]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/memory.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | |
9 | * things wanted, and it should be easy to implement. - Linus | |
10 | */ | |
11 | ||
12 | /* | |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
14 | * pages started 02.12.91, seems to work. - Linus. | |
15 | * | |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
17 | * would have taken more than the 6M I have free, but it worked well as | |
18 | * far as I could see. | |
19 | * | |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
25 | * thought has to go into this. Oh, well.. | |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
27 | * Found it. Everything seems to work now. | |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
29 | */ | |
30 | ||
31 | /* | |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | |
33 | * Idea by Alex Bligh (alex@cconcepts.co.uk) | |
34 | * | |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
36 | * (Gerhard.Wichert@pdb.siemens.de) | |
37 | * | |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
39 | */ | |
40 | ||
41 | #include <linux/kernel_stat.h> | |
42 | #include <linux/mm.h> | |
43 | #include <linux/hugetlb.h> | |
44 | #include <linux/mman.h> | |
45 | #include <linux/swap.h> | |
46 | #include <linux/highmem.h> | |
47 | #include <linux/pagemap.h> | |
48 | #include <linux/rmap.h> | |
49 | #include <linux/module.h> | |
0ff92245 | 50 | #include <linux/delayacct.h> |
1da177e4 | 51 | #include <linux/init.h> |
edc79b2a | 52 | #include <linux/writeback.h> |
8a9f3ccd | 53 | #include <linux/memcontrol.h> |
cddb8a5c | 54 | #include <linux/mmu_notifier.h> |
1da177e4 LT |
55 | |
56 | #include <asm/pgalloc.h> | |
57 | #include <asm/uaccess.h> | |
58 | #include <asm/tlb.h> | |
59 | #include <asm/tlbflush.h> | |
60 | #include <asm/pgtable.h> | |
61 | ||
62 | #include <linux/swapops.h> | |
63 | #include <linux/elf.h> | |
64 | ||
42b77728 JB |
65 | #include "internal.h" |
66 | ||
d41dee36 | 67 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
68 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
69 | unsigned long max_mapnr; | |
70 | struct page *mem_map; | |
71 | ||
72 | EXPORT_SYMBOL(max_mapnr); | |
73 | EXPORT_SYMBOL(mem_map); | |
74 | #endif | |
75 | ||
76 | unsigned long num_physpages; | |
77 | /* | |
78 | * A number of key systems in x86 including ioremap() rely on the assumption | |
79 | * that high_memory defines the upper bound on direct map memory, then end | |
80 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
81 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
82 | * and ZONE_HIGHMEM. | |
83 | */ | |
84 | void * high_memory; | |
1da177e4 LT |
85 | |
86 | EXPORT_SYMBOL(num_physpages); | |
87 | EXPORT_SYMBOL(high_memory); | |
1da177e4 | 88 | |
32a93233 IM |
89 | /* |
90 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
91 | * | |
92 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
93 | * as ancient (libc5 based) binaries can segfault. ) | |
94 | */ | |
95 | int randomize_va_space __read_mostly = | |
96 | #ifdef CONFIG_COMPAT_BRK | |
97 | 1; | |
98 | #else | |
99 | 2; | |
100 | #endif | |
a62eaf15 AK |
101 | |
102 | static int __init disable_randmaps(char *s) | |
103 | { | |
104 | randomize_va_space = 0; | |
9b41046c | 105 | return 1; |
a62eaf15 AK |
106 | } |
107 | __setup("norandmaps", disable_randmaps); | |
108 | ||
109 | ||
1da177e4 LT |
110 | /* |
111 | * If a p?d_bad entry is found while walking page tables, report | |
112 | * the error, before resetting entry to p?d_none. Usually (but | |
113 | * very seldom) called out from the p?d_none_or_clear_bad macros. | |
114 | */ | |
115 | ||
116 | void pgd_clear_bad(pgd_t *pgd) | |
117 | { | |
118 | pgd_ERROR(*pgd); | |
119 | pgd_clear(pgd); | |
120 | } | |
121 | ||
122 | void pud_clear_bad(pud_t *pud) | |
123 | { | |
124 | pud_ERROR(*pud); | |
125 | pud_clear(pud); | |
126 | } | |
127 | ||
128 | void pmd_clear_bad(pmd_t *pmd) | |
129 | { | |
130 | pmd_ERROR(*pmd); | |
131 | pmd_clear(pmd); | |
132 | } | |
133 | ||
134 | /* | |
135 | * Note: this doesn't free the actual pages themselves. That | |
136 | * has been handled earlier when unmapping all the memory regions. | |
137 | */ | |
e0da382c | 138 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) |
1da177e4 | 139 | { |
2f569afd | 140 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 141 | pmd_clear(pmd); |
2f569afd | 142 | pte_free_tlb(tlb, token); |
e0da382c | 143 | tlb->mm->nr_ptes--; |
1da177e4 LT |
144 | } |
145 | ||
e0da382c HD |
146 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
147 | unsigned long addr, unsigned long end, | |
148 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
149 | { |
150 | pmd_t *pmd; | |
151 | unsigned long next; | |
e0da382c | 152 | unsigned long start; |
1da177e4 | 153 | |
e0da382c | 154 | start = addr; |
1da177e4 | 155 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
156 | do { |
157 | next = pmd_addr_end(addr, end); | |
158 | if (pmd_none_or_clear_bad(pmd)) | |
159 | continue; | |
e0da382c | 160 | free_pte_range(tlb, pmd); |
1da177e4 LT |
161 | } while (pmd++, addr = next, addr != end); |
162 | ||
e0da382c HD |
163 | start &= PUD_MASK; |
164 | if (start < floor) | |
165 | return; | |
166 | if (ceiling) { | |
167 | ceiling &= PUD_MASK; | |
168 | if (!ceiling) | |
169 | return; | |
1da177e4 | 170 | } |
e0da382c HD |
171 | if (end - 1 > ceiling - 1) |
172 | return; | |
173 | ||
174 | pmd = pmd_offset(pud, start); | |
175 | pud_clear(pud); | |
176 | pmd_free_tlb(tlb, pmd); | |
1da177e4 LT |
177 | } |
178 | ||
e0da382c HD |
179 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
180 | unsigned long addr, unsigned long end, | |
181 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
182 | { |
183 | pud_t *pud; | |
184 | unsigned long next; | |
e0da382c | 185 | unsigned long start; |
1da177e4 | 186 | |
e0da382c | 187 | start = addr; |
1da177e4 | 188 | pud = pud_offset(pgd, addr); |
1da177e4 LT |
189 | do { |
190 | next = pud_addr_end(addr, end); | |
191 | if (pud_none_or_clear_bad(pud)) | |
192 | continue; | |
e0da382c | 193 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
194 | } while (pud++, addr = next, addr != end); |
195 | ||
e0da382c HD |
196 | start &= PGDIR_MASK; |
197 | if (start < floor) | |
198 | return; | |
199 | if (ceiling) { | |
200 | ceiling &= PGDIR_MASK; | |
201 | if (!ceiling) | |
202 | return; | |
1da177e4 | 203 | } |
e0da382c HD |
204 | if (end - 1 > ceiling - 1) |
205 | return; | |
206 | ||
207 | pud = pud_offset(pgd, start); | |
208 | pgd_clear(pgd); | |
209 | pud_free_tlb(tlb, pud); | |
1da177e4 LT |
210 | } |
211 | ||
212 | /* | |
e0da382c HD |
213 | * This function frees user-level page tables of a process. |
214 | * | |
1da177e4 LT |
215 | * Must be called with pagetable lock held. |
216 | */ | |
42b77728 | 217 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
218 | unsigned long addr, unsigned long end, |
219 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
220 | { |
221 | pgd_t *pgd; | |
222 | unsigned long next; | |
e0da382c HD |
223 | unsigned long start; |
224 | ||
225 | /* | |
226 | * The next few lines have given us lots of grief... | |
227 | * | |
228 | * Why are we testing PMD* at this top level? Because often | |
229 | * there will be no work to do at all, and we'd prefer not to | |
230 | * go all the way down to the bottom just to discover that. | |
231 | * | |
232 | * Why all these "- 1"s? Because 0 represents both the bottom | |
233 | * of the address space and the top of it (using -1 for the | |
234 | * top wouldn't help much: the masks would do the wrong thing). | |
235 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
236 | * the address space, but end 0 and ceiling 0 refer to the top | |
237 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
238 | * that end 0 case should be mythical). | |
239 | * | |
240 | * Wherever addr is brought up or ceiling brought down, we must | |
241 | * be careful to reject "the opposite 0" before it confuses the | |
242 | * subsequent tests. But what about where end is brought down | |
243 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
244 | * | |
245 | * Whereas we round start (addr) and ceiling down, by different | |
246 | * masks at different levels, in order to test whether a table | |
247 | * now has no other vmas using it, so can be freed, we don't | |
248 | * bother to round floor or end up - the tests don't need that. | |
249 | */ | |
1da177e4 | 250 | |
e0da382c HD |
251 | addr &= PMD_MASK; |
252 | if (addr < floor) { | |
253 | addr += PMD_SIZE; | |
254 | if (!addr) | |
255 | return; | |
256 | } | |
257 | if (ceiling) { | |
258 | ceiling &= PMD_MASK; | |
259 | if (!ceiling) | |
260 | return; | |
261 | } | |
262 | if (end - 1 > ceiling - 1) | |
263 | end -= PMD_SIZE; | |
264 | if (addr > end - 1) | |
265 | return; | |
266 | ||
267 | start = addr; | |
42b77728 | 268 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
269 | do { |
270 | next = pgd_addr_end(addr, end); | |
271 | if (pgd_none_or_clear_bad(pgd)) | |
272 | continue; | |
42b77728 | 273 | free_pud_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 274 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
275 | } |
276 | ||
42b77728 | 277 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
3bf5ee95 | 278 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
279 | { |
280 | while (vma) { | |
281 | struct vm_area_struct *next = vma->vm_next; | |
282 | unsigned long addr = vma->vm_start; | |
283 | ||
8f4f8c16 HD |
284 | /* |
285 | * Hide vma from rmap and vmtruncate before freeing pgtables | |
286 | */ | |
287 | anon_vma_unlink(vma); | |
288 | unlink_file_vma(vma); | |
289 | ||
9da61aef | 290 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 291 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
e0da382c | 292 | floor, next? next->vm_start: ceiling); |
3bf5ee95 HD |
293 | } else { |
294 | /* | |
295 | * Optimization: gather nearby vmas into one call down | |
296 | */ | |
297 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 298 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
299 | vma = next; |
300 | next = vma->vm_next; | |
8f4f8c16 HD |
301 | anon_vma_unlink(vma); |
302 | unlink_file_vma(vma); | |
3bf5ee95 HD |
303 | } |
304 | free_pgd_range(tlb, addr, vma->vm_end, | |
305 | floor, next? next->vm_start: ceiling); | |
306 | } | |
e0da382c HD |
307 | vma = next; |
308 | } | |
1da177e4 LT |
309 | } |
310 | ||
1bb3630e | 311 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
1da177e4 | 312 | { |
2f569afd | 313 | pgtable_t new = pte_alloc_one(mm, address); |
1bb3630e HD |
314 | if (!new) |
315 | return -ENOMEM; | |
316 | ||
362a61ad NP |
317 | /* |
318 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
319 | * visible before the pte is made visible to other CPUs by being | |
320 | * put into page tables. | |
321 | * | |
322 | * The other side of the story is the pointer chasing in the page | |
323 | * table walking code (when walking the page table without locking; | |
324 | * ie. most of the time). Fortunately, these data accesses consist | |
325 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
326 | * being the notable exception) will already guarantee loads are | |
327 | * seen in-order. See the alpha page table accessors for the | |
328 | * smp_read_barrier_depends() barriers in page table walking code. | |
329 | */ | |
330 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
331 | ||
c74df32c | 332 | spin_lock(&mm->page_table_lock); |
2f569afd | 333 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
1da177e4 | 334 | mm->nr_ptes++; |
1da177e4 | 335 | pmd_populate(mm, pmd, new); |
2f569afd | 336 | new = NULL; |
1da177e4 | 337 | } |
c74df32c | 338 | spin_unlock(&mm->page_table_lock); |
2f569afd MS |
339 | if (new) |
340 | pte_free(mm, new); | |
1bb3630e | 341 | return 0; |
1da177e4 LT |
342 | } |
343 | ||
1bb3630e | 344 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) |
1da177e4 | 345 | { |
1bb3630e HD |
346 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); |
347 | if (!new) | |
348 | return -ENOMEM; | |
349 | ||
362a61ad NP |
350 | smp_wmb(); /* See comment in __pte_alloc */ |
351 | ||
1bb3630e | 352 | spin_lock(&init_mm.page_table_lock); |
2f569afd | 353 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
1bb3630e | 354 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd MS |
355 | new = NULL; |
356 | } | |
1bb3630e | 357 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
358 | if (new) |
359 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 360 | return 0; |
1da177e4 LT |
361 | } |
362 | ||
ae859762 HD |
363 | static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) |
364 | { | |
365 | if (file_rss) | |
366 | add_mm_counter(mm, file_rss, file_rss); | |
367 | if (anon_rss) | |
368 | add_mm_counter(mm, anon_rss, anon_rss); | |
369 | } | |
370 | ||
b5810039 | 371 | /* |
6aab341e LT |
372 | * This function is called to print an error when a bad pte |
373 | * is found. For example, we might have a PFN-mapped pte in | |
374 | * a region that doesn't allow it. | |
b5810039 NP |
375 | * |
376 | * The calling function must still handle the error. | |
377 | */ | |
15f59ada AB |
378 | static void print_bad_pte(struct vm_area_struct *vma, pte_t pte, |
379 | unsigned long vaddr) | |
b5810039 NP |
380 | { |
381 | printk(KERN_ERR "Bad pte = %08llx, process = %s, " | |
382 | "vm_flags = %lx, vaddr = %lx\n", | |
383 | (long long)pte_val(pte), | |
384 | (vma->vm_mm == current->mm ? current->comm : "???"), | |
385 | vma->vm_flags, vaddr); | |
386 | dump_stack(); | |
387 | } | |
388 | ||
67121172 LT |
389 | static inline int is_cow_mapping(unsigned int flags) |
390 | { | |
391 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
392 | } | |
393 | ||
ee498ed7 | 394 | /* |
7e675137 | 395 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 396 | * |
7e675137 NP |
397 | * "Special" mappings do not wish to be associated with a "struct page" (either |
398 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
399 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 400 | * |
7e675137 NP |
401 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
402 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
403 | * may not have a spare pte bit, which requires a more complicated scheme, | |
404 | * described below. | |
405 | * | |
406 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
407 | * special mapping (even if there are underlying and valid "struct pages"). | |
408 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 409 | * |
b379d790 JH |
410 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
411 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
412 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
413 | * mapping will always honor the rule | |
6aab341e LT |
414 | * |
415 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
416 | * | |
7e675137 NP |
417 | * And for normal mappings this is false. |
418 | * | |
419 | * This restricts such mappings to be a linear translation from virtual address | |
420 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
421 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
422 | * special (because none can have been COWed). | |
b379d790 | 423 | * |
b379d790 | 424 | * |
7e675137 | 425 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
426 | * |
427 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
428 | * page" backing, however the difference is that _all_ pages with a struct | |
429 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
430 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
431 | * (which can be slower and simply not an option for some PFNMAP users). The | |
432 | * advantage is that we don't have to follow the strict linearity rule of | |
433 | * PFNMAP mappings in order to support COWable mappings. | |
434 | * | |
ee498ed7 | 435 | */ |
7e675137 NP |
436 | #ifdef __HAVE_ARCH_PTE_SPECIAL |
437 | # define HAVE_PTE_SPECIAL 1 | |
438 | #else | |
439 | # define HAVE_PTE_SPECIAL 0 | |
440 | #endif | |
441 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | |
442 | pte_t pte) | |
ee498ed7 | 443 | { |
7e675137 NP |
444 | unsigned long pfn; |
445 | ||
446 | if (HAVE_PTE_SPECIAL) { | |
447 | if (likely(!pte_special(pte))) { | |
448 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
449 | return pte_page(pte); | |
450 | } | |
451 | VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); | |
452 | return NULL; | |
453 | } | |
454 | ||
455 | /* !HAVE_PTE_SPECIAL case follows: */ | |
456 | ||
457 | pfn = pte_pfn(pte); | |
6aab341e | 458 | |
b379d790 JH |
459 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
460 | if (vma->vm_flags & VM_MIXEDMAP) { | |
461 | if (!pfn_valid(pfn)) | |
462 | return NULL; | |
463 | goto out; | |
464 | } else { | |
7e675137 NP |
465 | unsigned long off; |
466 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
467 | if (pfn == vma->vm_pgoff + off) |
468 | return NULL; | |
469 | if (!is_cow_mapping(vma->vm_flags)) | |
470 | return NULL; | |
471 | } | |
6aab341e LT |
472 | } |
473 | ||
7e675137 | 474 | VM_BUG_ON(!pfn_valid(pfn)); |
6aab341e LT |
475 | |
476 | /* | |
7e675137 | 477 | * NOTE! We still have PageReserved() pages in the page tables. |
6aab341e | 478 | * |
7e675137 | 479 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 480 | */ |
b379d790 | 481 | out: |
6aab341e | 482 | return pfn_to_page(pfn); |
ee498ed7 HD |
483 | } |
484 | ||
1da177e4 LT |
485 | /* |
486 | * copy one vm_area from one task to the other. Assumes the page tables | |
487 | * already present in the new task to be cleared in the whole range | |
488 | * covered by this vma. | |
1da177e4 LT |
489 | */ |
490 | ||
8c103762 | 491 | static inline void |
1da177e4 | 492 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
b5810039 | 493 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 494 | unsigned long addr, int *rss) |
1da177e4 | 495 | { |
b5810039 | 496 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
497 | pte_t pte = *src_pte; |
498 | struct page *page; | |
1da177e4 LT |
499 | |
500 | /* pte contains position in swap or file, so copy. */ | |
501 | if (unlikely(!pte_present(pte))) { | |
502 | if (!pte_file(pte)) { | |
0697212a CL |
503 | swp_entry_t entry = pte_to_swp_entry(pte); |
504 | ||
505 | swap_duplicate(entry); | |
1da177e4 LT |
506 | /* make sure dst_mm is on swapoff's mmlist. */ |
507 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
508 | spin_lock(&mmlist_lock); | |
f412ac08 HD |
509 | if (list_empty(&dst_mm->mmlist)) |
510 | list_add(&dst_mm->mmlist, | |
511 | &src_mm->mmlist); | |
1da177e4 LT |
512 | spin_unlock(&mmlist_lock); |
513 | } | |
0697212a CL |
514 | if (is_write_migration_entry(entry) && |
515 | is_cow_mapping(vm_flags)) { | |
516 | /* | |
517 | * COW mappings require pages in both parent | |
518 | * and child to be set to read. | |
519 | */ | |
520 | make_migration_entry_read(&entry); | |
521 | pte = swp_entry_to_pte(entry); | |
522 | set_pte_at(src_mm, addr, src_pte, pte); | |
523 | } | |
1da177e4 | 524 | } |
ae859762 | 525 | goto out_set_pte; |
1da177e4 LT |
526 | } |
527 | ||
1da177e4 LT |
528 | /* |
529 | * If it's a COW mapping, write protect it both | |
530 | * in the parent and the child | |
531 | */ | |
67121172 | 532 | if (is_cow_mapping(vm_flags)) { |
1da177e4 | 533 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 534 | pte = pte_wrprotect(pte); |
1da177e4 LT |
535 | } |
536 | ||
537 | /* | |
538 | * If it's a shared mapping, mark it clean in | |
539 | * the child | |
540 | */ | |
541 | if (vm_flags & VM_SHARED) | |
542 | pte = pte_mkclean(pte); | |
543 | pte = pte_mkold(pte); | |
6aab341e LT |
544 | |
545 | page = vm_normal_page(vma, addr, pte); | |
546 | if (page) { | |
547 | get_page(page); | |
c97a9e10 | 548 | page_dup_rmap(page, vma, addr); |
6aab341e LT |
549 | rss[!!PageAnon(page)]++; |
550 | } | |
ae859762 HD |
551 | |
552 | out_set_pte: | |
553 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
1da177e4 LT |
554 | } |
555 | ||
556 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
557 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | |
558 | unsigned long addr, unsigned long end) | |
559 | { | |
560 | pte_t *src_pte, *dst_pte; | |
c74df32c | 561 | spinlock_t *src_ptl, *dst_ptl; |
e040f218 | 562 | int progress = 0; |
8c103762 | 563 | int rss[2]; |
1da177e4 LT |
564 | |
565 | again: | |
ae859762 | 566 | rss[1] = rss[0] = 0; |
c74df32c | 567 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
1da177e4 LT |
568 | if (!dst_pte) |
569 | return -ENOMEM; | |
570 | src_pte = pte_offset_map_nested(src_pmd, addr); | |
4c21e2f2 | 571 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 572 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
6606c3e0 | 573 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 574 | |
1da177e4 LT |
575 | do { |
576 | /* | |
577 | * We are holding two locks at this point - either of them | |
578 | * could generate latencies in another task on another CPU. | |
579 | */ | |
e040f218 HD |
580 | if (progress >= 32) { |
581 | progress = 0; | |
582 | if (need_resched() || | |
95c354fe | 583 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
584 | break; |
585 | } | |
1da177e4 LT |
586 | if (pte_none(*src_pte)) { |
587 | progress++; | |
588 | continue; | |
589 | } | |
8c103762 | 590 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); |
1da177e4 LT |
591 | progress += 8; |
592 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 593 | |
6606c3e0 | 594 | arch_leave_lazy_mmu_mode(); |
c74df32c | 595 | spin_unlock(src_ptl); |
1da177e4 | 596 | pte_unmap_nested(src_pte - 1); |
ae859762 | 597 | add_mm_rss(dst_mm, rss[0], rss[1]); |
c74df32c HD |
598 | pte_unmap_unlock(dst_pte - 1, dst_ptl); |
599 | cond_resched(); | |
1da177e4 LT |
600 | if (addr != end) |
601 | goto again; | |
602 | return 0; | |
603 | } | |
604 | ||
605 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
606 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
607 | unsigned long addr, unsigned long end) | |
608 | { | |
609 | pmd_t *src_pmd, *dst_pmd; | |
610 | unsigned long next; | |
611 | ||
612 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
613 | if (!dst_pmd) | |
614 | return -ENOMEM; | |
615 | src_pmd = pmd_offset(src_pud, addr); | |
616 | do { | |
617 | next = pmd_addr_end(addr, end); | |
618 | if (pmd_none_or_clear_bad(src_pmd)) | |
619 | continue; | |
620 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
621 | vma, addr, next)) | |
622 | return -ENOMEM; | |
623 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
624 | return 0; | |
625 | } | |
626 | ||
627 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
628 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
629 | unsigned long addr, unsigned long end) | |
630 | { | |
631 | pud_t *src_pud, *dst_pud; | |
632 | unsigned long next; | |
633 | ||
634 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | |
635 | if (!dst_pud) | |
636 | return -ENOMEM; | |
637 | src_pud = pud_offset(src_pgd, addr); | |
638 | do { | |
639 | next = pud_addr_end(addr, end); | |
640 | if (pud_none_or_clear_bad(src_pud)) | |
641 | continue; | |
642 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
643 | vma, addr, next)) | |
644 | return -ENOMEM; | |
645 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
646 | return 0; | |
647 | } | |
648 | ||
649 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
650 | struct vm_area_struct *vma) | |
651 | { | |
652 | pgd_t *src_pgd, *dst_pgd; | |
653 | unsigned long next; | |
654 | unsigned long addr = vma->vm_start; | |
655 | unsigned long end = vma->vm_end; | |
cddb8a5c | 656 | int ret; |
1da177e4 | 657 | |
d992895b NP |
658 | /* |
659 | * Don't copy ptes where a page fault will fill them correctly. | |
660 | * Fork becomes much lighter when there are big shared or private | |
661 | * readonly mappings. The tradeoff is that copy_page_range is more | |
662 | * efficient than faulting. | |
663 | */ | |
4d7672b4 | 664 | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { |
d992895b NP |
665 | if (!vma->anon_vma) |
666 | return 0; | |
667 | } | |
668 | ||
1da177e4 LT |
669 | if (is_vm_hugetlb_page(vma)) |
670 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
671 | ||
cddb8a5c AA |
672 | /* |
673 | * We need to invalidate the secondary MMU mappings only when | |
674 | * there could be a permission downgrade on the ptes of the | |
675 | * parent mm. And a permission downgrade will only happen if | |
676 | * is_cow_mapping() returns true. | |
677 | */ | |
678 | if (is_cow_mapping(vma->vm_flags)) | |
679 | mmu_notifier_invalidate_range_start(src_mm, addr, end); | |
680 | ||
681 | ret = 0; | |
1da177e4 LT |
682 | dst_pgd = pgd_offset(dst_mm, addr); |
683 | src_pgd = pgd_offset(src_mm, addr); | |
684 | do { | |
685 | next = pgd_addr_end(addr, end); | |
686 | if (pgd_none_or_clear_bad(src_pgd)) | |
687 | continue; | |
cddb8a5c AA |
688 | if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, |
689 | vma, addr, next))) { | |
690 | ret = -ENOMEM; | |
691 | break; | |
692 | } | |
1da177e4 | 693 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
cddb8a5c AA |
694 | |
695 | if (is_cow_mapping(vma->vm_flags)) | |
696 | mmu_notifier_invalidate_range_end(src_mm, | |
697 | vma->vm_start, end); | |
698 | return ret; | |
1da177e4 LT |
699 | } |
700 | ||
51c6f666 | 701 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 702 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 703 | unsigned long addr, unsigned long end, |
51c6f666 | 704 | long *zap_work, struct zap_details *details) |
1da177e4 | 705 | { |
b5810039 | 706 | struct mm_struct *mm = tlb->mm; |
1da177e4 | 707 | pte_t *pte; |
508034a3 | 708 | spinlock_t *ptl; |
ae859762 HD |
709 | int file_rss = 0; |
710 | int anon_rss = 0; | |
1da177e4 | 711 | |
508034a3 | 712 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
6606c3e0 | 713 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
714 | do { |
715 | pte_t ptent = *pte; | |
51c6f666 RH |
716 | if (pte_none(ptent)) { |
717 | (*zap_work)--; | |
1da177e4 | 718 | continue; |
51c6f666 | 719 | } |
6f5e6b9e HD |
720 | |
721 | (*zap_work) -= PAGE_SIZE; | |
722 | ||
1da177e4 | 723 | if (pte_present(ptent)) { |
ee498ed7 | 724 | struct page *page; |
51c6f666 | 725 | |
6aab341e | 726 | page = vm_normal_page(vma, addr, ptent); |
1da177e4 LT |
727 | if (unlikely(details) && page) { |
728 | /* | |
729 | * unmap_shared_mapping_pages() wants to | |
730 | * invalidate cache without truncating: | |
731 | * unmap shared but keep private pages. | |
732 | */ | |
733 | if (details->check_mapping && | |
734 | details->check_mapping != page->mapping) | |
735 | continue; | |
736 | /* | |
737 | * Each page->index must be checked when | |
738 | * invalidating or truncating nonlinear. | |
739 | */ | |
740 | if (details->nonlinear_vma && | |
741 | (page->index < details->first_index || | |
742 | page->index > details->last_index)) | |
743 | continue; | |
744 | } | |
b5810039 | 745 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 746 | tlb->fullmm); |
1da177e4 LT |
747 | tlb_remove_tlb_entry(tlb, pte, addr); |
748 | if (unlikely(!page)) | |
749 | continue; | |
750 | if (unlikely(details) && details->nonlinear_vma | |
751 | && linear_page_index(details->nonlinear_vma, | |
752 | addr) != page->index) | |
b5810039 | 753 | set_pte_at(mm, addr, pte, |
1da177e4 | 754 | pgoff_to_pte(page->index)); |
1da177e4 | 755 | if (PageAnon(page)) |
86d912f4 | 756 | anon_rss--; |
6237bcd9 HD |
757 | else { |
758 | if (pte_dirty(ptent)) | |
759 | set_page_dirty(page); | |
760 | if (pte_young(ptent)) | |
daa88c8d | 761 | SetPageReferenced(page); |
86d912f4 | 762 | file_rss--; |
6237bcd9 | 763 | } |
7de6b805 | 764 | page_remove_rmap(page, vma); |
1da177e4 LT |
765 | tlb_remove_page(tlb, page); |
766 | continue; | |
767 | } | |
768 | /* | |
769 | * If details->check_mapping, we leave swap entries; | |
770 | * if details->nonlinear_vma, we leave file entries. | |
771 | */ | |
772 | if (unlikely(details)) | |
773 | continue; | |
774 | if (!pte_file(ptent)) | |
775 | free_swap_and_cache(pte_to_swp_entry(ptent)); | |
9888a1ca | 776 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
51c6f666 | 777 | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); |
ae859762 | 778 | |
86d912f4 | 779 | add_mm_rss(mm, file_rss, anon_rss); |
6606c3e0 | 780 | arch_leave_lazy_mmu_mode(); |
508034a3 | 781 | pte_unmap_unlock(pte - 1, ptl); |
51c6f666 RH |
782 | |
783 | return addr; | |
1da177e4 LT |
784 | } |
785 | ||
51c6f666 | 786 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 787 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 788 | unsigned long addr, unsigned long end, |
51c6f666 | 789 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
790 | { |
791 | pmd_t *pmd; | |
792 | unsigned long next; | |
793 | ||
794 | pmd = pmd_offset(pud, addr); | |
795 | do { | |
796 | next = pmd_addr_end(addr, end); | |
51c6f666 RH |
797 | if (pmd_none_or_clear_bad(pmd)) { |
798 | (*zap_work)--; | |
1da177e4 | 799 | continue; |
51c6f666 RH |
800 | } |
801 | next = zap_pte_range(tlb, vma, pmd, addr, next, | |
802 | zap_work, details); | |
803 | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); | |
804 | ||
805 | return addr; | |
1da177e4 LT |
806 | } |
807 | ||
51c6f666 | 808 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
b5810039 | 809 | struct vm_area_struct *vma, pgd_t *pgd, |
1da177e4 | 810 | unsigned long addr, unsigned long end, |
51c6f666 | 811 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
812 | { |
813 | pud_t *pud; | |
814 | unsigned long next; | |
815 | ||
816 | pud = pud_offset(pgd, addr); | |
817 | do { | |
818 | next = pud_addr_end(addr, end); | |
51c6f666 RH |
819 | if (pud_none_or_clear_bad(pud)) { |
820 | (*zap_work)--; | |
1da177e4 | 821 | continue; |
51c6f666 RH |
822 | } |
823 | next = zap_pmd_range(tlb, vma, pud, addr, next, | |
824 | zap_work, details); | |
825 | } while (pud++, addr = next, (addr != end && *zap_work > 0)); | |
826 | ||
827 | return addr; | |
1da177e4 LT |
828 | } |
829 | ||
51c6f666 RH |
830 | static unsigned long unmap_page_range(struct mmu_gather *tlb, |
831 | struct vm_area_struct *vma, | |
1da177e4 | 832 | unsigned long addr, unsigned long end, |
51c6f666 | 833 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
834 | { |
835 | pgd_t *pgd; | |
836 | unsigned long next; | |
837 | ||
838 | if (details && !details->check_mapping && !details->nonlinear_vma) | |
839 | details = NULL; | |
840 | ||
841 | BUG_ON(addr >= end); | |
842 | tlb_start_vma(tlb, vma); | |
843 | pgd = pgd_offset(vma->vm_mm, addr); | |
844 | do { | |
845 | next = pgd_addr_end(addr, end); | |
51c6f666 RH |
846 | if (pgd_none_or_clear_bad(pgd)) { |
847 | (*zap_work)--; | |
1da177e4 | 848 | continue; |
51c6f666 RH |
849 | } |
850 | next = zap_pud_range(tlb, vma, pgd, addr, next, | |
851 | zap_work, details); | |
852 | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); | |
1da177e4 | 853 | tlb_end_vma(tlb, vma); |
51c6f666 RH |
854 | |
855 | return addr; | |
1da177e4 LT |
856 | } |
857 | ||
858 | #ifdef CONFIG_PREEMPT | |
859 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) | |
860 | #else | |
861 | /* No preempt: go for improved straight-line efficiency */ | |
862 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) | |
863 | #endif | |
864 | ||
865 | /** | |
866 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
867 | * @tlbp: address of the caller's struct mmu_gather | |
1da177e4 LT |
868 | * @vma: the starting vma |
869 | * @start_addr: virtual address at which to start unmapping | |
870 | * @end_addr: virtual address at which to end unmapping | |
871 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | |
872 | * @details: details of nonlinear truncation or shared cache invalidation | |
873 | * | |
ee39b37b | 874 | * Returns the end address of the unmapping (restart addr if interrupted). |
1da177e4 | 875 | * |
508034a3 | 876 | * Unmap all pages in the vma list. |
1da177e4 | 877 | * |
508034a3 HD |
878 | * We aim to not hold locks for too long (for scheduling latency reasons). |
879 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | |
1da177e4 LT |
880 | * return the ending mmu_gather to the caller. |
881 | * | |
882 | * Only addresses between `start' and `end' will be unmapped. | |
883 | * | |
884 | * The VMA list must be sorted in ascending virtual address order. | |
885 | * | |
886 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
887 | * range after unmap_vmas() returns. So the only responsibility here is to | |
888 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
889 | * drops the lock and schedules. | |
890 | */ | |
508034a3 | 891 | unsigned long unmap_vmas(struct mmu_gather **tlbp, |
1da177e4 LT |
892 | struct vm_area_struct *vma, unsigned long start_addr, |
893 | unsigned long end_addr, unsigned long *nr_accounted, | |
894 | struct zap_details *details) | |
895 | { | |
51c6f666 | 896 | long zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
897 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ |
898 | int tlb_start_valid = 0; | |
ee39b37b | 899 | unsigned long start = start_addr; |
1da177e4 | 900 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
4d6ddfa9 | 901 | int fullmm = (*tlbp)->fullmm; |
cddb8a5c | 902 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 903 | |
cddb8a5c | 904 | mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); |
1da177e4 | 905 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { |
1da177e4 LT |
906 | unsigned long end; |
907 | ||
908 | start = max(vma->vm_start, start_addr); | |
909 | if (start >= vma->vm_end) | |
910 | continue; | |
911 | end = min(vma->vm_end, end_addr); | |
912 | if (end <= vma->vm_start) | |
913 | continue; | |
914 | ||
915 | if (vma->vm_flags & VM_ACCOUNT) | |
916 | *nr_accounted += (end - start) >> PAGE_SHIFT; | |
917 | ||
1da177e4 | 918 | while (start != end) { |
1da177e4 LT |
919 | if (!tlb_start_valid) { |
920 | tlb_start = start; | |
921 | tlb_start_valid = 1; | |
922 | } | |
923 | ||
51c6f666 | 924 | if (unlikely(is_vm_hugetlb_page(vma))) { |
a137e1cc AK |
925 | /* |
926 | * It is undesirable to test vma->vm_file as it | |
927 | * should be non-null for valid hugetlb area. | |
928 | * However, vm_file will be NULL in the error | |
929 | * cleanup path of do_mmap_pgoff. When | |
930 | * hugetlbfs ->mmap method fails, | |
931 | * do_mmap_pgoff() nullifies vma->vm_file | |
932 | * before calling this function to clean up. | |
933 | * Since no pte has actually been setup, it is | |
934 | * safe to do nothing in this case. | |
935 | */ | |
936 | if (vma->vm_file) { | |
937 | unmap_hugepage_range(vma, start, end, NULL); | |
938 | zap_work -= (end - start) / | |
a5516438 | 939 | pages_per_huge_page(hstate_vma(vma)); |
a137e1cc AK |
940 | } |
941 | ||
51c6f666 RH |
942 | start = end; |
943 | } else | |
944 | start = unmap_page_range(*tlbp, vma, | |
945 | start, end, &zap_work, details); | |
946 | ||
947 | if (zap_work > 0) { | |
948 | BUG_ON(start != end); | |
949 | break; | |
1da177e4 LT |
950 | } |
951 | ||
1da177e4 LT |
952 | tlb_finish_mmu(*tlbp, tlb_start, start); |
953 | ||
954 | if (need_resched() || | |
95c354fe | 955 | (i_mmap_lock && spin_needbreak(i_mmap_lock))) { |
1da177e4 | 956 | if (i_mmap_lock) { |
508034a3 | 957 | *tlbp = NULL; |
1da177e4 LT |
958 | goto out; |
959 | } | |
1da177e4 | 960 | cond_resched(); |
1da177e4 LT |
961 | } |
962 | ||
508034a3 | 963 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); |
1da177e4 | 964 | tlb_start_valid = 0; |
51c6f666 | 965 | zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
966 | } |
967 | } | |
968 | out: | |
cddb8a5c | 969 | mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); |
ee39b37b | 970 | return start; /* which is now the end (or restart) address */ |
1da177e4 LT |
971 | } |
972 | ||
973 | /** | |
974 | * zap_page_range - remove user pages in a given range | |
975 | * @vma: vm_area_struct holding the applicable pages | |
976 | * @address: starting address of pages to zap | |
977 | * @size: number of bytes to zap | |
978 | * @details: details of nonlinear truncation or shared cache invalidation | |
979 | */ | |
ee39b37b | 980 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
981 | unsigned long size, struct zap_details *details) |
982 | { | |
983 | struct mm_struct *mm = vma->vm_mm; | |
984 | struct mmu_gather *tlb; | |
985 | unsigned long end = address + size; | |
986 | unsigned long nr_accounted = 0; | |
987 | ||
1da177e4 | 988 | lru_add_drain(); |
1da177e4 | 989 | tlb = tlb_gather_mmu(mm, 0); |
365e9c87 | 990 | update_hiwater_rss(mm); |
508034a3 HD |
991 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); |
992 | if (tlb) | |
993 | tlb_finish_mmu(tlb, address, end); | |
ee39b37b | 994 | return end; |
1da177e4 LT |
995 | } |
996 | ||
c627f9cc JS |
997 | /** |
998 | * zap_vma_ptes - remove ptes mapping the vma | |
999 | * @vma: vm_area_struct holding ptes to be zapped | |
1000 | * @address: starting address of pages to zap | |
1001 | * @size: number of bytes to zap | |
1002 | * | |
1003 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
1004 | * | |
1005 | * The entire address range must be fully contained within the vma. | |
1006 | * | |
1007 | * Returns 0 if successful. | |
1008 | */ | |
1009 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | |
1010 | unsigned long size) | |
1011 | { | |
1012 | if (address < vma->vm_start || address + size > vma->vm_end || | |
1013 | !(vma->vm_flags & VM_PFNMAP)) | |
1014 | return -1; | |
1015 | zap_page_range(vma, address, size, NULL); | |
1016 | return 0; | |
1017 | } | |
1018 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
1019 | ||
1da177e4 LT |
1020 | /* |
1021 | * Do a quick page-table lookup for a single page. | |
1da177e4 | 1022 | */ |
6aab341e | 1023 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, |
deceb6cd | 1024 | unsigned int flags) |
1da177e4 LT |
1025 | { |
1026 | pgd_t *pgd; | |
1027 | pud_t *pud; | |
1028 | pmd_t *pmd; | |
1029 | pte_t *ptep, pte; | |
deceb6cd | 1030 | spinlock_t *ptl; |
1da177e4 | 1031 | struct page *page; |
6aab341e | 1032 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 1033 | |
deceb6cd HD |
1034 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
1035 | if (!IS_ERR(page)) { | |
1036 | BUG_ON(flags & FOLL_GET); | |
1037 | goto out; | |
1038 | } | |
1da177e4 | 1039 | |
deceb6cd | 1040 | page = NULL; |
1da177e4 LT |
1041 | pgd = pgd_offset(mm, address); |
1042 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
deceb6cd | 1043 | goto no_page_table; |
1da177e4 LT |
1044 | |
1045 | pud = pud_offset(pgd, address); | |
ceb86879 | 1046 | if (pud_none(*pud)) |
deceb6cd | 1047 | goto no_page_table; |
ceb86879 AK |
1048 | if (pud_huge(*pud)) { |
1049 | BUG_ON(flags & FOLL_GET); | |
1050 | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); | |
1051 | goto out; | |
1052 | } | |
1053 | if (unlikely(pud_bad(*pud))) | |
1054 | goto no_page_table; | |
1055 | ||
1da177e4 | 1056 | pmd = pmd_offset(pud, address); |
aeed5fce | 1057 | if (pmd_none(*pmd)) |
deceb6cd | 1058 | goto no_page_table; |
deceb6cd HD |
1059 | if (pmd_huge(*pmd)) { |
1060 | BUG_ON(flags & FOLL_GET); | |
1061 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | |
1da177e4 | 1062 | goto out; |
deceb6cd | 1063 | } |
aeed5fce HD |
1064 | if (unlikely(pmd_bad(*pmd))) |
1065 | goto no_page_table; | |
1066 | ||
deceb6cd | 1067 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
1068 | |
1069 | pte = *ptep; | |
deceb6cd | 1070 | if (!pte_present(pte)) |
89f5b7da | 1071 | goto no_page; |
deceb6cd HD |
1072 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
1073 | goto unlock; | |
6aab341e LT |
1074 | page = vm_normal_page(vma, address, pte); |
1075 | if (unlikely(!page)) | |
89f5b7da | 1076 | goto bad_page; |
1da177e4 | 1077 | |
deceb6cd HD |
1078 | if (flags & FOLL_GET) |
1079 | get_page(page); | |
1080 | if (flags & FOLL_TOUCH) { | |
1081 | if ((flags & FOLL_WRITE) && | |
1082 | !pte_dirty(pte) && !PageDirty(page)) | |
1083 | set_page_dirty(page); | |
1084 | mark_page_accessed(page); | |
1085 | } | |
1086 | unlock: | |
1087 | pte_unmap_unlock(ptep, ptl); | |
1da177e4 | 1088 | out: |
deceb6cd | 1089 | return page; |
1da177e4 | 1090 | |
89f5b7da LT |
1091 | bad_page: |
1092 | pte_unmap_unlock(ptep, ptl); | |
1093 | return ERR_PTR(-EFAULT); | |
1094 | ||
1095 | no_page: | |
1096 | pte_unmap_unlock(ptep, ptl); | |
1097 | if (!pte_none(pte)) | |
1098 | return page; | |
1099 | /* Fall through to ZERO_PAGE handling */ | |
deceb6cd HD |
1100 | no_page_table: |
1101 | /* | |
1102 | * When core dumping an enormous anonymous area that nobody | |
1103 | * has touched so far, we don't want to allocate page tables. | |
1104 | */ | |
1105 | if (flags & FOLL_ANON) { | |
557ed1fa | 1106 | page = ZERO_PAGE(0); |
deceb6cd HD |
1107 | if (flags & FOLL_GET) |
1108 | get_page(page); | |
1109 | BUG_ON(flags & FOLL_WRITE); | |
1110 | } | |
1111 | return page; | |
1da177e4 LT |
1112 | } |
1113 | ||
672ca28e LT |
1114 | /* Can we do the FOLL_ANON optimization? */ |
1115 | static inline int use_zero_page(struct vm_area_struct *vma) | |
1116 | { | |
1117 | /* | |
1118 | * We don't want to optimize FOLL_ANON for make_pages_present() | |
1119 | * when it tries to page in a VM_LOCKED region. As to VM_SHARED, | |
1120 | * we want to get the page from the page tables to make sure | |
1121 | * that we serialize and update with any other user of that | |
1122 | * mapping. | |
1123 | */ | |
1124 | if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) | |
1125 | return 0; | |
1126 | /* | |
0d71d10a | 1127 | * And if we have a fault routine, it's not an anonymous region. |
672ca28e | 1128 | */ |
0d71d10a | 1129 | return !vma->vm_ops || !vma->vm_ops->fault; |
672ca28e LT |
1130 | } |
1131 | ||
1da177e4 LT |
1132 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
1133 | unsigned long start, int len, int write, int force, | |
1134 | struct page **pages, struct vm_area_struct **vmas) | |
1135 | { | |
1136 | int i; | |
deceb6cd | 1137 | unsigned int vm_flags; |
1da177e4 | 1138 | |
900cf086 JC |
1139 | if (len <= 0) |
1140 | return 0; | |
1da177e4 LT |
1141 | /* |
1142 | * Require read or write permissions. | |
1143 | * If 'force' is set, we only require the "MAY" flags. | |
1144 | */ | |
deceb6cd HD |
1145 | vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
1146 | vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1da177e4 LT |
1147 | i = 0; |
1148 | ||
1149 | do { | |
deceb6cd HD |
1150 | struct vm_area_struct *vma; |
1151 | unsigned int foll_flags; | |
1da177e4 LT |
1152 | |
1153 | vma = find_extend_vma(mm, start); | |
1154 | if (!vma && in_gate_area(tsk, start)) { | |
1155 | unsigned long pg = start & PAGE_MASK; | |
1156 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | |
1157 | pgd_t *pgd; | |
1158 | pud_t *pud; | |
1159 | pmd_t *pmd; | |
1160 | pte_t *pte; | |
1161 | if (write) /* user gate pages are read-only */ | |
1162 | return i ? : -EFAULT; | |
1163 | if (pg > TASK_SIZE) | |
1164 | pgd = pgd_offset_k(pg); | |
1165 | else | |
1166 | pgd = pgd_offset_gate(mm, pg); | |
1167 | BUG_ON(pgd_none(*pgd)); | |
1168 | pud = pud_offset(pgd, pg); | |
1169 | BUG_ON(pud_none(*pud)); | |
1170 | pmd = pmd_offset(pud, pg); | |
690dbe1c HD |
1171 | if (pmd_none(*pmd)) |
1172 | return i ? : -EFAULT; | |
1da177e4 | 1173 | pte = pte_offset_map(pmd, pg); |
690dbe1c HD |
1174 | if (pte_none(*pte)) { |
1175 | pte_unmap(pte); | |
1176 | return i ? : -EFAULT; | |
1177 | } | |
1da177e4 | 1178 | if (pages) { |
fa2a455b | 1179 | struct page *page = vm_normal_page(gate_vma, start, *pte); |
6aab341e LT |
1180 | pages[i] = page; |
1181 | if (page) | |
1182 | get_page(page); | |
1da177e4 LT |
1183 | } |
1184 | pte_unmap(pte); | |
1185 | if (vmas) | |
1186 | vmas[i] = gate_vma; | |
1187 | i++; | |
1188 | start += PAGE_SIZE; | |
1189 | len--; | |
1190 | continue; | |
1191 | } | |
1192 | ||
1ff80389 | 1193 | if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) |
deceb6cd | 1194 | || !(vm_flags & vma->vm_flags)) |
1da177e4 LT |
1195 | return i ? : -EFAULT; |
1196 | ||
1197 | if (is_vm_hugetlb_page(vma)) { | |
1198 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
5b23dbe8 | 1199 | &start, &len, i, write); |
1da177e4 LT |
1200 | continue; |
1201 | } | |
deceb6cd HD |
1202 | |
1203 | foll_flags = FOLL_TOUCH; | |
1204 | if (pages) | |
1205 | foll_flags |= FOLL_GET; | |
672ca28e | 1206 | if (!write && use_zero_page(vma)) |
deceb6cd HD |
1207 | foll_flags |= FOLL_ANON; |
1208 | ||
1da177e4 | 1209 | do { |
08ef4729 | 1210 | struct page *page; |
1da177e4 | 1211 | |
462e00cc ES |
1212 | /* |
1213 | * If tsk is ooming, cut off its access to large memory | |
1214 | * allocations. It has a pending SIGKILL, but it can't | |
1215 | * be processed until returning to user space. | |
1216 | */ | |
1217 | if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) | |
7a36a752 | 1218 | return i ? i : -ENOMEM; |
462e00cc | 1219 | |
deceb6cd HD |
1220 | if (write) |
1221 | foll_flags |= FOLL_WRITE; | |
a68d2ebc | 1222 | |
deceb6cd | 1223 | cond_resched(); |
6aab341e | 1224 | while (!(page = follow_page(vma, start, foll_flags))) { |
deceb6cd | 1225 | int ret; |
83c54070 | 1226 | ret = handle_mm_fault(mm, vma, start, |
deceb6cd | 1227 | foll_flags & FOLL_WRITE); |
83c54070 NP |
1228 | if (ret & VM_FAULT_ERROR) { |
1229 | if (ret & VM_FAULT_OOM) | |
1230 | return i ? i : -ENOMEM; | |
1231 | else if (ret & VM_FAULT_SIGBUS) | |
1232 | return i ? i : -EFAULT; | |
1233 | BUG(); | |
1234 | } | |
1235 | if (ret & VM_FAULT_MAJOR) | |
1236 | tsk->maj_flt++; | |
1237 | else | |
1238 | tsk->min_flt++; | |
1239 | ||
a68d2ebc | 1240 | /* |
83c54070 NP |
1241 | * The VM_FAULT_WRITE bit tells us that |
1242 | * do_wp_page has broken COW when necessary, | |
1243 | * even if maybe_mkwrite decided not to set | |
1244 | * pte_write. We can thus safely do subsequent | |
1245 | * page lookups as if they were reads. | |
a68d2ebc LT |
1246 | */ |
1247 | if (ret & VM_FAULT_WRITE) | |
deceb6cd | 1248 | foll_flags &= ~FOLL_WRITE; |
83c54070 | 1249 | |
7f7bbbe5 | 1250 | cond_resched(); |
1da177e4 | 1251 | } |
89f5b7da LT |
1252 | if (IS_ERR(page)) |
1253 | return i ? i : PTR_ERR(page); | |
1da177e4 | 1254 | if (pages) { |
08ef4729 | 1255 | pages[i] = page; |
03beb076 | 1256 | |
a6f36be3 | 1257 | flush_anon_page(vma, page, start); |
08ef4729 | 1258 | flush_dcache_page(page); |
1da177e4 LT |
1259 | } |
1260 | if (vmas) | |
1261 | vmas[i] = vma; | |
1262 | i++; | |
1263 | start += PAGE_SIZE; | |
1264 | len--; | |
08ef4729 | 1265 | } while (len && start < vma->vm_end); |
08ef4729 | 1266 | } while (len); |
1da177e4 LT |
1267 | return i; |
1268 | } | |
1da177e4 LT |
1269 | EXPORT_SYMBOL(get_user_pages); |
1270 | ||
920c7a5d HH |
1271 | pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
1272 | spinlock_t **ptl) | |
c9cfcddf LT |
1273 | { |
1274 | pgd_t * pgd = pgd_offset(mm, addr); | |
1275 | pud_t * pud = pud_alloc(mm, pgd, addr); | |
1276 | if (pud) { | |
49c91fb0 | 1277 | pmd_t * pmd = pmd_alloc(mm, pud, addr); |
c9cfcddf LT |
1278 | if (pmd) |
1279 | return pte_alloc_map_lock(mm, pmd, addr, ptl); | |
1280 | } | |
1281 | return NULL; | |
1282 | } | |
1283 | ||
238f58d8 LT |
1284 | /* |
1285 | * This is the old fallback for page remapping. | |
1286 | * | |
1287 | * For historical reasons, it only allows reserved pages. Only | |
1288 | * old drivers should use this, and they needed to mark their | |
1289 | * pages reserved for the old functions anyway. | |
1290 | */ | |
423bad60 NP |
1291 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1292 | struct page *page, pgprot_t prot) | |
238f58d8 | 1293 | { |
423bad60 | 1294 | struct mm_struct *mm = vma->vm_mm; |
238f58d8 | 1295 | int retval; |
c9cfcddf | 1296 | pte_t *pte; |
8a9f3ccd BS |
1297 | spinlock_t *ptl; |
1298 | ||
e1a1cd59 | 1299 | retval = mem_cgroup_charge(page, mm, GFP_KERNEL); |
8a9f3ccd BS |
1300 | if (retval) |
1301 | goto out; | |
238f58d8 LT |
1302 | |
1303 | retval = -EINVAL; | |
a145dd41 | 1304 | if (PageAnon(page)) |
8a9f3ccd | 1305 | goto out_uncharge; |
238f58d8 LT |
1306 | retval = -ENOMEM; |
1307 | flush_dcache_page(page); | |
c9cfcddf | 1308 | pte = get_locked_pte(mm, addr, &ptl); |
238f58d8 | 1309 | if (!pte) |
8a9f3ccd | 1310 | goto out_uncharge; |
238f58d8 LT |
1311 | retval = -EBUSY; |
1312 | if (!pte_none(*pte)) | |
1313 | goto out_unlock; | |
1314 | ||
1315 | /* Ok, finally just insert the thing.. */ | |
1316 | get_page(page); | |
1317 | inc_mm_counter(mm, file_rss); | |
1318 | page_add_file_rmap(page); | |
1319 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | |
1320 | ||
1321 | retval = 0; | |
8a9f3ccd BS |
1322 | pte_unmap_unlock(pte, ptl); |
1323 | return retval; | |
238f58d8 LT |
1324 | out_unlock: |
1325 | pte_unmap_unlock(pte, ptl); | |
8a9f3ccd BS |
1326 | out_uncharge: |
1327 | mem_cgroup_uncharge_page(page); | |
238f58d8 LT |
1328 | out: |
1329 | return retval; | |
1330 | } | |
1331 | ||
bfa5bf6d REB |
1332 | /** |
1333 | * vm_insert_page - insert single page into user vma | |
1334 | * @vma: user vma to map to | |
1335 | * @addr: target user address of this page | |
1336 | * @page: source kernel page | |
1337 | * | |
a145dd41 LT |
1338 | * This allows drivers to insert individual pages they've allocated |
1339 | * into a user vma. | |
1340 | * | |
1341 | * The page has to be a nice clean _individual_ kernel allocation. | |
1342 | * If you allocate a compound page, you need to have marked it as | |
1343 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1344 | * (see split_page()). |
a145dd41 LT |
1345 | * |
1346 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1347 | * took an arbitrary page protection parameter. This doesn't allow | |
1348 | * that. Your vma protection will have to be set up correctly, which | |
1349 | * means that if you want a shared writable mapping, you'd better | |
1350 | * ask for a shared writable mapping! | |
1351 | * | |
1352 | * The page does not need to be reserved. | |
1353 | */ | |
423bad60 NP |
1354 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
1355 | struct page *page) | |
a145dd41 LT |
1356 | { |
1357 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1358 | return -EFAULT; | |
1359 | if (!page_count(page)) | |
1360 | return -EINVAL; | |
4d7672b4 | 1361 | vma->vm_flags |= VM_INSERTPAGE; |
423bad60 | 1362 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 1363 | } |
e3c3374f | 1364 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1365 | |
423bad60 NP |
1366 | static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
1367 | unsigned long pfn, pgprot_t prot) | |
1368 | { | |
1369 | struct mm_struct *mm = vma->vm_mm; | |
1370 | int retval; | |
1371 | pte_t *pte, entry; | |
1372 | spinlock_t *ptl; | |
1373 | ||
1374 | retval = -ENOMEM; | |
1375 | pte = get_locked_pte(mm, addr, &ptl); | |
1376 | if (!pte) | |
1377 | goto out; | |
1378 | retval = -EBUSY; | |
1379 | if (!pte_none(*pte)) | |
1380 | goto out_unlock; | |
1381 | ||
1382 | /* Ok, finally just insert the thing.. */ | |
1383 | entry = pte_mkspecial(pfn_pte(pfn, prot)); | |
1384 | set_pte_at(mm, addr, pte, entry); | |
1385 | update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ | |
1386 | ||
1387 | retval = 0; | |
1388 | out_unlock: | |
1389 | pte_unmap_unlock(pte, ptl); | |
1390 | out: | |
1391 | return retval; | |
1392 | } | |
1393 | ||
e0dc0d8f NP |
1394 | /** |
1395 | * vm_insert_pfn - insert single pfn into user vma | |
1396 | * @vma: user vma to map to | |
1397 | * @addr: target user address of this page | |
1398 | * @pfn: source kernel pfn | |
1399 | * | |
1400 | * Similar to vm_inert_page, this allows drivers to insert individual pages | |
1401 | * they've allocated into a user vma. Same comments apply. | |
1402 | * | |
1403 | * This function should only be called from a vm_ops->fault handler, and | |
1404 | * in that case the handler should return NULL. | |
0d71d10a NP |
1405 | * |
1406 | * vma cannot be a COW mapping. | |
1407 | * | |
1408 | * As this is called only for pages that do not currently exist, we | |
1409 | * do not need to flush old virtual caches or the TLB. | |
e0dc0d8f NP |
1410 | */ |
1411 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
423bad60 | 1412 | unsigned long pfn) |
e0dc0d8f | 1413 | { |
7e675137 NP |
1414 | /* |
1415 | * Technically, architectures with pte_special can avoid all these | |
1416 | * restrictions (same for remap_pfn_range). However we would like | |
1417 | * consistency in testing and feature parity among all, so we should | |
1418 | * try to keep these invariants in place for everybody. | |
1419 | */ | |
b379d790 JH |
1420 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); |
1421 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
1422 | (VM_PFNMAP|VM_MIXEDMAP)); | |
1423 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
1424 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
e0dc0d8f | 1425 | |
423bad60 NP |
1426 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1427 | return -EFAULT; | |
1428 | return insert_pfn(vma, addr, pfn, vma->vm_page_prot); | |
1429 | } | |
1430 | EXPORT_SYMBOL(vm_insert_pfn); | |
e0dc0d8f | 1431 | |
423bad60 NP |
1432 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
1433 | unsigned long pfn) | |
1434 | { | |
1435 | BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); | |
e0dc0d8f | 1436 | |
423bad60 NP |
1437 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1438 | return -EFAULT; | |
e0dc0d8f | 1439 | |
423bad60 NP |
1440 | /* |
1441 | * If we don't have pte special, then we have to use the pfn_valid() | |
1442 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
1443 | * refcount the page if pfn_valid is true (hence insert_page rather | |
1444 | * than insert_pfn). | |
1445 | */ | |
1446 | if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { | |
1447 | struct page *page; | |
1448 | ||
1449 | page = pfn_to_page(pfn); | |
1450 | return insert_page(vma, addr, page, vma->vm_page_prot); | |
1451 | } | |
1452 | return insert_pfn(vma, addr, pfn, vma->vm_page_prot); | |
e0dc0d8f | 1453 | } |
423bad60 | 1454 | EXPORT_SYMBOL(vm_insert_mixed); |
e0dc0d8f | 1455 | |
1da177e4 LT |
1456 | /* |
1457 | * maps a range of physical memory into the requested pages. the old | |
1458 | * mappings are removed. any references to nonexistent pages results | |
1459 | * in null mappings (currently treated as "copy-on-access") | |
1460 | */ | |
1461 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1462 | unsigned long addr, unsigned long end, | |
1463 | unsigned long pfn, pgprot_t prot) | |
1464 | { | |
1465 | pte_t *pte; | |
c74df32c | 1466 | spinlock_t *ptl; |
1da177e4 | 1467 | |
c74df32c | 1468 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1469 | if (!pte) |
1470 | return -ENOMEM; | |
6606c3e0 | 1471 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1472 | do { |
1473 | BUG_ON(!pte_none(*pte)); | |
7e675137 | 1474 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
1475 | pfn++; |
1476 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 1477 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1478 | pte_unmap_unlock(pte - 1, ptl); |
1da177e4 LT |
1479 | return 0; |
1480 | } | |
1481 | ||
1482 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1483 | unsigned long addr, unsigned long end, | |
1484 | unsigned long pfn, pgprot_t prot) | |
1485 | { | |
1486 | pmd_t *pmd; | |
1487 | unsigned long next; | |
1488 | ||
1489 | pfn -= addr >> PAGE_SHIFT; | |
1490 | pmd = pmd_alloc(mm, pud, addr); | |
1491 | if (!pmd) | |
1492 | return -ENOMEM; | |
1493 | do { | |
1494 | next = pmd_addr_end(addr, end); | |
1495 | if (remap_pte_range(mm, pmd, addr, next, | |
1496 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1497 | return -ENOMEM; | |
1498 | } while (pmd++, addr = next, addr != end); | |
1499 | return 0; | |
1500 | } | |
1501 | ||
1502 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1503 | unsigned long addr, unsigned long end, | |
1504 | unsigned long pfn, pgprot_t prot) | |
1505 | { | |
1506 | pud_t *pud; | |
1507 | unsigned long next; | |
1508 | ||
1509 | pfn -= addr >> PAGE_SHIFT; | |
1510 | pud = pud_alloc(mm, pgd, addr); | |
1511 | if (!pud) | |
1512 | return -ENOMEM; | |
1513 | do { | |
1514 | next = pud_addr_end(addr, end); | |
1515 | if (remap_pmd_range(mm, pud, addr, next, | |
1516 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1517 | return -ENOMEM; | |
1518 | } while (pud++, addr = next, addr != end); | |
1519 | return 0; | |
1520 | } | |
1521 | ||
bfa5bf6d REB |
1522 | /** |
1523 | * remap_pfn_range - remap kernel memory to userspace | |
1524 | * @vma: user vma to map to | |
1525 | * @addr: target user address to start at | |
1526 | * @pfn: physical address of kernel memory | |
1527 | * @size: size of map area | |
1528 | * @prot: page protection flags for this mapping | |
1529 | * | |
1530 | * Note: this is only safe if the mm semaphore is held when called. | |
1531 | */ | |
1da177e4 LT |
1532 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1533 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1534 | { | |
1535 | pgd_t *pgd; | |
1536 | unsigned long next; | |
2d15cab8 | 1537 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 LT |
1538 | struct mm_struct *mm = vma->vm_mm; |
1539 | int err; | |
1540 | ||
1541 | /* | |
1542 | * Physically remapped pages are special. Tell the | |
1543 | * rest of the world about it: | |
1544 | * VM_IO tells people not to look at these pages | |
1545 | * (accesses can have side effects). | |
0b14c179 HD |
1546 | * VM_RESERVED is specified all over the place, because |
1547 | * in 2.4 it kept swapout's vma scan off this vma; but | |
1548 | * in 2.6 the LRU scan won't even find its pages, so this | |
1549 | * flag means no more than count its pages in reserved_vm, | |
1550 | * and omit it from core dump, even when VM_IO turned off. | |
6aab341e LT |
1551 | * VM_PFNMAP tells the core MM that the base pages are just |
1552 | * raw PFN mappings, and do not have a "struct page" associated | |
1553 | * with them. | |
fb155c16 LT |
1554 | * |
1555 | * There's a horrible special case to handle copy-on-write | |
1556 | * behaviour that some programs depend on. We mark the "original" | |
1557 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
1da177e4 | 1558 | */ |
67121172 | 1559 | if (is_cow_mapping(vma->vm_flags)) { |
fb155c16 | 1560 | if (addr != vma->vm_start || end != vma->vm_end) |
7fc7e2ee | 1561 | return -EINVAL; |
fb155c16 LT |
1562 | vma->vm_pgoff = pfn; |
1563 | } | |
1564 | ||
6aab341e | 1565 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; |
1da177e4 LT |
1566 | |
1567 | BUG_ON(addr >= end); | |
1568 | pfn -= addr >> PAGE_SHIFT; | |
1569 | pgd = pgd_offset(mm, addr); | |
1570 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1571 | do { |
1572 | next = pgd_addr_end(addr, end); | |
1573 | err = remap_pud_range(mm, pgd, addr, next, | |
1574 | pfn + (addr >> PAGE_SHIFT), prot); | |
1575 | if (err) | |
1576 | break; | |
1577 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
1578 | return err; |
1579 | } | |
1580 | EXPORT_SYMBOL(remap_pfn_range); | |
1581 | ||
aee16b3c JF |
1582 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
1583 | unsigned long addr, unsigned long end, | |
1584 | pte_fn_t fn, void *data) | |
1585 | { | |
1586 | pte_t *pte; | |
1587 | int err; | |
2f569afd | 1588 | pgtable_t token; |
94909914 | 1589 | spinlock_t *uninitialized_var(ptl); |
aee16b3c JF |
1590 | |
1591 | pte = (mm == &init_mm) ? | |
1592 | pte_alloc_kernel(pmd, addr) : | |
1593 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | |
1594 | if (!pte) | |
1595 | return -ENOMEM; | |
1596 | ||
1597 | BUG_ON(pmd_huge(*pmd)); | |
1598 | ||
2f569afd | 1599 | token = pmd_pgtable(*pmd); |
aee16b3c JF |
1600 | |
1601 | do { | |
2f569afd | 1602 | err = fn(pte, token, addr, data); |
aee16b3c JF |
1603 | if (err) |
1604 | break; | |
1605 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
1606 | ||
1607 | if (mm != &init_mm) | |
1608 | pte_unmap_unlock(pte-1, ptl); | |
1609 | return err; | |
1610 | } | |
1611 | ||
1612 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1613 | unsigned long addr, unsigned long end, | |
1614 | pte_fn_t fn, void *data) | |
1615 | { | |
1616 | pmd_t *pmd; | |
1617 | unsigned long next; | |
1618 | int err; | |
1619 | ||
ceb86879 AK |
1620 | BUG_ON(pud_huge(*pud)); |
1621 | ||
aee16b3c JF |
1622 | pmd = pmd_alloc(mm, pud, addr); |
1623 | if (!pmd) | |
1624 | return -ENOMEM; | |
1625 | do { | |
1626 | next = pmd_addr_end(addr, end); | |
1627 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | |
1628 | if (err) | |
1629 | break; | |
1630 | } while (pmd++, addr = next, addr != end); | |
1631 | return err; | |
1632 | } | |
1633 | ||
1634 | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1635 | unsigned long addr, unsigned long end, | |
1636 | pte_fn_t fn, void *data) | |
1637 | { | |
1638 | pud_t *pud; | |
1639 | unsigned long next; | |
1640 | int err; | |
1641 | ||
1642 | pud = pud_alloc(mm, pgd, addr); | |
1643 | if (!pud) | |
1644 | return -ENOMEM; | |
1645 | do { | |
1646 | next = pud_addr_end(addr, end); | |
1647 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | |
1648 | if (err) | |
1649 | break; | |
1650 | } while (pud++, addr = next, addr != end); | |
1651 | return err; | |
1652 | } | |
1653 | ||
1654 | /* | |
1655 | * Scan a region of virtual memory, filling in page tables as necessary | |
1656 | * and calling a provided function on each leaf page table. | |
1657 | */ | |
1658 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
1659 | unsigned long size, pte_fn_t fn, void *data) | |
1660 | { | |
1661 | pgd_t *pgd; | |
1662 | unsigned long next; | |
cddb8a5c | 1663 | unsigned long start = addr, end = addr + size; |
aee16b3c JF |
1664 | int err; |
1665 | ||
1666 | BUG_ON(addr >= end); | |
cddb8a5c | 1667 | mmu_notifier_invalidate_range_start(mm, start, end); |
aee16b3c JF |
1668 | pgd = pgd_offset(mm, addr); |
1669 | do { | |
1670 | next = pgd_addr_end(addr, end); | |
1671 | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); | |
1672 | if (err) | |
1673 | break; | |
1674 | } while (pgd++, addr = next, addr != end); | |
cddb8a5c | 1675 | mmu_notifier_invalidate_range_end(mm, start, end); |
aee16b3c JF |
1676 | return err; |
1677 | } | |
1678 | EXPORT_SYMBOL_GPL(apply_to_page_range); | |
1679 | ||
8f4e2101 HD |
1680 | /* |
1681 | * handle_pte_fault chooses page fault handler according to an entry | |
1682 | * which was read non-atomically. Before making any commitment, on | |
1683 | * those architectures or configurations (e.g. i386 with PAE) which | |
1684 | * might give a mix of unmatched parts, do_swap_page and do_file_page | |
1685 | * must check under lock before unmapping the pte and proceeding | |
1686 | * (but do_wp_page is only called after already making such a check; | |
1687 | * and do_anonymous_page and do_no_page can safely check later on). | |
1688 | */ | |
4c21e2f2 | 1689 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
1690 | pte_t *page_table, pte_t orig_pte) |
1691 | { | |
1692 | int same = 1; | |
1693 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | |
1694 | if (sizeof(pte_t) > sizeof(unsigned long)) { | |
4c21e2f2 HD |
1695 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
1696 | spin_lock(ptl); | |
8f4e2101 | 1697 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 1698 | spin_unlock(ptl); |
8f4e2101 HD |
1699 | } |
1700 | #endif | |
1701 | pte_unmap(page_table); | |
1702 | return same; | |
1703 | } | |
1704 | ||
1da177e4 LT |
1705 | /* |
1706 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | |
1707 | * servicing faults for write access. In the normal case, do always want | |
1708 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | |
1709 | * that do not have writing enabled, when used by access_process_vm. | |
1710 | */ | |
1711 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | |
1712 | { | |
1713 | if (likely(vma->vm_flags & VM_WRITE)) | |
1714 | pte = pte_mkwrite(pte); | |
1715 | return pte; | |
1716 | } | |
1717 | ||
9de455b2 | 1718 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) |
6aab341e LT |
1719 | { |
1720 | /* | |
1721 | * If the source page was a PFN mapping, we don't have | |
1722 | * a "struct page" for it. We do a best-effort copy by | |
1723 | * just copying from the original user address. If that | |
1724 | * fails, we just zero-fill it. Live with it. | |
1725 | */ | |
1726 | if (unlikely(!src)) { | |
1727 | void *kaddr = kmap_atomic(dst, KM_USER0); | |
5d2a2dbb LT |
1728 | void __user *uaddr = (void __user *)(va & PAGE_MASK); |
1729 | ||
1730 | /* | |
1731 | * This really shouldn't fail, because the page is there | |
1732 | * in the page tables. But it might just be unreadable, | |
1733 | * in which case we just give up and fill the result with | |
1734 | * zeroes. | |
1735 | */ | |
1736 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | |
6aab341e LT |
1737 | memset(kaddr, 0, PAGE_SIZE); |
1738 | kunmap_atomic(kaddr, KM_USER0); | |
c4ec7b0d | 1739 | flush_dcache_page(dst); |
0ed361de NP |
1740 | } else |
1741 | copy_user_highpage(dst, src, va, vma); | |
6aab341e LT |
1742 | } |
1743 | ||
1da177e4 LT |
1744 | /* |
1745 | * This routine handles present pages, when users try to write | |
1746 | * to a shared page. It is done by copying the page to a new address | |
1747 | * and decrementing the shared-page counter for the old page. | |
1748 | * | |
1da177e4 LT |
1749 | * Note that this routine assumes that the protection checks have been |
1750 | * done by the caller (the low-level page fault routine in most cases). | |
1751 | * Thus we can safely just mark it writable once we've done any necessary | |
1752 | * COW. | |
1753 | * | |
1754 | * We also mark the page dirty at this point even though the page will | |
1755 | * change only once the write actually happens. This avoids a few races, | |
1756 | * and potentially makes it more efficient. | |
1757 | * | |
8f4e2101 HD |
1758 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
1759 | * but allow concurrent faults), with pte both mapped and locked. | |
1760 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 1761 | */ |
65500d23 HD |
1762 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1763 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
8f4e2101 | 1764 | spinlock_t *ptl, pte_t orig_pte) |
1da177e4 | 1765 | { |
e5bbe4df | 1766 | struct page *old_page, *new_page; |
1da177e4 | 1767 | pte_t entry; |
83c54070 | 1768 | int reuse = 0, ret = 0; |
a200ee18 | 1769 | int page_mkwrite = 0; |
d08b3851 | 1770 | struct page *dirty_page = NULL; |
1da177e4 | 1771 | |
6aab341e | 1772 | old_page = vm_normal_page(vma, address, orig_pte); |
251b97f5 PZ |
1773 | if (!old_page) { |
1774 | /* | |
1775 | * VM_MIXEDMAP !pfn_valid() case | |
1776 | * | |
1777 | * We should not cow pages in a shared writeable mapping. | |
1778 | * Just mark the pages writable as we can't do any dirty | |
1779 | * accounting on raw pfn maps. | |
1780 | */ | |
1781 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
1782 | (VM_WRITE|VM_SHARED)) | |
1783 | goto reuse; | |
6aab341e | 1784 | goto gotten; |
251b97f5 | 1785 | } |
1da177e4 | 1786 | |
d08b3851 | 1787 | /* |
ee6a6457 PZ |
1788 | * Take out anonymous pages first, anonymous shared vmas are |
1789 | * not dirty accountable. | |
d08b3851 | 1790 | */ |
ee6a6457 PZ |
1791 | if (PageAnon(old_page)) { |
1792 | if (!TestSetPageLocked(old_page)) { | |
1793 | reuse = can_share_swap_page(old_page); | |
1794 | unlock_page(old_page); | |
1795 | } | |
1796 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
d08b3851 | 1797 | (VM_WRITE|VM_SHARED))) { |
ee6a6457 PZ |
1798 | /* |
1799 | * Only catch write-faults on shared writable pages, | |
1800 | * read-only shared pages can get COWed by | |
1801 | * get_user_pages(.write=1, .force=1). | |
1802 | */ | |
9637a5ef DH |
1803 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
1804 | /* | |
1805 | * Notify the address space that the page is about to | |
1806 | * become writable so that it can prohibit this or wait | |
1807 | * for the page to get into an appropriate state. | |
1808 | * | |
1809 | * We do this without the lock held, so that it can | |
1810 | * sleep if it needs to. | |
1811 | */ | |
1812 | page_cache_get(old_page); | |
1813 | pte_unmap_unlock(page_table, ptl); | |
1814 | ||
1815 | if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) | |
1816 | goto unwritable_page; | |
1817 | ||
9637a5ef DH |
1818 | /* |
1819 | * Since we dropped the lock we need to revalidate | |
1820 | * the PTE as someone else may have changed it. If | |
1821 | * they did, we just return, as we can count on the | |
1822 | * MMU to tell us if they didn't also make it writable. | |
1823 | */ | |
1824 | page_table = pte_offset_map_lock(mm, pmd, address, | |
1825 | &ptl); | |
c3704ceb | 1826 | page_cache_release(old_page); |
9637a5ef DH |
1827 | if (!pte_same(*page_table, orig_pte)) |
1828 | goto unlock; | |
a200ee18 PZ |
1829 | |
1830 | page_mkwrite = 1; | |
1da177e4 | 1831 | } |
d08b3851 PZ |
1832 | dirty_page = old_page; |
1833 | get_page(dirty_page); | |
9637a5ef | 1834 | reuse = 1; |
9637a5ef DH |
1835 | } |
1836 | ||
1837 | if (reuse) { | |
251b97f5 | 1838 | reuse: |
9637a5ef DH |
1839 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
1840 | entry = pte_mkyoung(orig_pte); | |
1841 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
954ffcb3 | 1842 | if (ptep_set_access_flags(vma, address, page_table, entry,1)) |
8dab5241 | 1843 | update_mmu_cache(vma, address, entry); |
9637a5ef DH |
1844 | ret |= VM_FAULT_WRITE; |
1845 | goto unlock; | |
1da177e4 | 1846 | } |
1da177e4 LT |
1847 | |
1848 | /* | |
1849 | * Ok, we need to copy. Oh, well.. | |
1850 | */ | |
b5810039 | 1851 | page_cache_get(old_page); |
920fc356 | 1852 | gotten: |
8f4e2101 | 1853 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
1854 | |
1855 | if (unlikely(anon_vma_prepare(vma))) | |
65500d23 | 1856 | goto oom; |
557ed1fa NP |
1857 | VM_BUG_ON(old_page == ZERO_PAGE(0)); |
1858 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | |
1859 | if (!new_page) | |
1860 | goto oom; | |
1861 | cow_user_page(new_page, old_page, address, vma); | |
0ed361de | 1862 | __SetPageUptodate(new_page); |
65500d23 | 1863 | |
e1a1cd59 | 1864 | if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) |
8a9f3ccd BS |
1865 | goto oom_free_new; |
1866 | ||
1da177e4 LT |
1867 | /* |
1868 | * Re-check the pte - we dropped the lock | |
1869 | */ | |
8f4e2101 | 1870 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
65500d23 | 1871 | if (likely(pte_same(*page_table, orig_pte))) { |
920fc356 | 1872 | if (old_page) { |
920fc356 HD |
1873 | if (!PageAnon(old_page)) { |
1874 | dec_mm_counter(mm, file_rss); | |
1875 | inc_mm_counter(mm, anon_rss); | |
1876 | } | |
1877 | } else | |
4294621f | 1878 | inc_mm_counter(mm, anon_rss); |
eca35133 | 1879 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
65500d23 HD |
1880 | entry = mk_pte(new_page, vma->vm_page_prot); |
1881 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
4ce072f1 SS |
1882 | /* |
1883 | * Clear the pte entry and flush it first, before updating the | |
1884 | * pte with the new entry. This will avoid a race condition | |
1885 | * seen in the presence of one thread doing SMC and another | |
1886 | * thread doing COW. | |
1887 | */ | |
cddb8a5c | 1888 | ptep_clear_flush_notify(vma, address, page_table); |
4ce072f1 | 1889 | set_pte_at(mm, address, page_table, entry); |
65500d23 | 1890 | update_mmu_cache(vma, address, entry); |
1da177e4 | 1891 | lru_cache_add_active(new_page); |
9617d95e | 1892 | page_add_new_anon_rmap(new_page, vma, address); |
1da177e4 | 1893 | |
945754a1 NP |
1894 | if (old_page) { |
1895 | /* | |
1896 | * Only after switching the pte to the new page may | |
1897 | * we remove the mapcount here. Otherwise another | |
1898 | * process may come and find the rmap count decremented | |
1899 | * before the pte is switched to the new page, and | |
1900 | * "reuse" the old page writing into it while our pte | |
1901 | * here still points into it and can be read by other | |
1902 | * threads. | |
1903 | * | |
1904 | * The critical issue is to order this | |
1905 | * page_remove_rmap with the ptp_clear_flush above. | |
1906 | * Those stores are ordered by (if nothing else,) | |
1907 | * the barrier present in the atomic_add_negative | |
1908 | * in page_remove_rmap. | |
1909 | * | |
1910 | * Then the TLB flush in ptep_clear_flush ensures that | |
1911 | * no process can access the old page before the | |
1912 | * decremented mapcount is visible. And the old page | |
1913 | * cannot be reused until after the decremented | |
1914 | * mapcount is visible. So transitively, TLBs to | |
1915 | * old page will be flushed before it can be reused. | |
1916 | */ | |
1917 | page_remove_rmap(old_page, vma); | |
1918 | } | |
1919 | ||
1da177e4 LT |
1920 | /* Free the old page.. */ |
1921 | new_page = old_page; | |
f33ea7f4 | 1922 | ret |= VM_FAULT_WRITE; |
8a9f3ccd BS |
1923 | } else |
1924 | mem_cgroup_uncharge_page(new_page); | |
1925 | ||
920fc356 HD |
1926 | if (new_page) |
1927 | page_cache_release(new_page); | |
1928 | if (old_page) | |
1929 | page_cache_release(old_page); | |
65500d23 | 1930 | unlock: |
8f4e2101 | 1931 | pte_unmap_unlock(page_table, ptl); |
d08b3851 | 1932 | if (dirty_page) { |
8f7b3d15 AS |
1933 | if (vma->vm_file) |
1934 | file_update_time(vma->vm_file); | |
1935 | ||
79352894 NP |
1936 | /* |
1937 | * Yes, Virginia, this is actually required to prevent a race | |
1938 | * with clear_page_dirty_for_io() from clearing the page dirty | |
1939 | * bit after it clear all dirty ptes, but before a racing | |
1940 | * do_wp_page installs a dirty pte. | |
1941 | * | |
1942 | * do_no_page is protected similarly. | |
1943 | */ | |
1944 | wait_on_page_locked(dirty_page); | |
a200ee18 | 1945 | set_page_dirty_balance(dirty_page, page_mkwrite); |
d08b3851 PZ |
1946 | put_page(dirty_page); |
1947 | } | |
f33ea7f4 | 1948 | return ret; |
8a9f3ccd | 1949 | oom_free_new: |
6dbf6d3b | 1950 | page_cache_release(new_page); |
65500d23 | 1951 | oom: |
920fc356 HD |
1952 | if (old_page) |
1953 | page_cache_release(old_page); | |
1da177e4 | 1954 | return VM_FAULT_OOM; |
9637a5ef DH |
1955 | |
1956 | unwritable_page: | |
1957 | page_cache_release(old_page); | |
1958 | return VM_FAULT_SIGBUS; | |
1da177e4 LT |
1959 | } |
1960 | ||
1961 | /* | |
1962 | * Helper functions for unmap_mapping_range(). | |
1963 | * | |
1964 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | |
1965 | * | |
1966 | * We have to restart searching the prio_tree whenever we drop the lock, | |
1967 | * since the iterator is only valid while the lock is held, and anyway | |
1968 | * a later vma might be split and reinserted earlier while lock dropped. | |
1969 | * | |
1970 | * The list of nonlinear vmas could be handled more efficiently, using | |
1971 | * a placeholder, but handle it in the same way until a need is shown. | |
1972 | * It is important to search the prio_tree before nonlinear list: a vma | |
1973 | * may become nonlinear and be shifted from prio_tree to nonlinear list | |
1974 | * while the lock is dropped; but never shifted from list to prio_tree. | |
1975 | * | |
1976 | * In order to make forward progress despite restarting the search, | |
1977 | * vm_truncate_count is used to mark a vma as now dealt with, so we can | |
1978 | * quickly skip it next time around. Since the prio_tree search only | |
1979 | * shows us those vmas affected by unmapping the range in question, we | |
1980 | * can't efficiently keep all vmas in step with mapping->truncate_count: | |
1981 | * so instead reset them all whenever it wraps back to 0 (then go to 1). | |
1982 | * mapping->truncate_count and vma->vm_truncate_count are protected by | |
1983 | * i_mmap_lock. | |
1984 | * | |
1985 | * In order to make forward progress despite repeatedly restarting some | |
ee39b37b | 1986 | * large vma, note the restart_addr from unmap_vmas when it breaks out: |
1da177e4 LT |
1987 | * and restart from that address when we reach that vma again. It might |
1988 | * have been split or merged, shrunk or extended, but never shifted: so | |
1989 | * restart_addr remains valid so long as it remains in the vma's range. | |
1990 | * unmap_mapping_range forces truncate_count to leap over page-aligned | |
1991 | * values so we can save vma's restart_addr in its truncate_count field. | |
1992 | */ | |
1993 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | |
1994 | ||
1995 | static void reset_vma_truncate_counts(struct address_space *mapping) | |
1996 | { | |
1997 | struct vm_area_struct *vma; | |
1998 | struct prio_tree_iter iter; | |
1999 | ||
2000 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | |
2001 | vma->vm_truncate_count = 0; | |
2002 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | |
2003 | vma->vm_truncate_count = 0; | |
2004 | } | |
2005 | ||
2006 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | |
2007 | unsigned long start_addr, unsigned long end_addr, | |
2008 | struct zap_details *details) | |
2009 | { | |
2010 | unsigned long restart_addr; | |
2011 | int need_break; | |
2012 | ||
d00806b1 NP |
2013 | /* |
2014 | * files that support invalidating or truncating portions of the | |
d0217ac0 | 2015 | * file from under mmaped areas must have their ->fault function |
83c54070 NP |
2016 | * return a locked page (and set VM_FAULT_LOCKED in the return). |
2017 | * This provides synchronisation against concurrent unmapping here. | |
d00806b1 | 2018 | */ |
d00806b1 | 2019 | |
1da177e4 LT |
2020 | again: |
2021 | restart_addr = vma->vm_truncate_count; | |
2022 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | |
2023 | start_addr = restart_addr; | |
2024 | if (start_addr >= end_addr) { | |
2025 | /* Top of vma has been split off since last time */ | |
2026 | vma->vm_truncate_count = details->truncate_count; | |
2027 | return 0; | |
2028 | } | |
2029 | } | |
2030 | ||
ee39b37b HD |
2031 | restart_addr = zap_page_range(vma, start_addr, |
2032 | end_addr - start_addr, details); | |
95c354fe | 2033 | need_break = need_resched() || spin_needbreak(details->i_mmap_lock); |
1da177e4 | 2034 | |
ee39b37b | 2035 | if (restart_addr >= end_addr) { |
1da177e4 LT |
2036 | /* We have now completed this vma: mark it so */ |
2037 | vma->vm_truncate_count = details->truncate_count; | |
2038 | if (!need_break) | |
2039 | return 0; | |
2040 | } else { | |
2041 | /* Note restart_addr in vma's truncate_count field */ | |
ee39b37b | 2042 | vma->vm_truncate_count = restart_addr; |
1da177e4 LT |
2043 | if (!need_break) |
2044 | goto again; | |
2045 | } | |
2046 | ||
2047 | spin_unlock(details->i_mmap_lock); | |
2048 | cond_resched(); | |
2049 | spin_lock(details->i_mmap_lock); | |
2050 | return -EINTR; | |
2051 | } | |
2052 | ||
2053 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | |
2054 | struct zap_details *details) | |
2055 | { | |
2056 | struct vm_area_struct *vma; | |
2057 | struct prio_tree_iter iter; | |
2058 | pgoff_t vba, vea, zba, zea; | |
2059 | ||
2060 | restart: | |
2061 | vma_prio_tree_foreach(vma, &iter, root, | |
2062 | details->first_index, details->last_index) { | |
2063 | /* Skip quickly over those we have already dealt with */ | |
2064 | if (vma->vm_truncate_count == details->truncate_count) | |
2065 | continue; | |
2066 | ||
2067 | vba = vma->vm_pgoff; | |
2068 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | |
2069 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | |
2070 | zba = details->first_index; | |
2071 | if (zba < vba) | |
2072 | zba = vba; | |
2073 | zea = details->last_index; | |
2074 | if (zea > vea) | |
2075 | zea = vea; | |
2076 | ||
2077 | if (unmap_mapping_range_vma(vma, | |
2078 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | |
2079 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
2080 | details) < 0) | |
2081 | goto restart; | |
2082 | } | |
2083 | } | |
2084 | ||
2085 | static inline void unmap_mapping_range_list(struct list_head *head, | |
2086 | struct zap_details *details) | |
2087 | { | |
2088 | struct vm_area_struct *vma; | |
2089 | ||
2090 | /* | |
2091 | * In nonlinear VMAs there is no correspondence between virtual address | |
2092 | * offset and file offset. So we must perform an exhaustive search | |
2093 | * across *all* the pages in each nonlinear VMA, not just the pages | |
2094 | * whose virtual address lies outside the file truncation point. | |
2095 | */ | |
2096 | restart: | |
2097 | list_for_each_entry(vma, head, shared.vm_set.list) { | |
2098 | /* Skip quickly over those we have already dealt with */ | |
2099 | if (vma->vm_truncate_count == details->truncate_count) | |
2100 | continue; | |
2101 | details->nonlinear_vma = vma; | |
2102 | if (unmap_mapping_range_vma(vma, vma->vm_start, | |
2103 | vma->vm_end, details) < 0) | |
2104 | goto restart; | |
2105 | } | |
2106 | } | |
2107 | ||
2108 | /** | |
72fd4a35 | 2109 | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. |
3d41088f | 2110 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
2111 | * @holebegin: byte in first page to unmap, relative to the start of |
2112 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
2113 | * boundary. Note that this is different from vmtruncate(), which | |
2114 | * must keep the partial page. In contrast, we must get rid of | |
2115 | * partial pages. | |
2116 | * @holelen: size of prospective hole in bytes. This will be rounded | |
2117 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
2118 | * end of the file. | |
2119 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
2120 | * but 0 when invalidating pagecache, don't throw away private data. | |
2121 | */ | |
2122 | void unmap_mapping_range(struct address_space *mapping, | |
2123 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
2124 | { | |
2125 | struct zap_details details; | |
2126 | pgoff_t hba = holebegin >> PAGE_SHIFT; | |
2127 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2128 | ||
2129 | /* Check for overflow. */ | |
2130 | if (sizeof(holelen) > sizeof(hlen)) { | |
2131 | long long holeend = | |
2132 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2133 | if (holeend & ~(long long)ULONG_MAX) | |
2134 | hlen = ULONG_MAX - hba + 1; | |
2135 | } | |
2136 | ||
2137 | details.check_mapping = even_cows? NULL: mapping; | |
2138 | details.nonlinear_vma = NULL; | |
2139 | details.first_index = hba; | |
2140 | details.last_index = hba + hlen - 1; | |
2141 | if (details.last_index < details.first_index) | |
2142 | details.last_index = ULONG_MAX; | |
2143 | details.i_mmap_lock = &mapping->i_mmap_lock; | |
2144 | ||
2145 | spin_lock(&mapping->i_mmap_lock); | |
2146 | ||
d00806b1 | 2147 | /* Protect against endless unmapping loops */ |
1da177e4 | 2148 | mapping->truncate_count++; |
1da177e4 LT |
2149 | if (unlikely(is_restart_addr(mapping->truncate_count))) { |
2150 | if (mapping->truncate_count == 0) | |
2151 | reset_vma_truncate_counts(mapping); | |
2152 | mapping->truncate_count++; | |
2153 | } | |
2154 | details.truncate_count = mapping->truncate_count; | |
2155 | ||
2156 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | |
2157 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | |
2158 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | |
2159 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | |
2160 | spin_unlock(&mapping->i_mmap_lock); | |
2161 | } | |
2162 | EXPORT_SYMBOL(unmap_mapping_range); | |
2163 | ||
bfa5bf6d REB |
2164 | /** |
2165 | * vmtruncate - unmap mappings "freed" by truncate() syscall | |
2166 | * @inode: inode of the file used | |
2167 | * @offset: file offset to start truncating | |
1da177e4 LT |
2168 | * |
2169 | * NOTE! We have to be ready to update the memory sharing | |
2170 | * between the file and the memory map for a potential last | |
2171 | * incomplete page. Ugly, but necessary. | |
2172 | */ | |
2173 | int vmtruncate(struct inode * inode, loff_t offset) | |
2174 | { | |
61d5048f CH |
2175 | if (inode->i_size < offset) { |
2176 | unsigned long limit; | |
2177 | ||
2178 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | |
2179 | if (limit != RLIM_INFINITY && offset > limit) | |
2180 | goto out_sig; | |
2181 | if (offset > inode->i_sb->s_maxbytes) | |
2182 | goto out_big; | |
2183 | i_size_write(inode, offset); | |
2184 | } else { | |
2185 | struct address_space *mapping = inode->i_mapping; | |
1da177e4 | 2186 | |
61d5048f CH |
2187 | /* |
2188 | * truncation of in-use swapfiles is disallowed - it would | |
2189 | * cause subsequent swapout to scribble on the now-freed | |
2190 | * blocks. | |
2191 | */ | |
2192 | if (IS_SWAPFILE(inode)) | |
2193 | return -ETXTBSY; | |
2194 | i_size_write(inode, offset); | |
2195 | ||
2196 | /* | |
2197 | * unmap_mapping_range is called twice, first simply for | |
2198 | * efficiency so that truncate_inode_pages does fewer | |
2199 | * single-page unmaps. However after this first call, and | |
2200 | * before truncate_inode_pages finishes, it is possible for | |
2201 | * private pages to be COWed, which remain after | |
2202 | * truncate_inode_pages finishes, hence the second | |
2203 | * unmap_mapping_range call must be made for correctness. | |
2204 | */ | |
2205 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | |
2206 | truncate_inode_pages(mapping, offset); | |
2207 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | |
2208 | } | |
d00806b1 | 2209 | |
1da177e4 LT |
2210 | if (inode->i_op && inode->i_op->truncate) |
2211 | inode->i_op->truncate(inode); | |
2212 | return 0; | |
61d5048f | 2213 | |
1da177e4 LT |
2214 | out_sig: |
2215 | send_sig(SIGXFSZ, current, 0); | |
2216 | out_big: | |
2217 | return -EFBIG; | |
1da177e4 | 2218 | } |
1da177e4 LT |
2219 | EXPORT_SYMBOL(vmtruncate); |
2220 | ||
f6b3ec23 BP |
2221 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) |
2222 | { | |
2223 | struct address_space *mapping = inode->i_mapping; | |
2224 | ||
2225 | /* | |
2226 | * If the underlying filesystem is not going to provide | |
2227 | * a way to truncate a range of blocks (punch a hole) - | |
2228 | * we should return failure right now. | |
2229 | */ | |
2230 | if (!inode->i_op || !inode->i_op->truncate_range) | |
2231 | return -ENOSYS; | |
2232 | ||
1b1dcc1b | 2233 | mutex_lock(&inode->i_mutex); |
f6b3ec23 BP |
2234 | down_write(&inode->i_alloc_sem); |
2235 | unmap_mapping_range(mapping, offset, (end - offset), 1); | |
2236 | truncate_inode_pages_range(mapping, offset, end); | |
d00806b1 | 2237 | unmap_mapping_range(mapping, offset, (end - offset), 1); |
f6b3ec23 BP |
2238 | inode->i_op->truncate_range(inode, offset, end); |
2239 | up_write(&inode->i_alloc_sem); | |
1b1dcc1b | 2240 | mutex_unlock(&inode->i_mutex); |
f6b3ec23 BP |
2241 | |
2242 | return 0; | |
2243 | } | |
f6b3ec23 | 2244 | |
1da177e4 | 2245 | /* |
8f4e2101 HD |
2246 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2247 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2248 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2249 | */ |
65500d23 HD |
2250 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2251 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2252 | int write_access, pte_t orig_pte) | |
1da177e4 | 2253 | { |
8f4e2101 | 2254 | spinlock_t *ptl; |
1da177e4 | 2255 | struct page *page; |
65500d23 | 2256 | swp_entry_t entry; |
1da177e4 | 2257 | pte_t pte; |
83c54070 | 2258 | int ret = 0; |
1da177e4 | 2259 | |
4c21e2f2 | 2260 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
8f4e2101 | 2261 | goto out; |
65500d23 HD |
2262 | |
2263 | entry = pte_to_swp_entry(orig_pte); | |
0697212a CL |
2264 | if (is_migration_entry(entry)) { |
2265 | migration_entry_wait(mm, pmd, address); | |
2266 | goto out; | |
2267 | } | |
0ff92245 | 2268 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2269 | page = lookup_swap_cache(entry); |
2270 | if (!page) { | |
098fe651 | 2271 | grab_swap_token(); /* Contend for token _before_ read-in */ |
02098fea HD |
2272 | page = swapin_readahead(entry, |
2273 | GFP_HIGHUSER_MOVABLE, vma, address); | |
1da177e4 LT |
2274 | if (!page) { |
2275 | /* | |
8f4e2101 HD |
2276 | * Back out if somebody else faulted in this pte |
2277 | * while we released the pte lock. | |
1da177e4 | 2278 | */ |
8f4e2101 | 2279 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2280 | if (likely(pte_same(*page_table, orig_pte))) |
2281 | ret = VM_FAULT_OOM; | |
0ff92245 | 2282 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
65500d23 | 2283 | goto unlock; |
1da177e4 LT |
2284 | } |
2285 | ||
2286 | /* Had to read the page from swap area: Major fault */ | |
2287 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 2288 | count_vm_event(PGMAJFAULT); |
1da177e4 LT |
2289 | } |
2290 | ||
e1a1cd59 | 2291 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { |
8a9f3ccd BS |
2292 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
2293 | ret = VM_FAULT_OOM; | |
2294 | goto out; | |
2295 | } | |
2296 | ||
1da177e4 LT |
2297 | mark_page_accessed(page); |
2298 | lock_page(page); | |
20a1022d | 2299 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2300 | |
2301 | /* | |
8f4e2101 | 2302 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 2303 | */ |
8f4e2101 | 2304 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
9e9bef07 | 2305 | if (unlikely(!pte_same(*page_table, orig_pte))) |
b8107480 | 2306 | goto out_nomap; |
b8107480 KK |
2307 | |
2308 | if (unlikely(!PageUptodate(page))) { | |
2309 | ret = VM_FAULT_SIGBUS; | |
2310 | goto out_nomap; | |
1da177e4 LT |
2311 | } |
2312 | ||
2313 | /* The page isn't present yet, go ahead with the fault. */ | |
1da177e4 | 2314 | |
4294621f | 2315 | inc_mm_counter(mm, anon_rss); |
1da177e4 LT |
2316 | pte = mk_pte(page, vma->vm_page_prot); |
2317 | if (write_access && can_share_swap_page(page)) { | |
2318 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | |
2319 | write_access = 0; | |
2320 | } | |
1da177e4 LT |
2321 | |
2322 | flush_icache_page(vma, page); | |
2323 | set_pte_at(mm, address, page_table, pte); | |
2324 | page_add_anon_rmap(page, vma, address); | |
2325 | ||
c475a8ab HD |
2326 | swap_free(entry); |
2327 | if (vm_swap_full()) | |
2328 | remove_exclusive_swap_page(page); | |
2329 | unlock_page(page); | |
2330 | ||
1da177e4 | 2331 | if (write_access) { |
61469f1d HD |
2332 | ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); |
2333 | if (ret & VM_FAULT_ERROR) | |
2334 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
2335 | goto out; |
2336 | } | |
2337 | ||
2338 | /* No need to invalidate - it was non-present before */ | |
2339 | update_mmu_cache(vma, address, pte); | |
65500d23 | 2340 | unlock: |
8f4e2101 | 2341 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
2342 | out: |
2343 | return ret; | |
b8107480 | 2344 | out_nomap: |
8a9f3ccd | 2345 | mem_cgroup_uncharge_page(page); |
8f4e2101 | 2346 | pte_unmap_unlock(page_table, ptl); |
b8107480 KK |
2347 | unlock_page(page); |
2348 | page_cache_release(page); | |
65500d23 | 2349 | return ret; |
1da177e4 LT |
2350 | } |
2351 | ||
2352 | /* | |
8f4e2101 HD |
2353 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2354 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2355 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2356 | */ |
65500d23 HD |
2357 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2358 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2359 | int write_access) | |
1da177e4 | 2360 | { |
8f4e2101 HD |
2361 | struct page *page; |
2362 | spinlock_t *ptl; | |
1da177e4 | 2363 | pte_t entry; |
1da177e4 | 2364 | |
557ed1fa NP |
2365 | /* Allocate our own private page. */ |
2366 | pte_unmap(page_table); | |
8f4e2101 | 2367 | |
557ed1fa NP |
2368 | if (unlikely(anon_vma_prepare(vma))) |
2369 | goto oom; | |
2370 | page = alloc_zeroed_user_highpage_movable(vma, address); | |
2371 | if (!page) | |
2372 | goto oom; | |
0ed361de | 2373 | __SetPageUptodate(page); |
8f4e2101 | 2374 | |
e1a1cd59 | 2375 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) |
8a9f3ccd BS |
2376 | goto oom_free_page; |
2377 | ||
557ed1fa NP |
2378 | entry = mk_pte(page, vma->vm_page_prot); |
2379 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1da177e4 | 2380 | |
557ed1fa NP |
2381 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2382 | if (!pte_none(*page_table)) | |
2383 | goto release; | |
2384 | inc_mm_counter(mm, anon_rss); | |
2385 | lru_cache_add_active(page); | |
2386 | page_add_new_anon_rmap(page, vma, address); | |
65500d23 | 2387 | set_pte_at(mm, address, page_table, entry); |
1da177e4 LT |
2388 | |
2389 | /* No need to invalidate - it was non-present before */ | |
65500d23 | 2390 | update_mmu_cache(vma, address, entry); |
65500d23 | 2391 | unlock: |
8f4e2101 | 2392 | pte_unmap_unlock(page_table, ptl); |
83c54070 | 2393 | return 0; |
8f4e2101 | 2394 | release: |
8a9f3ccd | 2395 | mem_cgroup_uncharge_page(page); |
8f4e2101 HD |
2396 | page_cache_release(page); |
2397 | goto unlock; | |
8a9f3ccd | 2398 | oom_free_page: |
6dbf6d3b | 2399 | page_cache_release(page); |
65500d23 | 2400 | oom: |
1da177e4 LT |
2401 | return VM_FAULT_OOM; |
2402 | } | |
2403 | ||
2404 | /* | |
54cb8821 | 2405 | * __do_fault() tries to create a new page mapping. It aggressively |
1da177e4 | 2406 | * tries to share with existing pages, but makes a separate copy if |
54cb8821 NP |
2407 | * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid |
2408 | * the next page fault. | |
1da177e4 LT |
2409 | * |
2410 | * As this is called only for pages that do not currently exist, we | |
2411 | * do not need to flush old virtual caches or the TLB. | |
2412 | * | |
8f4e2101 | 2413 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
16abfa08 | 2414 | * but allow concurrent faults), and pte neither mapped nor locked. |
8f4e2101 | 2415 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
1da177e4 | 2416 | */ |
54cb8821 | 2417 | static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
16abfa08 | 2418 | unsigned long address, pmd_t *pmd, |
54cb8821 | 2419 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) |
1da177e4 | 2420 | { |
16abfa08 | 2421 | pte_t *page_table; |
8f4e2101 | 2422 | spinlock_t *ptl; |
d0217ac0 | 2423 | struct page *page; |
1da177e4 | 2424 | pte_t entry; |
1da177e4 | 2425 | int anon = 0; |
d08b3851 | 2426 | struct page *dirty_page = NULL; |
d0217ac0 NP |
2427 | struct vm_fault vmf; |
2428 | int ret; | |
a200ee18 | 2429 | int page_mkwrite = 0; |
54cb8821 | 2430 | |
d0217ac0 NP |
2431 | vmf.virtual_address = (void __user *)(address & PAGE_MASK); |
2432 | vmf.pgoff = pgoff; | |
2433 | vmf.flags = flags; | |
2434 | vmf.page = NULL; | |
1da177e4 | 2435 | |
3c18ddd1 NP |
2436 | ret = vma->vm_ops->fault(vma, &vmf); |
2437 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) | |
2438 | return ret; | |
1da177e4 | 2439 | |
d00806b1 | 2440 | /* |
d0217ac0 | 2441 | * For consistency in subsequent calls, make the faulted page always |
d00806b1 NP |
2442 | * locked. |
2443 | */ | |
83c54070 | 2444 | if (unlikely(!(ret & VM_FAULT_LOCKED))) |
d0217ac0 | 2445 | lock_page(vmf.page); |
54cb8821 | 2446 | else |
d0217ac0 | 2447 | VM_BUG_ON(!PageLocked(vmf.page)); |
d00806b1 | 2448 | |
1da177e4 LT |
2449 | /* |
2450 | * Should we do an early C-O-W break? | |
2451 | */ | |
d0217ac0 | 2452 | page = vmf.page; |
54cb8821 | 2453 | if (flags & FAULT_FLAG_WRITE) { |
9637a5ef | 2454 | if (!(vma->vm_flags & VM_SHARED)) { |
54cb8821 | 2455 | anon = 1; |
d00806b1 | 2456 | if (unlikely(anon_vma_prepare(vma))) { |
d0217ac0 | 2457 | ret = VM_FAULT_OOM; |
54cb8821 | 2458 | goto out; |
d00806b1 | 2459 | } |
83c54070 NP |
2460 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, |
2461 | vma, address); | |
d00806b1 | 2462 | if (!page) { |
d0217ac0 | 2463 | ret = VM_FAULT_OOM; |
54cb8821 | 2464 | goto out; |
d00806b1 | 2465 | } |
d0217ac0 | 2466 | copy_user_highpage(page, vmf.page, address, vma); |
0ed361de | 2467 | __SetPageUptodate(page); |
9637a5ef | 2468 | } else { |
54cb8821 NP |
2469 | /* |
2470 | * If the page will be shareable, see if the backing | |
9637a5ef | 2471 | * address space wants to know that the page is about |
54cb8821 NP |
2472 | * to become writable |
2473 | */ | |
69676147 MF |
2474 | if (vma->vm_ops->page_mkwrite) { |
2475 | unlock_page(page); | |
2476 | if (vma->vm_ops->page_mkwrite(vma, page) < 0) { | |
d0217ac0 NP |
2477 | ret = VM_FAULT_SIGBUS; |
2478 | anon = 1; /* no anon but release vmf.page */ | |
69676147 MF |
2479 | goto out_unlocked; |
2480 | } | |
2481 | lock_page(page); | |
d0217ac0 NP |
2482 | /* |
2483 | * XXX: this is not quite right (racy vs | |
2484 | * invalidate) to unlock and relock the page | |
2485 | * like this, however a better fix requires | |
2486 | * reworking page_mkwrite locking API, which | |
2487 | * is better done later. | |
2488 | */ | |
2489 | if (!page->mapping) { | |
83c54070 | 2490 | ret = 0; |
d0217ac0 NP |
2491 | anon = 1; /* no anon but release vmf.page */ |
2492 | goto out; | |
2493 | } | |
a200ee18 | 2494 | page_mkwrite = 1; |
9637a5ef DH |
2495 | } |
2496 | } | |
54cb8821 | 2497 | |
1da177e4 LT |
2498 | } |
2499 | ||
e1a1cd59 | 2500 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { |
8a9f3ccd BS |
2501 | ret = VM_FAULT_OOM; |
2502 | goto out; | |
2503 | } | |
2504 | ||
8f4e2101 | 2505 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2506 | |
2507 | /* | |
2508 | * This silly early PAGE_DIRTY setting removes a race | |
2509 | * due to the bad i386 page protection. But it's valid | |
2510 | * for other architectures too. | |
2511 | * | |
2512 | * Note that if write_access is true, we either now have | |
2513 | * an exclusive copy of the page, or this is a shared mapping, | |
2514 | * so we can make it writable and dirty to avoid having to | |
2515 | * handle that later. | |
2516 | */ | |
2517 | /* Only go through if we didn't race with anybody else... */ | |
54cb8821 | 2518 | if (likely(pte_same(*page_table, orig_pte))) { |
d00806b1 NP |
2519 | flush_icache_page(vma, page); |
2520 | entry = mk_pte(page, vma->vm_page_prot); | |
54cb8821 | 2521 | if (flags & FAULT_FLAG_WRITE) |
1da177e4 LT |
2522 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
2523 | set_pte_at(mm, address, page_table, entry); | |
2524 | if (anon) { | |
d00806b1 NP |
2525 | inc_mm_counter(mm, anon_rss); |
2526 | lru_cache_add_active(page); | |
2527 | page_add_new_anon_rmap(page, vma, address); | |
f57e88a8 | 2528 | } else { |
4294621f | 2529 | inc_mm_counter(mm, file_rss); |
d00806b1 | 2530 | page_add_file_rmap(page); |
54cb8821 | 2531 | if (flags & FAULT_FLAG_WRITE) { |
d00806b1 | 2532 | dirty_page = page; |
d08b3851 PZ |
2533 | get_page(dirty_page); |
2534 | } | |
4294621f | 2535 | } |
d00806b1 NP |
2536 | |
2537 | /* no need to invalidate: a not-present page won't be cached */ | |
2538 | update_mmu_cache(vma, address, entry); | |
1da177e4 | 2539 | } else { |
8a9f3ccd | 2540 | mem_cgroup_uncharge_page(page); |
d00806b1 NP |
2541 | if (anon) |
2542 | page_cache_release(page); | |
2543 | else | |
54cb8821 | 2544 | anon = 1; /* no anon but release faulted_page */ |
1da177e4 LT |
2545 | } |
2546 | ||
8f4e2101 | 2547 | pte_unmap_unlock(page_table, ptl); |
d00806b1 NP |
2548 | |
2549 | out: | |
d0217ac0 | 2550 | unlock_page(vmf.page); |
69676147 | 2551 | out_unlocked: |
d00806b1 | 2552 | if (anon) |
d0217ac0 | 2553 | page_cache_release(vmf.page); |
d00806b1 | 2554 | else if (dirty_page) { |
8f7b3d15 AS |
2555 | if (vma->vm_file) |
2556 | file_update_time(vma->vm_file); | |
2557 | ||
a200ee18 | 2558 | set_page_dirty_balance(dirty_page, page_mkwrite); |
d08b3851 PZ |
2559 | put_page(dirty_page); |
2560 | } | |
d00806b1 | 2561 | |
83c54070 | 2562 | return ret; |
54cb8821 | 2563 | } |
d00806b1 | 2564 | |
54cb8821 NP |
2565 | static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
2566 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2567 | int write_access, pte_t orig_pte) | |
2568 | { | |
2569 | pgoff_t pgoff = (((address & PAGE_MASK) | |
0da7e01f | 2570 | - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
54cb8821 NP |
2571 | unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); |
2572 | ||
16abfa08 HD |
2573 | pte_unmap(page_table); |
2574 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | |
54cb8821 NP |
2575 | } |
2576 | ||
1da177e4 LT |
2577 | /* |
2578 | * Fault of a previously existing named mapping. Repopulate the pte | |
2579 | * from the encoded file_pte if possible. This enables swappable | |
2580 | * nonlinear vmas. | |
8f4e2101 HD |
2581 | * |
2582 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
2583 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2584 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2585 | */ |
d0217ac0 | 2586 | static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
65500d23 HD |
2587 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
2588 | int write_access, pte_t orig_pte) | |
1da177e4 | 2589 | { |
d0217ac0 NP |
2590 | unsigned int flags = FAULT_FLAG_NONLINEAR | |
2591 | (write_access ? FAULT_FLAG_WRITE : 0); | |
65500d23 | 2592 | pgoff_t pgoff; |
1da177e4 | 2593 | |
4c21e2f2 | 2594 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
83c54070 | 2595 | return 0; |
1da177e4 | 2596 | |
d0217ac0 NP |
2597 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || |
2598 | !(vma->vm_flags & VM_CAN_NONLINEAR))) { | |
65500d23 HD |
2599 | /* |
2600 | * Page table corrupted: show pte and kill process. | |
2601 | */ | |
b5810039 | 2602 | print_bad_pte(vma, orig_pte, address); |
65500d23 HD |
2603 | return VM_FAULT_OOM; |
2604 | } | |
65500d23 HD |
2605 | |
2606 | pgoff = pte_to_pgoff(orig_pte); | |
16abfa08 | 2607 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
1da177e4 LT |
2608 | } |
2609 | ||
2610 | /* | |
2611 | * These routines also need to handle stuff like marking pages dirty | |
2612 | * and/or accessed for architectures that don't do it in hardware (most | |
2613 | * RISC architectures). The early dirtying is also good on the i386. | |
2614 | * | |
2615 | * There is also a hook called "update_mmu_cache()" that architectures | |
2616 | * with external mmu caches can use to update those (ie the Sparc or | |
2617 | * PowerPC hashed page tables that act as extended TLBs). | |
2618 | * | |
c74df32c HD |
2619 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2620 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2621 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 LT |
2622 | */ |
2623 | static inline int handle_pte_fault(struct mm_struct *mm, | |
65500d23 HD |
2624 | struct vm_area_struct *vma, unsigned long address, |
2625 | pte_t *pte, pmd_t *pmd, int write_access) | |
1da177e4 LT |
2626 | { |
2627 | pte_t entry; | |
8f4e2101 | 2628 | spinlock_t *ptl; |
1da177e4 | 2629 | |
8dab5241 | 2630 | entry = *pte; |
1da177e4 | 2631 | if (!pte_present(entry)) { |
65500d23 | 2632 | if (pte_none(entry)) { |
f4b81804 | 2633 | if (vma->vm_ops) { |
3c18ddd1 | 2634 | if (likely(vma->vm_ops->fault)) |
54cb8821 NP |
2635 | return do_linear_fault(mm, vma, address, |
2636 | pte, pmd, write_access, entry); | |
f4b81804 JS |
2637 | } |
2638 | return do_anonymous_page(mm, vma, address, | |
2639 | pte, pmd, write_access); | |
65500d23 | 2640 | } |
1da177e4 | 2641 | if (pte_file(entry)) |
d0217ac0 | 2642 | return do_nonlinear_fault(mm, vma, address, |
65500d23 HD |
2643 | pte, pmd, write_access, entry); |
2644 | return do_swap_page(mm, vma, address, | |
2645 | pte, pmd, write_access, entry); | |
1da177e4 LT |
2646 | } |
2647 | ||
4c21e2f2 | 2648 | ptl = pte_lockptr(mm, pmd); |
8f4e2101 HD |
2649 | spin_lock(ptl); |
2650 | if (unlikely(!pte_same(*pte, entry))) | |
2651 | goto unlock; | |
1da177e4 LT |
2652 | if (write_access) { |
2653 | if (!pte_write(entry)) | |
8f4e2101 HD |
2654 | return do_wp_page(mm, vma, address, |
2655 | pte, pmd, ptl, entry); | |
1da177e4 LT |
2656 | entry = pte_mkdirty(entry); |
2657 | } | |
2658 | entry = pte_mkyoung(entry); | |
8dab5241 | 2659 | if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { |
1a44e149 | 2660 | update_mmu_cache(vma, address, entry); |
1a44e149 AA |
2661 | } else { |
2662 | /* | |
2663 | * This is needed only for protection faults but the arch code | |
2664 | * is not yet telling us if this is a protection fault or not. | |
2665 | * This still avoids useless tlb flushes for .text page faults | |
2666 | * with threads. | |
2667 | */ | |
2668 | if (write_access) | |
2669 | flush_tlb_page(vma, address); | |
2670 | } | |
8f4e2101 HD |
2671 | unlock: |
2672 | pte_unmap_unlock(pte, ptl); | |
83c54070 | 2673 | return 0; |
1da177e4 LT |
2674 | } |
2675 | ||
2676 | /* | |
2677 | * By the time we get here, we already hold the mm semaphore | |
2678 | */ | |
83c54070 | 2679 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
1da177e4 LT |
2680 | unsigned long address, int write_access) |
2681 | { | |
2682 | pgd_t *pgd; | |
2683 | pud_t *pud; | |
2684 | pmd_t *pmd; | |
2685 | pte_t *pte; | |
2686 | ||
2687 | __set_current_state(TASK_RUNNING); | |
2688 | ||
f8891e5e | 2689 | count_vm_event(PGFAULT); |
1da177e4 | 2690 | |
ac9b9c66 HD |
2691 | if (unlikely(is_vm_hugetlb_page(vma))) |
2692 | return hugetlb_fault(mm, vma, address, write_access); | |
1da177e4 | 2693 | |
1da177e4 | 2694 | pgd = pgd_offset(mm, address); |
1da177e4 LT |
2695 | pud = pud_alloc(mm, pgd, address); |
2696 | if (!pud) | |
c74df32c | 2697 | return VM_FAULT_OOM; |
1da177e4 LT |
2698 | pmd = pmd_alloc(mm, pud, address); |
2699 | if (!pmd) | |
c74df32c | 2700 | return VM_FAULT_OOM; |
1da177e4 LT |
2701 | pte = pte_alloc_map(mm, pmd, address); |
2702 | if (!pte) | |
c74df32c | 2703 | return VM_FAULT_OOM; |
1da177e4 | 2704 | |
c74df32c | 2705 | return handle_pte_fault(mm, vma, address, pte, pmd, write_access); |
1da177e4 LT |
2706 | } |
2707 | ||
2708 | #ifndef __PAGETABLE_PUD_FOLDED | |
2709 | /* | |
2710 | * Allocate page upper directory. | |
872fec16 | 2711 | * We've already handled the fast-path in-line. |
1da177e4 | 2712 | */ |
1bb3630e | 2713 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
1da177e4 | 2714 | { |
c74df32c HD |
2715 | pud_t *new = pud_alloc_one(mm, address); |
2716 | if (!new) | |
1bb3630e | 2717 | return -ENOMEM; |
1da177e4 | 2718 | |
362a61ad NP |
2719 | smp_wmb(); /* See comment in __pte_alloc */ |
2720 | ||
872fec16 | 2721 | spin_lock(&mm->page_table_lock); |
1bb3630e | 2722 | if (pgd_present(*pgd)) /* Another has populated it */ |
5e541973 | 2723 | pud_free(mm, new); |
1bb3630e HD |
2724 | else |
2725 | pgd_populate(mm, pgd, new); | |
c74df32c | 2726 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 2727 | return 0; |
1da177e4 LT |
2728 | } |
2729 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
2730 | ||
2731 | #ifndef __PAGETABLE_PMD_FOLDED | |
2732 | /* | |
2733 | * Allocate page middle directory. | |
872fec16 | 2734 | * We've already handled the fast-path in-line. |
1da177e4 | 2735 | */ |
1bb3630e | 2736 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 2737 | { |
c74df32c HD |
2738 | pmd_t *new = pmd_alloc_one(mm, address); |
2739 | if (!new) | |
1bb3630e | 2740 | return -ENOMEM; |
1da177e4 | 2741 | |
362a61ad NP |
2742 | smp_wmb(); /* See comment in __pte_alloc */ |
2743 | ||
872fec16 | 2744 | spin_lock(&mm->page_table_lock); |
1da177e4 | 2745 | #ifndef __ARCH_HAS_4LEVEL_HACK |
1bb3630e | 2746 | if (pud_present(*pud)) /* Another has populated it */ |
5e541973 | 2747 | pmd_free(mm, new); |
1bb3630e HD |
2748 | else |
2749 | pud_populate(mm, pud, new); | |
1da177e4 | 2750 | #else |
1bb3630e | 2751 | if (pgd_present(*pud)) /* Another has populated it */ |
5e541973 | 2752 | pmd_free(mm, new); |
1bb3630e HD |
2753 | else |
2754 | pgd_populate(mm, pud, new); | |
1da177e4 | 2755 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
c74df32c | 2756 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 2757 | return 0; |
e0f39591 | 2758 | } |
1da177e4 LT |
2759 | #endif /* __PAGETABLE_PMD_FOLDED */ |
2760 | ||
2761 | int make_pages_present(unsigned long addr, unsigned long end) | |
2762 | { | |
2763 | int ret, len, write; | |
2764 | struct vm_area_struct * vma; | |
2765 | ||
2766 | vma = find_vma(current->mm, addr); | |
2767 | if (!vma) | |
a477097d | 2768 | return -ENOMEM; |
1da177e4 | 2769 | write = (vma->vm_flags & VM_WRITE) != 0; |
5bcb28b1 ES |
2770 | BUG_ON(addr >= end); |
2771 | BUG_ON(end > vma->vm_end); | |
68e116a3 | 2772 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; |
1da177e4 LT |
2773 | ret = get_user_pages(current, current->mm, addr, |
2774 | len, write, 0, NULL, NULL); | |
a477097d KM |
2775 | if (ret < 0) { |
2776 | /* | |
2777 | SUS require strange return value to mlock | |
2778 | - invalid addr generate to ENOMEM. | |
2779 | - out of memory should generate EAGAIN. | |
2780 | */ | |
2781 | if (ret == -EFAULT) | |
2782 | ret = -ENOMEM; | |
2783 | else if (ret == -ENOMEM) | |
2784 | ret = -EAGAIN; | |
1da177e4 | 2785 | return ret; |
a477097d KM |
2786 | } |
2787 | return ret == len ? 0 : -ENOMEM; | |
1da177e4 LT |
2788 | } |
2789 | ||
1da177e4 LT |
2790 | #if !defined(__HAVE_ARCH_GATE_AREA) |
2791 | ||
2792 | #if defined(AT_SYSINFO_EHDR) | |
5ce7852c | 2793 | static struct vm_area_struct gate_vma; |
1da177e4 LT |
2794 | |
2795 | static int __init gate_vma_init(void) | |
2796 | { | |
2797 | gate_vma.vm_mm = NULL; | |
2798 | gate_vma.vm_start = FIXADDR_USER_START; | |
2799 | gate_vma.vm_end = FIXADDR_USER_END; | |
b6558c4a RM |
2800 | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; |
2801 | gate_vma.vm_page_prot = __P101; | |
f47aef55 RM |
2802 | /* |
2803 | * Make sure the vDSO gets into every core dump. | |
2804 | * Dumping its contents makes post-mortem fully interpretable later | |
2805 | * without matching up the same kernel and hardware config to see | |
2806 | * what PC values meant. | |
2807 | */ | |
2808 | gate_vma.vm_flags |= VM_ALWAYSDUMP; | |
1da177e4 LT |
2809 | return 0; |
2810 | } | |
2811 | __initcall(gate_vma_init); | |
2812 | #endif | |
2813 | ||
2814 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | |
2815 | { | |
2816 | #ifdef AT_SYSINFO_EHDR | |
2817 | return &gate_vma; | |
2818 | #else | |
2819 | return NULL; | |
2820 | #endif | |
2821 | } | |
2822 | ||
2823 | int in_gate_area_no_task(unsigned long addr) | |
2824 | { | |
2825 | #ifdef AT_SYSINFO_EHDR | |
2826 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | |
2827 | return 1; | |
2828 | #endif | |
2829 | return 0; | |
2830 | } | |
2831 | ||
2832 | #endif /* __HAVE_ARCH_GATE_AREA */ | |
0ec76a11 | 2833 | |
28b2ee20 RR |
2834 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
2835 | static resource_size_t follow_phys(struct vm_area_struct *vma, | |
2836 | unsigned long address, unsigned int flags, | |
2837 | unsigned long *prot) | |
2838 | { | |
2839 | pgd_t *pgd; | |
2840 | pud_t *pud; | |
2841 | pmd_t *pmd; | |
2842 | pte_t *ptep, pte; | |
2843 | spinlock_t *ptl; | |
2844 | resource_size_t phys_addr = 0; | |
2845 | struct mm_struct *mm = vma->vm_mm; | |
2846 | ||
2847 | VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP))); | |
2848 | ||
2849 | pgd = pgd_offset(mm, address); | |
2850 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
2851 | goto no_page_table; | |
2852 | ||
2853 | pud = pud_offset(pgd, address); | |
2854 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | |
2855 | goto no_page_table; | |
2856 | ||
2857 | pmd = pmd_offset(pud, address); | |
2858 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
2859 | goto no_page_table; | |
2860 | ||
2861 | /* We cannot handle huge page PFN maps. Luckily they don't exist. */ | |
2862 | if (pmd_huge(*pmd)) | |
2863 | goto no_page_table; | |
2864 | ||
2865 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
2866 | if (!ptep) | |
2867 | goto out; | |
2868 | ||
2869 | pte = *ptep; | |
2870 | if (!pte_present(pte)) | |
2871 | goto unlock; | |
2872 | if ((flags & FOLL_WRITE) && !pte_write(pte)) | |
2873 | goto unlock; | |
2874 | phys_addr = pte_pfn(pte); | |
2875 | phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */ | |
2876 | ||
2877 | *prot = pgprot_val(pte_pgprot(pte)); | |
2878 | ||
2879 | unlock: | |
2880 | pte_unmap_unlock(ptep, ptl); | |
2881 | out: | |
2882 | return phys_addr; | |
2883 | no_page_table: | |
2884 | return 0; | |
2885 | } | |
2886 | ||
2887 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | |
2888 | void *buf, int len, int write) | |
2889 | { | |
2890 | resource_size_t phys_addr; | |
2891 | unsigned long prot = 0; | |
2892 | void *maddr; | |
2893 | int offset = addr & (PAGE_SIZE-1); | |
2894 | ||
2895 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
2896 | return -EINVAL; | |
2897 | ||
2898 | phys_addr = follow_phys(vma, addr, write, &prot); | |
2899 | ||
2900 | if (!phys_addr) | |
2901 | return -EINVAL; | |
2902 | ||
2903 | maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); | |
2904 | if (write) | |
2905 | memcpy_toio(maddr + offset, buf, len); | |
2906 | else | |
2907 | memcpy_fromio(buf, maddr + offset, len); | |
2908 | iounmap(maddr); | |
2909 | ||
2910 | return len; | |
2911 | } | |
2912 | #endif | |
2913 | ||
0ec76a11 DH |
2914 | /* |
2915 | * Access another process' address space. | |
2916 | * Source/target buffer must be kernel space, | |
2917 | * Do not walk the page table directly, use get_user_pages | |
2918 | */ | |
2919 | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) | |
2920 | { | |
2921 | struct mm_struct *mm; | |
2922 | struct vm_area_struct *vma; | |
0ec76a11 DH |
2923 | void *old_buf = buf; |
2924 | ||
2925 | mm = get_task_mm(tsk); | |
2926 | if (!mm) | |
2927 | return 0; | |
2928 | ||
2929 | down_read(&mm->mmap_sem); | |
183ff22b | 2930 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
2931 | while (len) { |
2932 | int bytes, ret, offset; | |
2933 | void *maddr; | |
28b2ee20 | 2934 | struct page *page = NULL; |
0ec76a11 DH |
2935 | |
2936 | ret = get_user_pages(tsk, mm, addr, 1, | |
2937 | write, 1, &page, &vma); | |
28b2ee20 RR |
2938 | if (ret <= 0) { |
2939 | /* | |
2940 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
2941 | * we can access using slightly different code. | |
2942 | */ | |
2943 | #ifdef CONFIG_HAVE_IOREMAP_PROT | |
2944 | vma = find_vma(mm, addr); | |
2945 | if (!vma) | |
2946 | break; | |
2947 | if (vma->vm_ops && vma->vm_ops->access) | |
2948 | ret = vma->vm_ops->access(vma, addr, buf, | |
2949 | len, write); | |
2950 | if (ret <= 0) | |
2951 | #endif | |
2952 | break; | |
2953 | bytes = ret; | |
0ec76a11 | 2954 | } else { |
28b2ee20 RR |
2955 | bytes = len; |
2956 | offset = addr & (PAGE_SIZE-1); | |
2957 | if (bytes > PAGE_SIZE-offset) | |
2958 | bytes = PAGE_SIZE-offset; | |
2959 | ||
2960 | maddr = kmap(page); | |
2961 | if (write) { | |
2962 | copy_to_user_page(vma, page, addr, | |
2963 | maddr + offset, buf, bytes); | |
2964 | set_page_dirty_lock(page); | |
2965 | } else { | |
2966 | copy_from_user_page(vma, page, addr, | |
2967 | buf, maddr + offset, bytes); | |
2968 | } | |
2969 | kunmap(page); | |
2970 | page_cache_release(page); | |
0ec76a11 | 2971 | } |
0ec76a11 DH |
2972 | len -= bytes; |
2973 | buf += bytes; | |
2974 | addr += bytes; | |
2975 | } | |
2976 | up_read(&mm->mmap_sem); | |
2977 | mmput(mm); | |
2978 | ||
2979 | return buf - old_buf; | |
2980 | } | |
03252919 AK |
2981 | |
2982 | /* | |
2983 | * Print the name of a VMA. | |
2984 | */ | |
2985 | void print_vma_addr(char *prefix, unsigned long ip) | |
2986 | { | |
2987 | struct mm_struct *mm = current->mm; | |
2988 | struct vm_area_struct *vma; | |
2989 | ||
e8bff74a IM |
2990 | /* |
2991 | * Do not print if we are in atomic | |
2992 | * contexts (in exception stacks, etc.): | |
2993 | */ | |
2994 | if (preempt_count()) | |
2995 | return; | |
2996 | ||
03252919 AK |
2997 | down_read(&mm->mmap_sem); |
2998 | vma = find_vma(mm, ip); | |
2999 | if (vma && vma->vm_file) { | |
3000 | struct file *f = vma->vm_file; | |
3001 | char *buf = (char *)__get_free_page(GFP_KERNEL); | |
3002 | if (buf) { | |
3003 | char *p, *s; | |
3004 | ||
cf28b486 | 3005 | p = d_path(&f->f_path, buf, PAGE_SIZE); |
03252919 AK |
3006 | if (IS_ERR(p)) |
3007 | p = "?"; | |
3008 | s = strrchr(p, '/'); | |
3009 | if (s) | |
3010 | p = s+1; | |
3011 | printk("%s%s[%lx+%lx]", prefix, p, | |
3012 | vma->vm_start, | |
3013 | vma->vm_end - vma->vm_start); | |
3014 | free_page((unsigned long)buf); | |
3015 | } | |
3016 | } | |
3017 | up_read(¤t->mm->mmap_sem); | |
3018 | } |