]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/memory.c
VM: make unmap_vmas() return void
[mirror_ubuntu-focal-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
1da177e4 60
6952b61d 61#include <asm/io.h>
1da177e4
LT
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
42b77728
JB
68#include "internal.h"
69
d41dee36 70#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
1da177e4
LT
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
1da177e4 91
32a93233
IM
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100 1;
101#else
102 2;
103#endif
a62eaf15
AK
104
105static int __init disable_randmaps(char *s)
106{
107 randomize_va_space = 0;
9b41046c 108 return 1;
a62eaf15
AK
109}
110__setup("norandmaps", disable_randmaps);
111
62eede62 112unsigned long zero_pfn __read_mostly;
03f6462a 113unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122}
123core_initcall(init_zero_pfn);
a62eaf15 124
d559db08 125
34e55232
KH
126#if defined(SPLIT_RSS_COUNTING)
127
a3a2e76c 128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
34e55232
KH
129{
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
136 }
137 }
138 task->rss_stat.events = 0;
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
161}
162
163unsigned long get_mm_counter(struct mm_struct *mm, int member)
164{
165 long val = 0;
166
167 /*
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
170 */
171 val = atomic_long_read(&mm->rss_stat.count[member]);
172 /*
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
175 */
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
179}
180
181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182{
183 __sync_task_rss_stat(task, mm);
184}
9547d01b 185#else /* SPLIT_RSS_COUNTING */
34e55232
KH
186
187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190static void check_sync_rss_stat(struct task_struct *task)
191{
192}
193
9547d01b
PZ
194#endif /* SPLIT_RSS_COUNTING */
195
196#ifdef HAVE_GENERIC_MMU_GATHER
197
198static int tlb_next_batch(struct mmu_gather *tlb)
199{
200 struct mmu_gather_batch *batch;
201
202 batch = tlb->active;
203 if (batch->next) {
204 tlb->active = batch->next;
205 return 1;
206 }
207
208 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
209 if (!batch)
210 return 0;
211
212 batch->next = NULL;
213 batch->nr = 0;
214 batch->max = MAX_GATHER_BATCH;
215
216 tlb->active->next = batch;
217 tlb->active = batch;
218
219 return 1;
220}
221
222/* tlb_gather_mmu
223 * Called to initialize an (on-stack) mmu_gather structure for page-table
224 * tear-down from @mm. The @fullmm argument is used when @mm is without
225 * users and we're going to destroy the full address space (exit/execve).
226 */
227void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
228{
229 tlb->mm = mm;
230
231 tlb->fullmm = fullmm;
232 tlb->need_flush = 0;
233 tlb->fast_mode = (num_possible_cpus() == 1);
234 tlb->local.next = NULL;
235 tlb->local.nr = 0;
236 tlb->local.max = ARRAY_SIZE(tlb->__pages);
237 tlb->active = &tlb->local;
238
239#ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb->batch = NULL;
241#endif
242}
243
244void tlb_flush_mmu(struct mmu_gather *tlb)
245{
246 struct mmu_gather_batch *batch;
247
248 if (!tlb->need_flush)
249 return;
250 tlb->need_flush = 0;
251 tlb_flush(tlb);
252#ifdef CONFIG_HAVE_RCU_TABLE_FREE
253 tlb_table_flush(tlb);
34e55232
KH
254#endif
255
9547d01b
PZ
256 if (tlb_fast_mode(tlb))
257 return;
258
259 for (batch = &tlb->local; batch; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
262 }
263 tlb->active = &tlb->local;
264}
265
266/* tlb_finish_mmu
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
269 */
270void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271{
272 struct mmu_gather_batch *batch, *next;
273
274 tlb_flush_mmu(tlb);
275
276 /* keep the page table cache within bounds */
277 check_pgt_cache();
278
279 for (batch = tlb->local.next; batch; batch = next) {
280 next = batch->next;
281 free_pages((unsigned long)batch, 0);
282 }
283 tlb->local.next = NULL;
284}
285
286/* __tlb_remove_page
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
291 */
292int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293{
294 struct mmu_gather_batch *batch;
295
f21760b1 296 VM_BUG_ON(!tlb->need_flush);
9547d01b
PZ
297
298 if (tlb_fast_mode(tlb)) {
299 free_page_and_swap_cache(page);
300 return 1; /* avoid calling tlb_flush_mmu() */
301 }
302
303 batch = tlb->active;
304 batch->pages[batch->nr++] = page;
305 if (batch->nr == batch->max) {
306 if (!tlb_next_batch(tlb))
307 return 0;
0b43c3aa 308 batch = tlb->active;
9547d01b
PZ
309 }
310 VM_BUG_ON(batch->nr > batch->max);
311
312 return batch->max - batch->nr;
313}
314
315#endif /* HAVE_GENERIC_MMU_GATHER */
316
26723911
PZ
317#ifdef CONFIG_HAVE_RCU_TABLE_FREE
318
319/*
320 * See the comment near struct mmu_table_batch.
321 */
322
323static void tlb_remove_table_smp_sync(void *arg)
324{
325 /* Simply deliver the interrupt */
326}
327
328static void tlb_remove_table_one(void *table)
329{
330 /*
331 * This isn't an RCU grace period and hence the page-tables cannot be
332 * assumed to be actually RCU-freed.
333 *
334 * It is however sufficient for software page-table walkers that rely on
335 * IRQ disabling. See the comment near struct mmu_table_batch.
336 */
337 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
338 __tlb_remove_table(table);
339}
340
341static void tlb_remove_table_rcu(struct rcu_head *head)
342{
343 struct mmu_table_batch *batch;
344 int i;
345
346 batch = container_of(head, struct mmu_table_batch, rcu);
347
348 for (i = 0; i < batch->nr; i++)
349 __tlb_remove_table(batch->tables[i]);
350
351 free_page((unsigned long)batch);
352}
353
354void tlb_table_flush(struct mmu_gather *tlb)
355{
356 struct mmu_table_batch **batch = &tlb->batch;
357
358 if (*batch) {
359 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
360 *batch = NULL;
361 }
362}
363
364void tlb_remove_table(struct mmu_gather *tlb, void *table)
365{
366 struct mmu_table_batch **batch = &tlb->batch;
367
368 tlb->need_flush = 1;
369
370 /*
371 * When there's less then two users of this mm there cannot be a
372 * concurrent page-table walk.
373 */
374 if (atomic_read(&tlb->mm->mm_users) < 2) {
375 __tlb_remove_table(table);
376 return;
377 }
378
379 if (*batch == NULL) {
380 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
381 if (*batch == NULL) {
382 tlb_remove_table_one(table);
383 return;
384 }
385 (*batch)->nr = 0;
386 }
387 (*batch)->tables[(*batch)->nr++] = table;
388 if ((*batch)->nr == MAX_TABLE_BATCH)
389 tlb_table_flush(tlb);
390}
391
9547d01b 392#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 393
1da177e4
LT
394/*
395 * If a p?d_bad entry is found while walking page tables, report
396 * the error, before resetting entry to p?d_none. Usually (but
397 * very seldom) called out from the p?d_none_or_clear_bad macros.
398 */
399
400void pgd_clear_bad(pgd_t *pgd)
401{
402 pgd_ERROR(*pgd);
403 pgd_clear(pgd);
404}
405
406void pud_clear_bad(pud_t *pud)
407{
408 pud_ERROR(*pud);
409 pud_clear(pud);
410}
411
412void pmd_clear_bad(pmd_t *pmd)
413{
414 pmd_ERROR(*pmd);
415 pmd_clear(pmd);
416}
417
418/*
419 * Note: this doesn't free the actual pages themselves. That
420 * has been handled earlier when unmapping all the memory regions.
421 */
9e1b32ca
BH
422static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
423 unsigned long addr)
1da177e4 424{
2f569afd 425 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 426 pmd_clear(pmd);
9e1b32ca 427 pte_free_tlb(tlb, token, addr);
e0da382c 428 tlb->mm->nr_ptes--;
1da177e4
LT
429}
430
e0da382c
HD
431static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
432 unsigned long addr, unsigned long end,
433 unsigned long floor, unsigned long ceiling)
1da177e4
LT
434{
435 pmd_t *pmd;
436 unsigned long next;
e0da382c 437 unsigned long start;
1da177e4 438
e0da382c 439 start = addr;
1da177e4 440 pmd = pmd_offset(pud, addr);
1da177e4
LT
441 do {
442 next = pmd_addr_end(addr, end);
443 if (pmd_none_or_clear_bad(pmd))
444 continue;
9e1b32ca 445 free_pte_range(tlb, pmd, addr);
1da177e4
LT
446 } while (pmd++, addr = next, addr != end);
447
e0da382c
HD
448 start &= PUD_MASK;
449 if (start < floor)
450 return;
451 if (ceiling) {
452 ceiling &= PUD_MASK;
453 if (!ceiling)
454 return;
1da177e4 455 }
e0da382c
HD
456 if (end - 1 > ceiling - 1)
457 return;
458
459 pmd = pmd_offset(pud, start);
460 pud_clear(pud);
9e1b32ca 461 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
462}
463
e0da382c
HD
464static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
465 unsigned long addr, unsigned long end,
466 unsigned long floor, unsigned long ceiling)
1da177e4
LT
467{
468 pud_t *pud;
469 unsigned long next;
e0da382c 470 unsigned long start;
1da177e4 471
e0da382c 472 start = addr;
1da177e4 473 pud = pud_offset(pgd, addr);
1da177e4
LT
474 do {
475 next = pud_addr_end(addr, end);
476 if (pud_none_or_clear_bad(pud))
477 continue;
e0da382c 478 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
479 } while (pud++, addr = next, addr != end);
480
e0da382c
HD
481 start &= PGDIR_MASK;
482 if (start < floor)
483 return;
484 if (ceiling) {
485 ceiling &= PGDIR_MASK;
486 if (!ceiling)
487 return;
1da177e4 488 }
e0da382c
HD
489 if (end - 1 > ceiling - 1)
490 return;
491
492 pud = pud_offset(pgd, start);
493 pgd_clear(pgd);
9e1b32ca 494 pud_free_tlb(tlb, pud, start);
1da177e4
LT
495}
496
497/*
e0da382c
HD
498 * This function frees user-level page tables of a process.
499 *
1da177e4
LT
500 * Must be called with pagetable lock held.
501 */
42b77728 502void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
503 unsigned long addr, unsigned long end,
504 unsigned long floor, unsigned long ceiling)
1da177e4
LT
505{
506 pgd_t *pgd;
507 unsigned long next;
e0da382c
HD
508
509 /*
510 * The next few lines have given us lots of grief...
511 *
512 * Why are we testing PMD* at this top level? Because often
513 * there will be no work to do at all, and we'd prefer not to
514 * go all the way down to the bottom just to discover that.
515 *
516 * Why all these "- 1"s? Because 0 represents both the bottom
517 * of the address space and the top of it (using -1 for the
518 * top wouldn't help much: the masks would do the wrong thing).
519 * The rule is that addr 0 and floor 0 refer to the bottom of
520 * the address space, but end 0 and ceiling 0 refer to the top
521 * Comparisons need to use "end - 1" and "ceiling - 1" (though
522 * that end 0 case should be mythical).
523 *
524 * Wherever addr is brought up or ceiling brought down, we must
525 * be careful to reject "the opposite 0" before it confuses the
526 * subsequent tests. But what about where end is brought down
527 * by PMD_SIZE below? no, end can't go down to 0 there.
528 *
529 * Whereas we round start (addr) and ceiling down, by different
530 * masks at different levels, in order to test whether a table
531 * now has no other vmas using it, so can be freed, we don't
532 * bother to round floor or end up - the tests don't need that.
533 */
1da177e4 534
e0da382c
HD
535 addr &= PMD_MASK;
536 if (addr < floor) {
537 addr += PMD_SIZE;
538 if (!addr)
539 return;
540 }
541 if (ceiling) {
542 ceiling &= PMD_MASK;
543 if (!ceiling)
544 return;
545 }
546 if (end - 1 > ceiling - 1)
547 end -= PMD_SIZE;
548 if (addr > end - 1)
549 return;
550
42b77728 551 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
552 do {
553 next = pgd_addr_end(addr, end);
554 if (pgd_none_or_clear_bad(pgd))
555 continue;
42b77728 556 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 557 } while (pgd++, addr = next, addr != end);
e0da382c
HD
558}
559
42b77728 560void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 561 unsigned long floor, unsigned long ceiling)
e0da382c
HD
562{
563 while (vma) {
564 struct vm_area_struct *next = vma->vm_next;
565 unsigned long addr = vma->vm_start;
566
8f4f8c16 567 /*
25d9e2d1 568 * Hide vma from rmap and truncate_pagecache before freeing
569 * pgtables
8f4f8c16 570 */
5beb4930 571 unlink_anon_vmas(vma);
8f4f8c16
HD
572 unlink_file_vma(vma);
573
9da61aef 574 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 575 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 576 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
577 } else {
578 /*
579 * Optimization: gather nearby vmas into one call down
580 */
581 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 582 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
583 vma = next;
584 next = vma->vm_next;
5beb4930 585 unlink_anon_vmas(vma);
8f4f8c16 586 unlink_file_vma(vma);
3bf5ee95
HD
587 }
588 free_pgd_range(tlb, addr, vma->vm_end,
589 floor, next? next->vm_start: ceiling);
590 }
e0da382c
HD
591 vma = next;
592 }
1da177e4
LT
593}
594
8ac1f832
AA
595int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
596 pmd_t *pmd, unsigned long address)
1da177e4 597{
2f569afd 598 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 599 int wait_split_huge_page;
1bb3630e
HD
600 if (!new)
601 return -ENOMEM;
602
362a61ad
NP
603 /*
604 * Ensure all pte setup (eg. pte page lock and page clearing) are
605 * visible before the pte is made visible to other CPUs by being
606 * put into page tables.
607 *
608 * The other side of the story is the pointer chasing in the page
609 * table walking code (when walking the page table without locking;
610 * ie. most of the time). Fortunately, these data accesses consist
611 * of a chain of data-dependent loads, meaning most CPUs (alpha
612 * being the notable exception) will already guarantee loads are
613 * seen in-order. See the alpha page table accessors for the
614 * smp_read_barrier_depends() barriers in page table walking code.
615 */
616 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
617
c74df32c 618 spin_lock(&mm->page_table_lock);
8ac1f832
AA
619 wait_split_huge_page = 0;
620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 621 mm->nr_ptes++;
1da177e4 622 pmd_populate(mm, pmd, new);
2f569afd 623 new = NULL;
8ac1f832
AA
624 } else if (unlikely(pmd_trans_splitting(*pmd)))
625 wait_split_huge_page = 1;
c74df32c 626 spin_unlock(&mm->page_table_lock);
2f569afd
MS
627 if (new)
628 pte_free(mm, new);
8ac1f832
AA
629 if (wait_split_huge_page)
630 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 631 return 0;
1da177e4
LT
632}
633
1bb3630e 634int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 635{
1bb3630e
HD
636 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
637 if (!new)
638 return -ENOMEM;
639
362a61ad
NP
640 smp_wmb(); /* See comment in __pte_alloc */
641
1bb3630e 642 spin_lock(&init_mm.page_table_lock);
8ac1f832 643 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 644 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 645 new = NULL;
8ac1f832
AA
646 } else
647 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 648 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
649 if (new)
650 pte_free_kernel(&init_mm, new);
1bb3630e 651 return 0;
1da177e4
LT
652}
653
d559db08
KH
654static inline void init_rss_vec(int *rss)
655{
656 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
657}
658
659static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 660{
d559db08
KH
661 int i;
662
34e55232
KH
663 if (current->mm == mm)
664 sync_mm_rss(current, mm);
d559db08
KH
665 for (i = 0; i < NR_MM_COUNTERS; i++)
666 if (rss[i])
667 add_mm_counter(mm, i, rss[i]);
ae859762
HD
668}
669
b5810039 670/*
6aab341e
LT
671 * This function is called to print an error when a bad pte
672 * is found. For example, we might have a PFN-mapped pte in
673 * a region that doesn't allow it.
b5810039
NP
674 *
675 * The calling function must still handle the error.
676 */
3dc14741
HD
677static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
678 pte_t pte, struct page *page)
b5810039 679{
3dc14741
HD
680 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
681 pud_t *pud = pud_offset(pgd, addr);
682 pmd_t *pmd = pmd_offset(pud, addr);
683 struct address_space *mapping;
684 pgoff_t index;
d936cf9b
HD
685 static unsigned long resume;
686 static unsigned long nr_shown;
687 static unsigned long nr_unshown;
688
689 /*
690 * Allow a burst of 60 reports, then keep quiet for that minute;
691 * or allow a steady drip of one report per second.
692 */
693 if (nr_shown == 60) {
694 if (time_before(jiffies, resume)) {
695 nr_unshown++;
696 return;
697 }
698 if (nr_unshown) {
1e9e6365
HD
699 printk(KERN_ALERT
700 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
701 nr_unshown);
702 nr_unshown = 0;
703 }
704 nr_shown = 0;
705 }
706 if (nr_shown++ == 0)
707 resume = jiffies + 60 * HZ;
3dc14741
HD
708
709 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
710 index = linear_page_index(vma, addr);
711
1e9e6365
HD
712 printk(KERN_ALERT
713 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
714 current->comm,
715 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
716 if (page)
717 dump_page(page);
1e9e6365 718 printk(KERN_ALERT
3dc14741
HD
719 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
720 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
721 /*
722 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
723 */
724 if (vma->vm_ops)
1e9e6365 725 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
726 (unsigned long)vma->vm_ops->fault);
727 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 728 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 729 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 730 dump_stack();
3dc14741 731 add_taint(TAINT_BAD_PAGE);
b5810039
NP
732}
733
ca16d140 734static inline int is_cow_mapping(vm_flags_t flags)
67121172
LT
735{
736 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
737}
738
62eede62
HD
739#ifndef is_zero_pfn
740static inline int is_zero_pfn(unsigned long pfn)
741{
742 return pfn == zero_pfn;
743}
744#endif
745
746#ifndef my_zero_pfn
747static inline unsigned long my_zero_pfn(unsigned long addr)
748{
749 return zero_pfn;
750}
751#endif
752
ee498ed7 753/*
7e675137 754 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 755 *
7e675137
NP
756 * "Special" mappings do not wish to be associated with a "struct page" (either
757 * it doesn't exist, or it exists but they don't want to touch it). In this
758 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 759 *
7e675137
NP
760 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
761 * pte bit, in which case this function is trivial. Secondly, an architecture
762 * may not have a spare pte bit, which requires a more complicated scheme,
763 * described below.
764 *
765 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
766 * special mapping (even if there are underlying and valid "struct pages").
767 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 768 *
b379d790
JH
769 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
770 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
771 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
772 * mapping will always honor the rule
6aab341e
LT
773 *
774 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
775 *
7e675137
NP
776 * And for normal mappings this is false.
777 *
778 * This restricts such mappings to be a linear translation from virtual address
779 * to pfn. To get around this restriction, we allow arbitrary mappings so long
780 * as the vma is not a COW mapping; in that case, we know that all ptes are
781 * special (because none can have been COWed).
b379d790 782 *
b379d790 783 *
7e675137 784 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
785 *
786 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
787 * page" backing, however the difference is that _all_ pages with a struct
788 * page (that is, those where pfn_valid is true) are refcounted and considered
789 * normal pages by the VM. The disadvantage is that pages are refcounted
790 * (which can be slower and simply not an option for some PFNMAP users). The
791 * advantage is that we don't have to follow the strict linearity rule of
792 * PFNMAP mappings in order to support COWable mappings.
793 *
ee498ed7 794 */
7e675137
NP
795#ifdef __HAVE_ARCH_PTE_SPECIAL
796# define HAVE_PTE_SPECIAL 1
797#else
798# define HAVE_PTE_SPECIAL 0
799#endif
800struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
801 pte_t pte)
ee498ed7 802{
22b31eec 803 unsigned long pfn = pte_pfn(pte);
7e675137
NP
804
805 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
806 if (likely(!pte_special(pte)))
807 goto check_pfn;
a13ea5b7
HD
808 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
809 return NULL;
62eede62 810 if (!is_zero_pfn(pfn))
22b31eec 811 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
812 return NULL;
813 }
814
815 /* !HAVE_PTE_SPECIAL case follows: */
816
b379d790
JH
817 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818 if (vma->vm_flags & VM_MIXEDMAP) {
819 if (!pfn_valid(pfn))
820 return NULL;
821 goto out;
822 } else {
7e675137
NP
823 unsigned long off;
824 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
825 if (pfn == vma->vm_pgoff + off)
826 return NULL;
827 if (!is_cow_mapping(vma->vm_flags))
828 return NULL;
829 }
6aab341e
LT
830 }
831
62eede62
HD
832 if (is_zero_pfn(pfn))
833 return NULL;
22b31eec
HD
834check_pfn:
835 if (unlikely(pfn > highest_memmap_pfn)) {
836 print_bad_pte(vma, addr, pte, NULL);
837 return NULL;
838 }
6aab341e
LT
839
840 /*
7e675137 841 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 842 * eg. VDSO mappings can cause them to exist.
6aab341e 843 */
b379d790 844out:
6aab341e 845 return pfn_to_page(pfn);
ee498ed7
HD
846}
847
1da177e4
LT
848/*
849 * copy one vm_area from one task to the other. Assumes the page tables
850 * already present in the new task to be cleared in the whole range
851 * covered by this vma.
1da177e4
LT
852 */
853
570a335b 854static inline unsigned long
1da177e4 855copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 856 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 857 unsigned long addr, int *rss)
1da177e4 858{
b5810039 859 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
860 pte_t pte = *src_pte;
861 struct page *page;
1da177e4
LT
862
863 /* pte contains position in swap or file, so copy. */
864 if (unlikely(!pte_present(pte))) {
865 if (!pte_file(pte)) {
0697212a
CL
866 swp_entry_t entry = pte_to_swp_entry(pte);
867
570a335b
HD
868 if (swap_duplicate(entry) < 0)
869 return entry.val;
870
1da177e4
LT
871 /* make sure dst_mm is on swapoff's mmlist. */
872 if (unlikely(list_empty(&dst_mm->mmlist))) {
873 spin_lock(&mmlist_lock);
f412ac08
HD
874 if (list_empty(&dst_mm->mmlist))
875 list_add(&dst_mm->mmlist,
876 &src_mm->mmlist);
1da177e4
LT
877 spin_unlock(&mmlist_lock);
878 }
b084d435
KH
879 if (likely(!non_swap_entry(entry)))
880 rss[MM_SWAPENTS]++;
9f9f1acd
KK
881 else if (is_migration_entry(entry)) {
882 page = migration_entry_to_page(entry);
883
884 if (PageAnon(page))
885 rss[MM_ANONPAGES]++;
886 else
887 rss[MM_FILEPAGES]++;
888
889 if (is_write_migration_entry(entry) &&
890 is_cow_mapping(vm_flags)) {
891 /*
892 * COW mappings require pages in both
893 * parent and child to be set to read.
894 */
895 make_migration_entry_read(&entry);
896 pte = swp_entry_to_pte(entry);
897 set_pte_at(src_mm, addr, src_pte, pte);
898 }
0697212a 899 }
1da177e4 900 }
ae859762 901 goto out_set_pte;
1da177e4
LT
902 }
903
1da177e4
LT
904 /*
905 * If it's a COW mapping, write protect it both
906 * in the parent and the child
907 */
67121172 908 if (is_cow_mapping(vm_flags)) {
1da177e4 909 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 910 pte = pte_wrprotect(pte);
1da177e4
LT
911 }
912
913 /*
914 * If it's a shared mapping, mark it clean in
915 * the child
916 */
917 if (vm_flags & VM_SHARED)
918 pte = pte_mkclean(pte);
919 pte = pte_mkold(pte);
6aab341e
LT
920
921 page = vm_normal_page(vma, addr, pte);
922 if (page) {
923 get_page(page);
21333b2b 924 page_dup_rmap(page);
d559db08
KH
925 if (PageAnon(page))
926 rss[MM_ANONPAGES]++;
927 else
928 rss[MM_FILEPAGES]++;
6aab341e 929 }
ae859762
HD
930
931out_set_pte:
932 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 933 return 0;
1da177e4
LT
934}
935
71e3aac0
AA
936int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
937 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
938 unsigned long addr, unsigned long end)
1da177e4 939{
c36987e2 940 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 941 pte_t *src_pte, *dst_pte;
c74df32c 942 spinlock_t *src_ptl, *dst_ptl;
e040f218 943 int progress = 0;
d559db08 944 int rss[NR_MM_COUNTERS];
570a335b 945 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
946
947again:
d559db08
KH
948 init_rss_vec(rss);
949
c74df32c 950 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
951 if (!dst_pte)
952 return -ENOMEM;
ece0e2b6 953 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 954 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 955 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
956 orig_src_pte = src_pte;
957 orig_dst_pte = dst_pte;
6606c3e0 958 arch_enter_lazy_mmu_mode();
1da177e4 959
1da177e4
LT
960 do {
961 /*
962 * We are holding two locks at this point - either of them
963 * could generate latencies in another task on another CPU.
964 */
e040f218
HD
965 if (progress >= 32) {
966 progress = 0;
967 if (need_resched() ||
95c354fe 968 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
969 break;
970 }
1da177e4
LT
971 if (pte_none(*src_pte)) {
972 progress++;
973 continue;
974 }
570a335b
HD
975 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
976 vma, addr, rss);
977 if (entry.val)
978 break;
1da177e4
LT
979 progress += 8;
980 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 981
6606c3e0 982 arch_leave_lazy_mmu_mode();
c74df32c 983 spin_unlock(src_ptl);
ece0e2b6 984 pte_unmap(orig_src_pte);
d559db08 985 add_mm_rss_vec(dst_mm, rss);
c36987e2 986 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 987 cond_resched();
570a335b
HD
988
989 if (entry.val) {
990 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
991 return -ENOMEM;
992 progress = 0;
993 }
1da177e4
LT
994 if (addr != end)
995 goto again;
996 return 0;
997}
998
999static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1001 unsigned long addr, unsigned long end)
1002{
1003 pmd_t *src_pmd, *dst_pmd;
1004 unsigned long next;
1005
1006 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1007 if (!dst_pmd)
1008 return -ENOMEM;
1009 src_pmd = pmd_offset(src_pud, addr);
1010 do {
1011 next = pmd_addr_end(addr, end);
71e3aac0
AA
1012 if (pmd_trans_huge(*src_pmd)) {
1013 int err;
14d1a55c 1014 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
1015 err = copy_huge_pmd(dst_mm, src_mm,
1016 dst_pmd, src_pmd, addr, vma);
1017 if (err == -ENOMEM)
1018 return -ENOMEM;
1019 if (!err)
1020 continue;
1021 /* fall through */
1022 }
1da177e4
LT
1023 if (pmd_none_or_clear_bad(src_pmd))
1024 continue;
1025 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1026 vma, addr, next))
1027 return -ENOMEM;
1028 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1029 return 0;
1030}
1031
1032static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1034 unsigned long addr, unsigned long end)
1035{
1036 pud_t *src_pud, *dst_pud;
1037 unsigned long next;
1038
1039 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1040 if (!dst_pud)
1041 return -ENOMEM;
1042 src_pud = pud_offset(src_pgd, addr);
1043 do {
1044 next = pud_addr_end(addr, end);
1045 if (pud_none_or_clear_bad(src_pud))
1046 continue;
1047 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1048 vma, addr, next))
1049 return -ENOMEM;
1050 } while (dst_pud++, src_pud++, addr = next, addr != end);
1051 return 0;
1052}
1053
1054int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1055 struct vm_area_struct *vma)
1056{
1057 pgd_t *src_pgd, *dst_pgd;
1058 unsigned long next;
1059 unsigned long addr = vma->vm_start;
1060 unsigned long end = vma->vm_end;
cddb8a5c 1061 int ret;
1da177e4 1062
d992895b
NP
1063 /*
1064 * Don't copy ptes where a page fault will fill them correctly.
1065 * Fork becomes much lighter when there are big shared or private
1066 * readonly mappings. The tradeoff is that copy_page_range is more
1067 * efficient than faulting.
1068 */
4d7672b4 1069 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
1070 if (!vma->anon_vma)
1071 return 0;
1072 }
1073
1da177e4
LT
1074 if (is_vm_hugetlb_page(vma))
1075 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1076
34801ba9 1077 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 1078 /*
1079 * We do not free on error cases below as remove_vma
1080 * gets called on error from higher level routine
1081 */
1082 ret = track_pfn_vma_copy(vma);
1083 if (ret)
1084 return ret;
1085 }
1086
cddb8a5c
AA
1087 /*
1088 * We need to invalidate the secondary MMU mappings only when
1089 * there could be a permission downgrade on the ptes of the
1090 * parent mm. And a permission downgrade will only happen if
1091 * is_cow_mapping() returns true.
1092 */
1093 if (is_cow_mapping(vma->vm_flags))
1094 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1095
1096 ret = 0;
1da177e4
LT
1097 dst_pgd = pgd_offset(dst_mm, addr);
1098 src_pgd = pgd_offset(src_mm, addr);
1099 do {
1100 next = pgd_addr_end(addr, end);
1101 if (pgd_none_or_clear_bad(src_pgd))
1102 continue;
cddb8a5c
AA
1103 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1104 vma, addr, next))) {
1105 ret = -ENOMEM;
1106 break;
1107 }
1da177e4 1108 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
1109
1110 if (is_cow_mapping(vma->vm_flags))
1111 mmu_notifier_invalidate_range_end(src_mm,
1112 vma->vm_start, end);
1113 return ret;
1da177e4
LT
1114}
1115
51c6f666 1116static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1117 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1118 unsigned long addr, unsigned long end,
97a89413 1119 struct zap_details *details)
1da177e4 1120{
b5810039 1121 struct mm_struct *mm = tlb->mm;
d16dfc55 1122 int force_flush = 0;
d559db08 1123 int rss[NR_MM_COUNTERS];
97a89413 1124 spinlock_t *ptl;
5f1a1907 1125 pte_t *start_pte;
97a89413 1126 pte_t *pte;
d559db08 1127
d16dfc55 1128again:
e303297e 1129 init_rss_vec(rss);
5f1a1907
SR
1130 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1131 pte = start_pte;
6606c3e0 1132 arch_enter_lazy_mmu_mode();
1da177e4
LT
1133 do {
1134 pte_t ptent = *pte;
51c6f666 1135 if (pte_none(ptent)) {
1da177e4 1136 continue;
51c6f666 1137 }
6f5e6b9e 1138
1da177e4 1139 if (pte_present(ptent)) {
ee498ed7 1140 struct page *page;
51c6f666 1141
6aab341e 1142 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1143 if (unlikely(details) && page) {
1144 /*
1145 * unmap_shared_mapping_pages() wants to
1146 * invalidate cache without truncating:
1147 * unmap shared but keep private pages.
1148 */
1149 if (details->check_mapping &&
1150 details->check_mapping != page->mapping)
1151 continue;
1152 /*
1153 * Each page->index must be checked when
1154 * invalidating or truncating nonlinear.
1155 */
1156 if (details->nonlinear_vma &&
1157 (page->index < details->first_index ||
1158 page->index > details->last_index))
1159 continue;
1160 }
b5810039 1161 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1162 tlb->fullmm);
1da177e4
LT
1163 tlb_remove_tlb_entry(tlb, pte, addr);
1164 if (unlikely(!page))
1165 continue;
1166 if (unlikely(details) && details->nonlinear_vma
1167 && linear_page_index(details->nonlinear_vma,
1168 addr) != page->index)
b5810039 1169 set_pte_at(mm, addr, pte,
1da177e4 1170 pgoff_to_pte(page->index));
1da177e4 1171 if (PageAnon(page))
d559db08 1172 rss[MM_ANONPAGES]--;
6237bcd9
HD
1173 else {
1174 if (pte_dirty(ptent))
1175 set_page_dirty(page);
4917e5d0
JW
1176 if (pte_young(ptent) &&
1177 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 1178 mark_page_accessed(page);
d559db08 1179 rss[MM_FILEPAGES]--;
6237bcd9 1180 }
edc315fd 1181 page_remove_rmap(page);
3dc14741
HD
1182 if (unlikely(page_mapcount(page) < 0))
1183 print_bad_pte(vma, addr, ptent, page);
d16dfc55
PZ
1184 force_flush = !__tlb_remove_page(tlb, page);
1185 if (force_flush)
1186 break;
1da177e4
LT
1187 continue;
1188 }
1189 /*
1190 * If details->check_mapping, we leave swap entries;
1191 * if details->nonlinear_vma, we leave file entries.
1192 */
1193 if (unlikely(details))
1194 continue;
2509ef26
HD
1195 if (pte_file(ptent)) {
1196 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1197 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1198 } else {
1199 swp_entry_t entry = pte_to_swp_entry(ptent);
1200
1201 if (!non_swap_entry(entry))
1202 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1203 else if (is_migration_entry(entry)) {
1204 struct page *page;
1205
1206 page = migration_entry_to_page(entry);
1207
1208 if (PageAnon(page))
1209 rss[MM_ANONPAGES]--;
1210 else
1211 rss[MM_FILEPAGES]--;
1212 }
b084d435
KH
1213 if (unlikely(!free_swap_and_cache(entry)))
1214 print_bad_pte(vma, addr, ptent, NULL);
1215 }
9888a1ca 1216 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1217 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1218
d559db08 1219 add_mm_rss_vec(mm, rss);
6606c3e0 1220 arch_leave_lazy_mmu_mode();
5f1a1907 1221 pte_unmap_unlock(start_pte, ptl);
51c6f666 1222
d16dfc55
PZ
1223 /*
1224 * mmu_gather ran out of room to batch pages, we break out of
1225 * the PTE lock to avoid doing the potential expensive TLB invalidate
1226 * and page-free while holding it.
1227 */
1228 if (force_flush) {
1229 force_flush = 0;
1230 tlb_flush_mmu(tlb);
1231 if (addr != end)
1232 goto again;
1233 }
1234
51c6f666 1235 return addr;
1da177e4
LT
1236}
1237
51c6f666 1238static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1239 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1240 unsigned long addr, unsigned long end,
97a89413 1241 struct zap_details *details)
1da177e4
LT
1242{
1243 pmd_t *pmd;
1244 unsigned long next;
1245
1246 pmd = pmd_offset(pud, addr);
1247 do {
1248 next = pmd_addr_end(addr, end);
71e3aac0 1249 if (pmd_trans_huge(*pmd)) {
14d1a55c
AA
1250 if (next-addr != HPAGE_PMD_SIZE) {
1251 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
71e3aac0 1252 split_huge_page_pmd(vma->vm_mm, pmd);
f21760b1 1253 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
71e3aac0 1254 continue;
71e3aac0
AA
1255 /* fall through */
1256 }
97a89413 1257 if (pmd_none_or_clear_bad(pmd))
1da177e4 1258 continue;
97a89413
PZ
1259 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1260 cond_resched();
1261 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1262
1263 return addr;
1da177e4
LT
1264}
1265
51c6f666 1266static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1267 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1268 unsigned long addr, unsigned long end,
97a89413 1269 struct zap_details *details)
1da177e4
LT
1270{
1271 pud_t *pud;
1272 unsigned long next;
1273
1274 pud = pud_offset(pgd, addr);
1275 do {
1276 next = pud_addr_end(addr, end);
97a89413 1277 if (pud_none_or_clear_bad(pud))
1da177e4 1278 continue;
97a89413
PZ
1279 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1280 } while (pud++, addr = next, addr != end);
51c6f666
RH
1281
1282 return addr;
1da177e4
LT
1283}
1284
038c7aa1
AV
1285static void unmap_page_range(struct mmu_gather *tlb,
1286 struct vm_area_struct *vma,
1287 unsigned long addr, unsigned long end,
1288 struct zap_details *details)
1da177e4
LT
1289{
1290 pgd_t *pgd;
1291 unsigned long next;
1292
1293 if (details && !details->check_mapping && !details->nonlinear_vma)
1294 details = NULL;
1295
1296 BUG_ON(addr >= end);
569b846d 1297 mem_cgroup_uncharge_start();
1da177e4
LT
1298 tlb_start_vma(tlb, vma);
1299 pgd = pgd_offset(vma->vm_mm, addr);
1300 do {
1301 next = pgd_addr_end(addr, end);
97a89413 1302 if (pgd_none_or_clear_bad(pgd))
1da177e4 1303 continue;
97a89413
PZ
1304 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1305 } while (pgd++, addr = next, addr != end);
1da177e4 1306 tlb_end_vma(tlb, vma);
569b846d 1307 mem_cgroup_uncharge_end();
1da177e4
LT
1308}
1309
1da177e4
LT
1310/**
1311 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1312 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1313 * @vma: the starting vma
1314 * @start_addr: virtual address at which to start unmapping
1315 * @end_addr: virtual address at which to end unmapping
1316 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1317 * @details: details of nonlinear truncation or shared cache invalidation
1318 *
508034a3 1319 * Unmap all pages in the vma list.
1da177e4 1320 *
1da177e4
LT
1321 * Only addresses between `start' and `end' will be unmapped.
1322 *
1323 * The VMA list must be sorted in ascending virtual address order.
1324 *
1325 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1326 * range after unmap_vmas() returns. So the only responsibility here is to
1327 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1328 * drops the lock and schedules.
1329 */
6e8bb019 1330void unmap_vmas(struct mmu_gather *tlb,
1da177e4
LT
1331 struct vm_area_struct *vma, unsigned long start_addr,
1332 unsigned long end_addr, unsigned long *nr_accounted,
1333 struct zap_details *details)
1334{
ee39b37b 1335 unsigned long start = start_addr;
cddb8a5c 1336 struct mm_struct *mm = vma->vm_mm;
1da177e4 1337
cddb8a5c 1338 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 1339 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
1340 unsigned long end;
1341
1342 start = max(vma->vm_start, start_addr);
1343 if (start >= vma->vm_end)
1344 continue;
1345 end = min(vma->vm_end, end_addr);
1346 if (end <= vma->vm_start)
1347 continue;
1348
1349 if (vma->vm_flags & VM_ACCOUNT)
1350 *nr_accounted += (end - start) >> PAGE_SHIFT;
1351
34801ba9 1352 if (unlikely(is_pfn_mapping(vma)))
2ab64037 1353 untrack_pfn_vma(vma, 0, 0);
1354
8b2a1238 1355 if (start != end) {
51c6f666 1356 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
1357 /*
1358 * It is undesirable to test vma->vm_file as it
1359 * should be non-null for valid hugetlb area.
1360 * However, vm_file will be NULL in the error
1361 * cleanup path of do_mmap_pgoff. When
1362 * hugetlbfs ->mmap method fails,
1363 * do_mmap_pgoff() nullifies vma->vm_file
1364 * before calling this function to clean up.
1365 * Since no pte has actually been setup, it is
1366 * safe to do nothing in this case.
1367 */
97a89413 1368 if (vma->vm_file)
a137e1cc 1369 unmap_hugepage_range(vma, start, end, NULL);
51c6f666 1370 } else
038c7aa1 1371 unmap_page_range(tlb, vma, start, end, details);
1da177e4
LT
1372 }
1373 }
97a89413 1374
cddb8a5c 1375 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1376}
1377
1378/**
1379 * zap_page_range - remove user pages in a given range
1380 * @vma: vm_area_struct holding the applicable pages
1381 * @address: starting address of pages to zap
1382 * @size: number of bytes to zap
1383 * @details: details of nonlinear truncation or shared cache invalidation
1384 */
14f5ff5d 1385void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1386 unsigned long size, struct zap_details *details)
1387{
1388 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1389 struct mmu_gather tlb;
1da177e4
LT
1390 unsigned long end = address + size;
1391 unsigned long nr_accounted = 0;
1392
1da177e4 1393 lru_add_drain();
d16dfc55 1394 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1395 update_hiwater_rss(mm);
14f5ff5d 1396 unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
d16dfc55 1397 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1398}
1399
c627f9cc
JS
1400/**
1401 * zap_vma_ptes - remove ptes mapping the vma
1402 * @vma: vm_area_struct holding ptes to be zapped
1403 * @address: starting address of pages to zap
1404 * @size: number of bytes to zap
1405 *
1406 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407 *
1408 * The entire address range must be fully contained within the vma.
1409 *
1410 * Returns 0 if successful.
1411 */
1412int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1413 unsigned long size)
1414{
1415 if (address < vma->vm_start || address + size > vma->vm_end ||
1416 !(vma->vm_flags & VM_PFNMAP))
1417 return -1;
1418 zap_page_range(vma, address, size, NULL);
1419 return 0;
1420}
1421EXPORT_SYMBOL_GPL(zap_vma_ptes);
1422
142762bd
JW
1423/**
1424 * follow_page - look up a page descriptor from a user-virtual address
1425 * @vma: vm_area_struct mapping @address
1426 * @address: virtual address to look up
1427 * @flags: flags modifying lookup behaviour
1428 *
1429 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1430 *
1431 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1432 * an error pointer if there is a mapping to something not represented
1433 * by a page descriptor (see also vm_normal_page()).
1da177e4 1434 */
6aab341e 1435struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1436 unsigned int flags)
1da177e4
LT
1437{
1438 pgd_t *pgd;
1439 pud_t *pud;
1440 pmd_t *pmd;
1441 pte_t *ptep, pte;
deceb6cd 1442 spinlock_t *ptl;
1da177e4 1443 struct page *page;
6aab341e 1444 struct mm_struct *mm = vma->vm_mm;
1da177e4 1445
deceb6cd
HD
1446 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1447 if (!IS_ERR(page)) {
1448 BUG_ON(flags & FOLL_GET);
1449 goto out;
1450 }
1da177e4 1451
deceb6cd 1452 page = NULL;
1da177e4
LT
1453 pgd = pgd_offset(mm, address);
1454 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1455 goto no_page_table;
1da177e4
LT
1456
1457 pud = pud_offset(pgd, address);
ceb86879 1458 if (pud_none(*pud))
deceb6cd 1459 goto no_page_table;
8a07651e 1460 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
ceb86879
AK
1461 BUG_ON(flags & FOLL_GET);
1462 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1463 goto out;
1464 }
1465 if (unlikely(pud_bad(*pud)))
1466 goto no_page_table;
1467
1da177e4 1468 pmd = pmd_offset(pud, address);
aeed5fce 1469 if (pmd_none(*pmd))
deceb6cd 1470 goto no_page_table;
71e3aac0 1471 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd
HD
1472 BUG_ON(flags & FOLL_GET);
1473 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1474 goto out;
deceb6cd 1475 }
71e3aac0 1476 if (pmd_trans_huge(*pmd)) {
500d65d4
AA
1477 if (flags & FOLL_SPLIT) {
1478 split_huge_page_pmd(mm, pmd);
1479 goto split_fallthrough;
1480 }
71e3aac0
AA
1481 spin_lock(&mm->page_table_lock);
1482 if (likely(pmd_trans_huge(*pmd))) {
1483 if (unlikely(pmd_trans_splitting(*pmd))) {
1484 spin_unlock(&mm->page_table_lock);
1485 wait_split_huge_page(vma->anon_vma, pmd);
1486 } else {
1487 page = follow_trans_huge_pmd(mm, address,
1488 pmd, flags);
1489 spin_unlock(&mm->page_table_lock);
1490 goto out;
1491 }
1492 } else
1493 spin_unlock(&mm->page_table_lock);
1494 /* fall through */
1495 }
500d65d4 1496split_fallthrough:
aeed5fce
HD
1497 if (unlikely(pmd_bad(*pmd)))
1498 goto no_page_table;
1499
deceb6cd 1500 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1501
1502 pte = *ptep;
deceb6cd 1503 if (!pte_present(pte))
89f5b7da 1504 goto no_page;
deceb6cd
HD
1505 if ((flags & FOLL_WRITE) && !pte_write(pte))
1506 goto unlock;
a13ea5b7 1507
6aab341e 1508 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1509 if (unlikely(!page)) {
1510 if ((flags & FOLL_DUMP) ||
62eede62 1511 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1512 goto bad_page;
1513 page = pte_page(pte);
1514 }
1da177e4 1515
deceb6cd 1516 if (flags & FOLL_GET)
70b50f94 1517 get_page_foll(page);
deceb6cd
HD
1518 if (flags & FOLL_TOUCH) {
1519 if ((flags & FOLL_WRITE) &&
1520 !pte_dirty(pte) && !PageDirty(page))
1521 set_page_dirty(page);
bd775c42
KM
1522 /*
1523 * pte_mkyoung() would be more correct here, but atomic care
1524 * is needed to avoid losing the dirty bit: it is easier to use
1525 * mark_page_accessed().
1526 */
deceb6cd
HD
1527 mark_page_accessed(page);
1528 }
a1fde08c 1529 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
110d74a9
ML
1530 /*
1531 * The preliminary mapping check is mainly to avoid the
1532 * pointless overhead of lock_page on the ZERO_PAGE
1533 * which might bounce very badly if there is contention.
1534 *
1535 * If the page is already locked, we don't need to
1536 * handle it now - vmscan will handle it later if and
1537 * when it attempts to reclaim the page.
1538 */
1539 if (page->mapping && trylock_page(page)) {
1540 lru_add_drain(); /* push cached pages to LRU */
1541 /*
1542 * Because we lock page here and migration is
1543 * blocked by the pte's page reference, we need
1544 * only check for file-cache page truncation.
1545 */
1546 if (page->mapping)
1547 mlock_vma_page(page);
1548 unlock_page(page);
1549 }
1550 }
deceb6cd
HD
1551unlock:
1552 pte_unmap_unlock(ptep, ptl);
1da177e4 1553out:
deceb6cd 1554 return page;
1da177e4 1555
89f5b7da
LT
1556bad_page:
1557 pte_unmap_unlock(ptep, ptl);
1558 return ERR_PTR(-EFAULT);
1559
1560no_page:
1561 pte_unmap_unlock(ptep, ptl);
1562 if (!pte_none(pte))
1563 return page;
8e4b9a60 1564
deceb6cd
HD
1565no_page_table:
1566 /*
1567 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1568 * has touched so far, we don't want to allocate unnecessary pages or
1569 * page tables. Return error instead of NULL to skip handle_mm_fault,
1570 * then get_dump_page() will return NULL to leave a hole in the dump.
1571 * But we can only make this optimization where a hole would surely
1572 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1573 */
8e4b9a60
HD
1574 if ((flags & FOLL_DUMP) &&
1575 (!vma->vm_ops || !vma->vm_ops->fault))
1576 return ERR_PTR(-EFAULT);
deceb6cd 1577 return page;
1da177e4
LT
1578}
1579
95042f9e
LT
1580static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1581{
a09a79f6
MP
1582 return stack_guard_page_start(vma, addr) ||
1583 stack_guard_page_end(vma, addr+PAGE_SIZE);
95042f9e
LT
1584}
1585
0014bd99
HY
1586/**
1587 * __get_user_pages() - pin user pages in memory
1588 * @tsk: task_struct of target task
1589 * @mm: mm_struct of target mm
1590 * @start: starting user address
1591 * @nr_pages: number of pages from start to pin
1592 * @gup_flags: flags modifying pin behaviour
1593 * @pages: array that receives pointers to the pages pinned.
1594 * Should be at least nr_pages long. Or NULL, if caller
1595 * only intends to ensure the pages are faulted in.
1596 * @vmas: array of pointers to vmas corresponding to each page.
1597 * Or NULL if the caller does not require them.
1598 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1599 *
1600 * Returns number of pages pinned. This may be fewer than the number
1601 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1602 * were pinned, returns -errno. Each page returned must be released
1603 * with a put_page() call when it is finished with. vmas will only
1604 * remain valid while mmap_sem is held.
1605 *
1606 * Must be called with mmap_sem held for read or write.
1607 *
1608 * __get_user_pages walks a process's page tables and takes a reference to
1609 * each struct page that each user address corresponds to at a given
1610 * instant. That is, it takes the page that would be accessed if a user
1611 * thread accesses the given user virtual address at that instant.
1612 *
1613 * This does not guarantee that the page exists in the user mappings when
1614 * __get_user_pages returns, and there may even be a completely different
1615 * page there in some cases (eg. if mmapped pagecache has been invalidated
1616 * and subsequently re faulted). However it does guarantee that the page
1617 * won't be freed completely. And mostly callers simply care that the page
1618 * contains data that was valid *at some point in time*. Typically, an IO
1619 * or similar operation cannot guarantee anything stronger anyway because
1620 * locks can't be held over the syscall boundary.
1621 *
1622 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1623 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1624 * appropriate) must be called after the page is finished with, and
1625 * before put_page is called.
1626 *
1627 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1628 * or mmap_sem contention, and if waiting is needed to pin all pages,
1629 * *@nonblocking will be set to 0.
1630 *
1631 * In most cases, get_user_pages or get_user_pages_fast should be used
1632 * instead of __get_user_pages. __get_user_pages should be used only if
1633 * you need some special @gup_flags.
1634 */
b291f000 1635int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1636 unsigned long start, int nr_pages, unsigned int gup_flags,
53a7706d
ML
1637 struct page **pages, struct vm_area_struct **vmas,
1638 int *nonblocking)
1da177e4
LT
1639{
1640 int i;
58fa879e 1641 unsigned long vm_flags;
1da177e4 1642
9d73777e 1643 if (nr_pages <= 0)
900cf086 1644 return 0;
58fa879e
HD
1645
1646 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1647
1da177e4
LT
1648 /*
1649 * Require read or write permissions.
58fa879e 1650 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1651 */
58fa879e
HD
1652 vm_flags = (gup_flags & FOLL_WRITE) ?
1653 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1654 vm_flags &= (gup_flags & FOLL_FORCE) ?
1655 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1656 i = 0;
1657
1658 do {
deceb6cd 1659 struct vm_area_struct *vma;
1da177e4
LT
1660
1661 vma = find_extend_vma(mm, start);
e7f22e20 1662 if (!vma && in_gate_area(mm, start)) {
1da177e4 1663 unsigned long pg = start & PAGE_MASK;
1da177e4
LT
1664 pgd_t *pgd;
1665 pud_t *pud;
1666 pmd_t *pmd;
1667 pte_t *pte;
b291f000
NP
1668
1669 /* user gate pages are read-only */
58fa879e 1670 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1671 return i ? : -EFAULT;
1672 if (pg > TASK_SIZE)
1673 pgd = pgd_offset_k(pg);
1674 else
1675 pgd = pgd_offset_gate(mm, pg);
1676 BUG_ON(pgd_none(*pgd));
1677 pud = pud_offset(pgd, pg);
1678 BUG_ON(pud_none(*pud));
1679 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1680 if (pmd_none(*pmd))
1681 return i ? : -EFAULT;
f66055ab 1682 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1683 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1684 if (pte_none(*pte)) {
1685 pte_unmap(pte);
1686 return i ? : -EFAULT;
1687 }
95042f9e 1688 vma = get_gate_vma(mm);
1da177e4 1689 if (pages) {
de51257a
HD
1690 struct page *page;
1691
95042f9e 1692 page = vm_normal_page(vma, start, *pte);
de51257a
HD
1693 if (!page) {
1694 if (!(gup_flags & FOLL_DUMP) &&
1695 is_zero_pfn(pte_pfn(*pte)))
1696 page = pte_page(*pte);
1697 else {
1698 pte_unmap(pte);
1699 return i ? : -EFAULT;
1700 }
1701 }
6aab341e 1702 pages[i] = page;
de51257a 1703 get_page(page);
1da177e4
LT
1704 }
1705 pte_unmap(pte);
95042f9e 1706 goto next_page;
1da177e4
LT
1707 }
1708
b291f000
NP
1709 if (!vma ||
1710 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1711 !(vm_flags & vma->vm_flags))
1da177e4
LT
1712 return i ? : -EFAULT;
1713
2a15efc9
HD
1714 if (is_vm_hugetlb_page(vma)) {
1715 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1716 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1717 continue;
1718 }
deceb6cd 1719
1da177e4 1720 do {
08ef4729 1721 struct page *page;
58fa879e 1722 unsigned int foll_flags = gup_flags;
1da177e4 1723
462e00cc 1724 /*
4779280d 1725 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1726 * pages and potentially allocating memory.
462e00cc 1727 */
1c3aff1c 1728 if (unlikely(fatal_signal_pending(current)))
4779280d 1729 return i ? i : -ERESTARTSYS;
462e00cc 1730
deceb6cd 1731 cond_resched();
6aab341e 1732 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1733 int ret;
53a7706d
ML
1734 unsigned int fault_flags = 0;
1735
a09a79f6
MP
1736 /* For mlock, just skip the stack guard page. */
1737 if (foll_flags & FOLL_MLOCK) {
1738 if (stack_guard_page(vma, start))
1739 goto next_page;
1740 }
53a7706d
ML
1741 if (foll_flags & FOLL_WRITE)
1742 fault_flags |= FAULT_FLAG_WRITE;
1743 if (nonblocking)
1744 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1745 if (foll_flags & FOLL_NOWAIT)
1746 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1747
d26ed650 1748 ret = handle_mm_fault(mm, vma, start,
53a7706d 1749 fault_flags);
d26ed650 1750
83c54070
NP
1751 if (ret & VM_FAULT_ERROR) {
1752 if (ret & VM_FAULT_OOM)
1753 return i ? i : -ENOMEM;
69ebb83e
HY
1754 if (ret & (VM_FAULT_HWPOISON |
1755 VM_FAULT_HWPOISON_LARGE)) {
1756 if (i)
1757 return i;
1758 else if (gup_flags & FOLL_HWPOISON)
1759 return -EHWPOISON;
1760 else
1761 return -EFAULT;
1762 }
1763 if (ret & VM_FAULT_SIGBUS)
83c54070
NP
1764 return i ? i : -EFAULT;
1765 BUG();
1766 }
e7f22e20
SW
1767
1768 if (tsk) {
1769 if (ret & VM_FAULT_MAJOR)
1770 tsk->maj_flt++;
1771 else
1772 tsk->min_flt++;
1773 }
83c54070 1774
53a7706d 1775 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1776 if (nonblocking)
1777 *nonblocking = 0;
53a7706d
ML
1778 return i;
1779 }
1780
a68d2ebc 1781 /*
83c54070
NP
1782 * The VM_FAULT_WRITE bit tells us that
1783 * do_wp_page has broken COW when necessary,
1784 * even if maybe_mkwrite decided not to set
1785 * pte_write. We can thus safely do subsequent
878b63ac
HD
1786 * page lookups as if they were reads. But only
1787 * do so when looping for pte_write is futile:
1788 * in some cases userspace may also be wanting
1789 * to write to the gotten user page, which a
1790 * read fault here might prevent (a readonly
1791 * page might get reCOWed by userspace write).
a68d2ebc 1792 */
878b63ac
HD
1793 if ((ret & VM_FAULT_WRITE) &&
1794 !(vma->vm_flags & VM_WRITE))
deceb6cd 1795 foll_flags &= ~FOLL_WRITE;
83c54070 1796
7f7bbbe5 1797 cond_resched();
1da177e4 1798 }
89f5b7da
LT
1799 if (IS_ERR(page))
1800 return i ? i : PTR_ERR(page);
1da177e4 1801 if (pages) {
08ef4729 1802 pages[i] = page;
03beb076 1803
a6f36be3 1804 flush_anon_page(vma, page, start);
08ef4729 1805 flush_dcache_page(page);
1da177e4 1806 }
95042f9e 1807next_page:
1da177e4
LT
1808 if (vmas)
1809 vmas[i] = vma;
1810 i++;
1811 start += PAGE_SIZE;
9d73777e
PZ
1812 nr_pages--;
1813 } while (nr_pages && start < vma->vm_end);
1814 } while (nr_pages);
1da177e4
LT
1815 return i;
1816}
0014bd99 1817EXPORT_SYMBOL(__get_user_pages);
b291f000 1818
2efaca92
BH
1819/*
1820 * fixup_user_fault() - manually resolve a user page fault
1821 * @tsk: the task_struct to use for page fault accounting, or
1822 * NULL if faults are not to be recorded.
1823 * @mm: mm_struct of target mm
1824 * @address: user address
1825 * @fault_flags:flags to pass down to handle_mm_fault()
1826 *
1827 * This is meant to be called in the specific scenario where for locking reasons
1828 * we try to access user memory in atomic context (within a pagefault_disable()
1829 * section), this returns -EFAULT, and we want to resolve the user fault before
1830 * trying again.
1831 *
1832 * Typically this is meant to be used by the futex code.
1833 *
1834 * The main difference with get_user_pages() is that this function will
1835 * unconditionally call handle_mm_fault() which will in turn perform all the
1836 * necessary SW fixup of the dirty and young bits in the PTE, while
1837 * handle_mm_fault() only guarantees to update these in the struct page.
1838 *
1839 * This is important for some architectures where those bits also gate the
1840 * access permission to the page because they are maintained in software. On
1841 * such architectures, gup() will not be enough to make a subsequent access
1842 * succeed.
1843 *
1844 * This should be called with the mm_sem held for read.
1845 */
1846int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1847 unsigned long address, unsigned int fault_flags)
1848{
1849 struct vm_area_struct *vma;
1850 int ret;
1851
1852 vma = find_extend_vma(mm, address);
1853 if (!vma || address < vma->vm_start)
1854 return -EFAULT;
1855
1856 ret = handle_mm_fault(mm, vma, address, fault_flags);
1857 if (ret & VM_FAULT_ERROR) {
1858 if (ret & VM_FAULT_OOM)
1859 return -ENOMEM;
1860 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1861 return -EHWPOISON;
1862 if (ret & VM_FAULT_SIGBUS)
1863 return -EFAULT;
1864 BUG();
1865 }
1866 if (tsk) {
1867 if (ret & VM_FAULT_MAJOR)
1868 tsk->maj_flt++;
1869 else
1870 tsk->min_flt++;
1871 }
1872 return 0;
1873}
1874
1875/*
d2bf6be8 1876 * get_user_pages() - pin user pages in memory
e7f22e20
SW
1877 * @tsk: the task_struct to use for page fault accounting, or
1878 * NULL if faults are not to be recorded.
d2bf6be8
NP
1879 * @mm: mm_struct of target mm
1880 * @start: starting user address
9d73777e 1881 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1882 * @write: whether pages will be written to by the caller
1883 * @force: whether to force write access even if user mapping is
1884 * readonly. This will result in the page being COWed even
1885 * in MAP_SHARED mappings. You do not want this.
1886 * @pages: array that receives pointers to the pages pinned.
1887 * Should be at least nr_pages long. Or NULL, if caller
1888 * only intends to ensure the pages are faulted in.
1889 * @vmas: array of pointers to vmas corresponding to each page.
1890 * Or NULL if the caller does not require them.
1891 *
1892 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1893 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1894 * were pinned, returns -errno. Each page returned must be released
1895 * with a put_page() call when it is finished with. vmas will only
1896 * remain valid while mmap_sem is held.
1897 *
1898 * Must be called with mmap_sem held for read or write.
1899 *
1900 * get_user_pages walks a process's page tables and takes a reference to
1901 * each struct page that each user address corresponds to at a given
1902 * instant. That is, it takes the page that would be accessed if a user
1903 * thread accesses the given user virtual address at that instant.
1904 *
1905 * This does not guarantee that the page exists in the user mappings when
1906 * get_user_pages returns, and there may even be a completely different
1907 * page there in some cases (eg. if mmapped pagecache has been invalidated
1908 * and subsequently re faulted). However it does guarantee that the page
1909 * won't be freed completely. And mostly callers simply care that the page
1910 * contains data that was valid *at some point in time*. Typically, an IO
1911 * or similar operation cannot guarantee anything stronger anyway because
1912 * locks can't be held over the syscall boundary.
1913 *
1914 * If write=0, the page must not be written to. If the page is written to,
1915 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1916 * after the page is finished with, and before put_page is called.
1917 *
1918 * get_user_pages is typically used for fewer-copy IO operations, to get a
1919 * handle on the memory by some means other than accesses via the user virtual
1920 * addresses. The pages may be submitted for DMA to devices or accessed via
1921 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1922 * use the correct cache flushing APIs.
1923 *
1924 * See also get_user_pages_fast, for performance critical applications.
1925 */
b291f000 1926int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1927 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1928 struct page **pages, struct vm_area_struct **vmas)
1929{
58fa879e 1930 int flags = FOLL_TOUCH;
b291f000 1931
58fa879e
HD
1932 if (pages)
1933 flags |= FOLL_GET;
b291f000 1934 if (write)
58fa879e 1935 flags |= FOLL_WRITE;
b291f000 1936 if (force)
58fa879e 1937 flags |= FOLL_FORCE;
b291f000 1938
53a7706d
ML
1939 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1940 NULL);
b291f000 1941}
1da177e4
LT
1942EXPORT_SYMBOL(get_user_pages);
1943
f3e8fccd
HD
1944/**
1945 * get_dump_page() - pin user page in memory while writing it to core dump
1946 * @addr: user address
1947 *
1948 * Returns struct page pointer of user page pinned for dump,
1949 * to be freed afterwards by page_cache_release() or put_page().
1950 *
1951 * Returns NULL on any kind of failure - a hole must then be inserted into
1952 * the corefile, to preserve alignment with its headers; and also returns
1953 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1954 * allowing a hole to be left in the corefile to save diskspace.
1955 *
1956 * Called without mmap_sem, but after all other threads have been killed.
1957 */
1958#ifdef CONFIG_ELF_CORE
1959struct page *get_dump_page(unsigned long addr)
1960{
1961 struct vm_area_struct *vma;
1962 struct page *page;
1963
1964 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
1965 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1966 NULL) < 1)
f3e8fccd 1967 return NULL;
f3e8fccd
HD
1968 flush_cache_page(vma, addr, page_to_pfn(page));
1969 return page;
1970}
1971#endif /* CONFIG_ELF_CORE */
1972
25ca1d6c 1973pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1974 spinlock_t **ptl)
c9cfcddf
LT
1975{
1976 pgd_t * pgd = pgd_offset(mm, addr);
1977 pud_t * pud = pud_alloc(mm, pgd, addr);
1978 if (pud) {
49c91fb0 1979 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1980 if (pmd) {
1981 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1982 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1983 }
c9cfcddf
LT
1984 }
1985 return NULL;
1986}
1987
238f58d8
LT
1988/*
1989 * This is the old fallback for page remapping.
1990 *
1991 * For historical reasons, it only allows reserved pages. Only
1992 * old drivers should use this, and they needed to mark their
1993 * pages reserved for the old functions anyway.
1994 */
423bad60
NP
1995static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1996 struct page *page, pgprot_t prot)
238f58d8 1997{
423bad60 1998 struct mm_struct *mm = vma->vm_mm;
238f58d8 1999 int retval;
c9cfcddf 2000 pte_t *pte;
8a9f3ccd
BS
2001 spinlock_t *ptl;
2002
238f58d8 2003 retval = -EINVAL;
a145dd41 2004 if (PageAnon(page))
5b4e655e 2005 goto out;
238f58d8
LT
2006 retval = -ENOMEM;
2007 flush_dcache_page(page);
c9cfcddf 2008 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 2009 if (!pte)
5b4e655e 2010 goto out;
238f58d8
LT
2011 retval = -EBUSY;
2012 if (!pte_none(*pte))
2013 goto out_unlock;
2014
2015 /* Ok, finally just insert the thing.. */
2016 get_page(page);
34e55232 2017 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
2018 page_add_file_rmap(page);
2019 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2020
2021 retval = 0;
8a9f3ccd
BS
2022 pte_unmap_unlock(pte, ptl);
2023 return retval;
238f58d8
LT
2024out_unlock:
2025 pte_unmap_unlock(pte, ptl);
2026out:
2027 return retval;
2028}
2029
bfa5bf6d
REB
2030/**
2031 * vm_insert_page - insert single page into user vma
2032 * @vma: user vma to map to
2033 * @addr: target user address of this page
2034 * @page: source kernel page
2035 *
a145dd41
LT
2036 * This allows drivers to insert individual pages they've allocated
2037 * into a user vma.
2038 *
2039 * The page has to be a nice clean _individual_ kernel allocation.
2040 * If you allocate a compound page, you need to have marked it as
2041 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2042 * (see split_page()).
a145dd41
LT
2043 *
2044 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2045 * took an arbitrary page protection parameter. This doesn't allow
2046 * that. Your vma protection will have to be set up correctly, which
2047 * means that if you want a shared writable mapping, you'd better
2048 * ask for a shared writable mapping!
2049 *
2050 * The page does not need to be reserved.
2051 */
423bad60
NP
2052int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2053 struct page *page)
a145dd41
LT
2054{
2055 if (addr < vma->vm_start || addr >= vma->vm_end)
2056 return -EFAULT;
2057 if (!page_count(page))
2058 return -EINVAL;
4d7672b4 2059 vma->vm_flags |= VM_INSERTPAGE;
423bad60 2060 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2061}
e3c3374f 2062EXPORT_SYMBOL(vm_insert_page);
a145dd41 2063
423bad60
NP
2064static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2065 unsigned long pfn, pgprot_t prot)
2066{
2067 struct mm_struct *mm = vma->vm_mm;
2068 int retval;
2069 pte_t *pte, entry;
2070 spinlock_t *ptl;
2071
2072 retval = -ENOMEM;
2073 pte = get_locked_pte(mm, addr, &ptl);
2074 if (!pte)
2075 goto out;
2076 retval = -EBUSY;
2077 if (!pte_none(*pte))
2078 goto out_unlock;
2079
2080 /* Ok, finally just insert the thing.. */
2081 entry = pte_mkspecial(pfn_pte(pfn, prot));
2082 set_pte_at(mm, addr, pte, entry);
4b3073e1 2083 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
2084
2085 retval = 0;
2086out_unlock:
2087 pte_unmap_unlock(pte, ptl);
2088out:
2089 return retval;
2090}
2091
e0dc0d8f
NP
2092/**
2093 * vm_insert_pfn - insert single pfn into user vma
2094 * @vma: user vma to map to
2095 * @addr: target user address of this page
2096 * @pfn: source kernel pfn
2097 *
2098 * Similar to vm_inert_page, this allows drivers to insert individual pages
2099 * they've allocated into a user vma. Same comments apply.
2100 *
2101 * This function should only be called from a vm_ops->fault handler, and
2102 * in that case the handler should return NULL.
0d71d10a
NP
2103 *
2104 * vma cannot be a COW mapping.
2105 *
2106 * As this is called only for pages that do not currently exist, we
2107 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
2108 */
2109int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 2110 unsigned long pfn)
e0dc0d8f 2111{
2ab64037 2112 int ret;
e4b866ed 2113 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
2114 /*
2115 * Technically, architectures with pte_special can avoid all these
2116 * restrictions (same for remap_pfn_range). However we would like
2117 * consistency in testing and feature parity among all, so we should
2118 * try to keep these invariants in place for everybody.
2119 */
b379d790
JH
2120 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2121 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2122 (VM_PFNMAP|VM_MIXEDMAP));
2123 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2124 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 2125
423bad60
NP
2126 if (addr < vma->vm_start || addr >= vma->vm_end)
2127 return -EFAULT;
e4b866ed 2128 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 2129 return -EINVAL;
2130
e4b866ed 2131 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 2132
2133 if (ret)
2134 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2135
2136 return ret;
423bad60
NP
2137}
2138EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 2139
423bad60
NP
2140int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2141 unsigned long pfn)
2142{
2143 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 2144
423bad60
NP
2145 if (addr < vma->vm_start || addr >= vma->vm_end)
2146 return -EFAULT;
e0dc0d8f 2147
423bad60
NP
2148 /*
2149 * If we don't have pte special, then we have to use the pfn_valid()
2150 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2151 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2152 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2153 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
2154 */
2155 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2156 struct page *page;
2157
2158 page = pfn_to_page(pfn);
2159 return insert_page(vma, addr, page, vma->vm_page_prot);
2160 }
2161 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 2162}
423bad60 2163EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 2164
1da177e4
LT
2165/*
2166 * maps a range of physical memory into the requested pages. the old
2167 * mappings are removed. any references to nonexistent pages results
2168 * in null mappings (currently treated as "copy-on-access")
2169 */
2170static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2171 unsigned long addr, unsigned long end,
2172 unsigned long pfn, pgprot_t prot)
2173{
2174 pte_t *pte;
c74df32c 2175 spinlock_t *ptl;
1da177e4 2176
c74df32c 2177 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2178 if (!pte)
2179 return -ENOMEM;
6606c3e0 2180 arch_enter_lazy_mmu_mode();
1da177e4
LT
2181 do {
2182 BUG_ON(!pte_none(*pte));
7e675137 2183 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2184 pfn++;
2185 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2186 arch_leave_lazy_mmu_mode();
c74df32c 2187 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
2188 return 0;
2189}
2190
2191static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2192 unsigned long addr, unsigned long end,
2193 unsigned long pfn, pgprot_t prot)
2194{
2195 pmd_t *pmd;
2196 unsigned long next;
2197
2198 pfn -= addr >> PAGE_SHIFT;
2199 pmd = pmd_alloc(mm, pud, addr);
2200 if (!pmd)
2201 return -ENOMEM;
f66055ab 2202 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2203 do {
2204 next = pmd_addr_end(addr, end);
2205 if (remap_pte_range(mm, pmd, addr, next,
2206 pfn + (addr >> PAGE_SHIFT), prot))
2207 return -ENOMEM;
2208 } while (pmd++, addr = next, addr != end);
2209 return 0;
2210}
2211
2212static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2213 unsigned long addr, unsigned long end,
2214 unsigned long pfn, pgprot_t prot)
2215{
2216 pud_t *pud;
2217 unsigned long next;
2218
2219 pfn -= addr >> PAGE_SHIFT;
2220 pud = pud_alloc(mm, pgd, addr);
2221 if (!pud)
2222 return -ENOMEM;
2223 do {
2224 next = pud_addr_end(addr, end);
2225 if (remap_pmd_range(mm, pud, addr, next,
2226 pfn + (addr >> PAGE_SHIFT), prot))
2227 return -ENOMEM;
2228 } while (pud++, addr = next, addr != end);
2229 return 0;
2230}
2231
bfa5bf6d
REB
2232/**
2233 * remap_pfn_range - remap kernel memory to userspace
2234 * @vma: user vma to map to
2235 * @addr: target user address to start at
2236 * @pfn: physical address of kernel memory
2237 * @size: size of map area
2238 * @prot: page protection flags for this mapping
2239 *
2240 * Note: this is only safe if the mm semaphore is held when called.
2241 */
1da177e4
LT
2242int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2243 unsigned long pfn, unsigned long size, pgprot_t prot)
2244{
2245 pgd_t *pgd;
2246 unsigned long next;
2d15cab8 2247 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2248 struct mm_struct *mm = vma->vm_mm;
2249 int err;
2250
2251 /*
2252 * Physically remapped pages are special. Tell the
2253 * rest of the world about it:
2254 * VM_IO tells people not to look at these pages
2255 * (accesses can have side effects).
0b14c179
HD
2256 * VM_RESERVED is specified all over the place, because
2257 * in 2.4 it kept swapout's vma scan off this vma; but
2258 * in 2.6 the LRU scan won't even find its pages, so this
2259 * flag means no more than count its pages in reserved_vm,
2260 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
2261 * VM_PFNMAP tells the core MM that the base pages are just
2262 * raw PFN mappings, and do not have a "struct page" associated
2263 * with them.
fb155c16
LT
2264 *
2265 * There's a horrible special case to handle copy-on-write
2266 * behaviour that some programs depend on. We mark the "original"
2267 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 2268 */
4bb9c5c0 2269 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 2270 vma->vm_pgoff = pfn;
895791da 2271 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 2272 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 2273 return -EINVAL;
fb155c16 2274
6aab341e 2275 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 2276
e4b866ed 2277 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 2278 if (err) {
2279 /*
2280 * To indicate that track_pfn related cleanup is not
2281 * needed from higher level routine calling unmap_vmas
2282 */
2283 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 2284 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 2285 return -EINVAL;
a3670613 2286 }
2ab64037 2287
1da177e4
LT
2288 BUG_ON(addr >= end);
2289 pfn -= addr >> PAGE_SHIFT;
2290 pgd = pgd_offset(mm, addr);
2291 flush_cache_range(vma, addr, end);
1da177e4
LT
2292 do {
2293 next = pgd_addr_end(addr, end);
2294 err = remap_pud_range(mm, pgd, addr, next,
2295 pfn + (addr >> PAGE_SHIFT), prot);
2296 if (err)
2297 break;
2298 } while (pgd++, addr = next, addr != end);
2ab64037 2299
2300 if (err)
2301 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2302
1da177e4
LT
2303 return err;
2304}
2305EXPORT_SYMBOL(remap_pfn_range);
2306
aee16b3c
JF
2307static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2308 unsigned long addr, unsigned long end,
2309 pte_fn_t fn, void *data)
2310{
2311 pte_t *pte;
2312 int err;
2f569afd 2313 pgtable_t token;
94909914 2314 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2315
2316 pte = (mm == &init_mm) ?
2317 pte_alloc_kernel(pmd, addr) :
2318 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2319 if (!pte)
2320 return -ENOMEM;
2321
2322 BUG_ON(pmd_huge(*pmd));
2323
38e0edb1
JF
2324 arch_enter_lazy_mmu_mode();
2325
2f569afd 2326 token = pmd_pgtable(*pmd);
aee16b3c
JF
2327
2328 do {
c36987e2 2329 err = fn(pte++, token, addr, data);
aee16b3c
JF
2330 if (err)
2331 break;
c36987e2 2332 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2333
38e0edb1
JF
2334 arch_leave_lazy_mmu_mode();
2335
aee16b3c
JF
2336 if (mm != &init_mm)
2337 pte_unmap_unlock(pte-1, ptl);
2338 return err;
2339}
2340
2341static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2342 unsigned long addr, unsigned long end,
2343 pte_fn_t fn, void *data)
2344{
2345 pmd_t *pmd;
2346 unsigned long next;
2347 int err;
2348
ceb86879
AK
2349 BUG_ON(pud_huge(*pud));
2350
aee16b3c
JF
2351 pmd = pmd_alloc(mm, pud, addr);
2352 if (!pmd)
2353 return -ENOMEM;
2354 do {
2355 next = pmd_addr_end(addr, end);
2356 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2357 if (err)
2358 break;
2359 } while (pmd++, addr = next, addr != end);
2360 return err;
2361}
2362
2363static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2364 unsigned long addr, unsigned long end,
2365 pte_fn_t fn, void *data)
2366{
2367 pud_t *pud;
2368 unsigned long next;
2369 int err;
2370
2371 pud = pud_alloc(mm, pgd, addr);
2372 if (!pud)
2373 return -ENOMEM;
2374 do {
2375 next = pud_addr_end(addr, end);
2376 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2377 if (err)
2378 break;
2379 } while (pud++, addr = next, addr != end);
2380 return err;
2381}
2382
2383/*
2384 * Scan a region of virtual memory, filling in page tables as necessary
2385 * and calling a provided function on each leaf page table.
2386 */
2387int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2388 unsigned long size, pte_fn_t fn, void *data)
2389{
2390 pgd_t *pgd;
2391 unsigned long next;
57250a5b 2392 unsigned long end = addr + size;
aee16b3c
JF
2393 int err;
2394
2395 BUG_ON(addr >= end);
2396 pgd = pgd_offset(mm, addr);
2397 do {
2398 next = pgd_addr_end(addr, end);
2399 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2400 if (err)
2401 break;
2402 } while (pgd++, addr = next, addr != end);
57250a5b 2403
aee16b3c
JF
2404 return err;
2405}
2406EXPORT_SYMBOL_GPL(apply_to_page_range);
2407
8f4e2101
HD
2408/*
2409 * handle_pte_fault chooses page fault handler according to an entry
2410 * which was read non-atomically. Before making any commitment, on
2411 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2412 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2413 * must check under lock before unmapping the pte and proceeding
2414 * (but do_wp_page is only called after already making such a check;
a335b2e1 2415 * and do_anonymous_page can safely check later on).
8f4e2101 2416 */
4c21e2f2 2417static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2418 pte_t *page_table, pte_t orig_pte)
2419{
2420 int same = 1;
2421#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2422 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2423 spinlock_t *ptl = pte_lockptr(mm, pmd);
2424 spin_lock(ptl);
8f4e2101 2425 same = pte_same(*page_table, orig_pte);
4c21e2f2 2426 spin_unlock(ptl);
8f4e2101
HD
2427 }
2428#endif
2429 pte_unmap(page_table);
2430 return same;
2431}
2432
9de455b2 2433static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2434{
2435 /*
2436 * If the source page was a PFN mapping, we don't have
2437 * a "struct page" for it. We do a best-effort copy by
2438 * just copying from the original user address. If that
2439 * fails, we just zero-fill it. Live with it.
2440 */
2441 if (unlikely(!src)) {
2442 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
2443 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2444
2445 /*
2446 * This really shouldn't fail, because the page is there
2447 * in the page tables. But it might just be unreadable,
2448 * in which case we just give up and fill the result with
2449 * zeroes.
2450 */
2451 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2452 clear_page(kaddr);
6aab341e 2453 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 2454 flush_dcache_page(dst);
0ed361de
NP
2455 } else
2456 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2457}
2458
1da177e4
LT
2459/*
2460 * This routine handles present pages, when users try to write
2461 * to a shared page. It is done by copying the page to a new address
2462 * and decrementing the shared-page counter for the old page.
2463 *
1da177e4
LT
2464 * Note that this routine assumes that the protection checks have been
2465 * done by the caller (the low-level page fault routine in most cases).
2466 * Thus we can safely just mark it writable once we've done any necessary
2467 * COW.
2468 *
2469 * We also mark the page dirty at this point even though the page will
2470 * change only once the write actually happens. This avoids a few races,
2471 * and potentially makes it more efficient.
2472 *
8f4e2101
HD
2473 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2474 * but allow concurrent faults), with pte both mapped and locked.
2475 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2476 */
65500d23
HD
2477static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2478 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2479 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2480 __releases(ptl)
1da177e4 2481{
e5bbe4df 2482 struct page *old_page, *new_page;
1da177e4 2483 pte_t entry;
b009c024 2484 int ret = 0;
a200ee18 2485 int page_mkwrite = 0;
d08b3851 2486 struct page *dirty_page = NULL;
1da177e4 2487
6aab341e 2488 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2489 if (!old_page) {
2490 /*
2491 * VM_MIXEDMAP !pfn_valid() case
2492 *
2493 * We should not cow pages in a shared writeable mapping.
2494 * Just mark the pages writable as we can't do any dirty
2495 * accounting on raw pfn maps.
2496 */
2497 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2498 (VM_WRITE|VM_SHARED))
2499 goto reuse;
6aab341e 2500 goto gotten;
251b97f5 2501 }
1da177e4 2502
d08b3851 2503 /*
ee6a6457
PZ
2504 * Take out anonymous pages first, anonymous shared vmas are
2505 * not dirty accountable.
d08b3851 2506 */
9a840895 2507 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2508 if (!trylock_page(old_page)) {
2509 page_cache_get(old_page);
2510 pte_unmap_unlock(page_table, ptl);
2511 lock_page(old_page);
2512 page_table = pte_offset_map_lock(mm, pmd, address,
2513 &ptl);
2514 if (!pte_same(*page_table, orig_pte)) {
2515 unlock_page(old_page);
ab967d86
HD
2516 goto unlock;
2517 }
2518 page_cache_release(old_page);
ee6a6457 2519 }
b009c024 2520 if (reuse_swap_page(old_page)) {
c44b6743
RR
2521 /*
2522 * The page is all ours. Move it to our anon_vma so
2523 * the rmap code will not search our parent or siblings.
2524 * Protected against the rmap code by the page lock.
2525 */
2526 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2527 unlock_page(old_page);
2528 goto reuse;
2529 }
ab967d86 2530 unlock_page(old_page);
ee6a6457 2531 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2532 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2533 /*
2534 * Only catch write-faults on shared writable pages,
2535 * read-only shared pages can get COWed by
2536 * get_user_pages(.write=1, .force=1).
2537 */
9637a5ef 2538 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2539 struct vm_fault vmf;
2540 int tmp;
2541
2542 vmf.virtual_address = (void __user *)(address &
2543 PAGE_MASK);
2544 vmf.pgoff = old_page->index;
2545 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2546 vmf.page = old_page;
2547
9637a5ef
DH
2548 /*
2549 * Notify the address space that the page is about to
2550 * become writable so that it can prohibit this or wait
2551 * for the page to get into an appropriate state.
2552 *
2553 * We do this without the lock held, so that it can
2554 * sleep if it needs to.
2555 */
2556 page_cache_get(old_page);
2557 pte_unmap_unlock(page_table, ptl);
2558
c2ec175c
NP
2559 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2560 if (unlikely(tmp &
2561 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2562 ret = tmp;
9637a5ef 2563 goto unwritable_page;
c2ec175c 2564 }
b827e496
NP
2565 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2566 lock_page(old_page);
2567 if (!old_page->mapping) {
2568 ret = 0; /* retry the fault */
2569 unlock_page(old_page);
2570 goto unwritable_page;
2571 }
2572 } else
2573 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2574
9637a5ef
DH
2575 /*
2576 * Since we dropped the lock we need to revalidate
2577 * the PTE as someone else may have changed it. If
2578 * they did, we just return, as we can count on the
2579 * MMU to tell us if they didn't also make it writable.
2580 */
2581 page_table = pte_offset_map_lock(mm, pmd, address,
2582 &ptl);
b827e496
NP
2583 if (!pte_same(*page_table, orig_pte)) {
2584 unlock_page(old_page);
9637a5ef 2585 goto unlock;
b827e496 2586 }
a200ee18
PZ
2587
2588 page_mkwrite = 1;
1da177e4 2589 }
d08b3851
PZ
2590 dirty_page = old_page;
2591 get_page(dirty_page);
9637a5ef 2592
251b97f5 2593reuse:
9637a5ef
DH
2594 flush_cache_page(vma, address, pte_pfn(orig_pte));
2595 entry = pte_mkyoung(orig_pte);
2596 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2597 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2598 update_mmu_cache(vma, address, page_table);
72ddc8f7 2599 pte_unmap_unlock(page_table, ptl);
9637a5ef 2600 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2601
2602 if (!dirty_page)
2603 return ret;
2604
2605 /*
2606 * Yes, Virginia, this is actually required to prevent a race
2607 * with clear_page_dirty_for_io() from clearing the page dirty
2608 * bit after it clear all dirty ptes, but before a racing
2609 * do_wp_page installs a dirty pte.
2610 *
a335b2e1 2611 * __do_fault is protected similarly.
72ddc8f7
ML
2612 */
2613 if (!page_mkwrite) {
2614 wait_on_page_locked(dirty_page);
2615 set_page_dirty_balance(dirty_page, page_mkwrite);
2616 }
2617 put_page(dirty_page);
2618 if (page_mkwrite) {
2619 struct address_space *mapping = dirty_page->mapping;
2620
2621 set_page_dirty(dirty_page);
2622 unlock_page(dirty_page);
2623 page_cache_release(dirty_page);
2624 if (mapping) {
2625 /*
2626 * Some device drivers do not set page.mapping
2627 * but still dirty their pages
2628 */
2629 balance_dirty_pages_ratelimited(mapping);
2630 }
2631 }
2632
2633 /* file_update_time outside page_lock */
2634 if (vma->vm_file)
2635 file_update_time(vma->vm_file);
2636
2637 return ret;
1da177e4 2638 }
1da177e4
LT
2639
2640 /*
2641 * Ok, we need to copy. Oh, well..
2642 */
b5810039 2643 page_cache_get(old_page);
920fc356 2644gotten:
8f4e2101 2645 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2646
2647 if (unlikely(anon_vma_prepare(vma)))
65500d23 2648 goto oom;
a13ea5b7 2649
62eede62 2650 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2651 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2652 if (!new_page)
2653 goto oom;
2654 } else {
2655 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2656 if (!new_page)
2657 goto oom;
2658 cow_user_page(new_page, old_page, address, vma);
2659 }
2660 __SetPageUptodate(new_page);
2661
2c26fdd7 2662 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2663 goto oom_free_new;
2664
1da177e4
LT
2665 /*
2666 * Re-check the pte - we dropped the lock
2667 */
8f4e2101 2668 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2669 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2670 if (old_page) {
920fc356 2671 if (!PageAnon(old_page)) {
34e55232
KH
2672 dec_mm_counter_fast(mm, MM_FILEPAGES);
2673 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2674 }
2675 } else
34e55232 2676 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2677 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2678 entry = mk_pte(new_page, vma->vm_page_prot);
2679 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2680 /*
2681 * Clear the pte entry and flush it first, before updating the
2682 * pte with the new entry. This will avoid a race condition
2683 * seen in the presence of one thread doing SMC and another
2684 * thread doing COW.
2685 */
828502d3 2686 ptep_clear_flush(vma, address, page_table);
9617d95e 2687 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2688 /*
2689 * We call the notify macro here because, when using secondary
2690 * mmu page tables (such as kvm shadow page tables), we want the
2691 * new page to be mapped directly into the secondary page table.
2692 */
2693 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2694 update_mmu_cache(vma, address, page_table);
945754a1
NP
2695 if (old_page) {
2696 /*
2697 * Only after switching the pte to the new page may
2698 * we remove the mapcount here. Otherwise another
2699 * process may come and find the rmap count decremented
2700 * before the pte is switched to the new page, and
2701 * "reuse" the old page writing into it while our pte
2702 * here still points into it and can be read by other
2703 * threads.
2704 *
2705 * The critical issue is to order this
2706 * page_remove_rmap with the ptp_clear_flush above.
2707 * Those stores are ordered by (if nothing else,)
2708 * the barrier present in the atomic_add_negative
2709 * in page_remove_rmap.
2710 *
2711 * Then the TLB flush in ptep_clear_flush ensures that
2712 * no process can access the old page before the
2713 * decremented mapcount is visible. And the old page
2714 * cannot be reused until after the decremented
2715 * mapcount is visible. So transitively, TLBs to
2716 * old page will be flushed before it can be reused.
2717 */
edc315fd 2718 page_remove_rmap(old_page);
945754a1
NP
2719 }
2720
1da177e4
LT
2721 /* Free the old page.. */
2722 new_page = old_page;
f33ea7f4 2723 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2724 } else
2725 mem_cgroup_uncharge_page(new_page);
2726
920fc356
HD
2727 if (new_page)
2728 page_cache_release(new_page);
65500d23 2729unlock:
8f4e2101 2730 pte_unmap_unlock(page_table, ptl);
e15f8c01
ML
2731 if (old_page) {
2732 /*
2733 * Don't let another task, with possibly unlocked vma,
2734 * keep the mlocked page.
2735 */
2736 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2737 lock_page(old_page); /* LRU manipulation */
2738 munlock_vma_page(old_page);
2739 unlock_page(old_page);
2740 }
2741 page_cache_release(old_page);
2742 }
f33ea7f4 2743 return ret;
8a9f3ccd 2744oom_free_new:
6dbf6d3b 2745 page_cache_release(new_page);
65500d23 2746oom:
b827e496
NP
2747 if (old_page) {
2748 if (page_mkwrite) {
2749 unlock_page(old_page);
2750 page_cache_release(old_page);
2751 }
920fc356 2752 page_cache_release(old_page);
b827e496 2753 }
1da177e4 2754 return VM_FAULT_OOM;
9637a5ef
DH
2755
2756unwritable_page:
2757 page_cache_release(old_page);
c2ec175c 2758 return ret;
1da177e4
LT
2759}
2760
97a89413 2761static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2762 unsigned long start_addr, unsigned long end_addr,
2763 struct zap_details *details)
2764{
97a89413 2765 zap_page_range(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2766}
2767
2768static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2769 struct zap_details *details)
2770{
2771 struct vm_area_struct *vma;
2772 struct prio_tree_iter iter;
2773 pgoff_t vba, vea, zba, zea;
2774
1da177e4
LT
2775 vma_prio_tree_foreach(vma, &iter, root,
2776 details->first_index, details->last_index) {
1da177e4
LT
2777
2778 vba = vma->vm_pgoff;
2779 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2780 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2781 zba = details->first_index;
2782 if (zba < vba)
2783 zba = vba;
2784 zea = details->last_index;
2785 if (zea > vea)
2786 zea = vea;
2787
97a89413 2788 unmap_mapping_range_vma(vma,
1da177e4
LT
2789 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2790 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2791 details);
1da177e4
LT
2792 }
2793}
2794
2795static inline void unmap_mapping_range_list(struct list_head *head,
2796 struct zap_details *details)
2797{
2798 struct vm_area_struct *vma;
2799
2800 /*
2801 * In nonlinear VMAs there is no correspondence between virtual address
2802 * offset and file offset. So we must perform an exhaustive search
2803 * across *all* the pages in each nonlinear VMA, not just the pages
2804 * whose virtual address lies outside the file truncation point.
2805 */
1da177e4 2806 list_for_each_entry(vma, head, shared.vm_set.list) {
1da177e4 2807 details->nonlinear_vma = vma;
97a89413 2808 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2809 }
2810}
2811
2812/**
72fd4a35 2813 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2814 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2815 * @holebegin: byte in first page to unmap, relative to the start of
2816 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2817 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2818 * must keep the partial page. In contrast, we must get rid of
2819 * partial pages.
2820 * @holelen: size of prospective hole in bytes. This will be rounded
2821 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2822 * end of the file.
2823 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2824 * but 0 when invalidating pagecache, don't throw away private data.
2825 */
2826void unmap_mapping_range(struct address_space *mapping,
2827 loff_t const holebegin, loff_t const holelen, int even_cows)
2828{
2829 struct zap_details details;
2830 pgoff_t hba = holebegin >> PAGE_SHIFT;
2831 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2832
2833 /* Check for overflow. */
2834 if (sizeof(holelen) > sizeof(hlen)) {
2835 long long holeend =
2836 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2837 if (holeend & ~(long long)ULONG_MAX)
2838 hlen = ULONG_MAX - hba + 1;
2839 }
2840
2841 details.check_mapping = even_cows? NULL: mapping;
2842 details.nonlinear_vma = NULL;
2843 details.first_index = hba;
2844 details.last_index = hba + hlen - 1;
2845 if (details.last_index < details.first_index)
2846 details.last_index = ULONG_MAX;
1da177e4 2847
1da177e4 2848
3d48ae45 2849 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
2850 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2851 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2852 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2853 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2854 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2855}
2856EXPORT_SYMBOL(unmap_mapping_range);
2857
1da177e4 2858/*
8f4e2101
HD
2859 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2860 * but allow concurrent faults), and pte mapped but not yet locked.
2861 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2862 */
65500d23
HD
2863static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2864 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2865 unsigned int flags, pte_t orig_pte)
1da177e4 2866{
8f4e2101 2867 spinlock_t *ptl;
4969c119 2868 struct page *page, *swapcache = NULL;
65500d23 2869 swp_entry_t entry;
1da177e4 2870 pte_t pte;
d065bd81 2871 int locked;
56039efa 2872 struct mem_cgroup *ptr;
ad8c2ee8 2873 int exclusive = 0;
83c54070 2874 int ret = 0;
1da177e4 2875
4c21e2f2 2876 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2877 goto out;
65500d23
HD
2878
2879 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2880 if (unlikely(non_swap_entry(entry))) {
2881 if (is_migration_entry(entry)) {
2882 migration_entry_wait(mm, pmd, address);
2883 } else if (is_hwpoison_entry(entry)) {
2884 ret = VM_FAULT_HWPOISON;
2885 } else {
2886 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2887 ret = VM_FAULT_SIGBUS;
d1737fdb 2888 }
0697212a
CL
2889 goto out;
2890 }
0ff92245 2891 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2892 page = lookup_swap_cache(entry);
2893 if (!page) {
a5c9b696 2894 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2895 page = swapin_readahead(entry,
2896 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2897 if (!page) {
2898 /*
8f4e2101
HD
2899 * Back out if somebody else faulted in this pte
2900 * while we released the pte lock.
1da177e4 2901 */
8f4e2101 2902 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2903 if (likely(pte_same(*page_table, orig_pte)))
2904 ret = VM_FAULT_OOM;
0ff92245 2905 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2906 goto unlock;
1da177e4
LT
2907 }
2908
2909 /* Had to read the page from swap area: Major fault */
2910 ret = VM_FAULT_MAJOR;
f8891e5e 2911 count_vm_event(PGMAJFAULT);
456f998e 2912 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2913 } else if (PageHWPoison(page)) {
71f72525
WF
2914 /*
2915 * hwpoisoned dirty swapcache pages are kept for killing
2916 * owner processes (which may be unknown at hwpoison time)
2917 */
d1737fdb
AK
2918 ret = VM_FAULT_HWPOISON;
2919 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2920 goto out_release;
1da177e4
LT
2921 }
2922
d065bd81 2923 locked = lock_page_or_retry(page, mm, flags);
073e587e 2924 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2925 if (!locked) {
2926 ret |= VM_FAULT_RETRY;
2927 goto out_release;
2928 }
073e587e 2929
4969c119 2930 /*
31c4a3d3
HD
2931 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2932 * release the swapcache from under us. The page pin, and pte_same
2933 * test below, are not enough to exclude that. Even if it is still
2934 * swapcache, we need to check that the page's swap has not changed.
4969c119 2935 */
31c4a3d3 2936 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2937 goto out_page;
2938
2939 if (ksm_might_need_to_copy(page, vma, address)) {
2940 swapcache = page;
2941 page = ksm_does_need_to_copy(page, vma, address);
2942
2943 if (unlikely(!page)) {
2944 ret = VM_FAULT_OOM;
2945 page = swapcache;
2946 swapcache = NULL;
2947 goto out_page;
2948 }
5ad64688
HD
2949 }
2950
2c26fdd7 2951 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2952 ret = VM_FAULT_OOM;
bc43f75c 2953 goto out_page;
8a9f3ccd
BS
2954 }
2955
1da177e4 2956 /*
8f4e2101 2957 * Back out if somebody else already faulted in this pte.
1da177e4 2958 */
8f4e2101 2959 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2960 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2961 goto out_nomap;
b8107480
KK
2962
2963 if (unlikely(!PageUptodate(page))) {
2964 ret = VM_FAULT_SIGBUS;
2965 goto out_nomap;
1da177e4
LT
2966 }
2967
8c7c6e34
KH
2968 /*
2969 * The page isn't present yet, go ahead with the fault.
2970 *
2971 * Be careful about the sequence of operations here.
2972 * To get its accounting right, reuse_swap_page() must be called
2973 * while the page is counted on swap but not yet in mapcount i.e.
2974 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2975 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2976 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2977 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2978 * in page->private. In this case, a record in swap_cgroup is silently
2979 * discarded at swap_free().
8c7c6e34 2980 */
1da177e4 2981
34e55232 2982 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2983 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2984 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2985 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2986 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2987 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2988 ret |= VM_FAULT_WRITE;
ad8c2ee8 2989 exclusive = 1;
1da177e4 2990 }
1da177e4
LT
2991 flush_icache_page(vma, page);
2992 set_pte_at(mm, address, page_table, pte);
ad8c2ee8 2993 do_page_add_anon_rmap(page, vma, address, exclusive);
03f3c433
KH
2994 /* It's better to call commit-charge after rmap is established */
2995 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2996
c475a8ab 2997 swap_free(entry);
b291f000 2998 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2999 try_to_free_swap(page);
c475a8ab 3000 unlock_page(page);
4969c119
AA
3001 if (swapcache) {
3002 /*
3003 * Hold the lock to avoid the swap entry to be reused
3004 * until we take the PT lock for the pte_same() check
3005 * (to avoid false positives from pte_same). For
3006 * further safety release the lock after the swap_free
3007 * so that the swap count won't change under a
3008 * parallel locked swapcache.
3009 */
3010 unlock_page(swapcache);
3011 page_cache_release(swapcache);
3012 }
c475a8ab 3013
30c9f3a9 3014 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
3015 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3016 if (ret & VM_FAULT_ERROR)
3017 ret &= VM_FAULT_ERROR;
1da177e4
LT
3018 goto out;
3019 }
3020
3021 /* No need to invalidate - it was non-present before */
4b3073e1 3022 update_mmu_cache(vma, address, page_table);
65500d23 3023unlock:
8f4e2101 3024 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
3025out:
3026 return ret;
b8107480 3027out_nomap:
7a81b88c 3028 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 3029 pte_unmap_unlock(page_table, ptl);
bc43f75c 3030out_page:
b8107480 3031 unlock_page(page);
4779cb31 3032out_release:
b8107480 3033 page_cache_release(page);
4969c119
AA
3034 if (swapcache) {
3035 unlock_page(swapcache);
3036 page_cache_release(swapcache);
3037 }
65500d23 3038 return ret;
1da177e4
LT
3039}
3040
320b2b8d 3041/*
8ca3eb08
TL
3042 * This is like a special single-page "expand_{down|up}wards()",
3043 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 3044 * doesn't hit another vma.
320b2b8d
LT
3045 */
3046static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3047{
3048 address &= PAGE_MASK;
3049 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
3050 struct vm_area_struct *prev = vma->vm_prev;
3051
3052 /*
3053 * Is there a mapping abutting this one below?
3054 *
3055 * That's only ok if it's the same stack mapping
3056 * that has gotten split..
3057 */
3058 if (prev && prev->vm_end == address)
3059 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 3060
d05f3169 3061 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 3062 }
8ca3eb08
TL
3063 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3064 struct vm_area_struct *next = vma->vm_next;
3065
3066 /* As VM_GROWSDOWN but s/below/above/ */
3067 if (next && next->vm_start == address + PAGE_SIZE)
3068 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3069
3070 expand_upwards(vma, address + PAGE_SIZE);
3071 }
320b2b8d
LT
3072 return 0;
3073}
3074
1da177e4 3075/*
8f4e2101
HD
3076 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3077 * but allow concurrent faults), and pte mapped but not yet locked.
3078 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3079 */
65500d23
HD
3080static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3081 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3082 unsigned int flags)
1da177e4 3083{
8f4e2101
HD
3084 struct page *page;
3085 spinlock_t *ptl;
1da177e4 3086 pte_t entry;
1da177e4 3087
11ac5524
LT
3088 pte_unmap(page_table);
3089
3090 /* Check if we need to add a guard page to the stack */
3091 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
3092 return VM_FAULT_SIGBUS;
3093
11ac5524 3094 /* Use the zero-page for reads */
62eede62
HD
3095 if (!(flags & FAULT_FLAG_WRITE)) {
3096 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3097 vma->vm_page_prot));
11ac5524 3098 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
3099 if (!pte_none(*page_table))
3100 goto unlock;
3101 goto setpte;
3102 }
3103
557ed1fa 3104 /* Allocate our own private page. */
557ed1fa
NP
3105 if (unlikely(anon_vma_prepare(vma)))
3106 goto oom;
3107 page = alloc_zeroed_user_highpage_movable(vma, address);
3108 if (!page)
3109 goto oom;
0ed361de 3110 __SetPageUptodate(page);
8f4e2101 3111
2c26fdd7 3112 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3113 goto oom_free_page;
3114
557ed1fa 3115 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3116 if (vma->vm_flags & VM_WRITE)
3117 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3118
557ed1fa 3119 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3120 if (!pte_none(*page_table))
557ed1fa 3121 goto release;
9ba69294 3122
34e55232 3123 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3124 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3125setpte:
65500d23 3126 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3127
3128 /* No need to invalidate - it was non-present before */
4b3073e1 3129 update_mmu_cache(vma, address, page_table);
65500d23 3130unlock:
8f4e2101 3131 pte_unmap_unlock(page_table, ptl);
83c54070 3132 return 0;
8f4e2101 3133release:
8a9f3ccd 3134 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3135 page_cache_release(page);
3136 goto unlock;
8a9f3ccd 3137oom_free_page:
6dbf6d3b 3138 page_cache_release(page);
65500d23 3139oom:
1da177e4
LT
3140 return VM_FAULT_OOM;
3141}
3142
3143/*
54cb8821 3144 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 3145 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
3146 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3147 * the next page fault.
1da177e4
LT
3148 *
3149 * As this is called only for pages that do not currently exist, we
3150 * do not need to flush old virtual caches or the TLB.
3151 *
8f4e2101 3152 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 3153 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 3154 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3155 */
54cb8821 3156static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3157 unsigned long address, pmd_t *pmd,
54cb8821 3158 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3159{
16abfa08 3160 pte_t *page_table;
8f4e2101 3161 spinlock_t *ptl;
d0217ac0 3162 struct page *page;
1d65f86d 3163 struct page *cow_page;
1da177e4 3164 pte_t entry;
1da177e4 3165 int anon = 0;
d08b3851 3166 struct page *dirty_page = NULL;
d0217ac0
NP
3167 struct vm_fault vmf;
3168 int ret;
a200ee18 3169 int page_mkwrite = 0;
54cb8821 3170
1d65f86d
KH
3171 /*
3172 * If we do COW later, allocate page befor taking lock_page()
3173 * on the file cache page. This will reduce lock holding time.
3174 */
3175 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3176
3177 if (unlikely(anon_vma_prepare(vma)))
3178 return VM_FAULT_OOM;
3179
3180 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3181 if (!cow_page)
3182 return VM_FAULT_OOM;
3183
3184 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3185 page_cache_release(cow_page);
3186 return VM_FAULT_OOM;
3187 }
3188 } else
3189 cow_page = NULL;
3190
d0217ac0
NP
3191 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3192 vmf.pgoff = pgoff;
3193 vmf.flags = flags;
3194 vmf.page = NULL;
1da177e4 3195
3c18ddd1 3196 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3197 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3198 VM_FAULT_RETRY)))
1d65f86d 3199 goto uncharge_out;
1da177e4 3200
a3b947ea
AK
3201 if (unlikely(PageHWPoison(vmf.page))) {
3202 if (ret & VM_FAULT_LOCKED)
3203 unlock_page(vmf.page);
1d65f86d
KH
3204 ret = VM_FAULT_HWPOISON;
3205 goto uncharge_out;
a3b947ea
AK
3206 }
3207
d00806b1 3208 /*
d0217ac0 3209 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3210 * locked.
3211 */
83c54070 3212 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3213 lock_page(vmf.page);
54cb8821 3214 else
d0217ac0 3215 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3216
1da177e4
LT
3217 /*
3218 * Should we do an early C-O-W break?
3219 */
d0217ac0 3220 page = vmf.page;
54cb8821 3221 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3222 if (!(vma->vm_flags & VM_SHARED)) {
1d65f86d 3223 page = cow_page;
54cb8821 3224 anon = 1;
d0217ac0 3225 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3226 __SetPageUptodate(page);
9637a5ef 3227 } else {
54cb8821
NP
3228 /*
3229 * If the page will be shareable, see if the backing
9637a5ef 3230 * address space wants to know that the page is about
54cb8821
NP
3231 * to become writable
3232 */
69676147 3233 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3234 int tmp;
3235
69676147 3236 unlock_page(page);
b827e496 3237 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3238 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3239 if (unlikely(tmp &
3240 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3241 ret = tmp;
b827e496 3242 goto unwritable_page;
d0217ac0 3243 }
b827e496
NP
3244 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3245 lock_page(page);
3246 if (!page->mapping) {
3247 ret = 0; /* retry the fault */
3248 unlock_page(page);
3249 goto unwritable_page;
3250 }
3251 } else
3252 VM_BUG_ON(!PageLocked(page));
a200ee18 3253 page_mkwrite = 1;
9637a5ef
DH
3254 }
3255 }
54cb8821 3256
1da177e4
LT
3257 }
3258
8f4e2101 3259 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3260
3261 /*
3262 * This silly early PAGE_DIRTY setting removes a race
3263 * due to the bad i386 page protection. But it's valid
3264 * for other architectures too.
3265 *
30c9f3a9 3266 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3267 * an exclusive copy of the page, or this is a shared mapping,
3268 * so we can make it writable and dirty to avoid having to
3269 * handle that later.
3270 */
3271 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3272 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3273 flush_icache_page(vma, page);
3274 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3275 if (flags & FAULT_FLAG_WRITE)
1da177e4 3276 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 3277 if (anon) {
34e55232 3278 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3279 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3280 } else {
34e55232 3281 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3282 page_add_file_rmap(page);
54cb8821 3283 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3284 dirty_page = page;
d08b3851
PZ
3285 get_page(dirty_page);
3286 }
4294621f 3287 }
64d6519d 3288 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3289
3290 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3291 update_mmu_cache(vma, address, page_table);
1da177e4 3292 } else {
1d65f86d
KH
3293 if (cow_page)
3294 mem_cgroup_uncharge_page(cow_page);
d00806b1
NP
3295 if (anon)
3296 page_cache_release(page);
3297 else
54cb8821 3298 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3299 }
3300
8f4e2101 3301 pte_unmap_unlock(page_table, ptl);
d00806b1 3302
b827e496
NP
3303 if (dirty_page) {
3304 struct address_space *mapping = page->mapping;
8f7b3d15 3305
b827e496
NP
3306 if (set_page_dirty(dirty_page))
3307 page_mkwrite = 1;
3308 unlock_page(dirty_page);
d08b3851 3309 put_page(dirty_page);
b827e496
NP
3310 if (page_mkwrite && mapping) {
3311 /*
3312 * Some device drivers do not set page.mapping but still
3313 * dirty their pages
3314 */
3315 balance_dirty_pages_ratelimited(mapping);
3316 }
3317
3318 /* file_update_time outside page_lock */
3319 if (vma->vm_file)
3320 file_update_time(vma->vm_file);
3321 } else {
3322 unlock_page(vmf.page);
3323 if (anon)
3324 page_cache_release(vmf.page);
d08b3851 3325 }
d00806b1 3326
83c54070 3327 return ret;
b827e496
NP
3328
3329unwritable_page:
3330 page_cache_release(page);
3331 return ret;
1d65f86d
KH
3332uncharge_out:
3333 /* fs's fault handler get error */
3334 if (cow_page) {
3335 mem_cgroup_uncharge_page(cow_page);
3336 page_cache_release(cow_page);
3337 }
3338 return ret;
54cb8821 3339}
d00806b1 3340
54cb8821
NP
3341static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3342 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3343 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3344{
3345 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3346 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3347
16abfa08
HD
3348 pte_unmap(page_table);
3349 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3350}
3351
1da177e4
LT
3352/*
3353 * Fault of a previously existing named mapping. Repopulate the pte
3354 * from the encoded file_pte if possible. This enables swappable
3355 * nonlinear vmas.
8f4e2101
HD
3356 *
3357 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3358 * but allow concurrent faults), and pte mapped but not yet locked.
3359 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3360 */
d0217ac0 3361static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3362 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3363 unsigned int flags, pte_t orig_pte)
1da177e4 3364{
65500d23 3365 pgoff_t pgoff;
1da177e4 3366
30c9f3a9
LT
3367 flags |= FAULT_FLAG_NONLINEAR;
3368
4c21e2f2 3369 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3370 return 0;
1da177e4 3371
2509ef26 3372 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3373 /*
3374 * Page table corrupted: show pte and kill process.
3375 */
3dc14741 3376 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3377 return VM_FAULT_SIGBUS;
65500d23 3378 }
65500d23
HD
3379
3380 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3381 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3382}
3383
3384/*
3385 * These routines also need to handle stuff like marking pages dirty
3386 * and/or accessed for architectures that don't do it in hardware (most
3387 * RISC architectures). The early dirtying is also good on the i386.
3388 *
3389 * There is also a hook called "update_mmu_cache()" that architectures
3390 * with external mmu caches can use to update those (ie the Sparc or
3391 * PowerPC hashed page tables that act as extended TLBs).
3392 *
c74df32c
HD
3393 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3394 * but allow concurrent faults), and pte mapped but not yet locked.
3395 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3396 */
71e3aac0
AA
3397int handle_pte_fault(struct mm_struct *mm,
3398 struct vm_area_struct *vma, unsigned long address,
3399 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3400{
3401 pte_t entry;
8f4e2101 3402 spinlock_t *ptl;
1da177e4 3403
8dab5241 3404 entry = *pte;
1da177e4 3405 if (!pte_present(entry)) {
65500d23 3406 if (pte_none(entry)) {
f4b81804 3407 if (vma->vm_ops) {
3c18ddd1 3408 if (likely(vma->vm_ops->fault))
54cb8821 3409 return do_linear_fault(mm, vma, address,
30c9f3a9 3410 pte, pmd, flags, entry);
f4b81804
JS
3411 }
3412 return do_anonymous_page(mm, vma, address,
30c9f3a9 3413 pte, pmd, flags);
65500d23 3414 }
1da177e4 3415 if (pte_file(entry))
d0217ac0 3416 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3417 pte, pmd, flags, entry);
65500d23 3418 return do_swap_page(mm, vma, address,
30c9f3a9 3419 pte, pmd, flags, entry);
1da177e4
LT
3420 }
3421
4c21e2f2 3422 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3423 spin_lock(ptl);
3424 if (unlikely(!pte_same(*pte, entry)))
3425 goto unlock;
30c9f3a9 3426 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3427 if (!pte_write(entry))
8f4e2101
HD
3428 return do_wp_page(mm, vma, address,
3429 pte, pmd, ptl, entry);
1da177e4
LT
3430 entry = pte_mkdirty(entry);
3431 }
3432 entry = pte_mkyoung(entry);
30c9f3a9 3433 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3434 update_mmu_cache(vma, address, pte);
1a44e149
AA
3435 } else {
3436 /*
3437 * This is needed only for protection faults but the arch code
3438 * is not yet telling us if this is a protection fault or not.
3439 * This still avoids useless tlb flushes for .text page faults
3440 * with threads.
3441 */
30c9f3a9 3442 if (flags & FAULT_FLAG_WRITE)
61c77326 3443 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3444 }
8f4e2101
HD
3445unlock:
3446 pte_unmap_unlock(pte, ptl);
83c54070 3447 return 0;
1da177e4
LT
3448}
3449
3450/*
3451 * By the time we get here, we already hold the mm semaphore
3452 */
83c54070 3453int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3454 unsigned long address, unsigned int flags)
1da177e4
LT
3455{
3456 pgd_t *pgd;
3457 pud_t *pud;
3458 pmd_t *pmd;
3459 pte_t *pte;
3460
3461 __set_current_state(TASK_RUNNING);
3462
f8891e5e 3463 count_vm_event(PGFAULT);
456f998e 3464 mem_cgroup_count_vm_event(mm, PGFAULT);
1da177e4 3465
34e55232
KH
3466 /* do counter updates before entering really critical section. */
3467 check_sync_rss_stat(current);
3468
ac9b9c66 3469 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3470 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3471
1da177e4 3472 pgd = pgd_offset(mm, address);
1da177e4
LT
3473 pud = pud_alloc(mm, pgd, address);
3474 if (!pud)
c74df32c 3475 return VM_FAULT_OOM;
1da177e4
LT
3476 pmd = pmd_alloc(mm, pud, address);
3477 if (!pmd)
c74df32c 3478 return VM_FAULT_OOM;
71e3aac0
AA
3479 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3480 if (!vma->vm_ops)
3481 return do_huge_pmd_anonymous_page(mm, vma, address,
3482 pmd, flags);
3483 } else {
3484 pmd_t orig_pmd = *pmd;
3485 barrier();
3486 if (pmd_trans_huge(orig_pmd)) {
3487 if (flags & FAULT_FLAG_WRITE &&
3488 !pmd_write(orig_pmd) &&
3489 !pmd_trans_splitting(orig_pmd))
3490 return do_huge_pmd_wp_page(mm, vma, address,
3491 pmd, orig_pmd);
3492 return 0;
3493 }
3494 }
3495
3496 /*
3497 * Use __pte_alloc instead of pte_alloc_map, because we can't
3498 * run pte_offset_map on the pmd, if an huge pmd could
3499 * materialize from under us from a different thread.
3500 */
cc03638d 3501 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
c74df32c 3502 return VM_FAULT_OOM;
71e3aac0
AA
3503 /* if an huge pmd materialized from under us just retry later */
3504 if (unlikely(pmd_trans_huge(*pmd)))
3505 return 0;
3506 /*
3507 * A regular pmd is established and it can't morph into a huge pmd
3508 * from under us anymore at this point because we hold the mmap_sem
3509 * read mode and khugepaged takes it in write mode. So now it's
3510 * safe to run pte_offset_map().
3511 */
3512 pte = pte_offset_map(pmd, address);
1da177e4 3513
30c9f3a9 3514 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3515}
3516
3517#ifndef __PAGETABLE_PUD_FOLDED
3518/*
3519 * Allocate page upper directory.
872fec16 3520 * We've already handled the fast-path in-line.
1da177e4 3521 */
1bb3630e 3522int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3523{
c74df32c
HD
3524 pud_t *new = pud_alloc_one(mm, address);
3525 if (!new)
1bb3630e 3526 return -ENOMEM;
1da177e4 3527
362a61ad
NP
3528 smp_wmb(); /* See comment in __pte_alloc */
3529
872fec16 3530 spin_lock(&mm->page_table_lock);
1bb3630e 3531 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3532 pud_free(mm, new);
1bb3630e
HD
3533 else
3534 pgd_populate(mm, pgd, new);
c74df32c 3535 spin_unlock(&mm->page_table_lock);
1bb3630e 3536 return 0;
1da177e4
LT
3537}
3538#endif /* __PAGETABLE_PUD_FOLDED */
3539
3540#ifndef __PAGETABLE_PMD_FOLDED
3541/*
3542 * Allocate page middle directory.
872fec16 3543 * We've already handled the fast-path in-line.
1da177e4 3544 */
1bb3630e 3545int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3546{
c74df32c
HD
3547 pmd_t *new = pmd_alloc_one(mm, address);
3548 if (!new)
1bb3630e 3549 return -ENOMEM;
1da177e4 3550
362a61ad
NP
3551 smp_wmb(); /* See comment in __pte_alloc */
3552
872fec16 3553 spin_lock(&mm->page_table_lock);
1da177e4 3554#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3555 if (pud_present(*pud)) /* Another has populated it */
5e541973 3556 pmd_free(mm, new);
1bb3630e
HD
3557 else
3558 pud_populate(mm, pud, new);
1da177e4 3559#else
1bb3630e 3560 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3561 pmd_free(mm, new);
1bb3630e
HD
3562 else
3563 pgd_populate(mm, pud, new);
1da177e4 3564#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3565 spin_unlock(&mm->page_table_lock);
1bb3630e 3566 return 0;
e0f39591 3567}
1da177e4
LT
3568#endif /* __PAGETABLE_PMD_FOLDED */
3569
3570int make_pages_present(unsigned long addr, unsigned long end)
3571{
3572 int ret, len, write;
3573 struct vm_area_struct * vma;
3574
3575 vma = find_vma(current->mm, addr);
3576 if (!vma)
a477097d 3577 return -ENOMEM;
5ecfda04
ML
3578 /*
3579 * We want to touch writable mappings with a write fault in order
3580 * to break COW, except for shared mappings because these don't COW
3581 * and we would not want to dirty them for nothing.
3582 */
3583 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
5bcb28b1
ES
3584 BUG_ON(addr >= end);
3585 BUG_ON(end > vma->vm_end);
68e116a3 3586 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3587 ret = get_user_pages(current, current->mm, addr,
3588 len, write, 0, NULL, NULL);
c11d69d8 3589 if (ret < 0)
1da177e4 3590 return ret;
9978ad58 3591 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3592}
3593
1da177e4
LT
3594#if !defined(__HAVE_ARCH_GATE_AREA)
3595
3596#if defined(AT_SYSINFO_EHDR)
5ce7852c 3597static struct vm_area_struct gate_vma;
1da177e4
LT
3598
3599static int __init gate_vma_init(void)
3600{
3601 gate_vma.vm_mm = NULL;
3602 gate_vma.vm_start = FIXADDR_USER_START;
3603 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3604 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3605 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3606 /*
3607 * Make sure the vDSO gets into every core dump.
3608 * Dumping its contents makes post-mortem fully interpretable later
3609 * without matching up the same kernel and hardware config to see
3610 * what PC values meant.
3611 */
3612 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3613 return 0;
3614}
3615__initcall(gate_vma_init);
3616#endif
3617
31db58b3 3618struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3619{
3620#ifdef AT_SYSINFO_EHDR
3621 return &gate_vma;
3622#else
3623 return NULL;
3624#endif
3625}
3626
cae5d390 3627int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3628{
3629#ifdef AT_SYSINFO_EHDR
3630 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3631 return 1;
3632#endif
3633 return 0;
3634}
3635
3636#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3637
1b36ba81 3638static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3639 pte_t **ptepp, spinlock_t **ptlp)
3640{
3641 pgd_t *pgd;
3642 pud_t *pud;
3643 pmd_t *pmd;
3644 pte_t *ptep;
3645
3646 pgd = pgd_offset(mm, address);
3647 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3648 goto out;
3649
3650 pud = pud_offset(pgd, address);
3651 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3652 goto out;
3653
3654 pmd = pmd_offset(pud, address);
f66055ab 3655 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3656 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3657 goto out;
3658
3659 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3660 if (pmd_huge(*pmd))
3661 goto out;
3662
3663 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3664 if (!ptep)
3665 goto out;
3666 if (!pte_present(*ptep))
3667 goto unlock;
3668 *ptepp = ptep;
3669 return 0;
3670unlock:
3671 pte_unmap_unlock(ptep, *ptlp);
3672out:
3673 return -EINVAL;
3674}
3675
1b36ba81
NK
3676static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3677 pte_t **ptepp, spinlock_t **ptlp)
3678{
3679 int res;
3680
3681 /* (void) is needed to make gcc happy */
3682 (void) __cond_lock(*ptlp,
3683 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3684 return res;
3685}
3686
3b6748e2
JW
3687/**
3688 * follow_pfn - look up PFN at a user virtual address
3689 * @vma: memory mapping
3690 * @address: user virtual address
3691 * @pfn: location to store found PFN
3692 *
3693 * Only IO mappings and raw PFN mappings are allowed.
3694 *
3695 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3696 */
3697int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3698 unsigned long *pfn)
3699{
3700 int ret = -EINVAL;
3701 spinlock_t *ptl;
3702 pte_t *ptep;
3703
3704 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3705 return ret;
3706
3707 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3708 if (ret)
3709 return ret;
3710 *pfn = pte_pfn(*ptep);
3711 pte_unmap_unlock(ptep, ptl);
3712 return 0;
3713}
3714EXPORT_SYMBOL(follow_pfn);
3715
28b2ee20 3716#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3717int follow_phys(struct vm_area_struct *vma,
3718 unsigned long address, unsigned int flags,
3719 unsigned long *prot, resource_size_t *phys)
28b2ee20 3720{
03668a4d 3721 int ret = -EINVAL;
28b2ee20
RR
3722 pte_t *ptep, pte;
3723 spinlock_t *ptl;
28b2ee20 3724
d87fe660 3725 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3726 goto out;
28b2ee20 3727
03668a4d 3728 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3729 goto out;
28b2ee20 3730 pte = *ptep;
03668a4d 3731
28b2ee20
RR
3732 if ((flags & FOLL_WRITE) && !pte_write(pte))
3733 goto unlock;
28b2ee20
RR
3734
3735 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3736 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3737
03668a4d 3738 ret = 0;
28b2ee20
RR
3739unlock:
3740 pte_unmap_unlock(ptep, ptl);
3741out:
d87fe660 3742 return ret;
28b2ee20
RR
3743}
3744
3745int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3746 void *buf, int len, int write)
3747{
3748 resource_size_t phys_addr;
3749 unsigned long prot = 0;
2bc7273b 3750 void __iomem *maddr;
28b2ee20
RR
3751 int offset = addr & (PAGE_SIZE-1);
3752
d87fe660 3753 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3754 return -EINVAL;
3755
3756 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3757 if (write)
3758 memcpy_toio(maddr + offset, buf, len);
3759 else
3760 memcpy_fromio(buf, maddr + offset, len);
3761 iounmap(maddr);
3762
3763 return len;
3764}
3765#endif
3766
0ec76a11 3767/*
206cb636
SW
3768 * Access another process' address space as given in mm. If non-NULL, use the
3769 * given task for page fault accounting.
0ec76a11 3770 */
206cb636
SW
3771static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3772 unsigned long addr, void *buf, int len, int write)
0ec76a11 3773{
0ec76a11 3774 struct vm_area_struct *vma;
0ec76a11
DH
3775 void *old_buf = buf;
3776
0ec76a11 3777 down_read(&mm->mmap_sem);
183ff22b 3778 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3779 while (len) {
3780 int bytes, ret, offset;
3781 void *maddr;
28b2ee20 3782 struct page *page = NULL;
0ec76a11
DH
3783
3784 ret = get_user_pages(tsk, mm, addr, 1,
3785 write, 1, &page, &vma);
28b2ee20
RR
3786 if (ret <= 0) {
3787 /*
3788 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3789 * we can access using slightly different code.
3790 */
3791#ifdef CONFIG_HAVE_IOREMAP_PROT
3792 vma = find_vma(mm, addr);
fe936dfc 3793 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3794 break;
3795 if (vma->vm_ops && vma->vm_ops->access)
3796 ret = vma->vm_ops->access(vma, addr, buf,
3797 len, write);
3798 if (ret <= 0)
3799#endif
3800 break;
3801 bytes = ret;
0ec76a11 3802 } else {
28b2ee20
RR
3803 bytes = len;
3804 offset = addr & (PAGE_SIZE-1);
3805 if (bytes > PAGE_SIZE-offset)
3806 bytes = PAGE_SIZE-offset;
3807
3808 maddr = kmap(page);
3809 if (write) {
3810 copy_to_user_page(vma, page, addr,
3811 maddr + offset, buf, bytes);
3812 set_page_dirty_lock(page);
3813 } else {
3814 copy_from_user_page(vma, page, addr,
3815 buf, maddr + offset, bytes);
3816 }
3817 kunmap(page);
3818 page_cache_release(page);
0ec76a11 3819 }
0ec76a11
DH
3820 len -= bytes;
3821 buf += bytes;
3822 addr += bytes;
3823 }
3824 up_read(&mm->mmap_sem);
0ec76a11
DH
3825
3826 return buf - old_buf;
3827}
03252919 3828
5ddd36b9 3829/**
ae91dbfc 3830 * access_remote_vm - access another process' address space
5ddd36b9
SW
3831 * @mm: the mm_struct of the target address space
3832 * @addr: start address to access
3833 * @buf: source or destination buffer
3834 * @len: number of bytes to transfer
3835 * @write: whether the access is a write
3836 *
3837 * The caller must hold a reference on @mm.
3838 */
3839int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3840 void *buf, int len, int write)
3841{
3842 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3843}
3844
206cb636
SW
3845/*
3846 * Access another process' address space.
3847 * Source/target buffer must be kernel space,
3848 * Do not walk the page table directly, use get_user_pages
3849 */
3850int access_process_vm(struct task_struct *tsk, unsigned long addr,
3851 void *buf, int len, int write)
3852{
3853 struct mm_struct *mm;
3854 int ret;
3855
3856 mm = get_task_mm(tsk);
3857 if (!mm)
3858 return 0;
3859
3860 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3861 mmput(mm);
3862
3863 return ret;
3864}
3865
03252919
AK
3866/*
3867 * Print the name of a VMA.
3868 */
3869void print_vma_addr(char *prefix, unsigned long ip)
3870{
3871 struct mm_struct *mm = current->mm;
3872 struct vm_area_struct *vma;
3873
e8bff74a
IM
3874 /*
3875 * Do not print if we are in atomic
3876 * contexts (in exception stacks, etc.):
3877 */
3878 if (preempt_count())
3879 return;
3880
03252919
AK
3881 down_read(&mm->mmap_sem);
3882 vma = find_vma(mm, ip);
3883 if (vma && vma->vm_file) {
3884 struct file *f = vma->vm_file;
3885 char *buf = (char *)__get_free_page(GFP_KERNEL);
3886 if (buf) {
3887 char *p, *s;
3888
cf28b486 3889 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3890 if (IS_ERR(p))
3891 p = "?";
3892 s = strrchr(p, '/');
3893 if (s)
3894 p = s+1;
3895 printk("%s%s[%lx+%lx]", prefix, p,
3896 vma->vm_start,
3897 vma->vm_end - vma->vm_start);
3898 free_page((unsigned long)buf);
3899 }
3900 }
3901 up_read(&current->mm->mmap_sem);
3902}
3ee1afa3
NP
3903
3904#ifdef CONFIG_PROVE_LOCKING
3905void might_fault(void)
3906{
95156f00
PZ
3907 /*
3908 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3909 * holding the mmap_sem, this is safe because kernel memory doesn't
3910 * get paged out, therefore we'll never actually fault, and the
3911 * below annotations will generate false positives.
3912 */
3913 if (segment_eq(get_fs(), KERNEL_DS))
3914 return;
3915
3ee1afa3
NP
3916 might_sleep();
3917 /*
3918 * it would be nicer only to annotate paths which are not under
3919 * pagefault_disable, however that requires a larger audit and
3920 * providing helpers like get_user_atomic.
3921 */
3922 if (!in_atomic() && current->mm)
3923 might_lock_read(&current->mm->mmap_sem);
3924}
3925EXPORT_SYMBOL(might_fault);
3926#endif
47ad8475
AA
3927
3928#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3929static void clear_gigantic_page(struct page *page,
3930 unsigned long addr,
3931 unsigned int pages_per_huge_page)
3932{
3933 int i;
3934 struct page *p = page;
3935
3936 might_sleep();
3937 for (i = 0; i < pages_per_huge_page;
3938 i++, p = mem_map_next(p, page, i)) {
3939 cond_resched();
3940 clear_user_highpage(p, addr + i * PAGE_SIZE);
3941 }
3942}
3943void clear_huge_page(struct page *page,
3944 unsigned long addr, unsigned int pages_per_huge_page)
3945{
3946 int i;
3947
3948 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3949 clear_gigantic_page(page, addr, pages_per_huge_page);
3950 return;
3951 }
3952
3953 might_sleep();
3954 for (i = 0; i < pages_per_huge_page; i++) {
3955 cond_resched();
3956 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3957 }
3958}
3959
3960static void copy_user_gigantic_page(struct page *dst, struct page *src,
3961 unsigned long addr,
3962 struct vm_area_struct *vma,
3963 unsigned int pages_per_huge_page)
3964{
3965 int i;
3966 struct page *dst_base = dst;
3967 struct page *src_base = src;
3968
3969 for (i = 0; i < pages_per_huge_page; ) {
3970 cond_resched();
3971 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3972
3973 i++;
3974 dst = mem_map_next(dst, dst_base, i);
3975 src = mem_map_next(src, src_base, i);
3976 }
3977}
3978
3979void copy_user_huge_page(struct page *dst, struct page *src,
3980 unsigned long addr, struct vm_area_struct *vma,
3981 unsigned int pages_per_huge_page)
3982{
3983 int i;
3984
3985 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3986 copy_user_gigantic_page(dst, src, addr, vma,
3987 pages_per_huge_page);
3988 return;
3989 }
3990
3991 might_sleep();
3992 for (i = 0; i < pages_per_huge_page; i++) {
3993 cond_resched();
3994 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3995 }
3996}
3997#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */