]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memory.c
Revert "mm: numa: defer TLB flush for THP migration as long as possible"
[mirror_ubuntu-artful-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
9a840895 52#include <linux/ksm.h>
1da177e4 53#include <linux/rmap.h>
b95f1b31 54#include <linux/export.h>
0ff92245 55#include <linux/delayacct.h>
1da177e4 56#include <linux/init.h>
01c8f1c4 57#include <linux/pfn_t.h>
edc79b2a 58#include <linux/writeback.h>
8a9f3ccd 59#include <linux/memcontrol.h>
cddb8a5c 60#include <linux/mmu_notifier.h>
3dc14741
HD
61#include <linux/kallsyms.h>
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
1da177e4 71
6952b61d 72#include <asm/io.h>
33a709b2 73#include <asm/mmu_context.h>
1da177e4 74#include <asm/pgalloc.h>
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4
LT
76#include <asm/tlb.h>
77#include <asm/tlbflush.h>
78#include <asm/pgtable.h>
79
42b77728
JB
80#include "internal.h"
81
90572890
PZ
82#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
83#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
84#endif
85
d41dee36 86#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
87/* use the per-pgdat data instead for discontigmem - mbligh */
88unsigned long max_mapnr;
1da177e4 89EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
90
91struct page *mem_map;
1da177e4
LT
92EXPORT_SYMBOL(mem_map);
93#endif
94
1da177e4
LT
95/*
96 * A number of key systems in x86 including ioremap() rely on the assumption
97 * that high_memory defines the upper bound on direct map memory, then end
98 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
99 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
100 * and ZONE_HIGHMEM.
101 */
166f61b9 102void *high_memory;
1da177e4 103EXPORT_SYMBOL(high_memory);
1da177e4 104
32a93233
IM
105/*
106 * Randomize the address space (stacks, mmaps, brk, etc.).
107 *
108 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
109 * as ancient (libc5 based) binaries can segfault. )
110 */
111int randomize_va_space __read_mostly =
112#ifdef CONFIG_COMPAT_BRK
113 1;
114#else
115 2;
116#endif
a62eaf15
AK
117
118static int __init disable_randmaps(char *s)
119{
120 randomize_va_space = 0;
9b41046c 121 return 1;
a62eaf15
AK
122}
123__setup("norandmaps", disable_randmaps);
124
62eede62 125unsigned long zero_pfn __read_mostly;
0b70068e
AB
126EXPORT_SYMBOL(zero_pfn);
127
166f61b9
TH
128unsigned long highest_memmap_pfn __read_mostly;
129
a13ea5b7
HD
130/*
131 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
132 */
133static int __init init_zero_pfn(void)
134{
135 zero_pfn = page_to_pfn(ZERO_PAGE(0));
136 return 0;
137}
138core_initcall(init_zero_pfn);
a62eaf15 139
d559db08 140
34e55232
KH
141#if defined(SPLIT_RSS_COUNTING)
142
ea48cf78 143void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
144{
145 int i;
146
147 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
148 if (current->rss_stat.count[i]) {
149 add_mm_counter(mm, i, current->rss_stat.count[i]);
150 current->rss_stat.count[i] = 0;
34e55232
KH
151 }
152 }
05af2e10 153 current->rss_stat.events = 0;
34e55232
KH
154}
155
156static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
157{
158 struct task_struct *task = current;
159
160 if (likely(task->mm == mm))
161 task->rss_stat.count[member] += val;
162 else
163 add_mm_counter(mm, member, val);
164}
165#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
166#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
167
168/* sync counter once per 64 page faults */
169#define TASK_RSS_EVENTS_THRESH (64)
170static void check_sync_rss_stat(struct task_struct *task)
171{
172 if (unlikely(task != current))
173 return;
174 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 175 sync_mm_rss(task->mm);
34e55232 176}
9547d01b 177#else /* SPLIT_RSS_COUNTING */
34e55232
KH
178
179#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
180#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
181
182static void check_sync_rss_stat(struct task_struct *task)
183{
184}
185
9547d01b
PZ
186#endif /* SPLIT_RSS_COUNTING */
187
188#ifdef HAVE_GENERIC_MMU_GATHER
189
ca1d6c7d 190static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
191{
192 struct mmu_gather_batch *batch;
193
194 batch = tlb->active;
195 if (batch->next) {
196 tlb->active = batch->next;
ca1d6c7d 197 return true;
9547d01b
PZ
198 }
199
53a59fc6 200 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 201 return false;
53a59fc6 202
9547d01b
PZ
203 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
204 if (!batch)
ca1d6c7d 205 return false;
9547d01b 206
53a59fc6 207 tlb->batch_count++;
9547d01b
PZ
208 batch->next = NULL;
209 batch->nr = 0;
210 batch->max = MAX_GATHER_BATCH;
211
212 tlb->active->next = batch;
213 tlb->active = batch;
214
ca1d6c7d 215 return true;
9547d01b
PZ
216}
217
218/* tlb_gather_mmu
219 * Called to initialize an (on-stack) mmu_gather structure for page-table
220 * tear-down from @mm. The @fullmm argument is used when @mm is without
221 * users and we're going to destroy the full address space (exit/execve).
222 */
2b047252 223void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
224{
225 tlb->mm = mm;
226
2b047252
LT
227 /* Is it from 0 to ~0? */
228 tlb->fullmm = !(start | (end+1));
1de14c3c 229 tlb->need_flush_all = 0;
9547d01b
PZ
230 tlb->local.next = NULL;
231 tlb->local.nr = 0;
232 tlb->local.max = ARRAY_SIZE(tlb->__pages);
233 tlb->active = &tlb->local;
53a59fc6 234 tlb->batch_count = 0;
9547d01b
PZ
235
236#ifdef CONFIG_HAVE_RCU_TABLE_FREE
237 tlb->batch = NULL;
238#endif
e77b0852 239 tlb->page_size = 0;
fb7332a9
WD
240
241 __tlb_reset_range(tlb);
9547d01b
PZ
242}
243
1cf35d47 244static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 245{
721c21c1
WD
246 if (!tlb->end)
247 return;
248
9547d01b 249 tlb_flush(tlb);
34ee645e 250 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
251#ifdef CONFIG_HAVE_RCU_TABLE_FREE
252 tlb_table_flush(tlb);
34e55232 253#endif
fb7332a9 254 __tlb_reset_range(tlb);
1cf35d47
LT
255}
256
257static void tlb_flush_mmu_free(struct mmu_gather *tlb)
258{
259 struct mmu_gather_batch *batch;
34e55232 260
721c21c1 261 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
262 free_pages_and_swap_cache(batch->pages, batch->nr);
263 batch->nr = 0;
264 }
265 tlb->active = &tlb->local;
266}
267
1cf35d47
LT
268void tlb_flush_mmu(struct mmu_gather *tlb)
269{
1cf35d47
LT
270 tlb_flush_mmu_tlbonly(tlb);
271 tlb_flush_mmu_free(tlb);
272}
273
9547d01b
PZ
274/* tlb_finish_mmu
275 * Called at the end of the shootdown operation to free up any resources
276 * that were required.
277 */
278void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
279{
280 struct mmu_gather_batch *batch, *next;
281
282 tlb_flush_mmu(tlb);
283
284 /* keep the page table cache within bounds */
285 check_pgt_cache();
286
287 for (batch = tlb->local.next; batch; batch = next) {
288 next = batch->next;
289 free_pages((unsigned long)batch, 0);
290 }
291 tlb->local.next = NULL;
292}
293
294/* __tlb_remove_page
295 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
296 * handling the additional races in SMP caused by other CPUs caching valid
297 * mappings in their TLBs. Returns the number of free page slots left.
298 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 299 *returns true if the caller should flush.
9547d01b 300 */
e77b0852 301bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
9547d01b
PZ
302{
303 struct mmu_gather_batch *batch;
304
fb7332a9 305 VM_BUG_ON(!tlb->end);
692a68c1 306 VM_WARN_ON(tlb->page_size != page_size);
e77b0852 307
9547d01b 308 batch = tlb->active;
692a68c1
AK
309 /*
310 * Add the page and check if we are full. If so
311 * force a flush.
312 */
313 batch->pages[batch->nr++] = page;
9547d01b
PZ
314 if (batch->nr == batch->max) {
315 if (!tlb_next_batch(tlb))
e9d55e15 316 return true;
0b43c3aa 317 batch = tlb->active;
9547d01b 318 }
309381fe 319 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 320
e9d55e15 321 return false;
9547d01b
PZ
322}
323
324#endif /* HAVE_GENERIC_MMU_GATHER */
325
26723911
PZ
326#ifdef CONFIG_HAVE_RCU_TABLE_FREE
327
328/*
329 * See the comment near struct mmu_table_batch.
330 */
331
332static void tlb_remove_table_smp_sync(void *arg)
333{
334 /* Simply deliver the interrupt */
335}
336
337static void tlb_remove_table_one(void *table)
338{
339 /*
340 * This isn't an RCU grace period and hence the page-tables cannot be
341 * assumed to be actually RCU-freed.
342 *
343 * It is however sufficient for software page-table walkers that rely on
344 * IRQ disabling. See the comment near struct mmu_table_batch.
345 */
346 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
347 __tlb_remove_table(table);
348}
349
350static void tlb_remove_table_rcu(struct rcu_head *head)
351{
352 struct mmu_table_batch *batch;
353 int i;
354
355 batch = container_of(head, struct mmu_table_batch, rcu);
356
357 for (i = 0; i < batch->nr; i++)
358 __tlb_remove_table(batch->tables[i]);
359
360 free_page((unsigned long)batch);
361}
362
363void tlb_table_flush(struct mmu_gather *tlb)
364{
365 struct mmu_table_batch **batch = &tlb->batch;
366
367 if (*batch) {
368 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
369 *batch = NULL;
370 }
371}
372
373void tlb_remove_table(struct mmu_gather *tlb, void *table)
374{
375 struct mmu_table_batch **batch = &tlb->batch;
376
26723911
PZ
377 /*
378 * When there's less then two users of this mm there cannot be a
379 * concurrent page-table walk.
380 */
381 if (atomic_read(&tlb->mm->mm_users) < 2) {
382 __tlb_remove_table(table);
383 return;
384 }
385
386 if (*batch == NULL) {
387 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
388 if (*batch == NULL) {
389 tlb_remove_table_one(table);
390 return;
391 }
392 (*batch)->nr = 0;
393 }
394 (*batch)->tables[(*batch)->nr++] = table;
395 if ((*batch)->nr == MAX_TABLE_BATCH)
396 tlb_table_flush(tlb);
397}
398
9547d01b 399#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 400
1da177e4
LT
401/*
402 * Note: this doesn't free the actual pages themselves. That
403 * has been handled earlier when unmapping all the memory regions.
404 */
9e1b32ca
BH
405static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406 unsigned long addr)
1da177e4 407{
2f569afd 408 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 409 pmd_clear(pmd);
9e1b32ca 410 pte_free_tlb(tlb, token, addr);
e1f56c89 411 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
412}
413
e0da382c
HD
414static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
415 unsigned long addr, unsigned long end,
416 unsigned long floor, unsigned long ceiling)
1da177e4
LT
417{
418 pmd_t *pmd;
419 unsigned long next;
e0da382c 420 unsigned long start;
1da177e4 421
e0da382c 422 start = addr;
1da177e4 423 pmd = pmd_offset(pud, addr);
1da177e4
LT
424 do {
425 next = pmd_addr_end(addr, end);
426 if (pmd_none_or_clear_bad(pmd))
427 continue;
9e1b32ca 428 free_pte_range(tlb, pmd, addr);
1da177e4
LT
429 } while (pmd++, addr = next, addr != end);
430
e0da382c
HD
431 start &= PUD_MASK;
432 if (start < floor)
433 return;
434 if (ceiling) {
435 ceiling &= PUD_MASK;
436 if (!ceiling)
437 return;
1da177e4 438 }
e0da382c
HD
439 if (end - 1 > ceiling - 1)
440 return;
441
442 pmd = pmd_offset(pud, start);
443 pud_clear(pud);
9e1b32ca 444 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 445 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
446}
447
c2febafc 448static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
449 unsigned long addr, unsigned long end,
450 unsigned long floor, unsigned long ceiling)
1da177e4
LT
451{
452 pud_t *pud;
453 unsigned long next;
e0da382c 454 unsigned long start;
1da177e4 455
e0da382c 456 start = addr;
c2febafc 457 pud = pud_offset(p4d, addr);
1da177e4
LT
458 do {
459 next = pud_addr_end(addr, end);
460 if (pud_none_or_clear_bad(pud))
461 continue;
e0da382c 462 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
463 } while (pud++, addr = next, addr != end);
464
c2febafc
KS
465 start &= P4D_MASK;
466 if (start < floor)
467 return;
468 if (ceiling) {
469 ceiling &= P4D_MASK;
470 if (!ceiling)
471 return;
472 }
473 if (end - 1 > ceiling - 1)
474 return;
475
476 pud = pud_offset(p4d, start);
477 p4d_clear(p4d);
478 pud_free_tlb(tlb, pud, start);
479}
480
481static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
482 unsigned long addr, unsigned long end,
483 unsigned long floor, unsigned long ceiling)
484{
485 p4d_t *p4d;
486 unsigned long next;
487 unsigned long start;
488
489 start = addr;
490 p4d = p4d_offset(pgd, addr);
491 do {
492 next = p4d_addr_end(addr, end);
493 if (p4d_none_or_clear_bad(p4d))
494 continue;
495 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
496 } while (p4d++, addr = next, addr != end);
497
e0da382c
HD
498 start &= PGDIR_MASK;
499 if (start < floor)
500 return;
501 if (ceiling) {
502 ceiling &= PGDIR_MASK;
503 if (!ceiling)
504 return;
1da177e4 505 }
e0da382c
HD
506 if (end - 1 > ceiling - 1)
507 return;
508
c2febafc 509 p4d = p4d_offset(pgd, start);
e0da382c 510 pgd_clear(pgd);
c2febafc 511 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
512}
513
514/*
e0da382c 515 * This function frees user-level page tables of a process.
1da177e4 516 */
42b77728 517void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
518 unsigned long addr, unsigned long end,
519 unsigned long floor, unsigned long ceiling)
1da177e4
LT
520{
521 pgd_t *pgd;
522 unsigned long next;
e0da382c
HD
523
524 /*
525 * The next few lines have given us lots of grief...
526 *
527 * Why are we testing PMD* at this top level? Because often
528 * there will be no work to do at all, and we'd prefer not to
529 * go all the way down to the bottom just to discover that.
530 *
531 * Why all these "- 1"s? Because 0 represents both the bottom
532 * of the address space and the top of it (using -1 for the
533 * top wouldn't help much: the masks would do the wrong thing).
534 * The rule is that addr 0 and floor 0 refer to the bottom of
535 * the address space, but end 0 and ceiling 0 refer to the top
536 * Comparisons need to use "end - 1" and "ceiling - 1" (though
537 * that end 0 case should be mythical).
538 *
539 * Wherever addr is brought up or ceiling brought down, we must
540 * be careful to reject "the opposite 0" before it confuses the
541 * subsequent tests. But what about where end is brought down
542 * by PMD_SIZE below? no, end can't go down to 0 there.
543 *
544 * Whereas we round start (addr) and ceiling down, by different
545 * masks at different levels, in order to test whether a table
546 * now has no other vmas using it, so can be freed, we don't
547 * bother to round floor or end up - the tests don't need that.
548 */
1da177e4 549
e0da382c
HD
550 addr &= PMD_MASK;
551 if (addr < floor) {
552 addr += PMD_SIZE;
553 if (!addr)
554 return;
555 }
556 if (ceiling) {
557 ceiling &= PMD_MASK;
558 if (!ceiling)
559 return;
560 }
561 if (end - 1 > ceiling - 1)
562 end -= PMD_SIZE;
563 if (addr > end - 1)
564 return;
07e32661
AK
565 /*
566 * We add page table cache pages with PAGE_SIZE,
567 * (see pte_free_tlb()), flush the tlb if we need
568 */
569 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 570 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
571 do {
572 next = pgd_addr_end(addr, end);
573 if (pgd_none_or_clear_bad(pgd))
574 continue;
c2febafc 575 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 576 } while (pgd++, addr = next, addr != end);
e0da382c
HD
577}
578
42b77728 579void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 580 unsigned long floor, unsigned long ceiling)
e0da382c
HD
581{
582 while (vma) {
583 struct vm_area_struct *next = vma->vm_next;
584 unsigned long addr = vma->vm_start;
585
8f4f8c16 586 /*
25d9e2d1 587 * Hide vma from rmap and truncate_pagecache before freeing
588 * pgtables
8f4f8c16 589 */
5beb4930 590 unlink_anon_vmas(vma);
8f4f8c16
HD
591 unlink_file_vma(vma);
592
9da61aef 593 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 594 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 595 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
596 } else {
597 /*
598 * Optimization: gather nearby vmas into one call down
599 */
600 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 601 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
602 vma = next;
603 next = vma->vm_next;
5beb4930 604 unlink_anon_vmas(vma);
8f4f8c16 605 unlink_file_vma(vma);
3bf5ee95
HD
606 }
607 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 608 floor, next ? next->vm_start : ceiling);
3bf5ee95 609 }
e0da382c
HD
610 vma = next;
611 }
1da177e4
LT
612}
613
3ed3a4f0 614int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 615{
c4088ebd 616 spinlock_t *ptl;
2f569afd 617 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
618 if (!new)
619 return -ENOMEM;
620
362a61ad
NP
621 /*
622 * Ensure all pte setup (eg. pte page lock and page clearing) are
623 * visible before the pte is made visible to other CPUs by being
624 * put into page tables.
625 *
626 * The other side of the story is the pointer chasing in the page
627 * table walking code (when walking the page table without locking;
628 * ie. most of the time). Fortunately, these data accesses consist
629 * of a chain of data-dependent loads, meaning most CPUs (alpha
630 * being the notable exception) will already guarantee loads are
631 * seen in-order. See the alpha page table accessors for the
632 * smp_read_barrier_depends() barriers in page table walking code.
633 */
634 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
635
c4088ebd 636 ptl = pmd_lock(mm, pmd);
8ac1f832 637 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 638 atomic_long_inc(&mm->nr_ptes);
1da177e4 639 pmd_populate(mm, pmd, new);
2f569afd 640 new = NULL;
4b471e88 641 }
c4088ebd 642 spin_unlock(ptl);
2f569afd
MS
643 if (new)
644 pte_free(mm, new);
1bb3630e 645 return 0;
1da177e4
LT
646}
647
1bb3630e 648int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 649{
1bb3630e
HD
650 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
651 if (!new)
652 return -ENOMEM;
653
362a61ad
NP
654 smp_wmb(); /* See comment in __pte_alloc */
655
1bb3630e 656 spin_lock(&init_mm.page_table_lock);
8ac1f832 657 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 658 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 659 new = NULL;
4b471e88 660 }
1bb3630e 661 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
662 if (new)
663 pte_free_kernel(&init_mm, new);
1bb3630e 664 return 0;
1da177e4
LT
665}
666
d559db08
KH
667static inline void init_rss_vec(int *rss)
668{
669 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
670}
671
672static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 673{
d559db08
KH
674 int i;
675
34e55232 676 if (current->mm == mm)
05af2e10 677 sync_mm_rss(mm);
d559db08
KH
678 for (i = 0; i < NR_MM_COUNTERS; i++)
679 if (rss[i])
680 add_mm_counter(mm, i, rss[i]);
ae859762
HD
681}
682
b5810039 683/*
6aab341e
LT
684 * This function is called to print an error when a bad pte
685 * is found. For example, we might have a PFN-mapped pte in
686 * a region that doesn't allow it.
b5810039
NP
687 *
688 * The calling function must still handle the error.
689 */
3dc14741
HD
690static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
691 pte_t pte, struct page *page)
b5810039 692{
3dc14741 693 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
694 p4d_t *p4d = p4d_offset(pgd, addr);
695 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
696 pmd_t *pmd = pmd_offset(pud, addr);
697 struct address_space *mapping;
698 pgoff_t index;
d936cf9b
HD
699 static unsigned long resume;
700 static unsigned long nr_shown;
701 static unsigned long nr_unshown;
702
703 /*
704 * Allow a burst of 60 reports, then keep quiet for that minute;
705 * or allow a steady drip of one report per second.
706 */
707 if (nr_shown == 60) {
708 if (time_before(jiffies, resume)) {
709 nr_unshown++;
710 return;
711 }
712 if (nr_unshown) {
1170532b
JP
713 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
714 nr_unshown);
d936cf9b
HD
715 nr_unshown = 0;
716 }
717 nr_shown = 0;
718 }
719 if (nr_shown++ == 0)
720 resume = jiffies + 60 * HZ;
3dc14741
HD
721
722 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
723 index = linear_page_index(vma, addr);
724
1170532b
JP
725 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
726 current->comm,
727 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 728 if (page)
f0b791a3 729 dump_page(page, "bad pte");
1170532b
JP
730 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
731 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
3dc14741
HD
732 /*
733 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
734 */
2682582a
KK
735 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
736 vma->vm_file,
737 vma->vm_ops ? vma->vm_ops->fault : NULL,
738 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
739 mapping ? mapping->a_ops->readpage : NULL);
b5810039 740 dump_stack();
373d4d09 741 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
742}
743
ee498ed7 744/*
7e675137 745 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 746 *
7e675137
NP
747 * "Special" mappings do not wish to be associated with a "struct page" (either
748 * it doesn't exist, or it exists but they don't want to touch it). In this
749 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 750 *
7e675137
NP
751 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
752 * pte bit, in which case this function is trivial. Secondly, an architecture
753 * may not have a spare pte bit, which requires a more complicated scheme,
754 * described below.
755 *
756 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
757 * special mapping (even if there are underlying and valid "struct pages").
758 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 759 *
b379d790
JH
760 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
761 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
762 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
763 * mapping will always honor the rule
6aab341e
LT
764 *
765 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
766 *
7e675137
NP
767 * And for normal mappings this is false.
768 *
769 * This restricts such mappings to be a linear translation from virtual address
770 * to pfn. To get around this restriction, we allow arbitrary mappings so long
771 * as the vma is not a COW mapping; in that case, we know that all ptes are
772 * special (because none can have been COWed).
b379d790 773 *
b379d790 774 *
7e675137 775 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
776 *
777 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
778 * page" backing, however the difference is that _all_ pages with a struct
779 * page (that is, those where pfn_valid is true) are refcounted and considered
780 * normal pages by the VM. The disadvantage is that pages are refcounted
781 * (which can be slower and simply not an option for some PFNMAP users). The
782 * advantage is that we don't have to follow the strict linearity rule of
783 * PFNMAP mappings in order to support COWable mappings.
784 *
ee498ed7 785 */
7e675137
NP
786#ifdef __HAVE_ARCH_PTE_SPECIAL
787# define HAVE_PTE_SPECIAL 1
788#else
789# define HAVE_PTE_SPECIAL 0
790#endif
791struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
792 pte_t pte)
ee498ed7 793{
22b31eec 794 unsigned long pfn = pte_pfn(pte);
7e675137
NP
795
796 if (HAVE_PTE_SPECIAL) {
b38af472 797 if (likely(!pte_special(pte)))
22b31eec 798 goto check_pfn;
667a0a06
DV
799 if (vma->vm_ops && vma->vm_ops->find_special_page)
800 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
801 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
802 return NULL;
62eede62 803 if (!is_zero_pfn(pfn))
22b31eec 804 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
805 return NULL;
806 }
807
808 /* !HAVE_PTE_SPECIAL case follows: */
809
b379d790
JH
810 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
811 if (vma->vm_flags & VM_MIXEDMAP) {
812 if (!pfn_valid(pfn))
813 return NULL;
814 goto out;
815 } else {
7e675137
NP
816 unsigned long off;
817 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
818 if (pfn == vma->vm_pgoff + off)
819 return NULL;
820 if (!is_cow_mapping(vma->vm_flags))
821 return NULL;
822 }
6aab341e
LT
823 }
824
b38af472
HD
825 if (is_zero_pfn(pfn))
826 return NULL;
22b31eec
HD
827check_pfn:
828 if (unlikely(pfn > highest_memmap_pfn)) {
829 print_bad_pte(vma, addr, pte, NULL);
830 return NULL;
831 }
6aab341e
LT
832
833 /*
7e675137 834 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 835 * eg. VDSO mappings can cause them to exist.
6aab341e 836 */
b379d790 837out:
6aab341e 838 return pfn_to_page(pfn);
ee498ed7
HD
839}
840
28093f9f
GS
841#ifdef CONFIG_TRANSPARENT_HUGEPAGE
842struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
843 pmd_t pmd)
844{
845 unsigned long pfn = pmd_pfn(pmd);
846
847 /*
848 * There is no pmd_special() but there may be special pmds, e.g.
849 * in a direct-access (dax) mapping, so let's just replicate the
850 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
851 */
852 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
853 if (vma->vm_flags & VM_MIXEDMAP) {
854 if (!pfn_valid(pfn))
855 return NULL;
856 goto out;
857 } else {
858 unsigned long off;
859 off = (addr - vma->vm_start) >> PAGE_SHIFT;
860 if (pfn == vma->vm_pgoff + off)
861 return NULL;
862 if (!is_cow_mapping(vma->vm_flags))
863 return NULL;
864 }
865 }
866
867 if (is_zero_pfn(pfn))
868 return NULL;
869 if (unlikely(pfn > highest_memmap_pfn))
870 return NULL;
871
872 /*
873 * NOTE! We still have PageReserved() pages in the page tables.
874 * eg. VDSO mappings can cause them to exist.
875 */
876out:
877 return pfn_to_page(pfn);
878}
879#endif
880
1da177e4
LT
881/*
882 * copy one vm_area from one task to the other. Assumes the page tables
883 * already present in the new task to be cleared in the whole range
884 * covered by this vma.
1da177e4
LT
885 */
886
570a335b 887static inline unsigned long
1da177e4 888copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 889 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 890 unsigned long addr, int *rss)
1da177e4 891{
b5810039 892 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
893 pte_t pte = *src_pte;
894 struct page *page;
1da177e4
LT
895
896 /* pte contains position in swap or file, so copy. */
897 if (unlikely(!pte_present(pte))) {
0661a336
KS
898 swp_entry_t entry = pte_to_swp_entry(pte);
899
900 if (likely(!non_swap_entry(entry))) {
901 if (swap_duplicate(entry) < 0)
902 return entry.val;
903
904 /* make sure dst_mm is on swapoff's mmlist. */
905 if (unlikely(list_empty(&dst_mm->mmlist))) {
906 spin_lock(&mmlist_lock);
907 if (list_empty(&dst_mm->mmlist))
908 list_add(&dst_mm->mmlist,
909 &src_mm->mmlist);
910 spin_unlock(&mmlist_lock);
911 }
912 rss[MM_SWAPENTS]++;
913 } else if (is_migration_entry(entry)) {
914 page = migration_entry_to_page(entry);
915
eca56ff9 916 rss[mm_counter(page)]++;
0661a336
KS
917
918 if (is_write_migration_entry(entry) &&
919 is_cow_mapping(vm_flags)) {
920 /*
921 * COW mappings require pages in both
922 * parent and child to be set to read.
923 */
924 make_migration_entry_read(&entry);
925 pte = swp_entry_to_pte(entry);
926 if (pte_swp_soft_dirty(*src_pte))
927 pte = pte_swp_mksoft_dirty(pte);
928 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 929 }
1da177e4 930 }
ae859762 931 goto out_set_pte;
1da177e4
LT
932 }
933
1da177e4
LT
934 /*
935 * If it's a COW mapping, write protect it both
936 * in the parent and the child
937 */
67121172 938 if (is_cow_mapping(vm_flags)) {
1da177e4 939 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 940 pte = pte_wrprotect(pte);
1da177e4
LT
941 }
942
943 /*
944 * If it's a shared mapping, mark it clean in
945 * the child
946 */
947 if (vm_flags & VM_SHARED)
948 pte = pte_mkclean(pte);
949 pte = pte_mkold(pte);
6aab341e
LT
950
951 page = vm_normal_page(vma, addr, pte);
952 if (page) {
953 get_page(page);
53f9263b 954 page_dup_rmap(page, false);
eca56ff9 955 rss[mm_counter(page)]++;
6aab341e 956 }
ae859762
HD
957
958out_set_pte:
959 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 960 return 0;
1da177e4
LT
961}
962
21bda264 963static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
964 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
965 unsigned long addr, unsigned long end)
1da177e4 966{
c36987e2 967 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 968 pte_t *src_pte, *dst_pte;
c74df32c 969 spinlock_t *src_ptl, *dst_ptl;
e040f218 970 int progress = 0;
d559db08 971 int rss[NR_MM_COUNTERS];
570a335b 972 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
973
974again:
d559db08
KH
975 init_rss_vec(rss);
976
c74df32c 977 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
978 if (!dst_pte)
979 return -ENOMEM;
ece0e2b6 980 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 981 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 982 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
983 orig_src_pte = src_pte;
984 orig_dst_pte = dst_pte;
6606c3e0 985 arch_enter_lazy_mmu_mode();
1da177e4 986
1da177e4
LT
987 do {
988 /*
989 * We are holding two locks at this point - either of them
990 * could generate latencies in another task on another CPU.
991 */
e040f218
HD
992 if (progress >= 32) {
993 progress = 0;
994 if (need_resched() ||
95c354fe 995 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
996 break;
997 }
1da177e4
LT
998 if (pte_none(*src_pte)) {
999 progress++;
1000 continue;
1001 }
570a335b
HD
1002 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1003 vma, addr, rss);
1004 if (entry.val)
1005 break;
1da177e4
LT
1006 progress += 8;
1007 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1008
6606c3e0 1009 arch_leave_lazy_mmu_mode();
c74df32c 1010 spin_unlock(src_ptl);
ece0e2b6 1011 pte_unmap(orig_src_pte);
d559db08 1012 add_mm_rss_vec(dst_mm, rss);
c36987e2 1013 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1014 cond_resched();
570a335b
HD
1015
1016 if (entry.val) {
1017 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1018 return -ENOMEM;
1019 progress = 0;
1020 }
1da177e4
LT
1021 if (addr != end)
1022 goto again;
1023 return 0;
1024}
1025
1026static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1027 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1028 unsigned long addr, unsigned long end)
1029{
1030 pmd_t *src_pmd, *dst_pmd;
1031 unsigned long next;
1032
1033 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1034 if (!dst_pmd)
1035 return -ENOMEM;
1036 src_pmd = pmd_offset(src_pud, addr);
1037 do {
1038 next = pmd_addr_end(addr, end);
5c7fb56e 1039 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 1040 int err;
a00cc7d9 1041 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
1042 err = copy_huge_pmd(dst_mm, src_mm,
1043 dst_pmd, src_pmd, addr, vma);
1044 if (err == -ENOMEM)
1045 return -ENOMEM;
1046 if (!err)
1047 continue;
1048 /* fall through */
1049 }
1da177e4
LT
1050 if (pmd_none_or_clear_bad(src_pmd))
1051 continue;
1052 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1053 vma, addr, next))
1054 return -ENOMEM;
1055 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1056 return 0;
1057}
1058
1059static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 1060 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
1061 unsigned long addr, unsigned long end)
1062{
1063 pud_t *src_pud, *dst_pud;
1064 unsigned long next;
1065
c2febafc 1066 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1067 if (!dst_pud)
1068 return -ENOMEM;
c2febafc 1069 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1070 do {
1071 next = pud_addr_end(addr, end);
a00cc7d9
MW
1072 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1073 int err;
1074
1075 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1076 err = copy_huge_pud(dst_mm, src_mm,
1077 dst_pud, src_pud, addr, vma);
1078 if (err == -ENOMEM)
1079 return -ENOMEM;
1080 if (!err)
1081 continue;
1082 /* fall through */
1083 }
1da177e4
LT
1084 if (pud_none_or_clear_bad(src_pud))
1085 continue;
1086 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1087 vma, addr, next))
1088 return -ENOMEM;
1089 } while (dst_pud++, src_pud++, addr = next, addr != end);
1090 return 0;
1091}
1092
c2febafc
KS
1093static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1094 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1095 unsigned long addr, unsigned long end)
1096{
1097 p4d_t *src_p4d, *dst_p4d;
1098 unsigned long next;
1099
1100 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1101 if (!dst_p4d)
1102 return -ENOMEM;
1103 src_p4d = p4d_offset(src_pgd, addr);
1104 do {
1105 next = p4d_addr_end(addr, end);
1106 if (p4d_none_or_clear_bad(src_p4d))
1107 continue;
1108 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1109 vma, addr, next))
1110 return -ENOMEM;
1111 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1112 return 0;
1113}
1114
1da177e4
LT
1115int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1116 struct vm_area_struct *vma)
1117{
1118 pgd_t *src_pgd, *dst_pgd;
1119 unsigned long next;
1120 unsigned long addr = vma->vm_start;
1121 unsigned long end = vma->vm_end;
2ec74c3e
SG
1122 unsigned long mmun_start; /* For mmu_notifiers */
1123 unsigned long mmun_end; /* For mmu_notifiers */
1124 bool is_cow;
cddb8a5c 1125 int ret;
1da177e4 1126
d992895b
NP
1127 /*
1128 * Don't copy ptes where a page fault will fill them correctly.
1129 * Fork becomes much lighter when there are big shared or private
1130 * readonly mappings. The tradeoff is that copy_page_range is more
1131 * efficient than faulting.
1132 */
0661a336
KS
1133 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1134 !vma->anon_vma)
1135 return 0;
d992895b 1136
1da177e4
LT
1137 if (is_vm_hugetlb_page(vma))
1138 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1139
b3b9c293 1140 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1141 /*
1142 * We do not free on error cases below as remove_vma
1143 * gets called on error from higher level routine
1144 */
5180da41 1145 ret = track_pfn_copy(vma);
2ab64037 1146 if (ret)
1147 return ret;
1148 }
1149
cddb8a5c
AA
1150 /*
1151 * We need to invalidate the secondary MMU mappings only when
1152 * there could be a permission downgrade on the ptes of the
1153 * parent mm. And a permission downgrade will only happen if
1154 * is_cow_mapping() returns true.
1155 */
2ec74c3e
SG
1156 is_cow = is_cow_mapping(vma->vm_flags);
1157 mmun_start = addr;
1158 mmun_end = end;
1159 if (is_cow)
1160 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1161 mmun_end);
cddb8a5c
AA
1162
1163 ret = 0;
1da177e4
LT
1164 dst_pgd = pgd_offset(dst_mm, addr);
1165 src_pgd = pgd_offset(src_mm, addr);
1166 do {
1167 next = pgd_addr_end(addr, end);
1168 if (pgd_none_or_clear_bad(src_pgd))
1169 continue;
c2febafc 1170 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1171 vma, addr, next))) {
1172 ret = -ENOMEM;
1173 break;
1174 }
1da177e4 1175 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1176
2ec74c3e
SG
1177 if (is_cow)
1178 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1179 return ret;
1da177e4
LT
1180}
1181
51c6f666 1182static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1183 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1184 unsigned long addr, unsigned long end,
97a89413 1185 struct zap_details *details)
1da177e4 1186{
b5810039 1187 struct mm_struct *mm = tlb->mm;
d16dfc55 1188 int force_flush = 0;
d559db08 1189 int rss[NR_MM_COUNTERS];
97a89413 1190 spinlock_t *ptl;
5f1a1907 1191 pte_t *start_pte;
97a89413 1192 pte_t *pte;
8a5f14a2 1193 swp_entry_t entry;
d559db08 1194
07e32661 1195 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1196again:
e303297e 1197 init_rss_vec(rss);
5f1a1907
SR
1198 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1199 pte = start_pte;
3ea27719 1200 flush_tlb_batched_pending(mm);
6606c3e0 1201 arch_enter_lazy_mmu_mode();
1da177e4
LT
1202 do {
1203 pte_t ptent = *pte;
166f61b9 1204 if (pte_none(ptent))
1da177e4 1205 continue;
6f5e6b9e 1206
1da177e4 1207 if (pte_present(ptent)) {
ee498ed7 1208 struct page *page;
51c6f666 1209
6aab341e 1210 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1211 if (unlikely(details) && page) {
1212 /*
1213 * unmap_shared_mapping_pages() wants to
1214 * invalidate cache without truncating:
1215 * unmap shared but keep private pages.
1216 */
1217 if (details->check_mapping &&
800d8c63 1218 details->check_mapping != page_rmapping(page))
1da177e4 1219 continue;
1da177e4 1220 }
b5810039 1221 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1222 tlb->fullmm);
1da177e4
LT
1223 tlb_remove_tlb_entry(tlb, pte, addr);
1224 if (unlikely(!page))
1225 continue;
eca56ff9
JM
1226
1227 if (!PageAnon(page)) {
1cf35d47
LT
1228 if (pte_dirty(ptent)) {
1229 force_flush = 1;
6237bcd9 1230 set_page_dirty(page);
1cf35d47 1231 }
4917e5d0 1232 if (pte_young(ptent) &&
64363aad 1233 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1234 mark_page_accessed(page);
6237bcd9 1235 }
eca56ff9 1236 rss[mm_counter(page)]--;
d281ee61 1237 page_remove_rmap(page, false);
3dc14741
HD
1238 if (unlikely(page_mapcount(page) < 0))
1239 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1240 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1241 force_flush = 1;
ce9ec37b 1242 addr += PAGE_SIZE;
d16dfc55 1243 break;
1cf35d47 1244 }
1da177e4
LT
1245 continue;
1246 }
3e8715fd
KS
1247 /* If details->check_mapping, we leave swap entries. */
1248 if (unlikely(details))
1da177e4 1249 continue;
b084d435 1250
8a5f14a2
KS
1251 entry = pte_to_swp_entry(ptent);
1252 if (!non_swap_entry(entry))
1253 rss[MM_SWAPENTS]--;
1254 else if (is_migration_entry(entry)) {
1255 struct page *page;
9f9f1acd 1256
8a5f14a2 1257 page = migration_entry_to_page(entry);
eca56ff9 1258 rss[mm_counter(page)]--;
b084d435 1259 }
8a5f14a2
KS
1260 if (unlikely(!free_swap_and_cache(entry)))
1261 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1262 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1263 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1264
d559db08 1265 add_mm_rss_vec(mm, rss);
6606c3e0 1266 arch_leave_lazy_mmu_mode();
51c6f666 1267
1cf35d47 1268 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1269 if (force_flush)
1cf35d47 1270 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1271 pte_unmap_unlock(start_pte, ptl);
1272
1273 /*
1274 * If we forced a TLB flush (either due to running out of
1275 * batch buffers or because we needed to flush dirty TLB
1276 * entries before releasing the ptl), free the batched
1277 * memory too. Restart if we didn't do everything.
1278 */
1279 if (force_flush) {
1280 force_flush = 0;
1281 tlb_flush_mmu_free(tlb);
2b047252 1282 if (addr != end)
d16dfc55
PZ
1283 goto again;
1284 }
1285
51c6f666 1286 return addr;
1da177e4
LT
1287}
1288
51c6f666 1289static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1290 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1291 unsigned long addr, unsigned long end,
97a89413 1292 struct zap_details *details)
1da177e4
LT
1293{
1294 pmd_t *pmd;
1295 unsigned long next;
1296
1297 pmd = pmd_offset(pud, addr);
1298 do {
1299 next = pmd_addr_end(addr, end);
5c7fb56e 1300 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1301 if (next - addr != HPAGE_PMD_SIZE) {
68428398
HD
1302 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1303 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
fd60775a 1304 __split_huge_pmd(vma, pmd, addr, false, NULL);
f21760b1 1305 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1306 goto next;
71e3aac0
AA
1307 /* fall through */
1308 }
1a5a9906
AA
1309 /*
1310 * Here there can be other concurrent MADV_DONTNEED or
1311 * trans huge page faults running, and if the pmd is
1312 * none or trans huge it can change under us. This is
1313 * because MADV_DONTNEED holds the mmap_sem in read
1314 * mode.
1315 */
1316 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1317 goto next;
97a89413 1318 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1319next:
97a89413
PZ
1320 cond_resched();
1321 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1322
1323 return addr;
1da177e4
LT
1324}
1325
51c6f666 1326static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1327 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1328 unsigned long addr, unsigned long end,
97a89413 1329 struct zap_details *details)
1da177e4
LT
1330{
1331 pud_t *pud;
1332 unsigned long next;
1333
c2febafc 1334 pud = pud_offset(p4d, addr);
1da177e4
LT
1335 do {
1336 next = pud_addr_end(addr, end);
a00cc7d9
MW
1337 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1338 if (next - addr != HPAGE_PUD_SIZE) {
1339 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1340 split_huge_pud(vma, pud, addr);
1341 } else if (zap_huge_pud(tlb, vma, pud, addr))
1342 goto next;
1343 /* fall through */
1344 }
97a89413 1345 if (pud_none_or_clear_bad(pud))
1da177e4 1346 continue;
97a89413 1347 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1348next:
1349 cond_resched();
97a89413 1350 } while (pud++, addr = next, addr != end);
51c6f666
RH
1351
1352 return addr;
1da177e4
LT
1353}
1354
c2febafc
KS
1355static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1356 struct vm_area_struct *vma, pgd_t *pgd,
1357 unsigned long addr, unsigned long end,
1358 struct zap_details *details)
1359{
1360 p4d_t *p4d;
1361 unsigned long next;
1362
1363 p4d = p4d_offset(pgd, addr);
1364 do {
1365 next = p4d_addr_end(addr, end);
1366 if (p4d_none_or_clear_bad(p4d))
1367 continue;
1368 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1369 } while (p4d++, addr = next, addr != end);
1370
1371 return addr;
1372}
1373
aac45363 1374void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1375 struct vm_area_struct *vma,
1376 unsigned long addr, unsigned long end,
1377 struct zap_details *details)
1da177e4
LT
1378{
1379 pgd_t *pgd;
1380 unsigned long next;
1381
1da177e4
LT
1382 BUG_ON(addr >= end);
1383 tlb_start_vma(tlb, vma);
1384 pgd = pgd_offset(vma->vm_mm, addr);
1385 do {
1386 next = pgd_addr_end(addr, end);
97a89413 1387 if (pgd_none_or_clear_bad(pgd))
1da177e4 1388 continue;
c2febafc 1389 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1390 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1391 tlb_end_vma(tlb, vma);
1392}
51c6f666 1393
f5cc4eef
AV
1394
1395static void unmap_single_vma(struct mmu_gather *tlb,
1396 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1397 unsigned long end_addr,
f5cc4eef
AV
1398 struct zap_details *details)
1399{
1400 unsigned long start = max(vma->vm_start, start_addr);
1401 unsigned long end;
1402
1403 if (start >= vma->vm_end)
1404 return;
1405 end = min(vma->vm_end, end_addr);
1406 if (end <= vma->vm_start)
1407 return;
1408
cbc91f71
SD
1409 if (vma->vm_file)
1410 uprobe_munmap(vma, start, end);
1411
b3b9c293 1412 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1413 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1414
1415 if (start != end) {
1416 if (unlikely(is_vm_hugetlb_page(vma))) {
1417 /*
1418 * It is undesirable to test vma->vm_file as it
1419 * should be non-null for valid hugetlb area.
1420 * However, vm_file will be NULL in the error
7aa6b4ad 1421 * cleanup path of mmap_region. When
f5cc4eef 1422 * hugetlbfs ->mmap method fails,
7aa6b4ad 1423 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1424 * before calling this function to clean up.
1425 * Since no pte has actually been setup, it is
1426 * safe to do nothing in this case.
1427 */
24669e58 1428 if (vma->vm_file) {
83cde9e8 1429 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1430 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1431 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1432 }
f5cc4eef
AV
1433 } else
1434 unmap_page_range(tlb, vma, start, end, details);
1435 }
1da177e4
LT
1436}
1437
1da177e4
LT
1438/**
1439 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1440 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1441 * @vma: the starting vma
1442 * @start_addr: virtual address at which to start unmapping
1443 * @end_addr: virtual address at which to end unmapping
1da177e4 1444 *
508034a3 1445 * Unmap all pages in the vma list.
1da177e4 1446 *
1da177e4
LT
1447 * Only addresses between `start' and `end' will be unmapped.
1448 *
1449 * The VMA list must be sorted in ascending virtual address order.
1450 *
1451 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1452 * range after unmap_vmas() returns. So the only responsibility here is to
1453 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1454 * drops the lock and schedules.
1455 */
6e8bb019 1456void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1457 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1458 unsigned long end_addr)
1da177e4 1459{
cddb8a5c 1460 struct mm_struct *mm = vma->vm_mm;
1da177e4 1461
cddb8a5c 1462 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1463 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1464 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1465 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1466}
1467
1468/**
1469 * zap_page_range - remove user pages in a given range
1470 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1471 * @start: starting address of pages to zap
1da177e4 1472 * @size: number of bytes to zap
f5cc4eef
AV
1473 *
1474 * Caller must protect the VMA list
1da177e4 1475 */
7e027b14 1476void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1477 unsigned long size)
1da177e4
LT
1478{
1479 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1480 struct mmu_gather tlb;
7e027b14 1481 unsigned long end = start + size;
1da177e4 1482
1da177e4 1483 lru_add_drain();
2b047252 1484 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1485 update_hiwater_rss(mm);
7e027b14
LT
1486 mmu_notifier_invalidate_range_start(mm, start, end);
1487 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
ecf1385d 1488 unmap_single_vma(&tlb, vma, start, end, NULL);
7e027b14
LT
1489 mmu_notifier_invalidate_range_end(mm, start, end);
1490 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1491}
1492
f5cc4eef
AV
1493/**
1494 * zap_page_range_single - remove user pages in a given range
1495 * @vma: vm_area_struct holding the applicable pages
1496 * @address: starting address of pages to zap
1497 * @size: number of bytes to zap
8a5f14a2 1498 * @details: details of shared cache invalidation
f5cc4eef
AV
1499 *
1500 * The range must fit into one VMA.
1da177e4 1501 */
f5cc4eef 1502static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1503 unsigned long size, struct zap_details *details)
1504{
1505 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1506 struct mmu_gather tlb;
1da177e4 1507 unsigned long end = address + size;
1da177e4 1508
1da177e4 1509 lru_add_drain();
2b047252 1510 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1511 update_hiwater_rss(mm);
f5cc4eef 1512 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1513 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1514 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1515 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1516}
1517
c627f9cc
JS
1518/**
1519 * zap_vma_ptes - remove ptes mapping the vma
1520 * @vma: vm_area_struct holding ptes to be zapped
1521 * @address: starting address of pages to zap
1522 * @size: number of bytes to zap
1523 *
1524 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1525 *
1526 * The entire address range must be fully contained within the vma.
1527 *
1528 * Returns 0 if successful.
1529 */
1530int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1531 unsigned long size)
1532{
1533 if (address < vma->vm_start || address + size > vma->vm_end ||
1534 !(vma->vm_flags & VM_PFNMAP))
1535 return -1;
f5cc4eef 1536 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1537 return 0;
1538}
1539EXPORT_SYMBOL_GPL(zap_vma_ptes);
1540
25ca1d6c 1541pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1542 spinlock_t **ptl)
c9cfcddf 1543{
c2febafc
KS
1544 pgd_t *pgd;
1545 p4d_t *p4d;
1546 pud_t *pud;
1547 pmd_t *pmd;
1548
1549 pgd = pgd_offset(mm, addr);
1550 p4d = p4d_alloc(mm, pgd, addr);
1551 if (!p4d)
1552 return NULL;
1553 pud = pud_alloc(mm, p4d, addr);
1554 if (!pud)
1555 return NULL;
1556 pmd = pmd_alloc(mm, pud, addr);
1557 if (!pmd)
1558 return NULL;
1559
1560 VM_BUG_ON(pmd_trans_huge(*pmd));
1561 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1562}
1563
238f58d8
LT
1564/*
1565 * This is the old fallback for page remapping.
1566 *
1567 * For historical reasons, it only allows reserved pages. Only
1568 * old drivers should use this, and they needed to mark their
1569 * pages reserved for the old functions anyway.
1570 */
423bad60
NP
1571static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1572 struct page *page, pgprot_t prot)
238f58d8 1573{
423bad60 1574 struct mm_struct *mm = vma->vm_mm;
238f58d8 1575 int retval;
c9cfcddf 1576 pte_t *pte;
8a9f3ccd
BS
1577 spinlock_t *ptl;
1578
238f58d8 1579 retval = -EINVAL;
a145dd41 1580 if (PageAnon(page))
5b4e655e 1581 goto out;
238f58d8
LT
1582 retval = -ENOMEM;
1583 flush_dcache_page(page);
c9cfcddf 1584 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1585 if (!pte)
5b4e655e 1586 goto out;
238f58d8
LT
1587 retval = -EBUSY;
1588 if (!pte_none(*pte))
1589 goto out_unlock;
1590
1591 /* Ok, finally just insert the thing.. */
1592 get_page(page);
eca56ff9 1593 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1594 page_add_file_rmap(page, false);
238f58d8
LT
1595 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1596
1597 retval = 0;
8a9f3ccd
BS
1598 pte_unmap_unlock(pte, ptl);
1599 return retval;
238f58d8
LT
1600out_unlock:
1601 pte_unmap_unlock(pte, ptl);
1602out:
1603 return retval;
1604}
1605
bfa5bf6d
REB
1606/**
1607 * vm_insert_page - insert single page into user vma
1608 * @vma: user vma to map to
1609 * @addr: target user address of this page
1610 * @page: source kernel page
1611 *
a145dd41
LT
1612 * This allows drivers to insert individual pages they've allocated
1613 * into a user vma.
1614 *
1615 * The page has to be a nice clean _individual_ kernel allocation.
1616 * If you allocate a compound page, you need to have marked it as
1617 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1618 * (see split_page()).
a145dd41
LT
1619 *
1620 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1621 * took an arbitrary page protection parameter. This doesn't allow
1622 * that. Your vma protection will have to be set up correctly, which
1623 * means that if you want a shared writable mapping, you'd better
1624 * ask for a shared writable mapping!
1625 *
1626 * The page does not need to be reserved.
4b6e1e37
KK
1627 *
1628 * Usually this function is called from f_op->mmap() handler
1629 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1630 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1631 * function from other places, for example from page-fault handler.
a145dd41 1632 */
423bad60
NP
1633int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1634 struct page *page)
a145dd41
LT
1635{
1636 if (addr < vma->vm_start || addr >= vma->vm_end)
1637 return -EFAULT;
1638 if (!page_count(page))
1639 return -EINVAL;
4b6e1e37
KK
1640 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1641 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1642 BUG_ON(vma->vm_flags & VM_PFNMAP);
1643 vma->vm_flags |= VM_MIXEDMAP;
1644 }
423bad60 1645 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1646}
e3c3374f 1647EXPORT_SYMBOL(vm_insert_page);
a145dd41 1648
423bad60 1649static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1650 pfn_t pfn, pgprot_t prot)
423bad60
NP
1651{
1652 struct mm_struct *mm = vma->vm_mm;
1653 int retval;
1654 pte_t *pte, entry;
1655 spinlock_t *ptl;
1656
1657 retval = -ENOMEM;
1658 pte = get_locked_pte(mm, addr, &ptl);
1659 if (!pte)
1660 goto out;
1661 retval = -EBUSY;
1662 if (!pte_none(*pte))
1663 goto out_unlock;
1664
1665 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1666 if (pfn_t_devmap(pfn))
1667 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1668 else
1669 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
423bad60 1670 set_pte_at(mm, addr, pte, entry);
4b3073e1 1671 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1672
1673 retval = 0;
1674out_unlock:
1675 pte_unmap_unlock(pte, ptl);
1676out:
1677 return retval;
1678}
1679
e0dc0d8f
NP
1680/**
1681 * vm_insert_pfn - insert single pfn into user vma
1682 * @vma: user vma to map to
1683 * @addr: target user address of this page
1684 * @pfn: source kernel pfn
1685 *
c462f179 1686 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1687 * they've allocated into a user vma. Same comments apply.
1688 *
1689 * This function should only be called from a vm_ops->fault handler, and
1690 * in that case the handler should return NULL.
0d71d10a
NP
1691 *
1692 * vma cannot be a COW mapping.
1693 *
1694 * As this is called only for pages that do not currently exist, we
1695 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1696 */
1697int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1698 unsigned long pfn)
1745cbc5
AL
1699{
1700 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1701}
1702EXPORT_SYMBOL(vm_insert_pfn);
1703
1704/**
1705 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1706 * @vma: user vma to map to
1707 * @addr: target user address of this page
1708 * @pfn: source kernel pfn
1709 * @pgprot: pgprot flags for the inserted page
1710 *
1711 * This is exactly like vm_insert_pfn, except that it allows drivers to
1712 * to override pgprot on a per-page basis.
1713 *
1714 * This only makes sense for IO mappings, and it makes no sense for
1715 * cow mappings. In general, using multiple vmas is preferable;
1716 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1717 * impractical.
1718 */
1719int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1720 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1721{
2ab64037 1722 int ret;
7e675137
NP
1723 /*
1724 * Technically, architectures with pte_special can avoid all these
1725 * restrictions (same for remap_pfn_range). However we would like
1726 * consistency in testing and feature parity among all, so we should
1727 * try to keep these invariants in place for everybody.
1728 */
b379d790
JH
1729 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1730 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1731 (VM_PFNMAP|VM_MIXEDMAP));
1732 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1733 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1734
423bad60
NP
1735 if (addr < vma->vm_start || addr >= vma->vm_end)
1736 return -EFAULT;
308a047c
BP
1737
1738 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1739
01c8f1c4 1740 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
2ab64037 1741
2ab64037 1742 return ret;
423bad60 1743}
1745cbc5 1744EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1745
423bad60 1746int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1747 pfn_t pfn)
423bad60 1748{
87744ab3
DW
1749 pgprot_t pgprot = vma->vm_page_prot;
1750
423bad60 1751 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1752
423bad60
NP
1753 if (addr < vma->vm_start || addr >= vma->vm_end)
1754 return -EFAULT;
308a047c
BP
1755
1756 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1757
423bad60
NP
1758 /*
1759 * If we don't have pte special, then we have to use the pfn_valid()
1760 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1761 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1762 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1763 * without pte special, it would there be refcounted as a normal page.
423bad60 1764 */
03fc2da6 1765 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1766 struct page *page;
1767
03fc2da6
DW
1768 /*
1769 * At this point we are committed to insert_page()
1770 * regardless of whether the caller specified flags that
1771 * result in pfn_t_has_page() == false.
1772 */
1773 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1774 return insert_page(vma, addr, page, pgprot);
423bad60 1775 }
87744ab3 1776 return insert_pfn(vma, addr, pfn, pgprot);
e0dc0d8f 1777}
423bad60 1778EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1779
1da177e4
LT
1780/*
1781 * maps a range of physical memory into the requested pages. the old
1782 * mappings are removed. any references to nonexistent pages results
1783 * in null mappings (currently treated as "copy-on-access")
1784 */
1785static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1786 unsigned long addr, unsigned long end,
1787 unsigned long pfn, pgprot_t prot)
1788{
1789 pte_t *pte;
c74df32c 1790 spinlock_t *ptl;
1da177e4 1791
c74df32c 1792 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1793 if (!pte)
1794 return -ENOMEM;
6606c3e0 1795 arch_enter_lazy_mmu_mode();
1da177e4
LT
1796 do {
1797 BUG_ON(!pte_none(*pte));
7e675137 1798 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1799 pfn++;
1800 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1801 arch_leave_lazy_mmu_mode();
c74df32c 1802 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1803 return 0;
1804}
1805
1806static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1807 unsigned long addr, unsigned long end,
1808 unsigned long pfn, pgprot_t prot)
1809{
1810 pmd_t *pmd;
1811 unsigned long next;
1812
1813 pfn -= addr >> PAGE_SHIFT;
1814 pmd = pmd_alloc(mm, pud, addr);
1815 if (!pmd)
1816 return -ENOMEM;
f66055ab 1817 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1818 do {
1819 next = pmd_addr_end(addr, end);
1820 if (remap_pte_range(mm, pmd, addr, next,
1821 pfn + (addr >> PAGE_SHIFT), prot))
1822 return -ENOMEM;
1823 } while (pmd++, addr = next, addr != end);
1824 return 0;
1825}
1826
c2febafc 1827static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1828 unsigned long addr, unsigned long end,
1829 unsigned long pfn, pgprot_t prot)
1830{
1831 pud_t *pud;
1832 unsigned long next;
1833
1834 pfn -= addr >> PAGE_SHIFT;
c2febafc 1835 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1836 if (!pud)
1837 return -ENOMEM;
1838 do {
1839 next = pud_addr_end(addr, end);
1840 if (remap_pmd_range(mm, pud, addr, next,
1841 pfn + (addr >> PAGE_SHIFT), prot))
1842 return -ENOMEM;
1843 } while (pud++, addr = next, addr != end);
1844 return 0;
1845}
1846
c2febafc
KS
1847static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1848 unsigned long addr, unsigned long end,
1849 unsigned long pfn, pgprot_t prot)
1850{
1851 p4d_t *p4d;
1852 unsigned long next;
1853
1854 pfn -= addr >> PAGE_SHIFT;
1855 p4d = p4d_alloc(mm, pgd, addr);
1856 if (!p4d)
1857 return -ENOMEM;
1858 do {
1859 next = p4d_addr_end(addr, end);
1860 if (remap_pud_range(mm, p4d, addr, next,
1861 pfn + (addr >> PAGE_SHIFT), prot))
1862 return -ENOMEM;
1863 } while (p4d++, addr = next, addr != end);
1864 return 0;
1865}
1866
bfa5bf6d
REB
1867/**
1868 * remap_pfn_range - remap kernel memory to userspace
1869 * @vma: user vma to map to
1870 * @addr: target user address to start at
1871 * @pfn: physical address of kernel memory
1872 * @size: size of map area
1873 * @prot: page protection flags for this mapping
1874 *
1875 * Note: this is only safe if the mm semaphore is held when called.
1876 */
1da177e4
LT
1877int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1878 unsigned long pfn, unsigned long size, pgprot_t prot)
1879{
1880 pgd_t *pgd;
1881 unsigned long next;
2d15cab8 1882 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1883 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1884 unsigned long remap_pfn = pfn;
1da177e4
LT
1885 int err;
1886
1887 /*
1888 * Physically remapped pages are special. Tell the
1889 * rest of the world about it:
1890 * VM_IO tells people not to look at these pages
1891 * (accesses can have side effects).
6aab341e
LT
1892 * VM_PFNMAP tells the core MM that the base pages are just
1893 * raw PFN mappings, and do not have a "struct page" associated
1894 * with them.
314e51b9
KK
1895 * VM_DONTEXPAND
1896 * Disable vma merging and expanding with mremap().
1897 * VM_DONTDUMP
1898 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1899 *
1900 * There's a horrible special case to handle copy-on-write
1901 * behaviour that some programs depend on. We mark the "original"
1902 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1903 * See vm_normal_page() for details.
1da177e4 1904 */
b3b9c293
KK
1905 if (is_cow_mapping(vma->vm_flags)) {
1906 if (addr != vma->vm_start || end != vma->vm_end)
1907 return -EINVAL;
fb155c16 1908 vma->vm_pgoff = pfn;
b3b9c293
KK
1909 }
1910
d5957d2f 1911 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1912 if (err)
3c8bb73a 1913 return -EINVAL;
fb155c16 1914
314e51b9 1915 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1916
1917 BUG_ON(addr >= end);
1918 pfn -= addr >> PAGE_SHIFT;
1919 pgd = pgd_offset(mm, addr);
1920 flush_cache_range(vma, addr, end);
1da177e4
LT
1921 do {
1922 next = pgd_addr_end(addr, end);
c2febafc 1923 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1924 pfn + (addr >> PAGE_SHIFT), prot);
1925 if (err)
1926 break;
1927 } while (pgd++, addr = next, addr != end);
2ab64037 1928
1929 if (err)
d5957d2f 1930 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1931
1da177e4
LT
1932 return err;
1933}
1934EXPORT_SYMBOL(remap_pfn_range);
1935
b4cbb197
LT
1936/**
1937 * vm_iomap_memory - remap memory to userspace
1938 * @vma: user vma to map to
1939 * @start: start of area
1940 * @len: size of area
1941 *
1942 * This is a simplified io_remap_pfn_range() for common driver use. The
1943 * driver just needs to give us the physical memory range to be mapped,
1944 * we'll figure out the rest from the vma information.
1945 *
1946 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1947 * whatever write-combining details or similar.
1948 */
1949int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1950{
1951 unsigned long vm_len, pfn, pages;
1952
1953 /* Check that the physical memory area passed in looks valid */
1954 if (start + len < start)
1955 return -EINVAL;
1956 /*
1957 * You *really* shouldn't map things that aren't page-aligned,
1958 * but we've historically allowed it because IO memory might
1959 * just have smaller alignment.
1960 */
1961 len += start & ~PAGE_MASK;
1962 pfn = start >> PAGE_SHIFT;
1963 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1964 if (pfn + pages < pfn)
1965 return -EINVAL;
1966
1967 /* We start the mapping 'vm_pgoff' pages into the area */
1968 if (vma->vm_pgoff > pages)
1969 return -EINVAL;
1970 pfn += vma->vm_pgoff;
1971 pages -= vma->vm_pgoff;
1972
1973 /* Can we fit all of the mapping? */
1974 vm_len = vma->vm_end - vma->vm_start;
1975 if (vm_len >> PAGE_SHIFT > pages)
1976 return -EINVAL;
1977
1978 /* Ok, let it rip */
1979 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1980}
1981EXPORT_SYMBOL(vm_iomap_memory);
1982
aee16b3c
JF
1983static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1984 unsigned long addr, unsigned long end,
1985 pte_fn_t fn, void *data)
1986{
1987 pte_t *pte;
1988 int err;
2f569afd 1989 pgtable_t token;
94909914 1990 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1991
1992 pte = (mm == &init_mm) ?
1993 pte_alloc_kernel(pmd, addr) :
1994 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1995 if (!pte)
1996 return -ENOMEM;
1997
1998 BUG_ON(pmd_huge(*pmd));
1999
38e0edb1
JF
2000 arch_enter_lazy_mmu_mode();
2001
2f569afd 2002 token = pmd_pgtable(*pmd);
aee16b3c
JF
2003
2004 do {
c36987e2 2005 err = fn(pte++, token, addr, data);
aee16b3c
JF
2006 if (err)
2007 break;
c36987e2 2008 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2009
38e0edb1
JF
2010 arch_leave_lazy_mmu_mode();
2011
aee16b3c
JF
2012 if (mm != &init_mm)
2013 pte_unmap_unlock(pte-1, ptl);
2014 return err;
2015}
2016
2017static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2018 unsigned long addr, unsigned long end,
2019 pte_fn_t fn, void *data)
2020{
2021 pmd_t *pmd;
2022 unsigned long next;
2023 int err;
2024
ceb86879
AK
2025 BUG_ON(pud_huge(*pud));
2026
aee16b3c
JF
2027 pmd = pmd_alloc(mm, pud, addr);
2028 if (!pmd)
2029 return -ENOMEM;
2030 do {
2031 next = pmd_addr_end(addr, end);
2032 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2033 if (err)
2034 break;
2035 } while (pmd++, addr = next, addr != end);
2036 return err;
2037}
2038
c2febafc 2039static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2040 unsigned long addr, unsigned long end,
2041 pte_fn_t fn, void *data)
2042{
2043 pud_t *pud;
2044 unsigned long next;
2045 int err;
2046
c2febafc 2047 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2048 if (!pud)
2049 return -ENOMEM;
2050 do {
2051 next = pud_addr_end(addr, end);
2052 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2053 if (err)
2054 break;
2055 } while (pud++, addr = next, addr != end);
2056 return err;
2057}
2058
c2febafc
KS
2059static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2060 unsigned long addr, unsigned long end,
2061 pte_fn_t fn, void *data)
2062{
2063 p4d_t *p4d;
2064 unsigned long next;
2065 int err;
2066
2067 p4d = p4d_alloc(mm, pgd, addr);
2068 if (!p4d)
2069 return -ENOMEM;
2070 do {
2071 next = p4d_addr_end(addr, end);
2072 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2073 if (err)
2074 break;
2075 } while (p4d++, addr = next, addr != end);
2076 return err;
2077}
2078
aee16b3c
JF
2079/*
2080 * Scan a region of virtual memory, filling in page tables as necessary
2081 * and calling a provided function on each leaf page table.
2082 */
2083int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2084 unsigned long size, pte_fn_t fn, void *data)
2085{
2086 pgd_t *pgd;
2087 unsigned long next;
57250a5b 2088 unsigned long end = addr + size;
aee16b3c
JF
2089 int err;
2090
9cb65bc3
MP
2091 if (WARN_ON(addr >= end))
2092 return -EINVAL;
2093
aee16b3c
JF
2094 pgd = pgd_offset(mm, addr);
2095 do {
2096 next = pgd_addr_end(addr, end);
c2febafc 2097 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2098 if (err)
2099 break;
2100 } while (pgd++, addr = next, addr != end);
57250a5b 2101
aee16b3c
JF
2102 return err;
2103}
2104EXPORT_SYMBOL_GPL(apply_to_page_range);
2105
8f4e2101 2106/*
9b4bdd2f
KS
2107 * handle_pte_fault chooses page fault handler according to an entry which was
2108 * read non-atomically. Before making any commitment, on those architectures
2109 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2110 * parts, do_swap_page must check under lock before unmapping the pte and
2111 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2112 * and do_anonymous_page can safely check later on).
8f4e2101 2113 */
4c21e2f2 2114static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2115 pte_t *page_table, pte_t orig_pte)
2116{
2117 int same = 1;
2118#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2119 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2120 spinlock_t *ptl = pte_lockptr(mm, pmd);
2121 spin_lock(ptl);
8f4e2101 2122 same = pte_same(*page_table, orig_pte);
4c21e2f2 2123 spin_unlock(ptl);
8f4e2101
HD
2124 }
2125#endif
2126 pte_unmap(page_table);
2127 return same;
2128}
2129
9de455b2 2130static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2131{
0abdd7a8
DW
2132 debug_dma_assert_idle(src);
2133
6aab341e
LT
2134 /*
2135 * If the source page was a PFN mapping, we don't have
2136 * a "struct page" for it. We do a best-effort copy by
2137 * just copying from the original user address. If that
2138 * fails, we just zero-fill it. Live with it.
2139 */
2140 if (unlikely(!src)) {
9b04c5fe 2141 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2142 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2143
2144 /*
2145 * This really shouldn't fail, because the page is there
2146 * in the page tables. But it might just be unreadable,
2147 * in which case we just give up and fill the result with
2148 * zeroes.
2149 */
2150 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2151 clear_page(kaddr);
9b04c5fe 2152 kunmap_atomic(kaddr);
c4ec7b0d 2153 flush_dcache_page(dst);
0ed361de
NP
2154 } else
2155 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2156}
2157
c20cd45e
MH
2158static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2159{
2160 struct file *vm_file = vma->vm_file;
2161
2162 if (vm_file)
2163 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2164
2165 /*
2166 * Special mappings (e.g. VDSO) do not have any file so fake
2167 * a default GFP_KERNEL for them.
2168 */
2169 return GFP_KERNEL;
2170}
2171
fb09a464
KS
2172/*
2173 * Notify the address space that the page is about to become writable so that
2174 * it can prohibit this or wait for the page to get into an appropriate state.
2175 *
2176 * We do this without the lock held, so that it can sleep if it needs to.
2177 */
38b8cb7f 2178static int do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2179{
fb09a464 2180 int ret;
38b8cb7f
JK
2181 struct page *page = vmf->page;
2182 unsigned int old_flags = vmf->flags;
fb09a464 2183
38b8cb7f 2184 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2185
11bac800 2186 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2187 /* Restore original flags so that caller is not surprised */
2188 vmf->flags = old_flags;
fb09a464
KS
2189 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2190 return ret;
2191 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2192 lock_page(page);
2193 if (!page->mapping) {
2194 unlock_page(page);
2195 return 0; /* retry */
2196 }
2197 ret |= VM_FAULT_LOCKED;
2198 } else
2199 VM_BUG_ON_PAGE(!PageLocked(page), page);
2200 return ret;
2201}
2202
97ba0c2b
JK
2203/*
2204 * Handle dirtying of a page in shared file mapping on a write fault.
2205 *
2206 * The function expects the page to be locked and unlocks it.
2207 */
2208static void fault_dirty_shared_page(struct vm_area_struct *vma,
2209 struct page *page)
2210{
2211 struct address_space *mapping;
2212 bool dirtied;
2213 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2214
2215 dirtied = set_page_dirty(page);
2216 VM_BUG_ON_PAGE(PageAnon(page), page);
2217 /*
2218 * Take a local copy of the address_space - page.mapping may be zeroed
2219 * by truncate after unlock_page(). The address_space itself remains
2220 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2221 * release semantics to prevent the compiler from undoing this copying.
2222 */
2223 mapping = page_rmapping(page);
2224 unlock_page(page);
2225
2226 if ((dirtied || page_mkwrite) && mapping) {
2227 /*
2228 * Some device drivers do not set page.mapping
2229 * but still dirty their pages
2230 */
2231 balance_dirty_pages_ratelimited(mapping);
2232 }
2233
2234 if (!page_mkwrite)
2235 file_update_time(vma->vm_file);
2236}
2237
4e047f89
SR
2238/*
2239 * Handle write page faults for pages that can be reused in the current vma
2240 *
2241 * This can happen either due to the mapping being with the VM_SHARED flag,
2242 * or due to us being the last reference standing to the page. In either
2243 * case, all we need to do here is to mark the page as writable and update
2244 * any related book-keeping.
2245 */
997dd98d 2246static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2247 __releases(vmf->ptl)
4e047f89 2248{
82b0f8c3 2249 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2250 struct page *page = vmf->page;
4e047f89
SR
2251 pte_t entry;
2252 /*
2253 * Clear the pages cpupid information as the existing
2254 * information potentially belongs to a now completely
2255 * unrelated process.
2256 */
2257 if (page)
2258 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2259
2994302b
JK
2260 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2261 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2262 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2263 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2264 update_mmu_cache(vma, vmf->address, vmf->pte);
2265 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2266}
2267
2f38ab2c
SR
2268/*
2269 * Handle the case of a page which we actually need to copy to a new page.
2270 *
2271 * Called with mmap_sem locked and the old page referenced, but
2272 * without the ptl held.
2273 *
2274 * High level logic flow:
2275 *
2276 * - Allocate a page, copy the content of the old page to the new one.
2277 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2278 * - Take the PTL. If the pte changed, bail out and release the allocated page
2279 * - If the pte is still the way we remember it, update the page table and all
2280 * relevant references. This includes dropping the reference the page-table
2281 * held to the old page, as well as updating the rmap.
2282 * - In any case, unlock the PTL and drop the reference we took to the old page.
2283 */
a41b70d6 2284static int wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2285{
82b0f8c3 2286 struct vm_area_struct *vma = vmf->vma;
bae473a4 2287 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2288 struct page *old_page = vmf->page;
2f38ab2c 2289 struct page *new_page = NULL;
2f38ab2c
SR
2290 pte_t entry;
2291 int page_copied = 0;
82b0f8c3 2292 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2293 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2294 struct mem_cgroup *memcg;
2295
2296 if (unlikely(anon_vma_prepare(vma)))
2297 goto oom;
2298
2994302b 2299 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2300 new_page = alloc_zeroed_user_highpage_movable(vma,
2301 vmf->address);
2f38ab2c
SR
2302 if (!new_page)
2303 goto oom;
2304 } else {
bae473a4 2305 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2306 vmf->address);
2f38ab2c
SR
2307 if (!new_page)
2308 goto oom;
82b0f8c3 2309 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2310 }
2f38ab2c 2311
f627c2f5 2312 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2313 goto oom_free_new;
2314
eb3c24f3
MG
2315 __SetPageUptodate(new_page);
2316
2f38ab2c
SR
2317 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2318
2319 /*
2320 * Re-check the pte - we dropped the lock
2321 */
82b0f8c3 2322 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2323 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2324 if (old_page) {
2325 if (!PageAnon(old_page)) {
eca56ff9
JM
2326 dec_mm_counter_fast(mm,
2327 mm_counter_file(old_page));
2f38ab2c
SR
2328 inc_mm_counter_fast(mm, MM_ANONPAGES);
2329 }
2330 } else {
2331 inc_mm_counter_fast(mm, MM_ANONPAGES);
2332 }
2994302b 2333 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2334 entry = mk_pte(new_page, vma->vm_page_prot);
2335 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2336 /*
2337 * Clear the pte entry and flush it first, before updating the
2338 * pte with the new entry. This will avoid a race condition
2339 * seen in the presence of one thread doing SMC and another
2340 * thread doing COW.
2341 */
82b0f8c3
JK
2342 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2343 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2344 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2345 lru_cache_add_active_or_unevictable(new_page, vma);
2346 /*
2347 * We call the notify macro here because, when using secondary
2348 * mmu page tables (such as kvm shadow page tables), we want the
2349 * new page to be mapped directly into the secondary page table.
2350 */
82b0f8c3
JK
2351 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2352 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2353 if (old_page) {
2354 /*
2355 * Only after switching the pte to the new page may
2356 * we remove the mapcount here. Otherwise another
2357 * process may come and find the rmap count decremented
2358 * before the pte is switched to the new page, and
2359 * "reuse" the old page writing into it while our pte
2360 * here still points into it and can be read by other
2361 * threads.
2362 *
2363 * The critical issue is to order this
2364 * page_remove_rmap with the ptp_clear_flush above.
2365 * Those stores are ordered by (if nothing else,)
2366 * the barrier present in the atomic_add_negative
2367 * in page_remove_rmap.
2368 *
2369 * Then the TLB flush in ptep_clear_flush ensures that
2370 * no process can access the old page before the
2371 * decremented mapcount is visible. And the old page
2372 * cannot be reused until after the decremented
2373 * mapcount is visible. So transitively, TLBs to
2374 * old page will be flushed before it can be reused.
2375 */
d281ee61 2376 page_remove_rmap(old_page, false);
2f38ab2c
SR
2377 }
2378
2379 /* Free the old page.. */
2380 new_page = old_page;
2381 page_copied = 1;
2382 } else {
f627c2f5 2383 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2384 }
2385
2386 if (new_page)
09cbfeaf 2387 put_page(new_page);
2f38ab2c 2388
82b0f8c3 2389 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
2390 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2391 if (old_page) {
2392 /*
2393 * Don't let another task, with possibly unlocked vma,
2394 * keep the mlocked page.
2395 */
2396 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2397 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2398 if (PageMlocked(old_page))
2399 munlock_vma_page(old_page);
2f38ab2c
SR
2400 unlock_page(old_page);
2401 }
09cbfeaf 2402 put_page(old_page);
2f38ab2c
SR
2403 }
2404 return page_copied ? VM_FAULT_WRITE : 0;
2405oom_free_new:
09cbfeaf 2406 put_page(new_page);
2f38ab2c
SR
2407oom:
2408 if (old_page)
09cbfeaf 2409 put_page(old_page);
2f38ab2c
SR
2410 return VM_FAULT_OOM;
2411}
2412
66a6197c
JK
2413/**
2414 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2415 * writeable once the page is prepared
2416 *
2417 * @vmf: structure describing the fault
2418 *
2419 * This function handles all that is needed to finish a write page fault in a
2420 * shared mapping due to PTE being read-only once the mapped page is prepared.
2421 * It handles locking of PTE and modifying it. The function returns
2422 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2423 * lock.
2424 *
2425 * The function expects the page to be locked or other protection against
2426 * concurrent faults / writeback (such as DAX radix tree locks).
2427 */
2428int finish_mkwrite_fault(struct vm_fault *vmf)
2429{
2430 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2431 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2432 &vmf->ptl);
2433 /*
2434 * We might have raced with another page fault while we released the
2435 * pte_offset_map_lock.
2436 */
2437 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2438 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2439 return VM_FAULT_NOPAGE;
66a6197c
JK
2440 }
2441 wp_page_reuse(vmf);
a19e2553 2442 return 0;
66a6197c
JK
2443}
2444
dd906184
BH
2445/*
2446 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2447 * mapping
2448 */
2994302b 2449static int wp_pfn_shared(struct vm_fault *vmf)
dd906184 2450{
82b0f8c3 2451 struct vm_area_struct *vma = vmf->vma;
bae473a4 2452
dd906184 2453 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
dd906184
BH
2454 int ret;
2455
82b0f8c3 2456 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2457 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2458 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2459 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2460 return ret;
66a6197c 2461 return finish_mkwrite_fault(vmf);
dd906184 2462 }
997dd98d
JK
2463 wp_page_reuse(vmf);
2464 return VM_FAULT_WRITE;
dd906184
BH
2465}
2466
a41b70d6 2467static int wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2468 __releases(vmf->ptl)
93e478d4 2469{
82b0f8c3 2470 struct vm_area_struct *vma = vmf->vma;
93e478d4 2471
a41b70d6 2472 get_page(vmf->page);
93e478d4 2473
93e478d4
SR
2474 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2475 int tmp;
2476
82b0f8c3 2477 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2478 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2479 if (unlikely(!tmp || (tmp &
2480 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2481 put_page(vmf->page);
93e478d4
SR
2482 return tmp;
2483 }
66a6197c 2484 tmp = finish_mkwrite_fault(vmf);
a19e2553 2485 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2486 unlock_page(vmf->page);
a41b70d6 2487 put_page(vmf->page);
66a6197c 2488 return tmp;
93e478d4 2489 }
66a6197c
JK
2490 } else {
2491 wp_page_reuse(vmf);
997dd98d 2492 lock_page(vmf->page);
93e478d4 2493 }
997dd98d
JK
2494 fault_dirty_shared_page(vma, vmf->page);
2495 put_page(vmf->page);
93e478d4 2496
997dd98d 2497 return VM_FAULT_WRITE;
93e478d4
SR
2498}
2499
1da177e4
LT
2500/*
2501 * This routine handles present pages, when users try to write
2502 * to a shared page. It is done by copying the page to a new address
2503 * and decrementing the shared-page counter for the old page.
2504 *
1da177e4
LT
2505 * Note that this routine assumes that the protection checks have been
2506 * done by the caller (the low-level page fault routine in most cases).
2507 * Thus we can safely just mark it writable once we've done any necessary
2508 * COW.
2509 *
2510 * We also mark the page dirty at this point even though the page will
2511 * change only once the write actually happens. This avoids a few races,
2512 * and potentially makes it more efficient.
2513 *
8f4e2101
HD
2514 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2515 * but allow concurrent faults), with pte both mapped and locked.
2516 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2517 */
2994302b 2518static int do_wp_page(struct vm_fault *vmf)
82b0f8c3 2519 __releases(vmf->ptl)
1da177e4 2520{
82b0f8c3 2521 struct vm_area_struct *vma = vmf->vma;
1da177e4 2522
a41b70d6
JK
2523 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2524 if (!vmf->page) {
251b97f5 2525 /*
64e45507
PF
2526 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2527 * VM_PFNMAP VMA.
251b97f5
PZ
2528 *
2529 * We should not cow pages in a shared writeable mapping.
dd906184 2530 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2531 */
2532 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2533 (VM_WRITE|VM_SHARED))
2994302b 2534 return wp_pfn_shared(vmf);
2f38ab2c 2535
82b0f8c3 2536 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2537 return wp_page_copy(vmf);
251b97f5 2538 }
1da177e4 2539
d08b3851 2540 /*
ee6a6457
PZ
2541 * Take out anonymous pages first, anonymous shared vmas are
2542 * not dirty accountable.
d08b3851 2543 */
a41b70d6 2544 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
6d0a07ed 2545 int total_mapcount;
a41b70d6
JK
2546 if (!trylock_page(vmf->page)) {
2547 get_page(vmf->page);
82b0f8c3 2548 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2549 lock_page(vmf->page);
82b0f8c3
JK
2550 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2551 vmf->address, &vmf->ptl);
2994302b 2552 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2553 unlock_page(vmf->page);
82b0f8c3 2554 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2555 put_page(vmf->page);
28766805 2556 return 0;
ab967d86 2557 }
a41b70d6 2558 put_page(vmf->page);
ee6a6457 2559 }
a41b70d6 2560 if (reuse_swap_page(vmf->page, &total_mapcount)) {
6d0a07ed
AA
2561 if (total_mapcount == 1) {
2562 /*
2563 * The page is all ours. Move it to
2564 * our anon_vma so the rmap code will
2565 * not search our parent or siblings.
2566 * Protected against the rmap code by
2567 * the page lock.
2568 */
a41b70d6 2569 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2570 }
a41b70d6 2571 unlock_page(vmf->page);
997dd98d
JK
2572 wp_page_reuse(vmf);
2573 return VM_FAULT_WRITE;
b009c024 2574 }
a41b70d6 2575 unlock_page(vmf->page);
ee6a6457 2576 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2577 (VM_WRITE|VM_SHARED))) {
a41b70d6 2578 return wp_page_shared(vmf);
1da177e4 2579 }
1da177e4
LT
2580
2581 /*
2582 * Ok, we need to copy. Oh, well..
2583 */
a41b70d6 2584 get_page(vmf->page);
28766805 2585
82b0f8c3 2586 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2587 return wp_page_copy(vmf);
1da177e4
LT
2588}
2589
97a89413 2590static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2591 unsigned long start_addr, unsigned long end_addr,
2592 struct zap_details *details)
2593{
f5cc4eef 2594 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2595}
2596
6b2dbba8 2597static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2598 struct zap_details *details)
2599{
2600 struct vm_area_struct *vma;
1da177e4
LT
2601 pgoff_t vba, vea, zba, zea;
2602
6b2dbba8 2603 vma_interval_tree_foreach(vma, root,
1da177e4 2604 details->first_index, details->last_index) {
1da177e4
LT
2605
2606 vba = vma->vm_pgoff;
d6e93217 2607 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2608 zba = details->first_index;
2609 if (zba < vba)
2610 zba = vba;
2611 zea = details->last_index;
2612 if (zea > vea)
2613 zea = vea;
2614
97a89413 2615 unmap_mapping_range_vma(vma,
1da177e4
LT
2616 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2617 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2618 details);
1da177e4
LT
2619 }
2620}
2621
1da177e4 2622/**
8a5f14a2
KS
2623 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2624 * address_space corresponding to the specified page range in the underlying
2625 * file.
2626 *
3d41088f 2627 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2628 * @holebegin: byte in first page to unmap, relative to the start of
2629 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2630 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2631 * must keep the partial page. In contrast, we must get rid of
2632 * partial pages.
2633 * @holelen: size of prospective hole in bytes. This will be rounded
2634 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2635 * end of the file.
2636 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2637 * but 0 when invalidating pagecache, don't throw away private data.
2638 */
2639void unmap_mapping_range(struct address_space *mapping,
2640 loff_t const holebegin, loff_t const holelen, int even_cows)
2641{
aac45363 2642 struct zap_details details = { };
1da177e4
LT
2643 pgoff_t hba = holebegin >> PAGE_SHIFT;
2644 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2645
2646 /* Check for overflow. */
2647 if (sizeof(holelen) > sizeof(hlen)) {
2648 long long holeend =
2649 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2650 if (holeend & ~(long long)ULONG_MAX)
2651 hlen = ULONG_MAX - hba + 1;
2652 }
2653
166f61b9 2654 details.check_mapping = even_cows ? NULL : mapping;
1da177e4
LT
2655 details.first_index = hba;
2656 details.last_index = hba + hlen - 1;
2657 if (details.last_index < details.first_index)
2658 details.last_index = ULONG_MAX;
1da177e4 2659
46c043ed 2660 i_mmap_lock_write(mapping);
6b2dbba8 2661 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2662 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2663 i_mmap_unlock_write(mapping);
1da177e4
LT
2664}
2665EXPORT_SYMBOL(unmap_mapping_range);
2666
1da177e4 2667/*
8f4e2101
HD
2668 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2669 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2670 * We return with pte unmapped and unlocked.
2671 *
2672 * We return with the mmap_sem locked or unlocked in the same cases
2673 * as does filemap_fault().
1da177e4 2674 */
2994302b 2675int do_swap_page(struct vm_fault *vmf)
1da177e4 2676{
82b0f8c3 2677 struct vm_area_struct *vma = vmf->vma;
56f31801 2678 struct page *page, *swapcache;
00501b53 2679 struct mem_cgroup *memcg;
65500d23 2680 swp_entry_t entry;
1da177e4 2681 pte_t pte;
d065bd81 2682 int locked;
ad8c2ee8 2683 int exclusive = 0;
83c54070 2684 int ret = 0;
1da177e4 2685
2994302b 2686 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2687 goto out;
65500d23 2688
2994302b 2689 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2690 if (unlikely(non_swap_entry(entry))) {
2691 if (is_migration_entry(entry)) {
82b0f8c3
JK
2692 migration_entry_wait(vma->vm_mm, vmf->pmd,
2693 vmf->address);
d1737fdb
AK
2694 } else if (is_hwpoison_entry(entry)) {
2695 ret = VM_FAULT_HWPOISON;
2696 } else {
2994302b 2697 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2698 ret = VM_FAULT_SIGBUS;
d1737fdb 2699 }
0697212a
CL
2700 goto out;
2701 }
0ff92245 2702 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2703 page = lookup_swap_cache(entry);
2704 if (!page) {
82b0f8c3
JK
2705 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2706 vmf->address);
1da177e4
LT
2707 if (!page) {
2708 /*
8f4e2101
HD
2709 * Back out if somebody else faulted in this pte
2710 * while we released the pte lock.
1da177e4 2711 */
82b0f8c3
JK
2712 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2713 vmf->address, &vmf->ptl);
2994302b 2714 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2715 ret = VM_FAULT_OOM;
0ff92245 2716 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2717 goto unlock;
1da177e4
LT
2718 }
2719
2720 /* Had to read the page from swap area: Major fault */
2721 ret = VM_FAULT_MAJOR;
f8891e5e 2722 count_vm_event(PGMAJFAULT);
2262185c 2723 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2724 } else if (PageHWPoison(page)) {
71f72525
WF
2725 /*
2726 * hwpoisoned dirty swapcache pages are kept for killing
2727 * owner processes (which may be unknown at hwpoison time)
2728 */
d1737fdb
AK
2729 ret = VM_FAULT_HWPOISON;
2730 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2731 swapcache = page;
4779cb31 2732 goto out_release;
1da177e4
LT
2733 }
2734
56f31801 2735 swapcache = page;
82b0f8c3 2736 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2737
073e587e 2738 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2739 if (!locked) {
2740 ret |= VM_FAULT_RETRY;
2741 goto out_release;
2742 }
073e587e 2743
4969c119 2744 /*
31c4a3d3
HD
2745 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2746 * release the swapcache from under us. The page pin, and pte_same
2747 * test below, are not enough to exclude that. Even if it is still
2748 * swapcache, we need to check that the page's swap has not changed.
4969c119 2749 */
31c4a3d3 2750 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2751 goto out_page;
2752
82b0f8c3 2753 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2754 if (unlikely(!page)) {
2755 ret = VM_FAULT_OOM;
2756 page = swapcache;
cbf86cfe 2757 goto out_page;
5ad64688
HD
2758 }
2759
bae473a4
KS
2760 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2761 &memcg, false)) {
8a9f3ccd 2762 ret = VM_FAULT_OOM;
bc43f75c 2763 goto out_page;
8a9f3ccd
BS
2764 }
2765
1da177e4 2766 /*
8f4e2101 2767 * Back out if somebody else already faulted in this pte.
1da177e4 2768 */
82b0f8c3
JK
2769 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2770 &vmf->ptl);
2994302b 2771 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2772 goto out_nomap;
b8107480
KK
2773
2774 if (unlikely(!PageUptodate(page))) {
2775 ret = VM_FAULT_SIGBUS;
2776 goto out_nomap;
1da177e4
LT
2777 }
2778
8c7c6e34
KH
2779 /*
2780 * The page isn't present yet, go ahead with the fault.
2781 *
2782 * Be careful about the sequence of operations here.
2783 * To get its accounting right, reuse_swap_page() must be called
2784 * while the page is counted on swap but not yet in mapcount i.e.
2785 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2786 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2787 */
1da177e4 2788
bae473a4
KS
2789 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2790 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2791 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2792 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2793 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2794 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2795 ret |= VM_FAULT_WRITE;
d281ee61 2796 exclusive = RMAP_EXCLUSIVE;
1da177e4 2797 }
1da177e4 2798 flush_icache_page(vma, page);
2994302b 2799 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2800 pte = pte_mksoft_dirty(pte);
82b0f8c3 2801 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2994302b 2802 vmf->orig_pte = pte;
00501b53 2803 if (page == swapcache) {
82b0f8c3 2804 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
f627c2f5 2805 mem_cgroup_commit_charge(page, memcg, true, false);
1a8018fb 2806 activate_page(page);
00501b53 2807 } else { /* ksm created a completely new copy */
82b0f8c3 2808 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2809 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2810 lru_cache_add_active_or_unevictable(page, vma);
2811 }
1da177e4 2812
c475a8ab 2813 swap_free(entry);
5ccc5aba
VD
2814 if (mem_cgroup_swap_full(page) ||
2815 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2816 try_to_free_swap(page);
c475a8ab 2817 unlock_page(page);
56f31801 2818 if (page != swapcache) {
4969c119
AA
2819 /*
2820 * Hold the lock to avoid the swap entry to be reused
2821 * until we take the PT lock for the pte_same() check
2822 * (to avoid false positives from pte_same). For
2823 * further safety release the lock after the swap_free
2824 * so that the swap count won't change under a
2825 * parallel locked swapcache.
2826 */
2827 unlock_page(swapcache);
09cbfeaf 2828 put_page(swapcache);
4969c119 2829 }
c475a8ab 2830
82b0f8c3 2831 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2832 ret |= do_wp_page(vmf);
61469f1d
HD
2833 if (ret & VM_FAULT_ERROR)
2834 ret &= VM_FAULT_ERROR;
1da177e4
LT
2835 goto out;
2836 }
2837
2838 /* No need to invalidate - it was non-present before */
82b0f8c3 2839 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2840unlock:
82b0f8c3 2841 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2842out:
2843 return ret;
b8107480 2844out_nomap:
f627c2f5 2845 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2846 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2847out_page:
b8107480 2848 unlock_page(page);
4779cb31 2849out_release:
09cbfeaf 2850 put_page(page);
56f31801 2851 if (page != swapcache) {
4969c119 2852 unlock_page(swapcache);
09cbfeaf 2853 put_page(swapcache);
4969c119 2854 }
65500d23 2855 return ret;
1da177e4
LT
2856}
2857
2858/*
8f4e2101
HD
2859 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2860 * but allow concurrent faults), and pte mapped but not yet locked.
2861 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2862 */
82b0f8c3 2863static int do_anonymous_page(struct vm_fault *vmf)
1da177e4 2864{
82b0f8c3 2865 struct vm_area_struct *vma = vmf->vma;
00501b53 2866 struct mem_cgroup *memcg;
8f4e2101 2867 struct page *page;
1da177e4 2868 pte_t entry;
1da177e4 2869
6b7339f4
KS
2870 /* File mapping without ->vm_ops ? */
2871 if (vma->vm_flags & VM_SHARED)
2872 return VM_FAULT_SIGBUS;
2873
7267ec00
KS
2874 /*
2875 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2876 * pte_offset_map() on pmds where a huge pmd might be created
2877 * from a different thread.
2878 *
2879 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2880 * parallel threads are excluded by other means.
2881 *
2882 * Here we only have down_read(mmap_sem).
2883 */
82b0f8c3 2884 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
2885 return VM_FAULT_OOM;
2886
2887 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2888 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2889 return 0;
2890
11ac5524 2891 /* Use the zero-page for reads */
82b0f8c3 2892 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2893 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2894 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2895 vma->vm_page_prot));
82b0f8c3
JK
2896 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2897 vmf->address, &vmf->ptl);
2898 if (!pte_none(*vmf->pte))
a13ea5b7 2899 goto unlock;
6b251fc9
AA
2900 /* Deliver the page fault to userland, check inside PT lock */
2901 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2902 pte_unmap_unlock(vmf->pte, vmf->ptl);
2903 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2904 }
a13ea5b7
HD
2905 goto setpte;
2906 }
2907
557ed1fa 2908 /* Allocate our own private page. */
557ed1fa
NP
2909 if (unlikely(anon_vma_prepare(vma)))
2910 goto oom;
82b0f8c3 2911 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2912 if (!page)
2913 goto oom;
eb3c24f3 2914
bae473a4 2915 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2916 goto oom_free_page;
2917
52f37629
MK
2918 /*
2919 * The memory barrier inside __SetPageUptodate makes sure that
2920 * preceeding stores to the page contents become visible before
2921 * the set_pte_at() write.
2922 */
0ed361de 2923 __SetPageUptodate(page);
8f4e2101 2924
557ed1fa 2925 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2926 if (vma->vm_flags & VM_WRITE)
2927 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2928
82b0f8c3
JK
2929 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2930 &vmf->ptl);
2931 if (!pte_none(*vmf->pte))
557ed1fa 2932 goto release;
9ba69294 2933
6b251fc9
AA
2934 /* Deliver the page fault to userland, check inside PT lock */
2935 if (userfaultfd_missing(vma)) {
82b0f8c3 2936 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 2937 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2938 put_page(page);
82b0f8c3 2939 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
2940 }
2941
bae473a4 2942 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 2943 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2944 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2945 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2946setpte:
82b0f8c3 2947 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
2948
2949 /* No need to invalidate - it was non-present before */
82b0f8c3 2950 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2951unlock:
82b0f8c3 2952 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 2953 return 0;
8f4e2101 2954release:
f627c2f5 2955 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2956 put_page(page);
8f4e2101 2957 goto unlock;
8a9f3ccd 2958oom_free_page:
09cbfeaf 2959 put_page(page);
65500d23 2960oom:
1da177e4
LT
2961 return VM_FAULT_OOM;
2962}
2963
9a95f3cf
PC
2964/*
2965 * The mmap_sem must have been held on entry, and may have been
2966 * released depending on flags and vma->vm_ops->fault() return value.
2967 * See filemap_fault() and __lock_page_retry().
2968 */
936ca80d 2969static int __do_fault(struct vm_fault *vmf)
7eae74af 2970{
82b0f8c3 2971 struct vm_area_struct *vma = vmf->vma;
7eae74af
KS
2972 int ret;
2973
11bac800 2974 ret = vma->vm_ops->fault(vmf);
3917048d 2975 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 2976 VM_FAULT_DONE_COW)))
bc2466e4 2977 return ret;
7eae74af 2978
667240e0 2979 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 2980 if (ret & VM_FAULT_LOCKED)
667240e0
JK
2981 unlock_page(vmf->page);
2982 put_page(vmf->page);
936ca80d 2983 vmf->page = NULL;
7eae74af
KS
2984 return VM_FAULT_HWPOISON;
2985 }
2986
2987 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 2988 lock_page(vmf->page);
7eae74af 2989 else
667240e0 2990 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 2991
7eae74af
KS
2992 return ret;
2993}
2994
d0f0931d
RZ
2995/*
2996 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
2997 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
2998 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
2999 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3000 */
3001static int pmd_devmap_trans_unstable(pmd_t *pmd)
3002{
3003 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3004}
3005
82b0f8c3 3006static int pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3007{
82b0f8c3 3008 struct vm_area_struct *vma = vmf->vma;
7267ec00 3009
82b0f8c3 3010 if (!pmd_none(*vmf->pmd))
7267ec00 3011 goto map_pte;
82b0f8c3
JK
3012 if (vmf->prealloc_pte) {
3013 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3014 if (unlikely(!pmd_none(*vmf->pmd))) {
3015 spin_unlock(vmf->ptl);
7267ec00
KS
3016 goto map_pte;
3017 }
3018
3019 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3
JK
3020 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3021 spin_unlock(vmf->ptl);
7f2b6ce8 3022 vmf->prealloc_pte = NULL;
82b0f8c3 3023 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
3024 return VM_FAULT_OOM;
3025 }
3026map_pte:
3027 /*
3028 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3029 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3030 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3031 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3032 * running immediately after a huge pmd fault in a different thread of
3033 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3034 * All we have to ensure is that it is a regular pmd that we can walk
3035 * with pte_offset_map() and we can do that through an atomic read in
3036 * C, which is what pmd_trans_unstable() provides.
7267ec00 3037 */
d0f0931d 3038 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3039 return VM_FAULT_NOPAGE;
3040
d0f0931d
RZ
3041 /*
3042 * At this point we know that our vmf->pmd points to a page of ptes
3043 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3044 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3045 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3046 * be valid and we will re-check to make sure the vmf->pte isn't
3047 * pte_none() under vmf->ptl protection when we return to
3048 * alloc_set_pte().
3049 */
82b0f8c3
JK
3050 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3051 &vmf->ptl);
7267ec00
KS
3052 return 0;
3053}
3054
e496cf3d 3055#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3056
3057#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3058static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3059 unsigned long haddr)
3060{
3061 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3062 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3063 return false;
3064 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3065 return false;
3066 return true;
3067}
3068
82b0f8c3 3069static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3070{
82b0f8c3 3071 struct vm_area_struct *vma = vmf->vma;
953c66c2 3072
82b0f8c3 3073 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3074 /*
3075 * We are going to consume the prealloc table,
3076 * count that as nr_ptes.
3077 */
3078 atomic_long_inc(&vma->vm_mm->nr_ptes);
7f2b6ce8 3079 vmf->prealloc_pte = NULL;
953c66c2
AK
3080}
3081
82b0f8c3 3082static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3083{
82b0f8c3
JK
3084 struct vm_area_struct *vma = vmf->vma;
3085 bool write = vmf->flags & FAULT_FLAG_WRITE;
3086 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459
KS
3087 pmd_t entry;
3088 int i, ret;
3089
3090 if (!transhuge_vma_suitable(vma, haddr))
3091 return VM_FAULT_FALLBACK;
3092
3093 ret = VM_FAULT_FALLBACK;
3094 page = compound_head(page);
3095
953c66c2
AK
3096 /*
3097 * Archs like ppc64 need additonal space to store information
3098 * related to pte entry. Use the preallocated table for that.
3099 */
82b0f8c3
JK
3100 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3101 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3102 if (!vmf->prealloc_pte)
953c66c2
AK
3103 return VM_FAULT_OOM;
3104 smp_wmb(); /* See comment in __pte_alloc() */
3105 }
3106
82b0f8c3
JK
3107 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3108 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3109 goto out;
3110
3111 for (i = 0; i < HPAGE_PMD_NR; i++)
3112 flush_icache_page(vma, page + i);
3113
3114 entry = mk_huge_pmd(page, vma->vm_page_prot);
3115 if (write)
3116 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3117
3118 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3119 page_add_file_rmap(page, true);
953c66c2
AK
3120 /*
3121 * deposit and withdraw with pmd lock held
3122 */
3123 if (arch_needs_pgtable_deposit())
82b0f8c3 3124 deposit_prealloc_pte(vmf);
10102459 3125
82b0f8c3 3126 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3127
82b0f8c3 3128 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3129
3130 /* fault is handled */
3131 ret = 0;
95ecedcd 3132 count_vm_event(THP_FILE_MAPPED);
10102459 3133out:
82b0f8c3 3134 spin_unlock(vmf->ptl);
10102459
KS
3135 return ret;
3136}
3137#else
82b0f8c3 3138static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3139{
3140 BUILD_BUG();
3141 return 0;
3142}
3143#endif
3144
8c6e50b0 3145/**
7267ec00
KS
3146 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3147 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3148 *
82b0f8c3 3149 * @vmf: fault environment
7267ec00 3150 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3151 * @page: page to map
8c6e50b0 3152 *
82b0f8c3
JK
3153 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3154 * return.
8c6e50b0
KS
3155 *
3156 * Target users are page handler itself and implementations of
3157 * vm_ops->map_pages.
3158 */
82b0f8c3 3159int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3160 struct page *page)
3bb97794 3161{
82b0f8c3
JK
3162 struct vm_area_struct *vma = vmf->vma;
3163 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3164 pte_t entry;
10102459
KS
3165 int ret;
3166
82b0f8c3 3167 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3168 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3169 /* THP on COW? */
3170 VM_BUG_ON_PAGE(memcg, page);
3171
82b0f8c3 3172 ret = do_set_pmd(vmf, page);
10102459 3173 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3174 return ret;
10102459 3175 }
3bb97794 3176
82b0f8c3
JK
3177 if (!vmf->pte) {
3178 ret = pte_alloc_one_map(vmf);
7267ec00 3179 if (ret)
b0b9b3df 3180 return ret;
7267ec00
KS
3181 }
3182
3183 /* Re-check under ptl */
b0b9b3df
HD
3184 if (unlikely(!pte_none(*vmf->pte)))
3185 return VM_FAULT_NOPAGE;
7267ec00 3186
3bb97794
KS
3187 flush_icache_page(vma, page);
3188 entry = mk_pte(page, vma->vm_page_prot);
3189 if (write)
3190 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3191 /* copy-on-write page */
3192 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3193 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3194 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3195 mem_cgroup_commit_charge(page, memcg, false, false);
3196 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3197 } else {
eca56ff9 3198 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3199 page_add_file_rmap(page, false);
3bb97794 3200 }
82b0f8c3 3201 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3202
3203 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3204 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3205
b0b9b3df 3206 return 0;
3bb97794
KS
3207}
3208
9118c0cb
JK
3209
3210/**
3211 * finish_fault - finish page fault once we have prepared the page to fault
3212 *
3213 * @vmf: structure describing the fault
3214 *
3215 * This function handles all that is needed to finish a page fault once the
3216 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3217 * given page, adds reverse page mapping, handles memcg charges and LRU
3218 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3219 * error.
3220 *
3221 * The function expects the page to be locked and on success it consumes a
3222 * reference of a page being mapped (for the PTE which maps it).
3223 */
3224int finish_fault(struct vm_fault *vmf)
3225{
3226 struct page *page;
3227 int ret;
3228
3229 /* Did we COW the page? */
3230 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3231 !(vmf->vma->vm_flags & VM_SHARED))
3232 page = vmf->cow_page;
3233 else
3234 page = vmf->page;
3235 ret = alloc_set_pte(vmf, vmf->memcg, page);
3236 if (vmf->pte)
3237 pte_unmap_unlock(vmf->pte, vmf->ptl);
3238 return ret;
3239}
3240
3a91053a
KS
3241static unsigned long fault_around_bytes __read_mostly =
3242 rounddown_pow_of_two(65536);
a9b0f861 3243
a9b0f861
KS
3244#ifdef CONFIG_DEBUG_FS
3245static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3246{
a9b0f861 3247 *val = fault_around_bytes;
1592eef0
KS
3248 return 0;
3249}
3250
b4903d6e
AR
3251/*
3252 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3253 * rounded down to nearest page order. It's what do_fault_around() expects to
3254 * see.
3255 */
a9b0f861 3256static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3257{
a9b0f861 3258 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3259 return -EINVAL;
b4903d6e
AR
3260 if (val > PAGE_SIZE)
3261 fault_around_bytes = rounddown_pow_of_two(val);
3262 else
3263 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3264 return 0;
3265}
0a1345f8 3266DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3267 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3268
3269static int __init fault_around_debugfs(void)
3270{
3271 void *ret;
3272
0a1345f8 3273 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
a9b0f861 3274 &fault_around_bytes_fops);
1592eef0 3275 if (!ret)
a9b0f861 3276 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3277 return 0;
3278}
3279late_initcall(fault_around_debugfs);
1592eef0 3280#endif
8c6e50b0 3281
1fdb412b
KS
3282/*
3283 * do_fault_around() tries to map few pages around the fault address. The hope
3284 * is that the pages will be needed soon and this will lower the number of
3285 * faults to handle.
3286 *
3287 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3288 * not ready to be mapped: not up-to-date, locked, etc.
3289 *
3290 * This function is called with the page table lock taken. In the split ptlock
3291 * case the page table lock only protects only those entries which belong to
3292 * the page table corresponding to the fault address.
3293 *
3294 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3295 * only once.
3296 *
3297 * fault_around_pages() defines how many pages we'll try to map.
3298 * do_fault_around() expects it to return a power of two less than or equal to
3299 * PTRS_PER_PTE.
3300 *
3301 * The virtual address of the area that we map is naturally aligned to the
3302 * fault_around_pages() value (and therefore to page order). This way it's
3303 * easier to guarantee that we don't cross page table boundaries.
3304 */
0721ec8b 3305static int do_fault_around(struct vm_fault *vmf)
8c6e50b0 3306{
82b0f8c3 3307 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3308 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3309 pgoff_t end_pgoff;
7267ec00 3310 int off, ret = 0;
8c6e50b0 3311
4db0c3c2 3312 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3313 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3314
82b0f8c3
JK
3315 vmf->address = max(address & mask, vmf->vma->vm_start);
3316 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3317 start_pgoff -= off;
8c6e50b0
KS
3318
3319 /*
bae473a4
KS
3320 * end_pgoff is either end of page table or end of vma
3321 * or fault_around_pages() from start_pgoff, depending what is nearest.
8c6e50b0 3322 */
bae473a4 3323 end_pgoff = start_pgoff -
82b0f8c3 3324 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3325 PTRS_PER_PTE - 1;
82b0f8c3 3326 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3327 start_pgoff + nr_pages - 1);
8c6e50b0 3328
82b0f8c3
JK
3329 if (pmd_none(*vmf->pmd)) {
3330 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3331 vmf->address);
3332 if (!vmf->prealloc_pte)
c5f88bd2 3333 goto out;
7267ec00 3334 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3335 }
3336
82b0f8c3 3337 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3338
7267ec00 3339 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3340 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3341 ret = VM_FAULT_NOPAGE;
3342 goto out;
3343 }
3344
3345 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3346 if (!vmf->pte)
7267ec00
KS
3347 goto out;
3348
3349 /* check if the page fault is solved */
82b0f8c3
JK
3350 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3351 if (!pte_none(*vmf->pte))
7267ec00 3352 ret = VM_FAULT_NOPAGE;
82b0f8c3 3353 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3354out:
82b0f8c3
JK
3355 vmf->address = address;
3356 vmf->pte = NULL;
7267ec00 3357 return ret;
8c6e50b0
KS
3358}
3359
0721ec8b 3360static int do_read_fault(struct vm_fault *vmf)
e655fb29 3361{
82b0f8c3 3362 struct vm_area_struct *vma = vmf->vma;
8c6e50b0
KS
3363 int ret = 0;
3364
3365 /*
3366 * Let's call ->map_pages() first and use ->fault() as fallback
3367 * if page by the offset is not ready to be mapped (cold cache or
3368 * something).
3369 */
9b4bdd2f 3370 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3371 ret = do_fault_around(vmf);
7267ec00
KS
3372 if (ret)
3373 return ret;
8c6e50b0 3374 }
e655fb29 3375
936ca80d 3376 ret = __do_fault(vmf);
e655fb29
KS
3377 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3378 return ret;
3379
9118c0cb 3380 ret |= finish_fault(vmf);
936ca80d 3381 unlock_page(vmf->page);
7267ec00 3382 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3383 put_page(vmf->page);
e655fb29
KS
3384 return ret;
3385}
3386
0721ec8b 3387static int do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3388{
82b0f8c3 3389 struct vm_area_struct *vma = vmf->vma;
ec47c3b9
KS
3390 int ret;
3391
3392 if (unlikely(anon_vma_prepare(vma)))
3393 return VM_FAULT_OOM;
3394
936ca80d
JK
3395 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3396 if (!vmf->cow_page)
ec47c3b9
KS
3397 return VM_FAULT_OOM;
3398
936ca80d 3399 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3400 &vmf->memcg, false)) {
936ca80d 3401 put_page(vmf->cow_page);
ec47c3b9
KS
3402 return VM_FAULT_OOM;
3403 }
3404
936ca80d 3405 ret = __do_fault(vmf);
ec47c3b9
KS
3406 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3407 goto uncharge_out;
3917048d
JK
3408 if (ret & VM_FAULT_DONE_COW)
3409 return ret;
ec47c3b9 3410
b1aa812b 3411 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3412 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3413
9118c0cb 3414 ret |= finish_fault(vmf);
b1aa812b
JK
3415 unlock_page(vmf->page);
3416 put_page(vmf->page);
7267ec00
KS
3417 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3418 goto uncharge_out;
ec47c3b9
KS
3419 return ret;
3420uncharge_out:
3917048d 3421 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3422 put_page(vmf->cow_page);
ec47c3b9
KS
3423 return ret;
3424}
3425
0721ec8b 3426static int do_shared_fault(struct vm_fault *vmf)
1da177e4 3427{
82b0f8c3 3428 struct vm_area_struct *vma = vmf->vma;
f0c6d4d2 3429 int ret, tmp;
1d65f86d 3430
936ca80d 3431 ret = __do_fault(vmf);
7eae74af 3432 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3433 return ret;
1da177e4
LT
3434
3435 /*
f0c6d4d2
KS
3436 * Check if the backing address space wants to know that the page is
3437 * about to become writable
1da177e4 3438 */
fb09a464 3439 if (vma->vm_ops->page_mkwrite) {
936ca80d 3440 unlock_page(vmf->page);
38b8cb7f 3441 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3442 if (unlikely(!tmp ||
3443 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3444 put_page(vmf->page);
fb09a464 3445 return tmp;
4294621f 3446 }
fb09a464
KS
3447 }
3448
9118c0cb 3449 ret |= finish_fault(vmf);
7267ec00
KS
3450 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3451 VM_FAULT_RETRY))) {
936ca80d
JK
3452 unlock_page(vmf->page);
3453 put_page(vmf->page);
f0c6d4d2 3454 return ret;
1da177e4 3455 }
b827e496 3456
97ba0c2b 3457 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3458 return ret;
54cb8821 3459}
d00806b1 3460
9a95f3cf
PC
3461/*
3462 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3463 * but allow concurrent faults).
3464 * The mmap_sem may have been released depending on flags and our
3465 * return value. See filemap_fault() and __lock_page_or_retry().
3466 */
82b0f8c3 3467static int do_fault(struct vm_fault *vmf)
54cb8821 3468{
82b0f8c3 3469 struct vm_area_struct *vma = vmf->vma;
b0b9b3df 3470 int ret;
54cb8821 3471
6b7339f4
KS
3472 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3473 if (!vma->vm_ops->fault)
b0b9b3df
HD
3474 ret = VM_FAULT_SIGBUS;
3475 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3476 ret = do_read_fault(vmf);
3477 else if (!(vma->vm_flags & VM_SHARED))
3478 ret = do_cow_fault(vmf);
3479 else
3480 ret = do_shared_fault(vmf);
3481
3482 /* preallocated pagetable is unused: free it */
3483 if (vmf->prealloc_pte) {
3484 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3485 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3486 }
3487 return ret;
54cb8821
NP
3488}
3489
b19a9939 3490static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3491 unsigned long addr, int page_nid,
3492 int *flags)
9532fec1
MG
3493{
3494 get_page(page);
3495
3496 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3497 if (page_nid == numa_node_id()) {
9532fec1 3498 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3499 *flags |= TNF_FAULT_LOCAL;
3500 }
9532fec1
MG
3501
3502 return mpol_misplaced(page, vma, addr);
3503}
3504
2994302b 3505static int do_numa_page(struct vm_fault *vmf)
d10e63f2 3506{
82b0f8c3 3507 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3508 struct page *page = NULL;
8191acbd 3509 int page_nid = -1;
90572890 3510 int last_cpupid;
cbee9f88 3511 int target_nid;
b8593bfd 3512 bool migrated = false;
cee216a6 3513 pte_t pte;
288bc549 3514 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3515 int flags = 0;
d10e63f2
MG
3516
3517 /*
166f61b9
TH
3518 * The "pte" at this point cannot be used safely without
3519 * validation through pte_unmap_same(). It's of NUMA type but
3520 * the pfn may be screwed if the read is non atomic.
166f61b9 3521 */
82b0f8c3
JK
3522 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3523 spin_lock(vmf->ptl);
cee216a6 3524 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3525 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3526 goto out;
3527 }
3528
cee216a6
AK
3529 /*
3530 * Make it present again, Depending on how arch implementes non
3531 * accessible ptes, some can allow access by kernel mode.
3532 */
3533 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4d942466
MG
3534 pte = pte_modify(pte, vma->vm_page_prot);
3535 pte = pte_mkyoung(pte);
b191f9b1
MG
3536 if (was_writable)
3537 pte = pte_mkwrite(pte);
cee216a6 3538 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
82b0f8c3 3539 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3540
82b0f8c3 3541 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3542 if (!page) {
82b0f8c3 3543 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3544 return 0;
3545 }
3546
e81c4802
KS
3547 /* TODO: handle PTE-mapped THP */
3548 if (PageCompound(page)) {
82b0f8c3 3549 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3550 return 0;
3551 }
3552
6688cc05 3553 /*
bea66fbd
MG
3554 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3555 * much anyway since they can be in shared cache state. This misses
3556 * the case where a mapping is writable but the process never writes
3557 * to it but pte_write gets cleared during protection updates and
3558 * pte_dirty has unpredictable behaviour between PTE scan updates,
3559 * background writeback, dirty balancing and application behaviour.
6688cc05 3560 */
d59dc7bc 3561 if (!pte_write(pte))
6688cc05
PZ
3562 flags |= TNF_NO_GROUP;
3563
dabe1d99
RR
3564 /*
3565 * Flag if the page is shared between multiple address spaces. This
3566 * is later used when determining whether to group tasks together
3567 */
3568 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3569 flags |= TNF_SHARED;
3570
90572890 3571 last_cpupid = page_cpupid_last(page);
8191acbd 3572 page_nid = page_to_nid(page);
82b0f8c3 3573 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3574 &flags);
82b0f8c3 3575 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3576 if (target_nid == -1) {
4daae3b4
MG
3577 put_page(page);
3578 goto out;
3579 }
3580
3581 /* Migrate to the requested node */
1bc115d8 3582 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3583 if (migrated) {
8191acbd 3584 page_nid = target_nid;
6688cc05 3585 flags |= TNF_MIGRATED;
074c2381
MG
3586 } else
3587 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3588
3589out:
8191acbd 3590 if (page_nid != -1)
6688cc05 3591 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3592 return 0;
3593}
3594
91a90140 3595static inline int create_huge_pmd(struct vm_fault *vmf)
b96375f7 3596{
f4200391 3597 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3598 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3599 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3600 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3601 return VM_FAULT_FALLBACK;
3602}
3603
82b0f8c3 3604static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3605{
82b0f8c3
JK
3606 if (vma_is_anonymous(vmf->vma))
3607 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3608 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3609 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3610
3611 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3612 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3613 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3614
b96375f7
MW
3615 return VM_FAULT_FALLBACK;
3616}
3617
38e08854
LS
3618static inline bool vma_is_accessible(struct vm_area_struct *vma)
3619{
3620 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3621}
3622
a00cc7d9
MW
3623static int create_huge_pud(struct vm_fault *vmf)
3624{
3625#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3626 /* No support for anonymous transparent PUD pages yet */
3627 if (vma_is_anonymous(vmf->vma))
3628 return VM_FAULT_FALLBACK;
3629 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3630 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3631#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3632 return VM_FAULT_FALLBACK;
3633}
3634
3635static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3636{
3637#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3638 /* No support for anonymous transparent PUD pages yet */
3639 if (vma_is_anonymous(vmf->vma))
3640 return VM_FAULT_FALLBACK;
3641 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3642 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3643#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3644 return VM_FAULT_FALLBACK;
3645}
3646
1da177e4
LT
3647/*
3648 * These routines also need to handle stuff like marking pages dirty
3649 * and/or accessed for architectures that don't do it in hardware (most
3650 * RISC architectures). The early dirtying is also good on the i386.
3651 *
3652 * There is also a hook called "update_mmu_cache()" that architectures
3653 * with external mmu caches can use to update those (ie the Sparc or
3654 * PowerPC hashed page tables that act as extended TLBs).
3655 *
7267ec00
KS
3656 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3657 * concurrent faults).
9a95f3cf 3658 *
7267ec00
KS
3659 * The mmap_sem may have been released depending on flags and our return value.
3660 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3661 */
82b0f8c3 3662static int handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3663{
3664 pte_t entry;
3665
82b0f8c3 3666 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3667 /*
3668 * Leave __pte_alloc() until later: because vm_ops->fault may
3669 * want to allocate huge page, and if we expose page table
3670 * for an instant, it will be difficult to retract from
3671 * concurrent faults and from rmap lookups.
3672 */
82b0f8c3 3673 vmf->pte = NULL;
7267ec00
KS
3674 } else {
3675 /* See comment in pte_alloc_one_map() */
d0f0931d 3676 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3677 return 0;
3678 /*
3679 * A regular pmd is established and it can't morph into a huge
3680 * pmd from under us anymore at this point because we hold the
3681 * mmap_sem read mode and khugepaged takes it in write mode.
3682 * So now it's safe to run pte_offset_map().
3683 */
82b0f8c3 3684 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3685 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3686
3687 /*
3688 * some architectures can have larger ptes than wordsize,
3689 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3690 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3691 * atomic accesses. The code below just needs a consistent
3692 * view for the ifs and we later double check anyway with the
3693 * ptl lock held. So here a barrier will do.
3694 */
3695 barrier();
2994302b 3696 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3697 pte_unmap(vmf->pte);
3698 vmf->pte = NULL;
65500d23 3699 }
1da177e4
LT
3700 }
3701
82b0f8c3
JK
3702 if (!vmf->pte) {
3703 if (vma_is_anonymous(vmf->vma))
3704 return do_anonymous_page(vmf);
7267ec00 3705 else
82b0f8c3 3706 return do_fault(vmf);
7267ec00
KS
3707 }
3708
2994302b
JK
3709 if (!pte_present(vmf->orig_pte))
3710 return do_swap_page(vmf);
7267ec00 3711
2994302b
JK
3712 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3713 return do_numa_page(vmf);
d10e63f2 3714
82b0f8c3
JK
3715 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3716 spin_lock(vmf->ptl);
2994302b 3717 entry = vmf->orig_pte;
82b0f8c3 3718 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3719 goto unlock;
82b0f8c3 3720 if (vmf->flags & FAULT_FLAG_WRITE) {
1da177e4 3721 if (!pte_write(entry))
2994302b 3722 return do_wp_page(vmf);
1da177e4
LT
3723 entry = pte_mkdirty(entry);
3724 }
3725 entry = pte_mkyoung(entry);
82b0f8c3
JK
3726 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3727 vmf->flags & FAULT_FLAG_WRITE)) {
3728 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3729 } else {
3730 /*
3731 * This is needed only for protection faults but the arch code
3732 * is not yet telling us if this is a protection fault or not.
3733 * This still avoids useless tlb flushes for .text page faults
3734 * with threads.
3735 */
82b0f8c3
JK
3736 if (vmf->flags & FAULT_FLAG_WRITE)
3737 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3738 }
8f4e2101 3739unlock:
82b0f8c3 3740 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3741 return 0;
1da177e4
LT
3742}
3743
3744/*
3745 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3746 *
3747 * The mmap_sem may have been released depending on flags and our
3748 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3749 */
dcddffd4
KS
3750static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3751 unsigned int flags)
1da177e4 3752{
82b0f8c3 3753 struct vm_fault vmf = {
bae473a4 3754 .vma = vma,
1a29d85e 3755 .address = address & PAGE_MASK,
bae473a4 3756 .flags = flags,
0721ec8b 3757 .pgoff = linear_page_index(vma, address),
667240e0 3758 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3759 };
dcddffd4 3760 struct mm_struct *mm = vma->vm_mm;
1da177e4 3761 pgd_t *pgd;
c2febafc 3762 p4d_t *p4d;
a2d58167 3763 int ret;
1da177e4 3764
1da177e4 3765 pgd = pgd_offset(mm, address);
c2febafc
KS
3766 p4d = p4d_alloc(mm, pgd, address);
3767 if (!p4d)
3768 return VM_FAULT_OOM;
a00cc7d9 3769
c2febafc 3770 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3771 if (!vmf.pud)
c74df32c 3772 return VM_FAULT_OOM;
a00cc7d9 3773 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3774 ret = create_huge_pud(&vmf);
3775 if (!(ret & VM_FAULT_FALLBACK))
3776 return ret;
3777 } else {
3778 pud_t orig_pud = *vmf.pud;
3779
3780 barrier();
3781 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3782 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3783
a00cc7d9
MW
3784 /* NUMA case for anonymous PUDs would go here */
3785
3786 if (dirty && !pud_write(orig_pud)) {
3787 ret = wp_huge_pud(&vmf, orig_pud);
3788 if (!(ret & VM_FAULT_FALLBACK))
3789 return ret;
3790 } else {
3791 huge_pud_set_accessed(&vmf, orig_pud);
3792 return 0;
3793 }
3794 }
3795 }
3796
3797 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3798 if (!vmf.pmd)
c74df32c 3799 return VM_FAULT_OOM;
82b0f8c3 3800 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
a2d58167 3801 ret = create_huge_pmd(&vmf);
c0292554
KS
3802 if (!(ret & VM_FAULT_FALLBACK))
3803 return ret;
71e3aac0 3804 } else {
82b0f8c3 3805 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3806
71e3aac0 3807 barrier();
5c7fb56e 3808 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3809 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3810 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3811
82b0f8c3 3812 if ((vmf.flags & FAULT_FLAG_WRITE) &&
bae473a4 3813 !pmd_write(orig_pmd)) {
82b0f8c3 3814 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3815 if (!(ret & VM_FAULT_FALLBACK))
3816 return ret;
a1dd450b 3817 } else {
82b0f8c3 3818 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3819 return 0;
1f1d06c3 3820 }
71e3aac0
AA
3821 }
3822 }
3823
82b0f8c3 3824 return handle_pte_fault(&vmf);
1da177e4
LT
3825}
3826
9a95f3cf
PC
3827/*
3828 * By the time we get here, we already hold the mm semaphore
3829 *
3830 * The mmap_sem may have been released depending on flags and our
3831 * return value. See filemap_fault() and __lock_page_or_retry().
3832 */
dcddffd4
KS
3833int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3834 unsigned int flags)
519e5247
JW
3835{
3836 int ret;
3837
3838 __set_current_state(TASK_RUNNING);
3839
3840 count_vm_event(PGFAULT);
2262185c 3841 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
3842
3843 /* do counter updates before entering really critical section. */
3844 check_sync_rss_stat(current);
3845
3846 /*
3847 * Enable the memcg OOM handling for faults triggered in user
3848 * space. Kernel faults are handled more gracefully.
3849 */
3850 if (flags & FAULT_FLAG_USER)
49426420 3851 mem_cgroup_oom_enable();
519e5247 3852
bae473a4
KS
3853 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3854 flags & FAULT_FLAG_INSTRUCTION,
3855 flags & FAULT_FLAG_REMOTE))
3856 return VM_FAULT_SIGSEGV;
3857
3858 if (unlikely(is_vm_hugetlb_page(vma)))
3859 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3860 else
3861 ret = __handle_mm_fault(vma, address, flags);
519e5247 3862
49426420
JW
3863 if (flags & FAULT_FLAG_USER) {
3864 mem_cgroup_oom_disable();
166f61b9
TH
3865 /*
3866 * The task may have entered a memcg OOM situation but
3867 * if the allocation error was handled gracefully (no
3868 * VM_FAULT_OOM), there is no need to kill anything.
3869 * Just clean up the OOM state peacefully.
3870 */
3871 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3872 mem_cgroup_oom_synchronize(false);
49426420 3873 }
3812c8c8 3874
3f70dc38
MH
3875 /*
3876 * This mm has been already reaped by the oom reaper and so the
3877 * refault cannot be trusted in general. Anonymous refaults would
3878 * lose data and give a zero page instead e.g. This is especially
3879 * problem for use_mm() because regular tasks will just die and
3880 * the corrupted data will not be visible anywhere while kthread
3881 * will outlive the oom victim and potentially propagate the date
3882 * further.
3883 */
3884 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3885 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3886 ret = VM_FAULT_SIGBUS;
3887
519e5247
JW
3888 return ret;
3889}
e1d6d01a 3890EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3891
90eceff1
KS
3892#ifndef __PAGETABLE_P4D_FOLDED
3893/*
3894 * Allocate p4d page table.
3895 * We've already handled the fast-path in-line.
3896 */
3897int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3898{
3899 p4d_t *new = p4d_alloc_one(mm, address);
3900 if (!new)
3901 return -ENOMEM;
3902
3903 smp_wmb(); /* See comment in __pte_alloc */
3904
3905 spin_lock(&mm->page_table_lock);
3906 if (pgd_present(*pgd)) /* Another has populated it */
3907 p4d_free(mm, new);
3908 else
3909 pgd_populate(mm, pgd, new);
3910 spin_unlock(&mm->page_table_lock);
3911 return 0;
3912}
3913#endif /* __PAGETABLE_P4D_FOLDED */
3914
1da177e4
LT
3915#ifndef __PAGETABLE_PUD_FOLDED
3916/*
3917 * Allocate page upper directory.
872fec16 3918 * We've already handled the fast-path in-line.
1da177e4 3919 */
c2febafc 3920int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 3921{
c74df32c
HD
3922 pud_t *new = pud_alloc_one(mm, address);
3923 if (!new)
1bb3630e 3924 return -ENOMEM;
1da177e4 3925
362a61ad
NP
3926 smp_wmb(); /* See comment in __pte_alloc */
3927
872fec16 3928 spin_lock(&mm->page_table_lock);
c2febafc
KS
3929#ifndef __ARCH_HAS_5LEVEL_HACK
3930 if (p4d_present(*p4d)) /* Another has populated it */
5e541973 3931 pud_free(mm, new);
1bb3630e 3932 else
c2febafc
KS
3933 p4d_populate(mm, p4d, new);
3934#else
3935 if (pgd_present(*p4d)) /* Another has populated it */
5e541973 3936 pud_free(mm, new);
1bb3630e 3937 else
c2febafc
KS
3938 pgd_populate(mm, p4d, new);
3939#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 3940 spin_unlock(&mm->page_table_lock);
1bb3630e 3941 return 0;
1da177e4
LT
3942}
3943#endif /* __PAGETABLE_PUD_FOLDED */
3944
3945#ifndef __PAGETABLE_PMD_FOLDED
3946/*
3947 * Allocate page middle directory.
872fec16 3948 * We've already handled the fast-path in-line.
1da177e4 3949 */
1bb3630e 3950int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3951{
a00cc7d9 3952 spinlock_t *ptl;
c74df32c
HD
3953 pmd_t *new = pmd_alloc_one(mm, address);
3954 if (!new)
1bb3630e 3955 return -ENOMEM;
1da177e4 3956
362a61ad
NP
3957 smp_wmb(); /* See comment in __pte_alloc */
3958
a00cc7d9 3959 ptl = pud_lock(mm, pud);
1da177e4 3960#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3961 if (!pud_present(*pud)) {
3962 mm_inc_nr_pmds(mm);
1bb3630e 3963 pud_populate(mm, pud, new);
dc6c9a35 3964 } else /* Another has populated it */
5e541973 3965 pmd_free(mm, new);
dc6c9a35
KS
3966#else
3967 if (!pgd_present(*pud)) {
3968 mm_inc_nr_pmds(mm);
1bb3630e 3969 pgd_populate(mm, pud, new);
dc6c9a35
KS
3970 } else /* Another has populated it */
3971 pmd_free(mm, new);
1da177e4 3972#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 3973 spin_unlock(ptl);
1bb3630e 3974 return 0;
e0f39591 3975}
1da177e4
LT
3976#endif /* __PAGETABLE_PMD_FOLDED */
3977
09796395
RZ
3978static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3979 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
3980{
3981 pgd_t *pgd;
c2febafc 3982 p4d_t *p4d;
f8ad0f49
JW
3983 pud_t *pud;
3984 pmd_t *pmd;
3985 pte_t *ptep;
3986
3987 pgd = pgd_offset(mm, address);
3988 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3989 goto out;
3990
c2febafc
KS
3991 p4d = p4d_offset(pgd, address);
3992 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
3993 goto out;
3994
3995 pud = pud_offset(p4d, address);
f8ad0f49
JW
3996 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3997 goto out;
3998
3999 pmd = pmd_offset(pud, address);
f66055ab 4000 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4001
09796395
RZ
4002 if (pmd_huge(*pmd)) {
4003 if (!pmdpp)
4004 goto out;
4005
4006 *ptlp = pmd_lock(mm, pmd);
4007 if (pmd_huge(*pmd)) {
4008 *pmdpp = pmd;
4009 return 0;
4010 }
4011 spin_unlock(*ptlp);
4012 }
4013
4014 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4015 goto out;
4016
4017 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4018 if (!pte_present(*ptep))
4019 goto unlock;
4020 *ptepp = ptep;
4021 return 0;
4022unlock:
4023 pte_unmap_unlock(ptep, *ptlp);
4024out:
4025 return -EINVAL;
4026}
4027
f729c8c9
RZ
4028static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4029 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4030{
4031 int res;
4032
4033 /* (void) is needed to make gcc happy */
4034 (void) __cond_lock(*ptlp,
09796395
RZ
4035 !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
4036 ptlp)));
4037 return res;
4038}
4039
4040int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4041 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4042{
4043 int res;
4044
4045 /* (void) is needed to make gcc happy */
4046 (void) __cond_lock(*ptlp,
4047 !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
4048 ptlp)));
1b36ba81
NK
4049 return res;
4050}
09796395 4051EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4052
3b6748e2
JW
4053/**
4054 * follow_pfn - look up PFN at a user virtual address
4055 * @vma: memory mapping
4056 * @address: user virtual address
4057 * @pfn: location to store found PFN
4058 *
4059 * Only IO mappings and raw PFN mappings are allowed.
4060 *
4061 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4062 */
4063int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4064 unsigned long *pfn)
4065{
4066 int ret = -EINVAL;
4067 spinlock_t *ptl;
4068 pte_t *ptep;
4069
4070 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4071 return ret;
4072
4073 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4074 if (ret)
4075 return ret;
4076 *pfn = pte_pfn(*ptep);
4077 pte_unmap_unlock(ptep, ptl);
4078 return 0;
4079}
4080EXPORT_SYMBOL(follow_pfn);
4081
28b2ee20 4082#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4083int follow_phys(struct vm_area_struct *vma,
4084 unsigned long address, unsigned int flags,
4085 unsigned long *prot, resource_size_t *phys)
28b2ee20 4086{
03668a4d 4087 int ret = -EINVAL;
28b2ee20
RR
4088 pte_t *ptep, pte;
4089 spinlock_t *ptl;
28b2ee20 4090
d87fe660 4091 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4092 goto out;
28b2ee20 4093
03668a4d 4094 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4095 goto out;
28b2ee20 4096 pte = *ptep;
03668a4d 4097
28b2ee20
RR
4098 if ((flags & FOLL_WRITE) && !pte_write(pte))
4099 goto unlock;
28b2ee20
RR
4100
4101 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4102 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4103
03668a4d 4104 ret = 0;
28b2ee20
RR
4105unlock:
4106 pte_unmap_unlock(ptep, ptl);
4107out:
d87fe660 4108 return ret;
28b2ee20
RR
4109}
4110
4111int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4112 void *buf, int len, int write)
4113{
4114 resource_size_t phys_addr;
4115 unsigned long prot = 0;
2bc7273b 4116 void __iomem *maddr;
28b2ee20
RR
4117 int offset = addr & (PAGE_SIZE-1);
4118
d87fe660 4119 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4120 return -EINVAL;
4121
9cb12d7b 4122 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
4123 if (write)
4124 memcpy_toio(maddr + offset, buf, len);
4125 else
4126 memcpy_fromio(buf, maddr + offset, len);
4127 iounmap(maddr);
4128
4129 return len;
4130}
5a73633e 4131EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4132#endif
4133
0ec76a11 4134/*
206cb636
SW
4135 * Access another process' address space as given in mm. If non-NULL, use the
4136 * given task for page fault accounting.
0ec76a11 4137 */
84d77d3f 4138int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4139 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4140{
0ec76a11 4141 struct vm_area_struct *vma;
0ec76a11 4142 void *old_buf = buf;
442486ec 4143 int write = gup_flags & FOLL_WRITE;
0ec76a11 4144
0ec76a11 4145 down_read(&mm->mmap_sem);
183ff22b 4146 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4147 while (len) {
4148 int bytes, ret, offset;
4149 void *maddr;
28b2ee20 4150 struct page *page = NULL;
0ec76a11 4151
1e987790 4152 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4153 gup_flags, &page, &vma, NULL);
28b2ee20 4154 if (ret <= 0) {
dbffcd03
RR
4155#ifndef CONFIG_HAVE_IOREMAP_PROT
4156 break;
4157#else
28b2ee20
RR
4158 /*
4159 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4160 * we can access using slightly different code.
4161 */
28b2ee20 4162 vma = find_vma(mm, addr);
fe936dfc 4163 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4164 break;
4165 if (vma->vm_ops && vma->vm_ops->access)
4166 ret = vma->vm_ops->access(vma, addr, buf,
4167 len, write);
4168 if (ret <= 0)
28b2ee20
RR
4169 break;
4170 bytes = ret;
dbffcd03 4171#endif
0ec76a11 4172 } else {
28b2ee20
RR
4173 bytes = len;
4174 offset = addr & (PAGE_SIZE-1);
4175 if (bytes > PAGE_SIZE-offset)
4176 bytes = PAGE_SIZE-offset;
4177
4178 maddr = kmap(page);
4179 if (write) {
4180 copy_to_user_page(vma, page, addr,
4181 maddr + offset, buf, bytes);
4182 set_page_dirty_lock(page);
4183 } else {
4184 copy_from_user_page(vma, page, addr,
4185 buf, maddr + offset, bytes);
4186 }
4187 kunmap(page);
09cbfeaf 4188 put_page(page);
0ec76a11 4189 }
0ec76a11
DH
4190 len -= bytes;
4191 buf += bytes;
4192 addr += bytes;
4193 }
4194 up_read(&mm->mmap_sem);
0ec76a11
DH
4195
4196 return buf - old_buf;
4197}
03252919 4198
5ddd36b9 4199/**
ae91dbfc 4200 * access_remote_vm - access another process' address space
5ddd36b9
SW
4201 * @mm: the mm_struct of the target address space
4202 * @addr: start address to access
4203 * @buf: source or destination buffer
4204 * @len: number of bytes to transfer
6347e8d5 4205 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4206 *
4207 * The caller must hold a reference on @mm.
4208 */
4209int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4210 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4211{
6347e8d5 4212 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4213}
4214
206cb636
SW
4215/*
4216 * Access another process' address space.
4217 * Source/target buffer must be kernel space,
4218 * Do not walk the page table directly, use get_user_pages
4219 */
4220int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4221 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4222{
4223 struct mm_struct *mm;
4224 int ret;
4225
4226 mm = get_task_mm(tsk);
4227 if (!mm)
4228 return 0;
4229
f307ab6d 4230 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4231
206cb636
SW
4232 mmput(mm);
4233
4234 return ret;
4235}
fcd35857 4236EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4237
03252919
AK
4238/*
4239 * Print the name of a VMA.
4240 */
4241void print_vma_addr(char *prefix, unsigned long ip)
4242{
4243 struct mm_struct *mm = current->mm;
4244 struct vm_area_struct *vma;
4245
e8bff74a
IM
4246 /*
4247 * Do not print if we are in atomic
4248 * contexts (in exception stacks, etc.):
4249 */
4250 if (preempt_count())
4251 return;
4252
03252919
AK
4253 down_read(&mm->mmap_sem);
4254 vma = find_vma(mm, ip);
4255 if (vma && vma->vm_file) {
4256 struct file *f = vma->vm_file;
4257 char *buf = (char *)__get_free_page(GFP_KERNEL);
4258 if (buf) {
2fbc57c5 4259 char *p;
03252919 4260
9bf39ab2 4261 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4262 if (IS_ERR(p))
4263 p = "?";
2fbc57c5 4264 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4265 vma->vm_start,
4266 vma->vm_end - vma->vm_start);
4267 free_page((unsigned long)buf);
4268 }
4269 }
51a07e50 4270 up_read(&mm->mmap_sem);
03252919 4271}
3ee1afa3 4272
662bbcb2 4273#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4274void __might_fault(const char *file, int line)
3ee1afa3 4275{
95156f00
PZ
4276 /*
4277 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4278 * holding the mmap_sem, this is safe because kernel memory doesn't
4279 * get paged out, therefore we'll never actually fault, and the
4280 * below annotations will generate false positives.
4281 */
db68ce10 4282 if (uaccess_kernel())
95156f00 4283 return;
9ec23531 4284 if (pagefault_disabled())
662bbcb2 4285 return;
9ec23531
DH
4286 __might_sleep(file, line, 0);
4287#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4288 if (current->mm)
3ee1afa3 4289 might_lock_read(&current->mm->mmap_sem);
9ec23531 4290#endif
3ee1afa3 4291}
9ec23531 4292EXPORT_SYMBOL(__might_fault);
3ee1afa3 4293#endif
47ad8475
AA
4294
4295#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4296static void clear_gigantic_page(struct page *page,
4297 unsigned long addr,
4298 unsigned int pages_per_huge_page)
4299{
4300 int i;
4301 struct page *p = page;
4302
4303 might_sleep();
4304 for (i = 0; i < pages_per_huge_page;
4305 i++, p = mem_map_next(p, page, i)) {
4306 cond_resched();
4307 clear_user_highpage(p, addr + i * PAGE_SIZE);
4308 }
4309}
4310void clear_huge_page(struct page *page,
4311 unsigned long addr, unsigned int pages_per_huge_page)
4312{
4313 int i;
4314
4315 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4316 clear_gigantic_page(page, addr, pages_per_huge_page);
4317 return;
4318 }
4319
4320 might_sleep();
4321 for (i = 0; i < pages_per_huge_page; i++) {
4322 cond_resched();
4323 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4324 }
4325}
4326
4327static void copy_user_gigantic_page(struct page *dst, struct page *src,
4328 unsigned long addr,
4329 struct vm_area_struct *vma,
4330 unsigned int pages_per_huge_page)
4331{
4332 int i;
4333 struct page *dst_base = dst;
4334 struct page *src_base = src;
4335
4336 for (i = 0; i < pages_per_huge_page; ) {
4337 cond_resched();
4338 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4339
4340 i++;
4341 dst = mem_map_next(dst, dst_base, i);
4342 src = mem_map_next(src, src_base, i);
4343 }
4344}
4345
4346void copy_user_huge_page(struct page *dst, struct page *src,
4347 unsigned long addr, struct vm_area_struct *vma,
4348 unsigned int pages_per_huge_page)
4349{
4350 int i;
4351
4352 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4353 copy_user_gigantic_page(dst, src, addr, vma,
4354 pages_per_huge_page);
4355 return;
4356 }
4357
4358 might_sleep();
4359 for (i = 0; i < pages_per_huge_page; i++) {
4360 cond_resched();
4361 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4362 }
4363}
fa4d75c1
MK
4364
4365long copy_huge_page_from_user(struct page *dst_page,
4366 const void __user *usr_src,
810a56b9
MK
4367 unsigned int pages_per_huge_page,
4368 bool allow_pagefault)
fa4d75c1
MK
4369{
4370 void *src = (void *)usr_src;
4371 void *page_kaddr;
4372 unsigned long i, rc = 0;
4373 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4374
4375 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4376 if (allow_pagefault)
4377 page_kaddr = kmap(dst_page + i);
4378 else
4379 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4380 rc = copy_from_user(page_kaddr,
4381 (const void __user *)(src + i * PAGE_SIZE),
4382 PAGE_SIZE);
810a56b9
MK
4383 if (allow_pagefault)
4384 kunmap(dst_page + i);
4385 else
4386 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4387
4388 ret_val -= (PAGE_SIZE - rc);
4389 if (rc)
4390 break;
4391
4392 cond_resched();
4393 }
4394 return ret_val;
4395}
47ad8475 4396#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4397
40b64acd 4398#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4399
4400static struct kmem_cache *page_ptl_cachep;
4401
4402void __init ptlock_cache_init(void)
4403{
4404 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4405 SLAB_PANIC, NULL);
4406}
4407
539edb58 4408bool ptlock_alloc(struct page *page)
49076ec2
KS
4409{
4410 spinlock_t *ptl;
4411
b35f1819 4412 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4413 if (!ptl)
4414 return false;
539edb58 4415 page->ptl = ptl;
49076ec2
KS
4416 return true;
4417}
4418
539edb58 4419void ptlock_free(struct page *page)
49076ec2 4420{
b35f1819 4421 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4422}
4423#endif