]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memory.c
thp: bail out gup_fast on splitting pmd
[mirror_ubuntu-artful-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4
LT
49#include <linux/rmap.h>
50#include <linux/module.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
1da177e4 60
6952b61d 61#include <asm/io.h>
1da177e4
LT
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
42b77728
JB
68#include "internal.h"
69
d41dee36 70#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
1da177e4
LT
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
1da177e4 91
32a93233
IM
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100 1;
101#else
102 2;
103#endif
a62eaf15
AK
104
105static int __init disable_randmaps(char *s)
106{
107 randomize_va_space = 0;
9b41046c 108 return 1;
a62eaf15
AK
109}
110__setup("norandmaps", disable_randmaps);
111
62eede62 112unsigned long zero_pfn __read_mostly;
03f6462a 113unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122}
123core_initcall(init_zero_pfn);
a62eaf15 124
d559db08 125
34e55232
KH
126#if defined(SPLIT_RSS_COUNTING)
127
a3a2e76c 128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
34e55232
KH
129{
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
136 }
137 }
138 task->rss_stat.events = 0;
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
161}
162
163unsigned long get_mm_counter(struct mm_struct *mm, int member)
164{
165 long val = 0;
166
167 /*
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
170 */
171 val = atomic_long_read(&mm->rss_stat.count[member]);
172 /*
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
175 */
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
179}
180
181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182{
183 __sync_task_rss_stat(task, mm);
184}
185#else
186
187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190static void check_sync_rss_stat(struct task_struct *task)
191{
192}
193
34e55232
KH
194#endif
195
1da177e4
LT
196/*
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none. Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
200 */
201
202void pgd_clear_bad(pgd_t *pgd)
203{
204 pgd_ERROR(*pgd);
205 pgd_clear(pgd);
206}
207
208void pud_clear_bad(pud_t *pud)
209{
210 pud_ERROR(*pud);
211 pud_clear(pud);
212}
213
214void pmd_clear_bad(pmd_t *pmd)
215{
216 pmd_ERROR(*pmd);
217 pmd_clear(pmd);
218}
219
220/*
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
223 */
9e1b32ca
BH
224static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 unsigned long addr)
1da177e4 226{
2f569afd 227 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 228 pmd_clear(pmd);
9e1b32ca 229 pte_free_tlb(tlb, token, addr);
e0da382c 230 tlb->mm->nr_ptes--;
1da177e4
LT
231}
232
e0da382c
HD
233static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
1da177e4
LT
236{
237 pmd_t *pmd;
238 unsigned long next;
e0da382c 239 unsigned long start;
1da177e4 240
e0da382c 241 start = addr;
1da177e4 242 pmd = pmd_offset(pud, addr);
1da177e4
LT
243 do {
244 next = pmd_addr_end(addr, end);
245 if (pmd_none_or_clear_bad(pmd))
246 continue;
9e1b32ca 247 free_pte_range(tlb, pmd, addr);
1da177e4
LT
248 } while (pmd++, addr = next, addr != end);
249
e0da382c
HD
250 start &= PUD_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= PUD_MASK;
255 if (!ceiling)
256 return;
1da177e4 257 }
e0da382c
HD
258 if (end - 1 > ceiling - 1)
259 return;
260
261 pmd = pmd_offset(pud, start);
262 pud_clear(pud);
9e1b32ca 263 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
264}
265
e0da382c
HD
266static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
1da177e4
LT
269{
270 pud_t *pud;
271 unsigned long next;
e0da382c 272 unsigned long start;
1da177e4 273
e0da382c 274 start = addr;
1da177e4 275 pud = pud_offset(pgd, addr);
1da177e4
LT
276 do {
277 next = pud_addr_end(addr, end);
278 if (pud_none_or_clear_bad(pud))
279 continue;
e0da382c 280 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
281 } while (pud++, addr = next, addr != end);
282
e0da382c
HD
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
1da177e4 290 }
e0da382c
HD
291 if (end - 1 > ceiling - 1)
292 return;
293
294 pud = pud_offset(pgd, start);
295 pgd_clear(pgd);
9e1b32ca 296 pud_free_tlb(tlb, pud, start);
1da177e4
LT
297}
298
299/*
e0da382c
HD
300 * This function frees user-level page tables of a process.
301 *
1da177e4
LT
302 * Must be called with pagetable lock held.
303 */
42b77728 304void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
1da177e4
LT
307{
308 pgd_t *pgd;
309 unsigned long next;
e0da382c
HD
310
311 /*
312 * The next few lines have given us lots of grief...
313 *
314 * Why are we testing PMD* at this top level? Because often
315 * there will be no work to do at all, and we'd prefer not to
316 * go all the way down to the bottom just to discover that.
317 *
318 * Why all these "- 1"s? Because 0 represents both the bottom
319 * of the address space and the top of it (using -1 for the
320 * top wouldn't help much: the masks would do the wrong thing).
321 * The rule is that addr 0 and floor 0 refer to the bottom of
322 * the address space, but end 0 and ceiling 0 refer to the top
323 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324 * that end 0 case should be mythical).
325 *
326 * Wherever addr is brought up or ceiling brought down, we must
327 * be careful to reject "the opposite 0" before it confuses the
328 * subsequent tests. But what about where end is brought down
329 * by PMD_SIZE below? no, end can't go down to 0 there.
330 *
331 * Whereas we round start (addr) and ceiling down, by different
332 * masks at different levels, in order to test whether a table
333 * now has no other vmas using it, so can be freed, we don't
334 * bother to round floor or end up - the tests don't need that.
335 */
1da177e4 336
e0da382c
HD
337 addr &= PMD_MASK;
338 if (addr < floor) {
339 addr += PMD_SIZE;
340 if (!addr)
341 return;
342 }
343 if (ceiling) {
344 ceiling &= PMD_MASK;
345 if (!ceiling)
346 return;
347 }
348 if (end - 1 > ceiling - 1)
349 end -= PMD_SIZE;
350 if (addr > end - 1)
351 return;
352
42b77728 353 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
354 do {
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
357 continue;
42b77728 358 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 359 } while (pgd++, addr = next, addr != end);
e0da382c
HD
360}
361
42b77728 362void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 363 unsigned long floor, unsigned long ceiling)
e0da382c
HD
364{
365 while (vma) {
366 struct vm_area_struct *next = vma->vm_next;
367 unsigned long addr = vma->vm_start;
368
8f4f8c16 369 /*
25d9e2d1 370 * Hide vma from rmap and truncate_pagecache before freeing
371 * pgtables
8f4f8c16 372 */
5beb4930 373 unlink_anon_vmas(vma);
8f4f8c16
HD
374 unlink_file_vma(vma);
375
9da61aef 376 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 377 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 378 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
379 } else {
380 /*
381 * Optimization: gather nearby vmas into one call down
382 */
383 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 384 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
385 vma = next;
386 next = vma->vm_next;
5beb4930 387 unlink_anon_vmas(vma);
8f4f8c16 388 unlink_file_vma(vma);
3bf5ee95
HD
389 }
390 free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next? next->vm_start: ceiling);
392 }
e0da382c
HD
393 vma = next;
394 }
1da177e4
LT
395}
396
1bb3630e 397int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 398{
2f569afd 399 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
400 if (!new)
401 return -ENOMEM;
402
362a61ad
NP
403 /*
404 * Ensure all pte setup (eg. pte page lock and page clearing) are
405 * visible before the pte is made visible to other CPUs by being
406 * put into page tables.
407 *
408 * The other side of the story is the pointer chasing in the page
409 * table walking code (when walking the page table without locking;
410 * ie. most of the time). Fortunately, these data accesses consist
411 * of a chain of data-dependent loads, meaning most CPUs (alpha
412 * being the notable exception) will already guarantee loads are
413 * seen in-order. See the alpha page table accessors for the
414 * smp_read_barrier_depends() barriers in page table walking code.
415 */
416 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
417
c74df32c 418 spin_lock(&mm->page_table_lock);
2f569afd 419 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 420 mm->nr_ptes++;
1da177e4 421 pmd_populate(mm, pmd, new);
2f569afd 422 new = NULL;
1da177e4 423 }
c74df32c 424 spin_unlock(&mm->page_table_lock);
2f569afd
MS
425 if (new)
426 pte_free(mm, new);
1bb3630e 427 return 0;
1da177e4
LT
428}
429
1bb3630e 430int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 431{
1bb3630e
HD
432 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
433 if (!new)
434 return -ENOMEM;
435
362a61ad
NP
436 smp_wmb(); /* See comment in __pte_alloc */
437
1bb3630e 438 spin_lock(&init_mm.page_table_lock);
2f569afd 439 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 440 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
441 new = NULL;
442 }
1bb3630e 443 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
444 if (new)
445 pte_free_kernel(&init_mm, new);
1bb3630e 446 return 0;
1da177e4
LT
447}
448
d559db08
KH
449static inline void init_rss_vec(int *rss)
450{
451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452}
453
454static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 455{
d559db08
KH
456 int i;
457
34e55232
KH
458 if (current->mm == mm)
459 sync_mm_rss(current, mm);
d559db08
KH
460 for (i = 0; i < NR_MM_COUNTERS; i++)
461 if (rss[i])
462 add_mm_counter(mm, i, rss[i]);
ae859762
HD
463}
464
b5810039 465/*
6aab341e
LT
466 * This function is called to print an error when a bad pte
467 * is found. For example, we might have a PFN-mapped pte in
468 * a region that doesn't allow it.
b5810039
NP
469 *
470 * The calling function must still handle the error.
471 */
3dc14741
HD
472static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 pte_t pte, struct page *page)
b5810039 474{
3dc14741
HD
475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476 pud_t *pud = pud_offset(pgd, addr);
477 pmd_t *pmd = pmd_offset(pud, addr);
478 struct address_space *mapping;
479 pgoff_t index;
d936cf9b
HD
480 static unsigned long resume;
481 static unsigned long nr_shown;
482 static unsigned long nr_unshown;
483
484 /*
485 * Allow a burst of 60 reports, then keep quiet for that minute;
486 * or allow a steady drip of one report per second.
487 */
488 if (nr_shown == 60) {
489 if (time_before(jiffies, resume)) {
490 nr_unshown++;
491 return;
492 }
493 if (nr_unshown) {
1e9e6365
HD
494 printk(KERN_ALERT
495 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
496 nr_unshown);
497 nr_unshown = 0;
498 }
499 nr_shown = 0;
500 }
501 if (nr_shown++ == 0)
502 resume = jiffies + 60 * HZ;
3dc14741
HD
503
504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 index = linear_page_index(vma, addr);
506
1e9e6365
HD
507 printk(KERN_ALERT
508 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
509 current->comm,
510 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
511 if (page)
512 dump_page(page);
1e9e6365 513 printk(KERN_ALERT
3dc14741
HD
514 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
515 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
516 /*
517 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
518 */
519 if (vma->vm_ops)
1e9e6365 520 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
521 (unsigned long)vma->vm_ops->fault);
522 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 523 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 524 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 525 dump_stack();
3dc14741 526 add_taint(TAINT_BAD_PAGE);
b5810039
NP
527}
528
67121172
LT
529static inline int is_cow_mapping(unsigned int flags)
530{
531 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
532}
533
62eede62
HD
534#ifndef is_zero_pfn
535static inline int is_zero_pfn(unsigned long pfn)
536{
537 return pfn == zero_pfn;
538}
539#endif
540
541#ifndef my_zero_pfn
542static inline unsigned long my_zero_pfn(unsigned long addr)
543{
544 return zero_pfn;
545}
546#endif
547
ee498ed7 548/*
7e675137 549 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 550 *
7e675137
NP
551 * "Special" mappings do not wish to be associated with a "struct page" (either
552 * it doesn't exist, or it exists but they don't want to touch it). In this
553 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 554 *
7e675137
NP
555 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
556 * pte bit, in which case this function is trivial. Secondly, an architecture
557 * may not have a spare pte bit, which requires a more complicated scheme,
558 * described below.
559 *
560 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
561 * special mapping (even if there are underlying and valid "struct pages").
562 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 563 *
b379d790
JH
564 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
565 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
566 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
567 * mapping will always honor the rule
6aab341e
LT
568 *
569 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
570 *
7e675137
NP
571 * And for normal mappings this is false.
572 *
573 * This restricts such mappings to be a linear translation from virtual address
574 * to pfn. To get around this restriction, we allow arbitrary mappings so long
575 * as the vma is not a COW mapping; in that case, we know that all ptes are
576 * special (because none can have been COWed).
b379d790 577 *
b379d790 578 *
7e675137 579 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
580 *
581 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
582 * page" backing, however the difference is that _all_ pages with a struct
583 * page (that is, those where pfn_valid is true) are refcounted and considered
584 * normal pages by the VM. The disadvantage is that pages are refcounted
585 * (which can be slower and simply not an option for some PFNMAP users). The
586 * advantage is that we don't have to follow the strict linearity rule of
587 * PFNMAP mappings in order to support COWable mappings.
588 *
ee498ed7 589 */
7e675137
NP
590#ifdef __HAVE_ARCH_PTE_SPECIAL
591# define HAVE_PTE_SPECIAL 1
592#else
593# define HAVE_PTE_SPECIAL 0
594#endif
595struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 pte_t pte)
ee498ed7 597{
22b31eec 598 unsigned long pfn = pte_pfn(pte);
7e675137
NP
599
600 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
601 if (likely(!pte_special(pte)))
602 goto check_pfn;
a13ea5b7
HD
603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604 return NULL;
62eede62 605 if (!is_zero_pfn(pfn))
22b31eec 606 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
607 return NULL;
608 }
609
610 /* !HAVE_PTE_SPECIAL case follows: */
611
b379d790
JH
612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613 if (vma->vm_flags & VM_MIXEDMAP) {
614 if (!pfn_valid(pfn))
615 return NULL;
616 goto out;
617 } else {
7e675137
NP
618 unsigned long off;
619 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
620 if (pfn == vma->vm_pgoff + off)
621 return NULL;
622 if (!is_cow_mapping(vma->vm_flags))
623 return NULL;
624 }
6aab341e
LT
625 }
626
62eede62
HD
627 if (is_zero_pfn(pfn))
628 return NULL;
22b31eec
HD
629check_pfn:
630 if (unlikely(pfn > highest_memmap_pfn)) {
631 print_bad_pte(vma, addr, pte, NULL);
632 return NULL;
633 }
6aab341e
LT
634
635 /*
7e675137 636 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 637 * eg. VDSO mappings can cause them to exist.
6aab341e 638 */
b379d790 639out:
6aab341e 640 return pfn_to_page(pfn);
ee498ed7
HD
641}
642
1da177e4
LT
643/*
644 * copy one vm_area from one task to the other. Assumes the page tables
645 * already present in the new task to be cleared in the whole range
646 * covered by this vma.
1da177e4
LT
647 */
648
570a335b 649static inline unsigned long
1da177e4 650copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 651 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 652 unsigned long addr, int *rss)
1da177e4 653{
b5810039 654 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
655 pte_t pte = *src_pte;
656 struct page *page;
1da177e4
LT
657
658 /* pte contains position in swap or file, so copy. */
659 if (unlikely(!pte_present(pte))) {
660 if (!pte_file(pte)) {
0697212a
CL
661 swp_entry_t entry = pte_to_swp_entry(pte);
662
570a335b
HD
663 if (swap_duplicate(entry) < 0)
664 return entry.val;
665
1da177e4
LT
666 /* make sure dst_mm is on swapoff's mmlist. */
667 if (unlikely(list_empty(&dst_mm->mmlist))) {
668 spin_lock(&mmlist_lock);
f412ac08
HD
669 if (list_empty(&dst_mm->mmlist))
670 list_add(&dst_mm->mmlist,
671 &src_mm->mmlist);
1da177e4
LT
672 spin_unlock(&mmlist_lock);
673 }
b084d435
KH
674 if (likely(!non_swap_entry(entry)))
675 rss[MM_SWAPENTS]++;
676 else if (is_write_migration_entry(entry) &&
0697212a
CL
677 is_cow_mapping(vm_flags)) {
678 /*
679 * COW mappings require pages in both parent
680 * and child to be set to read.
681 */
682 make_migration_entry_read(&entry);
683 pte = swp_entry_to_pte(entry);
684 set_pte_at(src_mm, addr, src_pte, pte);
685 }
1da177e4 686 }
ae859762 687 goto out_set_pte;
1da177e4
LT
688 }
689
1da177e4
LT
690 /*
691 * If it's a COW mapping, write protect it both
692 * in the parent and the child
693 */
67121172 694 if (is_cow_mapping(vm_flags)) {
1da177e4 695 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 696 pte = pte_wrprotect(pte);
1da177e4
LT
697 }
698
699 /*
700 * If it's a shared mapping, mark it clean in
701 * the child
702 */
703 if (vm_flags & VM_SHARED)
704 pte = pte_mkclean(pte);
705 pte = pte_mkold(pte);
6aab341e
LT
706
707 page = vm_normal_page(vma, addr, pte);
708 if (page) {
709 get_page(page);
21333b2b 710 page_dup_rmap(page);
d559db08
KH
711 if (PageAnon(page))
712 rss[MM_ANONPAGES]++;
713 else
714 rss[MM_FILEPAGES]++;
6aab341e 715 }
ae859762
HD
716
717out_set_pte:
718 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 719 return 0;
1da177e4
LT
720}
721
722static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
723 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
724 unsigned long addr, unsigned long end)
725{
c36987e2 726 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 727 pte_t *src_pte, *dst_pte;
c74df32c 728 spinlock_t *src_ptl, *dst_ptl;
e040f218 729 int progress = 0;
d559db08 730 int rss[NR_MM_COUNTERS];
570a335b 731 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
732
733again:
d559db08
KH
734 init_rss_vec(rss);
735
c74df32c 736 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
737 if (!dst_pte)
738 return -ENOMEM;
ece0e2b6 739 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 740 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 741 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
742 orig_src_pte = src_pte;
743 orig_dst_pte = dst_pte;
6606c3e0 744 arch_enter_lazy_mmu_mode();
1da177e4 745
1da177e4
LT
746 do {
747 /*
748 * We are holding two locks at this point - either of them
749 * could generate latencies in another task on another CPU.
750 */
e040f218
HD
751 if (progress >= 32) {
752 progress = 0;
753 if (need_resched() ||
95c354fe 754 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
755 break;
756 }
1da177e4
LT
757 if (pte_none(*src_pte)) {
758 progress++;
759 continue;
760 }
570a335b
HD
761 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
762 vma, addr, rss);
763 if (entry.val)
764 break;
1da177e4
LT
765 progress += 8;
766 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 767
6606c3e0 768 arch_leave_lazy_mmu_mode();
c74df32c 769 spin_unlock(src_ptl);
ece0e2b6 770 pte_unmap(orig_src_pte);
d559db08 771 add_mm_rss_vec(dst_mm, rss);
c36987e2 772 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 773 cond_resched();
570a335b
HD
774
775 if (entry.val) {
776 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
777 return -ENOMEM;
778 progress = 0;
779 }
1da177e4
LT
780 if (addr != end)
781 goto again;
782 return 0;
783}
784
785static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
787 unsigned long addr, unsigned long end)
788{
789 pmd_t *src_pmd, *dst_pmd;
790 unsigned long next;
791
792 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
793 if (!dst_pmd)
794 return -ENOMEM;
795 src_pmd = pmd_offset(src_pud, addr);
796 do {
797 next = pmd_addr_end(addr, end);
798 if (pmd_none_or_clear_bad(src_pmd))
799 continue;
800 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
801 vma, addr, next))
802 return -ENOMEM;
803 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
804 return 0;
805}
806
807static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
808 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
809 unsigned long addr, unsigned long end)
810{
811 pud_t *src_pud, *dst_pud;
812 unsigned long next;
813
814 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
815 if (!dst_pud)
816 return -ENOMEM;
817 src_pud = pud_offset(src_pgd, addr);
818 do {
819 next = pud_addr_end(addr, end);
820 if (pud_none_or_clear_bad(src_pud))
821 continue;
822 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
823 vma, addr, next))
824 return -ENOMEM;
825 } while (dst_pud++, src_pud++, addr = next, addr != end);
826 return 0;
827}
828
829int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
830 struct vm_area_struct *vma)
831{
832 pgd_t *src_pgd, *dst_pgd;
833 unsigned long next;
834 unsigned long addr = vma->vm_start;
835 unsigned long end = vma->vm_end;
cddb8a5c 836 int ret;
1da177e4 837
d992895b
NP
838 /*
839 * Don't copy ptes where a page fault will fill them correctly.
840 * Fork becomes much lighter when there are big shared or private
841 * readonly mappings. The tradeoff is that copy_page_range is more
842 * efficient than faulting.
843 */
4d7672b4 844 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
845 if (!vma->anon_vma)
846 return 0;
847 }
848
1da177e4
LT
849 if (is_vm_hugetlb_page(vma))
850 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
851
34801ba9 852 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 853 /*
854 * We do not free on error cases below as remove_vma
855 * gets called on error from higher level routine
856 */
857 ret = track_pfn_vma_copy(vma);
858 if (ret)
859 return ret;
860 }
861
cddb8a5c
AA
862 /*
863 * We need to invalidate the secondary MMU mappings only when
864 * there could be a permission downgrade on the ptes of the
865 * parent mm. And a permission downgrade will only happen if
866 * is_cow_mapping() returns true.
867 */
868 if (is_cow_mapping(vma->vm_flags))
869 mmu_notifier_invalidate_range_start(src_mm, addr, end);
870
871 ret = 0;
1da177e4
LT
872 dst_pgd = pgd_offset(dst_mm, addr);
873 src_pgd = pgd_offset(src_mm, addr);
874 do {
875 next = pgd_addr_end(addr, end);
876 if (pgd_none_or_clear_bad(src_pgd))
877 continue;
cddb8a5c
AA
878 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
879 vma, addr, next))) {
880 ret = -ENOMEM;
881 break;
882 }
1da177e4 883 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
884
885 if (is_cow_mapping(vma->vm_flags))
886 mmu_notifier_invalidate_range_end(src_mm,
887 vma->vm_start, end);
888 return ret;
1da177e4
LT
889}
890
51c6f666 891static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 892 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 893 unsigned long addr, unsigned long end,
51c6f666 894 long *zap_work, struct zap_details *details)
1da177e4 895{
b5810039 896 struct mm_struct *mm = tlb->mm;
1da177e4 897 pte_t *pte;
508034a3 898 spinlock_t *ptl;
d559db08
KH
899 int rss[NR_MM_COUNTERS];
900
901 init_rss_vec(rss);
1da177e4 902
508034a3 903 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 904 arch_enter_lazy_mmu_mode();
1da177e4
LT
905 do {
906 pte_t ptent = *pte;
51c6f666
RH
907 if (pte_none(ptent)) {
908 (*zap_work)--;
1da177e4 909 continue;
51c6f666 910 }
6f5e6b9e
HD
911
912 (*zap_work) -= PAGE_SIZE;
913
1da177e4 914 if (pte_present(ptent)) {
ee498ed7 915 struct page *page;
51c6f666 916
6aab341e 917 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
918 if (unlikely(details) && page) {
919 /*
920 * unmap_shared_mapping_pages() wants to
921 * invalidate cache without truncating:
922 * unmap shared but keep private pages.
923 */
924 if (details->check_mapping &&
925 details->check_mapping != page->mapping)
926 continue;
927 /*
928 * Each page->index must be checked when
929 * invalidating or truncating nonlinear.
930 */
931 if (details->nonlinear_vma &&
932 (page->index < details->first_index ||
933 page->index > details->last_index))
934 continue;
935 }
b5810039 936 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 937 tlb->fullmm);
1da177e4
LT
938 tlb_remove_tlb_entry(tlb, pte, addr);
939 if (unlikely(!page))
940 continue;
941 if (unlikely(details) && details->nonlinear_vma
942 && linear_page_index(details->nonlinear_vma,
943 addr) != page->index)
b5810039 944 set_pte_at(mm, addr, pte,
1da177e4 945 pgoff_to_pte(page->index));
1da177e4 946 if (PageAnon(page))
d559db08 947 rss[MM_ANONPAGES]--;
6237bcd9
HD
948 else {
949 if (pte_dirty(ptent))
950 set_page_dirty(page);
4917e5d0
JW
951 if (pte_young(ptent) &&
952 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 953 mark_page_accessed(page);
d559db08 954 rss[MM_FILEPAGES]--;
6237bcd9 955 }
edc315fd 956 page_remove_rmap(page);
3dc14741
HD
957 if (unlikely(page_mapcount(page) < 0))
958 print_bad_pte(vma, addr, ptent, page);
1da177e4
LT
959 tlb_remove_page(tlb, page);
960 continue;
961 }
962 /*
963 * If details->check_mapping, we leave swap entries;
964 * if details->nonlinear_vma, we leave file entries.
965 */
966 if (unlikely(details))
967 continue;
2509ef26
HD
968 if (pte_file(ptent)) {
969 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
970 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
971 } else {
972 swp_entry_t entry = pte_to_swp_entry(ptent);
973
974 if (!non_swap_entry(entry))
975 rss[MM_SWAPENTS]--;
976 if (unlikely(!free_swap_and_cache(entry)))
977 print_bad_pte(vma, addr, ptent, NULL);
978 }
9888a1ca 979 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 980 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 981
d559db08 982 add_mm_rss_vec(mm, rss);
6606c3e0 983 arch_leave_lazy_mmu_mode();
508034a3 984 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
985
986 return addr;
1da177e4
LT
987}
988
51c6f666 989static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 990 struct vm_area_struct *vma, pud_t *pud,
1da177e4 991 unsigned long addr, unsigned long end,
51c6f666 992 long *zap_work, struct zap_details *details)
1da177e4
LT
993{
994 pmd_t *pmd;
995 unsigned long next;
996
997 pmd = pmd_offset(pud, addr);
998 do {
999 next = pmd_addr_end(addr, end);
51c6f666
RH
1000 if (pmd_none_or_clear_bad(pmd)) {
1001 (*zap_work)--;
1da177e4 1002 continue;
51c6f666
RH
1003 }
1004 next = zap_pte_range(tlb, vma, pmd, addr, next,
1005 zap_work, details);
1006 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1007
1008 return addr;
1da177e4
LT
1009}
1010
51c6f666 1011static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1012 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1013 unsigned long addr, unsigned long end,
51c6f666 1014 long *zap_work, struct zap_details *details)
1da177e4
LT
1015{
1016 pud_t *pud;
1017 unsigned long next;
1018
1019 pud = pud_offset(pgd, addr);
1020 do {
1021 next = pud_addr_end(addr, end);
51c6f666
RH
1022 if (pud_none_or_clear_bad(pud)) {
1023 (*zap_work)--;
1da177e4 1024 continue;
51c6f666
RH
1025 }
1026 next = zap_pmd_range(tlb, vma, pud, addr, next,
1027 zap_work, details);
1028 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1029
1030 return addr;
1da177e4
LT
1031}
1032
51c6f666
RH
1033static unsigned long unmap_page_range(struct mmu_gather *tlb,
1034 struct vm_area_struct *vma,
1da177e4 1035 unsigned long addr, unsigned long end,
51c6f666 1036 long *zap_work, struct zap_details *details)
1da177e4
LT
1037{
1038 pgd_t *pgd;
1039 unsigned long next;
1040
1041 if (details && !details->check_mapping && !details->nonlinear_vma)
1042 details = NULL;
1043
1044 BUG_ON(addr >= end);
569b846d 1045 mem_cgroup_uncharge_start();
1da177e4
LT
1046 tlb_start_vma(tlb, vma);
1047 pgd = pgd_offset(vma->vm_mm, addr);
1048 do {
1049 next = pgd_addr_end(addr, end);
51c6f666
RH
1050 if (pgd_none_or_clear_bad(pgd)) {
1051 (*zap_work)--;
1da177e4 1052 continue;
51c6f666
RH
1053 }
1054 next = zap_pud_range(tlb, vma, pgd, addr, next,
1055 zap_work, details);
1056 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 1057 tlb_end_vma(tlb, vma);
569b846d 1058 mem_cgroup_uncharge_end();
51c6f666
RH
1059
1060 return addr;
1da177e4
LT
1061}
1062
1063#ifdef CONFIG_PREEMPT
1064# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1065#else
1066/* No preempt: go for improved straight-line efficiency */
1067# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1068#endif
1069
1070/**
1071 * unmap_vmas - unmap a range of memory covered by a list of vma's
1072 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
1073 * @vma: the starting vma
1074 * @start_addr: virtual address at which to start unmapping
1075 * @end_addr: virtual address at which to end unmapping
1076 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1077 * @details: details of nonlinear truncation or shared cache invalidation
1078 *
ee39b37b 1079 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 1080 *
508034a3 1081 * Unmap all pages in the vma list.
1da177e4 1082 *
508034a3
HD
1083 * We aim to not hold locks for too long (for scheduling latency reasons).
1084 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
1085 * return the ending mmu_gather to the caller.
1086 *
1087 * Only addresses between `start' and `end' will be unmapped.
1088 *
1089 * The VMA list must be sorted in ascending virtual address order.
1090 *
1091 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1092 * range after unmap_vmas() returns. So the only responsibility here is to
1093 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1094 * drops the lock and schedules.
1095 */
508034a3 1096unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
1097 struct vm_area_struct *vma, unsigned long start_addr,
1098 unsigned long end_addr, unsigned long *nr_accounted,
1099 struct zap_details *details)
1100{
51c6f666 1101 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1102 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1103 int tlb_start_valid = 0;
ee39b37b 1104 unsigned long start = start_addr;
1da177e4 1105 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 1106 int fullmm = (*tlbp)->fullmm;
cddb8a5c 1107 struct mm_struct *mm = vma->vm_mm;
1da177e4 1108
cddb8a5c 1109 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 1110 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
1111 unsigned long end;
1112
1113 start = max(vma->vm_start, start_addr);
1114 if (start >= vma->vm_end)
1115 continue;
1116 end = min(vma->vm_end, end_addr);
1117 if (end <= vma->vm_start)
1118 continue;
1119
1120 if (vma->vm_flags & VM_ACCOUNT)
1121 *nr_accounted += (end - start) >> PAGE_SHIFT;
1122
34801ba9 1123 if (unlikely(is_pfn_mapping(vma)))
2ab64037 1124 untrack_pfn_vma(vma, 0, 0);
1125
1da177e4 1126 while (start != end) {
1da177e4
LT
1127 if (!tlb_start_valid) {
1128 tlb_start = start;
1129 tlb_start_valid = 1;
1130 }
1131
51c6f666 1132 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
1133 /*
1134 * It is undesirable to test vma->vm_file as it
1135 * should be non-null for valid hugetlb area.
1136 * However, vm_file will be NULL in the error
1137 * cleanup path of do_mmap_pgoff. When
1138 * hugetlbfs ->mmap method fails,
1139 * do_mmap_pgoff() nullifies vma->vm_file
1140 * before calling this function to clean up.
1141 * Since no pte has actually been setup, it is
1142 * safe to do nothing in this case.
1143 */
1144 if (vma->vm_file) {
1145 unmap_hugepage_range(vma, start, end, NULL);
1146 zap_work -= (end - start) /
a5516438 1147 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
1148 }
1149
51c6f666
RH
1150 start = end;
1151 } else
1152 start = unmap_page_range(*tlbp, vma,
1153 start, end, &zap_work, details);
1154
1155 if (zap_work > 0) {
1156 BUG_ON(start != end);
1157 break;
1da177e4
LT
1158 }
1159
1da177e4
LT
1160 tlb_finish_mmu(*tlbp, tlb_start, start);
1161
1162 if (need_resched() ||
95c354fe 1163 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1164 if (i_mmap_lock) {
508034a3 1165 *tlbp = NULL;
1da177e4
LT
1166 goto out;
1167 }
1da177e4 1168 cond_resched();
1da177e4
LT
1169 }
1170
508034a3 1171 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1172 tlb_start_valid = 0;
51c6f666 1173 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1174 }
1175 }
1176out:
cddb8a5c 1177 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1178 return start; /* which is now the end (or restart) address */
1da177e4
LT
1179}
1180
1181/**
1182 * zap_page_range - remove user pages in a given range
1183 * @vma: vm_area_struct holding the applicable pages
1184 * @address: starting address of pages to zap
1185 * @size: number of bytes to zap
1186 * @details: details of nonlinear truncation or shared cache invalidation
1187 */
ee39b37b 1188unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1189 unsigned long size, struct zap_details *details)
1190{
1191 struct mm_struct *mm = vma->vm_mm;
1192 struct mmu_gather *tlb;
1193 unsigned long end = address + size;
1194 unsigned long nr_accounted = 0;
1195
1da177e4 1196 lru_add_drain();
1da177e4 1197 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1198 update_hiwater_rss(mm);
508034a3
HD
1199 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1200 if (tlb)
1201 tlb_finish_mmu(tlb, address, end);
ee39b37b 1202 return end;
1da177e4
LT
1203}
1204
c627f9cc
JS
1205/**
1206 * zap_vma_ptes - remove ptes mapping the vma
1207 * @vma: vm_area_struct holding ptes to be zapped
1208 * @address: starting address of pages to zap
1209 * @size: number of bytes to zap
1210 *
1211 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1212 *
1213 * The entire address range must be fully contained within the vma.
1214 *
1215 * Returns 0 if successful.
1216 */
1217int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1218 unsigned long size)
1219{
1220 if (address < vma->vm_start || address + size > vma->vm_end ||
1221 !(vma->vm_flags & VM_PFNMAP))
1222 return -1;
1223 zap_page_range(vma, address, size, NULL);
1224 return 0;
1225}
1226EXPORT_SYMBOL_GPL(zap_vma_ptes);
1227
142762bd
JW
1228/**
1229 * follow_page - look up a page descriptor from a user-virtual address
1230 * @vma: vm_area_struct mapping @address
1231 * @address: virtual address to look up
1232 * @flags: flags modifying lookup behaviour
1233 *
1234 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1235 *
1236 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1237 * an error pointer if there is a mapping to something not represented
1238 * by a page descriptor (see also vm_normal_page()).
1da177e4 1239 */
6aab341e 1240struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1241 unsigned int flags)
1da177e4
LT
1242{
1243 pgd_t *pgd;
1244 pud_t *pud;
1245 pmd_t *pmd;
1246 pte_t *ptep, pte;
deceb6cd 1247 spinlock_t *ptl;
1da177e4 1248 struct page *page;
6aab341e 1249 struct mm_struct *mm = vma->vm_mm;
1da177e4 1250
deceb6cd
HD
1251 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1252 if (!IS_ERR(page)) {
1253 BUG_ON(flags & FOLL_GET);
1254 goto out;
1255 }
1da177e4 1256
deceb6cd 1257 page = NULL;
1da177e4
LT
1258 pgd = pgd_offset(mm, address);
1259 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1260 goto no_page_table;
1da177e4
LT
1261
1262 pud = pud_offset(pgd, address);
ceb86879 1263 if (pud_none(*pud))
deceb6cd 1264 goto no_page_table;
ceb86879
AK
1265 if (pud_huge(*pud)) {
1266 BUG_ON(flags & FOLL_GET);
1267 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1268 goto out;
1269 }
1270 if (unlikely(pud_bad(*pud)))
1271 goto no_page_table;
1272
1da177e4 1273 pmd = pmd_offset(pud, address);
aeed5fce 1274 if (pmd_none(*pmd))
deceb6cd 1275 goto no_page_table;
deceb6cd
HD
1276 if (pmd_huge(*pmd)) {
1277 BUG_ON(flags & FOLL_GET);
1278 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1279 goto out;
deceb6cd 1280 }
aeed5fce
HD
1281 if (unlikely(pmd_bad(*pmd)))
1282 goto no_page_table;
1283
deceb6cd 1284 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1285
1286 pte = *ptep;
deceb6cd 1287 if (!pte_present(pte))
89f5b7da 1288 goto no_page;
deceb6cd
HD
1289 if ((flags & FOLL_WRITE) && !pte_write(pte))
1290 goto unlock;
a13ea5b7 1291
6aab341e 1292 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1293 if (unlikely(!page)) {
1294 if ((flags & FOLL_DUMP) ||
62eede62 1295 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1296 goto bad_page;
1297 page = pte_page(pte);
1298 }
1da177e4 1299
deceb6cd
HD
1300 if (flags & FOLL_GET)
1301 get_page(page);
1302 if (flags & FOLL_TOUCH) {
1303 if ((flags & FOLL_WRITE) &&
1304 !pte_dirty(pte) && !PageDirty(page))
1305 set_page_dirty(page);
bd775c42
KM
1306 /*
1307 * pte_mkyoung() would be more correct here, but atomic care
1308 * is needed to avoid losing the dirty bit: it is easier to use
1309 * mark_page_accessed().
1310 */
deceb6cd
HD
1311 mark_page_accessed(page);
1312 }
110d74a9
ML
1313 if (flags & FOLL_MLOCK) {
1314 /*
1315 * The preliminary mapping check is mainly to avoid the
1316 * pointless overhead of lock_page on the ZERO_PAGE
1317 * which might bounce very badly if there is contention.
1318 *
1319 * If the page is already locked, we don't need to
1320 * handle it now - vmscan will handle it later if and
1321 * when it attempts to reclaim the page.
1322 */
1323 if (page->mapping && trylock_page(page)) {
1324 lru_add_drain(); /* push cached pages to LRU */
1325 /*
1326 * Because we lock page here and migration is
1327 * blocked by the pte's page reference, we need
1328 * only check for file-cache page truncation.
1329 */
1330 if (page->mapping)
1331 mlock_vma_page(page);
1332 unlock_page(page);
1333 }
1334 }
deceb6cd
HD
1335unlock:
1336 pte_unmap_unlock(ptep, ptl);
1da177e4 1337out:
deceb6cd 1338 return page;
1da177e4 1339
89f5b7da
LT
1340bad_page:
1341 pte_unmap_unlock(ptep, ptl);
1342 return ERR_PTR(-EFAULT);
1343
1344no_page:
1345 pte_unmap_unlock(ptep, ptl);
1346 if (!pte_none(pte))
1347 return page;
8e4b9a60 1348
deceb6cd
HD
1349no_page_table:
1350 /*
1351 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1352 * has touched so far, we don't want to allocate unnecessary pages or
1353 * page tables. Return error instead of NULL to skip handle_mm_fault,
1354 * then get_dump_page() will return NULL to leave a hole in the dump.
1355 * But we can only make this optimization where a hole would surely
1356 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1357 */
8e4b9a60
HD
1358 if ((flags & FOLL_DUMP) &&
1359 (!vma->vm_ops || !vma->vm_ops->fault))
1360 return ERR_PTR(-EFAULT);
deceb6cd 1361 return page;
1da177e4
LT
1362}
1363
b291f000 1364int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1365 unsigned long start, int nr_pages, unsigned int gup_flags,
53a7706d
ML
1366 struct page **pages, struct vm_area_struct **vmas,
1367 int *nonblocking)
1da177e4
LT
1368{
1369 int i;
58fa879e 1370 unsigned long vm_flags;
1da177e4 1371
9d73777e 1372 if (nr_pages <= 0)
900cf086 1373 return 0;
58fa879e
HD
1374
1375 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1376
1da177e4
LT
1377 /*
1378 * Require read or write permissions.
58fa879e 1379 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1380 */
58fa879e
HD
1381 vm_flags = (gup_flags & FOLL_WRITE) ?
1382 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1383 vm_flags &= (gup_flags & FOLL_FORCE) ?
1384 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1385 i = 0;
1386
1387 do {
deceb6cd 1388 struct vm_area_struct *vma;
1da177e4
LT
1389
1390 vma = find_extend_vma(mm, start);
1391 if (!vma && in_gate_area(tsk, start)) {
1392 unsigned long pg = start & PAGE_MASK;
1393 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1394 pgd_t *pgd;
1395 pud_t *pud;
1396 pmd_t *pmd;
1397 pte_t *pte;
b291f000
NP
1398
1399 /* user gate pages are read-only */
58fa879e 1400 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1401 return i ? : -EFAULT;
1402 if (pg > TASK_SIZE)
1403 pgd = pgd_offset_k(pg);
1404 else
1405 pgd = pgd_offset_gate(mm, pg);
1406 BUG_ON(pgd_none(*pgd));
1407 pud = pud_offset(pgd, pg);
1408 BUG_ON(pud_none(*pud));
1409 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1410 if (pmd_none(*pmd))
1411 return i ? : -EFAULT;
1da177e4 1412 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1413 if (pte_none(*pte)) {
1414 pte_unmap(pte);
1415 return i ? : -EFAULT;
1416 }
1da177e4 1417 if (pages) {
de51257a
HD
1418 struct page *page;
1419
1420 page = vm_normal_page(gate_vma, start, *pte);
1421 if (!page) {
1422 if (!(gup_flags & FOLL_DUMP) &&
1423 is_zero_pfn(pte_pfn(*pte)))
1424 page = pte_page(*pte);
1425 else {
1426 pte_unmap(pte);
1427 return i ? : -EFAULT;
1428 }
1429 }
6aab341e 1430 pages[i] = page;
de51257a 1431 get_page(page);
1da177e4
LT
1432 }
1433 pte_unmap(pte);
1434 if (vmas)
1435 vmas[i] = gate_vma;
1436 i++;
1437 start += PAGE_SIZE;
9d73777e 1438 nr_pages--;
1da177e4
LT
1439 continue;
1440 }
1441
b291f000
NP
1442 if (!vma ||
1443 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1444 !(vm_flags & vma->vm_flags))
1da177e4
LT
1445 return i ? : -EFAULT;
1446
2a15efc9
HD
1447 if (is_vm_hugetlb_page(vma)) {
1448 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1449 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1450 continue;
1451 }
deceb6cd 1452
1da177e4 1453 do {
08ef4729 1454 struct page *page;
58fa879e 1455 unsigned int foll_flags = gup_flags;
1da177e4 1456
462e00cc 1457 /*
4779280d 1458 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1459 * pages and potentially allocating memory.
462e00cc 1460 */
1c3aff1c 1461 if (unlikely(fatal_signal_pending(current)))
4779280d 1462 return i ? i : -ERESTARTSYS;
462e00cc 1463
deceb6cd 1464 cond_resched();
6aab341e 1465 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1466 int ret;
53a7706d
ML
1467 unsigned int fault_flags = 0;
1468
1469 if (foll_flags & FOLL_WRITE)
1470 fault_flags |= FAULT_FLAG_WRITE;
1471 if (nonblocking)
1472 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
d06063cc 1473
d26ed650 1474 ret = handle_mm_fault(mm, vma, start,
53a7706d 1475 fault_flags);
d26ed650 1476
83c54070
NP
1477 if (ret & VM_FAULT_ERROR) {
1478 if (ret & VM_FAULT_OOM)
1479 return i ? i : -ENOMEM;
d1737fdb 1480 if (ret &
aa50d3a7
AK
1481 (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE|
1482 VM_FAULT_SIGBUS))
83c54070
NP
1483 return i ? i : -EFAULT;
1484 BUG();
1485 }
1486 if (ret & VM_FAULT_MAJOR)
1487 tsk->maj_flt++;
1488 else
1489 tsk->min_flt++;
1490
53a7706d
ML
1491 if (ret & VM_FAULT_RETRY) {
1492 *nonblocking = 0;
1493 return i;
1494 }
1495
a68d2ebc 1496 /*
83c54070
NP
1497 * The VM_FAULT_WRITE bit tells us that
1498 * do_wp_page has broken COW when necessary,
1499 * even if maybe_mkwrite decided not to set
1500 * pte_write. We can thus safely do subsequent
878b63ac
HD
1501 * page lookups as if they were reads. But only
1502 * do so when looping for pte_write is futile:
1503 * in some cases userspace may also be wanting
1504 * to write to the gotten user page, which a
1505 * read fault here might prevent (a readonly
1506 * page might get reCOWed by userspace write).
a68d2ebc 1507 */
878b63ac
HD
1508 if ((ret & VM_FAULT_WRITE) &&
1509 !(vma->vm_flags & VM_WRITE))
deceb6cd 1510 foll_flags &= ~FOLL_WRITE;
83c54070 1511
7f7bbbe5 1512 cond_resched();
1da177e4 1513 }
89f5b7da
LT
1514 if (IS_ERR(page))
1515 return i ? i : PTR_ERR(page);
1da177e4 1516 if (pages) {
08ef4729 1517 pages[i] = page;
03beb076 1518
a6f36be3 1519 flush_anon_page(vma, page, start);
08ef4729 1520 flush_dcache_page(page);
1da177e4
LT
1521 }
1522 if (vmas)
1523 vmas[i] = vma;
1524 i++;
1525 start += PAGE_SIZE;
9d73777e
PZ
1526 nr_pages--;
1527 } while (nr_pages && start < vma->vm_end);
1528 } while (nr_pages);
1da177e4
LT
1529 return i;
1530}
b291f000 1531
d2bf6be8
NP
1532/**
1533 * get_user_pages() - pin user pages in memory
1534 * @tsk: task_struct of target task
1535 * @mm: mm_struct of target mm
1536 * @start: starting user address
9d73777e 1537 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1538 * @write: whether pages will be written to by the caller
1539 * @force: whether to force write access even if user mapping is
1540 * readonly. This will result in the page being COWed even
1541 * in MAP_SHARED mappings. You do not want this.
1542 * @pages: array that receives pointers to the pages pinned.
1543 * Should be at least nr_pages long. Or NULL, if caller
1544 * only intends to ensure the pages are faulted in.
1545 * @vmas: array of pointers to vmas corresponding to each page.
1546 * Or NULL if the caller does not require them.
1547 *
1548 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1549 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1550 * were pinned, returns -errno. Each page returned must be released
1551 * with a put_page() call when it is finished with. vmas will only
1552 * remain valid while mmap_sem is held.
1553 *
1554 * Must be called with mmap_sem held for read or write.
1555 *
1556 * get_user_pages walks a process's page tables and takes a reference to
1557 * each struct page that each user address corresponds to at a given
1558 * instant. That is, it takes the page that would be accessed if a user
1559 * thread accesses the given user virtual address at that instant.
1560 *
1561 * This does not guarantee that the page exists in the user mappings when
1562 * get_user_pages returns, and there may even be a completely different
1563 * page there in some cases (eg. if mmapped pagecache has been invalidated
1564 * and subsequently re faulted). However it does guarantee that the page
1565 * won't be freed completely. And mostly callers simply care that the page
1566 * contains data that was valid *at some point in time*. Typically, an IO
1567 * or similar operation cannot guarantee anything stronger anyway because
1568 * locks can't be held over the syscall boundary.
1569 *
1570 * If write=0, the page must not be written to. If the page is written to,
1571 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1572 * after the page is finished with, and before put_page is called.
1573 *
1574 * get_user_pages is typically used for fewer-copy IO operations, to get a
1575 * handle on the memory by some means other than accesses via the user virtual
1576 * addresses. The pages may be submitted for DMA to devices or accessed via
1577 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1578 * use the correct cache flushing APIs.
1579 *
1580 * See also get_user_pages_fast, for performance critical applications.
1581 */
b291f000 1582int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1583 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1584 struct page **pages, struct vm_area_struct **vmas)
1585{
58fa879e 1586 int flags = FOLL_TOUCH;
b291f000 1587
58fa879e
HD
1588 if (pages)
1589 flags |= FOLL_GET;
b291f000 1590 if (write)
58fa879e 1591 flags |= FOLL_WRITE;
b291f000 1592 if (force)
58fa879e 1593 flags |= FOLL_FORCE;
b291f000 1594
53a7706d
ML
1595 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1596 NULL);
b291f000 1597}
1da177e4
LT
1598EXPORT_SYMBOL(get_user_pages);
1599
f3e8fccd
HD
1600/**
1601 * get_dump_page() - pin user page in memory while writing it to core dump
1602 * @addr: user address
1603 *
1604 * Returns struct page pointer of user page pinned for dump,
1605 * to be freed afterwards by page_cache_release() or put_page().
1606 *
1607 * Returns NULL on any kind of failure - a hole must then be inserted into
1608 * the corefile, to preserve alignment with its headers; and also returns
1609 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1610 * allowing a hole to be left in the corefile to save diskspace.
1611 *
1612 * Called without mmap_sem, but after all other threads have been killed.
1613 */
1614#ifdef CONFIG_ELF_CORE
1615struct page *get_dump_page(unsigned long addr)
1616{
1617 struct vm_area_struct *vma;
1618 struct page *page;
1619
1620 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
1621 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1622 NULL) < 1)
f3e8fccd 1623 return NULL;
f3e8fccd
HD
1624 flush_cache_page(vma, addr, page_to_pfn(page));
1625 return page;
1626}
1627#endif /* CONFIG_ELF_CORE */
1628
25ca1d6c 1629pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1630 spinlock_t **ptl)
c9cfcddf
LT
1631{
1632 pgd_t * pgd = pgd_offset(mm, addr);
1633 pud_t * pud = pud_alloc(mm, pgd, addr);
1634 if (pud) {
49c91fb0 1635 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1636 if (pmd)
1637 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1638 }
1639 return NULL;
1640}
1641
238f58d8
LT
1642/*
1643 * This is the old fallback for page remapping.
1644 *
1645 * For historical reasons, it only allows reserved pages. Only
1646 * old drivers should use this, and they needed to mark their
1647 * pages reserved for the old functions anyway.
1648 */
423bad60
NP
1649static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1650 struct page *page, pgprot_t prot)
238f58d8 1651{
423bad60 1652 struct mm_struct *mm = vma->vm_mm;
238f58d8 1653 int retval;
c9cfcddf 1654 pte_t *pte;
8a9f3ccd
BS
1655 spinlock_t *ptl;
1656
238f58d8 1657 retval = -EINVAL;
a145dd41 1658 if (PageAnon(page))
5b4e655e 1659 goto out;
238f58d8
LT
1660 retval = -ENOMEM;
1661 flush_dcache_page(page);
c9cfcddf 1662 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1663 if (!pte)
5b4e655e 1664 goto out;
238f58d8
LT
1665 retval = -EBUSY;
1666 if (!pte_none(*pte))
1667 goto out_unlock;
1668
1669 /* Ok, finally just insert the thing.. */
1670 get_page(page);
34e55232 1671 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
1672 page_add_file_rmap(page);
1673 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1674
1675 retval = 0;
8a9f3ccd
BS
1676 pte_unmap_unlock(pte, ptl);
1677 return retval;
238f58d8
LT
1678out_unlock:
1679 pte_unmap_unlock(pte, ptl);
1680out:
1681 return retval;
1682}
1683
bfa5bf6d
REB
1684/**
1685 * vm_insert_page - insert single page into user vma
1686 * @vma: user vma to map to
1687 * @addr: target user address of this page
1688 * @page: source kernel page
1689 *
a145dd41
LT
1690 * This allows drivers to insert individual pages they've allocated
1691 * into a user vma.
1692 *
1693 * The page has to be a nice clean _individual_ kernel allocation.
1694 * If you allocate a compound page, you need to have marked it as
1695 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1696 * (see split_page()).
a145dd41
LT
1697 *
1698 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1699 * took an arbitrary page protection parameter. This doesn't allow
1700 * that. Your vma protection will have to be set up correctly, which
1701 * means that if you want a shared writable mapping, you'd better
1702 * ask for a shared writable mapping!
1703 *
1704 * The page does not need to be reserved.
1705 */
423bad60
NP
1706int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1707 struct page *page)
a145dd41
LT
1708{
1709 if (addr < vma->vm_start || addr >= vma->vm_end)
1710 return -EFAULT;
1711 if (!page_count(page))
1712 return -EINVAL;
4d7672b4 1713 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1714 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1715}
e3c3374f 1716EXPORT_SYMBOL(vm_insert_page);
a145dd41 1717
423bad60
NP
1718static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1719 unsigned long pfn, pgprot_t prot)
1720{
1721 struct mm_struct *mm = vma->vm_mm;
1722 int retval;
1723 pte_t *pte, entry;
1724 spinlock_t *ptl;
1725
1726 retval = -ENOMEM;
1727 pte = get_locked_pte(mm, addr, &ptl);
1728 if (!pte)
1729 goto out;
1730 retval = -EBUSY;
1731 if (!pte_none(*pte))
1732 goto out_unlock;
1733
1734 /* Ok, finally just insert the thing.. */
1735 entry = pte_mkspecial(pfn_pte(pfn, prot));
1736 set_pte_at(mm, addr, pte, entry);
4b3073e1 1737 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1738
1739 retval = 0;
1740out_unlock:
1741 pte_unmap_unlock(pte, ptl);
1742out:
1743 return retval;
1744}
1745
e0dc0d8f
NP
1746/**
1747 * vm_insert_pfn - insert single pfn into user vma
1748 * @vma: user vma to map to
1749 * @addr: target user address of this page
1750 * @pfn: source kernel pfn
1751 *
1752 * Similar to vm_inert_page, this allows drivers to insert individual pages
1753 * they've allocated into a user vma. Same comments apply.
1754 *
1755 * This function should only be called from a vm_ops->fault handler, and
1756 * in that case the handler should return NULL.
0d71d10a
NP
1757 *
1758 * vma cannot be a COW mapping.
1759 *
1760 * As this is called only for pages that do not currently exist, we
1761 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1762 */
1763int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1764 unsigned long pfn)
e0dc0d8f 1765{
2ab64037 1766 int ret;
e4b866ed 1767 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1768 /*
1769 * Technically, architectures with pte_special can avoid all these
1770 * restrictions (same for remap_pfn_range). However we would like
1771 * consistency in testing and feature parity among all, so we should
1772 * try to keep these invariants in place for everybody.
1773 */
b379d790
JH
1774 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1775 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1776 (VM_PFNMAP|VM_MIXEDMAP));
1777 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1778 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1779
423bad60
NP
1780 if (addr < vma->vm_start || addr >= vma->vm_end)
1781 return -EFAULT;
e4b866ed 1782 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 1783 return -EINVAL;
1784
e4b866ed 1785 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1786
1787 if (ret)
1788 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1789
1790 return ret;
423bad60
NP
1791}
1792EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1793
423bad60
NP
1794int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1795 unsigned long pfn)
1796{
1797 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1798
423bad60
NP
1799 if (addr < vma->vm_start || addr >= vma->vm_end)
1800 return -EFAULT;
e0dc0d8f 1801
423bad60
NP
1802 /*
1803 * If we don't have pte special, then we have to use the pfn_valid()
1804 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1805 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1806 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1807 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1808 */
1809 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1810 struct page *page;
1811
1812 page = pfn_to_page(pfn);
1813 return insert_page(vma, addr, page, vma->vm_page_prot);
1814 }
1815 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1816}
423bad60 1817EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1818
1da177e4
LT
1819/*
1820 * maps a range of physical memory into the requested pages. the old
1821 * mappings are removed. any references to nonexistent pages results
1822 * in null mappings (currently treated as "copy-on-access")
1823 */
1824static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1825 unsigned long addr, unsigned long end,
1826 unsigned long pfn, pgprot_t prot)
1827{
1828 pte_t *pte;
c74df32c 1829 spinlock_t *ptl;
1da177e4 1830
c74df32c 1831 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1832 if (!pte)
1833 return -ENOMEM;
6606c3e0 1834 arch_enter_lazy_mmu_mode();
1da177e4
LT
1835 do {
1836 BUG_ON(!pte_none(*pte));
7e675137 1837 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1838 pfn++;
1839 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1840 arch_leave_lazy_mmu_mode();
c74df32c 1841 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1842 return 0;
1843}
1844
1845static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1846 unsigned long addr, unsigned long end,
1847 unsigned long pfn, pgprot_t prot)
1848{
1849 pmd_t *pmd;
1850 unsigned long next;
1851
1852 pfn -= addr >> PAGE_SHIFT;
1853 pmd = pmd_alloc(mm, pud, addr);
1854 if (!pmd)
1855 return -ENOMEM;
1856 do {
1857 next = pmd_addr_end(addr, end);
1858 if (remap_pte_range(mm, pmd, addr, next,
1859 pfn + (addr >> PAGE_SHIFT), prot))
1860 return -ENOMEM;
1861 } while (pmd++, addr = next, addr != end);
1862 return 0;
1863}
1864
1865static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1866 unsigned long addr, unsigned long end,
1867 unsigned long pfn, pgprot_t prot)
1868{
1869 pud_t *pud;
1870 unsigned long next;
1871
1872 pfn -= addr >> PAGE_SHIFT;
1873 pud = pud_alloc(mm, pgd, addr);
1874 if (!pud)
1875 return -ENOMEM;
1876 do {
1877 next = pud_addr_end(addr, end);
1878 if (remap_pmd_range(mm, pud, addr, next,
1879 pfn + (addr >> PAGE_SHIFT), prot))
1880 return -ENOMEM;
1881 } while (pud++, addr = next, addr != end);
1882 return 0;
1883}
1884
bfa5bf6d
REB
1885/**
1886 * remap_pfn_range - remap kernel memory to userspace
1887 * @vma: user vma to map to
1888 * @addr: target user address to start at
1889 * @pfn: physical address of kernel memory
1890 * @size: size of map area
1891 * @prot: page protection flags for this mapping
1892 *
1893 * Note: this is only safe if the mm semaphore is held when called.
1894 */
1da177e4
LT
1895int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1896 unsigned long pfn, unsigned long size, pgprot_t prot)
1897{
1898 pgd_t *pgd;
1899 unsigned long next;
2d15cab8 1900 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1901 struct mm_struct *mm = vma->vm_mm;
1902 int err;
1903
1904 /*
1905 * Physically remapped pages are special. Tell the
1906 * rest of the world about it:
1907 * VM_IO tells people not to look at these pages
1908 * (accesses can have side effects).
0b14c179
HD
1909 * VM_RESERVED is specified all over the place, because
1910 * in 2.4 it kept swapout's vma scan off this vma; but
1911 * in 2.6 the LRU scan won't even find its pages, so this
1912 * flag means no more than count its pages in reserved_vm,
1913 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1914 * VM_PFNMAP tells the core MM that the base pages are just
1915 * raw PFN mappings, and do not have a "struct page" associated
1916 * with them.
fb155c16
LT
1917 *
1918 * There's a horrible special case to handle copy-on-write
1919 * behaviour that some programs depend on. We mark the "original"
1920 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1921 */
4bb9c5c0 1922 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 1923 vma->vm_pgoff = pfn;
895791da 1924 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 1925 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 1926 return -EINVAL;
fb155c16 1927
6aab341e 1928 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1929
e4b866ed 1930 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 1931 if (err) {
1932 /*
1933 * To indicate that track_pfn related cleanup is not
1934 * needed from higher level routine calling unmap_vmas
1935 */
1936 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 1937 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 1938 return -EINVAL;
a3670613 1939 }
2ab64037 1940
1da177e4
LT
1941 BUG_ON(addr >= end);
1942 pfn -= addr >> PAGE_SHIFT;
1943 pgd = pgd_offset(mm, addr);
1944 flush_cache_range(vma, addr, end);
1da177e4
LT
1945 do {
1946 next = pgd_addr_end(addr, end);
1947 err = remap_pud_range(mm, pgd, addr, next,
1948 pfn + (addr >> PAGE_SHIFT), prot);
1949 if (err)
1950 break;
1951 } while (pgd++, addr = next, addr != end);
2ab64037 1952
1953 if (err)
1954 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1955
1da177e4
LT
1956 return err;
1957}
1958EXPORT_SYMBOL(remap_pfn_range);
1959
aee16b3c
JF
1960static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1961 unsigned long addr, unsigned long end,
1962 pte_fn_t fn, void *data)
1963{
1964 pte_t *pte;
1965 int err;
2f569afd 1966 pgtable_t token;
94909914 1967 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1968
1969 pte = (mm == &init_mm) ?
1970 pte_alloc_kernel(pmd, addr) :
1971 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1972 if (!pte)
1973 return -ENOMEM;
1974
1975 BUG_ON(pmd_huge(*pmd));
1976
38e0edb1
JF
1977 arch_enter_lazy_mmu_mode();
1978
2f569afd 1979 token = pmd_pgtable(*pmd);
aee16b3c
JF
1980
1981 do {
c36987e2 1982 err = fn(pte++, token, addr, data);
aee16b3c
JF
1983 if (err)
1984 break;
c36987e2 1985 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1986
38e0edb1
JF
1987 arch_leave_lazy_mmu_mode();
1988
aee16b3c
JF
1989 if (mm != &init_mm)
1990 pte_unmap_unlock(pte-1, ptl);
1991 return err;
1992}
1993
1994static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1995 unsigned long addr, unsigned long end,
1996 pte_fn_t fn, void *data)
1997{
1998 pmd_t *pmd;
1999 unsigned long next;
2000 int err;
2001
ceb86879
AK
2002 BUG_ON(pud_huge(*pud));
2003
aee16b3c
JF
2004 pmd = pmd_alloc(mm, pud, addr);
2005 if (!pmd)
2006 return -ENOMEM;
2007 do {
2008 next = pmd_addr_end(addr, end);
2009 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2010 if (err)
2011 break;
2012 } while (pmd++, addr = next, addr != end);
2013 return err;
2014}
2015
2016static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2017 unsigned long addr, unsigned long end,
2018 pte_fn_t fn, void *data)
2019{
2020 pud_t *pud;
2021 unsigned long next;
2022 int err;
2023
2024 pud = pud_alloc(mm, pgd, addr);
2025 if (!pud)
2026 return -ENOMEM;
2027 do {
2028 next = pud_addr_end(addr, end);
2029 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2030 if (err)
2031 break;
2032 } while (pud++, addr = next, addr != end);
2033 return err;
2034}
2035
2036/*
2037 * Scan a region of virtual memory, filling in page tables as necessary
2038 * and calling a provided function on each leaf page table.
2039 */
2040int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2041 unsigned long size, pte_fn_t fn, void *data)
2042{
2043 pgd_t *pgd;
2044 unsigned long next;
57250a5b 2045 unsigned long end = addr + size;
aee16b3c
JF
2046 int err;
2047
2048 BUG_ON(addr >= end);
2049 pgd = pgd_offset(mm, addr);
2050 do {
2051 next = pgd_addr_end(addr, end);
2052 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2053 if (err)
2054 break;
2055 } while (pgd++, addr = next, addr != end);
57250a5b 2056
aee16b3c
JF
2057 return err;
2058}
2059EXPORT_SYMBOL_GPL(apply_to_page_range);
2060
8f4e2101
HD
2061/*
2062 * handle_pte_fault chooses page fault handler according to an entry
2063 * which was read non-atomically. Before making any commitment, on
2064 * those architectures or configurations (e.g. i386 with PAE) which
2065 * might give a mix of unmatched parts, do_swap_page and do_file_page
2066 * must check under lock before unmapping the pte and proceeding
2067 * (but do_wp_page is only called after already making such a check;
2068 * and do_anonymous_page and do_no_page can safely check later on).
2069 */
4c21e2f2 2070static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2071 pte_t *page_table, pte_t orig_pte)
2072{
2073 int same = 1;
2074#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2075 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2076 spinlock_t *ptl = pte_lockptr(mm, pmd);
2077 spin_lock(ptl);
8f4e2101 2078 same = pte_same(*page_table, orig_pte);
4c21e2f2 2079 spin_unlock(ptl);
8f4e2101
HD
2080 }
2081#endif
2082 pte_unmap(page_table);
2083 return same;
2084}
2085
9de455b2 2086static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2087{
2088 /*
2089 * If the source page was a PFN mapping, we don't have
2090 * a "struct page" for it. We do a best-effort copy by
2091 * just copying from the original user address. If that
2092 * fails, we just zero-fill it. Live with it.
2093 */
2094 if (unlikely(!src)) {
2095 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
2096 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2097
2098 /*
2099 * This really shouldn't fail, because the page is there
2100 * in the page tables. But it might just be unreadable,
2101 * in which case we just give up and fill the result with
2102 * zeroes.
2103 */
2104 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2105 clear_page(kaddr);
6aab341e 2106 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 2107 flush_dcache_page(dst);
0ed361de
NP
2108 } else
2109 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2110}
2111
1da177e4
LT
2112/*
2113 * This routine handles present pages, when users try to write
2114 * to a shared page. It is done by copying the page to a new address
2115 * and decrementing the shared-page counter for the old page.
2116 *
1da177e4
LT
2117 * Note that this routine assumes that the protection checks have been
2118 * done by the caller (the low-level page fault routine in most cases).
2119 * Thus we can safely just mark it writable once we've done any necessary
2120 * COW.
2121 *
2122 * We also mark the page dirty at this point even though the page will
2123 * change only once the write actually happens. This avoids a few races,
2124 * and potentially makes it more efficient.
2125 *
8f4e2101
HD
2126 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2127 * but allow concurrent faults), with pte both mapped and locked.
2128 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2129 */
65500d23
HD
2130static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2131 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2132 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2133 __releases(ptl)
1da177e4 2134{
e5bbe4df 2135 struct page *old_page, *new_page;
1da177e4 2136 pte_t entry;
b009c024 2137 int ret = 0;
a200ee18 2138 int page_mkwrite = 0;
d08b3851 2139 struct page *dirty_page = NULL;
1da177e4 2140
6aab341e 2141 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2142 if (!old_page) {
2143 /*
2144 * VM_MIXEDMAP !pfn_valid() case
2145 *
2146 * We should not cow pages in a shared writeable mapping.
2147 * Just mark the pages writable as we can't do any dirty
2148 * accounting on raw pfn maps.
2149 */
2150 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2151 (VM_WRITE|VM_SHARED))
2152 goto reuse;
6aab341e 2153 goto gotten;
251b97f5 2154 }
1da177e4 2155
d08b3851 2156 /*
ee6a6457
PZ
2157 * Take out anonymous pages first, anonymous shared vmas are
2158 * not dirty accountable.
d08b3851 2159 */
9a840895 2160 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2161 if (!trylock_page(old_page)) {
2162 page_cache_get(old_page);
2163 pte_unmap_unlock(page_table, ptl);
2164 lock_page(old_page);
2165 page_table = pte_offset_map_lock(mm, pmd, address,
2166 &ptl);
2167 if (!pte_same(*page_table, orig_pte)) {
2168 unlock_page(old_page);
2169 page_cache_release(old_page);
2170 goto unlock;
2171 }
2172 page_cache_release(old_page);
ee6a6457 2173 }
b009c024 2174 if (reuse_swap_page(old_page)) {
c44b6743
RR
2175 /*
2176 * The page is all ours. Move it to our anon_vma so
2177 * the rmap code will not search our parent or siblings.
2178 * Protected against the rmap code by the page lock.
2179 */
2180 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2181 unlock_page(old_page);
2182 goto reuse;
2183 }
ab967d86 2184 unlock_page(old_page);
ee6a6457 2185 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2186 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2187 /*
2188 * Only catch write-faults on shared writable pages,
2189 * read-only shared pages can get COWed by
2190 * get_user_pages(.write=1, .force=1).
2191 */
9637a5ef 2192 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2193 struct vm_fault vmf;
2194 int tmp;
2195
2196 vmf.virtual_address = (void __user *)(address &
2197 PAGE_MASK);
2198 vmf.pgoff = old_page->index;
2199 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2200 vmf.page = old_page;
2201
9637a5ef
DH
2202 /*
2203 * Notify the address space that the page is about to
2204 * become writable so that it can prohibit this or wait
2205 * for the page to get into an appropriate state.
2206 *
2207 * We do this without the lock held, so that it can
2208 * sleep if it needs to.
2209 */
2210 page_cache_get(old_page);
2211 pte_unmap_unlock(page_table, ptl);
2212
c2ec175c
NP
2213 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2214 if (unlikely(tmp &
2215 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2216 ret = tmp;
9637a5ef 2217 goto unwritable_page;
c2ec175c 2218 }
b827e496
NP
2219 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2220 lock_page(old_page);
2221 if (!old_page->mapping) {
2222 ret = 0; /* retry the fault */
2223 unlock_page(old_page);
2224 goto unwritable_page;
2225 }
2226 } else
2227 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2228
9637a5ef
DH
2229 /*
2230 * Since we dropped the lock we need to revalidate
2231 * the PTE as someone else may have changed it. If
2232 * they did, we just return, as we can count on the
2233 * MMU to tell us if they didn't also make it writable.
2234 */
2235 page_table = pte_offset_map_lock(mm, pmd, address,
2236 &ptl);
b827e496
NP
2237 if (!pte_same(*page_table, orig_pte)) {
2238 unlock_page(old_page);
2239 page_cache_release(old_page);
9637a5ef 2240 goto unlock;
b827e496 2241 }
a200ee18
PZ
2242
2243 page_mkwrite = 1;
1da177e4 2244 }
d08b3851
PZ
2245 dirty_page = old_page;
2246 get_page(dirty_page);
9637a5ef 2247
251b97f5 2248reuse:
9637a5ef
DH
2249 flush_cache_page(vma, address, pte_pfn(orig_pte));
2250 entry = pte_mkyoung(orig_pte);
2251 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2252 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2253 update_mmu_cache(vma, address, page_table);
72ddc8f7 2254 pte_unmap_unlock(page_table, ptl);
9637a5ef 2255 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2256
2257 if (!dirty_page)
2258 return ret;
2259
2260 /*
2261 * Yes, Virginia, this is actually required to prevent a race
2262 * with clear_page_dirty_for_io() from clearing the page dirty
2263 * bit after it clear all dirty ptes, but before a racing
2264 * do_wp_page installs a dirty pte.
2265 *
2266 * do_no_page is protected similarly.
2267 */
2268 if (!page_mkwrite) {
2269 wait_on_page_locked(dirty_page);
2270 set_page_dirty_balance(dirty_page, page_mkwrite);
2271 }
2272 put_page(dirty_page);
2273 if (page_mkwrite) {
2274 struct address_space *mapping = dirty_page->mapping;
2275
2276 set_page_dirty(dirty_page);
2277 unlock_page(dirty_page);
2278 page_cache_release(dirty_page);
2279 if (mapping) {
2280 /*
2281 * Some device drivers do not set page.mapping
2282 * but still dirty their pages
2283 */
2284 balance_dirty_pages_ratelimited(mapping);
2285 }
2286 }
2287
2288 /* file_update_time outside page_lock */
2289 if (vma->vm_file)
2290 file_update_time(vma->vm_file);
2291
2292 return ret;
1da177e4 2293 }
1da177e4
LT
2294
2295 /*
2296 * Ok, we need to copy. Oh, well..
2297 */
b5810039 2298 page_cache_get(old_page);
920fc356 2299gotten:
8f4e2101 2300 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2301
2302 if (unlikely(anon_vma_prepare(vma)))
65500d23 2303 goto oom;
a13ea5b7 2304
62eede62 2305 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2306 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2307 if (!new_page)
2308 goto oom;
2309 } else {
2310 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2311 if (!new_page)
2312 goto oom;
2313 cow_user_page(new_page, old_page, address, vma);
2314 }
2315 __SetPageUptodate(new_page);
2316
b291f000
NP
2317 /*
2318 * Don't let another task, with possibly unlocked vma,
2319 * keep the mlocked page.
2320 */
ab92661d 2321 if ((vma->vm_flags & VM_LOCKED) && old_page) {
b291f000
NP
2322 lock_page(old_page); /* for LRU manipulation */
2323 clear_page_mlock(old_page);
2324 unlock_page(old_page);
2325 }
65500d23 2326
2c26fdd7 2327 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2328 goto oom_free_new;
2329
1da177e4
LT
2330 /*
2331 * Re-check the pte - we dropped the lock
2332 */
8f4e2101 2333 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2334 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2335 if (old_page) {
920fc356 2336 if (!PageAnon(old_page)) {
34e55232
KH
2337 dec_mm_counter_fast(mm, MM_FILEPAGES);
2338 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2339 }
2340 } else
34e55232 2341 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2342 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2343 entry = mk_pte(new_page, vma->vm_page_prot);
2344 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2345 /*
2346 * Clear the pte entry and flush it first, before updating the
2347 * pte with the new entry. This will avoid a race condition
2348 * seen in the presence of one thread doing SMC and another
2349 * thread doing COW.
2350 */
828502d3 2351 ptep_clear_flush(vma, address, page_table);
9617d95e 2352 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2353 /*
2354 * We call the notify macro here because, when using secondary
2355 * mmu page tables (such as kvm shadow page tables), we want the
2356 * new page to be mapped directly into the secondary page table.
2357 */
2358 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2359 update_mmu_cache(vma, address, page_table);
945754a1
NP
2360 if (old_page) {
2361 /*
2362 * Only after switching the pte to the new page may
2363 * we remove the mapcount here. Otherwise another
2364 * process may come and find the rmap count decremented
2365 * before the pte is switched to the new page, and
2366 * "reuse" the old page writing into it while our pte
2367 * here still points into it and can be read by other
2368 * threads.
2369 *
2370 * The critical issue is to order this
2371 * page_remove_rmap with the ptp_clear_flush above.
2372 * Those stores are ordered by (if nothing else,)
2373 * the barrier present in the atomic_add_negative
2374 * in page_remove_rmap.
2375 *
2376 * Then the TLB flush in ptep_clear_flush ensures that
2377 * no process can access the old page before the
2378 * decremented mapcount is visible. And the old page
2379 * cannot be reused until after the decremented
2380 * mapcount is visible. So transitively, TLBs to
2381 * old page will be flushed before it can be reused.
2382 */
edc315fd 2383 page_remove_rmap(old_page);
945754a1
NP
2384 }
2385
1da177e4
LT
2386 /* Free the old page.. */
2387 new_page = old_page;
f33ea7f4 2388 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2389 } else
2390 mem_cgroup_uncharge_page(new_page);
2391
920fc356
HD
2392 if (new_page)
2393 page_cache_release(new_page);
2394 if (old_page)
2395 page_cache_release(old_page);
65500d23 2396unlock:
8f4e2101 2397 pte_unmap_unlock(page_table, ptl);
f33ea7f4 2398 return ret;
8a9f3ccd 2399oom_free_new:
6dbf6d3b 2400 page_cache_release(new_page);
65500d23 2401oom:
b827e496
NP
2402 if (old_page) {
2403 if (page_mkwrite) {
2404 unlock_page(old_page);
2405 page_cache_release(old_page);
2406 }
920fc356 2407 page_cache_release(old_page);
b827e496 2408 }
1da177e4 2409 return VM_FAULT_OOM;
9637a5ef
DH
2410
2411unwritable_page:
2412 page_cache_release(old_page);
c2ec175c 2413 return ret;
1da177e4
LT
2414}
2415
2416/*
2417 * Helper functions for unmap_mapping_range().
2418 *
2419 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2420 *
2421 * We have to restart searching the prio_tree whenever we drop the lock,
2422 * since the iterator is only valid while the lock is held, and anyway
2423 * a later vma might be split and reinserted earlier while lock dropped.
2424 *
2425 * The list of nonlinear vmas could be handled more efficiently, using
2426 * a placeholder, but handle it in the same way until a need is shown.
2427 * It is important to search the prio_tree before nonlinear list: a vma
2428 * may become nonlinear and be shifted from prio_tree to nonlinear list
2429 * while the lock is dropped; but never shifted from list to prio_tree.
2430 *
2431 * In order to make forward progress despite restarting the search,
2432 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2433 * quickly skip it next time around. Since the prio_tree search only
2434 * shows us those vmas affected by unmapping the range in question, we
2435 * can't efficiently keep all vmas in step with mapping->truncate_count:
2436 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2437 * mapping->truncate_count and vma->vm_truncate_count are protected by
2438 * i_mmap_lock.
2439 *
2440 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2441 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2442 * and restart from that address when we reach that vma again. It might
2443 * have been split or merged, shrunk or extended, but never shifted: so
2444 * restart_addr remains valid so long as it remains in the vma's range.
2445 * unmap_mapping_range forces truncate_count to leap over page-aligned
2446 * values so we can save vma's restart_addr in its truncate_count field.
2447 */
2448#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2449
2450static void reset_vma_truncate_counts(struct address_space *mapping)
2451{
2452 struct vm_area_struct *vma;
2453 struct prio_tree_iter iter;
2454
2455 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2456 vma->vm_truncate_count = 0;
2457 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2458 vma->vm_truncate_count = 0;
2459}
2460
2461static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2462 unsigned long start_addr, unsigned long end_addr,
2463 struct zap_details *details)
2464{
2465 unsigned long restart_addr;
2466 int need_break;
2467
d00806b1
NP
2468 /*
2469 * files that support invalidating or truncating portions of the
d0217ac0 2470 * file from under mmaped areas must have their ->fault function
83c54070
NP
2471 * return a locked page (and set VM_FAULT_LOCKED in the return).
2472 * This provides synchronisation against concurrent unmapping here.
d00806b1 2473 */
d00806b1 2474
1da177e4
LT
2475again:
2476 restart_addr = vma->vm_truncate_count;
2477 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2478 start_addr = restart_addr;
2479 if (start_addr >= end_addr) {
2480 /* Top of vma has been split off since last time */
2481 vma->vm_truncate_count = details->truncate_count;
2482 return 0;
2483 }
2484 }
2485
ee39b37b
HD
2486 restart_addr = zap_page_range(vma, start_addr,
2487 end_addr - start_addr, details);
95c354fe 2488 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2489
ee39b37b 2490 if (restart_addr >= end_addr) {
1da177e4
LT
2491 /* We have now completed this vma: mark it so */
2492 vma->vm_truncate_count = details->truncate_count;
2493 if (!need_break)
2494 return 0;
2495 } else {
2496 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2497 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2498 if (!need_break)
2499 goto again;
2500 }
2501
2502 spin_unlock(details->i_mmap_lock);
2503 cond_resched();
2504 spin_lock(details->i_mmap_lock);
2505 return -EINTR;
2506}
2507
2508static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2509 struct zap_details *details)
2510{
2511 struct vm_area_struct *vma;
2512 struct prio_tree_iter iter;
2513 pgoff_t vba, vea, zba, zea;
2514
2515restart:
2516 vma_prio_tree_foreach(vma, &iter, root,
2517 details->first_index, details->last_index) {
2518 /* Skip quickly over those we have already dealt with */
2519 if (vma->vm_truncate_count == details->truncate_count)
2520 continue;
2521
2522 vba = vma->vm_pgoff;
2523 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2524 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2525 zba = details->first_index;
2526 if (zba < vba)
2527 zba = vba;
2528 zea = details->last_index;
2529 if (zea > vea)
2530 zea = vea;
2531
2532 if (unmap_mapping_range_vma(vma,
2533 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2534 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2535 details) < 0)
2536 goto restart;
2537 }
2538}
2539
2540static inline void unmap_mapping_range_list(struct list_head *head,
2541 struct zap_details *details)
2542{
2543 struct vm_area_struct *vma;
2544
2545 /*
2546 * In nonlinear VMAs there is no correspondence between virtual address
2547 * offset and file offset. So we must perform an exhaustive search
2548 * across *all* the pages in each nonlinear VMA, not just the pages
2549 * whose virtual address lies outside the file truncation point.
2550 */
2551restart:
2552 list_for_each_entry(vma, head, shared.vm_set.list) {
2553 /* Skip quickly over those we have already dealt with */
2554 if (vma->vm_truncate_count == details->truncate_count)
2555 continue;
2556 details->nonlinear_vma = vma;
2557 if (unmap_mapping_range_vma(vma, vma->vm_start,
2558 vma->vm_end, details) < 0)
2559 goto restart;
2560 }
2561}
2562
2563/**
72fd4a35 2564 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2565 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2566 * @holebegin: byte in first page to unmap, relative to the start of
2567 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2568 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2569 * must keep the partial page. In contrast, we must get rid of
2570 * partial pages.
2571 * @holelen: size of prospective hole in bytes. This will be rounded
2572 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2573 * end of the file.
2574 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2575 * but 0 when invalidating pagecache, don't throw away private data.
2576 */
2577void unmap_mapping_range(struct address_space *mapping,
2578 loff_t const holebegin, loff_t const holelen, int even_cows)
2579{
2580 struct zap_details details;
2581 pgoff_t hba = holebegin >> PAGE_SHIFT;
2582 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2583
2584 /* Check for overflow. */
2585 if (sizeof(holelen) > sizeof(hlen)) {
2586 long long holeend =
2587 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2588 if (holeend & ~(long long)ULONG_MAX)
2589 hlen = ULONG_MAX - hba + 1;
2590 }
2591
2592 details.check_mapping = even_cows? NULL: mapping;
2593 details.nonlinear_vma = NULL;
2594 details.first_index = hba;
2595 details.last_index = hba + hlen - 1;
2596 if (details.last_index < details.first_index)
2597 details.last_index = ULONG_MAX;
2598 details.i_mmap_lock = &mapping->i_mmap_lock;
2599
2600 spin_lock(&mapping->i_mmap_lock);
2601
d00806b1 2602 /* Protect against endless unmapping loops */
1da177e4 2603 mapping->truncate_count++;
1da177e4
LT
2604 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2605 if (mapping->truncate_count == 0)
2606 reset_vma_truncate_counts(mapping);
2607 mapping->truncate_count++;
2608 }
2609 details.truncate_count = mapping->truncate_count;
2610
2611 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2612 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2613 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2614 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2615 spin_unlock(&mapping->i_mmap_lock);
2616}
2617EXPORT_SYMBOL(unmap_mapping_range);
2618
f6b3ec23
BP
2619int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2620{
2621 struct address_space *mapping = inode->i_mapping;
2622
2623 /*
2624 * If the underlying filesystem is not going to provide
2625 * a way to truncate a range of blocks (punch a hole) -
2626 * we should return failure right now.
2627 */
acfa4380 2628 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2629 return -ENOSYS;
2630
1b1dcc1b 2631 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2632 down_write(&inode->i_alloc_sem);
2633 unmap_mapping_range(mapping, offset, (end - offset), 1);
2634 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2635 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2636 inode->i_op->truncate_range(inode, offset, end);
2637 up_write(&inode->i_alloc_sem);
1b1dcc1b 2638 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2639
2640 return 0;
2641}
f6b3ec23 2642
1da177e4 2643/*
8f4e2101
HD
2644 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2645 * but allow concurrent faults), and pte mapped but not yet locked.
2646 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2647 */
65500d23
HD
2648static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2649 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2650 unsigned int flags, pte_t orig_pte)
1da177e4 2651{
8f4e2101 2652 spinlock_t *ptl;
4969c119 2653 struct page *page, *swapcache = NULL;
65500d23 2654 swp_entry_t entry;
1da177e4 2655 pte_t pte;
d065bd81 2656 int locked;
7a81b88c 2657 struct mem_cgroup *ptr = NULL;
ad8c2ee8 2658 int exclusive = 0;
83c54070 2659 int ret = 0;
1da177e4 2660
4c21e2f2 2661 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2662 goto out;
65500d23
HD
2663
2664 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2665 if (unlikely(non_swap_entry(entry))) {
2666 if (is_migration_entry(entry)) {
2667 migration_entry_wait(mm, pmd, address);
2668 } else if (is_hwpoison_entry(entry)) {
2669 ret = VM_FAULT_HWPOISON;
2670 } else {
2671 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2672 ret = VM_FAULT_SIGBUS;
d1737fdb 2673 }
0697212a
CL
2674 goto out;
2675 }
0ff92245 2676 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2677 page = lookup_swap_cache(entry);
2678 if (!page) {
a5c9b696 2679 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2680 page = swapin_readahead(entry,
2681 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2682 if (!page) {
2683 /*
8f4e2101
HD
2684 * Back out if somebody else faulted in this pte
2685 * while we released the pte lock.
1da177e4 2686 */
8f4e2101 2687 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2688 if (likely(pte_same(*page_table, orig_pte)))
2689 ret = VM_FAULT_OOM;
0ff92245 2690 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2691 goto unlock;
1da177e4
LT
2692 }
2693
2694 /* Had to read the page from swap area: Major fault */
2695 ret = VM_FAULT_MAJOR;
f8891e5e 2696 count_vm_event(PGMAJFAULT);
d1737fdb 2697 } else if (PageHWPoison(page)) {
71f72525
WF
2698 /*
2699 * hwpoisoned dirty swapcache pages are kept for killing
2700 * owner processes (which may be unknown at hwpoison time)
2701 */
d1737fdb
AK
2702 ret = VM_FAULT_HWPOISON;
2703 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2704 goto out_release;
1da177e4
LT
2705 }
2706
d065bd81 2707 locked = lock_page_or_retry(page, mm, flags);
073e587e 2708 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2709 if (!locked) {
2710 ret |= VM_FAULT_RETRY;
2711 goto out_release;
2712 }
073e587e 2713
4969c119 2714 /*
31c4a3d3
HD
2715 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2716 * release the swapcache from under us. The page pin, and pte_same
2717 * test below, are not enough to exclude that. Even if it is still
2718 * swapcache, we need to check that the page's swap has not changed.
4969c119 2719 */
31c4a3d3 2720 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2721 goto out_page;
2722
2723 if (ksm_might_need_to_copy(page, vma, address)) {
2724 swapcache = page;
2725 page = ksm_does_need_to_copy(page, vma, address);
2726
2727 if (unlikely(!page)) {
2728 ret = VM_FAULT_OOM;
2729 page = swapcache;
2730 swapcache = NULL;
2731 goto out_page;
2732 }
5ad64688
HD
2733 }
2734
2c26fdd7 2735 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2736 ret = VM_FAULT_OOM;
bc43f75c 2737 goto out_page;
8a9f3ccd
BS
2738 }
2739
1da177e4 2740 /*
8f4e2101 2741 * Back out if somebody else already faulted in this pte.
1da177e4 2742 */
8f4e2101 2743 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2744 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2745 goto out_nomap;
b8107480
KK
2746
2747 if (unlikely(!PageUptodate(page))) {
2748 ret = VM_FAULT_SIGBUS;
2749 goto out_nomap;
1da177e4
LT
2750 }
2751
8c7c6e34
KH
2752 /*
2753 * The page isn't present yet, go ahead with the fault.
2754 *
2755 * Be careful about the sequence of operations here.
2756 * To get its accounting right, reuse_swap_page() must be called
2757 * while the page is counted on swap but not yet in mapcount i.e.
2758 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2759 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2760 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2761 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2762 * in page->private. In this case, a record in swap_cgroup is silently
2763 * discarded at swap_free().
8c7c6e34 2764 */
1da177e4 2765
34e55232 2766 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2767 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2768 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2769 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2770 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2771 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2772 ret |= VM_FAULT_WRITE;
ad8c2ee8 2773 exclusive = 1;
1da177e4 2774 }
1da177e4
LT
2775 flush_icache_page(vma, page);
2776 set_pte_at(mm, address, page_table, pte);
ad8c2ee8 2777 do_page_add_anon_rmap(page, vma, address, exclusive);
03f3c433
KH
2778 /* It's better to call commit-charge after rmap is established */
2779 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2780
c475a8ab 2781 swap_free(entry);
b291f000 2782 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2783 try_to_free_swap(page);
c475a8ab 2784 unlock_page(page);
4969c119
AA
2785 if (swapcache) {
2786 /*
2787 * Hold the lock to avoid the swap entry to be reused
2788 * until we take the PT lock for the pte_same() check
2789 * (to avoid false positives from pte_same). For
2790 * further safety release the lock after the swap_free
2791 * so that the swap count won't change under a
2792 * parallel locked swapcache.
2793 */
2794 unlock_page(swapcache);
2795 page_cache_release(swapcache);
2796 }
c475a8ab 2797
30c9f3a9 2798 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2799 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2800 if (ret & VM_FAULT_ERROR)
2801 ret &= VM_FAULT_ERROR;
1da177e4
LT
2802 goto out;
2803 }
2804
2805 /* No need to invalidate - it was non-present before */
4b3073e1 2806 update_mmu_cache(vma, address, page_table);
65500d23 2807unlock:
8f4e2101 2808 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2809out:
2810 return ret;
b8107480 2811out_nomap:
7a81b88c 2812 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 2813 pte_unmap_unlock(page_table, ptl);
bc43f75c 2814out_page:
b8107480 2815 unlock_page(page);
4779cb31 2816out_release:
b8107480 2817 page_cache_release(page);
4969c119
AA
2818 if (swapcache) {
2819 unlock_page(swapcache);
2820 page_cache_release(swapcache);
2821 }
65500d23 2822 return ret;
1da177e4
LT
2823}
2824
320b2b8d 2825/*
8ca3eb08
TL
2826 * This is like a special single-page "expand_{down|up}wards()",
2827 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2828 * doesn't hit another vma.
320b2b8d
LT
2829 */
2830static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2831{
2832 address &= PAGE_MASK;
2833 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2834 struct vm_area_struct *prev = vma->vm_prev;
2835
2836 /*
2837 * Is there a mapping abutting this one below?
2838 *
2839 * That's only ok if it's the same stack mapping
2840 * that has gotten split..
2841 */
2842 if (prev && prev->vm_end == address)
2843 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2844
0e8e50e2 2845 expand_stack(vma, address - PAGE_SIZE);
320b2b8d 2846 }
8ca3eb08
TL
2847 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2848 struct vm_area_struct *next = vma->vm_next;
2849
2850 /* As VM_GROWSDOWN but s/below/above/ */
2851 if (next && next->vm_start == address + PAGE_SIZE)
2852 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2853
2854 expand_upwards(vma, address + PAGE_SIZE);
2855 }
320b2b8d
LT
2856 return 0;
2857}
2858
1da177e4 2859/*
8f4e2101
HD
2860 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2861 * but allow concurrent faults), and pte mapped but not yet locked.
2862 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2863 */
65500d23
HD
2864static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2865 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2866 unsigned int flags)
1da177e4 2867{
8f4e2101
HD
2868 struct page *page;
2869 spinlock_t *ptl;
1da177e4 2870 pte_t entry;
1da177e4 2871
11ac5524
LT
2872 pte_unmap(page_table);
2873
2874 /* Check if we need to add a guard page to the stack */
2875 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
2876 return VM_FAULT_SIGBUS;
2877
11ac5524 2878 /* Use the zero-page for reads */
62eede62
HD
2879 if (!(flags & FAULT_FLAG_WRITE)) {
2880 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2881 vma->vm_page_prot));
11ac5524 2882 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2883 if (!pte_none(*page_table))
2884 goto unlock;
2885 goto setpte;
2886 }
2887
557ed1fa 2888 /* Allocate our own private page. */
557ed1fa
NP
2889 if (unlikely(anon_vma_prepare(vma)))
2890 goto oom;
2891 page = alloc_zeroed_user_highpage_movable(vma, address);
2892 if (!page)
2893 goto oom;
0ed361de 2894 __SetPageUptodate(page);
8f4e2101 2895
2c26fdd7 2896 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2897 goto oom_free_page;
2898
557ed1fa 2899 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2900 if (vma->vm_flags & VM_WRITE)
2901 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2902
557ed1fa 2903 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2904 if (!pte_none(*page_table))
557ed1fa 2905 goto release;
9ba69294 2906
34e55232 2907 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 2908 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 2909setpte:
65500d23 2910 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2911
2912 /* No need to invalidate - it was non-present before */
4b3073e1 2913 update_mmu_cache(vma, address, page_table);
65500d23 2914unlock:
8f4e2101 2915 pte_unmap_unlock(page_table, ptl);
83c54070 2916 return 0;
8f4e2101 2917release:
8a9f3ccd 2918 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2919 page_cache_release(page);
2920 goto unlock;
8a9f3ccd 2921oom_free_page:
6dbf6d3b 2922 page_cache_release(page);
65500d23 2923oom:
1da177e4
LT
2924 return VM_FAULT_OOM;
2925}
2926
2927/*
54cb8821 2928 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2929 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2930 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2931 * the next page fault.
1da177e4
LT
2932 *
2933 * As this is called only for pages that do not currently exist, we
2934 * do not need to flush old virtual caches or the TLB.
2935 *
8f4e2101 2936 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2937 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2938 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2939 */
54cb8821 2940static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2941 unsigned long address, pmd_t *pmd,
54cb8821 2942 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2943{
16abfa08 2944 pte_t *page_table;
8f4e2101 2945 spinlock_t *ptl;
d0217ac0 2946 struct page *page;
1da177e4 2947 pte_t entry;
1da177e4 2948 int anon = 0;
5b4e655e 2949 int charged = 0;
d08b3851 2950 struct page *dirty_page = NULL;
d0217ac0
NP
2951 struct vm_fault vmf;
2952 int ret;
a200ee18 2953 int page_mkwrite = 0;
54cb8821 2954
d0217ac0
NP
2955 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2956 vmf.pgoff = pgoff;
2957 vmf.flags = flags;
2958 vmf.page = NULL;
1da177e4 2959
3c18ddd1 2960 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
2961 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
2962 VM_FAULT_RETRY)))
3c18ddd1 2963 return ret;
1da177e4 2964
a3b947ea
AK
2965 if (unlikely(PageHWPoison(vmf.page))) {
2966 if (ret & VM_FAULT_LOCKED)
2967 unlock_page(vmf.page);
2968 return VM_FAULT_HWPOISON;
2969 }
2970
d00806b1 2971 /*
d0217ac0 2972 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2973 * locked.
2974 */
83c54070 2975 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2976 lock_page(vmf.page);
54cb8821 2977 else
d0217ac0 2978 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2979
1da177e4
LT
2980 /*
2981 * Should we do an early C-O-W break?
2982 */
d0217ac0 2983 page = vmf.page;
54cb8821 2984 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2985 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2986 anon = 1;
d00806b1 2987 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2988 ret = VM_FAULT_OOM;
54cb8821 2989 goto out;
d00806b1 2990 }
83c54070
NP
2991 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2992 vma, address);
d00806b1 2993 if (!page) {
d0217ac0 2994 ret = VM_FAULT_OOM;
54cb8821 2995 goto out;
d00806b1 2996 }
2c26fdd7 2997 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
5b4e655e
KH
2998 ret = VM_FAULT_OOM;
2999 page_cache_release(page);
3000 goto out;
3001 }
3002 charged = 1;
b291f000
NP
3003 /*
3004 * Don't let another task, with possibly unlocked vma,
3005 * keep the mlocked page.
3006 */
3007 if (vma->vm_flags & VM_LOCKED)
3008 clear_page_mlock(vmf.page);
d0217ac0 3009 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3010 __SetPageUptodate(page);
9637a5ef 3011 } else {
54cb8821
NP
3012 /*
3013 * If the page will be shareable, see if the backing
9637a5ef 3014 * address space wants to know that the page is about
54cb8821
NP
3015 * to become writable
3016 */
69676147 3017 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3018 int tmp;
3019
69676147 3020 unlock_page(page);
b827e496 3021 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3022 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3023 if (unlikely(tmp &
3024 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3025 ret = tmp;
b827e496 3026 goto unwritable_page;
d0217ac0 3027 }
b827e496
NP
3028 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3029 lock_page(page);
3030 if (!page->mapping) {
3031 ret = 0; /* retry the fault */
3032 unlock_page(page);
3033 goto unwritable_page;
3034 }
3035 } else
3036 VM_BUG_ON(!PageLocked(page));
a200ee18 3037 page_mkwrite = 1;
9637a5ef
DH
3038 }
3039 }
54cb8821 3040
1da177e4
LT
3041 }
3042
8f4e2101 3043 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3044
3045 /*
3046 * This silly early PAGE_DIRTY setting removes a race
3047 * due to the bad i386 page protection. But it's valid
3048 * for other architectures too.
3049 *
30c9f3a9 3050 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3051 * an exclusive copy of the page, or this is a shared mapping,
3052 * so we can make it writable and dirty to avoid having to
3053 * handle that later.
3054 */
3055 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3056 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3057 flush_icache_page(vma, page);
3058 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3059 if (flags & FAULT_FLAG_WRITE)
1da177e4 3060 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 3061 if (anon) {
34e55232 3062 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3063 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3064 } else {
34e55232 3065 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3066 page_add_file_rmap(page);
54cb8821 3067 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3068 dirty_page = page;
d08b3851
PZ
3069 get_page(dirty_page);
3070 }
4294621f 3071 }
64d6519d 3072 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3073
3074 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3075 update_mmu_cache(vma, address, page_table);
1da177e4 3076 } else {
5b4e655e
KH
3077 if (charged)
3078 mem_cgroup_uncharge_page(page);
d00806b1
NP
3079 if (anon)
3080 page_cache_release(page);
3081 else
54cb8821 3082 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3083 }
3084
8f4e2101 3085 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
3086
3087out:
b827e496
NP
3088 if (dirty_page) {
3089 struct address_space *mapping = page->mapping;
8f7b3d15 3090
b827e496
NP
3091 if (set_page_dirty(dirty_page))
3092 page_mkwrite = 1;
3093 unlock_page(dirty_page);
d08b3851 3094 put_page(dirty_page);
b827e496
NP
3095 if (page_mkwrite && mapping) {
3096 /*
3097 * Some device drivers do not set page.mapping but still
3098 * dirty their pages
3099 */
3100 balance_dirty_pages_ratelimited(mapping);
3101 }
3102
3103 /* file_update_time outside page_lock */
3104 if (vma->vm_file)
3105 file_update_time(vma->vm_file);
3106 } else {
3107 unlock_page(vmf.page);
3108 if (anon)
3109 page_cache_release(vmf.page);
d08b3851 3110 }
d00806b1 3111
83c54070 3112 return ret;
b827e496
NP
3113
3114unwritable_page:
3115 page_cache_release(page);
3116 return ret;
54cb8821 3117}
d00806b1 3118
54cb8821
NP
3119static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3120 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3121 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3122{
3123 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3124 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3125
16abfa08
HD
3126 pte_unmap(page_table);
3127 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3128}
3129
1da177e4
LT
3130/*
3131 * Fault of a previously existing named mapping. Repopulate the pte
3132 * from the encoded file_pte if possible. This enables swappable
3133 * nonlinear vmas.
8f4e2101
HD
3134 *
3135 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3136 * but allow concurrent faults), and pte mapped but not yet locked.
3137 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3138 */
d0217ac0 3139static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3140 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3141 unsigned int flags, pte_t orig_pte)
1da177e4 3142{
65500d23 3143 pgoff_t pgoff;
1da177e4 3144
30c9f3a9
LT
3145 flags |= FAULT_FLAG_NONLINEAR;
3146
4c21e2f2 3147 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3148 return 0;
1da177e4 3149
2509ef26 3150 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3151 /*
3152 * Page table corrupted: show pte and kill process.
3153 */
3dc14741 3154 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3155 return VM_FAULT_SIGBUS;
65500d23 3156 }
65500d23
HD
3157
3158 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3159 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3160}
3161
3162/*
3163 * These routines also need to handle stuff like marking pages dirty
3164 * and/or accessed for architectures that don't do it in hardware (most
3165 * RISC architectures). The early dirtying is also good on the i386.
3166 *
3167 * There is also a hook called "update_mmu_cache()" that architectures
3168 * with external mmu caches can use to update those (ie the Sparc or
3169 * PowerPC hashed page tables that act as extended TLBs).
3170 *
c74df32c
HD
3171 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3172 * but allow concurrent faults), and pte mapped but not yet locked.
3173 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
3174 */
3175static inline int handle_pte_fault(struct mm_struct *mm,
65500d23 3176 struct vm_area_struct *vma, unsigned long address,
30c9f3a9 3177 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3178{
3179 pte_t entry;
8f4e2101 3180 spinlock_t *ptl;
1da177e4 3181
8dab5241 3182 entry = *pte;
1da177e4 3183 if (!pte_present(entry)) {
65500d23 3184 if (pte_none(entry)) {
f4b81804 3185 if (vma->vm_ops) {
3c18ddd1 3186 if (likely(vma->vm_ops->fault))
54cb8821 3187 return do_linear_fault(mm, vma, address,
30c9f3a9 3188 pte, pmd, flags, entry);
f4b81804
JS
3189 }
3190 return do_anonymous_page(mm, vma, address,
30c9f3a9 3191 pte, pmd, flags);
65500d23 3192 }
1da177e4 3193 if (pte_file(entry))
d0217ac0 3194 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3195 pte, pmd, flags, entry);
65500d23 3196 return do_swap_page(mm, vma, address,
30c9f3a9 3197 pte, pmd, flags, entry);
1da177e4
LT
3198 }
3199
4c21e2f2 3200 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3201 spin_lock(ptl);
3202 if (unlikely(!pte_same(*pte, entry)))
3203 goto unlock;
30c9f3a9 3204 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3205 if (!pte_write(entry))
8f4e2101
HD
3206 return do_wp_page(mm, vma, address,
3207 pte, pmd, ptl, entry);
1da177e4
LT
3208 entry = pte_mkdirty(entry);
3209 }
3210 entry = pte_mkyoung(entry);
30c9f3a9 3211 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3212 update_mmu_cache(vma, address, pte);
1a44e149
AA
3213 } else {
3214 /*
3215 * This is needed only for protection faults but the arch code
3216 * is not yet telling us if this is a protection fault or not.
3217 * This still avoids useless tlb flushes for .text page faults
3218 * with threads.
3219 */
30c9f3a9 3220 if (flags & FAULT_FLAG_WRITE)
61c77326 3221 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3222 }
8f4e2101
HD
3223unlock:
3224 pte_unmap_unlock(pte, ptl);
83c54070 3225 return 0;
1da177e4
LT
3226}
3227
3228/*
3229 * By the time we get here, we already hold the mm semaphore
3230 */
83c54070 3231int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3232 unsigned long address, unsigned int flags)
1da177e4
LT
3233{
3234 pgd_t *pgd;
3235 pud_t *pud;
3236 pmd_t *pmd;
3237 pte_t *pte;
3238
3239 __set_current_state(TASK_RUNNING);
3240
f8891e5e 3241 count_vm_event(PGFAULT);
1da177e4 3242
34e55232
KH
3243 /* do counter updates before entering really critical section. */
3244 check_sync_rss_stat(current);
3245
ac9b9c66 3246 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3247 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3248
1da177e4 3249 pgd = pgd_offset(mm, address);
1da177e4
LT
3250 pud = pud_alloc(mm, pgd, address);
3251 if (!pud)
c74df32c 3252 return VM_FAULT_OOM;
1da177e4
LT
3253 pmd = pmd_alloc(mm, pud, address);
3254 if (!pmd)
c74df32c 3255 return VM_FAULT_OOM;
1da177e4
LT
3256 pte = pte_alloc_map(mm, pmd, address);
3257 if (!pte)
c74df32c 3258 return VM_FAULT_OOM;
1da177e4 3259
30c9f3a9 3260 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3261}
3262
3263#ifndef __PAGETABLE_PUD_FOLDED
3264/*
3265 * Allocate page upper directory.
872fec16 3266 * We've already handled the fast-path in-line.
1da177e4 3267 */
1bb3630e 3268int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3269{
c74df32c
HD
3270 pud_t *new = pud_alloc_one(mm, address);
3271 if (!new)
1bb3630e 3272 return -ENOMEM;
1da177e4 3273
362a61ad
NP
3274 smp_wmb(); /* See comment in __pte_alloc */
3275
872fec16 3276 spin_lock(&mm->page_table_lock);
1bb3630e 3277 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3278 pud_free(mm, new);
1bb3630e
HD
3279 else
3280 pgd_populate(mm, pgd, new);
c74df32c 3281 spin_unlock(&mm->page_table_lock);
1bb3630e 3282 return 0;
1da177e4
LT
3283}
3284#endif /* __PAGETABLE_PUD_FOLDED */
3285
3286#ifndef __PAGETABLE_PMD_FOLDED
3287/*
3288 * Allocate page middle directory.
872fec16 3289 * We've already handled the fast-path in-line.
1da177e4 3290 */
1bb3630e 3291int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3292{
c74df32c
HD
3293 pmd_t *new = pmd_alloc_one(mm, address);
3294 if (!new)
1bb3630e 3295 return -ENOMEM;
1da177e4 3296
362a61ad
NP
3297 smp_wmb(); /* See comment in __pte_alloc */
3298
872fec16 3299 spin_lock(&mm->page_table_lock);
1da177e4 3300#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3301 if (pud_present(*pud)) /* Another has populated it */
5e541973 3302 pmd_free(mm, new);
1bb3630e
HD
3303 else
3304 pud_populate(mm, pud, new);
1da177e4 3305#else
1bb3630e 3306 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3307 pmd_free(mm, new);
1bb3630e
HD
3308 else
3309 pgd_populate(mm, pud, new);
1da177e4 3310#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3311 spin_unlock(&mm->page_table_lock);
1bb3630e 3312 return 0;
e0f39591 3313}
1da177e4
LT
3314#endif /* __PAGETABLE_PMD_FOLDED */
3315
3316int make_pages_present(unsigned long addr, unsigned long end)
3317{
3318 int ret, len, write;
3319 struct vm_area_struct * vma;
3320
3321 vma = find_vma(current->mm, addr);
3322 if (!vma)
a477097d 3323 return -ENOMEM;
5ecfda04
ML
3324 /*
3325 * We want to touch writable mappings with a write fault in order
3326 * to break COW, except for shared mappings because these don't COW
3327 * and we would not want to dirty them for nothing.
3328 */
3329 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
5bcb28b1
ES
3330 BUG_ON(addr >= end);
3331 BUG_ON(end > vma->vm_end);
68e116a3 3332 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3333 ret = get_user_pages(current, current->mm, addr,
3334 len, write, 0, NULL, NULL);
c11d69d8 3335 if (ret < 0)
1da177e4 3336 return ret;
9978ad58 3337 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3338}
3339
1da177e4
LT
3340#if !defined(__HAVE_ARCH_GATE_AREA)
3341
3342#if defined(AT_SYSINFO_EHDR)
5ce7852c 3343static struct vm_area_struct gate_vma;
1da177e4
LT
3344
3345static int __init gate_vma_init(void)
3346{
3347 gate_vma.vm_mm = NULL;
3348 gate_vma.vm_start = FIXADDR_USER_START;
3349 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3350 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3351 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3352 /*
3353 * Make sure the vDSO gets into every core dump.
3354 * Dumping its contents makes post-mortem fully interpretable later
3355 * without matching up the same kernel and hardware config to see
3356 * what PC values meant.
3357 */
3358 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3359 return 0;
3360}
3361__initcall(gate_vma_init);
3362#endif
3363
3364struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3365{
3366#ifdef AT_SYSINFO_EHDR
3367 return &gate_vma;
3368#else
3369 return NULL;
3370#endif
3371}
3372
3373int in_gate_area_no_task(unsigned long addr)
3374{
3375#ifdef AT_SYSINFO_EHDR
3376 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3377 return 1;
3378#endif
3379 return 0;
3380}
3381
3382#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3383
1b36ba81 3384static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3385 pte_t **ptepp, spinlock_t **ptlp)
3386{
3387 pgd_t *pgd;
3388 pud_t *pud;
3389 pmd_t *pmd;
3390 pte_t *ptep;
3391
3392 pgd = pgd_offset(mm, address);
3393 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3394 goto out;
3395
3396 pud = pud_offset(pgd, address);
3397 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3398 goto out;
3399
3400 pmd = pmd_offset(pud, address);
3401 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3402 goto out;
3403
3404 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3405 if (pmd_huge(*pmd))
3406 goto out;
3407
3408 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3409 if (!ptep)
3410 goto out;
3411 if (!pte_present(*ptep))
3412 goto unlock;
3413 *ptepp = ptep;
3414 return 0;
3415unlock:
3416 pte_unmap_unlock(ptep, *ptlp);
3417out:
3418 return -EINVAL;
3419}
3420
1b36ba81
NK
3421static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3422 pte_t **ptepp, spinlock_t **ptlp)
3423{
3424 int res;
3425
3426 /* (void) is needed to make gcc happy */
3427 (void) __cond_lock(*ptlp,
3428 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3429 return res;
3430}
3431
3b6748e2
JW
3432/**
3433 * follow_pfn - look up PFN at a user virtual address
3434 * @vma: memory mapping
3435 * @address: user virtual address
3436 * @pfn: location to store found PFN
3437 *
3438 * Only IO mappings and raw PFN mappings are allowed.
3439 *
3440 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3441 */
3442int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3443 unsigned long *pfn)
3444{
3445 int ret = -EINVAL;
3446 spinlock_t *ptl;
3447 pte_t *ptep;
3448
3449 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3450 return ret;
3451
3452 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3453 if (ret)
3454 return ret;
3455 *pfn = pte_pfn(*ptep);
3456 pte_unmap_unlock(ptep, ptl);
3457 return 0;
3458}
3459EXPORT_SYMBOL(follow_pfn);
3460
28b2ee20 3461#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3462int follow_phys(struct vm_area_struct *vma,
3463 unsigned long address, unsigned int flags,
3464 unsigned long *prot, resource_size_t *phys)
28b2ee20 3465{
03668a4d 3466 int ret = -EINVAL;
28b2ee20
RR
3467 pte_t *ptep, pte;
3468 spinlock_t *ptl;
28b2ee20 3469
d87fe660 3470 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3471 goto out;
28b2ee20 3472
03668a4d 3473 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3474 goto out;
28b2ee20 3475 pte = *ptep;
03668a4d 3476
28b2ee20
RR
3477 if ((flags & FOLL_WRITE) && !pte_write(pte))
3478 goto unlock;
28b2ee20
RR
3479
3480 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3481 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3482
03668a4d 3483 ret = 0;
28b2ee20
RR
3484unlock:
3485 pte_unmap_unlock(ptep, ptl);
3486out:
d87fe660 3487 return ret;
28b2ee20
RR
3488}
3489
3490int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3491 void *buf, int len, int write)
3492{
3493 resource_size_t phys_addr;
3494 unsigned long prot = 0;
2bc7273b 3495 void __iomem *maddr;
28b2ee20
RR
3496 int offset = addr & (PAGE_SIZE-1);
3497
d87fe660 3498 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3499 return -EINVAL;
3500
3501 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3502 if (write)
3503 memcpy_toio(maddr + offset, buf, len);
3504 else
3505 memcpy_fromio(buf, maddr + offset, len);
3506 iounmap(maddr);
3507
3508 return len;
3509}
3510#endif
3511
0ec76a11
DH
3512/*
3513 * Access another process' address space.
3514 * Source/target buffer must be kernel space,
3515 * Do not walk the page table directly, use get_user_pages
3516 */
3517int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3518{
3519 struct mm_struct *mm;
3520 struct vm_area_struct *vma;
0ec76a11
DH
3521 void *old_buf = buf;
3522
3523 mm = get_task_mm(tsk);
3524 if (!mm)
3525 return 0;
3526
3527 down_read(&mm->mmap_sem);
183ff22b 3528 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3529 while (len) {
3530 int bytes, ret, offset;
3531 void *maddr;
28b2ee20 3532 struct page *page = NULL;
0ec76a11
DH
3533
3534 ret = get_user_pages(tsk, mm, addr, 1,
3535 write, 1, &page, &vma);
28b2ee20
RR
3536 if (ret <= 0) {
3537 /*
3538 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3539 * we can access using slightly different code.
3540 */
3541#ifdef CONFIG_HAVE_IOREMAP_PROT
3542 vma = find_vma(mm, addr);
3543 if (!vma)
3544 break;
3545 if (vma->vm_ops && vma->vm_ops->access)
3546 ret = vma->vm_ops->access(vma, addr, buf,
3547 len, write);
3548 if (ret <= 0)
3549#endif
3550 break;
3551 bytes = ret;
0ec76a11 3552 } else {
28b2ee20
RR
3553 bytes = len;
3554 offset = addr & (PAGE_SIZE-1);
3555 if (bytes > PAGE_SIZE-offset)
3556 bytes = PAGE_SIZE-offset;
3557
3558 maddr = kmap(page);
3559 if (write) {
3560 copy_to_user_page(vma, page, addr,
3561 maddr + offset, buf, bytes);
3562 set_page_dirty_lock(page);
3563 } else {
3564 copy_from_user_page(vma, page, addr,
3565 buf, maddr + offset, bytes);
3566 }
3567 kunmap(page);
3568 page_cache_release(page);
0ec76a11 3569 }
0ec76a11
DH
3570 len -= bytes;
3571 buf += bytes;
3572 addr += bytes;
3573 }
3574 up_read(&mm->mmap_sem);
3575 mmput(mm);
3576
3577 return buf - old_buf;
3578}
03252919
AK
3579
3580/*
3581 * Print the name of a VMA.
3582 */
3583void print_vma_addr(char *prefix, unsigned long ip)
3584{
3585 struct mm_struct *mm = current->mm;
3586 struct vm_area_struct *vma;
3587
e8bff74a
IM
3588 /*
3589 * Do not print if we are in atomic
3590 * contexts (in exception stacks, etc.):
3591 */
3592 if (preempt_count())
3593 return;
3594
03252919
AK
3595 down_read(&mm->mmap_sem);
3596 vma = find_vma(mm, ip);
3597 if (vma && vma->vm_file) {
3598 struct file *f = vma->vm_file;
3599 char *buf = (char *)__get_free_page(GFP_KERNEL);
3600 if (buf) {
3601 char *p, *s;
3602
cf28b486 3603 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3604 if (IS_ERR(p))
3605 p = "?";
3606 s = strrchr(p, '/');
3607 if (s)
3608 p = s+1;
3609 printk("%s%s[%lx+%lx]", prefix, p,
3610 vma->vm_start,
3611 vma->vm_end - vma->vm_start);
3612 free_page((unsigned long)buf);
3613 }
3614 }
3615 up_read(&current->mm->mmap_sem);
3616}
3ee1afa3
NP
3617
3618#ifdef CONFIG_PROVE_LOCKING
3619void might_fault(void)
3620{
95156f00
PZ
3621 /*
3622 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3623 * holding the mmap_sem, this is safe because kernel memory doesn't
3624 * get paged out, therefore we'll never actually fault, and the
3625 * below annotations will generate false positives.
3626 */
3627 if (segment_eq(get_fs(), KERNEL_DS))
3628 return;
3629
3ee1afa3
NP
3630 might_sleep();
3631 /*
3632 * it would be nicer only to annotate paths which are not under
3633 * pagefault_disable, however that requires a larger audit and
3634 * providing helpers like get_user_atomic.
3635 */
3636 if (!in_atomic() && current->mm)
3637 might_lock_read(&current->mm->mmap_sem);
3638}
3639EXPORT_SYMBOL(might_fault);
3640#endif