]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memory.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-zesty-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
d41dee36 61#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99 pud_ERROR(*pud);
100 pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
e0da382c 113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 114{
e0da382c
HD
115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
4c21e2f2 117 pte_lock_deinit(page);
e0da382c
HD
118 pte_free_tlb(tlb, page);
119 dec_page_state(nr_page_table_pages);
120 tlb->mm->nr_ptes--;
1da177e4
LT
121}
122
e0da382c
HD
123static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
124 unsigned long addr, unsigned long end,
125 unsigned long floor, unsigned long ceiling)
1da177e4
LT
126{
127 pmd_t *pmd;
128 unsigned long next;
e0da382c 129 unsigned long start;
1da177e4 130
e0da382c 131 start = addr;
1da177e4 132 pmd = pmd_offset(pud, addr);
1da177e4
LT
133 do {
134 next = pmd_addr_end(addr, end);
135 if (pmd_none_or_clear_bad(pmd))
136 continue;
e0da382c 137 free_pte_range(tlb, pmd);
1da177e4
LT
138 } while (pmd++, addr = next, addr != end);
139
e0da382c
HD
140 start &= PUD_MASK;
141 if (start < floor)
142 return;
143 if (ceiling) {
144 ceiling &= PUD_MASK;
145 if (!ceiling)
146 return;
1da177e4 147 }
e0da382c
HD
148 if (end - 1 > ceiling - 1)
149 return;
150
151 pmd = pmd_offset(pud, start);
152 pud_clear(pud);
153 pmd_free_tlb(tlb, pmd);
1da177e4
LT
154}
155
e0da382c
HD
156static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
157 unsigned long addr, unsigned long end,
158 unsigned long floor, unsigned long ceiling)
1da177e4
LT
159{
160 pud_t *pud;
161 unsigned long next;
e0da382c 162 unsigned long start;
1da177e4 163
e0da382c 164 start = addr;
1da177e4 165 pud = pud_offset(pgd, addr);
1da177e4
LT
166 do {
167 next = pud_addr_end(addr, end);
168 if (pud_none_or_clear_bad(pud))
169 continue;
e0da382c 170 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
171 } while (pud++, addr = next, addr != end);
172
e0da382c
HD
173 start &= PGDIR_MASK;
174 if (start < floor)
175 return;
176 if (ceiling) {
177 ceiling &= PGDIR_MASK;
178 if (!ceiling)
179 return;
1da177e4 180 }
e0da382c
HD
181 if (end - 1 > ceiling - 1)
182 return;
183
184 pud = pud_offset(pgd, start);
185 pgd_clear(pgd);
186 pud_free_tlb(tlb, pud);
1da177e4
LT
187}
188
189/*
e0da382c
HD
190 * This function frees user-level page tables of a process.
191 *
1da177e4
LT
192 * Must be called with pagetable lock held.
193 */
3bf5ee95 194void free_pgd_range(struct mmu_gather **tlb,
e0da382c
HD
195 unsigned long addr, unsigned long end,
196 unsigned long floor, unsigned long ceiling)
1da177e4
LT
197{
198 pgd_t *pgd;
199 unsigned long next;
e0da382c
HD
200 unsigned long start;
201
202 /*
203 * The next few lines have given us lots of grief...
204 *
205 * Why are we testing PMD* at this top level? Because often
206 * there will be no work to do at all, and we'd prefer not to
207 * go all the way down to the bottom just to discover that.
208 *
209 * Why all these "- 1"s? Because 0 represents both the bottom
210 * of the address space and the top of it (using -1 for the
211 * top wouldn't help much: the masks would do the wrong thing).
212 * The rule is that addr 0 and floor 0 refer to the bottom of
213 * the address space, but end 0 and ceiling 0 refer to the top
214 * Comparisons need to use "end - 1" and "ceiling - 1" (though
215 * that end 0 case should be mythical).
216 *
217 * Wherever addr is brought up or ceiling brought down, we must
218 * be careful to reject "the opposite 0" before it confuses the
219 * subsequent tests. But what about where end is brought down
220 * by PMD_SIZE below? no, end can't go down to 0 there.
221 *
222 * Whereas we round start (addr) and ceiling down, by different
223 * masks at different levels, in order to test whether a table
224 * now has no other vmas using it, so can be freed, we don't
225 * bother to round floor or end up - the tests don't need that.
226 */
1da177e4 227
e0da382c
HD
228 addr &= PMD_MASK;
229 if (addr < floor) {
230 addr += PMD_SIZE;
231 if (!addr)
232 return;
233 }
234 if (ceiling) {
235 ceiling &= PMD_MASK;
236 if (!ceiling)
237 return;
238 }
239 if (end - 1 > ceiling - 1)
240 end -= PMD_SIZE;
241 if (addr > end - 1)
242 return;
243
244 start = addr;
3bf5ee95 245 pgd = pgd_offset((*tlb)->mm, addr);
1da177e4
LT
246 do {
247 next = pgd_addr_end(addr, end);
248 if (pgd_none_or_clear_bad(pgd))
249 continue;
3bf5ee95 250 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
1da177e4 251 } while (pgd++, addr = next, addr != end);
e0da382c 252
4d6ddfa9 253 if (!(*tlb)->fullmm)
3bf5ee95 254 flush_tlb_pgtables((*tlb)->mm, start, end);
e0da382c
HD
255}
256
257void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
3bf5ee95 258 unsigned long floor, unsigned long ceiling)
e0da382c
HD
259{
260 while (vma) {
261 struct vm_area_struct *next = vma->vm_next;
262 unsigned long addr = vma->vm_start;
263
8f4f8c16
HD
264 /*
265 * Hide vma from rmap and vmtruncate before freeing pgtables
266 */
267 anon_vma_unlink(vma);
268 unlink_file_vma(vma);
269
3bf5ee95
HD
270 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
271 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 272 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
273 } else {
274 /*
275 * Optimization: gather nearby vmas into one call down
276 */
277 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
278 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
279 HPAGE_SIZE)) {
280 vma = next;
281 next = vma->vm_next;
8f4f8c16
HD
282 anon_vma_unlink(vma);
283 unlink_file_vma(vma);
3bf5ee95
HD
284 }
285 free_pgd_range(tlb, addr, vma->vm_end,
286 floor, next? next->vm_start: ceiling);
287 }
e0da382c
HD
288 vma = next;
289 }
1da177e4
LT
290}
291
1bb3630e 292int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 293{
c74df32c 294 struct page *new = pte_alloc_one(mm, address);
1bb3630e
HD
295 if (!new)
296 return -ENOMEM;
297
4c21e2f2 298 pte_lock_init(new);
c74df32c 299 spin_lock(&mm->page_table_lock);
4c21e2f2
HD
300 if (pmd_present(*pmd)) { /* Another has populated it */
301 pte_lock_deinit(new);
1bb3630e 302 pte_free(new);
4c21e2f2 303 } else {
1da177e4
LT
304 mm->nr_ptes++;
305 inc_page_state(nr_page_table_pages);
306 pmd_populate(mm, pmd, new);
307 }
c74df32c 308 spin_unlock(&mm->page_table_lock);
1bb3630e 309 return 0;
1da177e4
LT
310}
311
1bb3630e 312int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 313{
1bb3630e
HD
314 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
315 if (!new)
316 return -ENOMEM;
317
318 spin_lock(&init_mm.page_table_lock);
319 if (pmd_present(*pmd)) /* Another has populated it */
320 pte_free_kernel(new);
321 else
322 pmd_populate_kernel(&init_mm, pmd, new);
323 spin_unlock(&init_mm.page_table_lock);
324 return 0;
1da177e4
LT
325}
326
ae859762
HD
327static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
328{
329 if (file_rss)
330 add_mm_counter(mm, file_rss, file_rss);
331 if (anon_rss)
332 add_mm_counter(mm, anon_rss, anon_rss);
333}
334
b5810039 335/*
6aab341e
LT
336 * This function is called to print an error when a bad pte
337 * is found. For example, we might have a PFN-mapped pte in
338 * a region that doesn't allow it.
b5810039
NP
339 *
340 * The calling function must still handle the error.
341 */
342void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
343{
344 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
345 "vm_flags = %lx, vaddr = %lx\n",
346 (long long)pte_val(pte),
347 (vma->vm_mm == current->mm ? current->comm : "???"),
348 vma->vm_flags, vaddr);
349 dump_stack();
350}
351
ee498ed7 352/*
6aab341e
LT
353 * This function gets the "struct page" associated with a pte.
354 *
355 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
356 * will have each page table entry just pointing to a raw page frame
357 * number, and as far as the VM layer is concerned, those do not have
358 * pages associated with them - even if the PFN might point to memory
359 * that otherwise is perfectly fine and has a "struct page".
360 *
361 * The way we recognize those mappings is through the rules set up
362 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
363 * and the vm_pgoff will point to the first PFN mapped: thus every
364 * page that is a raw mapping will always honor the rule
365 *
366 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
367 *
368 * and if that isn't true, the page has been COW'ed (in which case it
369 * _does_ have a "struct page" associated with it even if it is in a
370 * VM_PFNMAP range).
ee498ed7 371 */
6aab341e 372struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
ee498ed7 373{
6aab341e
LT
374 unsigned long pfn = pte_pfn(pte);
375
376 if (vma->vm_flags & VM_PFNMAP) {
377 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
378 if (pfn == vma->vm_pgoff + off)
379 return NULL;
fb155c16
LT
380 if (vma->vm_flags & VM_SHARED)
381 return NULL;
6aab341e
LT
382 }
383
384 /*
385 * Add some anal sanity checks for now. Eventually,
386 * we should just do "return pfn_to_page(pfn)", but
387 * in the meantime we check that we get a valid pfn,
388 * and that the resulting page looks ok.
389 *
390 * Remove this test eventually!
391 */
392 if (unlikely(!pfn_valid(pfn))) {
393 print_bad_pte(vma, pte, addr);
394 return NULL;
395 }
396
397 /*
398 * NOTE! We still have PageReserved() pages in the page
399 * tables.
400 *
401 * The PAGE_ZERO() pages and various VDSO mappings can
402 * cause them to exist.
403 */
404 return pfn_to_page(pfn);
ee498ed7
HD
405}
406
1da177e4
LT
407/*
408 * copy one vm_area from one task to the other. Assumes the page tables
409 * already present in the new task to be cleared in the whole range
410 * covered by this vma.
1da177e4
LT
411 */
412
8c103762 413static inline void
1da177e4 414copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 415 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 416 unsigned long addr, int *rss)
1da177e4 417{
b5810039 418 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
419 pte_t pte = *src_pte;
420 struct page *page;
1da177e4
LT
421
422 /* pte contains position in swap or file, so copy. */
423 if (unlikely(!pte_present(pte))) {
424 if (!pte_file(pte)) {
425 swap_duplicate(pte_to_swp_entry(pte));
426 /* make sure dst_mm is on swapoff's mmlist. */
427 if (unlikely(list_empty(&dst_mm->mmlist))) {
428 spin_lock(&mmlist_lock);
f412ac08
HD
429 if (list_empty(&dst_mm->mmlist))
430 list_add(&dst_mm->mmlist,
431 &src_mm->mmlist);
1da177e4
LT
432 spin_unlock(&mmlist_lock);
433 }
434 }
ae859762 435 goto out_set_pte;
1da177e4
LT
436 }
437
1da177e4
LT
438 /*
439 * If it's a COW mapping, write protect it both
440 * in the parent and the child
441 */
442 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
443 ptep_set_wrprotect(src_mm, addr, src_pte);
444 pte = *src_pte;
445 }
446
447 /*
448 * If it's a shared mapping, mark it clean in
449 * the child
450 */
451 if (vm_flags & VM_SHARED)
452 pte = pte_mkclean(pte);
453 pte = pte_mkold(pte);
6aab341e
LT
454
455 page = vm_normal_page(vma, addr, pte);
456 if (page) {
457 get_page(page);
458 page_dup_rmap(page);
459 rss[!!PageAnon(page)]++;
460 }
ae859762
HD
461
462out_set_pte:
463 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
464}
465
466static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
467 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
468 unsigned long addr, unsigned long end)
469{
470 pte_t *src_pte, *dst_pte;
c74df32c 471 spinlock_t *src_ptl, *dst_ptl;
e040f218 472 int progress = 0;
8c103762 473 int rss[2];
1da177e4
LT
474
475again:
ae859762 476 rss[1] = rss[0] = 0;
c74df32c 477 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
478 if (!dst_pte)
479 return -ENOMEM;
480 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 481 src_ptl = pte_lockptr(src_mm, src_pmd);
c74df32c 482 spin_lock(src_ptl);
1da177e4 483
1da177e4
LT
484 do {
485 /*
486 * We are holding two locks at this point - either of them
487 * could generate latencies in another task on another CPU.
488 */
e040f218
HD
489 if (progress >= 32) {
490 progress = 0;
491 if (need_resched() ||
c74df32c
HD
492 need_lockbreak(src_ptl) ||
493 need_lockbreak(dst_ptl))
e040f218
HD
494 break;
495 }
1da177e4
LT
496 if (pte_none(*src_pte)) {
497 progress++;
498 continue;
499 }
8c103762 500 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
501 progress += 8;
502 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 503
c74df32c 504 spin_unlock(src_ptl);
1da177e4 505 pte_unmap_nested(src_pte - 1);
ae859762 506 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
507 pte_unmap_unlock(dst_pte - 1, dst_ptl);
508 cond_resched();
1da177e4
LT
509 if (addr != end)
510 goto again;
511 return 0;
512}
513
514static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
515 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
516 unsigned long addr, unsigned long end)
517{
518 pmd_t *src_pmd, *dst_pmd;
519 unsigned long next;
520
521 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
522 if (!dst_pmd)
523 return -ENOMEM;
524 src_pmd = pmd_offset(src_pud, addr);
525 do {
526 next = pmd_addr_end(addr, end);
527 if (pmd_none_or_clear_bad(src_pmd))
528 continue;
529 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
530 vma, addr, next))
531 return -ENOMEM;
532 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
533 return 0;
534}
535
536static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
537 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
538 unsigned long addr, unsigned long end)
539{
540 pud_t *src_pud, *dst_pud;
541 unsigned long next;
542
543 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
544 if (!dst_pud)
545 return -ENOMEM;
546 src_pud = pud_offset(src_pgd, addr);
547 do {
548 next = pud_addr_end(addr, end);
549 if (pud_none_or_clear_bad(src_pud))
550 continue;
551 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
552 vma, addr, next))
553 return -ENOMEM;
554 } while (dst_pud++, src_pud++, addr = next, addr != end);
555 return 0;
556}
557
558int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
559 struct vm_area_struct *vma)
560{
561 pgd_t *src_pgd, *dst_pgd;
562 unsigned long next;
563 unsigned long addr = vma->vm_start;
564 unsigned long end = vma->vm_end;
565
d992895b
NP
566 /*
567 * Don't copy ptes where a page fault will fill them correctly.
568 * Fork becomes much lighter when there are big shared or private
569 * readonly mappings. The tradeoff is that copy_page_range is more
570 * efficient than faulting.
571 */
6aab341e 572 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP))) {
d992895b
NP
573 if (!vma->anon_vma)
574 return 0;
575 }
576
1da177e4
LT
577 if (is_vm_hugetlb_page(vma))
578 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
579
580 dst_pgd = pgd_offset(dst_mm, addr);
581 src_pgd = pgd_offset(src_mm, addr);
582 do {
583 next = pgd_addr_end(addr, end);
584 if (pgd_none_or_clear_bad(src_pgd))
585 continue;
586 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
587 vma, addr, next))
588 return -ENOMEM;
589 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
590 return 0;
591}
592
51c6f666 593static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 594 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 595 unsigned long addr, unsigned long end,
51c6f666 596 long *zap_work, struct zap_details *details)
1da177e4 597{
b5810039 598 struct mm_struct *mm = tlb->mm;
1da177e4 599 pte_t *pte;
508034a3 600 spinlock_t *ptl;
ae859762
HD
601 int file_rss = 0;
602 int anon_rss = 0;
1da177e4 603
508034a3 604 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
605 do {
606 pte_t ptent = *pte;
51c6f666
RH
607 if (pte_none(ptent)) {
608 (*zap_work)--;
1da177e4 609 continue;
51c6f666 610 }
1da177e4 611 if (pte_present(ptent)) {
ee498ed7 612 struct page *page;
51c6f666
RH
613
614 (*zap_work) -= PAGE_SIZE;
615
6aab341e 616 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
617 if (unlikely(details) && page) {
618 /*
619 * unmap_shared_mapping_pages() wants to
620 * invalidate cache without truncating:
621 * unmap shared but keep private pages.
622 */
623 if (details->check_mapping &&
624 details->check_mapping != page->mapping)
625 continue;
626 /*
627 * Each page->index must be checked when
628 * invalidating or truncating nonlinear.
629 */
630 if (details->nonlinear_vma &&
631 (page->index < details->first_index ||
632 page->index > details->last_index))
633 continue;
634 }
b5810039 635 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 636 tlb->fullmm);
1da177e4
LT
637 tlb_remove_tlb_entry(tlb, pte, addr);
638 if (unlikely(!page))
639 continue;
640 if (unlikely(details) && details->nonlinear_vma
641 && linear_page_index(details->nonlinear_vma,
642 addr) != page->index)
b5810039 643 set_pte_at(mm, addr, pte,
1da177e4 644 pgoff_to_pte(page->index));
1da177e4 645 if (PageAnon(page))
86d912f4 646 anon_rss--;
6237bcd9
HD
647 else {
648 if (pte_dirty(ptent))
649 set_page_dirty(page);
650 if (pte_young(ptent))
651 mark_page_accessed(page);
86d912f4 652 file_rss--;
6237bcd9 653 }
1da177e4
LT
654 page_remove_rmap(page);
655 tlb_remove_page(tlb, page);
656 continue;
657 }
658 /*
659 * If details->check_mapping, we leave swap entries;
660 * if details->nonlinear_vma, we leave file entries.
661 */
662 if (unlikely(details))
663 continue;
664 if (!pte_file(ptent))
665 free_swap_and_cache(pte_to_swp_entry(ptent));
b5810039 666 pte_clear_full(mm, addr, pte, tlb->fullmm);
51c6f666 667 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 668
86d912f4 669 add_mm_rss(mm, file_rss, anon_rss);
508034a3 670 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
671
672 return addr;
1da177e4
LT
673}
674
51c6f666 675static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 676 struct vm_area_struct *vma, pud_t *pud,
1da177e4 677 unsigned long addr, unsigned long end,
51c6f666 678 long *zap_work, struct zap_details *details)
1da177e4
LT
679{
680 pmd_t *pmd;
681 unsigned long next;
682
683 pmd = pmd_offset(pud, addr);
684 do {
685 next = pmd_addr_end(addr, end);
51c6f666
RH
686 if (pmd_none_or_clear_bad(pmd)) {
687 (*zap_work)--;
1da177e4 688 continue;
51c6f666
RH
689 }
690 next = zap_pte_range(tlb, vma, pmd, addr, next,
691 zap_work, details);
692 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
693
694 return addr;
1da177e4
LT
695}
696
51c6f666 697static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 698 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 699 unsigned long addr, unsigned long end,
51c6f666 700 long *zap_work, struct zap_details *details)
1da177e4
LT
701{
702 pud_t *pud;
703 unsigned long next;
704
705 pud = pud_offset(pgd, addr);
706 do {
707 next = pud_addr_end(addr, end);
51c6f666
RH
708 if (pud_none_or_clear_bad(pud)) {
709 (*zap_work)--;
1da177e4 710 continue;
51c6f666
RH
711 }
712 next = zap_pmd_range(tlb, vma, pud, addr, next,
713 zap_work, details);
714 } while (pud++, addr = next, (addr != end && *zap_work > 0));
715
716 return addr;
1da177e4
LT
717}
718
51c6f666
RH
719static unsigned long unmap_page_range(struct mmu_gather *tlb,
720 struct vm_area_struct *vma,
1da177e4 721 unsigned long addr, unsigned long end,
51c6f666 722 long *zap_work, struct zap_details *details)
1da177e4
LT
723{
724 pgd_t *pgd;
725 unsigned long next;
726
727 if (details && !details->check_mapping && !details->nonlinear_vma)
728 details = NULL;
729
730 BUG_ON(addr >= end);
731 tlb_start_vma(tlb, vma);
732 pgd = pgd_offset(vma->vm_mm, addr);
733 do {
734 next = pgd_addr_end(addr, end);
51c6f666
RH
735 if (pgd_none_or_clear_bad(pgd)) {
736 (*zap_work)--;
1da177e4 737 continue;
51c6f666
RH
738 }
739 next = zap_pud_range(tlb, vma, pgd, addr, next,
740 zap_work, details);
741 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 742 tlb_end_vma(tlb, vma);
51c6f666
RH
743
744 return addr;
1da177e4
LT
745}
746
747#ifdef CONFIG_PREEMPT
748# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
749#else
750/* No preempt: go for improved straight-line efficiency */
751# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
752#endif
753
754/**
755 * unmap_vmas - unmap a range of memory covered by a list of vma's
756 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
757 * @vma: the starting vma
758 * @start_addr: virtual address at which to start unmapping
759 * @end_addr: virtual address at which to end unmapping
760 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
761 * @details: details of nonlinear truncation or shared cache invalidation
762 *
ee39b37b 763 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 764 *
508034a3 765 * Unmap all pages in the vma list.
1da177e4 766 *
508034a3
HD
767 * We aim to not hold locks for too long (for scheduling latency reasons).
768 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
769 * return the ending mmu_gather to the caller.
770 *
771 * Only addresses between `start' and `end' will be unmapped.
772 *
773 * The VMA list must be sorted in ascending virtual address order.
774 *
775 * unmap_vmas() assumes that the caller will flush the whole unmapped address
776 * range after unmap_vmas() returns. So the only responsibility here is to
777 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
778 * drops the lock and schedules.
779 */
508034a3 780unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
781 struct vm_area_struct *vma, unsigned long start_addr,
782 unsigned long end_addr, unsigned long *nr_accounted,
783 struct zap_details *details)
784{
51c6f666 785 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
786 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
787 int tlb_start_valid = 0;
ee39b37b 788 unsigned long start = start_addr;
1da177e4 789 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 790 int fullmm = (*tlbp)->fullmm;
1da177e4
LT
791
792 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
793 unsigned long end;
794
795 start = max(vma->vm_start, start_addr);
796 if (start >= vma->vm_end)
797 continue;
798 end = min(vma->vm_end, end_addr);
799 if (end <= vma->vm_start)
800 continue;
801
802 if (vma->vm_flags & VM_ACCOUNT)
803 *nr_accounted += (end - start) >> PAGE_SHIFT;
804
1da177e4 805 while (start != end) {
1da177e4
LT
806 if (!tlb_start_valid) {
807 tlb_start = start;
808 tlb_start_valid = 1;
809 }
810
51c6f666 811 if (unlikely(is_vm_hugetlb_page(vma))) {
1da177e4 812 unmap_hugepage_range(vma, start, end);
51c6f666
RH
813 zap_work -= (end - start) /
814 (HPAGE_SIZE / PAGE_SIZE);
815 start = end;
816 } else
817 start = unmap_page_range(*tlbp, vma,
818 start, end, &zap_work, details);
819
820 if (zap_work > 0) {
821 BUG_ON(start != end);
822 break;
1da177e4
LT
823 }
824
1da177e4
LT
825 tlb_finish_mmu(*tlbp, tlb_start, start);
826
827 if (need_resched() ||
1da177e4
LT
828 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
829 if (i_mmap_lock) {
508034a3 830 *tlbp = NULL;
1da177e4
LT
831 goto out;
832 }
1da177e4 833 cond_resched();
1da177e4
LT
834 }
835
508034a3 836 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 837 tlb_start_valid = 0;
51c6f666 838 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
839 }
840 }
841out:
ee39b37b 842 return start; /* which is now the end (or restart) address */
1da177e4
LT
843}
844
845/**
846 * zap_page_range - remove user pages in a given range
847 * @vma: vm_area_struct holding the applicable pages
848 * @address: starting address of pages to zap
849 * @size: number of bytes to zap
850 * @details: details of nonlinear truncation or shared cache invalidation
851 */
ee39b37b 852unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
853 unsigned long size, struct zap_details *details)
854{
855 struct mm_struct *mm = vma->vm_mm;
856 struct mmu_gather *tlb;
857 unsigned long end = address + size;
858 unsigned long nr_accounted = 0;
859
1da177e4 860 lru_add_drain();
1da177e4 861 tlb = tlb_gather_mmu(mm, 0);
365e9c87 862 update_hiwater_rss(mm);
508034a3
HD
863 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
864 if (tlb)
865 tlb_finish_mmu(tlb, address, end);
ee39b37b 866 return end;
1da177e4
LT
867}
868
869/*
870 * Do a quick page-table lookup for a single page.
1da177e4 871 */
6aab341e 872struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 873 unsigned int flags)
1da177e4
LT
874{
875 pgd_t *pgd;
876 pud_t *pud;
877 pmd_t *pmd;
878 pte_t *ptep, pte;
deceb6cd 879 spinlock_t *ptl;
1da177e4 880 struct page *page;
6aab341e 881 struct mm_struct *mm = vma->vm_mm;
1da177e4 882
deceb6cd
HD
883 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
884 if (!IS_ERR(page)) {
885 BUG_ON(flags & FOLL_GET);
886 goto out;
887 }
1da177e4 888
deceb6cd 889 page = NULL;
1da177e4
LT
890 pgd = pgd_offset(mm, address);
891 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 892 goto no_page_table;
1da177e4
LT
893
894 pud = pud_offset(pgd, address);
895 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
deceb6cd 896 goto no_page_table;
1da177e4
LT
897
898 pmd = pmd_offset(pud, address);
899 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
deceb6cd
HD
900 goto no_page_table;
901
902 if (pmd_huge(*pmd)) {
903 BUG_ON(flags & FOLL_GET);
904 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 905 goto out;
deceb6cd 906 }
1da177e4 907
deceb6cd 908 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
909 if (!ptep)
910 goto out;
911
912 pte = *ptep;
deceb6cd
HD
913 if (!pte_present(pte))
914 goto unlock;
915 if ((flags & FOLL_WRITE) && !pte_write(pte))
916 goto unlock;
6aab341e
LT
917 page = vm_normal_page(vma, address, pte);
918 if (unlikely(!page))
deceb6cd 919 goto unlock;
1da177e4 920
deceb6cd
HD
921 if (flags & FOLL_GET)
922 get_page(page);
923 if (flags & FOLL_TOUCH) {
924 if ((flags & FOLL_WRITE) &&
925 !pte_dirty(pte) && !PageDirty(page))
926 set_page_dirty(page);
927 mark_page_accessed(page);
928 }
929unlock:
930 pte_unmap_unlock(ptep, ptl);
1da177e4 931out:
deceb6cd 932 return page;
1da177e4 933
deceb6cd
HD
934no_page_table:
935 /*
936 * When core dumping an enormous anonymous area that nobody
937 * has touched so far, we don't want to allocate page tables.
938 */
939 if (flags & FOLL_ANON) {
940 page = ZERO_PAGE(address);
941 if (flags & FOLL_GET)
942 get_page(page);
943 BUG_ON(flags & FOLL_WRITE);
944 }
945 return page;
1da177e4
LT
946}
947
1da177e4
LT
948int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
949 unsigned long start, int len, int write, int force,
950 struct page **pages, struct vm_area_struct **vmas)
951{
952 int i;
deceb6cd 953 unsigned int vm_flags;
1da177e4
LT
954
955 /*
956 * Require read or write permissions.
957 * If 'force' is set, we only require the "MAY" flags.
958 */
deceb6cd
HD
959 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
960 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
961 i = 0;
962
963 do {
deceb6cd
HD
964 struct vm_area_struct *vma;
965 unsigned int foll_flags;
1da177e4
LT
966
967 vma = find_extend_vma(mm, start);
968 if (!vma && in_gate_area(tsk, start)) {
969 unsigned long pg = start & PAGE_MASK;
970 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
971 pgd_t *pgd;
972 pud_t *pud;
973 pmd_t *pmd;
974 pte_t *pte;
975 if (write) /* user gate pages are read-only */
976 return i ? : -EFAULT;
977 if (pg > TASK_SIZE)
978 pgd = pgd_offset_k(pg);
979 else
980 pgd = pgd_offset_gate(mm, pg);
981 BUG_ON(pgd_none(*pgd));
982 pud = pud_offset(pgd, pg);
983 BUG_ON(pud_none(*pud));
984 pmd = pmd_offset(pud, pg);
690dbe1c
HD
985 if (pmd_none(*pmd))
986 return i ? : -EFAULT;
1da177e4 987 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
988 if (pte_none(*pte)) {
989 pte_unmap(pte);
990 return i ? : -EFAULT;
991 }
1da177e4 992 if (pages) {
fa2a455b 993 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
994 pages[i] = page;
995 if (page)
996 get_page(page);
1da177e4
LT
997 }
998 pte_unmap(pte);
999 if (vmas)
1000 vmas[i] = gate_vma;
1001 i++;
1002 start += PAGE_SIZE;
1003 len--;
1004 continue;
1005 }
1006
ed5297a9 1007 if (!vma || (vma->vm_flags & VM_IO)
deceb6cd 1008 || !(vm_flags & vma->vm_flags))
1da177e4
LT
1009 return i ? : -EFAULT;
1010
1011 if (is_vm_hugetlb_page(vma)) {
1012 i = follow_hugetlb_page(mm, vma, pages, vmas,
1013 &start, &len, i);
1014 continue;
1015 }
deceb6cd
HD
1016
1017 foll_flags = FOLL_TOUCH;
1018 if (pages)
1019 foll_flags |= FOLL_GET;
1020 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1021 (!vma->vm_ops || !vma->vm_ops->nopage))
1022 foll_flags |= FOLL_ANON;
1023
1da177e4 1024 do {
08ef4729 1025 struct page *page;
1da177e4 1026
deceb6cd
HD
1027 if (write)
1028 foll_flags |= FOLL_WRITE;
a68d2ebc 1029
deceb6cd 1030 cond_resched();
6aab341e 1031 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd
HD
1032 int ret;
1033 ret = __handle_mm_fault(mm, vma, start,
1034 foll_flags & FOLL_WRITE);
a68d2ebc
LT
1035 /*
1036 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1037 * broken COW when necessary, even if maybe_mkwrite
1038 * decided not to set pte_write. We can thus safely do
1039 * subsequent page lookups as if they were reads.
1040 */
1041 if (ret & VM_FAULT_WRITE)
deceb6cd 1042 foll_flags &= ~FOLL_WRITE;
a68d2ebc
LT
1043
1044 switch (ret & ~VM_FAULT_WRITE) {
1da177e4
LT
1045 case VM_FAULT_MINOR:
1046 tsk->min_flt++;
1047 break;
1048 case VM_FAULT_MAJOR:
1049 tsk->maj_flt++;
1050 break;
1051 case VM_FAULT_SIGBUS:
1052 return i ? i : -EFAULT;
1053 case VM_FAULT_OOM:
1054 return i ? i : -ENOMEM;
1055 default:
1056 BUG();
1057 }
1da177e4
LT
1058 }
1059 if (pages) {
08ef4729
HD
1060 pages[i] = page;
1061 flush_dcache_page(page);
1da177e4
LT
1062 }
1063 if (vmas)
1064 vmas[i] = vma;
1065 i++;
1066 start += PAGE_SIZE;
1067 len--;
08ef4729 1068 } while (len && start < vma->vm_end);
08ef4729 1069 } while (len);
1da177e4
LT
1070 return i;
1071}
1da177e4
LT
1072EXPORT_SYMBOL(get_user_pages);
1073
1074static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1075 unsigned long addr, unsigned long end, pgprot_t prot)
1076{
1077 pte_t *pte;
c74df32c 1078 spinlock_t *ptl;
1da177e4 1079
c74df32c 1080 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1081 if (!pte)
1082 return -ENOMEM;
1083 do {
b5810039
NP
1084 struct page *page = ZERO_PAGE(addr);
1085 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1086 page_cache_get(page);
1087 page_add_file_rmap(page);
1088 inc_mm_counter(mm, file_rss);
1da177e4
LT
1089 BUG_ON(!pte_none(*pte));
1090 set_pte_at(mm, addr, pte, zero_pte);
1091 } while (pte++, addr += PAGE_SIZE, addr != end);
c74df32c 1092 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1093 return 0;
1094}
1095
1096static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1097 unsigned long addr, unsigned long end, pgprot_t prot)
1098{
1099 pmd_t *pmd;
1100 unsigned long next;
1101
1102 pmd = pmd_alloc(mm, pud, addr);
1103 if (!pmd)
1104 return -ENOMEM;
1105 do {
1106 next = pmd_addr_end(addr, end);
1107 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1108 return -ENOMEM;
1109 } while (pmd++, addr = next, addr != end);
1110 return 0;
1111}
1112
1113static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1114 unsigned long addr, unsigned long end, pgprot_t prot)
1115{
1116 pud_t *pud;
1117 unsigned long next;
1118
1119 pud = pud_alloc(mm, pgd, addr);
1120 if (!pud)
1121 return -ENOMEM;
1122 do {
1123 next = pud_addr_end(addr, end);
1124 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1125 return -ENOMEM;
1126 } while (pud++, addr = next, addr != end);
1127 return 0;
1128}
1129
1130int zeromap_page_range(struct vm_area_struct *vma,
1131 unsigned long addr, unsigned long size, pgprot_t prot)
1132{
1133 pgd_t *pgd;
1134 unsigned long next;
1135 unsigned long end = addr + size;
1136 struct mm_struct *mm = vma->vm_mm;
1137 int err;
1138
1139 BUG_ON(addr >= end);
1140 pgd = pgd_offset(mm, addr);
1141 flush_cache_range(vma, addr, end);
1da177e4
LT
1142 do {
1143 next = pgd_addr_end(addr, end);
1144 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1145 if (err)
1146 break;
1147 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1148 return err;
1149}
1150
49c91fb0 1151pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
c9cfcddf
LT
1152{
1153 pgd_t * pgd = pgd_offset(mm, addr);
1154 pud_t * pud = pud_alloc(mm, pgd, addr);
1155 if (pud) {
49c91fb0 1156 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1157 if (pmd)
1158 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1159 }
1160 return NULL;
1161}
1162
238f58d8
LT
1163/*
1164 * This is the old fallback for page remapping.
1165 *
1166 * For historical reasons, it only allows reserved pages. Only
1167 * old drivers should use this, and they needed to mark their
1168 * pages reserved for the old functions anyway.
1169 */
1170static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1171{
1172 int retval;
c9cfcddf 1173 pte_t *pte;
238f58d8
LT
1174 spinlock_t *ptl;
1175
1176 retval = -EINVAL;
a145dd41 1177 if (PageAnon(page))
238f58d8
LT
1178 goto out;
1179 retval = -ENOMEM;
1180 flush_dcache_page(page);
c9cfcddf 1181 pte = get_locked_pte(mm, addr, &ptl);
238f58d8
LT
1182 if (!pte)
1183 goto out;
1184 retval = -EBUSY;
1185 if (!pte_none(*pte))
1186 goto out_unlock;
1187
1188 /* Ok, finally just insert the thing.. */
1189 get_page(page);
1190 inc_mm_counter(mm, file_rss);
1191 page_add_file_rmap(page);
1192 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1193
1194 retval = 0;
1195out_unlock:
1196 pte_unmap_unlock(pte, ptl);
1197out:
1198 return retval;
1199}
1200
a145dd41
LT
1201/*
1202 * This allows drivers to insert individual pages they've allocated
1203 * into a user vma.
1204 *
1205 * The page has to be a nice clean _individual_ kernel allocation.
1206 * If you allocate a compound page, you need to have marked it as
1207 * such (__GFP_COMP), or manually just split the page up yourself
1208 * (which is mainly an issue of doing "set_page_count(page, 1)" for
1209 * each sub-page, and then freeing them one by one when you free
1210 * them rather than freeing it as a compound page).
1211 *
1212 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1213 * took an arbitrary page protection parameter. This doesn't allow
1214 * that. Your vma protection will have to be set up correctly, which
1215 * means that if you want a shared writable mapping, you'd better
1216 * ask for a shared writable mapping!
1217 *
1218 * The page does not need to be reserved.
1219 */
1220int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1221{
1222 if (addr < vma->vm_start || addr >= vma->vm_end)
1223 return -EFAULT;
1224 if (!page_count(page))
1225 return -EINVAL;
1226 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1227}
e3c3374f 1228EXPORT_SYMBOL(vm_insert_page);
a145dd41 1229
1da177e4
LT
1230/*
1231 * maps a range of physical memory into the requested pages. the old
1232 * mappings are removed. any references to nonexistent pages results
1233 * in null mappings (currently treated as "copy-on-access")
1234 */
1235static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1236 unsigned long addr, unsigned long end,
1237 unsigned long pfn, pgprot_t prot)
1238{
1239 pte_t *pte;
c74df32c 1240 spinlock_t *ptl;
1da177e4 1241
c74df32c 1242 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1243 if (!pte)
1244 return -ENOMEM;
1245 do {
1246 BUG_ON(!pte_none(*pte));
b5810039 1247 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1da177e4
LT
1248 pfn++;
1249 } while (pte++, addr += PAGE_SIZE, addr != end);
c74df32c 1250 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1251 return 0;
1252}
1253
1254static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1255 unsigned long addr, unsigned long end,
1256 unsigned long pfn, pgprot_t prot)
1257{
1258 pmd_t *pmd;
1259 unsigned long next;
1260
1261 pfn -= addr >> PAGE_SHIFT;
1262 pmd = pmd_alloc(mm, pud, addr);
1263 if (!pmd)
1264 return -ENOMEM;
1265 do {
1266 next = pmd_addr_end(addr, end);
1267 if (remap_pte_range(mm, pmd, addr, next,
1268 pfn + (addr >> PAGE_SHIFT), prot))
1269 return -ENOMEM;
1270 } while (pmd++, addr = next, addr != end);
1271 return 0;
1272}
1273
1274static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1275 unsigned long addr, unsigned long end,
1276 unsigned long pfn, pgprot_t prot)
1277{
1278 pud_t *pud;
1279 unsigned long next;
1280
1281 pfn -= addr >> PAGE_SHIFT;
1282 pud = pud_alloc(mm, pgd, addr);
1283 if (!pud)
1284 return -ENOMEM;
1285 do {
1286 next = pud_addr_end(addr, end);
1287 if (remap_pmd_range(mm, pud, addr, next,
1288 pfn + (addr >> PAGE_SHIFT), prot))
1289 return -ENOMEM;
1290 } while (pud++, addr = next, addr != end);
1291 return 0;
1292}
1293
1294/* Note: this is only safe if the mm semaphore is held when called. */
1295int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1296 unsigned long pfn, unsigned long size, pgprot_t prot)
1297{
1298 pgd_t *pgd;
1299 unsigned long next;
2d15cab8 1300 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1301 struct mm_struct *mm = vma->vm_mm;
1302 int err;
1303
1304 /*
1305 * Physically remapped pages are special. Tell the
1306 * rest of the world about it:
1307 * VM_IO tells people not to look at these pages
1308 * (accesses can have side effects).
0b14c179
HD
1309 * VM_RESERVED is specified all over the place, because
1310 * in 2.4 it kept swapout's vma scan off this vma; but
1311 * in 2.6 the LRU scan won't even find its pages, so this
1312 * flag means no more than count its pages in reserved_vm,
1313 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1314 * VM_PFNMAP tells the core MM that the base pages are just
1315 * raw PFN mappings, and do not have a "struct page" associated
1316 * with them.
fb155c16
LT
1317 *
1318 * There's a horrible special case to handle copy-on-write
1319 * behaviour that some programs depend on. We mark the "original"
1320 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1321 */
fb155c16
LT
1322 if (!(vma->vm_flags & VM_SHARED)) {
1323 if (addr != vma->vm_start || end != vma->vm_end)
7fc7e2ee 1324 return -EINVAL;
fb155c16
LT
1325 vma->vm_pgoff = pfn;
1326 }
1327
6aab341e 1328 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4
LT
1329
1330 BUG_ON(addr >= end);
1331 pfn -= addr >> PAGE_SHIFT;
1332 pgd = pgd_offset(mm, addr);
1333 flush_cache_range(vma, addr, end);
1da177e4
LT
1334 do {
1335 next = pgd_addr_end(addr, end);
1336 err = remap_pud_range(mm, pgd, addr, next,
1337 pfn + (addr >> PAGE_SHIFT), prot);
1338 if (err)
1339 break;
1340 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1341 return err;
1342}
1343EXPORT_SYMBOL(remap_pfn_range);
1344
8f4e2101
HD
1345/*
1346 * handle_pte_fault chooses page fault handler according to an entry
1347 * which was read non-atomically. Before making any commitment, on
1348 * those architectures or configurations (e.g. i386 with PAE) which
1349 * might give a mix of unmatched parts, do_swap_page and do_file_page
1350 * must check under lock before unmapping the pte and proceeding
1351 * (but do_wp_page is only called after already making such a check;
1352 * and do_anonymous_page and do_no_page can safely check later on).
1353 */
4c21e2f2 1354static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1355 pte_t *page_table, pte_t orig_pte)
1356{
1357 int same = 1;
1358#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1359 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1360 spinlock_t *ptl = pte_lockptr(mm, pmd);
1361 spin_lock(ptl);
8f4e2101 1362 same = pte_same(*page_table, orig_pte);
4c21e2f2 1363 spin_unlock(ptl);
8f4e2101
HD
1364 }
1365#endif
1366 pte_unmap(page_table);
1367 return same;
1368}
1369
1da177e4
LT
1370/*
1371 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1372 * servicing faults for write access. In the normal case, do always want
1373 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1374 * that do not have writing enabled, when used by access_process_vm.
1375 */
1376static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1377{
1378 if (likely(vma->vm_flags & VM_WRITE))
1379 pte = pte_mkwrite(pte);
1380 return pte;
1381}
1382
6aab341e
LT
1383static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1384{
1385 /*
1386 * If the source page was a PFN mapping, we don't have
1387 * a "struct page" for it. We do a best-effort copy by
1388 * just copying from the original user address. If that
1389 * fails, we just zero-fill it. Live with it.
1390 */
1391 if (unlikely(!src)) {
1392 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1393 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1394
1395 /*
1396 * This really shouldn't fail, because the page is there
1397 * in the page tables. But it might just be unreadable,
1398 * in which case we just give up and fill the result with
1399 * zeroes.
1400 */
1401 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1402 memset(kaddr, 0, PAGE_SIZE);
1403 kunmap_atomic(kaddr, KM_USER0);
1404 return;
1405
1406 }
1407 copy_user_highpage(dst, src, va);
1408}
1409
1da177e4
LT
1410/*
1411 * This routine handles present pages, when users try to write
1412 * to a shared page. It is done by copying the page to a new address
1413 * and decrementing the shared-page counter for the old page.
1414 *
1da177e4
LT
1415 * Note that this routine assumes that the protection checks have been
1416 * done by the caller (the low-level page fault routine in most cases).
1417 * Thus we can safely just mark it writable once we've done any necessary
1418 * COW.
1419 *
1420 * We also mark the page dirty at this point even though the page will
1421 * change only once the write actually happens. This avoids a few races,
1422 * and potentially makes it more efficient.
1423 *
8f4e2101
HD
1424 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1425 * but allow concurrent faults), with pte both mapped and locked.
1426 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1427 */
65500d23
HD
1428static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1429 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1430 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1431{
e5bbe4df 1432 struct page *old_page, *new_page;
1da177e4 1433 pte_t entry;
65500d23 1434 int ret = VM_FAULT_MINOR;
1da177e4 1435
6aab341e 1436 old_page = vm_normal_page(vma, address, orig_pte);
6aab341e
LT
1437 if (!old_page)
1438 goto gotten;
1da177e4 1439
d296e9cd 1440 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1da177e4
LT
1441 int reuse = can_share_swap_page(old_page);
1442 unlock_page(old_page);
1443 if (reuse) {
eca35133 1444 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1445 entry = pte_mkyoung(orig_pte);
1446 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4
LT
1447 ptep_set_access_flags(vma, address, page_table, entry, 1);
1448 update_mmu_cache(vma, address, entry);
1449 lazy_mmu_prot_update(entry);
65500d23
HD
1450 ret |= VM_FAULT_WRITE;
1451 goto unlock;
1da177e4
LT
1452 }
1453 }
1da177e4
LT
1454
1455 /*
1456 * Ok, we need to copy. Oh, well..
1457 */
b5810039 1458 page_cache_get(old_page);
920fc356 1459gotten:
8f4e2101 1460 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1461
1462 if (unlikely(anon_vma_prepare(vma)))
65500d23 1463 goto oom;
e5bbe4df 1464 if (old_page == ZERO_PAGE(address)) {
1da177e4
LT
1465 new_page = alloc_zeroed_user_highpage(vma, address);
1466 if (!new_page)
65500d23 1467 goto oom;
1da177e4
LT
1468 } else {
1469 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1470 if (!new_page)
65500d23 1471 goto oom;
e5bbe4df 1472 cow_user_page(new_page, old_page, address);
1da177e4 1473 }
65500d23 1474
1da177e4
LT
1475 /*
1476 * Re-check the pte - we dropped the lock
1477 */
8f4e2101 1478 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1479 if (likely(pte_same(*page_table, orig_pte))) {
920fc356
HD
1480 if (old_page) {
1481 page_remove_rmap(old_page);
1482 if (!PageAnon(old_page)) {
1483 dec_mm_counter(mm, file_rss);
1484 inc_mm_counter(mm, anon_rss);
1485 }
1486 } else
4294621f 1487 inc_mm_counter(mm, anon_rss);
eca35133 1488 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1489 entry = mk_pte(new_page, vma->vm_page_prot);
1490 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1491 ptep_establish(vma, address, page_table, entry);
1492 update_mmu_cache(vma, address, entry);
1493 lazy_mmu_prot_update(entry);
1da177e4
LT
1494 lru_cache_add_active(new_page);
1495 page_add_anon_rmap(new_page, vma, address);
1496
1497 /* Free the old page.. */
1498 new_page = old_page;
f33ea7f4 1499 ret |= VM_FAULT_WRITE;
1da177e4 1500 }
920fc356
HD
1501 if (new_page)
1502 page_cache_release(new_page);
1503 if (old_page)
1504 page_cache_release(old_page);
65500d23 1505unlock:
8f4e2101 1506 pte_unmap_unlock(page_table, ptl);
f33ea7f4 1507 return ret;
65500d23 1508oom:
920fc356
HD
1509 if (old_page)
1510 page_cache_release(old_page);
1da177e4
LT
1511 return VM_FAULT_OOM;
1512}
1513
1514/*
1515 * Helper functions for unmap_mapping_range().
1516 *
1517 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1518 *
1519 * We have to restart searching the prio_tree whenever we drop the lock,
1520 * since the iterator is only valid while the lock is held, and anyway
1521 * a later vma might be split and reinserted earlier while lock dropped.
1522 *
1523 * The list of nonlinear vmas could be handled more efficiently, using
1524 * a placeholder, but handle it in the same way until a need is shown.
1525 * It is important to search the prio_tree before nonlinear list: a vma
1526 * may become nonlinear and be shifted from prio_tree to nonlinear list
1527 * while the lock is dropped; but never shifted from list to prio_tree.
1528 *
1529 * In order to make forward progress despite restarting the search,
1530 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1531 * quickly skip it next time around. Since the prio_tree search only
1532 * shows us those vmas affected by unmapping the range in question, we
1533 * can't efficiently keep all vmas in step with mapping->truncate_count:
1534 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1535 * mapping->truncate_count and vma->vm_truncate_count are protected by
1536 * i_mmap_lock.
1537 *
1538 * In order to make forward progress despite repeatedly restarting some
ee39b37b 1539 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
1540 * and restart from that address when we reach that vma again. It might
1541 * have been split or merged, shrunk or extended, but never shifted: so
1542 * restart_addr remains valid so long as it remains in the vma's range.
1543 * unmap_mapping_range forces truncate_count to leap over page-aligned
1544 * values so we can save vma's restart_addr in its truncate_count field.
1545 */
1546#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1547
1548static void reset_vma_truncate_counts(struct address_space *mapping)
1549{
1550 struct vm_area_struct *vma;
1551 struct prio_tree_iter iter;
1552
1553 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1554 vma->vm_truncate_count = 0;
1555 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1556 vma->vm_truncate_count = 0;
1557}
1558
1559static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1560 unsigned long start_addr, unsigned long end_addr,
1561 struct zap_details *details)
1562{
1563 unsigned long restart_addr;
1564 int need_break;
1565
1566again:
1567 restart_addr = vma->vm_truncate_count;
1568 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1569 start_addr = restart_addr;
1570 if (start_addr >= end_addr) {
1571 /* Top of vma has been split off since last time */
1572 vma->vm_truncate_count = details->truncate_count;
1573 return 0;
1574 }
1575 }
1576
ee39b37b
HD
1577 restart_addr = zap_page_range(vma, start_addr,
1578 end_addr - start_addr, details);
1da177e4
LT
1579 need_break = need_resched() ||
1580 need_lockbreak(details->i_mmap_lock);
1581
ee39b37b 1582 if (restart_addr >= end_addr) {
1da177e4
LT
1583 /* We have now completed this vma: mark it so */
1584 vma->vm_truncate_count = details->truncate_count;
1585 if (!need_break)
1586 return 0;
1587 } else {
1588 /* Note restart_addr in vma's truncate_count field */
ee39b37b 1589 vma->vm_truncate_count = restart_addr;
1da177e4
LT
1590 if (!need_break)
1591 goto again;
1592 }
1593
1594 spin_unlock(details->i_mmap_lock);
1595 cond_resched();
1596 spin_lock(details->i_mmap_lock);
1597 return -EINTR;
1598}
1599
1600static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1601 struct zap_details *details)
1602{
1603 struct vm_area_struct *vma;
1604 struct prio_tree_iter iter;
1605 pgoff_t vba, vea, zba, zea;
1606
1607restart:
1608 vma_prio_tree_foreach(vma, &iter, root,
1609 details->first_index, details->last_index) {
1610 /* Skip quickly over those we have already dealt with */
1611 if (vma->vm_truncate_count == details->truncate_count)
1612 continue;
1613
1614 vba = vma->vm_pgoff;
1615 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1616 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1617 zba = details->first_index;
1618 if (zba < vba)
1619 zba = vba;
1620 zea = details->last_index;
1621 if (zea > vea)
1622 zea = vea;
1623
1624 if (unmap_mapping_range_vma(vma,
1625 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1626 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1627 details) < 0)
1628 goto restart;
1629 }
1630}
1631
1632static inline void unmap_mapping_range_list(struct list_head *head,
1633 struct zap_details *details)
1634{
1635 struct vm_area_struct *vma;
1636
1637 /*
1638 * In nonlinear VMAs there is no correspondence between virtual address
1639 * offset and file offset. So we must perform an exhaustive search
1640 * across *all* the pages in each nonlinear VMA, not just the pages
1641 * whose virtual address lies outside the file truncation point.
1642 */
1643restart:
1644 list_for_each_entry(vma, head, shared.vm_set.list) {
1645 /* Skip quickly over those we have already dealt with */
1646 if (vma->vm_truncate_count == details->truncate_count)
1647 continue;
1648 details->nonlinear_vma = vma;
1649 if (unmap_mapping_range_vma(vma, vma->vm_start,
1650 vma->vm_end, details) < 0)
1651 goto restart;
1652 }
1653}
1654
1655/**
1656 * unmap_mapping_range - unmap the portion of all mmaps
1657 * in the specified address_space corresponding to the specified
1658 * page range in the underlying file.
3d41088f 1659 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
1660 * @holebegin: byte in first page to unmap, relative to the start of
1661 * the underlying file. This will be rounded down to a PAGE_SIZE
1662 * boundary. Note that this is different from vmtruncate(), which
1663 * must keep the partial page. In contrast, we must get rid of
1664 * partial pages.
1665 * @holelen: size of prospective hole in bytes. This will be rounded
1666 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1667 * end of the file.
1668 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1669 * but 0 when invalidating pagecache, don't throw away private data.
1670 */
1671void unmap_mapping_range(struct address_space *mapping,
1672 loff_t const holebegin, loff_t const holelen, int even_cows)
1673{
1674 struct zap_details details;
1675 pgoff_t hba = holebegin >> PAGE_SHIFT;
1676 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1677
1678 /* Check for overflow. */
1679 if (sizeof(holelen) > sizeof(hlen)) {
1680 long long holeend =
1681 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1682 if (holeend & ~(long long)ULONG_MAX)
1683 hlen = ULONG_MAX - hba + 1;
1684 }
1685
1686 details.check_mapping = even_cows? NULL: mapping;
1687 details.nonlinear_vma = NULL;
1688 details.first_index = hba;
1689 details.last_index = hba + hlen - 1;
1690 if (details.last_index < details.first_index)
1691 details.last_index = ULONG_MAX;
1692 details.i_mmap_lock = &mapping->i_mmap_lock;
1693
1694 spin_lock(&mapping->i_mmap_lock);
1695
1696 /* serialize i_size write against truncate_count write */
1697 smp_wmb();
1698 /* Protect against page faults, and endless unmapping loops */
1699 mapping->truncate_count++;
1700 /*
1701 * For archs where spin_lock has inclusive semantics like ia64
1702 * this smp_mb() will prevent to read pagetable contents
1703 * before the truncate_count increment is visible to
1704 * other cpus.
1705 */
1706 smp_mb();
1707 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1708 if (mapping->truncate_count == 0)
1709 reset_vma_truncate_counts(mapping);
1710 mapping->truncate_count++;
1711 }
1712 details.truncate_count = mapping->truncate_count;
1713
1714 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1715 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1716 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1717 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1718 spin_unlock(&mapping->i_mmap_lock);
1719}
1720EXPORT_SYMBOL(unmap_mapping_range);
1721
1722/*
1723 * Handle all mappings that got truncated by a "truncate()"
1724 * system call.
1725 *
1726 * NOTE! We have to be ready to update the memory sharing
1727 * between the file and the memory map for a potential last
1728 * incomplete page. Ugly, but necessary.
1729 */
1730int vmtruncate(struct inode * inode, loff_t offset)
1731{
1732 struct address_space *mapping = inode->i_mapping;
1733 unsigned long limit;
1734
1735 if (inode->i_size < offset)
1736 goto do_expand;
1737 /*
1738 * truncation of in-use swapfiles is disallowed - it would cause
1739 * subsequent swapout to scribble on the now-freed blocks.
1740 */
1741 if (IS_SWAPFILE(inode))
1742 goto out_busy;
1743 i_size_write(inode, offset);
1744 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1745 truncate_inode_pages(mapping, offset);
1746 goto out_truncate;
1747
1748do_expand:
1749 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1750 if (limit != RLIM_INFINITY && offset > limit)
1751 goto out_sig;
1752 if (offset > inode->i_sb->s_maxbytes)
1753 goto out_big;
1754 i_size_write(inode, offset);
1755
1756out_truncate:
1757 if (inode->i_op && inode->i_op->truncate)
1758 inode->i_op->truncate(inode);
1759 return 0;
1760out_sig:
1761 send_sig(SIGXFSZ, current, 0);
1762out_big:
1763 return -EFBIG;
1764out_busy:
1765 return -ETXTBSY;
1766}
1767
1768EXPORT_SYMBOL(vmtruncate);
1769
1770/*
1771 * Primitive swap readahead code. We simply read an aligned block of
1772 * (1 << page_cluster) entries in the swap area. This method is chosen
1773 * because it doesn't cost us any seek time. We also make sure to queue
1774 * the 'original' request together with the readahead ones...
1775 *
1776 * This has been extended to use the NUMA policies from the mm triggering
1777 * the readahead.
1778 *
1779 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1780 */
1781void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1782{
1783#ifdef CONFIG_NUMA
1784 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1785#endif
1786 int i, num;
1787 struct page *new_page;
1788 unsigned long offset;
1789
1790 /*
1791 * Get the number of handles we should do readahead io to.
1792 */
1793 num = valid_swaphandles(entry, &offset);
1794 for (i = 0; i < num; offset++, i++) {
1795 /* Ok, do the async read-ahead now */
1796 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1797 offset), vma, addr);
1798 if (!new_page)
1799 break;
1800 page_cache_release(new_page);
1801#ifdef CONFIG_NUMA
1802 /*
1803 * Find the next applicable VMA for the NUMA policy.
1804 */
1805 addr += PAGE_SIZE;
1806 if (addr == 0)
1807 vma = NULL;
1808 if (vma) {
1809 if (addr >= vma->vm_end) {
1810 vma = next_vma;
1811 next_vma = vma ? vma->vm_next : NULL;
1812 }
1813 if (vma && addr < vma->vm_start)
1814 vma = NULL;
1815 } else {
1816 if (next_vma && addr >= next_vma->vm_start) {
1817 vma = next_vma;
1818 next_vma = vma->vm_next;
1819 }
1820 }
1821#endif
1822 }
1823 lru_add_drain(); /* Push any new pages onto the LRU now */
1824}
1825
1826/*
8f4e2101
HD
1827 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1828 * but allow concurrent faults), and pte mapped but not yet locked.
1829 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1830 */
65500d23
HD
1831static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1832 unsigned long address, pte_t *page_table, pmd_t *pmd,
1833 int write_access, pte_t orig_pte)
1da177e4 1834{
8f4e2101 1835 spinlock_t *ptl;
1da177e4 1836 struct page *page;
65500d23 1837 swp_entry_t entry;
1da177e4
LT
1838 pte_t pte;
1839 int ret = VM_FAULT_MINOR;
1840
4c21e2f2 1841 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 1842 goto out;
65500d23
HD
1843
1844 entry = pte_to_swp_entry(orig_pte);
1da177e4
LT
1845 page = lookup_swap_cache(entry);
1846 if (!page) {
1847 swapin_readahead(entry, address, vma);
1848 page = read_swap_cache_async(entry, vma, address);
1849 if (!page) {
1850 /*
8f4e2101
HD
1851 * Back out if somebody else faulted in this pte
1852 * while we released the pte lock.
1da177e4 1853 */
8f4e2101 1854 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1855 if (likely(pte_same(*page_table, orig_pte)))
1856 ret = VM_FAULT_OOM;
65500d23 1857 goto unlock;
1da177e4
LT
1858 }
1859
1860 /* Had to read the page from swap area: Major fault */
1861 ret = VM_FAULT_MAJOR;
1862 inc_page_state(pgmajfault);
1863 grab_swap_token();
1864 }
1865
1866 mark_page_accessed(page);
1867 lock_page(page);
1868
1869 /*
8f4e2101 1870 * Back out if somebody else already faulted in this pte.
1da177e4 1871 */
8f4e2101 1872 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 1873 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 1874 goto out_nomap;
b8107480
KK
1875
1876 if (unlikely(!PageUptodate(page))) {
1877 ret = VM_FAULT_SIGBUS;
1878 goto out_nomap;
1da177e4
LT
1879 }
1880
1881 /* The page isn't present yet, go ahead with the fault. */
1da177e4 1882
4294621f 1883 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1884 pte = mk_pte(page, vma->vm_page_prot);
1885 if (write_access && can_share_swap_page(page)) {
1886 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1887 write_access = 0;
1888 }
1da177e4
LT
1889
1890 flush_icache_page(vma, page);
1891 set_pte_at(mm, address, page_table, pte);
1892 page_add_anon_rmap(page, vma, address);
1893
c475a8ab
HD
1894 swap_free(entry);
1895 if (vm_swap_full())
1896 remove_exclusive_swap_page(page);
1897 unlock_page(page);
1898
1da177e4
LT
1899 if (write_access) {
1900 if (do_wp_page(mm, vma, address,
8f4e2101 1901 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1da177e4
LT
1902 ret = VM_FAULT_OOM;
1903 goto out;
1904 }
1905
1906 /* No need to invalidate - it was non-present before */
1907 update_mmu_cache(vma, address, pte);
1908 lazy_mmu_prot_update(pte);
65500d23 1909unlock:
8f4e2101 1910 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1911out:
1912 return ret;
b8107480 1913out_nomap:
8f4e2101 1914 pte_unmap_unlock(page_table, ptl);
b8107480
KK
1915 unlock_page(page);
1916 page_cache_release(page);
65500d23 1917 return ret;
1da177e4
LT
1918}
1919
1920/*
8f4e2101
HD
1921 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1922 * but allow concurrent faults), and pte mapped but not yet locked.
1923 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1924 */
65500d23
HD
1925static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1926 unsigned long address, pte_t *page_table, pmd_t *pmd,
1927 int write_access)
1da177e4 1928{
8f4e2101
HD
1929 struct page *page;
1930 spinlock_t *ptl;
1da177e4 1931 pte_t entry;
1da177e4 1932
6aab341e 1933 if (write_access) {
1da177e4
LT
1934 /* Allocate our own private page. */
1935 pte_unmap(page_table);
1da177e4
LT
1936
1937 if (unlikely(anon_vma_prepare(vma)))
65500d23
HD
1938 goto oom;
1939 page = alloc_zeroed_user_highpage(vma, address);
1da177e4 1940 if (!page)
65500d23 1941 goto oom;
1da177e4 1942
65500d23
HD
1943 entry = mk_pte(page, vma->vm_page_prot);
1944 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
8f4e2101
HD
1945
1946 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1947 if (!pte_none(*page_table))
1948 goto release;
1949 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1950 lru_cache_add_active(page);
1951 SetPageReferenced(page);
65500d23 1952 page_add_anon_rmap(page, vma, address);
b5810039 1953 } else {
8f4e2101
HD
1954 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1955 page = ZERO_PAGE(address);
1956 page_cache_get(page);
1957 entry = mk_pte(page, vma->vm_page_prot);
1958
4c21e2f2 1959 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
1960 spin_lock(ptl);
1961 if (!pte_none(*page_table))
1962 goto release;
b5810039
NP
1963 inc_mm_counter(mm, file_rss);
1964 page_add_file_rmap(page);
1da177e4
LT
1965 }
1966
65500d23 1967 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
1968
1969 /* No need to invalidate - it was non-present before */
65500d23 1970 update_mmu_cache(vma, address, entry);
1da177e4 1971 lazy_mmu_prot_update(entry);
65500d23 1972unlock:
8f4e2101 1973 pte_unmap_unlock(page_table, ptl);
1da177e4 1974 return VM_FAULT_MINOR;
8f4e2101
HD
1975release:
1976 page_cache_release(page);
1977 goto unlock;
65500d23 1978oom:
1da177e4
LT
1979 return VM_FAULT_OOM;
1980}
1981
1982/*
1983 * do_no_page() tries to create a new page mapping. It aggressively
1984 * tries to share with existing pages, but makes a separate copy if
1985 * the "write_access" parameter is true in order to avoid the next
1986 * page fault.
1987 *
1988 * As this is called only for pages that do not currently exist, we
1989 * do not need to flush old virtual caches or the TLB.
1990 *
8f4e2101
HD
1991 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1992 * but allow concurrent faults), and pte mapped but not yet locked.
1993 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1994 */
65500d23
HD
1995static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1996 unsigned long address, pte_t *page_table, pmd_t *pmd,
1997 int write_access)
1da177e4 1998{
8f4e2101 1999 spinlock_t *ptl;
65500d23 2000 struct page *new_page;
1da177e4
LT
2001 struct address_space *mapping = NULL;
2002 pte_t entry;
2003 unsigned int sequence = 0;
2004 int ret = VM_FAULT_MINOR;
2005 int anon = 0;
2006
1da177e4 2007 pte_unmap(page_table);
325f04db
HD
2008 BUG_ON(vma->vm_flags & VM_PFNMAP);
2009
1da177e4
LT
2010 if (vma->vm_file) {
2011 mapping = vma->vm_file->f_mapping;
2012 sequence = mapping->truncate_count;
2013 smp_rmb(); /* serializes i_size against truncate_count */
2014 }
2015retry:
1da177e4
LT
2016 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2017 /*
2018 * No smp_rmb is needed here as long as there's a full
2019 * spin_lock/unlock sequence inside the ->nopage callback
2020 * (for the pagecache lookup) that acts as an implicit
2021 * smp_mb() and prevents the i_size read to happen
2022 * after the next truncate_count read.
2023 */
2024
2025 /* no page was available -- either SIGBUS or OOM */
2026 if (new_page == NOPAGE_SIGBUS)
2027 return VM_FAULT_SIGBUS;
2028 if (new_page == NOPAGE_OOM)
2029 return VM_FAULT_OOM;
2030
2031 /*
2032 * Should we do an early C-O-W break?
2033 */
2034 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2035 struct page *page;
2036
2037 if (unlikely(anon_vma_prepare(vma)))
2038 goto oom;
2039 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2040 if (!page)
2041 goto oom;
325f04db 2042 copy_user_highpage(page, new_page, address);
1da177e4
LT
2043 page_cache_release(new_page);
2044 new_page = page;
2045 anon = 1;
2046 }
2047
8f4e2101 2048 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2049 /*
2050 * For a file-backed vma, someone could have truncated or otherwise
2051 * invalidated this page. If unmap_mapping_range got called,
2052 * retry getting the page.
2053 */
2054 if (mapping && unlikely(sequence != mapping->truncate_count)) {
8f4e2101 2055 pte_unmap_unlock(page_table, ptl);
1da177e4 2056 page_cache_release(new_page);
65500d23
HD
2057 cond_resched();
2058 sequence = mapping->truncate_count;
2059 smp_rmb();
1da177e4
LT
2060 goto retry;
2061 }
1da177e4
LT
2062
2063 /*
2064 * This silly early PAGE_DIRTY setting removes a race
2065 * due to the bad i386 page protection. But it's valid
2066 * for other architectures too.
2067 *
2068 * Note that if write_access is true, we either now have
2069 * an exclusive copy of the page, or this is a shared mapping,
2070 * so we can make it writable and dirty to avoid having to
2071 * handle that later.
2072 */
2073 /* Only go through if we didn't race with anybody else... */
2074 if (pte_none(*page_table)) {
1da177e4
LT
2075 flush_icache_page(vma, new_page);
2076 entry = mk_pte(new_page, vma->vm_page_prot);
2077 if (write_access)
2078 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2079 set_pte_at(mm, address, page_table, entry);
2080 if (anon) {
4294621f 2081 inc_mm_counter(mm, anon_rss);
1da177e4
LT
2082 lru_cache_add_active(new_page);
2083 page_add_anon_rmap(new_page, vma, address);
f57e88a8 2084 } else {
4294621f 2085 inc_mm_counter(mm, file_rss);
1da177e4 2086 page_add_file_rmap(new_page);
4294621f 2087 }
1da177e4
LT
2088 } else {
2089 /* One of our sibling threads was faster, back out. */
1da177e4 2090 page_cache_release(new_page);
65500d23 2091 goto unlock;
1da177e4
LT
2092 }
2093
2094 /* no need to invalidate: a not-present page shouldn't be cached */
2095 update_mmu_cache(vma, address, entry);
2096 lazy_mmu_prot_update(entry);
65500d23 2097unlock:
8f4e2101 2098 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2099 return ret;
2100oom:
2101 page_cache_release(new_page);
65500d23 2102 return VM_FAULT_OOM;
1da177e4
LT
2103}
2104
2105/*
2106 * Fault of a previously existing named mapping. Repopulate the pte
2107 * from the encoded file_pte if possible. This enables swappable
2108 * nonlinear vmas.
8f4e2101
HD
2109 *
2110 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2111 * but allow concurrent faults), and pte mapped but not yet locked.
2112 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2113 */
65500d23
HD
2114static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2115 unsigned long address, pte_t *page_table, pmd_t *pmd,
2116 int write_access, pte_t orig_pte)
1da177e4 2117{
65500d23 2118 pgoff_t pgoff;
1da177e4
LT
2119 int err;
2120
4c21e2f2 2121 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2122 return VM_FAULT_MINOR;
1da177e4 2123
65500d23
HD
2124 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2125 /*
2126 * Page table corrupted: show pte and kill process.
2127 */
b5810039 2128 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2129 return VM_FAULT_OOM;
2130 }
2131 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2132
2133 pgoff = pte_to_pgoff(orig_pte);
2134 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2135 vma->vm_page_prot, pgoff, 0);
1da177e4
LT
2136 if (err == -ENOMEM)
2137 return VM_FAULT_OOM;
2138 if (err)
2139 return VM_FAULT_SIGBUS;
2140 return VM_FAULT_MAJOR;
2141}
2142
2143/*
2144 * These routines also need to handle stuff like marking pages dirty
2145 * and/or accessed for architectures that don't do it in hardware (most
2146 * RISC architectures). The early dirtying is also good on the i386.
2147 *
2148 * There is also a hook called "update_mmu_cache()" that architectures
2149 * with external mmu caches can use to update those (ie the Sparc or
2150 * PowerPC hashed page tables that act as extended TLBs).
2151 *
c74df32c
HD
2152 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2153 * but allow concurrent faults), and pte mapped but not yet locked.
2154 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2155 */
2156static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2157 struct vm_area_struct *vma, unsigned long address,
2158 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2159{
2160 pte_t entry;
1a44e149 2161 pte_t old_entry;
8f4e2101 2162 spinlock_t *ptl;
1da177e4 2163
1a44e149 2164 old_entry = entry = *pte;
1da177e4 2165 if (!pte_present(entry)) {
65500d23
HD
2166 if (pte_none(entry)) {
2167 if (!vma->vm_ops || !vma->vm_ops->nopage)
2168 return do_anonymous_page(mm, vma, address,
2169 pte, pmd, write_access);
2170 return do_no_page(mm, vma, address,
2171 pte, pmd, write_access);
2172 }
1da177e4 2173 if (pte_file(entry))
65500d23
HD
2174 return do_file_page(mm, vma, address,
2175 pte, pmd, write_access, entry);
2176 return do_swap_page(mm, vma, address,
2177 pte, pmd, write_access, entry);
1da177e4
LT
2178 }
2179
4c21e2f2 2180 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2181 spin_lock(ptl);
2182 if (unlikely(!pte_same(*pte, entry)))
2183 goto unlock;
1da177e4
LT
2184 if (write_access) {
2185 if (!pte_write(entry))
8f4e2101
HD
2186 return do_wp_page(mm, vma, address,
2187 pte, pmd, ptl, entry);
1da177e4
LT
2188 entry = pte_mkdirty(entry);
2189 }
2190 entry = pte_mkyoung(entry);
1a44e149
AA
2191 if (!pte_same(old_entry, entry)) {
2192 ptep_set_access_flags(vma, address, pte, entry, write_access);
2193 update_mmu_cache(vma, address, entry);
2194 lazy_mmu_prot_update(entry);
2195 } else {
2196 /*
2197 * This is needed only for protection faults but the arch code
2198 * is not yet telling us if this is a protection fault or not.
2199 * This still avoids useless tlb flushes for .text page faults
2200 * with threads.
2201 */
2202 if (write_access)
2203 flush_tlb_page(vma, address);
2204 }
8f4e2101
HD
2205unlock:
2206 pte_unmap_unlock(pte, ptl);
1da177e4
LT
2207 return VM_FAULT_MINOR;
2208}
2209
2210/*
2211 * By the time we get here, we already hold the mm semaphore
2212 */
65500d23 2213int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2214 unsigned long address, int write_access)
2215{
2216 pgd_t *pgd;
2217 pud_t *pud;
2218 pmd_t *pmd;
2219 pte_t *pte;
2220
2221 __set_current_state(TASK_RUNNING);
2222
2223 inc_page_state(pgfault);
2224
ac9b9c66
HD
2225 if (unlikely(is_vm_hugetlb_page(vma)))
2226 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2227
1da177e4 2228 pgd = pgd_offset(mm, address);
1da177e4
LT
2229 pud = pud_alloc(mm, pgd, address);
2230 if (!pud)
c74df32c 2231 return VM_FAULT_OOM;
1da177e4
LT
2232 pmd = pmd_alloc(mm, pud, address);
2233 if (!pmd)
c74df32c 2234 return VM_FAULT_OOM;
1da177e4
LT
2235 pte = pte_alloc_map(mm, pmd, address);
2236 if (!pte)
c74df32c 2237 return VM_FAULT_OOM;
1da177e4 2238
c74df32c 2239 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2240}
2241
2242#ifndef __PAGETABLE_PUD_FOLDED
2243/*
2244 * Allocate page upper directory.
872fec16 2245 * We've already handled the fast-path in-line.
1da177e4 2246 */
1bb3630e 2247int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2248{
c74df32c
HD
2249 pud_t *new = pud_alloc_one(mm, address);
2250 if (!new)
1bb3630e 2251 return -ENOMEM;
1da177e4 2252
872fec16 2253 spin_lock(&mm->page_table_lock);
1bb3630e 2254 if (pgd_present(*pgd)) /* Another has populated it */
1da177e4 2255 pud_free(new);
1bb3630e
HD
2256 else
2257 pgd_populate(mm, pgd, new);
c74df32c 2258 spin_unlock(&mm->page_table_lock);
1bb3630e 2259 return 0;
1da177e4 2260}
e0f39591
AS
2261#else
2262/* Workaround for gcc 2.96 */
2263int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2264{
2265 return 0;
2266}
1da177e4
LT
2267#endif /* __PAGETABLE_PUD_FOLDED */
2268
2269#ifndef __PAGETABLE_PMD_FOLDED
2270/*
2271 * Allocate page middle directory.
872fec16 2272 * We've already handled the fast-path in-line.
1da177e4 2273 */
1bb3630e 2274int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2275{
c74df32c
HD
2276 pmd_t *new = pmd_alloc_one(mm, address);
2277 if (!new)
1bb3630e 2278 return -ENOMEM;
1da177e4 2279
872fec16 2280 spin_lock(&mm->page_table_lock);
1da177e4 2281#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2282 if (pud_present(*pud)) /* Another has populated it */
1da177e4 2283 pmd_free(new);
1bb3630e
HD
2284 else
2285 pud_populate(mm, pud, new);
1da177e4 2286#else
1bb3630e 2287 if (pgd_present(*pud)) /* Another has populated it */
1da177e4 2288 pmd_free(new);
1bb3630e
HD
2289 else
2290 pgd_populate(mm, pud, new);
1da177e4 2291#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2292 spin_unlock(&mm->page_table_lock);
1bb3630e 2293 return 0;
e0f39591
AS
2294}
2295#else
2296/* Workaround for gcc 2.96 */
2297int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2298{
2299 return 0;
1da177e4
LT
2300}
2301#endif /* __PAGETABLE_PMD_FOLDED */
2302
2303int make_pages_present(unsigned long addr, unsigned long end)
2304{
2305 int ret, len, write;
2306 struct vm_area_struct * vma;
2307
2308 vma = find_vma(current->mm, addr);
2309 if (!vma)
2310 return -1;
2311 write = (vma->vm_flags & VM_WRITE) != 0;
2312 if (addr >= end)
2313 BUG();
2314 if (end > vma->vm_end)
2315 BUG();
2316 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2317 ret = get_user_pages(current, current->mm, addr,
2318 len, write, 0, NULL, NULL);
2319 if (ret < 0)
2320 return ret;
2321 return ret == len ? 0 : -1;
2322}
2323
2324/*
2325 * Map a vmalloc()-space virtual address to the physical page.
2326 */
2327struct page * vmalloc_to_page(void * vmalloc_addr)
2328{
2329 unsigned long addr = (unsigned long) vmalloc_addr;
2330 struct page *page = NULL;
2331 pgd_t *pgd = pgd_offset_k(addr);
2332 pud_t *pud;
2333 pmd_t *pmd;
2334 pte_t *ptep, pte;
2335
2336 if (!pgd_none(*pgd)) {
2337 pud = pud_offset(pgd, addr);
2338 if (!pud_none(*pud)) {
2339 pmd = pmd_offset(pud, addr);
2340 if (!pmd_none(*pmd)) {
2341 ptep = pte_offset_map(pmd, addr);
2342 pte = *ptep;
2343 if (pte_present(pte))
2344 page = pte_page(pte);
2345 pte_unmap(ptep);
2346 }
2347 }
2348 }
2349 return page;
2350}
2351
2352EXPORT_SYMBOL(vmalloc_to_page);
2353
2354/*
2355 * Map a vmalloc()-space virtual address to the physical page frame number.
2356 */
2357unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2358{
2359 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2360}
2361
2362EXPORT_SYMBOL(vmalloc_to_pfn);
2363
1da177e4
LT
2364#if !defined(__HAVE_ARCH_GATE_AREA)
2365
2366#if defined(AT_SYSINFO_EHDR)
5ce7852c 2367static struct vm_area_struct gate_vma;
1da177e4
LT
2368
2369static int __init gate_vma_init(void)
2370{
2371 gate_vma.vm_mm = NULL;
2372 gate_vma.vm_start = FIXADDR_USER_START;
2373 gate_vma.vm_end = FIXADDR_USER_END;
2374 gate_vma.vm_page_prot = PAGE_READONLY;
0b14c179 2375 gate_vma.vm_flags = 0;
1da177e4
LT
2376 return 0;
2377}
2378__initcall(gate_vma_init);
2379#endif
2380
2381struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2382{
2383#ifdef AT_SYSINFO_EHDR
2384 return &gate_vma;
2385#else
2386 return NULL;
2387#endif
2388}
2389
2390int in_gate_area_no_task(unsigned long addr)
2391{
2392#ifdef AT_SYSINFO_EHDR
2393 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2394 return 1;
2395#endif
2396 return 0;
2397}
2398
2399#endif /* __HAVE_ARCH_GATE_AREA */