]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
mm/memory.c: refactor insert_page to prepare for batched-lock insert
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
1da177e4 74
b3d1411b
JFG
75#include <trace/events/kmem.h>
76
6952b61d 77#include <asm/io.h>
33a709b2 78#include <asm/mmu_context.h>
1da177e4 79#include <asm/pgalloc.h>
7c0f6ba6 80#include <linux/uaccess.h>
1da177e4
LT
81#include <asm/tlb.h>
82#include <asm/tlbflush.h>
83#include <asm/pgtable.h>
84
42b77728
JB
85#include "internal.h"
86
af27d940 87#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 88#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
89#endif
90
d41dee36 91#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
92/* use the per-pgdat data instead for discontigmem - mbligh */
93unsigned long max_mapnr;
1da177e4 94EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
95
96struct page *mem_map;
1da177e4
LT
97EXPORT_SYMBOL(mem_map);
98#endif
99
1da177e4
LT
100/*
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105 * and ZONE_HIGHMEM.
106 */
166f61b9 107void *high_memory;
1da177e4 108EXPORT_SYMBOL(high_memory);
1da177e4 109
32a93233
IM
110/*
111 * Randomize the address space (stacks, mmaps, brk, etc.).
112 *
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
115 */
116int randomize_va_space __read_mostly =
117#ifdef CONFIG_COMPAT_BRK
118 1;
119#else
120 2;
121#endif
a62eaf15 122
83d116c5
JH
123#ifndef arch_faults_on_old_pte
124static inline bool arch_faults_on_old_pte(void)
125{
126 /*
127 * Those arches which don't have hw access flag feature need to
128 * implement their own helper. By default, "true" means pagefault
129 * will be hit on old pte.
130 */
131 return true;
132}
133#endif
134
a62eaf15
AK
135static int __init disable_randmaps(char *s)
136{
137 randomize_va_space = 0;
9b41046c 138 return 1;
a62eaf15
AK
139}
140__setup("norandmaps", disable_randmaps);
141
62eede62 142unsigned long zero_pfn __read_mostly;
0b70068e
AB
143EXPORT_SYMBOL(zero_pfn);
144
166f61b9
TH
145unsigned long highest_memmap_pfn __read_mostly;
146
a13ea5b7
HD
147/*
148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149 */
150static int __init init_zero_pfn(void)
151{
152 zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 return 0;
154}
155core_initcall(init_zero_pfn);
a62eaf15 156
e4dcad20 157void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 158{
e4dcad20 159 trace_rss_stat(mm, member, count);
b3d1411b 160}
d559db08 161
34e55232
KH
162#if defined(SPLIT_RSS_COUNTING)
163
ea48cf78 164void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
165{
166 int i;
167
168 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
169 if (current->rss_stat.count[i]) {
170 add_mm_counter(mm, i, current->rss_stat.count[i]);
171 current->rss_stat.count[i] = 0;
34e55232
KH
172 }
173 }
05af2e10 174 current->rss_stat.events = 0;
34e55232
KH
175}
176
177static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178{
179 struct task_struct *task = current;
180
181 if (likely(task->mm == mm))
182 task->rss_stat.count[member] += val;
183 else
184 add_mm_counter(mm, member, val);
185}
186#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189/* sync counter once per 64 page faults */
190#define TASK_RSS_EVENTS_THRESH (64)
191static void check_sync_rss_stat(struct task_struct *task)
192{
193 if (unlikely(task != current))
194 return;
195 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 196 sync_mm_rss(task->mm);
34e55232 197}
9547d01b 198#else /* SPLIT_RSS_COUNTING */
34e55232
KH
199
200#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203static void check_sync_rss_stat(struct task_struct *task)
204{
205}
206
9547d01b
PZ
207#endif /* SPLIT_RSS_COUNTING */
208
1da177e4
LT
209/*
210 * Note: this doesn't free the actual pages themselves. That
211 * has been handled earlier when unmapping all the memory regions.
212 */
9e1b32ca
BH
213static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214 unsigned long addr)
1da177e4 215{
2f569afd 216 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 217 pmd_clear(pmd);
9e1b32ca 218 pte_free_tlb(tlb, token, addr);
c4812909 219 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
220}
221
e0da382c
HD
222static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 unsigned long addr, unsigned long end,
224 unsigned long floor, unsigned long ceiling)
1da177e4
LT
225{
226 pmd_t *pmd;
227 unsigned long next;
e0da382c 228 unsigned long start;
1da177e4 229
e0da382c 230 start = addr;
1da177e4 231 pmd = pmd_offset(pud, addr);
1da177e4
LT
232 do {
233 next = pmd_addr_end(addr, end);
234 if (pmd_none_or_clear_bad(pmd))
235 continue;
9e1b32ca 236 free_pte_range(tlb, pmd, addr);
1da177e4
LT
237 } while (pmd++, addr = next, addr != end);
238
e0da382c
HD
239 start &= PUD_MASK;
240 if (start < floor)
241 return;
242 if (ceiling) {
243 ceiling &= PUD_MASK;
244 if (!ceiling)
245 return;
1da177e4 246 }
e0da382c
HD
247 if (end - 1 > ceiling - 1)
248 return;
249
250 pmd = pmd_offset(pud, start);
251 pud_clear(pud);
9e1b32ca 252 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 253 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
254}
255
c2febafc 256static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
257 unsigned long addr, unsigned long end,
258 unsigned long floor, unsigned long ceiling)
1da177e4
LT
259{
260 pud_t *pud;
261 unsigned long next;
e0da382c 262 unsigned long start;
1da177e4 263
e0da382c 264 start = addr;
c2febafc 265 pud = pud_offset(p4d, addr);
1da177e4
LT
266 do {
267 next = pud_addr_end(addr, end);
268 if (pud_none_or_clear_bad(pud))
269 continue;
e0da382c 270 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
271 } while (pud++, addr = next, addr != end);
272
c2febafc
KS
273 start &= P4D_MASK;
274 if (start < floor)
275 return;
276 if (ceiling) {
277 ceiling &= P4D_MASK;
278 if (!ceiling)
279 return;
280 }
281 if (end - 1 > ceiling - 1)
282 return;
283
284 pud = pud_offset(p4d, start);
285 p4d_clear(p4d);
286 pud_free_tlb(tlb, pud, start);
b4e98d9a 287 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
288}
289
290static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 unsigned long addr, unsigned long end,
292 unsigned long floor, unsigned long ceiling)
293{
294 p4d_t *p4d;
295 unsigned long next;
296 unsigned long start;
297
298 start = addr;
299 p4d = p4d_offset(pgd, addr);
300 do {
301 next = p4d_addr_end(addr, end);
302 if (p4d_none_or_clear_bad(p4d))
303 continue;
304 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 } while (p4d++, addr = next, addr != end);
306
e0da382c
HD
307 start &= PGDIR_MASK;
308 if (start < floor)
309 return;
310 if (ceiling) {
311 ceiling &= PGDIR_MASK;
312 if (!ceiling)
313 return;
1da177e4 314 }
e0da382c
HD
315 if (end - 1 > ceiling - 1)
316 return;
317
c2febafc 318 p4d = p4d_offset(pgd, start);
e0da382c 319 pgd_clear(pgd);
c2febafc 320 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
321}
322
323/*
e0da382c 324 * This function frees user-level page tables of a process.
1da177e4 325 */
42b77728 326void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
327 unsigned long addr, unsigned long end,
328 unsigned long floor, unsigned long ceiling)
1da177e4
LT
329{
330 pgd_t *pgd;
331 unsigned long next;
e0da382c
HD
332
333 /*
334 * The next few lines have given us lots of grief...
335 *
336 * Why are we testing PMD* at this top level? Because often
337 * there will be no work to do at all, and we'd prefer not to
338 * go all the way down to the bottom just to discover that.
339 *
340 * Why all these "- 1"s? Because 0 represents both the bottom
341 * of the address space and the top of it (using -1 for the
342 * top wouldn't help much: the masks would do the wrong thing).
343 * The rule is that addr 0 and floor 0 refer to the bottom of
344 * the address space, but end 0 and ceiling 0 refer to the top
345 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 * that end 0 case should be mythical).
347 *
348 * Wherever addr is brought up or ceiling brought down, we must
349 * be careful to reject "the opposite 0" before it confuses the
350 * subsequent tests. But what about where end is brought down
351 * by PMD_SIZE below? no, end can't go down to 0 there.
352 *
353 * Whereas we round start (addr) and ceiling down, by different
354 * masks at different levels, in order to test whether a table
355 * now has no other vmas using it, so can be freed, we don't
356 * bother to round floor or end up - the tests don't need that.
357 */
1da177e4 358
e0da382c
HD
359 addr &= PMD_MASK;
360 if (addr < floor) {
361 addr += PMD_SIZE;
362 if (!addr)
363 return;
364 }
365 if (ceiling) {
366 ceiling &= PMD_MASK;
367 if (!ceiling)
368 return;
369 }
370 if (end - 1 > ceiling - 1)
371 end -= PMD_SIZE;
372 if (addr > end - 1)
373 return;
07e32661
AK
374 /*
375 * We add page table cache pages with PAGE_SIZE,
376 * (see pte_free_tlb()), flush the tlb if we need
377 */
ed6a7935 378 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 379 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
380 do {
381 next = pgd_addr_end(addr, end);
382 if (pgd_none_or_clear_bad(pgd))
383 continue;
c2febafc 384 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 385 } while (pgd++, addr = next, addr != end);
e0da382c
HD
386}
387
42b77728 388void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 389 unsigned long floor, unsigned long ceiling)
e0da382c
HD
390{
391 while (vma) {
392 struct vm_area_struct *next = vma->vm_next;
393 unsigned long addr = vma->vm_start;
394
8f4f8c16 395 /*
25d9e2d1
NP
396 * Hide vma from rmap and truncate_pagecache before freeing
397 * pgtables
8f4f8c16 398 */
5beb4930 399 unlink_anon_vmas(vma);
8f4f8c16
HD
400 unlink_file_vma(vma);
401
9da61aef 402 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 403 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 404 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
405 } else {
406 /*
407 * Optimization: gather nearby vmas into one call down
408 */
409 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 410 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
411 vma = next;
412 next = vma->vm_next;
5beb4930 413 unlink_anon_vmas(vma);
8f4f8c16 414 unlink_file_vma(vma);
3bf5ee95
HD
415 }
416 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 417 floor, next ? next->vm_start : ceiling);
3bf5ee95 418 }
e0da382c
HD
419 vma = next;
420 }
1da177e4
LT
421}
422
4cf58924 423int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 424{
c4088ebd 425 spinlock_t *ptl;
4cf58924 426 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
427 if (!new)
428 return -ENOMEM;
429
362a61ad
NP
430 /*
431 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 * visible before the pte is made visible to other CPUs by being
433 * put into page tables.
434 *
435 * The other side of the story is the pointer chasing in the page
436 * table walking code (when walking the page table without locking;
437 * ie. most of the time). Fortunately, these data accesses consist
438 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 * being the notable exception) will already guarantee loads are
440 * seen in-order. See the alpha page table accessors for the
441 * smp_read_barrier_depends() barriers in page table walking code.
442 */
443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
c4088ebd 445 ptl = pmd_lock(mm, pmd);
8ac1f832 446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 447 mm_inc_nr_ptes(mm);
1da177e4 448 pmd_populate(mm, pmd, new);
2f569afd 449 new = NULL;
4b471e88 450 }
c4088ebd 451 spin_unlock(ptl);
2f569afd
MS
452 if (new)
453 pte_free(mm, new);
1bb3630e 454 return 0;
1da177e4
LT
455}
456
4cf58924 457int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 458{
4cf58924 459 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
460 if (!new)
461 return -ENOMEM;
462
362a61ad
NP
463 smp_wmb(); /* See comment in __pte_alloc */
464
1bb3630e 465 spin_lock(&init_mm.page_table_lock);
8ac1f832 466 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 467 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 468 new = NULL;
4b471e88 469 }
1bb3630e 470 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
471 if (new)
472 pte_free_kernel(&init_mm, new);
1bb3630e 473 return 0;
1da177e4
LT
474}
475
d559db08
KH
476static inline void init_rss_vec(int *rss)
477{
478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479}
480
481static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 482{
d559db08
KH
483 int i;
484
34e55232 485 if (current->mm == mm)
05af2e10 486 sync_mm_rss(mm);
d559db08
KH
487 for (i = 0; i < NR_MM_COUNTERS; i++)
488 if (rss[i])
489 add_mm_counter(mm, i, rss[i]);
ae859762
HD
490}
491
b5810039 492/*
6aab341e
LT
493 * This function is called to print an error when a bad pte
494 * is found. For example, we might have a PFN-mapped pte in
495 * a region that doesn't allow it.
b5810039
NP
496 *
497 * The calling function must still handle the error.
498 */
3dc14741
HD
499static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 pte_t pte, struct page *page)
b5810039 501{
3dc14741 502 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
503 p4d_t *p4d = p4d_offset(pgd, addr);
504 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
505 pmd_t *pmd = pmd_offset(pud, addr);
506 struct address_space *mapping;
507 pgoff_t index;
d936cf9b
HD
508 static unsigned long resume;
509 static unsigned long nr_shown;
510 static unsigned long nr_unshown;
511
512 /*
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
515 */
516 if (nr_shown == 60) {
517 if (time_before(jiffies, resume)) {
518 nr_unshown++;
519 return;
520 }
521 if (nr_unshown) {
1170532b
JP
522 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523 nr_unshown);
d936cf9b
HD
524 nr_unshown = 0;
525 }
526 nr_shown = 0;
527 }
528 if (nr_shown++ == 0)
529 resume = jiffies + 60 * HZ;
3dc14741
HD
530
531 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 index = linear_page_index(vma, addr);
533
1170532b
JP
534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
535 current->comm,
536 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 537 if (page)
f0b791a3 538 dump_page(page, "bad pte");
6aa9b8b2 539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 540 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
542 vma->vm_file,
543 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 mapping ? mapping->a_ops->readpage : NULL);
b5810039 546 dump_stack();
373d4d09 547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
548}
549
ee498ed7 550/*
7e675137 551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 552 *
7e675137
NP
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 556 *
7e675137
NP
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
560 * described below.
561 *
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 565 *
b379d790
JH
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
6aab341e
LT
570 *
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572 *
7e675137
NP
573 * And for normal mappings this is false.
574 *
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
b379d790 579 *
b379d790 580 *
7e675137 581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
582 *
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
590 *
ee498ed7 591 */
25b2995a
CH
592struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 pte_t pte)
ee498ed7 594{
22b31eec 595 unsigned long pfn = pte_pfn(pte);
7e675137 596
00b3a331 597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 598 if (likely(!pte_special(pte)))
22b31eec 599 goto check_pfn;
667a0a06
DV
600 if (vma->vm_ops && vma->vm_ops->find_special_page)
601 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 return NULL;
df6ad698
JG
604 if (is_zero_pfn(pfn))
605 return NULL;
e1fb4a08
DJ
606 if (pte_devmap(pte))
607 return NULL;
608
df6ad698 609 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
610 return NULL;
611 }
612
00b3a331 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 614
b379d790
JH
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
617 if (!pfn_valid(pfn))
618 return NULL;
619 goto out;
620 } else {
7e675137
NP
621 unsigned long off;
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
623 if (pfn == vma->vm_pgoff + off)
624 return NULL;
625 if (!is_cow_mapping(vma->vm_flags))
626 return NULL;
627 }
6aab341e
LT
628 }
629
b38af472
HD
630 if (is_zero_pfn(pfn))
631 return NULL;
00b3a331 632
22b31eec
HD
633check_pfn:
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
636 return NULL;
637 }
6aab341e
LT
638
639 /*
7e675137 640 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 641 * eg. VDSO mappings can cause them to exist.
6aab341e 642 */
b379d790 643out:
6aab341e 644 return pfn_to_page(pfn);
ee498ed7
HD
645}
646
28093f9f
GS
647#ifdef CONFIG_TRANSPARENT_HUGEPAGE
648struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649 pmd_t pmd)
650{
651 unsigned long pfn = pmd_pfn(pmd);
652
653 /*
654 * There is no pmd_special() but there may be special pmds, e.g.
655 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
657 */
658 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 if (vma->vm_flags & VM_MIXEDMAP) {
660 if (!pfn_valid(pfn))
661 return NULL;
662 goto out;
663 } else {
664 unsigned long off;
665 off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 if (pfn == vma->vm_pgoff + off)
667 return NULL;
668 if (!is_cow_mapping(vma->vm_flags))
669 return NULL;
670 }
671 }
672
e1fb4a08
DJ
673 if (pmd_devmap(pmd))
674 return NULL;
3cde287b 675 if (is_huge_zero_pmd(pmd))
28093f9f
GS
676 return NULL;
677 if (unlikely(pfn > highest_memmap_pfn))
678 return NULL;
679
680 /*
681 * NOTE! We still have PageReserved() pages in the page tables.
682 * eg. VDSO mappings can cause them to exist.
683 */
684out:
685 return pfn_to_page(pfn);
686}
687#endif
688
1da177e4
LT
689/*
690 * copy one vm_area from one task to the other. Assumes the page tables
691 * already present in the new task to be cleared in the whole range
692 * covered by this vma.
1da177e4
LT
693 */
694
570a335b 695static inline unsigned long
1da177e4 696copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 697 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 698 unsigned long addr, int *rss)
1da177e4 699{
b5810039 700 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
701 pte_t pte = *src_pte;
702 struct page *page;
1da177e4
LT
703
704 /* pte contains position in swap or file, so copy. */
705 if (unlikely(!pte_present(pte))) {
0661a336
KS
706 swp_entry_t entry = pte_to_swp_entry(pte);
707
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
710 return entry.val;
711
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
717 &src_mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 rss[MM_SWAPENTS]++;
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
723
eca56ff9 724 rss[mm_counter(page)]++;
0661a336
KS
725
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
728 /*
729 * COW mappings require pages in both
730 * parent and child to be set to read.
731 */
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
f45ec5ff
PX
736 if (pte_swp_uffd_wp(*src_pte))
737 pte = pte_swp_mkuffd_wp(pte);
0661a336 738 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 739 }
5042db43
JG
740 } else if (is_device_private_entry(entry)) {
741 page = device_private_entry_to_page(entry);
742
743 /*
744 * Update rss count even for unaddressable pages, as
745 * they should treated just like normal pages in this
746 * respect.
747 *
748 * We will likely want to have some new rss counters
749 * for unaddressable pages, at some point. But for now
750 * keep things as they are.
751 */
752 get_page(page);
753 rss[mm_counter(page)]++;
754 page_dup_rmap(page, false);
755
756 /*
757 * We do not preserve soft-dirty information, because so
758 * far, checkpoint/restore is the only feature that
759 * requires that. And checkpoint/restore does not work
760 * when a device driver is involved (you cannot easily
761 * save and restore device driver state).
762 */
763 if (is_write_device_private_entry(entry) &&
764 is_cow_mapping(vm_flags)) {
765 make_device_private_entry_read(&entry);
766 pte = swp_entry_to_pte(entry);
f45ec5ff
PX
767 if (pte_swp_uffd_wp(*src_pte))
768 pte = pte_swp_mkuffd_wp(pte);
5042db43
JG
769 set_pte_at(src_mm, addr, src_pte, pte);
770 }
1da177e4 771 }
ae859762 772 goto out_set_pte;
1da177e4
LT
773 }
774
1da177e4
LT
775 /*
776 * If it's a COW mapping, write protect it both
777 * in the parent and the child
778 */
1b2de5d0 779 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 780 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 781 pte = pte_wrprotect(pte);
1da177e4
LT
782 }
783
784 /*
785 * If it's a shared mapping, mark it clean in
786 * the child
787 */
788 if (vm_flags & VM_SHARED)
789 pte = pte_mkclean(pte);
790 pte = pte_mkold(pte);
6aab341e 791
b569a176
PX
792 /*
793 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
794 * does not have the VM_UFFD_WP, which means that the uffd
795 * fork event is not enabled.
796 */
797 if (!(vm_flags & VM_UFFD_WP))
798 pte = pte_clear_uffd_wp(pte);
799
6aab341e
LT
800 page = vm_normal_page(vma, addr, pte);
801 if (page) {
802 get_page(page);
53f9263b 803 page_dup_rmap(page, false);
eca56ff9 804 rss[mm_counter(page)]++;
df6ad698
JG
805 } else if (pte_devmap(pte)) {
806 page = pte_page(pte);
6aab341e 807 }
ae859762
HD
808
809out_set_pte:
810 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 811 return 0;
1da177e4
LT
812}
813
21bda264 814static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
815 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
816 unsigned long addr, unsigned long end)
1da177e4 817{
c36987e2 818 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 819 pte_t *src_pte, *dst_pte;
c74df32c 820 spinlock_t *src_ptl, *dst_ptl;
e040f218 821 int progress = 0;
d559db08 822 int rss[NR_MM_COUNTERS];
570a335b 823 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
824
825again:
d559db08
KH
826 init_rss_vec(rss);
827
c74df32c 828 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
829 if (!dst_pte)
830 return -ENOMEM;
ece0e2b6 831 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 832 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 833 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
834 orig_src_pte = src_pte;
835 orig_dst_pte = dst_pte;
6606c3e0 836 arch_enter_lazy_mmu_mode();
1da177e4 837
1da177e4
LT
838 do {
839 /*
840 * We are holding two locks at this point - either of them
841 * could generate latencies in another task on another CPU.
842 */
e040f218
HD
843 if (progress >= 32) {
844 progress = 0;
845 if (need_resched() ||
95c354fe 846 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
847 break;
848 }
1da177e4
LT
849 if (pte_none(*src_pte)) {
850 progress++;
851 continue;
852 }
570a335b
HD
853 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
854 vma, addr, rss);
855 if (entry.val)
856 break;
1da177e4
LT
857 progress += 8;
858 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 859
6606c3e0 860 arch_leave_lazy_mmu_mode();
c74df32c 861 spin_unlock(src_ptl);
ece0e2b6 862 pte_unmap(orig_src_pte);
d559db08 863 add_mm_rss_vec(dst_mm, rss);
c36987e2 864 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 865 cond_resched();
570a335b
HD
866
867 if (entry.val) {
868 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
869 return -ENOMEM;
870 progress = 0;
871 }
1da177e4
LT
872 if (addr != end)
873 goto again;
874 return 0;
875}
876
877static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
879 unsigned long addr, unsigned long end)
880{
881 pmd_t *src_pmd, *dst_pmd;
882 unsigned long next;
883
884 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
885 if (!dst_pmd)
886 return -ENOMEM;
887 src_pmd = pmd_offset(src_pud, addr);
888 do {
889 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
890 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
891 || pmd_devmap(*src_pmd)) {
71e3aac0 892 int err;
a00cc7d9 893 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
894 err = copy_huge_pmd(dst_mm, src_mm,
895 dst_pmd, src_pmd, addr, vma);
896 if (err == -ENOMEM)
897 return -ENOMEM;
898 if (!err)
899 continue;
900 /* fall through */
901 }
1da177e4
LT
902 if (pmd_none_or_clear_bad(src_pmd))
903 continue;
904 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
905 vma, addr, next))
906 return -ENOMEM;
907 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
908 return 0;
909}
910
911static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 912 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
913 unsigned long addr, unsigned long end)
914{
915 pud_t *src_pud, *dst_pud;
916 unsigned long next;
917
c2febafc 918 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
919 if (!dst_pud)
920 return -ENOMEM;
c2febafc 921 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
922 do {
923 next = pud_addr_end(addr, end);
a00cc7d9
MW
924 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
925 int err;
926
927 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
928 err = copy_huge_pud(dst_mm, src_mm,
929 dst_pud, src_pud, addr, vma);
930 if (err == -ENOMEM)
931 return -ENOMEM;
932 if (!err)
933 continue;
934 /* fall through */
935 }
1da177e4
LT
936 if (pud_none_or_clear_bad(src_pud))
937 continue;
938 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
939 vma, addr, next))
940 return -ENOMEM;
941 } while (dst_pud++, src_pud++, addr = next, addr != end);
942 return 0;
943}
944
c2febafc
KS
945static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
947 unsigned long addr, unsigned long end)
948{
949 p4d_t *src_p4d, *dst_p4d;
950 unsigned long next;
951
952 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
953 if (!dst_p4d)
954 return -ENOMEM;
955 src_p4d = p4d_offset(src_pgd, addr);
956 do {
957 next = p4d_addr_end(addr, end);
958 if (p4d_none_or_clear_bad(src_p4d))
959 continue;
960 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
961 vma, addr, next))
962 return -ENOMEM;
963 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
964 return 0;
965}
966
1da177e4
LT
967int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
968 struct vm_area_struct *vma)
969{
970 pgd_t *src_pgd, *dst_pgd;
971 unsigned long next;
972 unsigned long addr = vma->vm_start;
973 unsigned long end = vma->vm_end;
ac46d4f3 974 struct mmu_notifier_range range;
2ec74c3e 975 bool is_cow;
cddb8a5c 976 int ret;
1da177e4 977
d992895b
NP
978 /*
979 * Don't copy ptes where a page fault will fill them correctly.
980 * Fork becomes much lighter when there are big shared or private
981 * readonly mappings. The tradeoff is that copy_page_range is more
982 * efficient than faulting.
983 */
0661a336
KS
984 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
985 !vma->anon_vma)
986 return 0;
d992895b 987
1da177e4
LT
988 if (is_vm_hugetlb_page(vma))
989 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
990
b3b9c293 991 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 992 /*
993 * We do not free on error cases below as remove_vma
994 * gets called on error from higher level routine
995 */
5180da41 996 ret = track_pfn_copy(vma);
2ab64037 997 if (ret)
998 return ret;
999 }
1000
cddb8a5c
AA
1001 /*
1002 * We need to invalidate the secondary MMU mappings only when
1003 * there could be a permission downgrade on the ptes of the
1004 * parent mm. And a permission downgrade will only happen if
1005 * is_cow_mapping() returns true.
1006 */
2ec74c3e 1007 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
1008
1009 if (is_cow) {
7269f999
JG
1010 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1011 0, vma, src_mm, addr, end);
ac46d4f3
JG
1012 mmu_notifier_invalidate_range_start(&range);
1013 }
cddb8a5c
AA
1014
1015 ret = 0;
1da177e4
LT
1016 dst_pgd = pgd_offset(dst_mm, addr);
1017 src_pgd = pgd_offset(src_mm, addr);
1018 do {
1019 next = pgd_addr_end(addr, end);
1020 if (pgd_none_or_clear_bad(src_pgd))
1021 continue;
c2febafc 1022 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1023 vma, addr, next))) {
1024 ret = -ENOMEM;
1025 break;
1026 }
1da177e4 1027 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1028
2ec74c3e 1029 if (is_cow)
ac46d4f3 1030 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1031 return ret;
1da177e4
LT
1032}
1033
51c6f666 1034static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1035 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1036 unsigned long addr, unsigned long end,
97a89413 1037 struct zap_details *details)
1da177e4 1038{
b5810039 1039 struct mm_struct *mm = tlb->mm;
d16dfc55 1040 int force_flush = 0;
d559db08 1041 int rss[NR_MM_COUNTERS];
97a89413 1042 spinlock_t *ptl;
5f1a1907 1043 pte_t *start_pte;
97a89413 1044 pte_t *pte;
8a5f14a2 1045 swp_entry_t entry;
d559db08 1046
ed6a7935 1047 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1048again:
e303297e 1049 init_rss_vec(rss);
5f1a1907
SR
1050 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1051 pte = start_pte;
3ea27719 1052 flush_tlb_batched_pending(mm);
6606c3e0 1053 arch_enter_lazy_mmu_mode();
1da177e4
LT
1054 do {
1055 pte_t ptent = *pte;
166f61b9 1056 if (pte_none(ptent))
1da177e4 1057 continue;
6f5e6b9e 1058
7b167b68
MK
1059 if (need_resched())
1060 break;
1061
1da177e4 1062 if (pte_present(ptent)) {
ee498ed7 1063 struct page *page;
51c6f666 1064
25b2995a 1065 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1066 if (unlikely(details) && page) {
1067 /*
1068 * unmap_shared_mapping_pages() wants to
1069 * invalidate cache without truncating:
1070 * unmap shared but keep private pages.
1071 */
1072 if (details->check_mapping &&
800d8c63 1073 details->check_mapping != page_rmapping(page))
1da177e4 1074 continue;
1da177e4 1075 }
b5810039 1076 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1077 tlb->fullmm);
1da177e4
LT
1078 tlb_remove_tlb_entry(tlb, pte, addr);
1079 if (unlikely(!page))
1080 continue;
eca56ff9
JM
1081
1082 if (!PageAnon(page)) {
1cf35d47
LT
1083 if (pte_dirty(ptent)) {
1084 force_flush = 1;
6237bcd9 1085 set_page_dirty(page);
1cf35d47 1086 }
4917e5d0 1087 if (pte_young(ptent) &&
64363aad 1088 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1089 mark_page_accessed(page);
6237bcd9 1090 }
eca56ff9 1091 rss[mm_counter(page)]--;
d281ee61 1092 page_remove_rmap(page, false);
3dc14741
HD
1093 if (unlikely(page_mapcount(page) < 0))
1094 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1095 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1096 force_flush = 1;
ce9ec37b 1097 addr += PAGE_SIZE;
d16dfc55 1098 break;
1cf35d47 1099 }
1da177e4
LT
1100 continue;
1101 }
5042db43
JG
1102
1103 entry = pte_to_swp_entry(ptent);
1104 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1105 struct page *page = device_private_entry_to_page(entry);
1106
1107 if (unlikely(details && details->check_mapping)) {
1108 /*
1109 * unmap_shared_mapping_pages() wants to
1110 * invalidate cache without truncating:
1111 * unmap shared but keep private pages.
1112 */
1113 if (details->check_mapping !=
1114 page_rmapping(page))
1115 continue;
1116 }
1117
1118 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1119 rss[mm_counter(page)]--;
1120 page_remove_rmap(page, false);
1121 put_page(page);
1122 continue;
1123 }
1124
3e8715fd
KS
1125 /* If details->check_mapping, we leave swap entries. */
1126 if (unlikely(details))
1da177e4 1127 continue;
b084d435 1128
8a5f14a2
KS
1129 if (!non_swap_entry(entry))
1130 rss[MM_SWAPENTS]--;
1131 else if (is_migration_entry(entry)) {
1132 struct page *page;
9f9f1acd 1133
8a5f14a2 1134 page = migration_entry_to_page(entry);
eca56ff9 1135 rss[mm_counter(page)]--;
b084d435 1136 }
8a5f14a2
KS
1137 if (unlikely(!free_swap_and_cache(entry)))
1138 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1140 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1141
d559db08 1142 add_mm_rss_vec(mm, rss);
6606c3e0 1143 arch_leave_lazy_mmu_mode();
51c6f666 1144
1cf35d47 1145 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1146 if (force_flush)
1cf35d47 1147 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1148 pte_unmap_unlock(start_pte, ptl);
1149
1150 /*
1151 * If we forced a TLB flush (either due to running out of
1152 * batch buffers or because we needed to flush dirty TLB
1153 * entries before releasing the ptl), free the batched
1154 * memory too. Restart if we didn't do everything.
1155 */
1156 if (force_flush) {
1157 force_flush = 0;
fa0aafb8 1158 tlb_flush_mmu(tlb);
7b167b68
MK
1159 }
1160
1161 if (addr != end) {
1162 cond_resched();
1163 goto again;
d16dfc55
PZ
1164 }
1165
51c6f666 1166 return addr;
1da177e4
LT
1167}
1168
51c6f666 1169static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1170 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1171 unsigned long addr, unsigned long end,
97a89413 1172 struct zap_details *details)
1da177e4
LT
1173{
1174 pmd_t *pmd;
1175 unsigned long next;
1176
1177 pmd = pmd_offset(pud, addr);
1178 do {
1179 next = pmd_addr_end(addr, end);
84c3fc4e 1180 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1181 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1182 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1183 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1184 goto next;
71e3aac0
AA
1185 /* fall through */
1186 }
1a5a9906
AA
1187 /*
1188 * Here there can be other concurrent MADV_DONTNEED or
1189 * trans huge page faults running, and if the pmd is
1190 * none or trans huge it can change under us. This is
1191 * because MADV_DONTNEED holds the mmap_sem in read
1192 * mode.
1193 */
1194 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1195 goto next;
97a89413 1196 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1197next:
97a89413
PZ
1198 cond_resched();
1199 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1200
1201 return addr;
1da177e4
LT
1202}
1203
51c6f666 1204static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1205 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1206 unsigned long addr, unsigned long end,
97a89413 1207 struct zap_details *details)
1da177e4
LT
1208{
1209 pud_t *pud;
1210 unsigned long next;
1211
c2febafc 1212 pud = pud_offset(p4d, addr);
1da177e4
LT
1213 do {
1214 next = pud_addr_end(addr, end);
a00cc7d9
MW
1215 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1216 if (next - addr != HPAGE_PUD_SIZE) {
1217 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1218 split_huge_pud(vma, pud, addr);
1219 } else if (zap_huge_pud(tlb, vma, pud, addr))
1220 goto next;
1221 /* fall through */
1222 }
97a89413 1223 if (pud_none_or_clear_bad(pud))
1da177e4 1224 continue;
97a89413 1225 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1226next:
1227 cond_resched();
97a89413 1228 } while (pud++, addr = next, addr != end);
51c6f666
RH
1229
1230 return addr;
1da177e4
LT
1231}
1232
c2febafc
KS
1233static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1234 struct vm_area_struct *vma, pgd_t *pgd,
1235 unsigned long addr, unsigned long end,
1236 struct zap_details *details)
1237{
1238 p4d_t *p4d;
1239 unsigned long next;
1240
1241 p4d = p4d_offset(pgd, addr);
1242 do {
1243 next = p4d_addr_end(addr, end);
1244 if (p4d_none_or_clear_bad(p4d))
1245 continue;
1246 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1247 } while (p4d++, addr = next, addr != end);
1248
1249 return addr;
1250}
1251
aac45363 1252void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1253 struct vm_area_struct *vma,
1254 unsigned long addr, unsigned long end,
1255 struct zap_details *details)
1da177e4
LT
1256{
1257 pgd_t *pgd;
1258 unsigned long next;
1259
1da177e4
LT
1260 BUG_ON(addr >= end);
1261 tlb_start_vma(tlb, vma);
1262 pgd = pgd_offset(vma->vm_mm, addr);
1263 do {
1264 next = pgd_addr_end(addr, end);
97a89413 1265 if (pgd_none_or_clear_bad(pgd))
1da177e4 1266 continue;
c2febafc 1267 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1268 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1269 tlb_end_vma(tlb, vma);
1270}
51c6f666 1271
f5cc4eef
AV
1272
1273static void unmap_single_vma(struct mmu_gather *tlb,
1274 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1275 unsigned long end_addr,
f5cc4eef
AV
1276 struct zap_details *details)
1277{
1278 unsigned long start = max(vma->vm_start, start_addr);
1279 unsigned long end;
1280
1281 if (start >= vma->vm_end)
1282 return;
1283 end = min(vma->vm_end, end_addr);
1284 if (end <= vma->vm_start)
1285 return;
1286
cbc91f71
SD
1287 if (vma->vm_file)
1288 uprobe_munmap(vma, start, end);
1289
b3b9c293 1290 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1291 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1292
1293 if (start != end) {
1294 if (unlikely(is_vm_hugetlb_page(vma))) {
1295 /*
1296 * It is undesirable to test vma->vm_file as it
1297 * should be non-null for valid hugetlb area.
1298 * However, vm_file will be NULL in the error
7aa6b4ad 1299 * cleanup path of mmap_region. When
f5cc4eef 1300 * hugetlbfs ->mmap method fails,
7aa6b4ad 1301 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1302 * before calling this function to clean up.
1303 * Since no pte has actually been setup, it is
1304 * safe to do nothing in this case.
1305 */
24669e58 1306 if (vma->vm_file) {
83cde9e8 1307 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1308 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1309 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1310 }
f5cc4eef
AV
1311 } else
1312 unmap_page_range(tlb, vma, start, end, details);
1313 }
1da177e4
LT
1314}
1315
1da177e4
LT
1316/**
1317 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1318 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1319 * @vma: the starting vma
1320 * @start_addr: virtual address at which to start unmapping
1321 * @end_addr: virtual address at which to end unmapping
1da177e4 1322 *
508034a3 1323 * Unmap all pages in the vma list.
1da177e4 1324 *
1da177e4
LT
1325 * Only addresses between `start' and `end' will be unmapped.
1326 *
1327 * The VMA list must be sorted in ascending virtual address order.
1328 *
1329 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1330 * range after unmap_vmas() returns. So the only responsibility here is to
1331 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1332 * drops the lock and schedules.
1333 */
6e8bb019 1334void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1335 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1336 unsigned long end_addr)
1da177e4 1337{
ac46d4f3 1338 struct mmu_notifier_range range;
1da177e4 1339
6f4f13e8
JG
1340 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1341 start_addr, end_addr);
ac46d4f3 1342 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1343 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1344 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1345 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1346}
1347
1348/**
1349 * zap_page_range - remove user pages in a given range
1350 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1351 * @start: starting address of pages to zap
1da177e4 1352 * @size: number of bytes to zap
f5cc4eef
AV
1353 *
1354 * Caller must protect the VMA list
1da177e4 1355 */
7e027b14 1356void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1357 unsigned long size)
1da177e4 1358{
ac46d4f3 1359 struct mmu_notifier_range range;
d16dfc55 1360 struct mmu_gather tlb;
1da177e4 1361
1da177e4 1362 lru_add_drain();
7269f999 1363 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1364 start, start + size);
ac46d4f3
JG
1365 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1366 update_hiwater_rss(vma->vm_mm);
1367 mmu_notifier_invalidate_range_start(&range);
1368 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1369 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1370 mmu_notifier_invalidate_range_end(&range);
1371 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1372}
1373
f5cc4eef
AV
1374/**
1375 * zap_page_range_single - remove user pages in a given range
1376 * @vma: vm_area_struct holding the applicable pages
1377 * @address: starting address of pages to zap
1378 * @size: number of bytes to zap
8a5f14a2 1379 * @details: details of shared cache invalidation
f5cc4eef
AV
1380 *
1381 * The range must fit into one VMA.
1da177e4 1382 */
f5cc4eef 1383static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1384 unsigned long size, struct zap_details *details)
1385{
ac46d4f3 1386 struct mmu_notifier_range range;
d16dfc55 1387 struct mmu_gather tlb;
1da177e4 1388
1da177e4 1389 lru_add_drain();
7269f999 1390 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1391 address, address + size);
ac46d4f3
JG
1392 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1393 update_hiwater_rss(vma->vm_mm);
1394 mmu_notifier_invalidate_range_start(&range);
1395 unmap_single_vma(&tlb, vma, address, range.end, details);
1396 mmu_notifier_invalidate_range_end(&range);
1397 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1398}
1399
c627f9cc
JS
1400/**
1401 * zap_vma_ptes - remove ptes mapping the vma
1402 * @vma: vm_area_struct holding ptes to be zapped
1403 * @address: starting address of pages to zap
1404 * @size: number of bytes to zap
1405 *
1406 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407 *
1408 * The entire address range must be fully contained within the vma.
1409 *
c627f9cc 1410 */
27d036e3 1411void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1412 unsigned long size)
1413{
1414 if (address < vma->vm_start || address + size > vma->vm_end ||
1415 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1416 return;
1417
f5cc4eef 1418 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1419}
1420EXPORT_SYMBOL_GPL(zap_vma_ptes);
1421
25ca1d6c 1422pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1423 spinlock_t **ptl)
c9cfcddf 1424{
c2febafc
KS
1425 pgd_t *pgd;
1426 p4d_t *p4d;
1427 pud_t *pud;
1428 pmd_t *pmd;
1429
1430 pgd = pgd_offset(mm, addr);
1431 p4d = p4d_alloc(mm, pgd, addr);
1432 if (!p4d)
1433 return NULL;
1434 pud = pud_alloc(mm, p4d, addr);
1435 if (!pud)
1436 return NULL;
1437 pmd = pmd_alloc(mm, pud, addr);
1438 if (!pmd)
1439 return NULL;
1440
1441 VM_BUG_ON(pmd_trans_huge(*pmd));
1442 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1443}
1444
8efd6f5b
AR
1445static int validate_page_before_insert(struct page *page)
1446{
1447 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1448 return -EINVAL;
1449 flush_dcache_page(page);
1450 return 0;
1451}
1452
1453static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1454 unsigned long addr, struct page *page, pgprot_t prot)
1455{
1456 if (!pte_none(*pte))
1457 return -EBUSY;
1458 /* Ok, finally just insert the thing.. */
1459 get_page(page);
1460 inc_mm_counter_fast(mm, mm_counter_file(page));
1461 page_add_file_rmap(page, false);
1462 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1463 return 0;
1464}
1465
238f58d8
LT
1466/*
1467 * This is the old fallback for page remapping.
1468 *
1469 * For historical reasons, it only allows reserved pages. Only
1470 * old drivers should use this, and they needed to mark their
1471 * pages reserved for the old functions anyway.
1472 */
423bad60
NP
1473static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1474 struct page *page, pgprot_t prot)
238f58d8 1475{
423bad60 1476 struct mm_struct *mm = vma->vm_mm;
238f58d8 1477 int retval;
c9cfcddf 1478 pte_t *pte;
8a9f3ccd
BS
1479 spinlock_t *ptl;
1480
8efd6f5b
AR
1481 retval = validate_page_before_insert(page);
1482 if (retval)
5b4e655e 1483 goto out;
238f58d8 1484 retval = -ENOMEM;
c9cfcddf 1485 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1486 if (!pte)
5b4e655e 1487 goto out;
8efd6f5b 1488 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1489 pte_unmap_unlock(pte, ptl);
1490out:
1491 return retval;
1492}
1493
bfa5bf6d
REB
1494/**
1495 * vm_insert_page - insert single page into user vma
1496 * @vma: user vma to map to
1497 * @addr: target user address of this page
1498 * @page: source kernel page
1499 *
a145dd41
LT
1500 * This allows drivers to insert individual pages they've allocated
1501 * into a user vma.
1502 *
1503 * The page has to be a nice clean _individual_ kernel allocation.
1504 * If you allocate a compound page, you need to have marked it as
1505 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1506 * (see split_page()).
a145dd41
LT
1507 *
1508 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1509 * took an arbitrary page protection parameter. This doesn't allow
1510 * that. Your vma protection will have to be set up correctly, which
1511 * means that if you want a shared writable mapping, you'd better
1512 * ask for a shared writable mapping!
1513 *
1514 * The page does not need to be reserved.
4b6e1e37
KK
1515 *
1516 * Usually this function is called from f_op->mmap() handler
1517 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1518 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1519 * function from other places, for example from page-fault handler.
a862f68a
MR
1520 *
1521 * Return: %0 on success, negative error code otherwise.
a145dd41 1522 */
423bad60
NP
1523int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1524 struct page *page)
a145dd41
LT
1525{
1526 if (addr < vma->vm_start || addr >= vma->vm_end)
1527 return -EFAULT;
1528 if (!page_count(page))
1529 return -EINVAL;
4b6e1e37
KK
1530 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1531 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1532 BUG_ON(vma->vm_flags & VM_PFNMAP);
1533 vma->vm_flags |= VM_MIXEDMAP;
1534 }
423bad60 1535 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1536}
e3c3374f 1537EXPORT_SYMBOL(vm_insert_page);
a145dd41 1538
a667d745
SJ
1539/*
1540 * __vm_map_pages - maps range of kernel pages into user vma
1541 * @vma: user vma to map to
1542 * @pages: pointer to array of source kernel pages
1543 * @num: number of pages in page array
1544 * @offset: user's requested vm_pgoff
1545 *
1546 * This allows drivers to map range of kernel pages into a user vma.
1547 *
1548 * Return: 0 on success and error code otherwise.
1549 */
1550static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1551 unsigned long num, unsigned long offset)
1552{
1553 unsigned long count = vma_pages(vma);
1554 unsigned long uaddr = vma->vm_start;
1555 int ret, i;
1556
1557 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1558 if (offset >= num)
a667d745
SJ
1559 return -ENXIO;
1560
1561 /* Fail if the user requested size exceeds available object size */
1562 if (count > num - offset)
1563 return -ENXIO;
1564
1565 for (i = 0; i < count; i++) {
1566 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1567 if (ret < 0)
1568 return ret;
1569 uaddr += PAGE_SIZE;
1570 }
1571
1572 return 0;
1573}
1574
1575/**
1576 * vm_map_pages - maps range of kernel pages starts with non zero offset
1577 * @vma: user vma to map to
1578 * @pages: pointer to array of source kernel pages
1579 * @num: number of pages in page array
1580 *
1581 * Maps an object consisting of @num pages, catering for the user's
1582 * requested vm_pgoff
1583 *
1584 * If we fail to insert any page into the vma, the function will return
1585 * immediately leaving any previously inserted pages present. Callers
1586 * from the mmap handler may immediately return the error as their caller
1587 * will destroy the vma, removing any successfully inserted pages. Other
1588 * callers should make their own arrangements for calling unmap_region().
1589 *
1590 * Context: Process context. Called by mmap handlers.
1591 * Return: 0 on success and error code otherwise.
1592 */
1593int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1594 unsigned long num)
1595{
1596 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1597}
1598EXPORT_SYMBOL(vm_map_pages);
1599
1600/**
1601 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1602 * @vma: user vma to map to
1603 * @pages: pointer to array of source kernel pages
1604 * @num: number of pages in page array
1605 *
1606 * Similar to vm_map_pages(), except that it explicitly sets the offset
1607 * to 0. This function is intended for the drivers that did not consider
1608 * vm_pgoff.
1609 *
1610 * Context: Process context. Called by mmap handlers.
1611 * Return: 0 on success and error code otherwise.
1612 */
1613int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1614 unsigned long num)
1615{
1616 return __vm_map_pages(vma, pages, num, 0);
1617}
1618EXPORT_SYMBOL(vm_map_pages_zero);
1619
9b5a8e00 1620static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1621 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1622{
1623 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1624 pte_t *pte, entry;
1625 spinlock_t *ptl;
1626
423bad60
NP
1627 pte = get_locked_pte(mm, addr, &ptl);
1628 if (!pte)
9b5a8e00 1629 return VM_FAULT_OOM;
b2770da6
RZ
1630 if (!pte_none(*pte)) {
1631 if (mkwrite) {
1632 /*
1633 * For read faults on private mappings the PFN passed
1634 * in may not match the PFN we have mapped if the
1635 * mapped PFN is a writeable COW page. In the mkwrite
1636 * case we are creating a writable PTE for a shared
f2c57d91
JK
1637 * mapping and we expect the PFNs to match. If they
1638 * don't match, we are likely racing with block
1639 * allocation and mapping invalidation so just skip the
1640 * update.
b2770da6 1641 */
f2c57d91
JK
1642 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1643 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1644 goto out_unlock;
f2c57d91 1645 }
cae85cb8
JK
1646 entry = pte_mkyoung(*pte);
1647 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1648 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1649 update_mmu_cache(vma, addr, pte);
1650 }
1651 goto out_unlock;
b2770da6 1652 }
423bad60
NP
1653
1654 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1655 if (pfn_t_devmap(pfn))
1656 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1657 else
1658 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1659
b2770da6
RZ
1660 if (mkwrite) {
1661 entry = pte_mkyoung(entry);
1662 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1663 }
1664
423bad60 1665 set_pte_at(mm, addr, pte, entry);
4b3073e1 1666 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1667
423bad60
NP
1668out_unlock:
1669 pte_unmap_unlock(pte, ptl);
9b5a8e00 1670 return VM_FAULT_NOPAGE;
423bad60
NP
1671}
1672
f5e6d1d5
MW
1673/**
1674 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1675 * @vma: user vma to map to
1676 * @addr: target user address of this page
1677 * @pfn: source kernel pfn
1678 * @pgprot: pgprot flags for the inserted page
1679 *
1680 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1681 * to override pgprot on a per-page basis.
1682 *
1683 * This only makes sense for IO mappings, and it makes no sense for
1684 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1685 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1686 * impractical.
1687 *
574c5b3d
TH
1688 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1689 * a value of @pgprot different from that of @vma->vm_page_prot.
1690 *
ae2b01f3 1691 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1692 * Return: vm_fault_t value.
1693 */
1694vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1695 unsigned long pfn, pgprot_t pgprot)
1696{
6d958546
MW
1697 /*
1698 * Technically, architectures with pte_special can avoid all these
1699 * restrictions (same for remap_pfn_range). However we would like
1700 * consistency in testing and feature parity among all, so we should
1701 * try to keep these invariants in place for everybody.
1702 */
1703 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1704 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1705 (VM_PFNMAP|VM_MIXEDMAP));
1706 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1707 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1708
1709 if (addr < vma->vm_start || addr >= vma->vm_end)
1710 return VM_FAULT_SIGBUS;
1711
1712 if (!pfn_modify_allowed(pfn, pgprot))
1713 return VM_FAULT_SIGBUS;
1714
1715 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1716
9b5a8e00 1717 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1718 false);
f5e6d1d5
MW
1719}
1720EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1721
ae2b01f3
MW
1722/**
1723 * vmf_insert_pfn - insert single pfn into user vma
1724 * @vma: user vma to map to
1725 * @addr: target user address of this page
1726 * @pfn: source kernel pfn
1727 *
1728 * Similar to vm_insert_page, this allows drivers to insert individual pages
1729 * they've allocated into a user vma. Same comments apply.
1730 *
1731 * This function should only be called from a vm_ops->fault handler, and
1732 * in that case the handler should return the result of this function.
1733 *
1734 * vma cannot be a COW mapping.
1735 *
1736 * As this is called only for pages that do not currently exist, we
1737 * do not need to flush old virtual caches or the TLB.
1738 *
1739 * Context: Process context. May allocate using %GFP_KERNEL.
1740 * Return: vm_fault_t value.
1741 */
1742vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1743 unsigned long pfn)
1744{
1745 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1746}
1747EXPORT_SYMBOL(vmf_insert_pfn);
1748
785a3fab
DW
1749static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1750{
1751 /* these checks mirror the abort conditions in vm_normal_page */
1752 if (vma->vm_flags & VM_MIXEDMAP)
1753 return true;
1754 if (pfn_t_devmap(pfn))
1755 return true;
1756 if (pfn_t_special(pfn))
1757 return true;
1758 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1759 return true;
1760 return false;
1761}
1762
79f3aa5b 1763static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
1764 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1765 bool mkwrite)
423bad60 1766{
79f3aa5b 1767 int err;
87744ab3 1768
785a3fab 1769 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1770
423bad60 1771 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1772 return VM_FAULT_SIGBUS;
308a047c
BP
1773
1774 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1775
42e4089c 1776 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1777 return VM_FAULT_SIGBUS;
42e4089c 1778
423bad60
NP
1779 /*
1780 * If we don't have pte special, then we have to use the pfn_valid()
1781 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1782 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1783 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1784 * without pte special, it would there be refcounted as a normal page.
423bad60 1785 */
00b3a331
LD
1786 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1787 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1788 struct page *page;
1789
03fc2da6
DW
1790 /*
1791 * At this point we are committed to insert_page()
1792 * regardless of whether the caller specified flags that
1793 * result in pfn_t_has_page() == false.
1794 */
1795 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1796 err = insert_page(vma, addr, page, pgprot);
1797 } else {
9b5a8e00 1798 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1799 }
b2770da6 1800
5d747637
MW
1801 if (err == -ENOMEM)
1802 return VM_FAULT_OOM;
1803 if (err < 0 && err != -EBUSY)
1804 return VM_FAULT_SIGBUS;
1805
1806 return VM_FAULT_NOPAGE;
e0dc0d8f 1807}
79f3aa5b 1808
574c5b3d
TH
1809/**
1810 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1811 * @vma: user vma to map to
1812 * @addr: target user address of this page
1813 * @pfn: source kernel pfn
1814 * @pgprot: pgprot flags for the inserted page
1815 *
1816 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1817 * to override pgprot on a per-page basis.
1818 *
1819 * Typically this function should be used by drivers to set caching- and
1820 * encryption bits different than those of @vma->vm_page_prot, because
1821 * the caching- or encryption mode may not be known at mmap() time.
1822 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1823 * to set caching and encryption bits for those vmas (except for COW pages).
1824 * This is ensured by core vm only modifying these page table entries using
1825 * functions that don't touch caching- or encryption bits, using pte_modify()
1826 * if needed. (See for example mprotect()).
1827 * Also when new page-table entries are created, this is only done using the
1828 * fault() callback, and never using the value of vma->vm_page_prot,
1829 * except for page-table entries that point to anonymous pages as the result
1830 * of COW.
1831 *
1832 * Context: Process context. May allocate using %GFP_KERNEL.
1833 * Return: vm_fault_t value.
1834 */
1835vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1836 pfn_t pfn, pgprot_t pgprot)
1837{
1838 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1839}
5379e4dd 1840EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 1841
79f3aa5b
MW
1842vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1843 pfn_t pfn)
1844{
574c5b3d 1845 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 1846}
5d747637 1847EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1848
ab77dab4
SJ
1849/*
1850 * If the insertion of PTE failed because someone else already added a
1851 * different entry in the mean time, we treat that as success as we assume
1852 * the same entry was actually inserted.
1853 */
ab77dab4
SJ
1854vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1855 unsigned long addr, pfn_t pfn)
b2770da6 1856{
574c5b3d 1857 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 1858}
ab77dab4 1859EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1860
1da177e4
LT
1861/*
1862 * maps a range of physical memory into the requested pages. the old
1863 * mappings are removed. any references to nonexistent pages results
1864 * in null mappings (currently treated as "copy-on-access")
1865 */
1866static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1867 unsigned long addr, unsigned long end,
1868 unsigned long pfn, pgprot_t prot)
1869{
1870 pte_t *pte;
c74df32c 1871 spinlock_t *ptl;
42e4089c 1872 int err = 0;
1da177e4 1873
c74df32c 1874 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1875 if (!pte)
1876 return -ENOMEM;
6606c3e0 1877 arch_enter_lazy_mmu_mode();
1da177e4
LT
1878 do {
1879 BUG_ON(!pte_none(*pte));
42e4089c
AK
1880 if (!pfn_modify_allowed(pfn, prot)) {
1881 err = -EACCES;
1882 break;
1883 }
7e675137 1884 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1885 pfn++;
1886 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1887 arch_leave_lazy_mmu_mode();
c74df32c 1888 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1889 return err;
1da177e4
LT
1890}
1891
1892static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1893 unsigned long addr, unsigned long end,
1894 unsigned long pfn, pgprot_t prot)
1895{
1896 pmd_t *pmd;
1897 unsigned long next;
42e4089c 1898 int err;
1da177e4
LT
1899
1900 pfn -= addr >> PAGE_SHIFT;
1901 pmd = pmd_alloc(mm, pud, addr);
1902 if (!pmd)
1903 return -ENOMEM;
f66055ab 1904 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1905 do {
1906 next = pmd_addr_end(addr, end);
42e4089c
AK
1907 err = remap_pte_range(mm, pmd, addr, next,
1908 pfn + (addr >> PAGE_SHIFT), prot);
1909 if (err)
1910 return err;
1da177e4
LT
1911 } while (pmd++, addr = next, addr != end);
1912 return 0;
1913}
1914
c2febafc 1915static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1916 unsigned long addr, unsigned long end,
1917 unsigned long pfn, pgprot_t prot)
1918{
1919 pud_t *pud;
1920 unsigned long next;
42e4089c 1921 int err;
1da177e4
LT
1922
1923 pfn -= addr >> PAGE_SHIFT;
c2febafc 1924 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1925 if (!pud)
1926 return -ENOMEM;
1927 do {
1928 next = pud_addr_end(addr, end);
42e4089c
AK
1929 err = remap_pmd_range(mm, pud, addr, next,
1930 pfn + (addr >> PAGE_SHIFT), prot);
1931 if (err)
1932 return err;
1da177e4
LT
1933 } while (pud++, addr = next, addr != end);
1934 return 0;
1935}
1936
c2febafc
KS
1937static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1938 unsigned long addr, unsigned long end,
1939 unsigned long pfn, pgprot_t prot)
1940{
1941 p4d_t *p4d;
1942 unsigned long next;
42e4089c 1943 int err;
c2febafc
KS
1944
1945 pfn -= addr >> PAGE_SHIFT;
1946 p4d = p4d_alloc(mm, pgd, addr);
1947 if (!p4d)
1948 return -ENOMEM;
1949 do {
1950 next = p4d_addr_end(addr, end);
42e4089c
AK
1951 err = remap_pud_range(mm, p4d, addr, next,
1952 pfn + (addr >> PAGE_SHIFT), prot);
1953 if (err)
1954 return err;
c2febafc
KS
1955 } while (p4d++, addr = next, addr != end);
1956 return 0;
1957}
1958
bfa5bf6d
REB
1959/**
1960 * remap_pfn_range - remap kernel memory to userspace
1961 * @vma: user vma to map to
1962 * @addr: target user address to start at
86a76331 1963 * @pfn: page frame number of kernel physical memory address
552657b7 1964 * @size: size of mapping area
bfa5bf6d
REB
1965 * @prot: page protection flags for this mapping
1966 *
a862f68a
MR
1967 * Note: this is only safe if the mm semaphore is held when called.
1968 *
1969 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 1970 */
1da177e4
LT
1971int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1972 unsigned long pfn, unsigned long size, pgprot_t prot)
1973{
1974 pgd_t *pgd;
1975 unsigned long next;
2d15cab8 1976 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1977 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1978 unsigned long remap_pfn = pfn;
1da177e4
LT
1979 int err;
1980
1981 /*
1982 * Physically remapped pages are special. Tell the
1983 * rest of the world about it:
1984 * VM_IO tells people not to look at these pages
1985 * (accesses can have side effects).
6aab341e
LT
1986 * VM_PFNMAP tells the core MM that the base pages are just
1987 * raw PFN mappings, and do not have a "struct page" associated
1988 * with them.
314e51b9
KK
1989 * VM_DONTEXPAND
1990 * Disable vma merging and expanding with mremap().
1991 * VM_DONTDUMP
1992 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1993 *
1994 * There's a horrible special case to handle copy-on-write
1995 * behaviour that some programs depend on. We mark the "original"
1996 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1997 * See vm_normal_page() for details.
1da177e4 1998 */
b3b9c293
KK
1999 if (is_cow_mapping(vma->vm_flags)) {
2000 if (addr != vma->vm_start || end != vma->vm_end)
2001 return -EINVAL;
fb155c16 2002 vma->vm_pgoff = pfn;
b3b9c293
KK
2003 }
2004
d5957d2f 2005 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2006 if (err)
3c8bb73a 2007 return -EINVAL;
fb155c16 2008
314e51b9 2009 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2010
2011 BUG_ON(addr >= end);
2012 pfn -= addr >> PAGE_SHIFT;
2013 pgd = pgd_offset(mm, addr);
2014 flush_cache_range(vma, addr, end);
1da177e4
LT
2015 do {
2016 next = pgd_addr_end(addr, end);
c2febafc 2017 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2018 pfn + (addr >> PAGE_SHIFT), prot);
2019 if (err)
2020 break;
2021 } while (pgd++, addr = next, addr != end);
2ab64037 2022
2023 if (err)
d5957d2f 2024 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2025
1da177e4
LT
2026 return err;
2027}
2028EXPORT_SYMBOL(remap_pfn_range);
2029
b4cbb197
LT
2030/**
2031 * vm_iomap_memory - remap memory to userspace
2032 * @vma: user vma to map to
abd69b9e 2033 * @start: start of the physical memory to be mapped
b4cbb197
LT
2034 * @len: size of area
2035 *
2036 * This is a simplified io_remap_pfn_range() for common driver use. The
2037 * driver just needs to give us the physical memory range to be mapped,
2038 * we'll figure out the rest from the vma information.
2039 *
2040 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2041 * whatever write-combining details or similar.
a862f68a
MR
2042 *
2043 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2044 */
2045int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2046{
2047 unsigned long vm_len, pfn, pages;
2048
2049 /* Check that the physical memory area passed in looks valid */
2050 if (start + len < start)
2051 return -EINVAL;
2052 /*
2053 * You *really* shouldn't map things that aren't page-aligned,
2054 * but we've historically allowed it because IO memory might
2055 * just have smaller alignment.
2056 */
2057 len += start & ~PAGE_MASK;
2058 pfn = start >> PAGE_SHIFT;
2059 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2060 if (pfn + pages < pfn)
2061 return -EINVAL;
2062
2063 /* We start the mapping 'vm_pgoff' pages into the area */
2064 if (vma->vm_pgoff > pages)
2065 return -EINVAL;
2066 pfn += vma->vm_pgoff;
2067 pages -= vma->vm_pgoff;
2068
2069 /* Can we fit all of the mapping? */
2070 vm_len = vma->vm_end - vma->vm_start;
2071 if (vm_len >> PAGE_SHIFT > pages)
2072 return -EINVAL;
2073
2074 /* Ok, let it rip */
2075 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2076}
2077EXPORT_SYMBOL(vm_iomap_memory);
2078
aee16b3c
JF
2079static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2080 unsigned long addr, unsigned long end,
be1db475 2081 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2082{
2083 pte_t *pte;
be1db475 2084 int err = 0;
94909914 2085 spinlock_t *uninitialized_var(ptl);
aee16b3c 2086
be1db475
DA
2087 if (create) {
2088 pte = (mm == &init_mm) ?
2089 pte_alloc_kernel(pmd, addr) :
2090 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2091 if (!pte)
2092 return -ENOMEM;
2093 } else {
2094 pte = (mm == &init_mm) ?
2095 pte_offset_kernel(pmd, addr) :
2096 pte_offset_map_lock(mm, pmd, addr, &ptl);
2097 }
aee16b3c
JF
2098
2099 BUG_ON(pmd_huge(*pmd));
2100
38e0edb1
JF
2101 arch_enter_lazy_mmu_mode();
2102
aee16b3c 2103 do {
be1db475
DA
2104 if (create || !pte_none(*pte)) {
2105 err = fn(pte++, addr, data);
2106 if (err)
2107 break;
2108 }
c36987e2 2109 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2110
38e0edb1
JF
2111 arch_leave_lazy_mmu_mode();
2112
aee16b3c
JF
2113 if (mm != &init_mm)
2114 pte_unmap_unlock(pte-1, ptl);
2115 return err;
2116}
2117
2118static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2119 unsigned long addr, unsigned long end,
be1db475 2120 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2121{
2122 pmd_t *pmd;
2123 unsigned long next;
be1db475 2124 int err = 0;
aee16b3c 2125
ceb86879
AK
2126 BUG_ON(pud_huge(*pud));
2127
be1db475
DA
2128 if (create) {
2129 pmd = pmd_alloc(mm, pud, addr);
2130 if (!pmd)
2131 return -ENOMEM;
2132 } else {
2133 pmd = pmd_offset(pud, addr);
2134 }
aee16b3c
JF
2135 do {
2136 next = pmd_addr_end(addr, end);
be1db475
DA
2137 if (create || !pmd_none_or_clear_bad(pmd)) {
2138 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2139 create);
2140 if (err)
2141 break;
2142 }
aee16b3c
JF
2143 } while (pmd++, addr = next, addr != end);
2144 return err;
2145}
2146
c2febafc 2147static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2148 unsigned long addr, unsigned long end,
be1db475 2149 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2150{
2151 pud_t *pud;
2152 unsigned long next;
be1db475 2153 int err = 0;
aee16b3c 2154
be1db475
DA
2155 if (create) {
2156 pud = pud_alloc(mm, p4d, addr);
2157 if (!pud)
2158 return -ENOMEM;
2159 } else {
2160 pud = pud_offset(p4d, addr);
2161 }
aee16b3c
JF
2162 do {
2163 next = pud_addr_end(addr, end);
be1db475
DA
2164 if (create || !pud_none_or_clear_bad(pud)) {
2165 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2166 create);
2167 if (err)
2168 break;
2169 }
aee16b3c
JF
2170 } while (pud++, addr = next, addr != end);
2171 return err;
2172}
2173
c2febafc
KS
2174static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2175 unsigned long addr, unsigned long end,
be1db475 2176 pte_fn_t fn, void *data, bool create)
c2febafc
KS
2177{
2178 p4d_t *p4d;
2179 unsigned long next;
be1db475 2180 int err = 0;
c2febafc 2181
be1db475
DA
2182 if (create) {
2183 p4d = p4d_alloc(mm, pgd, addr);
2184 if (!p4d)
2185 return -ENOMEM;
2186 } else {
2187 p4d = p4d_offset(pgd, addr);
2188 }
c2febafc
KS
2189 do {
2190 next = p4d_addr_end(addr, end);
be1db475
DA
2191 if (create || !p4d_none_or_clear_bad(p4d)) {
2192 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2193 create);
2194 if (err)
2195 break;
2196 }
c2febafc
KS
2197 } while (p4d++, addr = next, addr != end);
2198 return err;
2199}
2200
be1db475
DA
2201static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2202 unsigned long size, pte_fn_t fn,
2203 void *data, bool create)
aee16b3c
JF
2204{
2205 pgd_t *pgd;
2206 unsigned long next;
57250a5b 2207 unsigned long end = addr + size;
be1db475 2208 int err = 0;
aee16b3c 2209
9cb65bc3
MP
2210 if (WARN_ON(addr >= end))
2211 return -EINVAL;
2212
aee16b3c
JF
2213 pgd = pgd_offset(mm, addr);
2214 do {
2215 next = pgd_addr_end(addr, end);
be1db475
DA
2216 if (!create && pgd_none_or_clear_bad(pgd))
2217 continue;
2218 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
aee16b3c
JF
2219 if (err)
2220 break;
2221 } while (pgd++, addr = next, addr != end);
57250a5b 2222
aee16b3c
JF
2223 return err;
2224}
be1db475
DA
2225
2226/*
2227 * Scan a region of virtual memory, filling in page tables as necessary
2228 * and calling a provided function on each leaf page table.
2229 */
2230int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2231 unsigned long size, pte_fn_t fn, void *data)
2232{
2233 return __apply_to_page_range(mm, addr, size, fn, data, true);
2234}
aee16b3c
JF
2235EXPORT_SYMBOL_GPL(apply_to_page_range);
2236
be1db475
DA
2237/*
2238 * Scan a region of virtual memory, calling a provided function on
2239 * each leaf page table where it exists.
2240 *
2241 * Unlike apply_to_page_range, this does _not_ fill in page tables
2242 * where they are absent.
2243 */
2244int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2245 unsigned long size, pte_fn_t fn, void *data)
2246{
2247 return __apply_to_page_range(mm, addr, size, fn, data, false);
2248}
2249EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2250
8f4e2101 2251/*
9b4bdd2f
KS
2252 * handle_pte_fault chooses page fault handler according to an entry which was
2253 * read non-atomically. Before making any commitment, on those architectures
2254 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2255 * parts, do_swap_page must check under lock before unmapping the pte and
2256 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2257 * and do_anonymous_page can safely check later on).
8f4e2101 2258 */
4c21e2f2 2259static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2260 pte_t *page_table, pte_t orig_pte)
2261{
2262 int same = 1;
923717cb 2263#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2264 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2265 spinlock_t *ptl = pte_lockptr(mm, pmd);
2266 spin_lock(ptl);
8f4e2101 2267 same = pte_same(*page_table, orig_pte);
4c21e2f2 2268 spin_unlock(ptl);
8f4e2101
HD
2269 }
2270#endif
2271 pte_unmap(page_table);
2272 return same;
2273}
2274
83d116c5
JH
2275static inline bool cow_user_page(struct page *dst, struct page *src,
2276 struct vm_fault *vmf)
6aab341e 2277{
83d116c5
JH
2278 bool ret;
2279 void *kaddr;
2280 void __user *uaddr;
c3e5ea6e 2281 bool locked = false;
83d116c5
JH
2282 struct vm_area_struct *vma = vmf->vma;
2283 struct mm_struct *mm = vma->vm_mm;
2284 unsigned long addr = vmf->address;
2285
0abdd7a8
DW
2286 debug_dma_assert_idle(src);
2287
83d116c5
JH
2288 if (likely(src)) {
2289 copy_user_highpage(dst, src, addr, vma);
2290 return true;
2291 }
2292
6aab341e
LT
2293 /*
2294 * If the source page was a PFN mapping, we don't have
2295 * a "struct page" for it. We do a best-effort copy by
2296 * just copying from the original user address. If that
2297 * fails, we just zero-fill it. Live with it.
2298 */
83d116c5
JH
2299 kaddr = kmap_atomic(dst);
2300 uaddr = (void __user *)(addr & PAGE_MASK);
2301
2302 /*
2303 * On architectures with software "accessed" bits, we would
2304 * take a double page fault, so mark it accessed here.
2305 */
c3e5ea6e 2306 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2307 pte_t entry;
5d2a2dbb 2308
83d116c5 2309 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2310 locked = true;
83d116c5
JH
2311 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2312 /*
2313 * Other thread has already handled the fault
2314 * and we don't need to do anything. If it's
2315 * not the case, the fault will be triggered
2316 * again on the same address.
2317 */
2318 ret = false;
2319 goto pte_unlock;
2320 }
2321
2322 entry = pte_mkyoung(vmf->orig_pte);
2323 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2324 update_mmu_cache(vma, addr, vmf->pte);
2325 }
2326
2327 /*
2328 * This really shouldn't fail, because the page is there
2329 * in the page tables. But it might just be unreadable,
2330 * in which case we just give up and fill the result with
2331 * zeroes.
2332 */
2333 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2334 if (locked)
2335 goto warn;
2336
2337 /* Re-validate under PTL if the page is still mapped */
2338 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2339 locked = true;
2340 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2341 /* The PTE changed under us. Retry page fault. */
2342 ret = false;
2343 goto pte_unlock;
2344 }
2345
5d2a2dbb 2346 /*
c3e5ea6e
KS
2347 * The same page can be mapped back since last copy attampt.
2348 * Try to copy again under PTL.
5d2a2dbb 2349 */
c3e5ea6e
KS
2350 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2351 /*
2352 * Give a warn in case there can be some obscure
2353 * use-case
2354 */
2355warn:
2356 WARN_ON_ONCE(1);
2357 clear_page(kaddr);
2358 }
83d116c5
JH
2359 }
2360
2361 ret = true;
2362
2363pte_unlock:
c3e5ea6e 2364 if (locked)
83d116c5
JH
2365 pte_unmap_unlock(vmf->pte, vmf->ptl);
2366 kunmap_atomic(kaddr);
2367 flush_dcache_page(dst);
2368
2369 return ret;
6aab341e
LT
2370}
2371
c20cd45e
MH
2372static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2373{
2374 struct file *vm_file = vma->vm_file;
2375
2376 if (vm_file)
2377 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2378
2379 /*
2380 * Special mappings (e.g. VDSO) do not have any file so fake
2381 * a default GFP_KERNEL for them.
2382 */
2383 return GFP_KERNEL;
2384}
2385
fb09a464
KS
2386/*
2387 * Notify the address space that the page is about to become writable so that
2388 * it can prohibit this or wait for the page to get into an appropriate state.
2389 *
2390 * We do this without the lock held, so that it can sleep if it needs to.
2391 */
2b740303 2392static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2393{
2b740303 2394 vm_fault_t ret;
38b8cb7f
JK
2395 struct page *page = vmf->page;
2396 unsigned int old_flags = vmf->flags;
fb09a464 2397
38b8cb7f 2398 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2399
dc617f29
DW
2400 if (vmf->vma->vm_file &&
2401 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2402 return VM_FAULT_SIGBUS;
2403
11bac800 2404 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2405 /* Restore original flags so that caller is not surprised */
2406 vmf->flags = old_flags;
fb09a464
KS
2407 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2408 return ret;
2409 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2410 lock_page(page);
2411 if (!page->mapping) {
2412 unlock_page(page);
2413 return 0; /* retry */
2414 }
2415 ret |= VM_FAULT_LOCKED;
2416 } else
2417 VM_BUG_ON_PAGE(!PageLocked(page), page);
2418 return ret;
2419}
2420
97ba0c2b
JK
2421/*
2422 * Handle dirtying of a page in shared file mapping on a write fault.
2423 *
2424 * The function expects the page to be locked and unlocks it.
2425 */
89b15332 2426static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2427{
89b15332 2428 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2429 struct address_space *mapping;
89b15332 2430 struct page *page = vmf->page;
97ba0c2b
JK
2431 bool dirtied;
2432 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2433
2434 dirtied = set_page_dirty(page);
2435 VM_BUG_ON_PAGE(PageAnon(page), page);
2436 /*
2437 * Take a local copy of the address_space - page.mapping may be zeroed
2438 * by truncate after unlock_page(). The address_space itself remains
2439 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2440 * release semantics to prevent the compiler from undoing this copying.
2441 */
2442 mapping = page_rmapping(page);
2443 unlock_page(page);
2444
89b15332
JW
2445 if (!page_mkwrite)
2446 file_update_time(vma->vm_file);
2447
2448 /*
2449 * Throttle page dirtying rate down to writeback speed.
2450 *
2451 * mapping may be NULL here because some device drivers do not
2452 * set page.mapping but still dirty their pages
2453 *
2454 * Drop the mmap_sem before waiting on IO, if we can. The file
2455 * is pinning the mapping, as per above.
2456 */
97ba0c2b 2457 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2458 struct file *fpin;
2459
2460 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2461 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2462 if (fpin) {
2463 fput(fpin);
2464 return VM_FAULT_RETRY;
2465 }
97ba0c2b
JK
2466 }
2467
89b15332 2468 return 0;
97ba0c2b
JK
2469}
2470
4e047f89
SR
2471/*
2472 * Handle write page faults for pages that can be reused in the current vma
2473 *
2474 * This can happen either due to the mapping being with the VM_SHARED flag,
2475 * or due to us being the last reference standing to the page. In either
2476 * case, all we need to do here is to mark the page as writable and update
2477 * any related book-keeping.
2478 */
997dd98d 2479static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2480 __releases(vmf->ptl)
4e047f89 2481{
82b0f8c3 2482 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2483 struct page *page = vmf->page;
4e047f89
SR
2484 pte_t entry;
2485 /*
2486 * Clear the pages cpupid information as the existing
2487 * information potentially belongs to a now completely
2488 * unrelated process.
2489 */
2490 if (page)
2491 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2492
2994302b
JK
2493 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2494 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2495 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2496 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2497 update_mmu_cache(vma, vmf->address, vmf->pte);
2498 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2499}
2500
2f38ab2c
SR
2501/*
2502 * Handle the case of a page which we actually need to copy to a new page.
2503 *
2504 * Called with mmap_sem locked and the old page referenced, but
2505 * without the ptl held.
2506 *
2507 * High level logic flow:
2508 *
2509 * - Allocate a page, copy the content of the old page to the new one.
2510 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2511 * - Take the PTL. If the pte changed, bail out and release the allocated page
2512 * - If the pte is still the way we remember it, update the page table and all
2513 * relevant references. This includes dropping the reference the page-table
2514 * held to the old page, as well as updating the rmap.
2515 * - In any case, unlock the PTL and drop the reference we took to the old page.
2516 */
2b740303 2517static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2518{
82b0f8c3 2519 struct vm_area_struct *vma = vmf->vma;
bae473a4 2520 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2521 struct page *old_page = vmf->page;
2f38ab2c 2522 struct page *new_page = NULL;
2f38ab2c
SR
2523 pte_t entry;
2524 int page_copied = 0;
2f38ab2c 2525 struct mem_cgroup *memcg;
ac46d4f3 2526 struct mmu_notifier_range range;
2f38ab2c
SR
2527
2528 if (unlikely(anon_vma_prepare(vma)))
2529 goto oom;
2530
2994302b 2531 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2532 new_page = alloc_zeroed_user_highpage_movable(vma,
2533 vmf->address);
2f38ab2c
SR
2534 if (!new_page)
2535 goto oom;
2536 } else {
bae473a4 2537 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2538 vmf->address);
2f38ab2c
SR
2539 if (!new_page)
2540 goto oom;
83d116c5
JH
2541
2542 if (!cow_user_page(new_page, old_page, vmf)) {
2543 /*
2544 * COW failed, if the fault was solved by other,
2545 * it's fine. If not, userspace would re-fault on
2546 * the same address and we will handle the fault
2547 * from the second attempt.
2548 */
2549 put_page(new_page);
2550 if (old_page)
2551 put_page(old_page);
2552 return 0;
2553 }
2f38ab2c 2554 }
2f38ab2c 2555
2cf85583 2556 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2557 goto oom_free_new;
2558
eb3c24f3
MG
2559 __SetPageUptodate(new_page);
2560
7269f999 2561 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2562 vmf->address & PAGE_MASK,
ac46d4f3
JG
2563 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2564 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2565
2566 /*
2567 * Re-check the pte - we dropped the lock
2568 */
82b0f8c3 2569 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2570 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2571 if (old_page) {
2572 if (!PageAnon(old_page)) {
eca56ff9
JM
2573 dec_mm_counter_fast(mm,
2574 mm_counter_file(old_page));
2f38ab2c
SR
2575 inc_mm_counter_fast(mm, MM_ANONPAGES);
2576 }
2577 } else {
2578 inc_mm_counter_fast(mm, MM_ANONPAGES);
2579 }
2994302b 2580 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2581 entry = mk_pte(new_page, vma->vm_page_prot);
2582 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2583 /*
2584 * Clear the pte entry and flush it first, before updating the
2585 * pte with the new entry. This will avoid a race condition
2586 * seen in the presence of one thread doing SMC and another
2587 * thread doing COW.
2588 */
82b0f8c3
JK
2589 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2590 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2591 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2592 lru_cache_add_active_or_unevictable(new_page, vma);
2593 /*
2594 * We call the notify macro here because, when using secondary
2595 * mmu page tables (such as kvm shadow page tables), we want the
2596 * new page to be mapped directly into the secondary page table.
2597 */
82b0f8c3
JK
2598 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2599 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2600 if (old_page) {
2601 /*
2602 * Only after switching the pte to the new page may
2603 * we remove the mapcount here. Otherwise another
2604 * process may come and find the rmap count decremented
2605 * before the pte is switched to the new page, and
2606 * "reuse" the old page writing into it while our pte
2607 * here still points into it and can be read by other
2608 * threads.
2609 *
2610 * The critical issue is to order this
2611 * page_remove_rmap with the ptp_clear_flush above.
2612 * Those stores are ordered by (if nothing else,)
2613 * the barrier present in the atomic_add_negative
2614 * in page_remove_rmap.
2615 *
2616 * Then the TLB flush in ptep_clear_flush ensures that
2617 * no process can access the old page before the
2618 * decremented mapcount is visible. And the old page
2619 * cannot be reused until after the decremented
2620 * mapcount is visible. So transitively, TLBs to
2621 * old page will be flushed before it can be reused.
2622 */
d281ee61 2623 page_remove_rmap(old_page, false);
2f38ab2c
SR
2624 }
2625
2626 /* Free the old page.. */
2627 new_page = old_page;
2628 page_copied = 1;
2629 } else {
f627c2f5 2630 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2631 }
2632
2633 if (new_page)
09cbfeaf 2634 put_page(new_page);
2f38ab2c 2635
82b0f8c3 2636 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2637 /*
2638 * No need to double call mmu_notifier->invalidate_range() callback as
2639 * the above ptep_clear_flush_notify() did already call it.
2640 */
ac46d4f3 2641 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2642 if (old_page) {
2643 /*
2644 * Don't let another task, with possibly unlocked vma,
2645 * keep the mlocked page.
2646 */
2647 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2648 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2649 if (PageMlocked(old_page))
2650 munlock_vma_page(old_page);
2f38ab2c
SR
2651 unlock_page(old_page);
2652 }
09cbfeaf 2653 put_page(old_page);
2f38ab2c
SR
2654 }
2655 return page_copied ? VM_FAULT_WRITE : 0;
2656oom_free_new:
09cbfeaf 2657 put_page(new_page);
2f38ab2c
SR
2658oom:
2659 if (old_page)
09cbfeaf 2660 put_page(old_page);
2f38ab2c
SR
2661 return VM_FAULT_OOM;
2662}
2663
66a6197c
JK
2664/**
2665 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2666 * writeable once the page is prepared
2667 *
2668 * @vmf: structure describing the fault
2669 *
2670 * This function handles all that is needed to finish a write page fault in a
2671 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2672 * It handles locking of PTE and modifying it.
66a6197c
JK
2673 *
2674 * The function expects the page to be locked or other protection against
2675 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2676 *
2677 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2678 * we acquired PTE lock.
66a6197c 2679 */
2b740303 2680vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2681{
2682 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2683 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2684 &vmf->ptl);
2685 /*
2686 * We might have raced with another page fault while we released the
2687 * pte_offset_map_lock.
2688 */
2689 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2690 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2691 return VM_FAULT_NOPAGE;
66a6197c
JK
2692 }
2693 wp_page_reuse(vmf);
a19e2553 2694 return 0;
66a6197c
JK
2695}
2696
dd906184
BH
2697/*
2698 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2699 * mapping
2700 */
2b740303 2701static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2702{
82b0f8c3 2703 struct vm_area_struct *vma = vmf->vma;
bae473a4 2704
dd906184 2705 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2706 vm_fault_t ret;
dd906184 2707
82b0f8c3 2708 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2709 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2710 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2711 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2712 return ret;
66a6197c 2713 return finish_mkwrite_fault(vmf);
dd906184 2714 }
997dd98d
JK
2715 wp_page_reuse(vmf);
2716 return VM_FAULT_WRITE;
dd906184
BH
2717}
2718
2b740303 2719static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2720 __releases(vmf->ptl)
93e478d4 2721{
82b0f8c3 2722 struct vm_area_struct *vma = vmf->vma;
89b15332 2723 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 2724
a41b70d6 2725 get_page(vmf->page);
93e478d4 2726
93e478d4 2727 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2728 vm_fault_t tmp;
93e478d4 2729
82b0f8c3 2730 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2731 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2732 if (unlikely(!tmp || (tmp &
2733 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2734 put_page(vmf->page);
93e478d4
SR
2735 return tmp;
2736 }
66a6197c 2737 tmp = finish_mkwrite_fault(vmf);
a19e2553 2738 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2739 unlock_page(vmf->page);
a41b70d6 2740 put_page(vmf->page);
66a6197c 2741 return tmp;
93e478d4 2742 }
66a6197c
JK
2743 } else {
2744 wp_page_reuse(vmf);
997dd98d 2745 lock_page(vmf->page);
93e478d4 2746 }
89b15332 2747 ret |= fault_dirty_shared_page(vmf);
997dd98d 2748 put_page(vmf->page);
93e478d4 2749
89b15332 2750 return ret;
93e478d4
SR
2751}
2752
1da177e4
LT
2753/*
2754 * This routine handles present pages, when users try to write
2755 * to a shared page. It is done by copying the page to a new address
2756 * and decrementing the shared-page counter for the old page.
2757 *
1da177e4
LT
2758 * Note that this routine assumes that the protection checks have been
2759 * done by the caller (the low-level page fault routine in most cases).
2760 * Thus we can safely just mark it writable once we've done any necessary
2761 * COW.
2762 *
2763 * We also mark the page dirty at this point even though the page will
2764 * change only once the write actually happens. This avoids a few races,
2765 * and potentially makes it more efficient.
2766 *
8f4e2101
HD
2767 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2768 * but allow concurrent faults), with pte both mapped and locked.
2769 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2770 */
2b740303 2771static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2772 __releases(vmf->ptl)
1da177e4 2773{
82b0f8c3 2774 struct vm_area_struct *vma = vmf->vma;
1da177e4 2775
292924b2 2776 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
2777 pte_unmap_unlock(vmf->pte, vmf->ptl);
2778 return handle_userfault(vmf, VM_UFFD_WP);
2779 }
2780
a41b70d6
JK
2781 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2782 if (!vmf->page) {
251b97f5 2783 /*
64e45507
PF
2784 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2785 * VM_PFNMAP VMA.
251b97f5
PZ
2786 *
2787 * We should not cow pages in a shared writeable mapping.
dd906184 2788 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2789 */
2790 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2791 (VM_WRITE|VM_SHARED))
2994302b 2792 return wp_pfn_shared(vmf);
2f38ab2c 2793
82b0f8c3 2794 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2795 return wp_page_copy(vmf);
251b97f5 2796 }
1da177e4 2797
d08b3851 2798 /*
ee6a6457
PZ
2799 * Take out anonymous pages first, anonymous shared vmas are
2800 * not dirty accountable.
d08b3851 2801 */
52d1e606 2802 if (PageAnon(vmf->page)) {
ba3c4ce6 2803 int total_map_swapcount;
52d1e606
KT
2804 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2805 page_count(vmf->page) != 1))
2806 goto copy;
a41b70d6
JK
2807 if (!trylock_page(vmf->page)) {
2808 get_page(vmf->page);
82b0f8c3 2809 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2810 lock_page(vmf->page);
82b0f8c3
JK
2811 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2812 vmf->address, &vmf->ptl);
2994302b 2813 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2814 unlock_page(vmf->page);
82b0f8c3 2815 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2816 put_page(vmf->page);
28766805 2817 return 0;
ab967d86 2818 }
a41b70d6 2819 put_page(vmf->page);
ee6a6457 2820 }
52d1e606
KT
2821 if (PageKsm(vmf->page)) {
2822 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2823 vmf->address);
2824 unlock_page(vmf->page);
2825 if (!reused)
2826 goto copy;
2827 wp_page_reuse(vmf);
2828 return VM_FAULT_WRITE;
2829 }
ba3c4ce6
HY
2830 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2831 if (total_map_swapcount == 1) {
6d0a07ed
AA
2832 /*
2833 * The page is all ours. Move it to
2834 * our anon_vma so the rmap code will
2835 * not search our parent or siblings.
2836 * Protected against the rmap code by
2837 * the page lock.
2838 */
a41b70d6 2839 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2840 }
a41b70d6 2841 unlock_page(vmf->page);
997dd98d
JK
2842 wp_page_reuse(vmf);
2843 return VM_FAULT_WRITE;
b009c024 2844 }
a41b70d6 2845 unlock_page(vmf->page);
ee6a6457 2846 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2847 (VM_WRITE|VM_SHARED))) {
a41b70d6 2848 return wp_page_shared(vmf);
1da177e4 2849 }
52d1e606 2850copy:
1da177e4
LT
2851 /*
2852 * Ok, we need to copy. Oh, well..
2853 */
a41b70d6 2854 get_page(vmf->page);
28766805 2855
82b0f8c3 2856 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2857 return wp_page_copy(vmf);
1da177e4
LT
2858}
2859
97a89413 2860static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2861 unsigned long start_addr, unsigned long end_addr,
2862 struct zap_details *details)
2863{
f5cc4eef 2864 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2865}
2866
f808c13f 2867static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2868 struct zap_details *details)
2869{
2870 struct vm_area_struct *vma;
1da177e4
LT
2871 pgoff_t vba, vea, zba, zea;
2872
6b2dbba8 2873 vma_interval_tree_foreach(vma, root,
1da177e4 2874 details->first_index, details->last_index) {
1da177e4
LT
2875
2876 vba = vma->vm_pgoff;
d6e93217 2877 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2878 zba = details->first_index;
2879 if (zba < vba)
2880 zba = vba;
2881 zea = details->last_index;
2882 if (zea > vea)
2883 zea = vea;
2884
97a89413 2885 unmap_mapping_range_vma(vma,
1da177e4
LT
2886 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2887 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2888 details);
1da177e4
LT
2889 }
2890}
2891
977fbdcd
MW
2892/**
2893 * unmap_mapping_pages() - Unmap pages from processes.
2894 * @mapping: The address space containing pages to be unmapped.
2895 * @start: Index of first page to be unmapped.
2896 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2897 * @even_cows: Whether to unmap even private COWed pages.
2898 *
2899 * Unmap the pages in this address space from any userspace process which
2900 * has them mmaped. Generally, you want to remove COWed pages as well when
2901 * a file is being truncated, but not when invalidating pages from the page
2902 * cache.
2903 */
2904void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2905 pgoff_t nr, bool even_cows)
2906{
2907 struct zap_details details = { };
2908
2909 details.check_mapping = even_cows ? NULL : mapping;
2910 details.first_index = start;
2911 details.last_index = start + nr - 1;
2912 if (details.last_index < details.first_index)
2913 details.last_index = ULONG_MAX;
2914
2915 i_mmap_lock_write(mapping);
2916 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2917 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2918 i_mmap_unlock_write(mapping);
2919}
2920
1da177e4 2921/**
8a5f14a2 2922 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2923 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2924 * file.
2925 *
3d41088f 2926 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2927 * @holebegin: byte in first page to unmap, relative to the start of
2928 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2929 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2930 * must keep the partial page. In contrast, we must get rid of
2931 * partial pages.
2932 * @holelen: size of prospective hole in bytes. This will be rounded
2933 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2934 * end of the file.
2935 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2936 * but 0 when invalidating pagecache, don't throw away private data.
2937 */
2938void unmap_mapping_range(struct address_space *mapping,
2939 loff_t const holebegin, loff_t const holelen, int even_cows)
2940{
1da177e4
LT
2941 pgoff_t hba = holebegin >> PAGE_SHIFT;
2942 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2943
2944 /* Check for overflow. */
2945 if (sizeof(holelen) > sizeof(hlen)) {
2946 long long holeend =
2947 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2948 if (holeend & ~(long long)ULONG_MAX)
2949 hlen = ULONG_MAX - hba + 1;
2950 }
2951
977fbdcd 2952 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2953}
2954EXPORT_SYMBOL(unmap_mapping_range);
2955
1da177e4 2956/*
8f4e2101
HD
2957 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2958 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2959 * We return with pte unmapped and unlocked.
2960 *
2961 * We return with the mmap_sem locked or unlocked in the same cases
2962 * as does filemap_fault().
1da177e4 2963 */
2b740303 2964vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2965{
82b0f8c3 2966 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2967 struct page *page = NULL, *swapcache;
00501b53 2968 struct mem_cgroup *memcg;
65500d23 2969 swp_entry_t entry;
1da177e4 2970 pte_t pte;
d065bd81 2971 int locked;
ad8c2ee8 2972 int exclusive = 0;
2b740303 2973 vm_fault_t ret = 0;
1da177e4 2974
eaf649eb 2975 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2976 goto out;
65500d23 2977
2994302b 2978 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2979 if (unlikely(non_swap_entry(entry))) {
2980 if (is_migration_entry(entry)) {
82b0f8c3
JK
2981 migration_entry_wait(vma->vm_mm, vmf->pmd,
2982 vmf->address);
5042db43 2983 } else if (is_device_private_entry(entry)) {
897e6365
CH
2984 vmf->page = device_private_entry_to_page(entry);
2985 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
2986 } else if (is_hwpoison_entry(entry)) {
2987 ret = VM_FAULT_HWPOISON;
2988 } else {
2994302b 2989 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2990 ret = VM_FAULT_SIGBUS;
d1737fdb 2991 }
0697212a
CL
2992 goto out;
2993 }
0bcac06f
MK
2994
2995
0ff92245 2996 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2997 page = lookup_swap_cache(entry, vma, vmf->address);
2998 swapcache = page;
f8020772 2999
1da177e4 3000 if (!page) {
0bcac06f
MK
3001 struct swap_info_struct *si = swp_swap_info(entry);
3002
aa8d22a1 3003 if (si->flags & SWP_SYNCHRONOUS_IO &&
eb085574 3004 __swap_count(entry) == 1) {
0bcac06f 3005 /* skip swapcache */
e9e9b7ec
MK
3006 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3007 vmf->address);
0bcac06f
MK
3008 if (page) {
3009 __SetPageLocked(page);
3010 __SetPageSwapBacked(page);
3011 set_page_private(page, entry.val);
3012 lru_cache_add_anon(page);
3013 swap_readpage(page, true);
3014 }
aa8d22a1 3015 } else {
e9e9b7ec
MK
3016 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3017 vmf);
aa8d22a1 3018 swapcache = page;
0bcac06f
MK
3019 }
3020
1da177e4
LT
3021 if (!page) {
3022 /*
8f4e2101
HD
3023 * Back out if somebody else faulted in this pte
3024 * while we released the pte lock.
1da177e4 3025 */
82b0f8c3
JK
3026 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3027 vmf->address, &vmf->ptl);
2994302b 3028 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3029 ret = VM_FAULT_OOM;
0ff92245 3030 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3031 goto unlock;
1da177e4
LT
3032 }
3033
3034 /* Had to read the page from swap area: Major fault */
3035 ret = VM_FAULT_MAJOR;
f8891e5e 3036 count_vm_event(PGMAJFAULT);
2262185c 3037 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3038 } else if (PageHWPoison(page)) {
71f72525
WF
3039 /*
3040 * hwpoisoned dirty swapcache pages are kept for killing
3041 * owner processes (which may be unknown at hwpoison time)
3042 */
d1737fdb
AK
3043 ret = VM_FAULT_HWPOISON;
3044 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3045 goto out_release;
1da177e4
LT
3046 }
3047
82b0f8c3 3048 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3049
073e587e 3050 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3051 if (!locked) {
3052 ret |= VM_FAULT_RETRY;
3053 goto out_release;
3054 }
073e587e 3055
4969c119 3056 /*
31c4a3d3
HD
3057 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3058 * release the swapcache from under us. The page pin, and pte_same
3059 * test below, are not enough to exclude that. Even if it is still
3060 * swapcache, we need to check that the page's swap has not changed.
4969c119 3061 */
0bcac06f
MK
3062 if (unlikely((!PageSwapCache(page) ||
3063 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3064 goto out_page;
3065
82b0f8c3 3066 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3067 if (unlikely(!page)) {
3068 ret = VM_FAULT_OOM;
3069 page = swapcache;
cbf86cfe 3070 goto out_page;
5ad64688
HD
3071 }
3072
2cf85583
TH
3073 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3074 &memcg, false)) {
8a9f3ccd 3075 ret = VM_FAULT_OOM;
bc43f75c 3076 goto out_page;
8a9f3ccd
BS
3077 }
3078
1da177e4 3079 /*
8f4e2101 3080 * Back out if somebody else already faulted in this pte.
1da177e4 3081 */
82b0f8c3
JK
3082 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3083 &vmf->ptl);
2994302b 3084 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3085 goto out_nomap;
b8107480
KK
3086
3087 if (unlikely(!PageUptodate(page))) {
3088 ret = VM_FAULT_SIGBUS;
3089 goto out_nomap;
1da177e4
LT
3090 }
3091
8c7c6e34
KH
3092 /*
3093 * The page isn't present yet, go ahead with the fault.
3094 *
3095 * Be careful about the sequence of operations here.
3096 * To get its accounting right, reuse_swap_page() must be called
3097 * while the page is counted on swap but not yet in mapcount i.e.
3098 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3099 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3100 */
1da177e4 3101
bae473a4
KS
3102 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3103 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3104 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3105 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3106 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3107 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3108 ret |= VM_FAULT_WRITE;
d281ee61 3109 exclusive = RMAP_EXCLUSIVE;
1da177e4 3110 }
1da177e4 3111 flush_icache_page(vma, page);
2994302b 3112 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3113 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3114 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3115 pte = pte_mkuffd_wp(pte);
3116 pte = pte_wrprotect(pte);
3117 }
82b0f8c3 3118 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3119 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3120 vmf->orig_pte = pte;
0bcac06f
MK
3121
3122 /* ksm created a completely new copy */
3123 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3124 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3125 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3126 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
3127 } else {
3128 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3129 mem_cgroup_commit_charge(page, memcg, true, false);
3130 activate_page(page);
00501b53 3131 }
1da177e4 3132
c475a8ab 3133 swap_free(entry);
5ccc5aba
VD
3134 if (mem_cgroup_swap_full(page) ||
3135 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3136 try_to_free_swap(page);
c475a8ab 3137 unlock_page(page);
0bcac06f 3138 if (page != swapcache && swapcache) {
4969c119
AA
3139 /*
3140 * Hold the lock to avoid the swap entry to be reused
3141 * until we take the PT lock for the pte_same() check
3142 * (to avoid false positives from pte_same). For
3143 * further safety release the lock after the swap_free
3144 * so that the swap count won't change under a
3145 * parallel locked swapcache.
3146 */
3147 unlock_page(swapcache);
09cbfeaf 3148 put_page(swapcache);
4969c119 3149 }
c475a8ab 3150
82b0f8c3 3151 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3152 ret |= do_wp_page(vmf);
61469f1d
HD
3153 if (ret & VM_FAULT_ERROR)
3154 ret &= VM_FAULT_ERROR;
1da177e4
LT
3155 goto out;
3156 }
3157
3158 /* No need to invalidate - it was non-present before */
82b0f8c3 3159 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3160unlock:
82b0f8c3 3161 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3162out:
3163 return ret;
b8107480 3164out_nomap:
f627c2f5 3165 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 3166 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3167out_page:
b8107480 3168 unlock_page(page);
4779cb31 3169out_release:
09cbfeaf 3170 put_page(page);
0bcac06f 3171 if (page != swapcache && swapcache) {
4969c119 3172 unlock_page(swapcache);
09cbfeaf 3173 put_page(swapcache);
4969c119 3174 }
65500d23 3175 return ret;
1da177e4
LT
3176}
3177
3178/*
8f4e2101
HD
3179 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3180 * but allow concurrent faults), and pte mapped but not yet locked.
3181 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3182 */
2b740303 3183static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3184{
82b0f8c3 3185 struct vm_area_struct *vma = vmf->vma;
00501b53 3186 struct mem_cgroup *memcg;
8f4e2101 3187 struct page *page;
2b740303 3188 vm_fault_t ret = 0;
1da177e4 3189 pte_t entry;
1da177e4 3190
6b7339f4
KS
3191 /* File mapping without ->vm_ops ? */
3192 if (vma->vm_flags & VM_SHARED)
3193 return VM_FAULT_SIGBUS;
3194
7267ec00
KS
3195 /*
3196 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3197 * pte_offset_map() on pmds where a huge pmd might be created
3198 * from a different thread.
3199 *
3200 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3201 * parallel threads are excluded by other means.
3202 *
3203 * Here we only have down_read(mmap_sem).
3204 */
4cf58924 3205 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3206 return VM_FAULT_OOM;
3207
3208 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3209 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3210 return 0;
3211
11ac5524 3212 /* Use the zero-page for reads */
82b0f8c3 3213 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3214 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3215 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3216 vma->vm_page_prot));
82b0f8c3
JK
3217 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3218 vmf->address, &vmf->ptl);
3219 if (!pte_none(*vmf->pte))
a13ea5b7 3220 goto unlock;
6b31d595
MH
3221 ret = check_stable_address_space(vma->vm_mm);
3222 if (ret)
3223 goto unlock;
6b251fc9
AA
3224 /* Deliver the page fault to userland, check inside PT lock */
3225 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3226 pte_unmap_unlock(vmf->pte, vmf->ptl);
3227 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3228 }
a13ea5b7
HD
3229 goto setpte;
3230 }
3231
557ed1fa 3232 /* Allocate our own private page. */
557ed1fa
NP
3233 if (unlikely(anon_vma_prepare(vma)))
3234 goto oom;
82b0f8c3 3235 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3236 if (!page)
3237 goto oom;
eb3c24f3 3238
2cf85583
TH
3239 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3240 false))
eb3c24f3
MG
3241 goto oom_free_page;
3242
52f37629
MK
3243 /*
3244 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3245 * preceding stores to the page contents become visible before
52f37629
MK
3246 * the set_pte_at() write.
3247 */
0ed361de 3248 __SetPageUptodate(page);
8f4e2101 3249
557ed1fa 3250 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3251 if (vma->vm_flags & VM_WRITE)
3252 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3253
82b0f8c3
JK
3254 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3255 &vmf->ptl);
3256 if (!pte_none(*vmf->pte))
557ed1fa 3257 goto release;
9ba69294 3258
6b31d595
MH
3259 ret = check_stable_address_space(vma->vm_mm);
3260 if (ret)
3261 goto release;
3262
6b251fc9
AA
3263 /* Deliver the page fault to userland, check inside PT lock */
3264 if (userfaultfd_missing(vma)) {
82b0f8c3 3265 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3266 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3267 put_page(page);
82b0f8c3 3268 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3269 }
3270
bae473a4 3271 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3272 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3273 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3274 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3275setpte:
82b0f8c3 3276 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3277
3278 /* No need to invalidate - it was non-present before */
82b0f8c3 3279 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3280unlock:
82b0f8c3 3281 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3282 return ret;
8f4e2101 3283release:
f627c2f5 3284 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3285 put_page(page);
8f4e2101 3286 goto unlock;
8a9f3ccd 3287oom_free_page:
09cbfeaf 3288 put_page(page);
65500d23 3289oom:
1da177e4
LT
3290 return VM_FAULT_OOM;
3291}
3292
9a95f3cf
PC
3293/*
3294 * The mmap_sem must have been held on entry, and may have been
3295 * released depending on flags and vma->vm_ops->fault() return value.
3296 * See filemap_fault() and __lock_page_retry().
3297 */
2b740303 3298static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3299{
82b0f8c3 3300 struct vm_area_struct *vma = vmf->vma;
2b740303 3301 vm_fault_t ret;
7eae74af 3302
63f3655f
MH
3303 /*
3304 * Preallocate pte before we take page_lock because this might lead to
3305 * deadlocks for memcg reclaim which waits for pages under writeback:
3306 * lock_page(A)
3307 * SetPageWriteback(A)
3308 * unlock_page(A)
3309 * lock_page(B)
3310 * lock_page(B)
3311 * pte_alloc_pne
3312 * shrink_page_list
3313 * wait_on_page_writeback(A)
3314 * SetPageWriteback(B)
3315 * unlock_page(B)
3316 * # flush A, B to clear the writeback
3317 */
3318 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3319 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3320 if (!vmf->prealloc_pte)
3321 return VM_FAULT_OOM;
3322 smp_wmb(); /* See comment in __pte_alloc() */
3323 }
3324
11bac800 3325 ret = vma->vm_ops->fault(vmf);
3917048d 3326 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3327 VM_FAULT_DONE_COW)))
bc2466e4 3328 return ret;
7eae74af 3329
667240e0 3330 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3331 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3332 unlock_page(vmf->page);
3333 put_page(vmf->page);
936ca80d 3334 vmf->page = NULL;
7eae74af
KS
3335 return VM_FAULT_HWPOISON;
3336 }
3337
3338 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3339 lock_page(vmf->page);
7eae74af 3340 else
667240e0 3341 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3342
7eae74af
KS
3343 return ret;
3344}
3345
d0f0931d
RZ
3346/*
3347 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3348 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3349 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3350 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3351 */
3352static int pmd_devmap_trans_unstable(pmd_t *pmd)
3353{
3354 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3355}
3356
2b740303 3357static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3358{
82b0f8c3 3359 struct vm_area_struct *vma = vmf->vma;
7267ec00 3360
82b0f8c3 3361 if (!pmd_none(*vmf->pmd))
7267ec00 3362 goto map_pte;
82b0f8c3
JK
3363 if (vmf->prealloc_pte) {
3364 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3365 if (unlikely(!pmd_none(*vmf->pmd))) {
3366 spin_unlock(vmf->ptl);
7267ec00
KS
3367 goto map_pte;
3368 }
3369
c4812909 3370 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3371 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3372 spin_unlock(vmf->ptl);
7f2b6ce8 3373 vmf->prealloc_pte = NULL;
4cf58924 3374 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3375 return VM_FAULT_OOM;
3376 }
3377map_pte:
3378 /*
3379 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3380 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3381 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3382 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3383 * running immediately after a huge pmd fault in a different thread of
3384 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3385 * All we have to ensure is that it is a regular pmd that we can walk
3386 * with pte_offset_map() and we can do that through an atomic read in
3387 * C, which is what pmd_trans_unstable() provides.
7267ec00 3388 */
d0f0931d 3389 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3390 return VM_FAULT_NOPAGE;
3391
d0f0931d
RZ
3392 /*
3393 * At this point we know that our vmf->pmd points to a page of ptes
3394 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3395 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3396 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3397 * be valid and we will re-check to make sure the vmf->pte isn't
3398 * pte_none() under vmf->ptl protection when we return to
3399 * alloc_set_pte().
3400 */
82b0f8c3
JK
3401 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3402 &vmf->ptl);
7267ec00
KS
3403 return 0;
3404}
3405
396bcc52 3406#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3407static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3408{
82b0f8c3 3409 struct vm_area_struct *vma = vmf->vma;
953c66c2 3410
82b0f8c3 3411 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3412 /*
3413 * We are going to consume the prealloc table,
3414 * count that as nr_ptes.
3415 */
c4812909 3416 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3417 vmf->prealloc_pte = NULL;
953c66c2
AK
3418}
3419
2b740303 3420static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3421{
82b0f8c3
JK
3422 struct vm_area_struct *vma = vmf->vma;
3423 bool write = vmf->flags & FAULT_FLAG_WRITE;
3424 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3425 pmd_t entry;
2b740303
SJ
3426 int i;
3427 vm_fault_t ret;
10102459
KS
3428
3429 if (!transhuge_vma_suitable(vma, haddr))
3430 return VM_FAULT_FALLBACK;
3431
3432 ret = VM_FAULT_FALLBACK;
3433 page = compound_head(page);
3434
953c66c2
AK
3435 /*
3436 * Archs like ppc64 need additonal space to store information
3437 * related to pte entry. Use the preallocated table for that.
3438 */
82b0f8c3 3439 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3440 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3441 if (!vmf->prealloc_pte)
953c66c2
AK
3442 return VM_FAULT_OOM;
3443 smp_wmb(); /* See comment in __pte_alloc() */
3444 }
3445
82b0f8c3
JK
3446 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3447 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3448 goto out;
3449
3450 for (i = 0; i < HPAGE_PMD_NR; i++)
3451 flush_icache_page(vma, page + i);
3452
3453 entry = mk_huge_pmd(page, vma->vm_page_prot);
3454 if (write)
f55e1014 3455 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3456
fadae295 3457 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3458 page_add_file_rmap(page, true);
953c66c2
AK
3459 /*
3460 * deposit and withdraw with pmd lock held
3461 */
3462 if (arch_needs_pgtable_deposit())
82b0f8c3 3463 deposit_prealloc_pte(vmf);
10102459 3464
82b0f8c3 3465 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3466
82b0f8c3 3467 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3468
3469 /* fault is handled */
3470 ret = 0;
95ecedcd 3471 count_vm_event(THP_FILE_MAPPED);
10102459 3472out:
82b0f8c3 3473 spin_unlock(vmf->ptl);
10102459
KS
3474 return ret;
3475}
3476#else
2b740303 3477static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3478{
3479 BUILD_BUG();
3480 return 0;
3481}
3482#endif
3483
8c6e50b0 3484/**
7267ec00
KS
3485 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3486 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3487 *
82b0f8c3 3488 * @vmf: fault environment
7267ec00 3489 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3490 * @page: page to map
8c6e50b0 3491 *
82b0f8c3
JK
3492 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3493 * return.
8c6e50b0
KS
3494 *
3495 * Target users are page handler itself and implementations of
3496 * vm_ops->map_pages.
a862f68a
MR
3497 *
3498 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3499 */
2b740303 3500vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3501 struct page *page)
3bb97794 3502{
82b0f8c3
JK
3503 struct vm_area_struct *vma = vmf->vma;
3504 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3505 pte_t entry;
2b740303 3506 vm_fault_t ret;
10102459 3507
396bcc52 3508 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
10102459
KS
3509 /* THP on COW? */
3510 VM_BUG_ON_PAGE(memcg, page);
3511
82b0f8c3 3512 ret = do_set_pmd(vmf, page);
10102459 3513 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3514 return ret;
10102459 3515 }
3bb97794 3516
82b0f8c3
JK
3517 if (!vmf->pte) {
3518 ret = pte_alloc_one_map(vmf);
7267ec00 3519 if (ret)
b0b9b3df 3520 return ret;
7267ec00
KS
3521 }
3522
3523 /* Re-check under ptl */
b0b9b3df
HD
3524 if (unlikely(!pte_none(*vmf->pte)))
3525 return VM_FAULT_NOPAGE;
7267ec00 3526
3bb97794
KS
3527 flush_icache_page(vma, page);
3528 entry = mk_pte(page, vma->vm_page_prot);
3529 if (write)
3530 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3531 /* copy-on-write page */
3532 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3533 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3534 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3535 mem_cgroup_commit_charge(page, memcg, false, false);
3536 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3537 } else {
eca56ff9 3538 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3539 page_add_file_rmap(page, false);
3bb97794 3540 }
82b0f8c3 3541 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3542
3543 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3544 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3545
b0b9b3df 3546 return 0;
3bb97794
KS
3547}
3548
9118c0cb
JK
3549
3550/**
3551 * finish_fault - finish page fault once we have prepared the page to fault
3552 *
3553 * @vmf: structure describing the fault
3554 *
3555 * This function handles all that is needed to finish a page fault once the
3556 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3557 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3558 * addition.
9118c0cb
JK
3559 *
3560 * The function expects the page to be locked and on success it consumes a
3561 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3562 *
3563 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3564 */
2b740303 3565vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3566{
3567 struct page *page;
2b740303 3568 vm_fault_t ret = 0;
9118c0cb
JK
3569
3570 /* Did we COW the page? */
3571 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3572 !(vmf->vma->vm_flags & VM_SHARED))
3573 page = vmf->cow_page;
3574 else
3575 page = vmf->page;
6b31d595
MH
3576
3577 /*
3578 * check even for read faults because we might have lost our CoWed
3579 * page
3580 */
3581 if (!(vmf->vma->vm_flags & VM_SHARED))
3582 ret = check_stable_address_space(vmf->vma->vm_mm);
3583 if (!ret)
3584 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3585 if (vmf->pte)
3586 pte_unmap_unlock(vmf->pte, vmf->ptl);
3587 return ret;
3588}
3589
3a91053a
KS
3590static unsigned long fault_around_bytes __read_mostly =
3591 rounddown_pow_of_two(65536);
a9b0f861 3592
a9b0f861
KS
3593#ifdef CONFIG_DEBUG_FS
3594static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3595{
a9b0f861 3596 *val = fault_around_bytes;
1592eef0
KS
3597 return 0;
3598}
3599
b4903d6e 3600/*
da391d64
WK
3601 * fault_around_bytes must be rounded down to the nearest page order as it's
3602 * what do_fault_around() expects to see.
b4903d6e 3603 */
a9b0f861 3604static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3605{
a9b0f861 3606 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3607 return -EINVAL;
b4903d6e
AR
3608 if (val > PAGE_SIZE)
3609 fault_around_bytes = rounddown_pow_of_two(val);
3610 else
3611 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3612 return 0;
3613}
0a1345f8 3614DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3615 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3616
3617static int __init fault_around_debugfs(void)
3618{
d9f7979c
GKH
3619 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3620 &fault_around_bytes_fops);
1592eef0
KS
3621 return 0;
3622}
3623late_initcall(fault_around_debugfs);
1592eef0 3624#endif
8c6e50b0 3625
1fdb412b
KS
3626/*
3627 * do_fault_around() tries to map few pages around the fault address. The hope
3628 * is that the pages will be needed soon and this will lower the number of
3629 * faults to handle.
3630 *
3631 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3632 * not ready to be mapped: not up-to-date, locked, etc.
3633 *
3634 * This function is called with the page table lock taken. In the split ptlock
3635 * case the page table lock only protects only those entries which belong to
3636 * the page table corresponding to the fault address.
3637 *
3638 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3639 * only once.
3640 *
da391d64
WK
3641 * fault_around_bytes defines how many bytes we'll try to map.
3642 * do_fault_around() expects it to be set to a power of two less than or equal
3643 * to PTRS_PER_PTE.
1fdb412b 3644 *
da391d64
WK
3645 * The virtual address of the area that we map is naturally aligned to
3646 * fault_around_bytes rounded down to the machine page size
3647 * (and therefore to page order). This way it's easier to guarantee
3648 * that we don't cross page table boundaries.
1fdb412b 3649 */
2b740303 3650static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3651{
82b0f8c3 3652 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3653 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3654 pgoff_t end_pgoff;
2b740303
SJ
3655 int off;
3656 vm_fault_t ret = 0;
8c6e50b0 3657
4db0c3c2 3658 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3659 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3660
82b0f8c3
JK
3661 vmf->address = max(address & mask, vmf->vma->vm_start);
3662 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3663 start_pgoff -= off;
8c6e50b0
KS
3664
3665 /*
da391d64
WK
3666 * end_pgoff is either the end of the page table, the end of
3667 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3668 */
bae473a4 3669 end_pgoff = start_pgoff -
82b0f8c3 3670 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3671 PTRS_PER_PTE - 1;
82b0f8c3 3672 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3673 start_pgoff + nr_pages - 1);
8c6e50b0 3674
82b0f8c3 3675 if (pmd_none(*vmf->pmd)) {
4cf58924 3676 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3677 if (!vmf->prealloc_pte)
c5f88bd2 3678 goto out;
7267ec00 3679 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3680 }
3681
82b0f8c3 3682 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3683
7267ec00 3684 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3685 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3686 ret = VM_FAULT_NOPAGE;
3687 goto out;
3688 }
3689
3690 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3691 if (!vmf->pte)
7267ec00
KS
3692 goto out;
3693
3694 /* check if the page fault is solved */
82b0f8c3
JK
3695 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3696 if (!pte_none(*vmf->pte))
7267ec00 3697 ret = VM_FAULT_NOPAGE;
82b0f8c3 3698 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3699out:
82b0f8c3
JK
3700 vmf->address = address;
3701 vmf->pte = NULL;
7267ec00 3702 return ret;
8c6e50b0
KS
3703}
3704
2b740303 3705static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3706{
82b0f8c3 3707 struct vm_area_struct *vma = vmf->vma;
2b740303 3708 vm_fault_t ret = 0;
8c6e50b0
KS
3709
3710 /*
3711 * Let's call ->map_pages() first and use ->fault() as fallback
3712 * if page by the offset is not ready to be mapped (cold cache or
3713 * something).
3714 */
9b4bdd2f 3715 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3716 ret = do_fault_around(vmf);
7267ec00
KS
3717 if (ret)
3718 return ret;
8c6e50b0 3719 }
e655fb29 3720
936ca80d 3721 ret = __do_fault(vmf);
e655fb29
KS
3722 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3723 return ret;
3724
9118c0cb 3725 ret |= finish_fault(vmf);
936ca80d 3726 unlock_page(vmf->page);
7267ec00 3727 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3728 put_page(vmf->page);
e655fb29
KS
3729 return ret;
3730}
3731
2b740303 3732static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3733{
82b0f8c3 3734 struct vm_area_struct *vma = vmf->vma;
2b740303 3735 vm_fault_t ret;
ec47c3b9
KS
3736
3737 if (unlikely(anon_vma_prepare(vma)))
3738 return VM_FAULT_OOM;
3739
936ca80d
JK
3740 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3741 if (!vmf->cow_page)
ec47c3b9
KS
3742 return VM_FAULT_OOM;
3743
2cf85583 3744 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3745 &vmf->memcg, false)) {
936ca80d 3746 put_page(vmf->cow_page);
ec47c3b9
KS
3747 return VM_FAULT_OOM;
3748 }
3749
936ca80d 3750 ret = __do_fault(vmf);
ec47c3b9
KS
3751 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3752 goto uncharge_out;
3917048d
JK
3753 if (ret & VM_FAULT_DONE_COW)
3754 return ret;
ec47c3b9 3755
b1aa812b 3756 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3757 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3758
9118c0cb 3759 ret |= finish_fault(vmf);
b1aa812b
JK
3760 unlock_page(vmf->page);
3761 put_page(vmf->page);
7267ec00
KS
3762 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3763 goto uncharge_out;
ec47c3b9
KS
3764 return ret;
3765uncharge_out:
3917048d 3766 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3767 put_page(vmf->cow_page);
ec47c3b9
KS
3768 return ret;
3769}
3770
2b740303 3771static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3772{
82b0f8c3 3773 struct vm_area_struct *vma = vmf->vma;
2b740303 3774 vm_fault_t ret, tmp;
1d65f86d 3775
936ca80d 3776 ret = __do_fault(vmf);
7eae74af 3777 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3778 return ret;
1da177e4
LT
3779
3780 /*
f0c6d4d2
KS
3781 * Check if the backing address space wants to know that the page is
3782 * about to become writable
1da177e4 3783 */
fb09a464 3784 if (vma->vm_ops->page_mkwrite) {
936ca80d 3785 unlock_page(vmf->page);
38b8cb7f 3786 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3787 if (unlikely(!tmp ||
3788 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3789 put_page(vmf->page);
fb09a464 3790 return tmp;
4294621f 3791 }
fb09a464
KS
3792 }
3793
9118c0cb 3794 ret |= finish_fault(vmf);
7267ec00
KS
3795 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3796 VM_FAULT_RETRY))) {
936ca80d
JK
3797 unlock_page(vmf->page);
3798 put_page(vmf->page);
f0c6d4d2 3799 return ret;
1da177e4 3800 }
b827e496 3801
89b15332 3802 ret |= fault_dirty_shared_page(vmf);
1d65f86d 3803 return ret;
54cb8821 3804}
d00806b1 3805
9a95f3cf
PC
3806/*
3807 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3808 * but allow concurrent faults).
3809 * The mmap_sem may have been released depending on flags and our
3810 * return value. See filemap_fault() and __lock_page_or_retry().
fc8efd2d
JS
3811 * If mmap_sem is released, vma may become invalid (for example
3812 * by other thread calling munmap()).
9a95f3cf 3813 */
2b740303 3814static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3815{
82b0f8c3 3816 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3817 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3818 vm_fault_t ret;
54cb8821 3819
ff09d7ec
AK
3820 /*
3821 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3822 */
3823 if (!vma->vm_ops->fault) {
3824 /*
3825 * If we find a migration pmd entry or a none pmd entry, which
3826 * should never happen, return SIGBUS
3827 */
3828 if (unlikely(!pmd_present(*vmf->pmd)))
3829 ret = VM_FAULT_SIGBUS;
3830 else {
3831 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3832 vmf->pmd,
3833 vmf->address,
3834 &vmf->ptl);
3835 /*
3836 * Make sure this is not a temporary clearing of pte
3837 * by holding ptl and checking again. A R/M/W update
3838 * of pte involves: take ptl, clearing the pte so that
3839 * we don't have concurrent modification by hardware
3840 * followed by an update.
3841 */
3842 if (unlikely(pte_none(*vmf->pte)))
3843 ret = VM_FAULT_SIGBUS;
3844 else
3845 ret = VM_FAULT_NOPAGE;
3846
3847 pte_unmap_unlock(vmf->pte, vmf->ptl);
3848 }
3849 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3850 ret = do_read_fault(vmf);
3851 else if (!(vma->vm_flags & VM_SHARED))
3852 ret = do_cow_fault(vmf);
3853 else
3854 ret = do_shared_fault(vmf);
3855
3856 /* preallocated pagetable is unused: free it */
3857 if (vmf->prealloc_pte) {
fc8efd2d 3858 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3859 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3860 }
3861 return ret;
54cb8821
NP
3862}
3863
b19a9939 3864static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3865 unsigned long addr, int page_nid,
3866 int *flags)
9532fec1
MG
3867{
3868 get_page(page);
3869
3870 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3871 if (page_nid == numa_node_id()) {
9532fec1 3872 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3873 *flags |= TNF_FAULT_LOCAL;
3874 }
9532fec1
MG
3875
3876 return mpol_misplaced(page, vma, addr);
3877}
3878
2b740303 3879static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3880{
82b0f8c3 3881 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3882 struct page *page = NULL;
98fa15f3 3883 int page_nid = NUMA_NO_NODE;
90572890 3884 int last_cpupid;
cbee9f88 3885 int target_nid;
b8593bfd 3886 bool migrated = false;
04a86453 3887 pte_t pte, old_pte;
288bc549 3888 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3889 int flags = 0;
d10e63f2
MG
3890
3891 /*
166f61b9
TH
3892 * The "pte" at this point cannot be used safely without
3893 * validation through pte_unmap_same(). It's of NUMA type but
3894 * the pfn may be screwed if the read is non atomic.
166f61b9 3895 */
82b0f8c3
JK
3896 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3897 spin_lock(vmf->ptl);
cee216a6 3898 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3899 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3900 goto out;
3901 }
3902
cee216a6
AK
3903 /*
3904 * Make it present again, Depending on how arch implementes non
3905 * accessible ptes, some can allow access by kernel mode.
3906 */
04a86453
AK
3907 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3908 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 3909 pte = pte_mkyoung(pte);
b191f9b1
MG
3910 if (was_writable)
3911 pte = pte_mkwrite(pte);
04a86453 3912 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 3913 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3914
82b0f8c3 3915 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3916 if (!page) {
82b0f8c3 3917 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3918 return 0;
3919 }
3920
e81c4802
KS
3921 /* TODO: handle PTE-mapped THP */
3922 if (PageCompound(page)) {
82b0f8c3 3923 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3924 return 0;
3925 }
3926
6688cc05 3927 /*
bea66fbd
MG
3928 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3929 * much anyway since they can be in shared cache state. This misses
3930 * the case where a mapping is writable but the process never writes
3931 * to it but pte_write gets cleared during protection updates and
3932 * pte_dirty has unpredictable behaviour between PTE scan updates,
3933 * background writeback, dirty balancing and application behaviour.
6688cc05 3934 */
d59dc7bc 3935 if (!pte_write(pte))
6688cc05
PZ
3936 flags |= TNF_NO_GROUP;
3937
dabe1d99
RR
3938 /*
3939 * Flag if the page is shared between multiple address spaces. This
3940 * is later used when determining whether to group tasks together
3941 */
3942 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3943 flags |= TNF_SHARED;
3944
90572890 3945 last_cpupid = page_cpupid_last(page);
8191acbd 3946 page_nid = page_to_nid(page);
82b0f8c3 3947 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3948 &flags);
82b0f8c3 3949 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 3950 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
3951 put_page(page);
3952 goto out;
3953 }
3954
3955 /* Migrate to the requested node */
1bc115d8 3956 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3957 if (migrated) {
8191acbd 3958 page_nid = target_nid;
6688cc05 3959 flags |= TNF_MIGRATED;
074c2381
MG
3960 } else
3961 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3962
3963out:
98fa15f3 3964 if (page_nid != NUMA_NO_NODE)
6688cc05 3965 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3966 return 0;
3967}
3968
2b740303 3969static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3970{
f4200391 3971 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3972 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3973 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3974 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3975 return VM_FAULT_FALLBACK;
3976}
3977
183f24aa 3978/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3979static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3980{
529b930b 3981 if (vma_is_anonymous(vmf->vma)) {
292924b2 3982 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 3983 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 3984 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 3985 }
327e9fd4
THV
3986 if (vmf->vma->vm_ops->huge_fault) {
3987 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3988
3989 if (!(ret & VM_FAULT_FALLBACK))
3990 return ret;
3991 }
af9e4d5f 3992
327e9fd4 3993 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 3994 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3995
b96375f7
MW
3996 return VM_FAULT_FALLBACK;
3997}
3998
2b740303 3999static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4000{
327e9fd4
THV
4001#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4002 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4003 /* No support for anonymous transparent PUD pages yet */
4004 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4005 goto split;
4006 if (vmf->vma->vm_ops->huge_fault) {
4007 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4008
4009 if (!(ret & VM_FAULT_FALLBACK))
4010 return ret;
4011 }
4012split:
4013 /* COW or write-notify not handled on PUD level: split pud.*/
4014 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4015#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4016 return VM_FAULT_FALLBACK;
4017}
4018
2b740303 4019static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4020{
4021#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4022 /* No support for anonymous transparent PUD pages yet */
4023 if (vma_is_anonymous(vmf->vma))
4024 return VM_FAULT_FALLBACK;
4025 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4026 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4027#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4028 return VM_FAULT_FALLBACK;
4029}
4030
1da177e4
LT
4031/*
4032 * These routines also need to handle stuff like marking pages dirty
4033 * and/or accessed for architectures that don't do it in hardware (most
4034 * RISC architectures). The early dirtying is also good on the i386.
4035 *
4036 * There is also a hook called "update_mmu_cache()" that architectures
4037 * with external mmu caches can use to update those (ie the Sparc or
4038 * PowerPC hashed page tables that act as extended TLBs).
4039 *
7267ec00
KS
4040 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4041 * concurrent faults).
9a95f3cf 4042 *
7267ec00
KS
4043 * The mmap_sem may have been released depending on flags and our return value.
4044 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4045 */
2b740303 4046static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4047{
4048 pte_t entry;
4049
82b0f8c3 4050 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4051 /*
4052 * Leave __pte_alloc() until later: because vm_ops->fault may
4053 * want to allocate huge page, and if we expose page table
4054 * for an instant, it will be difficult to retract from
4055 * concurrent faults and from rmap lookups.
4056 */
82b0f8c3 4057 vmf->pte = NULL;
7267ec00
KS
4058 } else {
4059 /* See comment in pte_alloc_one_map() */
d0f0931d 4060 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4061 return 0;
4062 /*
4063 * A regular pmd is established and it can't morph into a huge
4064 * pmd from under us anymore at this point because we hold the
4065 * mmap_sem read mode and khugepaged takes it in write mode.
4066 * So now it's safe to run pte_offset_map().
4067 */
82b0f8c3 4068 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4069 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4070
4071 /*
4072 * some architectures can have larger ptes than wordsize,
4073 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4074 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4075 * accesses. The code below just needs a consistent view
4076 * for the ifs and we later double check anyway with the
7267ec00
KS
4077 * ptl lock held. So here a barrier will do.
4078 */
4079 barrier();
2994302b 4080 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4081 pte_unmap(vmf->pte);
4082 vmf->pte = NULL;
65500d23 4083 }
1da177e4
LT
4084 }
4085
82b0f8c3
JK
4086 if (!vmf->pte) {
4087 if (vma_is_anonymous(vmf->vma))
4088 return do_anonymous_page(vmf);
7267ec00 4089 else
82b0f8c3 4090 return do_fault(vmf);
7267ec00
KS
4091 }
4092
2994302b
JK
4093 if (!pte_present(vmf->orig_pte))
4094 return do_swap_page(vmf);
7267ec00 4095
2994302b
JK
4096 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4097 return do_numa_page(vmf);
d10e63f2 4098
82b0f8c3
JK
4099 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4100 spin_lock(vmf->ptl);
2994302b 4101 entry = vmf->orig_pte;
82b0f8c3 4102 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 4103 goto unlock;
82b0f8c3 4104 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4105 if (!pte_write(entry))
2994302b 4106 return do_wp_page(vmf);
1da177e4
LT
4107 entry = pte_mkdirty(entry);
4108 }
4109 entry = pte_mkyoung(entry);
82b0f8c3
JK
4110 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4111 vmf->flags & FAULT_FLAG_WRITE)) {
4112 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
4113 } else {
4114 /*
4115 * This is needed only for protection faults but the arch code
4116 * is not yet telling us if this is a protection fault or not.
4117 * This still avoids useless tlb flushes for .text page faults
4118 * with threads.
4119 */
82b0f8c3
JK
4120 if (vmf->flags & FAULT_FLAG_WRITE)
4121 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4122 }
8f4e2101 4123unlock:
82b0f8c3 4124 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4125 return 0;
1da177e4
LT
4126}
4127
4128/*
4129 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
4130 *
4131 * The mmap_sem may have been released depending on flags and our
4132 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4133 */
2b740303
SJ
4134static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4135 unsigned long address, unsigned int flags)
1da177e4 4136{
82b0f8c3 4137 struct vm_fault vmf = {
bae473a4 4138 .vma = vma,
1a29d85e 4139 .address = address & PAGE_MASK,
bae473a4 4140 .flags = flags,
0721ec8b 4141 .pgoff = linear_page_index(vma, address),
667240e0 4142 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4143 };
fde26bed 4144 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4145 struct mm_struct *mm = vma->vm_mm;
1da177e4 4146 pgd_t *pgd;
c2febafc 4147 p4d_t *p4d;
2b740303 4148 vm_fault_t ret;
1da177e4 4149
1da177e4 4150 pgd = pgd_offset(mm, address);
c2febafc
KS
4151 p4d = p4d_alloc(mm, pgd, address);
4152 if (!p4d)
4153 return VM_FAULT_OOM;
a00cc7d9 4154
c2febafc 4155 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4156 if (!vmf.pud)
c74df32c 4157 return VM_FAULT_OOM;
625110b5 4158retry_pud:
7635d9cb 4159 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4160 ret = create_huge_pud(&vmf);
4161 if (!(ret & VM_FAULT_FALLBACK))
4162 return ret;
4163 } else {
4164 pud_t orig_pud = *vmf.pud;
4165
4166 barrier();
4167 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4168
a00cc7d9
MW
4169 /* NUMA case for anonymous PUDs would go here */
4170
f6f37321 4171 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4172 ret = wp_huge_pud(&vmf, orig_pud);
4173 if (!(ret & VM_FAULT_FALLBACK))
4174 return ret;
4175 } else {
4176 huge_pud_set_accessed(&vmf, orig_pud);
4177 return 0;
4178 }
4179 }
4180 }
4181
4182 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4183 if (!vmf.pmd)
c74df32c 4184 return VM_FAULT_OOM;
625110b5
TH
4185
4186 /* Huge pud page fault raced with pmd_alloc? */
4187 if (pud_trans_unstable(vmf.pud))
4188 goto retry_pud;
4189
7635d9cb 4190 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4191 ret = create_huge_pmd(&vmf);
c0292554
KS
4192 if (!(ret & VM_FAULT_FALLBACK))
4193 return ret;
71e3aac0 4194 } else {
82b0f8c3 4195 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4196
71e3aac0 4197 barrier();
84c3fc4e
ZY
4198 if (unlikely(is_swap_pmd(orig_pmd))) {
4199 VM_BUG_ON(thp_migration_supported() &&
4200 !is_pmd_migration_entry(orig_pmd));
4201 if (is_pmd_migration_entry(orig_pmd))
4202 pmd_migration_entry_wait(mm, vmf.pmd);
4203 return 0;
4204 }
5c7fb56e 4205 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4206 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4207 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4208
f6f37321 4209 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4210 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4211 if (!(ret & VM_FAULT_FALLBACK))
4212 return ret;
a1dd450b 4213 } else {
82b0f8c3 4214 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4215 return 0;
1f1d06c3 4216 }
71e3aac0
AA
4217 }
4218 }
4219
82b0f8c3 4220 return handle_pte_fault(&vmf);
1da177e4
LT
4221}
4222
9a95f3cf
PC
4223/*
4224 * By the time we get here, we already hold the mm semaphore
4225 *
4226 * The mmap_sem may have been released depending on flags and our
4227 * return value. See filemap_fault() and __lock_page_or_retry().
4228 */
2b740303 4229vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 4230 unsigned int flags)
519e5247 4231{
2b740303 4232 vm_fault_t ret;
519e5247
JW
4233
4234 __set_current_state(TASK_RUNNING);
4235
4236 count_vm_event(PGFAULT);
2262185c 4237 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4238
4239 /* do counter updates before entering really critical section. */
4240 check_sync_rss_stat(current);
4241
de0c799b
LD
4242 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4243 flags & FAULT_FLAG_INSTRUCTION,
4244 flags & FAULT_FLAG_REMOTE))
4245 return VM_FAULT_SIGSEGV;
4246
519e5247
JW
4247 /*
4248 * Enable the memcg OOM handling for faults triggered in user
4249 * space. Kernel faults are handled more gracefully.
4250 */
4251 if (flags & FAULT_FLAG_USER)
29ef680a 4252 mem_cgroup_enter_user_fault();
519e5247 4253
bae473a4
KS
4254 if (unlikely(is_vm_hugetlb_page(vma)))
4255 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4256 else
4257 ret = __handle_mm_fault(vma, address, flags);
519e5247 4258
49426420 4259 if (flags & FAULT_FLAG_USER) {
29ef680a 4260 mem_cgroup_exit_user_fault();
166f61b9
TH
4261 /*
4262 * The task may have entered a memcg OOM situation but
4263 * if the allocation error was handled gracefully (no
4264 * VM_FAULT_OOM), there is no need to kill anything.
4265 * Just clean up the OOM state peacefully.
4266 */
4267 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4268 mem_cgroup_oom_synchronize(false);
49426420 4269 }
3812c8c8 4270
519e5247
JW
4271 return ret;
4272}
e1d6d01a 4273EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4274
90eceff1
KS
4275#ifndef __PAGETABLE_P4D_FOLDED
4276/*
4277 * Allocate p4d page table.
4278 * We've already handled the fast-path in-line.
4279 */
4280int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4281{
4282 p4d_t *new = p4d_alloc_one(mm, address);
4283 if (!new)
4284 return -ENOMEM;
4285
4286 smp_wmb(); /* See comment in __pte_alloc */
4287
4288 spin_lock(&mm->page_table_lock);
4289 if (pgd_present(*pgd)) /* Another has populated it */
4290 p4d_free(mm, new);
4291 else
4292 pgd_populate(mm, pgd, new);
4293 spin_unlock(&mm->page_table_lock);
4294 return 0;
4295}
4296#endif /* __PAGETABLE_P4D_FOLDED */
4297
1da177e4
LT
4298#ifndef __PAGETABLE_PUD_FOLDED
4299/*
4300 * Allocate page upper directory.
872fec16 4301 * We've already handled the fast-path in-line.
1da177e4 4302 */
c2febafc 4303int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4304{
c74df32c
HD
4305 pud_t *new = pud_alloc_one(mm, address);
4306 if (!new)
1bb3630e 4307 return -ENOMEM;
1da177e4 4308
362a61ad
NP
4309 smp_wmb(); /* See comment in __pte_alloc */
4310
872fec16 4311 spin_lock(&mm->page_table_lock);
c2febafc 4312#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4313 if (!p4d_present(*p4d)) {
4314 mm_inc_nr_puds(mm);
c2febafc 4315 p4d_populate(mm, p4d, new);
b4e98d9a 4316 } else /* Another has populated it */
5e541973 4317 pud_free(mm, new);
b4e98d9a
KS
4318#else
4319 if (!pgd_present(*p4d)) {
4320 mm_inc_nr_puds(mm);
c2febafc 4321 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4322 } else /* Another has populated it */
4323 pud_free(mm, new);
c2febafc 4324#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4325 spin_unlock(&mm->page_table_lock);
1bb3630e 4326 return 0;
1da177e4
LT
4327}
4328#endif /* __PAGETABLE_PUD_FOLDED */
4329
4330#ifndef __PAGETABLE_PMD_FOLDED
4331/*
4332 * Allocate page middle directory.
872fec16 4333 * We've already handled the fast-path in-line.
1da177e4 4334 */
1bb3630e 4335int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4336{
a00cc7d9 4337 spinlock_t *ptl;
c74df32c
HD
4338 pmd_t *new = pmd_alloc_one(mm, address);
4339 if (!new)
1bb3630e 4340 return -ENOMEM;
1da177e4 4341
362a61ad
NP
4342 smp_wmb(); /* See comment in __pte_alloc */
4343
a00cc7d9 4344 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4345 if (!pud_present(*pud)) {
4346 mm_inc_nr_pmds(mm);
1bb3630e 4347 pud_populate(mm, pud, new);
dc6c9a35 4348 } else /* Another has populated it */
5e541973 4349 pmd_free(mm, new);
a00cc7d9 4350 spin_unlock(ptl);
1bb3630e 4351 return 0;
e0f39591 4352}
1da177e4
LT
4353#endif /* __PAGETABLE_PMD_FOLDED */
4354
09796395 4355static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4356 struct mmu_notifier_range *range,
a4d1a885 4357 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4358{
4359 pgd_t *pgd;
c2febafc 4360 p4d_t *p4d;
f8ad0f49
JW
4361 pud_t *pud;
4362 pmd_t *pmd;
4363 pte_t *ptep;
4364
4365 pgd = pgd_offset(mm, address);
4366 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4367 goto out;
4368
c2febafc
KS
4369 p4d = p4d_offset(pgd, address);
4370 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4371 goto out;
4372
4373 pud = pud_offset(p4d, address);
f8ad0f49
JW
4374 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4375 goto out;
4376
4377 pmd = pmd_offset(pud, address);
f66055ab 4378 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4379
09796395
RZ
4380 if (pmd_huge(*pmd)) {
4381 if (!pmdpp)
4382 goto out;
4383
ac46d4f3 4384 if (range) {
7269f999 4385 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4386 NULL, mm, address & PMD_MASK,
4387 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4388 mmu_notifier_invalidate_range_start(range);
a4d1a885 4389 }
09796395
RZ
4390 *ptlp = pmd_lock(mm, pmd);
4391 if (pmd_huge(*pmd)) {
4392 *pmdpp = pmd;
4393 return 0;
4394 }
4395 spin_unlock(*ptlp);
ac46d4f3
JG
4396 if (range)
4397 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4398 }
4399
4400 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4401 goto out;
4402
ac46d4f3 4403 if (range) {
7269f999 4404 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4405 address & PAGE_MASK,
4406 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4407 mmu_notifier_invalidate_range_start(range);
a4d1a885 4408 }
f8ad0f49 4409 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4410 if (!pte_present(*ptep))
4411 goto unlock;
4412 *ptepp = ptep;
4413 return 0;
4414unlock:
4415 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4416 if (range)
4417 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4418out:
4419 return -EINVAL;
4420}
4421
f729c8c9
RZ
4422static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4423 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4424{
4425 int res;
4426
4427 /* (void) is needed to make gcc happy */
4428 (void) __cond_lock(*ptlp,
ac46d4f3 4429 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4430 ptepp, NULL, ptlp)));
09796395
RZ
4431 return res;
4432}
4433
4434int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4435 struct mmu_notifier_range *range,
4436 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4437{
4438 int res;
4439
4440 /* (void) is needed to make gcc happy */
4441 (void) __cond_lock(*ptlp,
ac46d4f3 4442 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4443 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4444 return res;
4445}
09796395 4446EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4447
3b6748e2
JW
4448/**
4449 * follow_pfn - look up PFN at a user virtual address
4450 * @vma: memory mapping
4451 * @address: user virtual address
4452 * @pfn: location to store found PFN
4453 *
4454 * Only IO mappings and raw PFN mappings are allowed.
4455 *
a862f68a 4456 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4457 */
4458int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4459 unsigned long *pfn)
4460{
4461 int ret = -EINVAL;
4462 spinlock_t *ptl;
4463 pte_t *ptep;
4464
4465 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4466 return ret;
4467
4468 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4469 if (ret)
4470 return ret;
4471 *pfn = pte_pfn(*ptep);
4472 pte_unmap_unlock(ptep, ptl);
4473 return 0;
4474}
4475EXPORT_SYMBOL(follow_pfn);
4476
28b2ee20 4477#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4478int follow_phys(struct vm_area_struct *vma,
4479 unsigned long address, unsigned int flags,
4480 unsigned long *prot, resource_size_t *phys)
28b2ee20 4481{
03668a4d 4482 int ret = -EINVAL;
28b2ee20
RR
4483 pte_t *ptep, pte;
4484 spinlock_t *ptl;
28b2ee20 4485
d87fe660 4486 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4487 goto out;
28b2ee20 4488
03668a4d 4489 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4490 goto out;
28b2ee20 4491 pte = *ptep;
03668a4d 4492
f6f37321 4493 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4494 goto unlock;
28b2ee20
RR
4495
4496 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4497 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4498
03668a4d 4499 ret = 0;
28b2ee20
RR
4500unlock:
4501 pte_unmap_unlock(ptep, ptl);
4502out:
d87fe660 4503 return ret;
28b2ee20
RR
4504}
4505
4506int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4507 void *buf, int len, int write)
4508{
4509 resource_size_t phys_addr;
4510 unsigned long prot = 0;
2bc7273b 4511 void __iomem *maddr;
28b2ee20
RR
4512 int offset = addr & (PAGE_SIZE-1);
4513
d87fe660 4514 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4515 return -EINVAL;
4516
9cb12d7b 4517 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4518 if (!maddr)
4519 return -ENOMEM;
4520
28b2ee20
RR
4521 if (write)
4522 memcpy_toio(maddr + offset, buf, len);
4523 else
4524 memcpy_fromio(buf, maddr + offset, len);
4525 iounmap(maddr);
4526
4527 return len;
4528}
5a73633e 4529EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4530#endif
4531
0ec76a11 4532/*
206cb636
SW
4533 * Access another process' address space as given in mm. If non-NULL, use the
4534 * given task for page fault accounting.
0ec76a11 4535 */
84d77d3f 4536int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4537 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4538{
0ec76a11 4539 struct vm_area_struct *vma;
0ec76a11 4540 void *old_buf = buf;
442486ec 4541 int write = gup_flags & FOLL_WRITE;
0ec76a11 4542
1e426fe2
KK
4543 if (down_read_killable(&mm->mmap_sem))
4544 return 0;
4545
183ff22b 4546 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4547 while (len) {
4548 int bytes, ret, offset;
4549 void *maddr;
28b2ee20 4550 struct page *page = NULL;
0ec76a11 4551
1e987790 4552 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4553 gup_flags, &page, &vma, NULL);
28b2ee20 4554 if (ret <= 0) {
dbffcd03
RR
4555#ifndef CONFIG_HAVE_IOREMAP_PROT
4556 break;
4557#else
28b2ee20
RR
4558 /*
4559 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4560 * we can access using slightly different code.
4561 */
28b2ee20 4562 vma = find_vma(mm, addr);
fe936dfc 4563 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4564 break;
4565 if (vma->vm_ops && vma->vm_ops->access)
4566 ret = vma->vm_ops->access(vma, addr, buf,
4567 len, write);
4568 if (ret <= 0)
28b2ee20
RR
4569 break;
4570 bytes = ret;
dbffcd03 4571#endif
0ec76a11 4572 } else {
28b2ee20
RR
4573 bytes = len;
4574 offset = addr & (PAGE_SIZE-1);
4575 if (bytes > PAGE_SIZE-offset)
4576 bytes = PAGE_SIZE-offset;
4577
4578 maddr = kmap(page);
4579 if (write) {
4580 copy_to_user_page(vma, page, addr,
4581 maddr + offset, buf, bytes);
4582 set_page_dirty_lock(page);
4583 } else {
4584 copy_from_user_page(vma, page, addr,
4585 buf, maddr + offset, bytes);
4586 }
4587 kunmap(page);
09cbfeaf 4588 put_page(page);
0ec76a11 4589 }
0ec76a11
DH
4590 len -= bytes;
4591 buf += bytes;
4592 addr += bytes;
4593 }
4594 up_read(&mm->mmap_sem);
0ec76a11
DH
4595
4596 return buf - old_buf;
4597}
03252919 4598
5ddd36b9 4599/**
ae91dbfc 4600 * access_remote_vm - access another process' address space
5ddd36b9
SW
4601 * @mm: the mm_struct of the target address space
4602 * @addr: start address to access
4603 * @buf: source or destination buffer
4604 * @len: number of bytes to transfer
6347e8d5 4605 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4606 *
4607 * The caller must hold a reference on @mm.
a862f68a
MR
4608 *
4609 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4610 */
4611int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4612 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4613{
6347e8d5 4614 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4615}
4616
206cb636
SW
4617/*
4618 * Access another process' address space.
4619 * Source/target buffer must be kernel space,
4620 * Do not walk the page table directly, use get_user_pages
4621 */
4622int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4623 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4624{
4625 struct mm_struct *mm;
4626 int ret;
4627
4628 mm = get_task_mm(tsk);
4629 if (!mm)
4630 return 0;
4631
f307ab6d 4632 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4633
206cb636
SW
4634 mmput(mm);
4635
4636 return ret;
4637}
fcd35857 4638EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4639
03252919
AK
4640/*
4641 * Print the name of a VMA.
4642 */
4643void print_vma_addr(char *prefix, unsigned long ip)
4644{
4645 struct mm_struct *mm = current->mm;
4646 struct vm_area_struct *vma;
4647
e8bff74a 4648 /*
0a7f682d 4649 * we might be running from an atomic context so we cannot sleep
e8bff74a 4650 */
0a7f682d 4651 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4652 return;
4653
03252919
AK
4654 vma = find_vma(mm, ip);
4655 if (vma && vma->vm_file) {
4656 struct file *f = vma->vm_file;
0a7f682d 4657 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4658 if (buf) {
2fbc57c5 4659 char *p;
03252919 4660
9bf39ab2 4661 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4662 if (IS_ERR(p))
4663 p = "?";
2fbc57c5 4664 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4665 vma->vm_start,
4666 vma->vm_end - vma->vm_start);
4667 free_page((unsigned long)buf);
4668 }
4669 }
51a07e50 4670 up_read(&mm->mmap_sem);
03252919 4671}
3ee1afa3 4672
662bbcb2 4673#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4674void __might_fault(const char *file, int line)
3ee1afa3 4675{
95156f00
PZ
4676 /*
4677 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4678 * holding the mmap_sem, this is safe because kernel memory doesn't
4679 * get paged out, therefore we'll never actually fault, and the
4680 * below annotations will generate false positives.
4681 */
db68ce10 4682 if (uaccess_kernel())
95156f00 4683 return;
9ec23531 4684 if (pagefault_disabled())
662bbcb2 4685 return;
9ec23531
DH
4686 __might_sleep(file, line, 0);
4687#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4688 if (current->mm)
3ee1afa3 4689 might_lock_read(&current->mm->mmap_sem);
9ec23531 4690#endif
3ee1afa3 4691}
9ec23531 4692EXPORT_SYMBOL(__might_fault);
3ee1afa3 4693#endif
47ad8475
AA
4694
4695#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4696/*
4697 * Process all subpages of the specified huge page with the specified
4698 * operation. The target subpage will be processed last to keep its
4699 * cache lines hot.
4700 */
4701static inline void process_huge_page(
4702 unsigned long addr_hint, unsigned int pages_per_huge_page,
4703 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4704 void *arg)
47ad8475 4705{
c79b57e4
HY
4706 int i, n, base, l;
4707 unsigned long addr = addr_hint &
4708 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4709
c6ddfb6c 4710 /* Process target subpage last to keep its cache lines hot */
47ad8475 4711 might_sleep();
c79b57e4
HY
4712 n = (addr_hint - addr) / PAGE_SIZE;
4713 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4714 /* If target subpage in first half of huge page */
c79b57e4
HY
4715 base = 0;
4716 l = n;
c6ddfb6c 4717 /* Process subpages at the end of huge page */
c79b57e4
HY
4718 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4719 cond_resched();
c6ddfb6c 4720 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4721 }
4722 } else {
c6ddfb6c 4723 /* If target subpage in second half of huge page */
c79b57e4
HY
4724 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4725 l = pages_per_huge_page - n;
c6ddfb6c 4726 /* Process subpages at the begin of huge page */
c79b57e4
HY
4727 for (i = 0; i < base; i++) {
4728 cond_resched();
c6ddfb6c 4729 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4730 }
4731 }
4732 /*
c6ddfb6c
HY
4733 * Process remaining subpages in left-right-left-right pattern
4734 * towards the target subpage
c79b57e4
HY
4735 */
4736 for (i = 0; i < l; i++) {
4737 int left_idx = base + i;
4738 int right_idx = base + 2 * l - 1 - i;
4739
4740 cond_resched();
c6ddfb6c 4741 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4742 cond_resched();
c6ddfb6c 4743 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4744 }
4745}
4746
c6ddfb6c
HY
4747static void clear_gigantic_page(struct page *page,
4748 unsigned long addr,
4749 unsigned int pages_per_huge_page)
4750{
4751 int i;
4752 struct page *p = page;
4753
4754 might_sleep();
4755 for (i = 0; i < pages_per_huge_page;
4756 i++, p = mem_map_next(p, page, i)) {
4757 cond_resched();
4758 clear_user_highpage(p, addr + i * PAGE_SIZE);
4759 }
4760}
4761
4762static void clear_subpage(unsigned long addr, int idx, void *arg)
4763{
4764 struct page *page = arg;
4765
4766 clear_user_highpage(page + idx, addr);
4767}
4768
4769void clear_huge_page(struct page *page,
4770 unsigned long addr_hint, unsigned int pages_per_huge_page)
4771{
4772 unsigned long addr = addr_hint &
4773 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4774
4775 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4776 clear_gigantic_page(page, addr, pages_per_huge_page);
4777 return;
4778 }
4779
4780 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4781}
4782
47ad8475
AA
4783static void copy_user_gigantic_page(struct page *dst, struct page *src,
4784 unsigned long addr,
4785 struct vm_area_struct *vma,
4786 unsigned int pages_per_huge_page)
4787{
4788 int i;
4789 struct page *dst_base = dst;
4790 struct page *src_base = src;
4791
4792 for (i = 0; i < pages_per_huge_page; ) {
4793 cond_resched();
4794 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4795
4796 i++;
4797 dst = mem_map_next(dst, dst_base, i);
4798 src = mem_map_next(src, src_base, i);
4799 }
4800}
4801
c9f4cd71
HY
4802struct copy_subpage_arg {
4803 struct page *dst;
4804 struct page *src;
4805 struct vm_area_struct *vma;
4806};
4807
4808static void copy_subpage(unsigned long addr, int idx, void *arg)
4809{
4810 struct copy_subpage_arg *copy_arg = arg;
4811
4812 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4813 addr, copy_arg->vma);
4814}
4815
47ad8475 4816void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4817 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4818 unsigned int pages_per_huge_page)
4819{
c9f4cd71
HY
4820 unsigned long addr = addr_hint &
4821 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4822 struct copy_subpage_arg arg = {
4823 .dst = dst,
4824 .src = src,
4825 .vma = vma,
4826 };
47ad8475
AA
4827
4828 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4829 copy_user_gigantic_page(dst, src, addr, vma,
4830 pages_per_huge_page);
4831 return;
4832 }
4833
c9f4cd71 4834 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4835}
fa4d75c1
MK
4836
4837long copy_huge_page_from_user(struct page *dst_page,
4838 const void __user *usr_src,
810a56b9
MK
4839 unsigned int pages_per_huge_page,
4840 bool allow_pagefault)
fa4d75c1
MK
4841{
4842 void *src = (void *)usr_src;
4843 void *page_kaddr;
4844 unsigned long i, rc = 0;
4845 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4846
4847 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4848 if (allow_pagefault)
4849 page_kaddr = kmap(dst_page + i);
4850 else
4851 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4852 rc = copy_from_user(page_kaddr,
4853 (const void __user *)(src + i * PAGE_SIZE),
4854 PAGE_SIZE);
810a56b9
MK
4855 if (allow_pagefault)
4856 kunmap(dst_page + i);
4857 else
4858 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4859
4860 ret_val -= (PAGE_SIZE - rc);
4861 if (rc)
4862 break;
4863
4864 cond_resched();
4865 }
4866 return ret_val;
4867}
47ad8475 4868#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4869
40b64acd 4870#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4871
4872static struct kmem_cache *page_ptl_cachep;
4873
4874void __init ptlock_cache_init(void)
4875{
4876 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4877 SLAB_PANIC, NULL);
4878}
4879
539edb58 4880bool ptlock_alloc(struct page *page)
49076ec2
KS
4881{
4882 spinlock_t *ptl;
4883
b35f1819 4884 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4885 if (!ptl)
4886 return false;
539edb58 4887 page->ptl = ptl;
49076ec2
KS
4888 return true;
4889}
4890
539edb58 4891void ptlock_free(struct page *page)
49076ec2 4892{
b35f1819 4893 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4894}
4895#endif