which was
2069 * read non-atomically. Before making any commitment, on those architectures
2070 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2071 * parts, do_swap_page must check under lock before unmapping the pte and
2072 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2073 * and do_anonymous_page can safely check later on).
8f4e2101 2074 */
4c21e2f2 2075static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2076 pte_t *page_table, pte_t orig_pte)
2077{
2078 int same = 1;
2079#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2080 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2081 spinlock_t *ptl = pte_lockptr(mm, pmd);
2082 spin_lock(ptl);
8f4e2101 2083 same = pte_same(*page_table, orig_pte);
4c21e2f2 2084 spin_unlock(ptl);
8f4e2101
HD
2085 }
2086#endif
2087 pte_unmap(page_table);
2088 return same;
2089}
2090
9de455b2 2091static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2092{
0abdd7a8
DW
2093 debug_dma_assert_idle(src);
2094
6aab341e
LT
2095 /*
2096 * If the source page was a PFN mapping, we don't have
2097 * a "struct page" for it. We do a best-effort copy by
2098 * just copying from the original user address. If that
2099 * fails, we just zero-fill it. Live with it.
2100 */
2101 if (unlikely(!src)) {
9b04c5fe 2102 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2103 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2104
2105 /*
2106 * This really shouldn't fail, because the page is there
2107 * in the page tables. But it might just be unreadable,
2108 * in which case we just give up and fill the result with
2109 * zeroes.
2110 */
2111 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2112 clear_page(kaddr);
9b04c5fe 2113 kunmap_atomic(kaddr);
c4ec7b0d 2114 flush_dcache_page(dst);
0ed361de
NP
2115 } else
2116 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2117}
2118
c20cd45e
MH
2119static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2120{
2121 struct file *vm_file = vma->vm_file;
2122
2123 if (vm_file)
2124 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2125
2126 /*
2127 * Special mappings (e.g. VDSO) do not have any file so fake
2128 * a default GFP_KERNEL for them.
2129 */
2130 return GFP_KERNEL;
2131}
2132
fb09a464
KS
2133/*
2134 * Notify the address space that the page is about to become writable so that
2135 * it can prohibit this or wait for the page to get into an appropriate state.
2136 *
2137 * We do this without the lock held, so that it can sleep if it needs to.
2138 */
2b740303 2139static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2140{
2b740303 2141 vm_fault_t ret;
38b8cb7f
JK
2142 struct page *page = vmf->page;
2143 unsigned int old_flags = vmf->flags;
fb09a464 2144
38b8cb7f 2145 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2146
11bac800 2147 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2148 /* Restore original flags so that caller is not surprised */
2149 vmf->flags = old_flags;
fb09a464
KS
2150 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2151 return ret;
2152 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2153 lock_page(page);
2154 if (!page->mapping) {
2155 unlock_page(page);
2156 return 0; /* retry */
2157 }
2158 ret |= VM_FAULT_LOCKED;
2159 } else
2160 VM_BUG_ON_PAGE(!PageLocked(page), page);
2161 return ret;
2162}
2163
97ba0c2b
JK
2164/*
2165 * Handle dirtying of a page in shared file mapping on a write fault.
2166 *
2167 * The function expects the page to be locked and unlocks it.
2168 */
2169static void fault_dirty_shared_page(struct vm_area_struct *vma,
2170 struct page *page)
2171{
2172 struct address_space *mapping;
2173 bool dirtied;
2174 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2175
2176 dirtied = set_page_dirty(page);
2177 VM_BUG_ON_PAGE(PageAnon(page), page);
2178 /*
2179 * Take a local copy of the address_space - page.mapping may be zeroed
2180 * by truncate after unlock_page(). The address_space itself remains
2181 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2182 * release semantics to prevent the compiler from undoing this copying.
2183 */
2184 mapping = page_rmapping(page);
2185 unlock_page(page);
2186
2187 if ((dirtied || page_mkwrite) && mapping) {
2188 /*
2189 * Some device drivers do not set page.mapping
2190 * but still dirty their pages
2191 */
2192 balance_dirty_pages_ratelimited(mapping);
2193 }
2194
2195 if (!page_mkwrite)
2196 file_update_time(vma->vm_file);
2197}
2198
4e047f89
SR
2199/*
2200 * Handle write page faults for pages that can be reused in the current vma
2201 *
2202 * This can happen either due to the mapping being with the VM_SHARED flag,
2203 * or due to us being the last reference standing to the page. In either
2204 * case, all we need to do here is to mark the page as writable and update
2205 * any related book-keeping.
2206 */
997dd98d 2207static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2208 __releases(vmf->ptl)
4e047f89 2209{
82b0f8c3 2210 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2211 struct page *page = vmf->page;
4e047f89
SR
2212 pte_t entry;
2213 /*
2214 * Clear the pages cpupid information as the existing
2215 * information potentially belongs to a now completely
2216 * unrelated process.
2217 */
2218 if (page)
2219 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2220
2994302b
JK
2221 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2222 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2223 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2224 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2225 update_mmu_cache(vma, vmf->address, vmf->pte);
2226 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2227}
2228
2f38ab2c
SR
2229/*
2230 * Handle the case of a page which we actually need to copy to a new page.
2231 *
2232 * Called with mmap_sem locked and the old page referenced, but
2233 * without the ptl held.
2234 *
2235 * High level logic flow:
2236 *
2237 * - Allocate a page, copy the content of the old page to the new one.
2238 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2239 * - Take the PTL. If the pte changed, bail out and release the allocated page
2240 * - If the pte is still the way we remember it, update the page table and all
2241 * relevant references. This includes dropping the reference the page-table
2242 * held to the old page, as well as updating the rmap.
2243 * - In any case, unlock the PTL and drop the reference we took to the old page.
2244 */
2b740303 2245static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2246{
82b0f8c3 2247 struct vm_area_struct *vma = vmf->vma;
bae473a4 2248 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2249 struct page *old_page = vmf->page;
2f38ab2c 2250 struct page *new_page = NULL;
2f38ab2c
SR
2251 pte_t entry;
2252 int page_copied = 0;
82b0f8c3 2253 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2254 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2255 struct mem_cgroup *memcg;
2256
2257 if (unlikely(anon_vma_prepare(vma)))
2258 goto oom;
2259
2994302b 2260 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2261 new_page = alloc_zeroed_user_highpage_movable(vma,
2262 vmf->address);
2f38ab2c
SR
2263 if (!new_page)
2264 goto oom;
2265 } else {
bae473a4 2266 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2267 vmf->address);
2f38ab2c
SR
2268 if (!new_page)
2269 goto oom;
82b0f8c3 2270 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2271 }
2f38ab2c 2272
2cf85583 2273 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2274 goto oom_free_new;
2275
eb3c24f3
MG
2276 __SetPageUptodate(new_page);
2277
2f38ab2c
SR
2278 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2279
2280 /*
2281 * Re-check the pte - we dropped the lock
2282 */
82b0f8c3 2283 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2284 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2285 if (old_page) {
2286 if (!PageAnon(old_page)) {
eca56ff9
JM
2287 dec_mm_counter_fast(mm,
2288 mm_counter_file(old_page));
2f38ab2c
SR
2289 inc_mm_counter_fast(mm, MM_ANONPAGES);
2290 }
2291 } else {
2292 inc_mm_counter_fast(mm, MM_ANONPAGES);
2293 }
2994302b 2294 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2295 entry = mk_pte(new_page, vma->vm_page_prot);
2296 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2297 /*
2298 * Clear the pte entry and flush it first, before updating the
2299 * pte with the new entry. This will avoid a race condition
2300 * seen in the presence of one thread doing SMC and another
2301 * thread doing COW.
2302 */
82b0f8c3
JK
2303 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2304 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2305 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2306 lru_cache_add_active_or_unevictable(new_page, vma);
2307 /*
2308 * We call the notify macro here because, when using secondary
2309 * mmu page tables (such as kvm shadow page tables), we want the
2310 * new page to be mapped directly into the secondary page table.
2311 */
82b0f8c3
JK
2312 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2313 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2314 if (old_page) {
2315 /*
2316 * Only after switching the pte to the new page may
2317 * we remove the mapcount here. Otherwise another
2318 * process may come and find the rmap count decremented
2319 * before the pte is switched to the new page, and
2320 * "reuse" the old page writing into it while our pte
2321 * here still points into it and can be read by other
2322 * threads.
2323 *
2324 * The critical issue is to order this
2325 * page_remove_rmap with the ptp_clear_flush above.
2326 * Those stores are ordered by (if nothing else,)
2327 * the barrier present in the atomic_add_negative
2328 * in page_remove_rmap.
2329 *
2330 * Then the TLB flush in ptep_clear_flush ensures that
2331 * no process can access the old page before the
2332 * decremented mapcount is visible. And the old page
2333 * cannot be reused until after the decremented
2334 * mapcount is visible. So transitively, TLBs to
2335 * old page will be flushed before it can be reused.
2336 */
d281ee61 2337 page_remove_rmap(old_page, false);
2f38ab2c
SR
2338 }
2339
2340 /* Free the old page.. */
2341 new_page = old_page;
2342 page_copied = 1;
2343 } else {
f627c2f5 2344 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2345 }
2346
2347 if (new_page)
09cbfeaf 2348 put_page(new_page);
2f38ab2c 2349
82b0f8c3 2350 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2351 /*
2352 * No need to double call mmu_notifier->invalidate_range() callback as
2353 * the above ptep_clear_flush_notify() did already call it.
2354 */
2355 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2f38ab2c
SR
2356 if (old_page) {
2357 /*
2358 * Don't let another task, with possibly unlocked vma,
2359 * keep the mlocked page.
2360 */
2361 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2362 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2363 if (PageMlocked(old_page))
2364 munlock_vma_page(old_page);
2f38ab2c
SR
2365 unlock_page(old_page);
2366 }
09cbfeaf 2367 put_page(old_page);
2f38ab2c
SR
2368 }
2369 return page_copied ? VM_FAULT_WRITE : 0;
2370oom_free_new:
09cbfeaf 2371 put_page(new_page);
2f38ab2c
SR
2372oom:
2373 if (old_page)
09cbfeaf 2374 put_page(old_page);
2f38ab2c
SR
2375 return VM_FAULT_OOM;
2376}
2377
66a6197c
JK
2378/**
2379 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2380 * writeable once the page is prepared
2381 *
2382 * @vmf: structure describing the fault
2383 *
2384 * This function handles all that is needed to finish a write page fault in a
2385 * shared mapping due to PTE being read-only once the mapped page is prepared.
2386 * It handles locking of PTE and modifying it. The function returns
2387 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2388 * lock.
2389 *
2390 * The function expects the page to be locked or other protection against
2391 * concurrent faults / writeback (such as DAX radix tree locks).
2392 */
2b740303 2393vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2394{
2395 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2396 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2397 &vmf->ptl);
2398 /*
2399 * We might have raced with another page fault while we released the
2400 * pte_offset_map_lock.
2401 */
2402 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2403 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2404 return VM_FAULT_NOPAGE;
66a6197c
JK
2405 }
2406 wp_page_reuse(vmf);
a19e2553 2407 return 0;
66a6197c
JK
2408}
2409
dd906184
BH
2410/*
2411 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2412 * mapping
2413 */
2b740303 2414static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2415{
82b0f8c3 2416 struct vm_area_struct *vma = vmf->vma;
bae473a4 2417
dd906184 2418 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2419 vm_fault_t ret;
dd906184 2420
82b0f8c3 2421 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2422 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2423 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2424 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2425 return ret;
66a6197c 2426 return finish_mkwrite_fault(vmf);
dd906184 2427 }
997dd98d
JK
2428 wp_page_reuse(vmf);
2429 return VM_FAULT_WRITE;
dd906184
BH
2430}
2431
2b740303 2432static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2433 __releases(vmf->ptl)
93e478d4 2434{
82b0f8c3 2435 struct vm_area_struct *vma = vmf->vma;
93e478d4 2436
a41b70d6 2437 get_page(vmf->page);
93e478d4 2438
93e478d4 2439 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2440 vm_fault_t tmp;
93e478d4 2441
82b0f8c3 2442 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2443 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2444 if (unlikely(!tmp || (tmp &
2445 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2446 put_page(vmf->page);
93e478d4
SR
2447 return tmp;
2448 }
66a6197c 2449 tmp = finish_mkwrite_fault(vmf);
a19e2553 2450 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2451 unlock_page(vmf->page);
a41b70d6 2452 put_page(vmf->page);
66a6197c 2453 return tmp;
93e478d4 2454 }
66a6197c
JK
2455 } else {
2456 wp_page_reuse(vmf);
997dd98d 2457 lock_page(vmf->page);
93e478d4 2458 }
997dd98d
JK
2459 fault_dirty_shared_page(vma, vmf->page);
2460 put_page(vmf->page);
93e478d4 2461
997dd98d 2462 return VM_FAULT_WRITE;
93e478d4
SR
2463}
2464
1da177e4
LT
2465/*
2466 * This routine handles present pages, when users try to write
2467 * to a shared page. It is done by copying the page to a new address
2468 * and decrementing the shared-page counter for the old page.
2469 *
1da177e4
LT
2470 * Note that this routine assumes that the protection checks have been
2471 * done by the caller (the low-level page fault routine in most cases).
2472 * Thus we can safely just mark it writable once we've done any necessary
2473 * COW.
2474 *
2475 * We also mark the page dirty at this point even though the page will
2476 * change only once the write actually happens. This avoids a few races,
2477 * and potentially makes it more efficient.
2478 *
8f4e2101
HD
2479 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2480 * but allow concurrent faults), with pte both mapped and locked.
2481 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2482 */
2b740303 2483static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2484 __releases(vmf->ptl)
1da177e4 2485{
82b0f8c3 2486 struct vm_area_struct *vma = vmf->vma;
1da177e4 2487
a41b70d6
JK
2488 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2489 if (!vmf->page) {
251b97f5 2490 /*
64e45507
PF
2491 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2492 * VM_PFNMAP VMA.
251b97f5
PZ
2493 *
2494 * We should not cow pages in a shared writeable mapping.
dd906184 2495 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2496 */
2497 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2498 (VM_WRITE|VM_SHARED))
2994302b 2499 return wp_pfn_shared(vmf);
2f38ab2c 2500
82b0f8c3 2501 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2502 return wp_page_copy(vmf);
251b97f5 2503 }
1da177e4 2504
d08b3851 2505 /*
ee6a6457
PZ
2506 * Take out anonymous pages first, anonymous shared vmas are
2507 * not dirty accountable.
d08b3851 2508 */
a41b70d6 2509 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
ba3c4ce6 2510 int total_map_swapcount;
a41b70d6
JK
2511 if (!trylock_page(vmf->page)) {
2512 get_page(vmf->page);
82b0f8c3 2513 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2514 lock_page(vmf->page);
82b0f8c3
JK
2515 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2516 vmf->address, &vmf->ptl);
2994302b 2517 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2518 unlock_page(vmf->page);
82b0f8c3 2519 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2520 put_page(vmf->page);
28766805 2521 return 0;
ab967d86 2522 }
a41b70d6 2523 put_page(vmf->page);
ee6a6457 2524 }
ba3c4ce6
HY
2525 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2526 if (total_map_swapcount == 1) {
6d0a07ed
AA
2527 /*
2528 * The page is all ours. Move it to
2529 * our anon_vma so the rmap code will
2530 * not search our parent or siblings.
2531 * Protected against the rmap code by
2532 * the page lock.
2533 */
a41b70d6 2534 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2535 }
a41b70d6 2536 unlock_page(vmf->page);
997dd98d
JK
2537 wp_page_reuse(vmf);
2538 return VM_FAULT_WRITE;
b009c024 2539 }
a41b70d6 2540 unlock_page(vmf->page);
ee6a6457 2541 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2542 (VM_WRITE|VM_SHARED))) {
a41b70d6 2543 return wp_page_shared(vmf);
1da177e4 2544 }
1da177e4
LT
2545
2546 /*
2547 * Ok, we need to copy. Oh, well..
2548 */
a41b70d6 2549 get_page(vmf->page);
28766805 2550
82b0f8c3 2551 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2552 return wp_page_copy(vmf);
1da177e4
LT
2553}
2554
97a89413 2555static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2556 unsigned long start_addr, unsigned long end_addr,
2557 struct zap_details *details)
2558{
f5cc4eef 2559 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2560}
2561
f808c13f 2562static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2563 struct zap_details *details)
2564{
2565 struct vm_area_struct *vma;
1da177e4
LT
2566 pgoff_t vba, vea, zba, zea;
2567
6b2dbba8 2568 vma_interval_tree_foreach(vma, root,
1da177e4 2569 details->first_index, details->last_index) {
1da177e4
LT
2570
2571 vba = vma->vm_pgoff;
d6e93217 2572 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2573 zba = details->first_index;
2574 if (zba < vba)
2575 zba = vba;
2576 zea = details->last_index;
2577 if (zea > vea)
2578 zea = vea;
2579
97a89413 2580 unmap_mapping_range_vma(vma,
1da177e4
LT
2581 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2582 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2583 details);
1da177e4
LT
2584 }
2585}
2586
977fbdcd
MW
2587/**
2588 * unmap_mapping_pages() - Unmap pages from processes.
2589 * @mapping: The address space containing pages to be unmapped.
2590 * @start: Index of first page to be unmapped.
2591 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2592 * @even_cows: Whether to unmap even private COWed pages.
2593 *
2594 * Unmap the pages in this address space from any userspace process which
2595 * has them mmaped. Generally, you want to remove COWed pages as well when
2596 * a file is being truncated, but not when invalidating pages from the page
2597 * cache.
2598 */
2599void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2600 pgoff_t nr, bool even_cows)
2601{
2602 struct zap_details details = { };
2603
2604 details.check_mapping = even_cows ? NULL : mapping;
2605 details.first_index = start;
2606 details.last_index = start + nr - 1;
2607 if (details.last_index < details.first_index)
2608 details.last_index = ULONG_MAX;
2609
2610 i_mmap_lock_write(mapping);
2611 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2612 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2613 i_mmap_unlock_write(mapping);
2614}
2615
1da177e4 2616/**
8a5f14a2 2617 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2618 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2619 * file.
2620 *
3d41088f 2621 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2622 * @holebegin: byte in first page to unmap, relative to the start of
2623 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2624 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2625 * must keep the partial page. In contrast, we must get rid of
2626 * partial pages.
2627 * @holelen: size of prospective hole in bytes. This will be rounded
2628 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2629 * end of the file.
2630 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2631 * but 0 when invalidating pagecache, don't throw away private data.
2632 */
2633void unmap_mapping_range(struct address_space *mapping,
2634 loff_t const holebegin, loff_t const holelen, int even_cows)
2635{
1da177e4
LT
2636 pgoff_t hba = holebegin >> PAGE_SHIFT;
2637 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2638
2639 /* Check for overflow. */
2640 if (sizeof(holelen) > sizeof(hlen)) {
2641 long long holeend =
2642 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2643 if (holeend & ~(long long)ULONG_MAX)
2644 hlen = ULONG_MAX - hba + 1;
2645 }
2646
977fbdcd 2647 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2648}
2649EXPORT_SYMBOL(unmap_mapping_range);
2650
1da177e4 2651/*
8f4e2101
HD
2652 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2653 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2654 * We return with pte unmapped and unlocked.
2655 *
2656 * We return with the mmap_sem locked or unlocked in the same cases
2657 * as does filemap_fault().
1da177e4 2658 */
2b740303 2659vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2660{
82b0f8c3 2661 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2662 struct page *page = NULL, *swapcache;
00501b53 2663 struct mem_cgroup *memcg;
65500d23 2664 swp_entry_t entry;
1da177e4 2665 pte_t pte;
d065bd81 2666 int locked;
ad8c2ee8 2667 int exclusive = 0;
2b740303 2668 vm_fault_t ret = 0;
1da177e4 2669
eaf649eb 2670 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2671 goto out;
65500d23 2672
2994302b 2673 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2674 if (unlikely(non_swap_entry(entry))) {
2675 if (is_migration_entry(entry)) {
82b0f8c3
JK
2676 migration_entry_wait(vma->vm_mm, vmf->pmd,
2677 vmf->address);
5042db43
JG
2678 } else if (is_device_private_entry(entry)) {
2679 /*
2680 * For un-addressable device memory we call the pgmap
2681 * fault handler callback. The callback must migrate
2682 * the page back to some CPU accessible page.
2683 */
2684 ret = device_private_entry_fault(vma, vmf->address, entry,
2685 vmf->flags, vmf->pmd);
d1737fdb
AK
2686 } else if (is_hwpoison_entry(entry)) {
2687 ret = VM_FAULT_HWPOISON;
2688 } else {
2994302b 2689 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2690 ret = VM_FAULT_SIGBUS;
d1737fdb 2691 }
0697212a
CL
2692 goto out;
2693 }
0bcac06f
MK
2694
2695
0ff92245 2696 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2697 page = lookup_swap_cache(entry, vma, vmf->address);
2698 swapcache = page;
f8020772 2699
1da177e4 2700 if (!page) {
0bcac06f
MK
2701 struct swap_info_struct *si = swp_swap_info(entry);
2702
aa8d22a1
MK
2703 if (si->flags & SWP_SYNCHRONOUS_IO &&
2704 __swap_count(si, entry) == 1) {
0bcac06f 2705 /* skip swapcache */
e9e9b7ec
MK
2706 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2707 vmf->address);
0bcac06f
MK
2708 if (page) {
2709 __SetPageLocked(page);
2710 __SetPageSwapBacked(page);
2711 set_page_private(page, entry.val);
2712 lru_cache_add_anon(page);
2713 swap_readpage(page, true);
2714 }
aa8d22a1 2715 } else {
e9e9b7ec
MK
2716 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2717 vmf);
aa8d22a1 2718 swapcache = page;
0bcac06f
MK
2719 }
2720
1da177e4
LT
2721 if (!page) {
2722 /*
8f4e2101
HD
2723 * Back out if somebody else faulted in this pte
2724 * while we released the pte lock.
1da177e4 2725 */
82b0f8c3
JK
2726 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2727 vmf->address, &vmf->ptl);
2994302b 2728 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2729 ret = VM_FAULT_OOM;
0ff92245 2730 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2731 goto unlock;
1da177e4
LT
2732 }
2733
2734 /* Had to read the page from swap area: Major fault */
2735 ret = VM_FAULT_MAJOR;
f8891e5e 2736 count_vm_event(PGMAJFAULT);
2262185c 2737 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2738 } else if (PageHWPoison(page)) {
71f72525
WF
2739 /*
2740 * hwpoisoned dirty swapcache pages are kept for killing
2741 * owner processes (which may be unknown at hwpoison time)
2742 */
d1737fdb
AK
2743 ret = VM_FAULT_HWPOISON;
2744 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2745 goto out_release;
1da177e4
LT
2746 }
2747
82b0f8c3 2748 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2749
073e587e 2750 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2751 if (!locked) {
2752 ret |= VM_FAULT_RETRY;
2753 goto out_release;
2754 }
073e587e 2755
4969c119 2756 /*
31c4a3d3
HD
2757 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2758 * release the swapcache from under us. The page pin, and pte_same
2759 * test below, are not enough to exclude that. Even if it is still
2760 * swapcache, we need to check that the page's swap has not changed.
4969c119 2761 */
0bcac06f
MK
2762 if (unlikely((!PageSwapCache(page) ||
2763 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2764 goto out_page;
2765
82b0f8c3 2766 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2767 if (unlikely(!page)) {
2768 ret = VM_FAULT_OOM;
2769 page = swapcache;
cbf86cfe 2770 goto out_page;
5ad64688
HD
2771 }
2772
2cf85583
TH
2773 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2774 &memcg, false)) {
8a9f3ccd 2775 ret = VM_FAULT_OOM;
bc43f75c 2776 goto out_page;
8a9f3ccd
BS
2777 }
2778
1da177e4 2779 /*
8f4e2101 2780 * Back out if somebody else already faulted in this pte.
1da177e4 2781 */
82b0f8c3
JK
2782 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2783 &vmf->ptl);
2994302b 2784 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2785 goto out_nomap;
b8107480
KK
2786
2787 if (unlikely(!PageUptodate(page))) {
2788 ret = VM_FAULT_SIGBUS;
2789 goto out_nomap;
1da177e4
LT
2790 }
2791
8c7c6e34
KH
2792 /*
2793 * The page isn't present yet, go ahead with the fault.
2794 *
2795 * Be careful about the sequence of operations here.
2796 * To get its accounting right, reuse_swap_page() must be called
2797 * while the page is counted on swap but not yet in mapcount i.e.
2798 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2799 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2800 */
1da177e4 2801
bae473a4
KS
2802 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2803 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2804 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2805 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2806 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2807 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2808 ret |= VM_FAULT_WRITE;
d281ee61 2809 exclusive = RMAP_EXCLUSIVE;
1da177e4 2810 }
1da177e4 2811 flush_icache_page(vma, page);
2994302b 2812 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2813 pte = pte_mksoft_dirty(pte);
82b0f8c3 2814 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 2815 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 2816 vmf->orig_pte = pte;
0bcac06f
MK
2817
2818 /* ksm created a completely new copy */
2819 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 2820 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2821 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2822 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
2823 } else {
2824 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2825 mem_cgroup_commit_charge(page, memcg, true, false);
2826 activate_page(page);
00501b53 2827 }
1da177e4 2828
c475a8ab 2829 swap_free(entry);
5ccc5aba
VD
2830 if (mem_cgroup_swap_full(page) ||
2831 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2832 try_to_free_swap(page);
c475a8ab 2833 unlock_page(page);
0bcac06f 2834 if (page != swapcache && swapcache) {
4969c119
AA
2835 /*
2836 * Hold the lock to avoid the swap entry to be reused
2837 * until we take the PT lock for the pte_same() check
2838 * (to avoid false positives from pte_same). For
2839 * further safety release the lock after the swap_free
2840 * so that the swap count won't change under a
2841 * parallel locked swapcache.
2842 */
2843 unlock_page(swapcache);
09cbfeaf 2844 put_page(swapcache);
4969c119 2845 }
c475a8ab 2846
82b0f8c3 2847 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2848 ret |= do_wp_page(vmf);
61469f1d
HD
2849 if (ret & VM_FAULT_ERROR)
2850 ret &= VM_FAULT_ERROR;
1da177e4
LT
2851 goto out;
2852 }
2853
2854 /* No need to invalidate - it was non-present before */
82b0f8c3 2855 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2856unlock:
82b0f8c3 2857 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2858out:
2859 return ret;
b8107480 2860out_nomap:
f627c2f5 2861 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2862 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2863out_page:
b8107480 2864 unlock_page(page);
4779cb31 2865out_release:
09cbfeaf 2866 put_page(page);
0bcac06f 2867 if (page != swapcache && swapcache) {
4969c119 2868 unlock_page(swapcache);
09cbfeaf 2869 put_page(swapcache);
4969c119 2870 }
65500d23 2871 return ret;
1da177e4
LT
2872}
2873
2874/*
8f4e2101
HD
2875 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2876 * but allow concurrent faults), and pte mapped but not yet locked.
2877 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2878 */
2b740303 2879static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 2880{
82b0f8c3 2881 struct vm_area_struct *vma = vmf->vma;
00501b53 2882 struct mem_cgroup *memcg;
8f4e2101 2883 struct page *page;
2b740303 2884 vm_fault_t ret = 0;
1da177e4 2885 pte_t entry;
1da177e4 2886
6b7339f4
KS
2887 /* File mapping without ->vm_ops ? */
2888 if (vma->vm_flags & VM_SHARED)
2889 return VM_FAULT_SIGBUS;
2890
7267ec00
KS
2891 /*
2892 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2893 * pte_offset_map() on pmds where a huge pmd might be created
2894 * from a different thread.
2895 *
2896 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2897 * parallel threads are excluded by other means.
2898 *
2899 * Here we only have down_read(mmap_sem).
2900 */
82b0f8c3 2901 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
2902 return VM_FAULT_OOM;
2903
2904 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2905 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2906 return 0;
2907
11ac5524 2908 /* Use the zero-page for reads */
82b0f8c3 2909 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2910 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2911 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2912 vma->vm_page_prot));
82b0f8c3
JK
2913 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2914 vmf->address, &vmf->ptl);
2915 if (!pte_none(*vmf->pte))
a13ea5b7 2916 goto unlock;
6b31d595
MH
2917 ret = check_stable_address_space(vma->vm_mm);
2918 if (ret)
2919 goto unlock;
6b251fc9
AA
2920 /* Deliver the page fault to userland, check inside PT lock */
2921 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2922 pte_unmap_unlock(vmf->pte, vmf->ptl);
2923 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2924 }
a13ea5b7
HD
2925 goto setpte;
2926 }
2927
557ed1fa 2928 /* Allocate our own private page. */
557ed1fa
NP
2929 if (unlikely(anon_vma_prepare(vma)))
2930 goto oom;
82b0f8c3 2931 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2932 if (!page)
2933 goto oom;
eb3c24f3 2934
2cf85583
TH
2935 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2936 false))
eb3c24f3
MG
2937 goto oom_free_page;
2938
52f37629
MK
2939 /*
2940 * The memory barrier inside __SetPageUptodate makes sure that
2941 * preceeding stores to the page contents become visible before
2942 * the set_pte_at() write.
2943 */
0ed361de 2944 __SetPageUptodate(page);
8f4e2101 2945
557ed1fa 2946 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2947 if (vma->vm_flags & VM_WRITE)
2948 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2949
82b0f8c3
JK
2950 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2951 &vmf->ptl);
2952 if (!pte_none(*vmf->pte))
557ed1fa 2953 goto release;
9ba69294 2954
6b31d595
MH
2955 ret = check_stable_address_space(vma->vm_mm);
2956 if (ret)
2957 goto release;
2958
6b251fc9
AA
2959 /* Deliver the page fault to userland, check inside PT lock */
2960 if (userfaultfd_missing(vma)) {
82b0f8c3 2961 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 2962 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2963 put_page(page);
82b0f8c3 2964 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
2965 }
2966
bae473a4 2967 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 2968 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2969 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2970 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2971setpte:
82b0f8c3 2972 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
2973
2974 /* No need to invalidate - it was non-present before */
82b0f8c3 2975 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2976unlock:
82b0f8c3 2977 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 2978 return ret;
8f4e2101 2979release:
f627c2f5 2980 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2981 put_page(page);
8f4e2101 2982 goto unlock;
8a9f3ccd 2983oom_free_page:
09cbfeaf 2984 put_page(page);
65500d23 2985oom:
1da177e4
LT
2986 return VM_FAULT_OOM;
2987}
2988
9a95f3cf
PC
2989/*
2990 * The mmap_sem must have been held on entry, and may have been
2991 * released depending on flags and vma->vm_ops->fault() return value.
2992 * See filemap_fault() and __lock_page_retry().
2993 */
2b740303 2994static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 2995{
82b0f8c3 2996 struct vm_area_struct *vma = vmf->vma;
2b740303 2997 vm_fault_t ret;
7eae74af 2998
11bac800 2999 ret = vma->vm_ops->fault(vmf);
3917048d 3000 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3001 VM_FAULT_DONE_COW)))
bc2466e4 3002 return ret;
7eae74af 3003
667240e0 3004 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3005 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3006 unlock_page(vmf->page);
3007 put_page(vmf->page);
936ca80d 3008 vmf->page = NULL;
7eae74af
KS
3009 return VM_FAULT_HWPOISON;
3010 }
3011
3012 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3013 lock_page(vmf->page);
7eae74af 3014 else
667240e0 3015 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3016
7eae74af
KS
3017 return ret;
3018}
3019
d0f0931d
RZ
3020/*
3021 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3022 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3023 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3024 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3025 */
3026static int pmd_devmap_trans_unstable(pmd_t *pmd)
3027{
3028 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3029}
3030
2b740303 3031static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3032{
82b0f8c3 3033 struct vm_area_struct *vma = vmf->vma;
7267ec00 3034
82b0f8c3 3035 if (!pmd_none(*vmf->pmd))
7267ec00 3036 goto map_pte;
82b0f8c3
JK
3037 if (vmf->prealloc_pte) {
3038 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3039 if (unlikely(!pmd_none(*vmf->pmd))) {
3040 spin_unlock(vmf->ptl);
7267ec00
KS
3041 goto map_pte;
3042 }
3043
c4812909 3044 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3045 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3046 spin_unlock(vmf->ptl);
7f2b6ce8 3047 vmf->prealloc_pte = NULL;
82b0f8c3 3048 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
3049 return VM_FAULT_OOM;
3050 }
3051map_pte:
3052 /*
3053 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3054 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3055 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3056 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3057 * running immediately after a huge pmd fault in a different thread of
3058 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3059 * All we have to ensure is that it is a regular pmd that we can walk
3060 * with pte_offset_map() and we can do that through an atomic read in
3061 * C, which is what pmd_trans_unstable() provides.
7267ec00 3062 */
d0f0931d 3063 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3064 return VM_FAULT_NOPAGE;
3065
d0f0931d
RZ
3066 /*
3067 * At this point we know that our vmf->pmd points to a page of ptes
3068 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3069 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3070 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3071 * be valid and we will re-check to make sure the vmf->pte isn't
3072 * pte_none() under vmf->ptl protection when we return to
3073 * alloc_set_pte().
3074 */
82b0f8c3
JK
3075 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3076 &vmf->ptl);
7267ec00
KS
3077 return 0;
3078}
3079
e496cf3d 3080#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3081
3082#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3083static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3084 unsigned long haddr)
3085{
3086 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3087 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3088 return false;
3089 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3090 return false;
3091 return true;
3092}
3093
82b0f8c3 3094static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3095{
82b0f8c3 3096 struct vm_area_struct *vma = vmf->vma;
953c66c2 3097
82b0f8c3 3098 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3099 /*
3100 * We are going to consume the prealloc table,
3101 * count that as nr_ptes.
3102 */
c4812909 3103 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3104 vmf->prealloc_pte = NULL;
953c66c2
AK
3105}
3106
2b740303 3107static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3108{
82b0f8c3
JK
3109 struct vm_area_struct *vma = vmf->vma;
3110 bool write = vmf->flags & FAULT_FLAG_WRITE;
3111 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3112 pmd_t entry;
2b740303
SJ
3113 int i;
3114 vm_fault_t ret;
10102459
KS
3115
3116 if (!transhuge_vma_suitable(vma, haddr))
3117 return VM_FAULT_FALLBACK;
3118
3119 ret = VM_FAULT_FALLBACK;
3120 page = compound_head(page);
3121
953c66c2
AK
3122 /*
3123 * Archs like ppc64 need additonal space to store information
3124 * related to pte entry. Use the preallocated table for that.
3125 */
82b0f8c3
JK
3126 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3127 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3128 if (!vmf->prealloc_pte)
953c66c2
AK
3129 return VM_FAULT_OOM;
3130 smp_wmb(); /* See comment in __pte_alloc() */
3131 }
3132
82b0f8c3
JK
3133 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3134 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3135 goto out;
3136
3137 for (i = 0; i < HPAGE_PMD_NR; i++)
3138 flush_icache_page(vma, page + i);
3139
3140 entry = mk_huge_pmd(page, vma->vm_page_prot);
3141 if (write)
f55e1014 3142 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3143
fadae295 3144 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3145 page_add_file_rmap(page, true);
953c66c2
AK
3146 /*
3147 * deposit and withdraw with pmd lock held
3148 */
3149 if (arch_needs_pgtable_deposit())
82b0f8c3 3150 deposit_prealloc_pte(vmf);
10102459 3151
82b0f8c3 3152 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3153
82b0f8c3 3154 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3155
3156 /* fault is handled */
3157 ret = 0;
95ecedcd 3158 count_vm_event(THP_FILE_MAPPED);
10102459 3159out:
82b0f8c3 3160 spin_unlock(vmf->ptl);
10102459
KS
3161 return ret;
3162}
3163#else
2b740303 3164static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3165{
3166 BUILD_BUG();
3167 return 0;
3168}
3169#endif
3170
8c6e50b0 3171/**
7267ec00
KS
3172 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3173 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3174 *
82b0f8c3 3175 * @vmf: fault environment
7267ec00 3176 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3177 * @page: page to map
8c6e50b0 3178 *
82b0f8c3
JK
3179 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3180 * return.
8c6e50b0
KS
3181 *
3182 * Target users are page handler itself and implementations of
3183 * vm_ops->map_pages.
3184 */
2b740303 3185vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3186 struct page *page)
3bb97794 3187{
82b0f8c3
JK
3188 struct vm_area_struct *vma = vmf->vma;
3189 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3190 pte_t entry;
2b740303 3191 vm_fault_t ret;
10102459 3192
82b0f8c3 3193 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3194 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3195 /* THP on COW? */
3196 VM_BUG_ON_PAGE(memcg, page);
3197
82b0f8c3 3198 ret = do_set_pmd(vmf, page);
10102459 3199 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3200 return ret;
10102459 3201 }
3bb97794 3202
82b0f8c3
JK
3203 if (!vmf->pte) {
3204 ret = pte_alloc_one_map(vmf);
7267ec00 3205 if (ret)
b0b9b3df 3206 return ret;
7267ec00
KS
3207 }
3208
3209 /* Re-check under ptl */
b0b9b3df
HD
3210 if (unlikely(!pte_none(*vmf->pte)))
3211 return VM_FAULT_NOPAGE;
7267ec00 3212
3bb97794
KS
3213 flush_icache_page(vma, page);
3214 entry = mk_pte(page, vma->vm_page_prot);
3215 if (write)
3216 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3217 /* copy-on-write page */
3218 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3219 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3220 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3221 mem_cgroup_commit_charge(page, memcg, false, false);
3222 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3223 } else {
eca56ff9 3224 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3225 page_add_file_rmap(page, false);
3bb97794 3226 }
82b0f8c3 3227 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3228
3229 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3230 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3231
b0b9b3df 3232 return 0;
3bb97794
KS
3233}
3234
9118c0cb
JK
3235
3236/**
3237 * finish_fault - finish page fault once we have prepared the page to fault
3238 *
3239 * @vmf: structure describing the fault
3240 *
3241 * This function handles all that is needed to finish a page fault once the
3242 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3243 * given page, adds reverse page mapping, handles memcg charges and LRU
3244 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3245 * error.
3246 *
3247 * The function expects the page to be locked and on success it consumes a
3248 * reference of a page being mapped (for the PTE which maps it).
3249 */
2b740303 3250vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3251{
3252 struct page *page;
2b740303 3253 vm_fault_t ret = 0;
9118c0cb
JK
3254
3255 /* Did we COW the page? */
3256 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3257 !(vmf->vma->vm_flags & VM_SHARED))
3258 page = vmf->cow_page;
3259 else
3260 page = vmf->page;
6b31d595
MH
3261
3262 /*
3263 * check even for read faults because we might have lost our CoWed
3264 * page
3265 */
3266 if (!(vmf->vma->vm_flags & VM_SHARED))
3267 ret = check_stable_address_space(vmf->vma->vm_mm);
3268 if (!ret)
3269 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3270 if (vmf->pte)
3271 pte_unmap_unlock(vmf->pte, vmf->ptl);
3272 return ret;
3273}
3274
3a91053a
KS
3275static unsigned long fault_around_bytes __read_mostly =
3276 rounddown_pow_of_two(65536);
a9b0f861 3277
a9b0f861
KS
3278#ifdef CONFIG_DEBUG_FS
3279static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3280{
a9b0f861 3281 *val = fault_around_bytes;
1592eef0
KS
3282 return 0;
3283}
3284
b4903d6e 3285/*
da391d64
WK
3286 * fault_around_bytes must be rounded down to the nearest page order as it's
3287 * what do_fault_around() expects to see.
b4903d6e 3288 */
a9b0f861 3289static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3290{
a9b0f861 3291 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3292 return -EINVAL;
b4903d6e
AR
3293 if (val > PAGE_SIZE)
3294 fault_around_bytes = rounddown_pow_of_two(val);
3295 else
3296 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3297 return 0;
3298}
0a1345f8 3299DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3300 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3301
3302static int __init fault_around_debugfs(void)
3303{
3304 void *ret;
3305
0a1345f8 3306 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
a9b0f861 3307 &fault_around_bytes_fops);
1592eef0 3308 if (!ret)
a9b0f861 3309 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3310 return 0;
3311}
3312late_initcall(fault_around_debugfs);
1592eef0 3313#endif
8c6e50b0 3314
1fdb412b
KS
3315/*
3316 * do_fault_around() tries to map few pages around the fault address. The hope
3317 * is that the pages will be needed soon and this will lower the number of
3318 * faults to handle.
3319 *
3320 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3321 * not ready to be mapped: not up-to-date, locked, etc.
3322 *
3323 * This function is called with the page table lock taken. In the split ptlock
3324 * case the page table lock only protects only those entries which belong to
3325 * the page table corresponding to the fault address.
3326 *
3327 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3328 * only once.
3329 *
da391d64
WK
3330 * fault_around_bytes defines how many bytes we'll try to map.
3331 * do_fault_around() expects it to be set to a power of two less than or equal
3332 * to PTRS_PER_PTE.
1fdb412b 3333 *
da391d64
WK
3334 * The virtual address of the area that we map is naturally aligned to
3335 * fault_around_bytes rounded down to the machine page size
3336 * (and therefore to page order). This way it's easier to guarantee
3337 * that we don't cross page table boundaries.
1fdb412b 3338 */
2b740303 3339static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3340{
82b0f8c3 3341 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3342 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3343 pgoff_t end_pgoff;
2b740303
SJ
3344 int off;
3345 vm_fault_t ret = 0;
8c6e50b0 3346
4db0c3c2 3347 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3348 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3349
82b0f8c3
JK
3350 vmf->address = max(address & mask, vmf->vma->vm_start);
3351 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3352 start_pgoff -= off;
8c6e50b0
KS
3353
3354 /*
da391d64
WK
3355 * end_pgoff is either the end of the page table, the end of
3356 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3357 */
bae473a4 3358 end_pgoff = start_pgoff -
82b0f8c3 3359 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3360 PTRS_PER_PTE - 1;
82b0f8c3 3361 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3362 start_pgoff + nr_pages - 1);
8c6e50b0 3363
82b0f8c3
JK
3364 if (pmd_none(*vmf->pmd)) {
3365 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3366 vmf->address);
3367 if (!vmf->prealloc_pte)
c5f88bd2 3368 goto out;
7267ec00 3369 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3370 }
3371
82b0f8c3 3372 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3373
7267ec00 3374 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3375 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3376 ret = VM_FAULT_NOPAGE;
3377 goto out;
3378 }
3379
3380 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3381 if (!vmf->pte)
7267ec00
KS
3382 goto out;
3383
3384 /* check if the page fault is solved */
82b0f8c3
JK
3385 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3386 if (!pte_none(*vmf->pte))
7267ec00 3387 ret = VM_FAULT_NOPAGE;
82b0f8c3 3388 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3389out:
82b0f8c3
JK
3390 vmf->address = address;
3391 vmf->pte = NULL;
7267ec00 3392 return ret;
8c6e50b0
KS
3393}
3394
2b740303 3395static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3396{
82b0f8c3 3397 struct vm_area_struct *vma = vmf->vma;
2b740303 3398 vm_fault_t ret = 0;
8c6e50b0
KS
3399
3400 /*
3401 * Let's call ->map_pages() first and use ->fault() as fallback
3402 * if page by the offset is not ready to be mapped (cold cache or
3403 * something).
3404 */
9b4bdd2f 3405 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3406 ret = do_fault_around(vmf);
7267ec00
KS
3407 if (ret)
3408 return ret;
8c6e50b0 3409 }
e655fb29 3410
936ca80d 3411 ret = __do_fault(vmf);
e655fb29
KS
3412 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3413 return ret;
3414
9118c0cb 3415 ret |= finish_fault(vmf);
936ca80d 3416 unlock_page(vmf->page);
7267ec00 3417 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3418 put_page(vmf->page);
e655fb29
KS
3419 return ret;
3420}
3421
2b740303 3422static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3423{
82b0f8c3 3424 struct vm_area_struct *vma = vmf->vma;
2b740303 3425 vm_fault_t ret;
ec47c3b9
KS
3426
3427 if (unlikely(anon_vma_prepare(vma)))
3428 return VM_FAULT_OOM;
3429
936ca80d
JK
3430 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3431 if (!vmf->cow_page)
ec47c3b9
KS
3432 return VM_FAULT_OOM;
3433
2cf85583 3434 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3435 &vmf->memcg, false)) {
936ca80d 3436 put_page(vmf->cow_page);
ec47c3b9
KS
3437 return VM_FAULT_OOM;
3438 }
3439
936ca80d 3440 ret = __do_fault(vmf);
ec47c3b9
KS
3441 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3442 goto uncharge_out;
3917048d
JK
3443 if (ret & VM_FAULT_DONE_COW)
3444 return ret;
ec47c3b9 3445
b1aa812b 3446 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3447 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3448
9118c0cb 3449 ret |= finish_fault(vmf);
b1aa812b
JK
3450 unlock_page(vmf->page);
3451 put_page(vmf->page);
7267ec00
KS
3452 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3453 goto uncharge_out;
ec47c3b9
KS
3454 return ret;
3455uncharge_out:
3917048d 3456 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3457 put_page(vmf->cow_page);
ec47c3b9
KS
3458 return ret;
3459}
3460
2b740303 3461static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3462{
82b0f8c3 3463 struct vm_area_struct *vma = vmf->vma;
2b740303 3464 vm_fault_t ret, tmp;
1d65f86d 3465
936ca80d 3466 ret = __do_fault(vmf);
7eae74af 3467 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3468 return ret;
1da177e4
LT
3469
3470 /*
f0c6d4d2
KS
3471 * Check if the backing address space wants to know that the page is
3472 * about to become writable
1da177e4 3473 */
fb09a464 3474 if (vma->vm_ops->page_mkwrite) {
936ca80d 3475 unlock_page(vmf->page);
38b8cb7f 3476 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3477 if (unlikely(!tmp ||
3478 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3479 put_page(vmf->page);
fb09a464 3480 return tmp;
4294621f 3481 }
fb09a464
KS
3482 }
3483
9118c0cb 3484 ret |= finish_fault(vmf);
7267ec00
KS
3485 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3486 VM_FAULT_RETRY))) {
936ca80d
JK
3487 unlock_page(vmf->page);
3488 put_page(vmf->page);
f0c6d4d2 3489 return ret;
1da177e4 3490 }
b827e496 3491
97ba0c2b 3492 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3493 return ret;
54cb8821 3494}
d00806b1 3495
9a95f3cf
PC
3496/*
3497 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3498 * but allow concurrent faults).
3499 * The mmap_sem may have been released depending on flags and our
3500 * return value. See filemap_fault() and __lock_page_or_retry().
3501 */
2b740303 3502static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3503{
82b0f8c3 3504 struct vm_area_struct *vma = vmf->vma;
2b740303 3505 vm_fault_t ret;
54cb8821 3506
6b7339f4
KS
3507 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3508 if (!vma->vm_ops->fault)
b0b9b3df
HD
3509 ret = VM_FAULT_SIGBUS;
3510 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3511 ret = do_read_fault(vmf);
3512 else if (!(vma->vm_flags & VM_SHARED))
3513 ret = do_cow_fault(vmf);
3514 else
3515 ret = do_shared_fault(vmf);
3516
3517 /* preallocated pagetable is unused: free it */
3518 if (vmf->prealloc_pte) {
3519 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3520 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3521 }
3522 return ret;
54cb8821
NP
3523}
3524
b19a9939 3525static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3526 unsigned long addr, int page_nid,
3527 int *flags)
9532fec1
MG
3528{
3529 get_page(page);
3530
3531 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3532 if (page_nid == numa_node_id()) {
9532fec1 3533 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3534 *flags |= TNF_FAULT_LOCAL;
3535 }
9532fec1
MG
3536
3537 return mpol_misplaced(page, vma, addr);
3538}
3539
2b740303 3540static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3541{
82b0f8c3 3542 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3543 struct page *page = NULL;
8191acbd 3544 int page_nid = -1;
90572890 3545 int last_cpupid;
cbee9f88 3546 int target_nid;
b8593bfd 3547 bool migrated = false;
cee216a6 3548 pte_t pte;
288bc549 3549 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3550 int flags = 0;
d10e63f2
MG
3551
3552 /*
166f61b9
TH
3553 * The "pte" at this point cannot be used safely without
3554 * validation through pte_unmap_same(). It's of NUMA type but
3555 * the pfn may be screwed if the read is non atomic.
166f61b9 3556 */
82b0f8c3
JK
3557 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3558 spin_lock(vmf->ptl);
cee216a6 3559 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3560 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3561 goto out;
3562 }
3563
cee216a6
AK
3564 /*
3565 * Make it present again, Depending on how arch implementes non
3566 * accessible ptes, some can allow access by kernel mode.
3567 */
3568 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4d942466
MG
3569 pte = pte_modify(pte, vma->vm_page_prot);
3570 pte = pte_mkyoung(pte);
b191f9b1
MG
3571 if (was_writable)
3572 pte = pte_mkwrite(pte);
cee216a6 3573 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
82b0f8c3 3574 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3575
82b0f8c3 3576 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3577 if (!page) {
82b0f8c3 3578 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3579 return 0;
3580 }
3581
e81c4802
KS
3582 /* TODO: handle PTE-mapped THP */
3583 if (PageCompound(page)) {
82b0f8c3 3584 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3585 return 0;
3586 }
3587
6688cc05 3588 /*
bea66fbd
MG
3589 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3590 * much anyway since they can be in shared cache state. This misses
3591 * the case where a mapping is writable but the process never writes
3592 * to it but pte_write gets cleared during protection updates and
3593 * pte_dirty has unpredictable behaviour between PTE scan updates,
3594 * background writeback, dirty balancing and application behaviour.
6688cc05 3595 */
d59dc7bc 3596 if (!pte_write(pte))
6688cc05
PZ
3597 flags |= TNF_NO_GROUP;
3598
dabe1d99
RR
3599 /*
3600 * Flag if the page is shared between multiple address spaces. This
3601 * is later used when determining whether to group tasks together
3602 */
3603 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3604 flags |= TNF_SHARED;
3605
90572890 3606 last_cpupid = page_cpupid_last(page);
8191acbd 3607 page_nid = page_to_nid(page);
82b0f8c3 3608 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3609 &flags);
82b0f8c3 3610 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3611 if (target_nid == -1) {
4daae3b4
MG
3612 put_page(page);
3613 goto out;
3614 }
3615
3616 /* Migrate to the requested node */
1bc115d8 3617 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3618 if (migrated) {
8191acbd 3619 page_nid = target_nid;
6688cc05 3620 flags |= TNF_MIGRATED;
074c2381
MG
3621 } else
3622 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3623
3624out:
8191acbd 3625 if (page_nid != -1)
6688cc05 3626 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3627 return 0;
3628}
3629
2b740303 3630static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3631{
f4200391 3632 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3633 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3634 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3635 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3636 return VM_FAULT_FALLBACK;
3637}
3638
183f24aa 3639/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3640static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3641{
82b0f8c3
JK
3642 if (vma_is_anonymous(vmf->vma))
3643 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3644 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3645 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3646
3647 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3648 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3649 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3650
b96375f7
MW
3651 return VM_FAULT_FALLBACK;
3652}
3653
38e08854
LS
3654static inline bool vma_is_accessible(struct vm_area_struct *vma)
3655{
3656 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3657}
3658
2b740303 3659static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3660{
3661#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3662 /* No support for anonymous transparent PUD pages yet */
3663 if (vma_is_anonymous(vmf->vma))
3664 return VM_FAULT_FALLBACK;
3665 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3666 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3667#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3668 return VM_FAULT_FALLBACK;
3669}
3670
2b740303 3671static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3672{
3673#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3674 /* No support for anonymous transparent PUD pages yet */
3675 if (vma_is_anonymous(vmf->vma))
3676 return VM_FAULT_FALLBACK;
3677 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3678 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3679#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3680 return VM_FAULT_FALLBACK;
3681}
3682
1da177e4
LT
3683/*
3684 * These routines also need to handle stuff like marking pages dirty
3685 * and/or accessed for architectures that don't do it in hardware (most
3686 * RISC architectures). The early dirtying is also good on the i386.
3687 *
3688 * There is also a hook called "update_mmu_cache()" that architectures
3689 * with external mmu caches can use to update those (ie the Sparc or
3690 * PowerPC hashed page tables that act as extended TLBs).
3691 *
7267ec00
KS
3692 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3693 * concurrent faults).
9a95f3cf 3694 *
7267ec00
KS
3695 * The mmap_sem may have been released depending on flags and our return value.
3696 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3697 */
2b740303 3698static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3699{
3700 pte_t entry;
3701
82b0f8c3 3702 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3703 /*
3704 * Leave __pte_alloc() until later: because vm_ops->fault may
3705 * want to allocate huge page, and if we expose page table
3706 * for an instant, it will be difficult to retract from
3707 * concurrent faults and from rmap lookups.
3708 */
82b0f8c3 3709 vmf->pte = NULL;
7267ec00
KS
3710 } else {
3711 /* See comment in pte_alloc_one_map() */
d0f0931d 3712 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3713 return 0;
3714 /*
3715 * A regular pmd is established and it can't morph into a huge
3716 * pmd from under us anymore at this point because we hold the
3717 * mmap_sem read mode and khugepaged takes it in write mode.
3718 * So now it's safe to run pte_offset_map().
3719 */
82b0f8c3 3720 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3721 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3722
3723 /*
3724 * some architectures can have larger ptes than wordsize,
3725 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3726 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3727 * accesses. The code below just needs a consistent view
3728 * for the ifs and we later double check anyway with the
7267ec00
KS
3729 * ptl lock held. So here a barrier will do.
3730 */
3731 barrier();
2994302b 3732 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3733 pte_unmap(vmf->pte);
3734 vmf->pte = NULL;
65500d23 3735 }
1da177e4
LT
3736 }
3737
82b0f8c3
JK
3738 if (!vmf->pte) {
3739 if (vma_is_anonymous(vmf->vma))
3740 return do_anonymous_page(vmf);
7267ec00 3741 else
82b0f8c3 3742 return do_fault(vmf);
7267ec00
KS
3743 }
3744
2994302b
JK
3745 if (!pte_present(vmf->orig_pte))
3746 return do_swap_page(vmf);
7267ec00 3747
2994302b
JK
3748 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3749 return do_numa_page(vmf);
d10e63f2 3750
82b0f8c3
JK
3751 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3752 spin_lock(vmf->ptl);
2994302b 3753 entry = vmf->orig_pte;
82b0f8c3 3754 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3755 goto unlock;
82b0f8c3 3756 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3757 if (!pte_write(entry))
2994302b 3758 return do_wp_page(vmf);
1da177e4
LT
3759 entry = pte_mkdirty(entry);
3760 }
3761 entry = pte_mkyoung(entry);
82b0f8c3
JK
3762 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3763 vmf->flags & FAULT_FLAG_WRITE)) {
3764 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3765 } else {
3766 /*
3767 * This is needed only for protection faults but the arch code
3768 * is not yet telling us if this is a protection fault or not.
3769 * This still avoids useless tlb flushes for .text page faults
3770 * with threads.
3771 */
82b0f8c3
JK
3772 if (vmf->flags & FAULT_FLAG_WRITE)
3773 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3774 }
8f4e2101 3775unlock:
82b0f8c3 3776 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3777 return 0;
1da177e4
LT
3778}
3779
3780/*
3781 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3782 *
3783 * The mmap_sem may have been released depending on flags and our
3784 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3785 */
2b740303
SJ
3786static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3787 unsigned long address, unsigned int flags)
1da177e4 3788{
82b0f8c3 3789 struct vm_fault vmf = {
bae473a4 3790 .vma = vma,
1a29d85e 3791 .address = address & PAGE_MASK,
bae473a4 3792 .flags = flags,
0721ec8b 3793 .pgoff = linear_page_index(vma, address),
667240e0 3794 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3795 };
fde26bed 3796 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 3797 struct mm_struct *mm = vma->vm_mm;
1da177e4 3798 pgd_t *pgd;
c2febafc 3799 p4d_t *p4d;
2b740303 3800 vm_fault_t ret;
1da177e4 3801
1da177e4 3802 pgd = pgd_offset(mm, address);
c2febafc
KS
3803 p4d = p4d_alloc(mm, pgd, address);
3804 if (!p4d)
3805 return VM_FAULT_OOM;
a00cc7d9 3806
c2febafc 3807 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3808 if (!vmf.pud)
c74df32c 3809 return VM_FAULT_OOM;
a00cc7d9 3810 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3811 ret = create_huge_pud(&vmf);
3812 if (!(ret & VM_FAULT_FALLBACK))
3813 return ret;
3814 } else {
3815 pud_t orig_pud = *vmf.pud;
3816
3817 barrier();
3818 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 3819
a00cc7d9
MW
3820 /* NUMA case for anonymous PUDs would go here */
3821
f6f37321 3822 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
3823 ret = wp_huge_pud(&vmf, orig_pud);
3824 if (!(ret & VM_FAULT_FALLBACK))
3825 return ret;
3826 } else {
3827 huge_pud_set_accessed(&vmf, orig_pud);
3828 return 0;
3829 }
3830 }
3831 }
3832
3833 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3834 if (!vmf.pmd)
c74df32c 3835 return VM_FAULT_OOM;
82b0f8c3 3836 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
a2d58167 3837 ret = create_huge_pmd(&vmf);
c0292554
KS
3838 if (!(ret & VM_FAULT_FALLBACK))
3839 return ret;
71e3aac0 3840 } else {
82b0f8c3 3841 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3842
71e3aac0 3843 barrier();
84c3fc4e
ZY
3844 if (unlikely(is_swap_pmd(orig_pmd))) {
3845 VM_BUG_ON(thp_migration_supported() &&
3846 !is_pmd_migration_entry(orig_pmd));
3847 if (is_pmd_migration_entry(orig_pmd))
3848 pmd_migration_entry_wait(mm, vmf.pmd);
3849 return 0;
3850 }
5c7fb56e 3851 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3852 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3853 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3854
f6f37321 3855 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 3856 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3857 if (!(ret & VM_FAULT_FALLBACK))
3858 return ret;
a1dd450b 3859 } else {
82b0f8c3 3860 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3861 return 0;
1f1d06c3 3862 }
71e3aac0
AA
3863 }
3864 }
3865
82b0f8c3 3866 return handle_pte_fault(&vmf);
1da177e4
LT
3867}
3868
9a95f3cf
PC
3869/*
3870 * By the time we get here, we already hold the mm semaphore
3871 *
3872 * The mmap_sem may have been released depending on flags and our
3873 * return value. See filemap_fault() and __lock_page_or_retry().
3874 */
2b740303 3875vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 3876 unsigned int flags)
519e5247 3877{
2b740303 3878 vm_fault_t ret;
519e5247
JW
3879
3880 __set_current_state(TASK_RUNNING);
3881
3882 count_vm_event(PGFAULT);
2262185c 3883 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
3884
3885 /* do counter updates before entering really critical section. */
3886 check_sync_rss_stat(current);
3887
de0c799b
LD
3888 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3889 flags & FAULT_FLAG_INSTRUCTION,
3890 flags & FAULT_FLAG_REMOTE))
3891 return VM_FAULT_SIGSEGV;
3892
519e5247
JW
3893 /*
3894 * Enable the memcg OOM handling for faults triggered in user
3895 * space. Kernel faults are handled more gracefully.
3896 */
3897 if (flags & FAULT_FLAG_USER)
29ef680a 3898 mem_cgroup_enter_user_fault();
519e5247 3899
bae473a4
KS
3900 if (unlikely(is_vm_hugetlb_page(vma)))
3901 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3902 else
3903 ret = __handle_mm_fault(vma, address, flags);
519e5247 3904
49426420 3905 if (flags & FAULT_FLAG_USER) {
29ef680a 3906 mem_cgroup_exit_user_fault();
166f61b9
TH
3907 /*
3908 * The task may have entered a memcg OOM situation but
3909 * if the allocation error was handled gracefully (no
3910 * VM_FAULT_OOM), there is no need to kill anything.
3911 * Just clean up the OOM state peacefully.
3912 */
3913 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3914 mem_cgroup_oom_synchronize(false);
49426420 3915 }
3812c8c8 3916
519e5247
JW
3917 return ret;
3918}
e1d6d01a 3919EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3920
90eceff1
KS
3921#ifndef __PAGETABLE_P4D_FOLDED
3922/*
3923 * Allocate p4d page table.
3924 * We've already handled the fast-path in-line.
3925 */
3926int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3927{
3928 p4d_t *new = p4d_alloc_one(mm, address);
3929 if (!new)
3930 return -ENOMEM;
3931
3932 smp_wmb(); /* See comment in __pte_alloc */
3933
3934 spin_lock(&mm->page_table_lock);
3935 if (pgd_present(*pgd)) /* Another has populated it */
3936 p4d_free(mm, new);
3937 else
3938 pgd_populate(mm, pgd, new);
3939 spin_unlock(&mm->page_table_lock);
3940 return 0;
3941}
3942#endif /* __PAGETABLE_P4D_FOLDED */
3943
1da177e4
LT
3944#ifndef __PAGETABLE_PUD_FOLDED
3945/*
3946 * Allocate page upper directory.
872fec16 3947 * We've already handled the fast-path in-line.
1da177e4 3948 */
c2febafc 3949int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 3950{
c74df32c
HD
3951 pud_t *new = pud_alloc_one(mm, address);
3952 if (!new)
1bb3630e 3953 return -ENOMEM;
1da177e4 3954
362a61ad
NP
3955 smp_wmb(); /* See comment in __pte_alloc */
3956
872fec16 3957 spin_lock(&mm->page_table_lock);
c2febafc 3958#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
3959 if (!p4d_present(*p4d)) {
3960 mm_inc_nr_puds(mm);
c2febafc 3961 p4d_populate(mm, p4d, new);
b4e98d9a 3962 } else /* Another has populated it */
5e541973 3963 pud_free(mm, new);
b4e98d9a
KS
3964#else
3965 if (!pgd_present(*p4d)) {
3966 mm_inc_nr_puds(mm);
c2febafc 3967 pgd_populate(mm, p4d, new);
b4e98d9a
KS
3968 } else /* Another has populated it */
3969 pud_free(mm, new);
c2febafc 3970#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 3971 spin_unlock(&mm->page_table_lock);
1bb3630e 3972 return 0;
1da177e4
LT
3973}
3974#endif /* __PAGETABLE_PUD_FOLDED */
3975
3976#ifndef __PAGETABLE_PMD_FOLDED
3977/*
3978 * Allocate page middle directory.
872fec16 3979 * We've already handled the fast-path in-line.
1da177e4 3980 */
1bb3630e 3981int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3982{
a00cc7d9 3983 spinlock_t *ptl;
c74df32c
HD
3984 pmd_t *new = pmd_alloc_one(mm, address);
3985 if (!new)
1bb3630e 3986 return -ENOMEM;
1da177e4 3987
362a61ad
NP
3988 smp_wmb(); /* See comment in __pte_alloc */
3989
a00cc7d9 3990 ptl = pud_lock(mm, pud);
1da177e4 3991#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3992 if (!pud_present(*pud)) {
3993 mm_inc_nr_pmds(mm);
1bb3630e 3994 pud_populate(mm, pud, new);
dc6c9a35 3995 } else /* Another has populated it */
5e541973 3996 pmd_free(mm, new);
dc6c9a35
KS
3997#else
3998 if (!pgd_present(*pud)) {
3999 mm_inc_nr_pmds(mm);
1bb3630e 4000 pgd_populate(mm, pud, new);
dc6c9a35
KS
4001 } else /* Another has populated it */
4002 pmd_free(mm, new);
1da177e4 4003#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4004 spin_unlock(ptl);
1bb3630e 4005 return 0;
e0f39591 4006}
1da177e4
LT
4007#endif /* __PAGETABLE_PMD_FOLDED */
4008
09796395 4009static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885
JG
4010 unsigned long *start, unsigned long *end,
4011 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4012{
4013 pgd_t *pgd;
c2febafc 4014 p4d_t *p4d;
f8ad0f49
JW
4015 pud_t *pud;
4016 pmd_t *pmd;
4017 pte_t *ptep;
4018
4019 pgd = pgd_offset(mm, address);
4020 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4021 goto out;
4022
c2febafc
KS
4023 p4d = p4d_offset(pgd, address);
4024 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4025 goto out;
4026
4027 pud = pud_offset(p4d, address);
f8ad0f49
JW
4028 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4029 goto out;
4030
4031 pmd = pmd_offset(pud, address);
f66055ab 4032 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4033
09796395
RZ
4034 if (pmd_huge(*pmd)) {
4035 if (!pmdpp)
4036 goto out;
4037
a4d1a885
JG
4038 if (start && end) {
4039 *start = address & PMD_MASK;
4040 *end = *start + PMD_SIZE;
4041 mmu_notifier_invalidate_range_start(mm, *start, *end);
4042 }
09796395
RZ
4043 *ptlp = pmd_lock(mm, pmd);
4044 if (pmd_huge(*pmd)) {
4045 *pmdpp = pmd;
4046 return 0;
4047 }
4048 spin_unlock(*ptlp);
a4d1a885
JG
4049 if (start && end)
4050 mmu_notifier_invalidate_range_end(mm, *start, *end);
09796395
RZ
4051 }
4052
4053 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4054 goto out;
4055
a4d1a885
JG
4056 if (start && end) {
4057 *start = address & PAGE_MASK;
4058 *end = *start + PAGE_SIZE;
4059 mmu_notifier_invalidate_range_start(mm, *start, *end);
4060 }
f8ad0f49 4061 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4062 if (!pte_present(*ptep))
4063 goto unlock;
4064 *ptepp = ptep;
4065 return 0;
4066unlock:
4067 pte_unmap_unlock(ptep, *ptlp);
a4d1a885
JG
4068 if (start && end)
4069 mmu_notifier_invalidate_range_end(mm, *start, *end);
f8ad0f49
JW
4070out:
4071 return -EINVAL;
4072}
4073
f729c8c9
RZ
4074static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4075 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4076{
4077 int res;
4078
4079 /* (void) is needed to make gcc happy */
4080 (void) __cond_lock(*ptlp,
a4d1a885
JG
4081 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4082 ptepp, NULL, ptlp)));
09796395
RZ
4083 return res;
4084}
4085
4086int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 4087 unsigned long *start, unsigned long *end,
09796395
RZ
4088 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4089{
4090 int res;
4091
4092 /* (void) is needed to make gcc happy */
4093 (void) __cond_lock(*ptlp,
a4d1a885
JG
4094 !(res = __follow_pte_pmd(mm, address, start, end,
4095 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4096 return res;
4097}
09796395 4098EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4099
3b6748e2
JW
4100/**
4101 * follow_pfn - look up PFN at a user virtual address
4102 * @vma: memory mapping
4103 * @address: user virtual address
4104 * @pfn: location to store found PFN
4105 *
4106 * Only IO mappings and raw PFN mappings are allowed.
4107 *
4108 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4109 */
4110int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4111 unsigned long *pfn)
4112{
4113 int ret = -EINVAL;
4114 spinlock_t *ptl;
4115 pte_t *ptep;
4116
4117 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4118 return ret;
4119
4120 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4121 if (ret)
4122 return ret;
4123 *pfn = pte_pfn(*ptep);
4124 pte_unmap_unlock(ptep, ptl);
4125 return 0;
4126}
4127EXPORT_SYMBOL(follow_pfn);
4128
28b2ee20 4129#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4130int follow_phys(struct vm_area_struct *vma,
4131 unsigned long address, unsigned int flags,
4132 unsigned long *prot, resource_size_t *phys)
28b2ee20 4133{
03668a4d 4134 int ret = -EINVAL;
28b2ee20
RR
4135 pte_t *ptep, pte;
4136 spinlock_t *ptl;
28b2ee20 4137
d87fe660 4138 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4139 goto out;
28b2ee20 4140
03668a4d 4141 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4142 goto out;
28b2ee20 4143 pte = *ptep;
03668a4d 4144
f6f37321 4145 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4146 goto unlock;
28b2ee20
RR
4147
4148 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4149 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4150
03668a4d 4151 ret = 0;
28b2ee20
RR
4152unlock:
4153 pte_unmap_unlock(ptep, ptl);
4154out:
d87fe660 4155 return ret;
28b2ee20
RR
4156}
4157
4158int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4159 void *buf, int len, int write)
4160{
4161 resource_size_t phys_addr;
4162 unsigned long prot = 0;
2bc7273b 4163 void __iomem *maddr;
28b2ee20
RR
4164 int offset = addr & (PAGE_SIZE-1);
4165
d87fe660 4166 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4167 return -EINVAL;
4168
9cb12d7b 4169 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4170 if (!maddr)
4171 return -ENOMEM;
4172
28b2ee20
RR
4173 if (write)
4174 memcpy_toio(maddr + offset, buf, len);
4175 else
4176 memcpy_fromio(buf, maddr + offset, len);
4177 iounmap(maddr);
4178
4179 return len;
4180}
5a73633e 4181EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4182#endif
4183
0ec76a11 4184/*
206cb636
SW
4185 * Access another process' address space as given in mm. If non-NULL, use the
4186 * given task for page fault accounting.
0ec76a11 4187 */
84d77d3f 4188int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4189 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4190{
0ec76a11 4191 struct vm_area_struct *vma;
0ec76a11 4192 void *old_buf = buf;
442486ec 4193 int write = gup_flags & FOLL_WRITE;
0ec76a11 4194
0ec76a11 4195 down_read(&mm->mmap_sem);
183ff22b 4196 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4197 while (len) {
4198 int bytes, ret, offset;
4199 void *maddr;
28b2ee20 4200 struct page *page = NULL;
0ec76a11 4201
1e987790 4202 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4203 gup_flags, &page, &vma, NULL);
28b2ee20 4204 if (ret <= 0) {
dbffcd03
RR
4205#ifndef CONFIG_HAVE_IOREMAP_PROT
4206 break;
4207#else
28b2ee20
RR
4208 /*
4209 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4210 * we can access using slightly different code.
4211 */
28b2ee20 4212 vma = find_vma(mm, addr);
fe936dfc 4213 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4214 break;
4215 if (vma->vm_ops && vma->vm_ops->access)
4216 ret = vma->vm_ops->access(vma, addr, buf,
4217 len, write);
4218 if (ret <= 0)
28b2ee20
RR
4219 break;
4220 bytes = ret;
dbffcd03 4221#endif
0ec76a11 4222 } else {
28b2ee20
RR
4223 bytes = len;
4224 offset = addr & (PAGE_SIZE-1);
4225 if (bytes > PAGE_SIZE-offset)
4226 bytes = PAGE_SIZE-offset;
4227
4228 maddr = kmap(page);
4229 if (write) {
4230 copy_to_user_page(vma, page, addr,
4231 maddr + offset, buf, bytes);
4232 set_page_dirty_lock(page);
4233 } else {
4234 copy_from_user_page(vma, page, addr,
4235 buf, maddr + offset, bytes);
4236 }
4237 kunmap(page);
09cbfeaf 4238 put_page(page);
0ec76a11 4239 }
0ec76a11
DH
4240 len -= bytes;
4241 buf += bytes;
4242 addr += bytes;
4243 }
4244 up_read(&mm->mmap_sem);
0ec76a11
DH
4245
4246 return buf - old_buf;
4247}
03252919 4248
5ddd36b9 4249/**
ae91dbfc 4250 * access_remote_vm - access another process' address space
5ddd36b9
SW
4251 * @mm: the mm_struct of the target address space
4252 * @addr: start address to access
4253 * @buf: source or destination buffer
4254 * @len: number of bytes to transfer
6347e8d5 4255 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4256 *
4257 * The caller must hold a reference on @mm.
4258 */
4259int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4260 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4261{
6347e8d5 4262 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4263}
4264
206cb636
SW
4265/*
4266 * Access another process' address space.
4267 * Source/target buffer must be kernel space,
4268 * Do not walk the page table directly, use get_user_pages
4269 */
4270int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4271 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4272{
4273 struct mm_struct *mm;
4274 int ret;
4275
4276 mm = get_task_mm(tsk);
4277 if (!mm)
4278 return 0;
4279
f307ab6d 4280 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4281
206cb636
SW
4282 mmput(mm);
4283
4284 return ret;
4285}
fcd35857 4286EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4287
03252919
AK
4288/*
4289 * Print the name of a VMA.
4290 */
4291void print_vma_addr(char *prefix, unsigned long ip)
4292{
4293 struct mm_struct *mm = current->mm;
4294 struct vm_area_struct *vma;
4295
e8bff74a 4296 /*
0a7f682d 4297 * we might be running from an atomic context so we cannot sleep
e8bff74a 4298 */
0a7f682d 4299 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4300 return;
4301
03252919
AK
4302 vma = find_vma(mm, ip);
4303 if (vma && vma->vm_file) {
4304 struct file *f = vma->vm_file;
0a7f682d 4305 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4306 if (buf) {
2fbc57c5 4307 char *p;
03252919 4308
9bf39ab2 4309 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4310 if (IS_ERR(p))
4311 p = "?";
2fbc57c5 4312 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4313 vma->vm_start,
4314 vma->vm_end - vma->vm_start);
4315 free_page((unsigned long)buf);
4316 }
4317 }
51a07e50 4318 up_read(&mm->mmap_sem);
03252919 4319}
3ee1afa3 4320
662bbcb2 4321#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4322void __might_fault(const char *file, int line)
3ee1afa3 4323{
95156f00
PZ
4324 /*
4325 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4326 * holding the mmap_sem, this is safe because kernel memory doesn't
4327 * get paged out, therefore we'll never actually fault, and the
4328 * below annotations will generate false positives.
4329 */
db68ce10 4330 if (uaccess_kernel())
95156f00 4331 return;
9ec23531 4332 if (pagefault_disabled())
662bbcb2 4333 return;
9ec23531
DH
4334 __might_sleep(file, line, 0);
4335#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4336 if (current->mm)
3ee1afa3 4337 might_lock_read(&current->mm->mmap_sem);
9ec23531 4338#endif
3ee1afa3 4339}
9ec23531 4340EXPORT_SYMBOL(__might_fault);
3ee1afa3 4341#endif
47ad8475
AA
4342
4343#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4344/*
4345 * Process all subpages of the specified huge page with the specified
4346 * operation. The target subpage will be processed last to keep its
4347 * cache lines hot.
4348 */
4349static inline void process_huge_page(
4350 unsigned long addr_hint, unsigned int pages_per_huge_page,
4351 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4352 void *arg)
47ad8475 4353{
c79b57e4
HY
4354 int i, n, base, l;
4355 unsigned long addr = addr_hint &
4356 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4357
c6ddfb6c 4358 /* Process target subpage last to keep its cache lines hot */
47ad8475 4359 might_sleep();
c79b57e4
HY
4360 n = (addr_hint - addr) / PAGE_SIZE;
4361 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4362 /* If target subpage in first half of huge page */
c79b57e4
HY
4363 base = 0;
4364 l = n;
c6ddfb6c 4365 /* Process subpages at the end of huge page */
c79b57e4
HY
4366 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4367 cond_resched();
c6ddfb6c 4368 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4369 }
4370 } else {
c6ddfb6c 4371 /* If target subpage in second half of huge page */
c79b57e4
HY
4372 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4373 l = pages_per_huge_page - n;
c6ddfb6c 4374 /* Process subpages at the begin of huge page */
c79b57e4
HY
4375 for (i = 0; i < base; i++) {
4376 cond_resched();
c6ddfb6c 4377 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4378 }
4379 }
4380 /*
c6ddfb6c
HY
4381 * Process remaining subpages in left-right-left-right pattern
4382 * towards the target subpage
c79b57e4
HY
4383 */
4384 for (i = 0; i < l; i++) {
4385 int left_idx = base + i;
4386 int right_idx = base + 2 * l - 1 - i;
4387
4388 cond_resched();
c6ddfb6c 4389 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4390 cond_resched();
c6ddfb6c 4391 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4392 }
4393}
4394
c6ddfb6c
HY
4395static void clear_gigantic_page(struct page *page,
4396 unsigned long addr,
4397 unsigned int pages_per_huge_page)
4398{
4399 int i;
4400 struct page *p = page;
4401
4402 might_sleep();
4403 for (i = 0; i < pages_per_huge_page;
4404 i++, p = mem_map_next(p, page, i)) {
4405 cond_resched();
4406 clear_user_highpage(p, addr + i * PAGE_SIZE);
4407 }
4408}
4409
4410static void clear_subpage(unsigned long addr, int idx, void *arg)
4411{
4412 struct page *page = arg;
4413
4414 clear_user_highpage(page + idx, addr);
4415}
4416
4417void clear_huge_page(struct page *page,
4418 unsigned long addr_hint, unsigned int pages_per_huge_page)
4419{
4420 unsigned long addr = addr_hint &
4421 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4422
4423 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4424 clear_gigantic_page(page, addr, pages_per_huge_page);
4425 return;
4426 }
4427
4428 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4429}
4430
47ad8475
AA
4431static void copy_user_gigantic_page(struct page *dst, struct page *src,
4432 unsigned long addr,
4433 struct vm_area_struct *vma,
4434 unsigned int pages_per_huge_page)
4435{
4436 int i;
4437 struct page *dst_base = dst;
4438 struct page *src_base = src;
4439
4440 for (i = 0; i < pages_per_huge_page; ) {
4441 cond_resched();
4442 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4443
4444 i++;
4445 dst = mem_map_next(dst, dst_base, i);
4446 src = mem_map_next(src, src_base, i);
4447 }
4448}
4449
c9f4cd71
HY
4450struct copy_subpage_arg {
4451 struct page *dst;
4452 struct page *src;
4453 struct vm_area_struct *vma;
4454};
4455
4456static void copy_subpage(unsigned long addr, int idx, void *arg)
4457{
4458 struct copy_subpage_arg *copy_arg = arg;
4459
4460 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4461 addr, copy_arg->vma);
4462}
4463
47ad8475 4464void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4465 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4466 unsigned int pages_per_huge_page)
4467{
c9f4cd71
HY
4468 unsigned long addr = addr_hint &
4469 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4470 struct copy_subpage_arg arg = {
4471 .dst = dst,
4472 .src = src,
4473 .vma = vma,
4474 };
47ad8475
AA
4475
4476 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4477 copy_user_gigantic_page(dst, src, addr, vma,
4478 pages_per_huge_page);
4479 return;
4480 }
4481
c9f4cd71 4482 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4483}
fa4d75c1
MK
4484
4485long copy_huge_page_from_user(struct page *dst_page,
4486 const void __user *usr_src,
810a56b9
MK
4487 unsigned int pages_per_huge_page,
4488 bool allow_pagefault)
fa4d75c1
MK
4489{
4490 void *src = (void *)usr_src;
4491 void *page_kaddr;
4492 unsigned long i, rc = 0;
4493 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4494
4495 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4496 if (allow_pagefault)
4497 page_kaddr = kmap(dst_page + i);
4498 else
4499 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4500 rc = copy_from_user(page_kaddr,
4501 (const void __user *)(src + i * PAGE_SIZE),
4502 PAGE_SIZE);
810a56b9
MK
4503 if (allow_pagefault)
4504 kunmap(dst_page + i);
4505 else
4506 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4507
4508 ret_val -= (PAGE_SIZE - rc);
4509 if (rc)
4510 break;
4511
4512 cond_resched();
4513 }
4514 return ret_val;
4515}
47ad8475 4516#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4517
40b64acd 4518#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4519
4520static struct kmem_cache *page_ptl_cachep;
4521
4522void __init ptlock_cache_init(void)
4523{
4524 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4525 SLAB_PANIC, NULL);
4526}
4527
539edb58 4528bool ptlock_alloc(struct page *page)
49076ec2
KS
4529{
4530 spinlock_t *ptl;
4531
b35f1819 4532 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4533 if (!ptl)
4534 return false;
539edb58 4535 page->ptl = ptl;
49076ec2
KS
4536 return true;
4537}
4538
539edb58 4539void ptlock_free(struct page *page)
49076ec2 4540{
b35f1819 4541 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4542}
4543#endif