]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/memory.c
mm: remove vm_insert_pfn()
[mirror_ubuntu-focal-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
5042db43 52#include <linux/memremap.h>
9a840895 53#include <linux/ksm.h>
1da177e4 54#include <linux/rmap.h>
b95f1b31 55#include <linux/export.h>
0ff92245 56#include <linux/delayacct.h>
1da177e4 57#include <linux/init.h>
01c8f1c4 58#include <linux/pfn_t.h>
edc79b2a 59#include <linux/writeback.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
3dc14741
HD
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
1da177e4 72
6952b61d 73#include <asm/io.h>
33a709b2 74#include <asm/mmu_context.h>
1da177e4 75#include <asm/pgalloc.h>
7c0f6ba6 76#include <linux/uaccess.h>
1da177e4
LT
77#include <asm/tlb.h>
78#include <asm/tlbflush.h>
79#include <asm/pgtable.h>
80
42b77728
JB
81#include "internal.h"
82
af27d940 83#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
85#endif
86
d41dee36 87#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
88/* use the per-pgdat data instead for discontigmem - mbligh */
89unsigned long max_mapnr;
1da177e4 90EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
91
92struct page *mem_map;
1da177e4
LT
93EXPORT_SYMBOL(mem_map);
94#endif
95
1da177e4
LT
96/*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
166f61b9 103void *high_memory;
1da177e4 104EXPORT_SYMBOL(high_memory);
1da177e4 105
32a93233
IM
106/*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112int randomize_va_space __read_mostly =
113#ifdef CONFIG_COMPAT_BRK
114 1;
115#else
116 2;
117#endif
a62eaf15
AK
118
119static int __init disable_randmaps(char *s)
120{
121 randomize_va_space = 0;
9b41046c 122 return 1;
a62eaf15
AK
123}
124__setup("norandmaps", disable_randmaps);
125
62eede62 126unsigned long zero_pfn __read_mostly;
0b70068e
AB
127EXPORT_SYMBOL(zero_pfn);
128
166f61b9
TH
129unsigned long highest_memmap_pfn __read_mostly;
130
a13ea5b7
HD
131/*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134static int __init init_zero_pfn(void)
135{
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138}
139core_initcall(init_zero_pfn);
a62eaf15 140
d559db08 141
34e55232
KH
142#if defined(SPLIT_RSS_COUNTING)
143
ea48cf78 144void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
145{
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
34e55232
KH
152 }
153 }
05af2e10 154 current->rss_stat.events = 0;
34e55232
KH
155}
156
157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158{
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165}
166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169/* sync counter once per 64 page faults */
170#define TASK_RSS_EVENTS_THRESH (64)
171static void check_sync_rss_stat(struct task_struct *task)
172{
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 176 sync_mm_rss(task->mm);
34e55232 177}
9547d01b 178#else /* SPLIT_RSS_COUNTING */
34e55232
KH
179
180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183static void check_sync_rss_stat(struct task_struct *task)
184{
185}
186
9547d01b
PZ
187#endif /* SPLIT_RSS_COUNTING */
188
1da177e4
LT
189/*
190 * Note: this doesn't free the actual pages themselves. That
191 * has been handled earlier when unmapping all the memory regions.
192 */
9e1b32ca
BH
193static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
194 unsigned long addr)
1da177e4 195{
2f569afd 196 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 197 pmd_clear(pmd);
9e1b32ca 198 pte_free_tlb(tlb, token, addr);
c4812909 199 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
200}
201
e0da382c
HD
202static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
203 unsigned long addr, unsigned long end,
204 unsigned long floor, unsigned long ceiling)
1da177e4
LT
205{
206 pmd_t *pmd;
207 unsigned long next;
e0da382c 208 unsigned long start;
1da177e4 209
e0da382c 210 start = addr;
1da177e4 211 pmd = pmd_offset(pud, addr);
1da177e4
LT
212 do {
213 next = pmd_addr_end(addr, end);
214 if (pmd_none_or_clear_bad(pmd))
215 continue;
9e1b32ca 216 free_pte_range(tlb, pmd, addr);
1da177e4
LT
217 } while (pmd++, addr = next, addr != end);
218
e0da382c
HD
219 start &= PUD_MASK;
220 if (start < floor)
221 return;
222 if (ceiling) {
223 ceiling &= PUD_MASK;
224 if (!ceiling)
225 return;
1da177e4 226 }
e0da382c
HD
227 if (end - 1 > ceiling - 1)
228 return;
229
230 pmd = pmd_offset(pud, start);
231 pud_clear(pud);
9e1b32ca 232 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 233 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
234}
235
c2febafc 236static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
1da177e4
LT
239{
240 pud_t *pud;
241 unsigned long next;
e0da382c 242 unsigned long start;
1da177e4 243
e0da382c 244 start = addr;
c2febafc 245 pud = pud_offset(p4d, addr);
1da177e4
LT
246 do {
247 next = pud_addr_end(addr, end);
248 if (pud_none_or_clear_bad(pud))
249 continue;
e0da382c 250 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
251 } while (pud++, addr = next, addr != end);
252
c2febafc
KS
253 start &= P4D_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= P4D_MASK;
258 if (!ceiling)
259 return;
260 }
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pud = pud_offset(p4d, start);
265 p4d_clear(p4d);
266 pud_free_tlb(tlb, pud, start);
b4e98d9a 267 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
268}
269
270static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
273{
274 p4d_t *p4d;
275 unsigned long next;
276 unsigned long start;
277
278 start = addr;
279 p4d = p4d_offset(pgd, addr);
280 do {
281 next = p4d_addr_end(addr, end);
282 if (p4d_none_or_clear_bad(p4d))
283 continue;
284 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
285 } while (p4d++, addr = next, addr != end);
286
e0da382c
HD
287 start &= PGDIR_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= PGDIR_MASK;
292 if (!ceiling)
293 return;
1da177e4 294 }
e0da382c
HD
295 if (end - 1 > ceiling - 1)
296 return;
297
c2febafc 298 p4d = p4d_offset(pgd, start);
e0da382c 299 pgd_clear(pgd);
c2febafc 300 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
301}
302
303/*
e0da382c 304 * This function frees user-level page tables of a process.
1da177e4 305 */
42b77728 306void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
307 unsigned long addr, unsigned long end,
308 unsigned long floor, unsigned long ceiling)
1da177e4
LT
309{
310 pgd_t *pgd;
311 unsigned long next;
e0da382c
HD
312
313 /*
314 * The next few lines have given us lots of grief...
315 *
316 * Why are we testing PMD* at this top level? Because often
317 * there will be no work to do at all, and we'd prefer not to
318 * go all the way down to the bottom just to discover that.
319 *
320 * Why all these "- 1"s? Because 0 represents both the bottom
321 * of the address space and the top of it (using -1 for the
322 * top wouldn't help much: the masks would do the wrong thing).
323 * The rule is that addr 0 and floor 0 refer to the bottom of
324 * the address space, but end 0 and ceiling 0 refer to the top
325 * Comparisons need to use "end - 1" and "ceiling - 1" (though
326 * that end 0 case should be mythical).
327 *
328 * Wherever addr is brought up or ceiling brought down, we must
329 * be careful to reject "the opposite 0" before it confuses the
330 * subsequent tests. But what about where end is brought down
331 * by PMD_SIZE below? no, end can't go down to 0 there.
332 *
333 * Whereas we round start (addr) and ceiling down, by different
334 * masks at different levels, in order to test whether a table
335 * now has no other vmas using it, so can be freed, we don't
336 * bother to round floor or end up - the tests don't need that.
337 */
1da177e4 338
e0da382c
HD
339 addr &= PMD_MASK;
340 if (addr < floor) {
341 addr += PMD_SIZE;
342 if (!addr)
343 return;
344 }
345 if (ceiling) {
346 ceiling &= PMD_MASK;
347 if (!ceiling)
348 return;
349 }
350 if (end - 1 > ceiling - 1)
351 end -= PMD_SIZE;
352 if (addr > end - 1)
353 return;
07e32661
AK
354 /*
355 * We add page table cache pages with PAGE_SIZE,
356 * (see pte_free_tlb()), flush the tlb if we need
357 */
358 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 359 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
360 do {
361 next = pgd_addr_end(addr, end);
362 if (pgd_none_or_clear_bad(pgd))
363 continue;
c2febafc 364 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 365 } while (pgd++, addr = next, addr != end);
e0da382c
HD
366}
367
42b77728 368void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 369 unsigned long floor, unsigned long ceiling)
e0da382c
HD
370{
371 while (vma) {
372 struct vm_area_struct *next = vma->vm_next;
373 unsigned long addr = vma->vm_start;
374
8f4f8c16 375 /*
25d9e2d1 376 * Hide vma from rmap and truncate_pagecache before freeing
377 * pgtables
8f4f8c16 378 */
5beb4930 379 unlink_anon_vmas(vma);
8f4f8c16
HD
380 unlink_file_vma(vma);
381
9da61aef 382 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 383 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 384 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
385 } else {
386 /*
387 * Optimization: gather nearby vmas into one call down
388 */
389 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 390 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
391 vma = next;
392 next = vma->vm_next;
5beb4930 393 unlink_anon_vmas(vma);
8f4f8c16 394 unlink_file_vma(vma);
3bf5ee95
HD
395 }
396 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 397 floor, next ? next->vm_start : ceiling);
3bf5ee95 398 }
e0da382c
HD
399 vma = next;
400 }
1da177e4
LT
401}
402
3ed3a4f0 403int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 404{
c4088ebd 405 spinlock_t *ptl;
2f569afd 406 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
407 if (!new)
408 return -ENOMEM;
409
362a61ad
NP
410 /*
411 * Ensure all pte setup (eg. pte page lock and page clearing) are
412 * visible before the pte is made visible to other CPUs by being
413 * put into page tables.
414 *
415 * The other side of the story is the pointer chasing in the page
416 * table walking code (when walking the page table without locking;
417 * ie. most of the time). Fortunately, these data accesses consist
418 * of a chain of data-dependent loads, meaning most CPUs (alpha
419 * being the notable exception) will already guarantee loads are
420 * seen in-order. See the alpha page table accessors for the
421 * smp_read_barrier_depends() barriers in page table walking code.
422 */
423 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
424
c4088ebd 425 ptl = pmd_lock(mm, pmd);
8ac1f832 426 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 427 mm_inc_nr_ptes(mm);
1da177e4 428 pmd_populate(mm, pmd, new);
2f569afd 429 new = NULL;
4b471e88 430 }
c4088ebd 431 spin_unlock(ptl);
2f569afd
MS
432 if (new)
433 pte_free(mm, new);
1bb3630e 434 return 0;
1da177e4
LT
435}
436
1bb3630e 437int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 438{
1bb3630e
HD
439 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
440 if (!new)
441 return -ENOMEM;
442
362a61ad
NP
443 smp_wmb(); /* See comment in __pte_alloc */
444
1bb3630e 445 spin_lock(&init_mm.page_table_lock);
8ac1f832 446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 447 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 448 new = NULL;
4b471e88 449 }
1bb3630e 450 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
451 if (new)
452 pte_free_kernel(&init_mm, new);
1bb3630e 453 return 0;
1da177e4
LT
454}
455
d559db08
KH
456static inline void init_rss_vec(int *rss)
457{
458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
459}
460
461static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 462{
d559db08
KH
463 int i;
464
34e55232 465 if (current->mm == mm)
05af2e10 466 sync_mm_rss(mm);
d559db08
KH
467 for (i = 0; i < NR_MM_COUNTERS; i++)
468 if (rss[i])
469 add_mm_counter(mm, i, rss[i]);
ae859762
HD
470}
471
b5810039 472/*
6aab341e
LT
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
b5810039
NP
476 *
477 * The calling function must still handle the error.
478 */
3dc14741
HD
479static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480 pte_t pte, struct page *page)
b5810039 481{
3dc14741 482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
483 p4d_t *p4d = p4d_offset(pgd, addr);
484 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
485 pmd_t *pmd = pmd_offset(pud, addr);
486 struct address_space *mapping;
487 pgoff_t index;
d936cf9b
HD
488 static unsigned long resume;
489 static unsigned long nr_shown;
490 static unsigned long nr_unshown;
491
492 /*
493 * Allow a burst of 60 reports, then keep quiet for that minute;
494 * or allow a steady drip of one report per second.
495 */
496 if (nr_shown == 60) {
497 if (time_before(jiffies, resume)) {
498 nr_unshown++;
499 return;
500 }
501 if (nr_unshown) {
1170532b
JP
502 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
503 nr_unshown);
d936cf9b
HD
504 nr_unshown = 0;
505 }
506 nr_shown = 0;
507 }
508 if (nr_shown++ == 0)
509 resume = jiffies + 60 * HZ;
3dc14741
HD
510
511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512 index = linear_page_index(vma, addr);
513
1170532b
JP
514 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
515 current->comm,
516 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 517 if (page)
f0b791a3 518 dump_page(page, "bad pte");
1170532b
JP
519 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
520 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
2682582a
KK
521 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
522 vma->vm_file,
523 vma->vm_ops ? vma->vm_ops->fault : NULL,
524 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
525 mapping ? mapping->a_ops->readpage : NULL);
b5810039 526 dump_stack();
373d4d09 527 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
528}
529
ee498ed7 530/*
7e675137 531 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 532 *
7e675137
NP
533 * "Special" mappings do not wish to be associated with a "struct page" (either
534 * it doesn't exist, or it exists but they don't want to touch it). In this
535 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 536 *
7e675137
NP
537 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
538 * pte bit, in which case this function is trivial. Secondly, an architecture
539 * may not have a spare pte bit, which requires a more complicated scheme,
540 * described below.
541 *
542 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
543 * special mapping (even if there are underlying and valid "struct pages").
544 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 545 *
b379d790
JH
546 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
547 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
548 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
549 * mapping will always honor the rule
6aab341e
LT
550 *
551 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
552 *
7e675137
NP
553 * And for normal mappings this is false.
554 *
555 * This restricts such mappings to be a linear translation from virtual address
556 * to pfn. To get around this restriction, we allow arbitrary mappings so long
557 * as the vma is not a COW mapping; in that case, we know that all ptes are
558 * special (because none can have been COWed).
b379d790 559 *
b379d790 560 *
7e675137 561 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
562 *
563 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
564 * page" backing, however the difference is that _all_ pages with a struct
565 * page (that is, those where pfn_valid is true) are refcounted and considered
566 * normal pages by the VM. The disadvantage is that pages are refcounted
567 * (which can be slower and simply not an option for some PFNMAP users). The
568 * advantage is that we don't have to follow the strict linearity rule of
569 * PFNMAP mappings in order to support COWable mappings.
570 *
ee498ed7 571 */
df6ad698
JG
572struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
573 pte_t pte, bool with_public_device)
ee498ed7 574{
22b31eec 575 unsigned long pfn = pte_pfn(pte);
7e675137 576
00b3a331 577 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 578 if (likely(!pte_special(pte)))
22b31eec 579 goto check_pfn;
667a0a06
DV
580 if (vma->vm_ops && vma->vm_ops->find_special_page)
581 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
582 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
583 return NULL;
df6ad698
JG
584 if (is_zero_pfn(pfn))
585 return NULL;
586
587 /*
588 * Device public pages are special pages (they are ZONE_DEVICE
589 * pages but different from persistent memory). They behave
590 * allmost like normal pages. The difference is that they are
591 * not on the lru and thus should never be involve with any-
592 * thing that involve lru manipulation (mlock, numa balancing,
593 * ...).
594 *
595 * This is why we still want to return NULL for such page from
596 * vm_normal_page() so that we do not have to special case all
597 * call site of vm_normal_page().
598 */
7d790d2d 599 if (likely(pfn <= highest_memmap_pfn)) {
df6ad698
JG
600 struct page *page = pfn_to_page(pfn);
601
602 if (is_device_public_page(page)) {
603 if (with_public_device)
604 return page;
605 return NULL;
606 }
607 }
e1fb4a08
DJ
608
609 if (pte_devmap(pte))
610 return NULL;
611
df6ad698 612 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
613 return NULL;
614 }
615
00b3a331 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 617
b379d790
JH
618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 if (vma->vm_flags & VM_MIXEDMAP) {
620 if (!pfn_valid(pfn))
621 return NULL;
622 goto out;
623 } else {
7e675137
NP
624 unsigned long off;
625 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
626 if (pfn == vma->vm_pgoff + off)
627 return NULL;
628 if (!is_cow_mapping(vma->vm_flags))
629 return NULL;
630 }
6aab341e
LT
631 }
632
b38af472
HD
633 if (is_zero_pfn(pfn))
634 return NULL;
00b3a331 635
22b31eec
HD
636check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
640 }
6aab341e
LT
641
642 /*
7e675137 643 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 644 * eg. VDSO mappings can cause them to exist.
6aab341e 645 */
b379d790 646out:
6aab341e 647 return pfn_to_page(pfn);
ee498ed7
HD
648}
649
28093f9f
GS
650#ifdef CONFIG_TRANSPARENT_HUGEPAGE
651struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 pmd_t pmd)
653{
654 unsigned long pfn = pmd_pfn(pmd);
655
656 /*
657 * There is no pmd_special() but there may be special pmds, e.g.
658 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
660 */
661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 if (vma->vm_flags & VM_MIXEDMAP) {
663 if (!pfn_valid(pfn))
664 return NULL;
665 goto out;
666 } else {
667 unsigned long off;
668 off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 if (pfn == vma->vm_pgoff + off)
670 return NULL;
671 if (!is_cow_mapping(vma->vm_flags))
672 return NULL;
673 }
674 }
675
e1fb4a08
DJ
676 if (pmd_devmap(pmd))
677 return NULL;
28093f9f
GS
678 if (is_zero_pfn(pfn))
679 return NULL;
680 if (unlikely(pfn > highest_memmap_pfn))
681 return NULL;
682
683 /*
684 * NOTE! We still have PageReserved() pages in the page tables.
685 * eg. VDSO mappings can cause them to exist.
686 */
687out:
688 return pfn_to_page(pfn);
689}
690#endif
691
1da177e4
LT
692/*
693 * copy one vm_area from one task to the other. Assumes the page tables
694 * already present in the new task to be cleared in the whole range
695 * covered by this vma.
1da177e4
LT
696 */
697
570a335b 698static inline unsigned long
1da177e4 699copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 701 unsigned long addr, int *rss)
1da177e4 702{
b5810039 703 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
704 pte_t pte = *src_pte;
705 struct page *page;
1da177e4
LT
706
707 /* pte contains position in swap or file, so copy. */
708 if (unlikely(!pte_present(pte))) {
0661a336
KS
709 swp_entry_t entry = pte_to_swp_entry(pte);
710
711 if (likely(!non_swap_entry(entry))) {
712 if (swap_duplicate(entry) < 0)
713 return entry.val;
714
715 /* make sure dst_mm is on swapoff's mmlist. */
716 if (unlikely(list_empty(&dst_mm->mmlist))) {
717 spin_lock(&mmlist_lock);
718 if (list_empty(&dst_mm->mmlist))
719 list_add(&dst_mm->mmlist,
720 &src_mm->mmlist);
721 spin_unlock(&mmlist_lock);
722 }
723 rss[MM_SWAPENTS]++;
724 } else if (is_migration_entry(entry)) {
725 page = migration_entry_to_page(entry);
726
eca56ff9 727 rss[mm_counter(page)]++;
0661a336
KS
728
729 if (is_write_migration_entry(entry) &&
730 is_cow_mapping(vm_flags)) {
731 /*
732 * COW mappings require pages in both
733 * parent and child to be set to read.
734 */
735 make_migration_entry_read(&entry);
736 pte = swp_entry_to_pte(entry);
737 if (pte_swp_soft_dirty(*src_pte))
738 pte = pte_swp_mksoft_dirty(pte);
739 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 740 }
5042db43
JG
741 } else if (is_device_private_entry(entry)) {
742 page = device_private_entry_to_page(entry);
743
744 /*
745 * Update rss count even for unaddressable pages, as
746 * they should treated just like normal pages in this
747 * respect.
748 *
749 * We will likely want to have some new rss counters
750 * for unaddressable pages, at some point. But for now
751 * keep things as they are.
752 */
753 get_page(page);
754 rss[mm_counter(page)]++;
755 page_dup_rmap(page, false);
756
757 /*
758 * We do not preserve soft-dirty information, because so
759 * far, checkpoint/restore is the only feature that
760 * requires that. And checkpoint/restore does not work
761 * when a device driver is involved (you cannot easily
762 * save and restore device driver state).
763 */
764 if (is_write_device_private_entry(entry) &&
765 is_cow_mapping(vm_flags)) {
766 make_device_private_entry_read(&entry);
767 pte = swp_entry_to_pte(entry);
768 set_pte_at(src_mm, addr, src_pte, pte);
769 }
1da177e4 770 }
ae859762 771 goto out_set_pte;
1da177e4
LT
772 }
773
1da177e4
LT
774 /*
775 * If it's a COW mapping, write protect it both
776 * in the parent and the child
777 */
1b2de5d0 778 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 779 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 780 pte = pte_wrprotect(pte);
1da177e4
LT
781 }
782
783 /*
784 * If it's a shared mapping, mark it clean in
785 * the child
786 */
787 if (vm_flags & VM_SHARED)
788 pte = pte_mkclean(pte);
789 pte = pte_mkold(pte);
6aab341e
LT
790
791 page = vm_normal_page(vma, addr, pte);
792 if (page) {
793 get_page(page);
53f9263b 794 page_dup_rmap(page, false);
eca56ff9 795 rss[mm_counter(page)]++;
df6ad698
JG
796 } else if (pte_devmap(pte)) {
797 page = pte_page(pte);
798
799 /*
800 * Cache coherent device memory behave like regular page and
801 * not like persistent memory page. For more informations see
802 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
803 */
804 if (is_device_public_page(page)) {
805 get_page(page);
806 page_dup_rmap(page, false);
807 rss[mm_counter(page)]++;
808 }
6aab341e 809 }
ae859762
HD
810
811out_set_pte:
812 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 813 return 0;
1da177e4
LT
814}
815
21bda264 816static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
817 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
818 unsigned long addr, unsigned long end)
1da177e4 819{
c36987e2 820 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 821 pte_t *src_pte, *dst_pte;
c74df32c 822 spinlock_t *src_ptl, *dst_ptl;
e040f218 823 int progress = 0;
d559db08 824 int rss[NR_MM_COUNTERS];
570a335b 825 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
826
827again:
d559db08
KH
828 init_rss_vec(rss);
829
c74df32c 830 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
831 if (!dst_pte)
832 return -ENOMEM;
ece0e2b6 833 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 834 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 835 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
836 orig_src_pte = src_pte;
837 orig_dst_pte = dst_pte;
6606c3e0 838 arch_enter_lazy_mmu_mode();
1da177e4 839
1da177e4
LT
840 do {
841 /*
842 * We are holding two locks at this point - either of them
843 * could generate latencies in another task on another CPU.
844 */
e040f218
HD
845 if (progress >= 32) {
846 progress = 0;
847 if (need_resched() ||
95c354fe 848 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
849 break;
850 }
1da177e4
LT
851 if (pte_none(*src_pte)) {
852 progress++;
853 continue;
854 }
570a335b
HD
855 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
856 vma, addr, rss);
857 if (entry.val)
858 break;
1da177e4
LT
859 progress += 8;
860 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 861
6606c3e0 862 arch_leave_lazy_mmu_mode();
c74df32c 863 spin_unlock(src_ptl);
ece0e2b6 864 pte_unmap(orig_src_pte);
d559db08 865 add_mm_rss_vec(dst_mm, rss);
c36987e2 866 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 867 cond_resched();
570a335b
HD
868
869 if (entry.val) {
870 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
871 return -ENOMEM;
872 progress = 0;
873 }
1da177e4
LT
874 if (addr != end)
875 goto again;
876 return 0;
877}
878
879static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
881 unsigned long addr, unsigned long end)
882{
883 pmd_t *src_pmd, *dst_pmd;
884 unsigned long next;
885
886 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
887 if (!dst_pmd)
888 return -ENOMEM;
889 src_pmd = pmd_offset(src_pud, addr);
890 do {
891 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
892 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
893 || pmd_devmap(*src_pmd)) {
71e3aac0 894 int err;
a00cc7d9 895 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
896 err = copy_huge_pmd(dst_mm, src_mm,
897 dst_pmd, src_pmd, addr, vma);
898 if (err == -ENOMEM)
899 return -ENOMEM;
900 if (!err)
901 continue;
902 /* fall through */
903 }
1da177e4
LT
904 if (pmd_none_or_clear_bad(src_pmd))
905 continue;
906 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
907 vma, addr, next))
908 return -ENOMEM;
909 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
910 return 0;
911}
912
913static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 914 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
915 unsigned long addr, unsigned long end)
916{
917 pud_t *src_pud, *dst_pud;
918 unsigned long next;
919
c2febafc 920 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
921 if (!dst_pud)
922 return -ENOMEM;
c2febafc 923 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
924 do {
925 next = pud_addr_end(addr, end);
a00cc7d9
MW
926 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
927 int err;
928
929 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
930 err = copy_huge_pud(dst_mm, src_mm,
931 dst_pud, src_pud, addr, vma);
932 if (err == -ENOMEM)
933 return -ENOMEM;
934 if (!err)
935 continue;
936 /* fall through */
937 }
1da177e4
LT
938 if (pud_none_or_clear_bad(src_pud))
939 continue;
940 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
941 vma, addr, next))
942 return -ENOMEM;
943 } while (dst_pud++, src_pud++, addr = next, addr != end);
944 return 0;
945}
946
c2febafc
KS
947static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
948 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
949 unsigned long addr, unsigned long end)
950{
951 p4d_t *src_p4d, *dst_p4d;
952 unsigned long next;
953
954 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
955 if (!dst_p4d)
956 return -ENOMEM;
957 src_p4d = p4d_offset(src_pgd, addr);
958 do {
959 next = p4d_addr_end(addr, end);
960 if (p4d_none_or_clear_bad(src_p4d))
961 continue;
962 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
963 vma, addr, next))
964 return -ENOMEM;
965 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
966 return 0;
967}
968
1da177e4
LT
969int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970 struct vm_area_struct *vma)
971{
972 pgd_t *src_pgd, *dst_pgd;
973 unsigned long next;
974 unsigned long addr = vma->vm_start;
975 unsigned long end = vma->vm_end;
2ec74c3e
SG
976 unsigned long mmun_start; /* For mmu_notifiers */
977 unsigned long mmun_end; /* For mmu_notifiers */
978 bool is_cow;
cddb8a5c 979 int ret;
1da177e4 980
d992895b
NP
981 /*
982 * Don't copy ptes where a page fault will fill them correctly.
983 * Fork becomes much lighter when there are big shared or private
984 * readonly mappings. The tradeoff is that copy_page_range is more
985 * efficient than faulting.
986 */
0661a336
KS
987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988 !vma->anon_vma)
989 return 0;
d992895b 990
1da177e4
LT
991 if (is_vm_hugetlb_page(vma))
992 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993
b3b9c293 994 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 995 /*
996 * We do not free on error cases below as remove_vma
997 * gets called on error from higher level routine
998 */
5180da41 999 ret = track_pfn_copy(vma);
2ab64037 1000 if (ret)
1001 return ret;
1002 }
1003
cddb8a5c
AA
1004 /*
1005 * We need to invalidate the secondary MMU mappings only when
1006 * there could be a permission downgrade on the ptes of the
1007 * parent mm. And a permission downgrade will only happen if
1008 * is_cow_mapping() returns true.
1009 */
2ec74c3e
SG
1010 is_cow = is_cow_mapping(vma->vm_flags);
1011 mmun_start = addr;
1012 mmun_end = end;
1013 if (is_cow)
1014 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1015 mmun_end);
cddb8a5c
AA
1016
1017 ret = 0;
1da177e4
LT
1018 dst_pgd = pgd_offset(dst_mm, addr);
1019 src_pgd = pgd_offset(src_mm, addr);
1020 do {
1021 next = pgd_addr_end(addr, end);
1022 if (pgd_none_or_clear_bad(src_pgd))
1023 continue;
c2febafc 1024 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1025 vma, addr, next))) {
1026 ret = -ENOMEM;
1027 break;
1028 }
1da177e4 1029 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1030
2ec74c3e
SG
1031 if (is_cow)
1032 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1033 return ret;
1da177e4
LT
1034}
1035
51c6f666 1036static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1037 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1038 unsigned long addr, unsigned long end,
97a89413 1039 struct zap_details *details)
1da177e4 1040{
b5810039 1041 struct mm_struct *mm = tlb->mm;
d16dfc55 1042 int force_flush = 0;
d559db08 1043 int rss[NR_MM_COUNTERS];
97a89413 1044 spinlock_t *ptl;
5f1a1907 1045 pte_t *start_pte;
97a89413 1046 pte_t *pte;
8a5f14a2 1047 swp_entry_t entry;
d559db08 1048
07e32661 1049 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1050again:
e303297e 1051 init_rss_vec(rss);
5f1a1907
SR
1052 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1053 pte = start_pte;
3ea27719 1054 flush_tlb_batched_pending(mm);
6606c3e0 1055 arch_enter_lazy_mmu_mode();
1da177e4
LT
1056 do {
1057 pte_t ptent = *pte;
166f61b9 1058 if (pte_none(ptent))
1da177e4 1059 continue;
6f5e6b9e 1060
1da177e4 1061 if (pte_present(ptent)) {
ee498ed7 1062 struct page *page;
51c6f666 1063
df6ad698 1064 page = _vm_normal_page(vma, addr, ptent, true);
1da177e4
LT
1065 if (unlikely(details) && page) {
1066 /*
1067 * unmap_shared_mapping_pages() wants to
1068 * invalidate cache without truncating:
1069 * unmap shared but keep private pages.
1070 */
1071 if (details->check_mapping &&
800d8c63 1072 details->check_mapping != page_rmapping(page))
1da177e4 1073 continue;
1da177e4 1074 }
b5810039 1075 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1076 tlb->fullmm);
1da177e4
LT
1077 tlb_remove_tlb_entry(tlb, pte, addr);
1078 if (unlikely(!page))
1079 continue;
eca56ff9
JM
1080
1081 if (!PageAnon(page)) {
1cf35d47
LT
1082 if (pte_dirty(ptent)) {
1083 force_flush = 1;
6237bcd9 1084 set_page_dirty(page);
1cf35d47 1085 }
4917e5d0 1086 if (pte_young(ptent) &&
64363aad 1087 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1088 mark_page_accessed(page);
6237bcd9 1089 }
eca56ff9 1090 rss[mm_counter(page)]--;
d281ee61 1091 page_remove_rmap(page, false);
3dc14741
HD
1092 if (unlikely(page_mapcount(page) < 0))
1093 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1094 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1095 force_flush = 1;
ce9ec37b 1096 addr += PAGE_SIZE;
d16dfc55 1097 break;
1cf35d47 1098 }
1da177e4
LT
1099 continue;
1100 }
5042db43
JG
1101
1102 entry = pte_to_swp_entry(ptent);
1103 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1104 struct page *page = device_private_entry_to_page(entry);
1105
1106 if (unlikely(details && details->check_mapping)) {
1107 /*
1108 * unmap_shared_mapping_pages() wants to
1109 * invalidate cache without truncating:
1110 * unmap shared but keep private pages.
1111 */
1112 if (details->check_mapping !=
1113 page_rmapping(page))
1114 continue;
1115 }
1116
1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118 rss[mm_counter(page)]--;
1119 page_remove_rmap(page, false);
1120 put_page(page);
1121 continue;
1122 }
1123
3e8715fd
KS
1124 /* If details->check_mapping, we leave swap entries. */
1125 if (unlikely(details))
1da177e4 1126 continue;
b084d435 1127
8a5f14a2
KS
1128 entry = pte_to_swp_entry(ptent);
1129 if (!non_swap_entry(entry))
1130 rss[MM_SWAPENTS]--;
1131 else if (is_migration_entry(entry)) {
1132 struct page *page;
9f9f1acd 1133
8a5f14a2 1134 page = migration_entry_to_page(entry);
eca56ff9 1135 rss[mm_counter(page)]--;
b084d435 1136 }
8a5f14a2
KS
1137 if (unlikely(!free_swap_and_cache(entry)))
1138 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1140 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1141
d559db08 1142 add_mm_rss_vec(mm, rss);
6606c3e0 1143 arch_leave_lazy_mmu_mode();
51c6f666 1144
1cf35d47 1145 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1146 if (force_flush)
1cf35d47 1147 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1148 pte_unmap_unlock(start_pte, ptl);
1149
1150 /*
1151 * If we forced a TLB flush (either due to running out of
1152 * batch buffers or because we needed to flush dirty TLB
1153 * entries before releasing the ptl), free the batched
1154 * memory too. Restart if we didn't do everything.
1155 */
1156 if (force_flush) {
1157 force_flush = 0;
1158 tlb_flush_mmu_free(tlb);
2b047252 1159 if (addr != end)
d16dfc55
PZ
1160 goto again;
1161 }
1162
51c6f666 1163 return addr;
1da177e4
LT
1164}
1165
51c6f666 1166static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1167 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1168 unsigned long addr, unsigned long end,
97a89413 1169 struct zap_details *details)
1da177e4
LT
1170{
1171 pmd_t *pmd;
1172 unsigned long next;
1173
1174 pmd = pmd_offset(pud, addr);
1175 do {
1176 next = pmd_addr_end(addr, end);
84c3fc4e 1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1178 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1179 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1180 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1181 goto next;
71e3aac0
AA
1182 /* fall through */
1183 }
1a5a9906
AA
1184 /*
1185 * Here there can be other concurrent MADV_DONTNEED or
1186 * trans huge page faults running, and if the pmd is
1187 * none or trans huge it can change under us. This is
1188 * because MADV_DONTNEED holds the mmap_sem in read
1189 * mode.
1190 */
1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 goto next;
97a89413 1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1194next:
97a89413
PZ
1195 cond_resched();
1196 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1197
1198 return addr;
1da177e4
LT
1199}
1200
51c6f666 1201static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1202 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1203 unsigned long addr, unsigned long end,
97a89413 1204 struct zap_details *details)
1da177e4
LT
1205{
1206 pud_t *pud;
1207 unsigned long next;
1208
c2febafc 1209 pud = pud_offset(p4d, addr);
1da177e4
LT
1210 do {
1211 next = pud_addr_end(addr, end);
a00cc7d9
MW
1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 if (next - addr != HPAGE_PUD_SIZE) {
1214 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1215 split_huge_pud(vma, pud, addr);
1216 } else if (zap_huge_pud(tlb, vma, pud, addr))
1217 goto next;
1218 /* fall through */
1219 }
97a89413 1220 if (pud_none_or_clear_bad(pud))
1da177e4 1221 continue;
97a89413 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1223next:
1224 cond_resched();
97a89413 1225 } while (pud++, addr = next, addr != end);
51c6f666
RH
1226
1227 return addr;
1da177e4
LT
1228}
1229
c2febafc
KS
1230static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 struct vm_area_struct *vma, pgd_t *pgd,
1232 unsigned long addr, unsigned long end,
1233 struct zap_details *details)
1234{
1235 p4d_t *p4d;
1236 unsigned long next;
1237
1238 p4d = p4d_offset(pgd, addr);
1239 do {
1240 next = p4d_addr_end(addr, end);
1241 if (p4d_none_or_clear_bad(p4d))
1242 continue;
1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 } while (p4d++, addr = next, addr != end);
1245
1246 return addr;
1247}
1248
aac45363 1249void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1250 struct vm_area_struct *vma,
1251 unsigned long addr, unsigned long end,
1252 struct zap_details *details)
1da177e4
LT
1253{
1254 pgd_t *pgd;
1255 unsigned long next;
1256
1da177e4
LT
1257 BUG_ON(addr >= end);
1258 tlb_start_vma(tlb, vma);
1259 pgd = pgd_offset(vma->vm_mm, addr);
1260 do {
1261 next = pgd_addr_end(addr, end);
97a89413 1262 if (pgd_none_or_clear_bad(pgd))
1da177e4 1263 continue;
c2febafc 1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1265 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1266 tlb_end_vma(tlb, vma);
1267}
51c6f666 1268
f5cc4eef
AV
1269
1270static void unmap_single_vma(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1272 unsigned long end_addr,
f5cc4eef
AV
1273 struct zap_details *details)
1274{
1275 unsigned long start = max(vma->vm_start, start_addr);
1276 unsigned long end;
1277
1278 if (start >= vma->vm_end)
1279 return;
1280 end = min(vma->vm_end, end_addr);
1281 if (end <= vma->vm_start)
1282 return;
1283
cbc91f71
SD
1284 if (vma->vm_file)
1285 uprobe_munmap(vma, start, end);
1286
b3b9c293 1287 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1288 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1289
1290 if (start != end) {
1291 if (unlikely(is_vm_hugetlb_page(vma))) {
1292 /*
1293 * It is undesirable to test vma->vm_file as it
1294 * should be non-null for valid hugetlb area.
1295 * However, vm_file will be NULL in the error
7aa6b4ad 1296 * cleanup path of mmap_region. When
f5cc4eef 1297 * hugetlbfs ->mmap method fails,
7aa6b4ad 1298 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1299 * before calling this function to clean up.
1300 * Since no pte has actually been setup, it is
1301 * safe to do nothing in this case.
1302 */
24669e58 1303 if (vma->vm_file) {
83cde9e8 1304 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1306 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1307 }
f5cc4eef
AV
1308 } else
1309 unmap_page_range(tlb, vma, start, end, details);
1310 }
1da177e4
LT
1311}
1312
1da177e4
LT
1313/**
1314 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1315 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1316 * @vma: the starting vma
1317 * @start_addr: virtual address at which to start unmapping
1318 * @end_addr: virtual address at which to end unmapping
1da177e4 1319 *
508034a3 1320 * Unmap all pages in the vma list.
1da177e4 1321 *
1da177e4
LT
1322 * Only addresses between `start' and `end' will be unmapped.
1323 *
1324 * The VMA list must be sorted in ascending virtual address order.
1325 *
1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327 * range after unmap_vmas() returns. So the only responsibility here is to
1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329 * drops the lock and schedules.
1330 */
6e8bb019 1331void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1332 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1333 unsigned long end_addr)
1da177e4 1334{
cddb8a5c 1335 struct mm_struct *mm = vma->vm_mm;
1da177e4 1336
cddb8a5c 1337 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1338 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1339 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1340 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1341}
1342
1343/**
1344 * zap_page_range - remove user pages in a given range
1345 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1346 * @start: starting address of pages to zap
1da177e4 1347 * @size: number of bytes to zap
f5cc4eef
AV
1348 *
1349 * Caller must protect the VMA list
1da177e4 1350 */
7e027b14 1351void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1352 unsigned long size)
1da177e4
LT
1353{
1354 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1355 struct mmu_gather tlb;
7e027b14 1356 unsigned long end = start + size;
1da177e4 1357
1da177e4 1358 lru_add_drain();
2b047252 1359 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1360 update_hiwater_rss(mm);
7e027b14 1361 mmu_notifier_invalidate_range_start(mm, start, end);
50c150f2 1362 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
ecf1385d 1363 unmap_single_vma(&tlb, vma, start, end, NULL);
7e027b14
LT
1364 mmu_notifier_invalidate_range_end(mm, start, end);
1365 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1366}
1367
f5cc4eef
AV
1368/**
1369 * zap_page_range_single - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @address: starting address of pages to zap
1372 * @size: number of bytes to zap
8a5f14a2 1373 * @details: details of shared cache invalidation
f5cc4eef
AV
1374 *
1375 * The range must fit into one VMA.
1da177e4 1376 */
f5cc4eef 1377static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1378 unsigned long size, struct zap_details *details)
1379{
1380 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1381 struct mmu_gather tlb;
1da177e4 1382 unsigned long end = address + size;
1da177e4 1383
1da177e4 1384 lru_add_drain();
2b047252 1385 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1386 update_hiwater_rss(mm);
f5cc4eef 1387 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1388 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1389 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1390 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1391}
1392
c627f9cc
JS
1393/**
1394 * zap_vma_ptes - remove ptes mapping the vma
1395 * @vma: vm_area_struct holding ptes to be zapped
1396 * @address: starting address of pages to zap
1397 * @size: number of bytes to zap
1398 *
1399 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1400 *
1401 * The entire address range must be fully contained within the vma.
1402 *
c627f9cc 1403 */
27d036e3 1404void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1405 unsigned long size)
1406{
1407 if (address < vma->vm_start || address + size > vma->vm_end ||
1408 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1409 return;
1410
f5cc4eef 1411 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1412}
1413EXPORT_SYMBOL_GPL(zap_vma_ptes);
1414
25ca1d6c 1415pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1416 spinlock_t **ptl)
c9cfcddf 1417{
c2febafc
KS
1418 pgd_t *pgd;
1419 p4d_t *p4d;
1420 pud_t *pud;
1421 pmd_t *pmd;
1422
1423 pgd = pgd_offset(mm, addr);
1424 p4d = p4d_alloc(mm, pgd, addr);
1425 if (!p4d)
1426 return NULL;
1427 pud = pud_alloc(mm, p4d, addr);
1428 if (!pud)
1429 return NULL;
1430 pmd = pmd_alloc(mm, pud, addr);
1431 if (!pmd)
1432 return NULL;
1433
1434 VM_BUG_ON(pmd_trans_huge(*pmd));
1435 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1436}
1437
238f58d8
LT
1438/*
1439 * This is the old fallback for page remapping.
1440 *
1441 * For historical reasons, it only allows reserved pages. Only
1442 * old drivers should use this, and they needed to mark their
1443 * pages reserved for the old functions anyway.
1444 */
423bad60
NP
1445static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1446 struct page *page, pgprot_t prot)
238f58d8 1447{
423bad60 1448 struct mm_struct *mm = vma->vm_mm;
238f58d8 1449 int retval;
c9cfcddf 1450 pte_t *pte;
8a9f3ccd
BS
1451 spinlock_t *ptl;
1452
238f58d8 1453 retval = -EINVAL;
a145dd41 1454 if (PageAnon(page))
5b4e655e 1455 goto out;
238f58d8
LT
1456 retval = -ENOMEM;
1457 flush_dcache_page(page);
c9cfcddf 1458 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1459 if (!pte)
5b4e655e 1460 goto out;
238f58d8
LT
1461 retval = -EBUSY;
1462 if (!pte_none(*pte))
1463 goto out_unlock;
1464
1465 /* Ok, finally just insert the thing.. */
1466 get_page(page);
eca56ff9 1467 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1468 page_add_file_rmap(page, false);
238f58d8
LT
1469 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1470
1471 retval = 0;
8a9f3ccd
BS
1472 pte_unmap_unlock(pte, ptl);
1473 return retval;
238f58d8
LT
1474out_unlock:
1475 pte_unmap_unlock(pte, ptl);
1476out:
1477 return retval;
1478}
1479
bfa5bf6d
REB
1480/**
1481 * vm_insert_page - insert single page into user vma
1482 * @vma: user vma to map to
1483 * @addr: target user address of this page
1484 * @page: source kernel page
1485 *
a145dd41
LT
1486 * This allows drivers to insert individual pages they've allocated
1487 * into a user vma.
1488 *
1489 * The page has to be a nice clean _individual_ kernel allocation.
1490 * If you allocate a compound page, you need to have marked it as
1491 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1492 * (see split_page()).
a145dd41
LT
1493 *
1494 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1495 * took an arbitrary page protection parameter. This doesn't allow
1496 * that. Your vma protection will have to be set up correctly, which
1497 * means that if you want a shared writable mapping, you'd better
1498 * ask for a shared writable mapping!
1499 *
1500 * The page does not need to be reserved.
4b6e1e37
KK
1501 *
1502 * Usually this function is called from f_op->mmap() handler
1503 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1504 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1505 * function from other places, for example from page-fault handler.
a145dd41 1506 */
423bad60
NP
1507int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1508 struct page *page)
a145dd41
LT
1509{
1510 if (addr < vma->vm_start || addr >= vma->vm_end)
1511 return -EFAULT;
1512 if (!page_count(page))
1513 return -EINVAL;
4b6e1e37
KK
1514 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1515 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1516 BUG_ON(vma->vm_flags & VM_PFNMAP);
1517 vma->vm_flags |= VM_MIXEDMAP;
1518 }
423bad60 1519 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1520}
e3c3374f 1521EXPORT_SYMBOL(vm_insert_page);
a145dd41 1522
423bad60 1523static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1524 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1525{
1526 struct mm_struct *mm = vma->vm_mm;
1527 int retval;
1528 pte_t *pte, entry;
1529 spinlock_t *ptl;
1530
1531 retval = -ENOMEM;
1532 pte = get_locked_pte(mm, addr, &ptl);
1533 if (!pte)
1534 goto out;
1535 retval = -EBUSY;
b2770da6
RZ
1536 if (!pte_none(*pte)) {
1537 if (mkwrite) {
1538 /*
1539 * For read faults on private mappings the PFN passed
1540 * in may not match the PFN we have mapped if the
1541 * mapped PFN is a writeable COW page. In the mkwrite
1542 * case we are creating a writable PTE for a shared
1543 * mapping and we expect the PFNs to match.
1544 */
1545 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1546 goto out_unlock;
1547 entry = *pte;
1548 goto out_mkwrite;
1549 } else
1550 goto out_unlock;
1551 }
423bad60
NP
1552
1553 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1554 if (pfn_t_devmap(pfn))
1555 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1556 else
1557 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6
RZ
1558
1559out_mkwrite:
1560 if (mkwrite) {
1561 entry = pte_mkyoung(entry);
1562 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1563 }
1564
423bad60 1565 set_pte_at(mm, addr, pte, entry);
4b3073e1 1566 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1567
1568 retval = 0;
1569out_unlock:
1570 pte_unmap_unlock(pte, ptl);
1571out:
1572 return retval;
1573}
1574
bc12e6ad 1575static int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1745cbc5 1576 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1577{
2ab64037 1578 int ret;
7e675137
NP
1579 /*
1580 * Technically, architectures with pte_special can avoid all these
1581 * restrictions (same for remap_pfn_range). However we would like
1582 * consistency in testing and feature parity among all, so we should
1583 * try to keep these invariants in place for everybody.
1584 */
b379d790
JH
1585 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1586 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1587 (VM_PFNMAP|VM_MIXEDMAP));
1588 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1589 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1590
423bad60
NP
1591 if (addr < vma->vm_start || addr >= vma->vm_end)
1592 return -EFAULT;
308a047c 1593
42e4089c
AK
1594 if (!pfn_modify_allowed(pfn, pgprot))
1595 return -EACCES;
1596
308a047c 1597 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1598
b2770da6
RZ
1599 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1600 false);
2ab64037 1601
2ab64037 1602 return ret;
423bad60 1603}
f5e6d1d5
MW
1604
1605/**
1606 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1607 * @vma: user vma to map to
1608 * @addr: target user address of this page
1609 * @pfn: source kernel pfn
1610 * @pgprot: pgprot flags for the inserted page
1611 *
1612 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1613 * to override pgprot on a per-page basis.
1614 *
1615 * This only makes sense for IO mappings, and it makes no sense for
1616 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1617 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1618 * impractical.
1619 *
ae2b01f3 1620 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1621 * Return: vm_fault_t value.
1622 */
1623vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1624 unsigned long pfn, pgprot_t pgprot)
1625{
1626 int err = vm_insert_pfn_prot(vma, addr, pfn, pgprot);
1627
1628 if (err == -ENOMEM)
1629 return VM_FAULT_OOM;
1630 if (err < 0 && err != -EBUSY)
1631 return VM_FAULT_SIGBUS;
1632
1633 return VM_FAULT_NOPAGE;
1634}
1635EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1636
ae2b01f3
MW
1637/**
1638 * vmf_insert_pfn - insert single pfn into user vma
1639 * @vma: user vma to map to
1640 * @addr: target user address of this page
1641 * @pfn: source kernel pfn
1642 *
1643 * Similar to vm_insert_page, this allows drivers to insert individual pages
1644 * they've allocated into a user vma. Same comments apply.
1645 *
1646 * This function should only be called from a vm_ops->fault handler, and
1647 * in that case the handler should return the result of this function.
1648 *
1649 * vma cannot be a COW mapping.
1650 *
1651 * As this is called only for pages that do not currently exist, we
1652 * do not need to flush old virtual caches or the TLB.
1653 *
1654 * Context: Process context. May allocate using %GFP_KERNEL.
1655 * Return: vm_fault_t value.
1656 */
1657vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1658 unsigned long pfn)
1659{
1660 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1661}
1662EXPORT_SYMBOL(vmf_insert_pfn);
1663
785a3fab
DW
1664static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1665{
1666 /* these checks mirror the abort conditions in vm_normal_page */
1667 if (vma->vm_flags & VM_MIXEDMAP)
1668 return true;
1669 if (pfn_t_devmap(pfn))
1670 return true;
1671 if (pfn_t_special(pfn))
1672 return true;
1673 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1674 return true;
1675 return false;
1676}
1677
b2770da6
RZ
1678static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1679 pfn_t pfn, bool mkwrite)
423bad60 1680{
87744ab3
DW
1681 pgprot_t pgprot = vma->vm_page_prot;
1682
785a3fab 1683 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1684
423bad60
NP
1685 if (addr < vma->vm_start || addr >= vma->vm_end)
1686 return -EFAULT;
308a047c
BP
1687
1688 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1689
42e4089c
AK
1690 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1691 return -EACCES;
1692
423bad60
NP
1693 /*
1694 * If we don't have pte special, then we have to use the pfn_valid()
1695 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1696 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1697 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1698 * without pte special, it would there be refcounted as a normal page.
423bad60 1699 */
00b3a331
LD
1700 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1701 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1702 struct page *page;
1703
03fc2da6
DW
1704 /*
1705 * At this point we are committed to insert_page()
1706 * regardless of whether the caller specified flags that
1707 * result in pfn_t_has_page() == false.
1708 */
1709 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1710 return insert_page(vma, addr, page, pgprot);
423bad60 1711 }
b2770da6
RZ
1712 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1713}
1714
5d747637
MW
1715vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1716 pfn_t pfn)
b2770da6 1717{
5d747637 1718 int err = __vm_insert_mixed(vma, addr, pfn, false);
b2770da6 1719
5d747637
MW
1720 if (err == -ENOMEM)
1721 return VM_FAULT_OOM;
1722 if (err < 0 && err != -EBUSY)
1723 return VM_FAULT_SIGBUS;
1724
1725 return VM_FAULT_NOPAGE;
e0dc0d8f 1726}
5d747637 1727EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1728
ab77dab4
SJ
1729/*
1730 * If the insertion of PTE failed because someone else already added a
1731 * different entry in the mean time, we treat that as success as we assume
1732 * the same entry was actually inserted.
1733 */
1734
1735vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1736 unsigned long addr, pfn_t pfn)
b2770da6 1737{
ab77dab4
SJ
1738 int err;
1739
1740 err = __vm_insert_mixed(vma, addr, pfn, true);
1741 if (err == -ENOMEM)
1742 return VM_FAULT_OOM;
1743 if (err < 0 && err != -EBUSY)
1744 return VM_FAULT_SIGBUS;
1745 return VM_FAULT_NOPAGE;
b2770da6 1746}
ab77dab4 1747EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1748
1da177e4
LT
1749/*
1750 * maps a range of physical memory into the requested pages. the old
1751 * mappings are removed. any references to nonexistent pages results
1752 * in null mappings (currently treated as "copy-on-access")
1753 */
1754static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1755 unsigned long addr, unsigned long end,
1756 unsigned long pfn, pgprot_t prot)
1757{
1758 pte_t *pte;
c74df32c 1759 spinlock_t *ptl;
42e4089c 1760 int err = 0;
1da177e4 1761
c74df32c 1762 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1763 if (!pte)
1764 return -ENOMEM;
6606c3e0 1765 arch_enter_lazy_mmu_mode();
1da177e4
LT
1766 do {
1767 BUG_ON(!pte_none(*pte));
42e4089c
AK
1768 if (!pfn_modify_allowed(pfn, prot)) {
1769 err = -EACCES;
1770 break;
1771 }
7e675137 1772 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1773 pfn++;
1774 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1775 arch_leave_lazy_mmu_mode();
c74df32c 1776 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1777 return err;
1da177e4
LT
1778}
1779
1780static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1781 unsigned long addr, unsigned long end,
1782 unsigned long pfn, pgprot_t prot)
1783{
1784 pmd_t *pmd;
1785 unsigned long next;
42e4089c 1786 int err;
1da177e4
LT
1787
1788 pfn -= addr >> PAGE_SHIFT;
1789 pmd = pmd_alloc(mm, pud, addr);
1790 if (!pmd)
1791 return -ENOMEM;
f66055ab 1792 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1793 do {
1794 next = pmd_addr_end(addr, end);
42e4089c
AK
1795 err = remap_pte_range(mm, pmd, addr, next,
1796 pfn + (addr >> PAGE_SHIFT), prot);
1797 if (err)
1798 return err;
1da177e4
LT
1799 } while (pmd++, addr = next, addr != end);
1800 return 0;
1801}
1802
c2febafc 1803static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1804 unsigned long addr, unsigned long end,
1805 unsigned long pfn, pgprot_t prot)
1806{
1807 pud_t *pud;
1808 unsigned long next;
42e4089c 1809 int err;
1da177e4
LT
1810
1811 pfn -= addr >> PAGE_SHIFT;
c2febafc 1812 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1813 if (!pud)
1814 return -ENOMEM;
1815 do {
1816 next = pud_addr_end(addr, end);
42e4089c
AK
1817 err = remap_pmd_range(mm, pud, addr, next,
1818 pfn + (addr >> PAGE_SHIFT), prot);
1819 if (err)
1820 return err;
1da177e4
LT
1821 } while (pud++, addr = next, addr != end);
1822 return 0;
1823}
1824
c2febafc
KS
1825static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1826 unsigned long addr, unsigned long end,
1827 unsigned long pfn, pgprot_t prot)
1828{
1829 p4d_t *p4d;
1830 unsigned long next;
42e4089c 1831 int err;
c2febafc
KS
1832
1833 pfn -= addr >> PAGE_SHIFT;
1834 p4d = p4d_alloc(mm, pgd, addr);
1835 if (!p4d)
1836 return -ENOMEM;
1837 do {
1838 next = p4d_addr_end(addr, end);
42e4089c
AK
1839 err = remap_pud_range(mm, p4d, addr, next,
1840 pfn + (addr >> PAGE_SHIFT), prot);
1841 if (err)
1842 return err;
c2febafc
KS
1843 } while (p4d++, addr = next, addr != end);
1844 return 0;
1845}
1846
bfa5bf6d
REB
1847/**
1848 * remap_pfn_range - remap kernel memory to userspace
1849 * @vma: user vma to map to
1850 * @addr: target user address to start at
1851 * @pfn: physical address of kernel memory
1852 * @size: size of map area
1853 * @prot: page protection flags for this mapping
1854 *
1855 * Note: this is only safe if the mm semaphore is held when called.
1856 */
1da177e4
LT
1857int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1858 unsigned long pfn, unsigned long size, pgprot_t prot)
1859{
1860 pgd_t *pgd;
1861 unsigned long next;
2d15cab8 1862 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1863 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1864 unsigned long remap_pfn = pfn;
1da177e4
LT
1865 int err;
1866
1867 /*
1868 * Physically remapped pages are special. Tell the
1869 * rest of the world about it:
1870 * VM_IO tells people not to look at these pages
1871 * (accesses can have side effects).
6aab341e
LT
1872 * VM_PFNMAP tells the core MM that the base pages are just
1873 * raw PFN mappings, and do not have a "struct page" associated
1874 * with them.
314e51b9
KK
1875 * VM_DONTEXPAND
1876 * Disable vma merging and expanding with mremap().
1877 * VM_DONTDUMP
1878 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1879 *
1880 * There's a horrible special case to handle copy-on-write
1881 * behaviour that some programs depend on. We mark the "original"
1882 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1883 * See vm_normal_page() for details.
1da177e4 1884 */
b3b9c293
KK
1885 if (is_cow_mapping(vma->vm_flags)) {
1886 if (addr != vma->vm_start || end != vma->vm_end)
1887 return -EINVAL;
fb155c16 1888 vma->vm_pgoff = pfn;
b3b9c293
KK
1889 }
1890
d5957d2f 1891 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1892 if (err)
3c8bb73a 1893 return -EINVAL;
fb155c16 1894
314e51b9 1895 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1896
1897 BUG_ON(addr >= end);
1898 pfn -= addr >> PAGE_SHIFT;
1899 pgd = pgd_offset(mm, addr);
1900 flush_cache_range(vma, addr, end);
1da177e4
LT
1901 do {
1902 next = pgd_addr_end(addr, end);
c2febafc 1903 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1904 pfn + (addr >> PAGE_SHIFT), prot);
1905 if (err)
1906 break;
1907 } while (pgd++, addr = next, addr != end);
2ab64037 1908
1909 if (err)
d5957d2f 1910 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1911
1da177e4
LT
1912 return err;
1913}
1914EXPORT_SYMBOL(remap_pfn_range);
1915
b4cbb197
LT
1916/**
1917 * vm_iomap_memory - remap memory to userspace
1918 * @vma: user vma to map to
1919 * @start: start of area
1920 * @len: size of area
1921 *
1922 * This is a simplified io_remap_pfn_range() for common driver use. The
1923 * driver just needs to give us the physical memory range to be mapped,
1924 * we'll figure out the rest from the vma information.
1925 *
1926 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1927 * whatever write-combining details or similar.
1928 */
1929int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1930{
1931 unsigned long vm_len, pfn, pages;
1932
1933 /* Check that the physical memory area passed in looks valid */
1934 if (start + len < start)
1935 return -EINVAL;
1936 /*
1937 * You *really* shouldn't map things that aren't page-aligned,
1938 * but we've historically allowed it because IO memory might
1939 * just have smaller alignment.
1940 */
1941 len += start & ~PAGE_MASK;
1942 pfn = start >> PAGE_SHIFT;
1943 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1944 if (pfn + pages < pfn)
1945 return -EINVAL;
1946
1947 /* We start the mapping 'vm_pgoff' pages into the area */
1948 if (vma->vm_pgoff > pages)
1949 return -EINVAL;
1950 pfn += vma->vm_pgoff;
1951 pages -= vma->vm_pgoff;
1952
1953 /* Can we fit all of the mapping? */
1954 vm_len = vma->vm_end - vma->vm_start;
1955 if (vm_len >> PAGE_SHIFT > pages)
1956 return -EINVAL;
1957
1958 /* Ok, let it rip */
1959 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1960}
1961EXPORT_SYMBOL(vm_iomap_memory);
1962
aee16b3c
JF
1963static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1964 unsigned long addr, unsigned long end,
1965 pte_fn_t fn, void *data)
1966{
1967 pte_t *pte;
1968 int err;
2f569afd 1969 pgtable_t token;
94909914 1970 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1971
1972 pte = (mm == &init_mm) ?
1973 pte_alloc_kernel(pmd, addr) :
1974 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1975 if (!pte)
1976 return -ENOMEM;
1977
1978 BUG_ON(pmd_huge(*pmd));
1979
38e0edb1
JF
1980 arch_enter_lazy_mmu_mode();
1981
2f569afd 1982 token = pmd_pgtable(*pmd);
aee16b3c
JF
1983
1984 do {
c36987e2 1985 err = fn(pte++, token, addr, data);
aee16b3c
JF
1986 if (err)
1987 break;
c36987e2 1988 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1989
38e0edb1
JF
1990 arch_leave_lazy_mmu_mode();
1991
aee16b3c
JF
1992 if (mm != &init_mm)
1993 pte_unmap_unlock(pte-1, ptl);
1994 return err;
1995}
1996
1997static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1998 unsigned long addr, unsigned long end,
1999 pte_fn_t fn, void *data)
2000{
2001 pmd_t *pmd;
2002 unsigned long next;
2003 int err;
2004
ceb86879
AK
2005 BUG_ON(pud_huge(*pud));
2006
aee16b3c
JF
2007 pmd = pmd_alloc(mm, pud, addr);
2008 if (!pmd)
2009 return -ENOMEM;
2010 do {
2011 next = pmd_addr_end(addr, end);
2012 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2013 if (err)
2014 break;
2015 } while (pmd++, addr = next, addr != end);
2016 return err;
2017}
2018
c2febafc 2019static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2020 unsigned long addr, unsigned long end,
2021 pte_fn_t fn, void *data)
2022{
2023 pud_t *pud;
2024 unsigned long next;
2025 int err;
2026
c2febafc 2027 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2028 if (!pud)
2029 return -ENOMEM;
2030 do {
2031 next = pud_addr_end(addr, end);
2032 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2033 if (err)
2034 break;
2035 } while (pud++, addr = next, addr != end);
2036 return err;
2037}
2038
c2febafc
KS
2039static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2040 unsigned long addr, unsigned long end,
2041 pte_fn_t fn, void *data)
2042{
2043 p4d_t *p4d;
2044 unsigned long next;
2045 int err;
2046
2047 p4d = p4d_alloc(mm, pgd, addr);
2048 if (!p4d)
2049 return -ENOMEM;
2050 do {
2051 next = p4d_addr_end(addr, end);
2052 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2053 if (err)
2054 break;
2055 } while (p4d++, addr = next, addr != end);
2056 return err;
2057}
2058
aee16b3c
JF
2059/*
2060 * Scan a region of virtual memory, filling in page tables as necessary
2061 * and calling a provided function on each leaf page table.
2062 */
2063int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2064 unsigned long size, pte_fn_t fn, void *data)
2065{
2066 pgd_t *pgd;
2067 unsigned long next;
57250a5b 2068 unsigned long end = addr + size;
aee16b3c
JF
2069 int err;
2070
9cb65bc3
MP
2071 if (WARN_ON(addr >= end))
2072 return -EINVAL;
2073
aee16b3c
JF
2074 pgd = pgd_offset(mm, addr);
2075 do {
2076 next = pgd_addr_end(addr, end);
c2febafc 2077 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2078 if (err)
2079 break;
2080 } while (pgd++, addr = next, addr != end);
57250a5b 2081
aee16b3c
JF
2082 return err;
2083}
2084EXPORT_SYMBOL_GPL(apply_to_page_range);
2085
8f4e2101 2086/*
9b4bdd2f
KS
2087 * handle_pte_fault chooses page fault handler according to an entry which was
2088 * read non-atomically. Before making any commitment, on those architectures
2089 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2090 * parts, do_swap_page must check under lock before unmapping the pte and
2091 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2092 * and do_anonymous_page can safely check later on).
8f4e2101 2093 */
4c21e2f2 2094static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2095 pte_t *page_table, pte_t orig_pte)
2096{
2097 int same = 1;
2098#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2099 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2100 spinlock_t *ptl = pte_lockptr(mm, pmd);
2101 spin_lock(ptl);
8f4e2101 2102 same = pte_same(*page_table, orig_pte);
4c21e2f2 2103 spin_unlock(ptl);
8f4e2101
HD
2104 }
2105#endif
2106 pte_unmap(page_table);
2107 return same;
2108}
2109
9de455b2 2110static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2111{
0abdd7a8
DW
2112 debug_dma_assert_idle(src);
2113
6aab341e
LT
2114 /*
2115 * If the source page was a PFN mapping, we don't have
2116 * a "struct page" for it. We do a best-effort copy by
2117 * just copying from the original user address. If that
2118 * fails, we just zero-fill it. Live with it.
2119 */
2120 if (unlikely(!src)) {
9b04c5fe 2121 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2122 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2123
2124 /*
2125 * This really shouldn't fail, because the page is there
2126 * in the page tables. But it might just be unreadable,
2127 * in which case we just give up and fill the result with
2128 * zeroes.
2129 */
2130 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2131 clear_page(kaddr);
9b04c5fe 2132 kunmap_atomic(kaddr);
c4ec7b0d 2133 flush_dcache_page(dst);
0ed361de
NP
2134 } else
2135 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2136}
2137
c20cd45e
MH
2138static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2139{
2140 struct file *vm_file = vma->vm_file;
2141
2142 if (vm_file)
2143 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2144
2145 /*
2146 * Special mappings (e.g. VDSO) do not have any file so fake
2147 * a default GFP_KERNEL for them.
2148 */
2149 return GFP_KERNEL;
2150}
2151
fb09a464
KS
2152/*
2153 * Notify the address space that the page is about to become writable so that
2154 * it can prohibit this or wait for the page to get into an appropriate state.
2155 *
2156 * We do this without the lock held, so that it can sleep if it needs to.
2157 */
2b740303 2158static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2159{
2b740303 2160 vm_fault_t ret;
38b8cb7f
JK
2161 struct page *page = vmf->page;
2162 unsigned int old_flags = vmf->flags;
fb09a464 2163
38b8cb7f 2164 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2165
11bac800 2166 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2167 /* Restore original flags so that caller is not surprised */
2168 vmf->flags = old_flags;
fb09a464
KS
2169 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2170 return ret;
2171 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2172 lock_page(page);
2173 if (!page->mapping) {
2174 unlock_page(page);
2175 return 0; /* retry */
2176 }
2177 ret |= VM_FAULT_LOCKED;
2178 } else
2179 VM_BUG_ON_PAGE(!PageLocked(page), page);
2180 return ret;
2181}
2182
97ba0c2b
JK
2183/*
2184 * Handle dirtying of a page in shared file mapping on a write fault.
2185 *
2186 * The function expects the page to be locked and unlocks it.
2187 */
2188static void fault_dirty_shared_page(struct vm_area_struct *vma,
2189 struct page *page)
2190{
2191 struct address_space *mapping;
2192 bool dirtied;
2193 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2194
2195 dirtied = set_page_dirty(page);
2196 VM_BUG_ON_PAGE(PageAnon(page), page);
2197 /*
2198 * Take a local copy of the address_space - page.mapping may be zeroed
2199 * by truncate after unlock_page(). The address_space itself remains
2200 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2201 * release semantics to prevent the compiler from undoing this copying.
2202 */
2203 mapping = page_rmapping(page);
2204 unlock_page(page);
2205
2206 if ((dirtied || page_mkwrite) && mapping) {
2207 /*
2208 * Some device drivers do not set page.mapping
2209 * but still dirty their pages
2210 */
2211 balance_dirty_pages_ratelimited(mapping);
2212 }
2213
2214 if (!page_mkwrite)
2215 file_update_time(vma->vm_file);
2216}
2217
4e047f89
SR
2218/*
2219 * Handle write page faults for pages that can be reused in the current vma
2220 *
2221 * This can happen either due to the mapping being with the VM_SHARED flag,
2222 * or due to us being the last reference standing to the page. In either
2223 * case, all we need to do here is to mark the page as writable and update
2224 * any related book-keeping.
2225 */
997dd98d 2226static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2227 __releases(vmf->ptl)
4e047f89 2228{
82b0f8c3 2229 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2230 struct page *page = vmf->page;
4e047f89
SR
2231 pte_t entry;
2232 /*
2233 * Clear the pages cpupid information as the existing
2234 * information potentially belongs to a now completely
2235 * unrelated process.
2236 */
2237 if (page)
2238 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2239
2994302b
JK
2240 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2241 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2242 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2243 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2244 update_mmu_cache(vma, vmf->address, vmf->pte);
2245 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2246}
2247
2f38ab2c
SR
2248/*
2249 * Handle the case of a page which we actually need to copy to a new page.
2250 *
2251 * Called with mmap_sem locked and the old page referenced, but
2252 * without the ptl held.
2253 *
2254 * High level logic flow:
2255 *
2256 * - Allocate a page, copy the content of the old page to the new one.
2257 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2258 * - Take the PTL. If the pte changed, bail out and release the allocated page
2259 * - If the pte is still the way we remember it, update the page table and all
2260 * relevant references. This includes dropping the reference the page-table
2261 * held to the old page, as well as updating the rmap.
2262 * - In any case, unlock the PTL and drop the reference we took to the old page.
2263 */
2b740303 2264static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2265{
82b0f8c3 2266 struct vm_area_struct *vma = vmf->vma;
bae473a4 2267 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2268 struct page *old_page = vmf->page;
2f38ab2c 2269 struct page *new_page = NULL;
2f38ab2c
SR
2270 pte_t entry;
2271 int page_copied = 0;
82b0f8c3 2272 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2273 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2274 struct mem_cgroup *memcg;
2275
2276 if (unlikely(anon_vma_prepare(vma)))
2277 goto oom;
2278
2994302b 2279 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2280 new_page = alloc_zeroed_user_highpage_movable(vma,
2281 vmf->address);
2f38ab2c
SR
2282 if (!new_page)
2283 goto oom;
2284 } else {
bae473a4 2285 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2286 vmf->address);
2f38ab2c
SR
2287 if (!new_page)
2288 goto oom;
82b0f8c3 2289 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2290 }
2f38ab2c 2291
2cf85583 2292 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2293 goto oom_free_new;
2294
eb3c24f3
MG
2295 __SetPageUptodate(new_page);
2296
2f38ab2c
SR
2297 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2298
2299 /*
2300 * Re-check the pte - we dropped the lock
2301 */
82b0f8c3 2302 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2303 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2304 if (old_page) {
2305 if (!PageAnon(old_page)) {
eca56ff9
JM
2306 dec_mm_counter_fast(mm,
2307 mm_counter_file(old_page));
2f38ab2c
SR
2308 inc_mm_counter_fast(mm, MM_ANONPAGES);
2309 }
2310 } else {
2311 inc_mm_counter_fast(mm, MM_ANONPAGES);
2312 }
2994302b 2313 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2314 entry = mk_pte(new_page, vma->vm_page_prot);
2315 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2316 /*
2317 * Clear the pte entry and flush it first, before updating the
2318 * pte with the new entry. This will avoid a race condition
2319 * seen in the presence of one thread doing SMC and another
2320 * thread doing COW.
2321 */
82b0f8c3
JK
2322 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2323 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2324 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2325 lru_cache_add_active_or_unevictable(new_page, vma);
2326 /*
2327 * We call the notify macro here because, when using secondary
2328 * mmu page tables (such as kvm shadow page tables), we want the
2329 * new page to be mapped directly into the secondary page table.
2330 */
82b0f8c3
JK
2331 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2332 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2333 if (old_page) {
2334 /*
2335 * Only after switching the pte to the new page may
2336 * we remove the mapcount here. Otherwise another
2337 * process may come and find the rmap count decremented
2338 * before the pte is switched to the new page, and
2339 * "reuse" the old page writing into it while our pte
2340 * here still points into it and can be read by other
2341 * threads.
2342 *
2343 * The critical issue is to order this
2344 * page_remove_rmap with the ptp_clear_flush above.
2345 * Those stores are ordered by (if nothing else,)
2346 * the barrier present in the atomic_add_negative
2347 * in page_remove_rmap.
2348 *
2349 * Then the TLB flush in ptep_clear_flush ensures that
2350 * no process can access the old page before the
2351 * decremented mapcount is visible. And the old page
2352 * cannot be reused until after the decremented
2353 * mapcount is visible. So transitively, TLBs to
2354 * old page will be flushed before it can be reused.
2355 */
d281ee61 2356 page_remove_rmap(old_page, false);
2f38ab2c
SR
2357 }
2358
2359 /* Free the old page.. */
2360 new_page = old_page;
2361 page_copied = 1;
2362 } else {
f627c2f5 2363 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2364 }
2365
2366 if (new_page)
09cbfeaf 2367 put_page(new_page);
2f38ab2c 2368
82b0f8c3 2369 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2370 /*
2371 * No need to double call mmu_notifier->invalidate_range() callback as
2372 * the above ptep_clear_flush_notify() did already call it.
2373 */
2374 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2f38ab2c
SR
2375 if (old_page) {
2376 /*
2377 * Don't let another task, with possibly unlocked vma,
2378 * keep the mlocked page.
2379 */
2380 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2381 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2382 if (PageMlocked(old_page))
2383 munlock_vma_page(old_page);
2f38ab2c
SR
2384 unlock_page(old_page);
2385 }
09cbfeaf 2386 put_page(old_page);
2f38ab2c
SR
2387 }
2388 return page_copied ? VM_FAULT_WRITE : 0;
2389oom_free_new:
09cbfeaf 2390 put_page(new_page);
2f38ab2c
SR
2391oom:
2392 if (old_page)
09cbfeaf 2393 put_page(old_page);
2f38ab2c
SR
2394 return VM_FAULT_OOM;
2395}
2396
66a6197c
JK
2397/**
2398 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2399 * writeable once the page is prepared
2400 *
2401 * @vmf: structure describing the fault
2402 *
2403 * This function handles all that is needed to finish a write page fault in a
2404 * shared mapping due to PTE being read-only once the mapped page is prepared.
2405 * It handles locking of PTE and modifying it. The function returns
2406 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2407 * lock.
2408 *
2409 * The function expects the page to be locked or other protection against
2410 * concurrent faults / writeback (such as DAX radix tree locks).
2411 */
2b740303 2412vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2413{
2414 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2415 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2416 &vmf->ptl);
2417 /*
2418 * We might have raced with another page fault while we released the
2419 * pte_offset_map_lock.
2420 */
2421 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2422 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2423 return VM_FAULT_NOPAGE;
66a6197c
JK
2424 }
2425 wp_page_reuse(vmf);
a19e2553 2426 return 0;
66a6197c
JK
2427}
2428
dd906184
BH
2429/*
2430 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2431 * mapping
2432 */
2b740303 2433static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2434{
82b0f8c3 2435 struct vm_area_struct *vma = vmf->vma;
bae473a4 2436
dd906184 2437 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2438 vm_fault_t ret;
dd906184 2439
82b0f8c3 2440 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2441 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2442 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2443 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2444 return ret;
66a6197c 2445 return finish_mkwrite_fault(vmf);
dd906184 2446 }
997dd98d
JK
2447 wp_page_reuse(vmf);
2448 return VM_FAULT_WRITE;
dd906184
BH
2449}
2450
2b740303 2451static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2452 __releases(vmf->ptl)
93e478d4 2453{
82b0f8c3 2454 struct vm_area_struct *vma = vmf->vma;
93e478d4 2455
a41b70d6 2456 get_page(vmf->page);
93e478d4 2457
93e478d4 2458 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2459 vm_fault_t tmp;
93e478d4 2460
82b0f8c3 2461 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2462 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2463 if (unlikely(!tmp || (tmp &
2464 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2465 put_page(vmf->page);
93e478d4
SR
2466 return tmp;
2467 }
66a6197c 2468 tmp = finish_mkwrite_fault(vmf);
a19e2553 2469 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2470 unlock_page(vmf->page);
a41b70d6 2471 put_page(vmf->page);
66a6197c 2472 return tmp;
93e478d4 2473 }
66a6197c
JK
2474 } else {
2475 wp_page_reuse(vmf);
997dd98d 2476 lock_page(vmf->page);
93e478d4 2477 }
997dd98d
JK
2478 fault_dirty_shared_page(vma, vmf->page);
2479 put_page(vmf->page);
93e478d4 2480
997dd98d 2481 return VM_FAULT_WRITE;
93e478d4
SR
2482}
2483
1da177e4
LT
2484/*
2485 * This routine handles present pages, when users try to write
2486 * to a shared page. It is done by copying the page to a new address
2487 * and decrementing the shared-page counter for the old page.
2488 *
1da177e4
LT
2489 * Note that this routine assumes that the protection checks have been
2490 * done by the caller (the low-level page fault routine in most cases).
2491 * Thus we can safely just mark it writable once we've done any necessary
2492 * COW.
2493 *
2494 * We also mark the page dirty at this point even though the page will
2495 * change only once the write actually happens. This avoids a few races,
2496 * and potentially makes it more efficient.
2497 *
8f4e2101
HD
2498 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2499 * but allow concurrent faults), with pte both mapped and locked.
2500 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2501 */
2b740303 2502static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2503 __releases(vmf->ptl)
1da177e4 2504{
82b0f8c3 2505 struct vm_area_struct *vma = vmf->vma;
1da177e4 2506
a41b70d6
JK
2507 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2508 if (!vmf->page) {
251b97f5 2509 /*
64e45507
PF
2510 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2511 * VM_PFNMAP VMA.
251b97f5
PZ
2512 *
2513 * We should not cow pages in a shared writeable mapping.
dd906184 2514 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2515 */
2516 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2517 (VM_WRITE|VM_SHARED))
2994302b 2518 return wp_pfn_shared(vmf);
2f38ab2c 2519
82b0f8c3 2520 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2521 return wp_page_copy(vmf);
251b97f5 2522 }
1da177e4 2523
d08b3851 2524 /*
ee6a6457
PZ
2525 * Take out anonymous pages first, anonymous shared vmas are
2526 * not dirty accountable.
d08b3851 2527 */
a41b70d6 2528 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
ba3c4ce6 2529 int total_map_swapcount;
a41b70d6
JK
2530 if (!trylock_page(vmf->page)) {
2531 get_page(vmf->page);
82b0f8c3 2532 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2533 lock_page(vmf->page);
82b0f8c3
JK
2534 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2535 vmf->address, &vmf->ptl);
2994302b 2536 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2537 unlock_page(vmf->page);
82b0f8c3 2538 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2539 put_page(vmf->page);
28766805 2540 return 0;
ab967d86 2541 }
a41b70d6 2542 put_page(vmf->page);
ee6a6457 2543 }
ba3c4ce6
HY
2544 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2545 if (total_map_swapcount == 1) {
6d0a07ed
AA
2546 /*
2547 * The page is all ours. Move it to
2548 * our anon_vma so the rmap code will
2549 * not search our parent or siblings.
2550 * Protected against the rmap code by
2551 * the page lock.
2552 */
a41b70d6 2553 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2554 }
a41b70d6 2555 unlock_page(vmf->page);
997dd98d
JK
2556 wp_page_reuse(vmf);
2557 return VM_FAULT_WRITE;
b009c024 2558 }
a41b70d6 2559 unlock_page(vmf->page);
ee6a6457 2560 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2561 (VM_WRITE|VM_SHARED))) {
a41b70d6 2562 return wp_page_shared(vmf);
1da177e4 2563 }
1da177e4
LT
2564
2565 /*
2566 * Ok, we need to copy. Oh, well..
2567 */
a41b70d6 2568 get_page(vmf->page);
28766805 2569
82b0f8c3 2570 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2571 return wp_page_copy(vmf);
1da177e4
LT
2572}
2573
97a89413 2574static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2575 unsigned long start_addr, unsigned long end_addr,
2576 struct zap_details *details)
2577{
f5cc4eef 2578 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2579}
2580
f808c13f 2581static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2582 struct zap_details *details)
2583{
2584 struct vm_area_struct *vma;
1da177e4
LT
2585 pgoff_t vba, vea, zba, zea;
2586
6b2dbba8 2587 vma_interval_tree_foreach(vma, root,
1da177e4 2588 details->first_index, details->last_index) {
1da177e4
LT
2589
2590 vba = vma->vm_pgoff;
d6e93217 2591 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2592 zba = details->first_index;
2593 if (zba < vba)
2594 zba = vba;
2595 zea = details->last_index;
2596 if (zea > vea)
2597 zea = vea;
2598
97a89413 2599 unmap_mapping_range_vma(vma,
1da177e4
LT
2600 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2601 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2602 details);
1da177e4
LT
2603 }
2604}
2605
977fbdcd
MW
2606/**
2607 * unmap_mapping_pages() - Unmap pages from processes.
2608 * @mapping: The address space containing pages to be unmapped.
2609 * @start: Index of first page to be unmapped.
2610 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2611 * @even_cows: Whether to unmap even private COWed pages.
2612 *
2613 * Unmap the pages in this address space from any userspace process which
2614 * has them mmaped. Generally, you want to remove COWed pages as well when
2615 * a file is being truncated, but not when invalidating pages from the page
2616 * cache.
2617 */
2618void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2619 pgoff_t nr, bool even_cows)
2620{
2621 struct zap_details details = { };
2622
2623 details.check_mapping = even_cows ? NULL : mapping;
2624 details.first_index = start;
2625 details.last_index = start + nr - 1;
2626 if (details.last_index < details.first_index)
2627 details.last_index = ULONG_MAX;
2628
2629 i_mmap_lock_write(mapping);
2630 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2631 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2632 i_mmap_unlock_write(mapping);
2633}
2634
1da177e4 2635/**
8a5f14a2 2636 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2637 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2638 * file.
2639 *
3d41088f 2640 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2641 * @holebegin: byte in first page to unmap, relative to the start of
2642 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2643 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2644 * must keep the partial page. In contrast, we must get rid of
2645 * partial pages.
2646 * @holelen: size of prospective hole in bytes. This will be rounded
2647 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2648 * end of the file.
2649 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2650 * but 0 when invalidating pagecache, don't throw away private data.
2651 */
2652void unmap_mapping_range(struct address_space *mapping,
2653 loff_t const holebegin, loff_t const holelen, int even_cows)
2654{
1da177e4
LT
2655 pgoff_t hba = holebegin >> PAGE_SHIFT;
2656 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2657
2658 /* Check for overflow. */
2659 if (sizeof(holelen) > sizeof(hlen)) {
2660 long long holeend =
2661 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2662 if (holeend & ~(long long)ULONG_MAX)
2663 hlen = ULONG_MAX - hba + 1;
2664 }
2665
977fbdcd 2666 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2667}
2668EXPORT_SYMBOL(unmap_mapping_range);
2669
1da177e4 2670/*
8f4e2101
HD
2671 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2672 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2673 * We return with pte unmapped and unlocked.
2674 *
2675 * We return with the mmap_sem locked or unlocked in the same cases
2676 * as does filemap_fault().
1da177e4 2677 */
2b740303 2678vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2679{
82b0f8c3 2680 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2681 struct page *page = NULL, *swapcache;
00501b53 2682 struct mem_cgroup *memcg;
65500d23 2683 swp_entry_t entry;
1da177e4 2684 pte_t pte;
d065bd81 2685 int locked;
ad8c2ee8 2686 int exclusive = 0;
2b740303 2687 vm_fault_t ret = 0;
1da177e4 2688
eaf649eb 2689 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2690 goto out;
65500d23 2691
2994302b 2692 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2693 if (unlikely(non_swap_entry(entry))) {
2694 if (is_migration_entry(entry)) {
82b0f8c3
JK
2695 migration_entry_wait(vma->vm_mm, vmf->pmd,
2696 vmf->address);
5042db43
JG
2697 } else if (is_device_private_entry(entry)) {
2698 /*
2699 * For un-addressable device memory we call the pgmap
2700 * fault handler callback. The callback must migrate
2701 * the page back to some CPU accessible page.
2702 */
2703 ret = device_private_entry_fault(vma, vmf->address, entry,
2704 vmf->flags, vmf->pmd);
d1737fdb
AK
2705 } else if (is_hwpoison_entry(entry)) {
2706 ret = VM_FAULT_HWPOISON;
2707 } else {
2994302b 2708 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2709 ret = VM_FAULT_SIGBUS;
d1737fdb 2710 }
0697212a
CL
2711 goto out;
2712 }
0bcac06f
MK
2713
2714
0ff92245 2715 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2716 page = lookup_swap_cache(entry, vma, vmf->address);
2717 swapcache = page;
f8020772 2718
1da177e4 2719 if (!page) {
0bcac06f
MK
2720 struct swap_info_struct *si = swp_swap_info(entry);
2721
aa8d22a1
MK
2722 if (si->flags & SWP_SYNCHRONOUS_IO &&
2723 __swap_count(si, entry) == 1) {
0bcac06f 2724 /* skip swapcache */
e9e9b7ec
MK
2725 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2726 vmf->address);
0bcac06f
MK
2727 if (page) {
2728 __SetPageLocked(page);
2729 __SetPageSwapBacked(page);
2730 set_page_private(page, entry.val);
2731 lru_cache_add_anon(page);
2732 swap_readpage(page, true);
2733 }
aa8d22a1 2734 } else {
e9e9b7ec
MK
2735 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2736 vmf);
aa8d22a1 2737 swapcache = page;
0bcac06f
MK
2738 }
2739
1da177e4
LT
2740 if (!page) {
2741 /*
8f4e2101
HD
2742 * Back out if somebody else faulted in this pte
2743 * while we released the pte lock.
1da177e4 2744 */
82b0f8c3
JK
2745 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2746 vmf->address, &vmf->ptl);
2994302b 2747 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2748 ret = VM_FAULT_OOM;
0ff92245 2749 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2750 goto unlock;
1da177e4
LT
2751 }
2752
2753 /* Had to read the page from swap area: Major fault */
2754 ret = VM_FAULT_MAJOR;
f8891e5e 2755 count_vm_event(PGMAJFAULT);
2262185c 2756 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2757 } else if (PageHWPoison(page)) {
71f72525
WF
2758 /*
2759 * hwpoisoned dirty swapcache pages are kept for killing
2760 * owner processes (which may be unknown at hwpoison time)
2761 */
d1737fdb
AK
2762 ret = VM_FAULT_HWPOISON;
2763 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2764 goto out_release;
1da177e4
LT
2765 }
2766
82b0f8c3 2767 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2768
073e587e 2769 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2770 if (!locked) {
2771 ret |= VM_FAULT_RETRY;
2772 goto out_release;
2773 }
073e587e 2774
4969c119 2775 /*
31c4a3d3
HD
2776 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2777 * release the swapcache from under us. The page pin, and pte_same
2778 * test below, are not enough to exclude that. Even if it is still
2779 * swapcache, we need to check that the page's swap has not changed.
4969c119 2780 */
0bcac06f
MK
2781 if (unlikely((!PageSwapCache(page) ||
2782 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2783 goto out_page;
2784
82b0f8c3 2785 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2786 if (unlikely(!page)) {
2787 ret = VM_FAULT_OOM;
2788 page = swapcache;
cbf86cfe 2789 goto out_page;
5ad64688
HD
2790 }
2791
2cf85583
TH
2792 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2793 &memcg, false)) {
8a9f3ccd 2794 ret = VM_FAULT_OOM;
bc43f75c 2795 goto out_page;
8a9f3ccd
BS
2796 }
2797
1da177e4 2798 /*
8f4e2101 2799 * Back out if somebody else already faulted in this pte.
1da177e4 2800 */
82b0f8c3
JK
2801 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2802 &vmf->ptl);
2994302b 2803 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2804 goto out_nomap;
b8107480
KK
2805
2806 if (unlikely(!PageUptodate(page))) {
2807 ret = VM_FAULT_SIGBUS;
2808 goto out_nomap;
1da177e4
LT
2809 }
2810
8c7c6e34
KH
2811 /*
2812 * The page isn't present yet, go ahead with the fault.
2813 *
2814 * Be careful about the sequence of operations here.
2815 * To get its accounting right, reuse_swap_page() must be called
2816 * while the page is counted on swap but not yet in mapcount i.e.
2817 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2818 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2819 */
1da177e4 2820
bae473a4
KS
2821 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2822 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2823 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2824 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2825 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2826 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2827 ret |= VM_FAULT_WRITE;
d281ee61 2828 exclusive = RMAP_EXCLUSIVE;
1da177e4 2829 }
1da177e4 2830 flush_icache_page(vma, page);
2994302b 2831 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2832 pte = pte_mksoft_dirty(pte);
82b0f8c3 2833 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 2834 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 2835 vmf->orig_pte = pte;
0bcac06f
MK
2836
2837 /* ksm created a completely new copy */
2838 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 2839 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2840 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2841 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
2842 } else {
2843 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2844 mem_cgroup_commit_charge(page, memcg, true, false);
2845 activate_page(page);
00501b53 2846 }
1da177e4 2847
c475a8ab 2848 swap_free(entry);
5ccc5aba
VD
2849 if (mem_cgroup_swap_full(page) ||
2850 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2851 try_to_free_swap(page);
c475a8ab 2852 unlock_page(page);
0bcac06f 2853 if (page != swapcache && swapcache) {
4969c119
AA
2854 /*
2855 * Hold the lock to avoid the swap entry to be reused
2856 * until we take the PT lock for the pte_same() check
2857 * (to avoid false positives from pte_same). For
2858 * further safety release the lock after the swap_free
2859 * so that the swap count won't change under a
2860 * parallel locked swapcache.
2861 */
2862 unlock_page(swapcache);
09cbfeaf 2863 put_page(swapcache);
4969c119 2864 }
c475a8ab 2865
82b0f8c3 2866 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2867 ret |= do_wp_page(vmf);
61469f1d
HD
2868 if (ret & VM_FAULT_ERROR)
2869 ret &= VM_FAULT_ERROR;
1da177e4
LT
2870 goto out;
2871 }
2872
2873 /* No need to invalidate - it was non-present before */
82b0f8c3 2874 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2875unlock:
82b0f8c3 2876 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2877out:
2878 return ret;
b8107480 2879out_nomap:
f627c2f5 2880 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2881 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2882out_page:
b8107480 2883 unlock_page(page);
4779cb31 2884out_release:
09cbfeaf 2885 put_page(page);
0bcac06f 2886 if (page != swapcache && swapcache) {
4969c119 2887 unlock_page(swapcache);
09cbfeaf 2888 put_page(swapcache);
4969c119 2889 }
65500d23 2890 return ret;
1da177e4
LT
2891}
2892
2893/*
8f4e2101
HD
2894 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2895 * but allow concurrent faults), and pte mapped but not yet locked.
2896 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2897 */
2b740303 2898static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 2899{
82b0f8c3 2900 struct vm_area_struct *vma = vmf->vma;
00501b53 2901 struct mem_cgroup *memcg;
8f4e2101 2902 struct page *page;
2b740303 2903 vm_fault_t ret = 0;
1da177e4 2904 pte_t entry;
1da177e4 2905
6b7339f4
KS
2906 /* File mapping without ->vm_ops ? */
2907 if (vma->vm_flags & VM_SHARED)
2908 return VM_FAULT_SIGBUS;
2909
7267ec00
KS
2910 /*
2911 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2912 * pte_offset_map() on pmds where a huge pmd might be created
2913 * from a different thread.
2914 *
2915 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2916 * parallel threads are excluded by other means.
2917 *
2918 * Here we only have down_read(mmap_sem).
2919 */
82b0f8c3 2920 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
2921 return VM_FAULT_OOM;
2922
2923 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2924 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2925 return 0;
2926
11ac5524 2927 /* Use the zero-page for reads */
82b0f8c3 2928 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2929 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2930 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2931 vma->vm_page_prot));
82b0f8c3
JK
2932 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2933 vmf->address, &vmf->ptl);
2934 if (!pte_none(*vmf->pte))
a13ea5b7 2935 goto unlock;
6b31d595
MH
2936 ret = check_stable_address_space(vma->vm_mm);
2937 if (ret)
2938 goto unlock;
6b251fc9
AA
2939 /* Deliver the page fault to userland, check inside PT lock */
2940 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2941 pte_unmap_unlock(vmf->pte, vmf->ptl);
2942 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2943 }
a13ea5b7
HD
2944 goto setpte;
2945 }
2946
557ed1fa 2947 /* Allocate our own private page. */
557ed1fa
NP
2948 if (unlikely(anon_vma_prepare(vma)))
2949 goto oom;
82b0f8c3 2950 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2951 if (!page)
2952 goto oom;
eb3c24f3 2953
2cf85583
TH
2954 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2955 false))
eb3c24f3
MG
2956 goto oom_free_page;
2957
52f37629
MK
2958 /*
2959 * The memory barrier inside __SetPageUptodate makes sure that
2960 * preceeding stores to the page contents become visible before
2961 * the set_pte_at() write.
2962 */
0ed361de 2963 __SetPageUptodate(page);
8f4e2101 2964
557ed1fa 2965 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2966 if (vma->vm_flags & VM_WRITE)
2967 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2968
82b0f8c3
JK
2969 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2970 &vmf->ptl);
2971 if (!pte_none(*vmf->pte))
557ed1fa 2972 goto release;
9ba69294 2973
6b31d595
MH
2974 ret = check_stable_address_space(vma->vm_mm);
2975 if (ret)
2976 goto release;
2977
6b251fc9
AA
2978 /* Deliver the page fault to userland, check inside PT lock */
2979 if (userfaultfd_missing(vma)) {
82b0f8c3 2980 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 2981 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2982 put_page(page);
82b0f8c3 2983 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
2984 }
2985
bae473a4 2986 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 2987 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2988 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2989 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2990setpte:
82b0f8c3 2991 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
2992
2993 /* No need to invalidate - it was non-present before */
82b0f8c3 2994 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2995unlock:
82b0f8c3 2996 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 2997 return ret;
8f4e2101 2998release:
f627c2f5 2999 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3000 put_page(page);
8f4e2101 3001 goto unlock;
8a9f3ccd 3002oom_free_page:
09cbfeaf 3003 put_page(page);
65500d23 3004oom:
1da177e4
LT
3005 return VM_FAULT_OOM;
3006}
3007
9a95f3cf
PC
3008/*
3009 * The mmap_sem must have been held on entry, and may have been
3010 * released depending on flags and vma->vm_ops->fault() return value.
3011 * See filemap_fault() and __lock_page_retry().
3012 */
2b740303 3013static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3014{
82b0f8c3 3015 struct vm_area_struct *vma = vmf->vma;
2b740303 3016 vm_fault_t ret;
7eae74af 3017
11bac800 3018 ret = vma->vm_ops->fault(vmf);
3917048d 3019 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3020 VM_FAULT_DONE_COW)))
bc2466e4 3021 return ret;
7eae74af 3022
667240e0 3023 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3024 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3025 unlock_page(vmf->page);
3026 put_page(vmf->page);
936ca80d 3027 vmf->page = NULL;
7eae74af
KS
3028 return VM_FAULT_HWPOISON;
3029 }
3030
3031 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3032 lock_page(vmf->page);
7eae74af 3033 else
667240e0 3034 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3035
7eae74af
KS
3036 return ret;
3037}
3038
d0f0931d
RZ
3039/*
3040 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3041 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3042 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3043 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3044 */
3045static int pmd_devmap_trans_unstable(pmd_t *pmd)
3046{
3047 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3048}
3049
2b740303 3050static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3051{
82b0f8c3 3052 struct vm_area_struct *vma = vmf->vma;
7267ec00 3053
82b0f8c3 3054 if (!pmd_none(*vmf->pmd))
7267ec00 3055 goto map_pte;
82b0f8c3
JK
3056 if (vmf->prealloc_pte) {
3057 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3058 if (unlikely(!pmd_none(*vmf->pmd))) {
3059 spin_unlock(vmf->ptl);
7267ec00
KS
3060 goto map_pte;
3061 }
3062
c4812909 3063 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3064 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3065 spin_unlock(vmf->ptl);
7f2b6ce8 3066 vmf->prealloc_pte = NULL;
82b0f8c3 3067 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
3068 return VM_FAULT_OOM;
3069 }
3070map_pte:
3071 /*
3072 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3073 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3074 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3075 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3076 * running immediately after a huge pmd fault in a different thread of
3077 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3078 * All we have to ensure is that it is a regular pmd that we can walk
3079 * with pte_offset_map() and we can do that through an atomic read in
3080 * C, which is what pmd_trans_unstable() provides.
7267ec00 3081 */
d0f0931d 3082 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3083 return VM_FAULT_NOPAGE;
3084
d0f0931d
RZ
3085 /*
3086 * At this point we know that our vmf->pmd points to a page of ptes
3087 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3088 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3089 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3090 * be valid and we will re-check to make sure the vmf->pte isn't
3091 * pte_none() under vmf->ptl protection when we return to
3092 * alloc_set_pte().
3093 */
82b0f8c3
JK
3094 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3095 &vmf->ptl);
7267ec00
KS
3096 return 0;
3097}
3098
e496cf3d 3099#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3100
3101#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3102static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3103 unsigned long haddr)
3104{
3105 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3106 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3107 return false;
3108 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3109 return false;
3110 return true;
3111}
3112
82b0f8c3 3113static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3114{
82b0f8c3 3115 struct vm_area_struct *vma = vmf->vma;
953c66c2 3116
82b0f8c3 3117 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3118 /*
3119 * We are going to consume the prealloc table,
3120 * count that as nr_ptes.
3121 */
c4812909 3122 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3123 vmf->prealloc_pte = NULL;
953c66c2
AK
3124}
3125
2b740303 3126static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3127{
82b0f8c3
JK
3128 struct vm_area_struct *vma = vmf->vma;
3129 bool write = vmf->flags & FAULT_FLAG_WRITE;
3130 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3131 pmd_t entry;
2b740303
SJ
3132 int i;
3133 vm_fault_t ret;
10102459
KS
3134
3135 if (!transhuge_vma_suitable(vma, haddr))
3136 return VM_FAULT_FALLBACK;
3137
3138 ret = VM_FAULT_FALLBACK;
3139 page = compound_head(page);
3140
953c66c2
AK
3141 /*
3142 * Archs like ppc64 need additonal space to store information
3143 * related to pte entry. Use the preallocated table for that.
3144 */
82b0f8c3
JK
3145 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3146 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3147 if (!vmf->prealloc_pte)
953c66c2
AK
3148 return VM_FAULT_OOM;
3149 smp_wmb(); /* See comment in __pte_alloc() */
3150 }
3151
82b0f8c3
JK
3152 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3153 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3154 goto out;
3155
3156 for (i = 0; i < HPAGE_PMD_NR; i++)
3157 flush_icache_page(vma, page + i);
3158
3159 entry = mk_huge_pmd(page, vma->vm_page_prot);
3160 if (write)
f55e1014 3161 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3162
fadae295 3163 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3164 page_add_file_rmap(page, true);
953c66c2
AK
3165 /*
3166 * deposit and withdraw with pmd lock held
3167 */
3168 if (arch_needs_pgtable_deposit())
82b0f8c3 3169 deposit_prealloc_pte(vmf);
10102459 3170
82b0f8c3 3171 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3172
82b0f8c3 3173 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3174
3175 /* fault is handled */
3176 ret = 0;
95ecedcd 3177 count_vm_event(THP_FILE_MAPPED);
10102459 3178out:
82b0f8c3 3179 spin_unlock(vmf->ptl);
10102459
KS
3180 return ret;
3181}
3182#else
2b740303 3183static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3184{
3185 BUILD_BUG();
3186 return 0;
3187}
3188#endif
3189
8c6e50b0 3190/**
7267ec00
KS
3191 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3192 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3193 *
82b0f8c3 3194 * @vmf: fault environment
7267ec00 3195 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3196 * @page: page to map
8c6e50b0 3197 *
82b0f8c3
JK
3198 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3199 * return.
8c6e50b0
KS
3200 *
3201 * Target users are page handler itself and implementations of
3202 * vm_ops->map_pages.
3203 */
2b740303 3204vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3205 struct page *page)
3bb97794 3206{
82b0f8c3
JK
3207 struct vm_area_struct *vma = vmf->vma;
3208 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3209 pte_t entry;
2b740303 3210 vm_fault_t ret;
10102459 3211
82b0f8c3 3212 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3213 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3214 /* THP on COW? */
3215 VM_BUG_ON_PAGE(memcg, page);
3216
82b0f8c3 3217 ret = do_set_pmd(vmf, page);
10102459 3218 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3219 return ret;
10102459 3220 }
3bb97794 3221
82b0f8c3
JK
3222 if (!vmf->pte) {
3223 ret = pte_alloc_one_map(vmf);
7267ec00 3224 if (ret)
b0b9b3df 3225 return ret;
7267ec00
KS
3226 }
3227
3228 /* Re-check under ptl */
b0b9b3df
HD
3229 if (unlikely(!pte_none(*vmf->pte)))
3230 return VM_FAULT_NOPAGE;
7267ec00 3231
3bb97794
KS
3232 flush_icache_page(vma, page);
3233 entry = mk_pte(page, vma->vm_page_prot);
3234 if (write)
3235 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3236 /* copy-on-write page */
3237 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3238 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3239 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3240 mem_cgroup_commit_charge(page, memcg, false, false);
3241 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3242 } else {
eca56ff9 3243 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3244 page_add_file_rmap(page, false);
3bb97794 3245 }
82b0f8c3 3246 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3247
3248 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3249 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3250
b0b9b3df 3251 return 0;
3bb97794
KS
3252}
3253
9118c0cb
JK
3254
3255/**
3256 * finish_fault - finish page fault once we have prepared the page to fault
3257 *
3258 * @vmf: structure describing the fault
3259 *
3260 * This function handles all that is needed to finish a page fault once the
3261 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3262 * given page, adds reverse page mapping, handles memcg charges and LRU
3263 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3264 * error.
3265 *
3266 * The function expects the page to be locked and on success it consumes a
3267 * reference of a page being mapped (for the PTE which maps it).
3268 */
2b740303 3269vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3270{
3271 struct page *page;
2b740303 3272 vm_fault_t ret = 0;
9118c0cb
JK
3273
3274 /* Did we COW the page? */
3275 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3276 !(vmf->vma->vm_flags & VM_SHARED))
3277 page = vmf->cow_page;
3278 else
3279 page = vmf->page;
6b31d595
MH
3280
3281 /*
3282 * check even for read faults because we might have lost our CoWed
3283 * page
3284 */
3285 if (!(vmf->vma->vm_flags & VM_SHARED))
3286 ret = check_stable_address_space(vmf->vma->vm_mm);
3287 if (!ret)
3288 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3289 if (vmf->pte)
3290 pte_unmap_unlock(vmf->pte, vmf->ptl);
3291 return ret;
3292}
3293
3a91053a
KS
3294static unsigned long fault_around_bytes __read_mostly =
3295 rounddown_pow_of_two(65536);
a9b0f861 3296
a9b0f861
KS
3297#ifdef CONFIG_DEBUG_FS
3298static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3299{
a9b0f861 3300 *val = fault_around_bytes;
1592eef0
KS
3301 return 0;
3302}
3303
b4903d6e 3304/*
da391d64
WK
3305 * fault_around_bytes must be rounded down to the nearest page order as it's
3306 * what do_fault_around() expects to see.
b4903d6e 3307 */
a9b0f861 3308static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3309{
a9b0f861 3310 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3311 return -EINVAL;
b4903d6e
AR
3312 if (val > PAGE_SIZE)
3313 fault_around_bytes = rounddown_pow_of_two(val);
3314 else
3315 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3316 return 0;
3317}
0a1345f8 3318DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3319 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3320
3321static int __init fault_around_debugfs(void)
3322{
3323 void *ret;
3324
0a1345f8 3325 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
a9b0f861 3326 &fault_around_bytes_fops);
1592eef0 3327 if (!ret)
a9b0f861 3328 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3329 return 0;
3330}
3331late_initcall(fault_around_debugfs);
1592eef0 3332#endif
8c6e50b0 3333
1fdb412b
KS
3334/*
3335 * do_fault_around() tries to map few pages around the fault address. The hope
3336 * is that the pages will be needed soon and this will lower the number of
3337 * faults to handle.
3338 *
3339 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3340 * not ready to be mapped: not up-to-date, locked, etc.
3341 *
3342 * This function is called with the page table lock taken. In the split ptlock
3343 * case the page table lock only protects only those entries which belong to
3344 * the page table corresponding to the fault address.
3345 *
3346 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3347 * only once.
3348 *
da391d64
WK
3349 * fault_around_bytes defines how many bytes we'll try to map.
3350 * do_fault_around() expects it to be set to a power of two less than or equal
3351 * to PTRS_PER_PTE.
1fdb412b 3352 *
da391d64
WK
3353 * The virtual address of the area that we map is naturally aligned to
3354 * fault_around_bytes rounded down to the machine page size
3355 * (and therefore to page order). This way it's easier to guarantee
3356 * that we don't cross page table boundaries.
1fdb412b 3357 */
2b740303 3358static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3359{
82b0f8c3 3360 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3361 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3362 pgoff_t end_pgoff;
2b740303
SJ
3363 int off;
3364 vm_fault_t ret = 0;
8c6e50b0 3365
4db0c3c2 3366 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3367 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3368
82b0f8c3
JK
3369 vmf->address = max(address & mask, vmf->vma->vm_start);
3370 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3371 start_pgoff -= off;
8c6e50b0
KS
3372
3373 /*
da391d64
WK
3374 * end_pgoff is either the end of the page table, the end of
3375 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3376 */
bae473a4 3377 end_pgoff = start_pgoff -
82b0f8c3 3378 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3379 PTRS_PER_PTE - 1;
82b0f8c3 3380 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3381 start_pgoff + nr_pages - 1);
8c6e50b0 3382
82b0f8c3
JK
3383 if (pmd_none(*vmf->pmd)) {
3384 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3385 vmf->address);
3386 if (!vmf->prealloc_pte)
c5f88bd2 3387 goto out;
7267ec00 3388 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3389 }
3390
82b0f8c3 3391 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3392
7267ec00 3393 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3394 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3395 ret = VM_FAULT_NOPAGE;
3396 goto out;
3397 }
3398
3399 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3400 if (!vmf->pte)
7267ec00
KS
3401 goto out;
3402
3403 /* check if the page fault is solved */
82b0f8c3
JK
3404 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3405 if (!pte_none(*vmf->pte))
7267ec00 3406 ret = VM_FAULT_NOPAGE;
82b0f8c3 3407 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3408out:
82b0f8c3
JK
3409 vmf->address = address;
3410 vmf->pte = NULL;
7267ec00 3411 return ret;
8c6e50b0
KS
3412}
3413
2b740303 3414static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3415{
82b0f8c3 3416 struct vm_area_struct *vma = vmf->vma;
2b740303 3417 vm_fault_t ret = 0;
8c6e50b0
KS
3418
3419 /*
3420 * Let's call ->map_pages() first and use ->fault() as fallback
3421 * if page by the offset is not ready to be mapped (cold cache or
3422 * something).
3423 */
9b4bdd2f 3424 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3425 ret = do_fault_around(vmf);
7267ec00
KS
3426 if (ret)
3427 return ret;
8c6e50b0 3428 }
e655fb29 3429
936ca80d 3430 ret = __do_fault(vmf);
e655fb29
KS
3431 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3432 return ret;
3433
9118c0cb 3434 ret |= finish_fault(vmf);
936ca80d 3435 unlock_page(vmf->page);
7267ec00 3436 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3437 put_page(vmf->page);
e655fb29
KS
3438 return ret;
3439}
3440
2b740303 3441static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3442{
82b0f8c3 3443 struct vm_area_struct *vma = vmf->vma;
2b740303 3444 vm_fault_t ret;
ec47c3b9
KS
3445
3446 if (unlikely(anon_vma_prepare(vma)))
3447 return VM_FAULT_OOM;
3448
936ca80d
JK
3449 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3450 if (!vmf->cow_page)
ec47c3b9
KS
3451 return VM_FAULT_OOM;
3452
2cf85583 3453 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3454 &vmf->memcg, false)) {
936ca80d 3455 put_page(vmf->cow_page);
ec47c3b9
KS
3456 return VM_FAULT_OOM;
3457 }
3458
936ca80d 3459 ret = __do_fault(vmf);
ec47c3b9
KS
3460 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3461 goto uncharge_out;
3917048d
JK
3462 if (ret & VM_FAULT_DONE_COW)
3463 return ret;
ec47c3b9 3464
b1aa812b 3465 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3466 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3467
9118c0cb 3468 ret |= finish_fault(vmf);
b1aa812b
JK
3469 unlock_page(vmf->page);
3470 put_page(vmf->page);
7267ec00
KS
3471 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3472 goto uncharge_out;
ec47c3b9
KS
3473 return ret;
3474uncharge_out:
3917048d 3475 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3476 put_page(vmf->cow_page);
ec47c3b9
KS
3477 return ret;
3478}
3479
2b740303 3480static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3481{
82b0f8c3 3482 struct vm_area_struct *vma = vmf->vma;
2b740303 3483 vm_fault_t ret, tmp;
1d65f86d 3484
936ca80d 3485 ret = __do_fault(vmf);
7eae74af 3486 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3487 return ret;
1da177e4
LT
3488
3489 /*
f0c6d4d2
KS
3490 * Check if the backing address space wants to know that the page is
3491 * about to become writable
1da177e4 3492 */
fb09a464 3493 if (vma->vm_ops->page_mkwrite) {
936ca80d 3494 unlock_page(vmf->page);
38b8cb7f 3495 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3496 if (unlikely(!tmp ||
3497 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3498 put_page(vmf->page);
fb09a464 3499 return tmp;
4294621f 3500 }
fb09a464
KS
3501 }
3502
9118c0cb 3503 ret |= finish_fault(vmf);
7267ec00
KS
3504 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3505 VM_FAULT_RETRY))) {
936ca80d
JK
3506 unlock_page(vmf->page);
3507 put_page(vmf->page);
f0c6d4d2 3508 return ret;
1da177e4 3509 }
b827e496 3510
97ba0c2b 3511 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3512 return ret;
54cb8821 3513}
d00806b1 3514
9a95f3cf
PC
3515/*
3516 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3517 * but allow concurrent faults).
3518 * The mmap_sem may have been released depending on flags and our
3519 * return value. See filemap_fault() and __lock_page_or_retry().
3520 */
2b740303 3521static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3522{
82b0f8c3 3523 struct vm_area_struct *vma = vmf->vma;
2b740303 3524 vm_fault_t ret;
54cb8821 3525
6b7339f4
KS
3526 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3527 if (!vma->vm_ops->fault)
b0b9b3df
HD
3528 ret = VM_FAULT_SIGBUS;
3529 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3530 ret = do_read_fault(vmf);
3531 else if (!(vma->vm_flags & VM_SHARED))
3532 ret = do_cow_fault(vmf);
3533 else
3534 ret = do_shared_fault(vmf);
3535
3536 /* preallocated pagetable is unused: free it */
3537 if (vmf->prealloc_pte) {
3538 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3539 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3540 }
3541 return ret;
54cb8821
NP
3542}
3543
b19a9939 3544static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3545 unsigned long addr, int page_nid,
3546 int *flags)
9532fec1
MG
3547{
3548 get_page(page);
3549
3550 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3551 if (page_nid == numa_node_id()) {
9532fec1 3552 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3553 *flags |= TNF_FAULT_LOCAL;
3554 }
9532fec1
MG
3555
3556 return mpol_misplaced(page, vma, addr);
3557}
3558
2b740303 3559static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3560{
82b0f8c3 3561 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3562 struct page *page = NULL;
8191acbd 3563 int page_nid = -1;
90572890 3564 int last_cpupid;
cbee9f88 3565 int target_nid;
b8593bfd 3566 bool migrated = false;
cee216a6 3567 pte_t pte;
288bc549 3568 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3569 int flags = 0;
d10e63f2
MG
3570
3571 /*
166f61b9
TH
3572 * The "pte" at this point cannot be used safely without
3573 * validation through pte_unmap_same(). It's of NUMA type but
3574 * the pfn may be screwed if the read is non atomic.
166f61b9 3575 */
82b0f8c3
JK
3576 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3577 spin_lock(vmf->ptl);
cee216a6 3578 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3579 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3580 goto out;
3581 }
3582
cee216a6
AK
3583 /*
3584 * Make it present again, Depending on how arch implementes non
3585 * accessible ptes, some can allow access by kernel mode.
3586 */
3587 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4d942466
MG
3588 pte = pte_modify(pte, vma->vm_page_prot);
3589 pte = pte_mkyoung(pte);
b191f9b1
MG
3590 if (was_writable)
3591 pte = pte_mkwrite(pte);
cee216a6 3592 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
82b0f8c3 3593 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3594
82b0f8c3 3595 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3596 if (!page) {
82b0f8c3 3597 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3598 return 0;
3599 }
3600
e81c4802
KS
3601 /* TODO: handle PTE-mapped THP */
3602 if (PageCompound(page)) {
82b0f8c3 3603 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3604 return 0;
3605 }
3606
6688cc05 3607 /*
bea66fbd
MG
3608 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3609 * much anyway since they can be in shared cache state. This misses
3610 * the case where a mapping is writable but the process never writes
3611 * to it but pte_write gets cleared during protection updates and
3612 * pte_dirty has unpredictable behaviour between PTE scan updates,
3613 * background writeback, dirty balancing and application behaviour.
6688cc05 3614 */
d59dc7bc 3615 if (!pte_write(pte))
6688cc05
PZ
3616 flags |= TNF_NO_GROUP;
3617
dabe1d99
RR
3618 /*
3619 * Flag if the page is shared between multiple address spaces. This
3620 * is later used when determining whether to group tasks together
3621 */
3622 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3623 flags |= TNF_SHARED;
3624
90572890 3625 last_cpupid = page_cpupid_last(page);
8191acbd 3626 page_nid = page_to_nid(page);
82b0f8c3 3627 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3628 &flags);
82b0f8c3 3629 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3630 if (target_nid == -1) {
4daae3b4
MG
3631 put_page(page);
3632 goto out;
3633 }
3634
3635 /* Migrate to the requested node */
1bc115d8 3636 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3637 if (migrated) {
8191acbd 3638 page_nid = target_nid;
6688cc05 3639 flags |= TNF_MIGRATED;
074c2381
MG
3640 } else
3641 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3642
3643out:
8191acbd 3644 if (page_nid != -1)
6688cc05 3645 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3646 return 0;
3647}
3648
2b740303 3649static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3650{
f4200391 3651 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3652 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3653 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3654 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3655 return VM_FAULT_FALLBACK;
3656}
3657
183f24aa 3658/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3659static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3660{
82b0f8c3
JK
3661 if (vma_is_anonymous(vmf->vma))
3662 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3663 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3664 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3665
3666 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3667 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3668 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3669
b96375f7
MW
3670 return VM_FAULT_FALLBACK;
3671}
3672
38e08854
LS
3673static inline bool vma_is_accessible(struct vm_area_struct *vma)
3674{
3675 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3676}
3677
2b740303 3678static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3679{
3680#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3681 /* No support for anonymous transparent PUD pages yet */
3682 if (vma_is_anonymous(vmf->vma))
3683 return VM_FAULT_FALLBACK;
3684 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3685 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3686#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3687 return VM_FAULT_FALLBACK;
3688}
3689
2b740303 3690static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3691{
3692#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3693 /* No support for anonymous transparent PUD pages yet */
3694 if (vma_is_anonymous(vmf->vma))
3695 return VM_FAULT_FALLBACK;
3696 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3697 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3698#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3699 return VM_FAULT_FALLBACK;
3700}
3701
1da177e4
LT
3702/*
3703 * These routines also need to handle stuff like marking pages dirty
3704 * and/or accessed for architectures that don't do it in hardware (most
3705 * RISC architectures). The early dirtying is also good on the i386.
3706 *
3707 * There is also a hook called "update_mmu_cache()" that architectures
3708 * with external mmu caches can use to update those (ie the Sparc or
3709 * PowerPC hashed page tables that act as extended TLBs).
3710 *
7267ec00
KS
3711 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3712 * concurrent faults).
9a95f3cf 3713 *
7267ec00
KS
3714 * The mmap_sem may have been released depending on flags and our return value.
3715 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3716 */
2b740303 3717static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3718{
3719 pte_t entry;
3720
82b0f8c3 3721 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3722 /*
3723 * Leave __pte_alloc() until later: because vm_ops->fault may
3724 * want to allocate huge page, and if we expose page table
3725 * for an instant, it will be difficult to retract from
3726 * concurrent faults and from rmap lookups.
3727 */
82b0f8c3 3728 vmf->pte = NULL;
7267ec00
KS
3729 } else {
3730 /* See comment in pte_alloc_one_map() */
d0f0931d 3731 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3732 return 0;
3733 /*
3734 * A regular pmd is established and it can't morph into a huge
3735 * pmd from under us anymore at this point because we hold the
3736 * mmap_sem read mode and khugepaged takes it in write mode.
3737 * So now it's safe to run pte_offset_map().
3738 */
82b0f8c3 3739 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3740 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3741
3742 /*
3743 * some architectures can have larger ptes than wordsize,
3744 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3745 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3746 * accesses. The code below just needs a consistent view
3747 * for the ifs and we later double check anyway with the
7267ec00
KS
3748 * ptl lock held. So here a barrier will do.
3749 */
3750 barrier();
2994302b 3751 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3752 pte_unmap(vmf->pte);
3753 vmf->pte = NULL;
65500d23 3754 }
1da177e4
LT
3755 }
3756
82b0f8c3
JK
3757 if (!vmf->pte) {
3758 if (vma_is_anonymous(vmf->vma))
3759 return do_anonymous_page(vmf);
7267ec00 3760 else
82b0f8c3 3761 return do_fault(vmf);
7267ec00
KS
3762 }
3763
2994302b
JK
3764 if (!pte_present(vmf->orig_pte))
3765 return do_swap_page(vmf);
7267ec00 3766
2994302b
JK
3767 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3768 return do_numa_page(vmf);
d10e63f2 3769
82b0f8c3
JK
3770 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3771 spin_lock(vmf->ptl);
2994302b 3772 entry = vmf->orig_pte;
82b0f8c3 3773 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3774 goto unlock;
82b0f8c3 3775 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3776 if (!pte_write(entry))
2994302b 3777 return do_wp_page(vmf);
1da177e4
LT
3778 entry = pte_mkdirty(entry);
3779 }
3780 entry = pte_mkyoung(entry);
82b0f8c3
JK
3781 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3782 vmf->flags & FAULT_FLAG_WRITE)) {
3783 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3784 } else {
3785 /*
3786 * This is needed only for protection faults but the arch code
3787 * is not yet telling us if this is a protection fault or not.
3788 * This still avoids useless tlb flushes for .text page faults
3789 * with threads.
3790 */
82b0f8c3
JK
3791 if (vmf->flags & FAULT_FLAG_WRITE)
3792 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3793 }
8f4e2101 3794unlock:
82b0f8c3 3795 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3796 return 0;
1da177e4
LT
3797}
3798
3799/*
3800 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3801 *
3802 * The mmap_sem may have been released depending on flags and our
3803 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3804 */
2b740303
SJ
3805static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3806 unsigned long address, unsigned int flags)
1da177e4 3807{
82b0f8c3 3808 struct vm_fault vmf = {
bae473a4 3809 .vma = vma,
1a29d85e 3810 .address = address & PAGE_MASK,
bae473a4 3811 .flags = flags,
0721ec8b 3812 .pgoff = linear_page_index(vma, address),
667240e0 3813 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3814 };
fde26bed 3815 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 3816 struct mm_struct *mm = vma->vm_mm;
1da177e4 3817 pgd_t *pgd;
c2febafc 3818 p4d_t *p4d;
2b740303 3819 vm_fault_t ret;
1da177e4 3820
1da177e4 3821 pgd = pgd_offset(mm, address);
c2febafc
KS
3822 p4d = p4d_alloc(mm, pgd, address);
3823 if (!p4d)
3824 return VM_FAULT_OOM;
a00cc7d9 3825
c2febafc 3826 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3827 if (!vmf.pud)
c74df32c 3828 return VM_FAULT_OOM;
a00cc7d9 3829 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3830 ret = create_huge_pud(&vmf);
3831 if (!(ret & VM_FAULT_FALLBACK))
3832 return ret;
3833 } else {
3834 pud_t orig_pud = *vmf.pud;
3835
3836 barrier();
3837 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 3838
a00cc7d9
MW
3839 /* NUMA case for anonymous PUDs would go here */
3840
f6f37321 3841 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
3842 ret = wp_huge_pud(&vmf, orig_pud);
3843 if (!(ret & VM_FAULT_FALLBACK))
3844 return ret;
3845 } else {
3846 huge_pud_set_accessed(&vmf, orig_pud);
3847 return 0;
3848 }
3849 }
3850 }
3851
3852 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3853 if (!vmf.pmd)
c74df32c 3854 return VM_FAULT_OOM;
82b0f8c3 3855 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
a2d58167 3856 ret = create_huge_pmd(&vmf);
c0292554
KS
3857 if (!(ret & VM_FAULT_FALLBACK))
3858 return ret;
71e3aac0 3859 } else {
82b0f8c3 3860 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3861
71e3aac0 3862 barrier();
84c3fc4e
ZY
3863 if (unlikely(is_swap_pmd(orig_pmd))) {
3864 VM_BUG_ON(thp_migration_supported() &&
3865 !is_pmd_migration_entry(orig_pmd));
3866 if (is_pmd_migration_entry(orig_pmd))
3867 pmd_migration_entry_wait(mm, vmf.pmd);
3868 return 0;
3869 }
5c7fb56e 3870 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3871 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3872 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3873
f6f37321 3874 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 3875 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3876 if (!(ret & VM_FAULT_FALLBACK))
3877 return ret;
a1dd450b 3878 } else {
82b0f8c3 3879 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3880 return 0;
1f1d06c3 3881 }
71e3aac0
AA
3882 }
3883 }
3884
82b0f8c3 3885 return handle_pte_fault(&vmf);
1da177e4
LT
3886}
3887
9a95f3cf
PC
3888/*
3889 * By the time we get here, we already hold the mm semaphore
3890 *
3891 * The mmap_sem may have been released depending on flags and our
3892 * return value. See filemap_fault() and __lock_page_or_retry().
3893 */
2b740303 3894vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 3895 unsigned int flags)
519e5247 3896{
2b740303 3897 vm_fault_t ret;
519e5247
JW
3898
3899 __set_current_state(TASK_RUNNING);
3900
3901 count_vm_event(PGFAULT);
2262185c 3902 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
3903
3904 /* do counter updates before entering really critical section. */
3905 check_sync_rss_stat(current);
3906
de0c799b
LD
3907 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3908 flags & FAULT_FLAG_INSTRUCTION,
3909 flags & FAULT_FLAG_REMOTE))
3910 return VM_FAULT_SIGSEGV;
3911
519e5247
JW
3912 /*
3913 * Enable the memcg OOM handling for faults triggered in user
3914 * space. Kernel faults are handled more gracefully.
3915 */
3916 if (flags & FAULT_FLAG_USER)
29ef680a 3917 mem_cgroup_enter_user_fault();
519e5247 3918
bae473a4
KS
3919 if (unlikely(is_vm_hugetlb_page(vma)))
3920 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3921 else
3922 ret = __handle_mm_fault(vma, address, flags);
519e5247 3923
49426420 3924 if (flags & FAULT_FLAG_USER) {
29ef680a 3925 mem_cgroup_exit_user_fault();
166f61b9
TH
3926 /*
3927 * The task may have entered a memcg OOM situation but
3928 * if the allocation error was handled gracefully (no
3929 * VM_FAULT_OOM), there is no need to kill anything.
3930 * Just clean up the OOM state peacefully.
3931 */
3932 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3933 mem_cgroup_oom_synchronize(false);
49426420 3934 }
3812c8c8 3935
519e5247
JW
3936 return ret;
3937}
e1d6d01a 3938EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3939
90eceff1
KS
3940#ifndef __PAGETABLE_P4D_FOLDED
3941/*
3942 * Allocate p4d page table.
3943 * We've already handled the fast-path in-line.
3944 */
3945int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3946{
3947 p4d_t *new = p4d_alloc_one(mm, address);
3948 if (!new)
3949 return -ENOMEM;
3950
3951 smp_wmb(); /* See comment in __pte_alloc */
3952
3953 spin_lock(&mm->page_table_lock);
3954 if (pgd_present(*pgd)) /* Another has populated it */
3955 p4d_free(mm, new);
3956 else
3957 pgd_populate(mm, pgd, new);
3958 spin_unlock(&mm->page_table_lock);
3959 return 0;
3960}
3961#endif /* __PAGETABLE_P4D_FOLDED */
3962
1da177e4
LT
3963#ifndef __PAGETABLE_PUD_FOLDED
3964/*
3965 * Allocate page upper directory.
872fec16 3966 * We've already handled the fast-path in-line.
1da177e4 3967 */
c2febafc 3968int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 3969{
c74df32c
HD
3970 pud_t *new = pud_alloc_one(mm, address);
3971 if (!new)
1bb3630e 3972 return -ENOMEM;
1da177e4 3973
362a61ad
NP
3974 smp_wmb(); /* See comment in __pte_alloc */
3975
872fec16 3976 spin_lock(&mm->page_table_lock);
c2febafc 3977#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
3978 if (!p4d_present(*p4d)) {
3979 mm_inc_nr_puds(mm);
c2febafc 3980 p4d_populate(mm, p4d, new);
b4e98d9a 3981 } else /* Another has populated it */
5e541973 3982 pud_free(mm, new);
b4e98d9a
KS
3983#else
3984 if (!pgd_present(*p4d)) {
3985 mm_inc_nr_puds(mm);
c2febafc 3986 pgd_populate(mm, p4d, new);
b4e98d9a
KS
3987 } else /* Another has populated it */
3988 pud_free(mm, new);
c2febafc 3989#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 3990 spin_unlock(&mm->page_table_lock);
1bb3630e 3991 return 0;
1da177e4
LT
3992}
3993#endif /* __PAGETABLE_PUD_FOLDED */
3994
3995#ifndef __PAGETABLE_PMD_FOLDED
3996/*
3997 * Allocate page middle directory.
872fec16 3998 * We've already handled the fast-path in-line.
1da177e4 3999 */
1bb3630e 4000int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4001{
a00cc7d9 4002 spinlock_t *ptl;
c74df32c
HD
4003 pmd_t *new = pmd_alloc_one(mm, address);
4004 if (!new)
1bb3630e 4005 return -ENOMEM;
1da177e4 4006
362a61ad
NP
4007 smp_wmb(); /* See comment in __pte_alloc */
4008
a00cc7d9 4009 ptl = pud_lock(mm, pud);
1da177e4 4010#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4011 if (!pud_present(*pud)) {
4012 mm_inc_nr_pmds(mm);
1bb3630e 4013 pud_populate(mm, pud, new);
dc6c9a35 4014 } else /* Another has populated it */
5e541973 4015 pmd_free(mm, new);
dc6c9a35
KS
4016#else
4017 if (!pgd_present(*pud)) {
4018 mm_inc_nr_pmds(mm);
1bb3630e 4019 pgd_populate(mm, pud, new);
dc6c9a35
KS
4020 } else /* Another has populated it */
4021 pmd_free(mm, new);
1da177e4 4022#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4023 spin_unlock(ptl);
1bb3630e 4024 return 0;
e0f39591 4025}
1da177e4
LT
4026#endif /* __PAGETABLE_PMD_FOLDED */
4027
09796395 4028static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885
JG
4029 unsigned long *start, unsigned long *end,
4030 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4031{
4032 pgd_t *pgd;
c2febafc 4033 p4d_t *p4d;
f8ad0f49
JW
4034 pud_t *pud;
4035 pmd_t *pmd;
4036 pte_t *ptep;
4037
4038 pgd = pgd_offset(mm, address);
4039 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4040 goto out;
4041
c2febafc
KS
4042 p4d = p4d_offset(pgd, address);
4043 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4044 goto out;
4045
4046 pud = pud_offset(p4d, address);
f8ad0f49
JW
4047 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4048 goto out;
4049
4050 pmd = pmd_offset(pud, address);
f66055ab 4051 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4052
09796395
RZ
4053 if (pmd_huge(*pmd)) {
4054 if (!pmdpp)
4055 goto out;
4056
a4d1a885
JG
4057 if (start && end) {
4058 *start = address & PMD_MASK;
4059 *end = *start + PMD_SIZE;
4060 mmu_notifier_invalidate_range_start(mm, *start, *end);
4061 }
09796395
RZ
4062 *ptlp = pmd_lock(mm, pmd);
4063 if (pmd_huge(*pmd)) {
4064 *pmdpp = pmd;
4065 return 0;
4066 }
4067 spin_unlock(*ptlp);
a4d1a885
JG
4068 if (start && end)
4069 mmu_notifier_invalidate_range_end(mm, *start, *end);
09796395
RZ
4070 }
4071
4072 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4073 goto out;
4074
a4d1a885
JG
4075 if (start && end) {
4076 *start = address & PAGE_MASK;
4077 *end = *start + PAGE_SIZE;
4078 mmu_notifier_invalidate_range_start(mm, *start, *end);
4079 }
f8ad0f49 4080 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4081 if (!pte_present(*ptep))
4082 goto unlock;
4083 *ptepp = ptep;
4084 return 0;
4085unlock:
4086 pte_unmap_unlock(ptep, *ptlp);
a4d1a885
JG
4087 if (start && end)
4088 mmu_notifier_invalidate_range_end(mm, *start, *end);
f8ad0f49
JW
4089out:
4090 return -EINVAL;
4091}
4092
f729c8c9
RZ
4093static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4094 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4095{
4096 int res;
4097
4098 /* (void) is needed to make gcc happy */
4099 (void) __cond_lock(*ptlp,
a4d1a885
JG
4100 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4101 ptepp, NULL, ptlp)));
09796395
RZ
4102 return res;
4103}
4104
4105int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 4106 unsigned long *start, unsigned long *end,
09796395
RZ
4107 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4108{
4109 int res;
4110
4111 /* (void) is needed to make gcc happy */
4112 (void) __cond_lock(*ptlp,
a4d1a885
JG
4113 !(res = __follow_pte_pmd(mm, address, start, end,
4114 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4115 return res;
4116}
09796395 4117EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4118
3b6748e2
JW
4119/**
4120 * follow_pfn - look up PFN at a user virtual address
4121 * @vma: memory mapping
4122 * @address: user virtual address
4123 * @pfn: location to store found PFN
4124 *
4125 * Only IO mappings and raw PFN mappings are allowed.
4126 *
4127 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4128 */
4129int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4130 unsigned long *pfn)
4131{
4132 int ret = -EINVAL;
4133 spinlock_t *ptl;
4134 pte_t *ptep;
4135
4136 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4137 return ret;
4138
4139 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4140 if (ret)
4141 return ret;
4142 *pfn = pte_pfn(*ptep);
4143 pte_unmap_unlock(ptep, ptl);
4144 return 0;
4145}
4146EXPORT_SYMBOL(follow_pfn);
4147
28b2ee20 4148#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4149int follow_phys(struct vm_area_struct *vma,
4150 unsigned long address, unsigned int flags,
4151 unsigned long *prot, resource_size_t *phys)
28b2ee20 4152{
03668a4d 4153 int ret = -EINVAL;
28b2ee20
RR
4154 pte_t *ptep, pte;
4155 spinlock_t *ptl;
28b2ee20 4156
d87fe660 4157 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4158 goto out;
28b2ee20 4159
03668a4d 4160 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4161 goto out;
28b2ee20 4162 pte = *ptep;
03668a4d 4163
f6f37321 4164 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4165 goto unlock;
28b2ee20
RR
4166
4167 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4168 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4169
03668a4d 4170 ret = 0;
28b2ee20
RR
4171unlock:
4172 pte_unmap_unlock(ptep, ptl);
4173out:
d87fe660 4174 return ret;
28b2ee20
RR
4175}
4176
4177int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4178 void *buf, int len, int write)
4179{
4180 resource_size_t phys_addr;
4181 unsigned long prot = 0;
2bc7273b 4182 void __iomem *maddr;
28b2ee20
RR
4183 int offset = addr & (PAGE_SIZE-1);
4184
d87fe660 4185 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4186 return -EINVAL;
4187
9cb12d7b 4188 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4189 if (!maddr)
4190 return -ENOMEM;
4191
28b2ee20
RR
4192 if (write)
4193 memcpy_toio(maddr + offset, buf, len);
4194 else
4195 memcpy_fromio(buf, maddr + offset, len);
4196 iounmap(maddr);
4197
4198 return len;
4199}
5a73633e 4200EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4201#endif
4202
0ec76a11 4203/*
206cb636
SW
4204 * Access another process' address space as given in mm. If non-NULL, use the
4205 * given task for page fault accounting.
0ec76a11 4206 */
84d77d3f 4207int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4208 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4209{
0ec76a11 4210 struct vm_area_struct *vma;
0ec76a11 4211 void *old_buf = buf;
442486ec 4212 int write = gup_flags & FOLL_WRITE;
0ec76a11 4213
0ec76a11 4214 down_read(&mm->mmap_sem);
183ff22b 4215 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4216 while (len) {
4217 int bytes, ret, offset;
4218 void *maddr;
28b2ee20 4219 struct page *page = NULL;
0ec76a11 4220
1e987790 4221 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4222 gup_flags, &page, &vma, NULL);
28b2ee20 4223 if (ret <= 0) {
dbffcd03
RR
4224#ifndef CONFIG_HAVE_IOREMAP_PROT
4225 break;
4226#else
28b2ee20
RR
4227 /*
4228 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4229 * we can access using slightly different code.
4230 */
28b2ee20 4231 vma = find_vma(mm, addr);
fe936dfc 4232 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4233 break;
4234 if (vma->vm_ops && vma->vm_ops->access)
4235 ret = vma->vm_ops->access(vma, addr, buf,
4236 len, write);
4237 if (ret <= 0)
28b2ee20
RR
4238 break;
4239 bytes = ret;
dbffcd03 4240#endif
0ec76a11 4241 } else {
28b2ee20
RR
4242 bytes = len;
4243 offset = addr & (PAGE_SIZE-1);
4244 if (bytes > PAGE_SIZE-offset)
4245 bytes = PAGE_SIZE-offset;
4246
4247 maddr = kmap(page);
4248 if (write) {
4249 copy_to_user_page(vma, page, addr,
4250 maddr + offset, buf, bytes);
4251 set_page_dirty_lock(page);
4252 } else {
4253 copy_from_user_page(vma, page, addr,
4254 buf, maddr + offset, bytes);
4255 }
4256 kunmap(page);
09cbfeaf 4257 put_page(page);
0ec76a11 4258 }
0ec76a11
DH
4259 len -= bytes;
4260 buf += bytes;
4261 addr += bytes;
4262 }
4263 up_read(&mm->mmap_sem);
0ec76a11
DH
4264
4265 return buf - old_buf;
4266}
03252919 4267
5ddd36b9 4268/**
ae91dbfc 4269 * access_remote_vm - access another process' address space
5ddd36b9
SW
4270 * @mm: the mm_struct of the target address space
4271 * @addr: start address to access
4272 * @buf: source or destination buffer
4273 * @len: number of bytes to transfer
6347e8d5 4274 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4275 *
4276 * The caller must hold a reference on @mm.
4277 */
4278int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4279 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4280{
6347e8d5 4281 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4282}
4283
206cb636
SW
4284/*
4285 * Access another process' address space.
4286 * Source/target buffer must be kernel space,
4287 * Do not walk the page table directly, use get_user_pages
4288 */
4289int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4290 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4291{
4292 struct mm_struct *mm;
4293 int ret;
4294
4295 mm = get_task_mm(tsk);
4296 if (!mm)
4297 return 0;
4298
f307ab6d 4299 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4300
206cb636
SW
4301 mmput(mm);
4302
4303 return ret;
4304}
fcd35857 4305EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4306
03252919
AK
4307/*
4308 * Print the name of a VMA.
4309 */
4310void print_vma_addr(char *prefix, unsigned long ip)
4311{
4312 struct mm_struct *mm = current->mm;
4313 struct vm_area_struct *vma;
4314
e8bff74a 4315 /*
0a7f682d 4316 * we might be running from an atomic context so we cannot sleep
e8bff74a 4317 */
0a7f682d 4318 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4319 return;
4320
03252919
AK
4321 vma = find_vma(mm, ip);
4322 if (vma && vma->vm_file) {
4323 struct file *f = vma->vm_file;
0a7f682d 4324 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4325 if (buf) {
2fbc57c5 4326 char *p;
03252919 4327
9bf39ab2 4328 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4329 if (IS_ERR(p))
4330 p = "?";
2fbc57c5 4331 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4332 vma->vm_start,
4333 vma->vm_end - vma->vm_start);
4334 free_page((unsigned long)buf);
4335 }
4336 }
51a07e50 4337 up_read(&mm->mmap_sem);
03252919 4338}
3ee1afa3 4339
662bbcb2 4340#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4341void __might_fault(const char *file, int line)
3ee1afa3 4342{
95156f00
PZ
4343 /*
4344 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4345 * holding the mmap_sem, this is safe because kernel memory doesn't
4346 * get paged out, therefore we'll never actually fault, and the
4347 * below annotations will generate false positives.
4348 */
db68ce10 4349 if (uaccess_kernel())
95156f00 4350 return;
9ec23531 4351 if (pagefault_disabled())
662bbcb2 4352 return;
9ec23531
DH
4353 __might_sleep(file, line, 0);
4354#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4355 if (current->mm)
3ee1afa3 4356 might_lock_read(&current->mm->mmap_sem);
9ec23531 4357#endif
3ee1afa3 4358}
9ec23531 4359EXPORT_SYMBOL(__might_fault);
3ee1afa3 4360#endif
47ad8475
AA
4361
4362#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4363/*
4364 * Process all subpages of the specified huge page with the specified
4365 * operation. The target subpage will be processed last to keep its
4366 * cache lines hot.
4367 */
4368static inline void process_huge_page(
4369 unsigned long addr_hint, unsigned int pages_per_huge_page,
4370 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4371 void *arg)
47ad8475 4372{
c79b57e4
HY
4373 int i, n, base, l;
4374 unsigned long addr = addr_hint &
4375 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4376
c6ddfb6c 4377 /* Process target subpage last to keep its cache lines hot */
47ad8475 4378 might_sleep();
c79b57e4
HY
4379 n = (addr_hint - addr) / PAGE_SIZE;
4380 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4381 /* If target subpage in first half of huge page */
c79b57e4
HY
4382 base = 0;
4383 l = n;
c6ddfb6c 4384 /* Process subpages at the end of huge page */
c79b57e4
HY
4385 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4386 cond_resched();
c6ddfb6c 4387 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4388 }
4389 } else {
c6ddfb6c 4390 /* If target subpage in second half of huge page */
c79b57e4
HY
4391 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4392 l = pages_per_huge_page - n;
c6ddfb6c 4393 /* Process subpages at the begin of huge page */
c79b57e4
HY
4394 for (i = 0; i < base; i++) {
4395 cond_resched();
c6ddfb6c 4396 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4397 }
4398 }
4399 /*
c6ddfb6c
HY
4400 * Process remaining subpages in left-right-left-right pattern
4401 * towards the target subpage
c79b57e4
HY
4402 */
4403 for (i = 0; i < l; i++) {
4404 int left_idx = base + i;
4405 int right_idx = base + 2 * l - 1 - i;
4406
4407 cond_resched();
c6ddfb6c 4408 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4409 cond_resched();
c6ddfb6c 4410 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4411 }
4412}
4413
c6ddfb6c
HY
4414static void clear_gigantic_page(struct page *page,
4415 unsigned long addr,
4416 unsigned int pages_per_huge_page)
4417{
4418 int i;
4419 struct page *p = page;
4420
4421 might_sleep();
4422 for (i = 0; i < pages_per_huge_page;
4423 i++, p = mem_map_next(p, page, i)) {
4424 cond_resched();
4425 clear_user_highpage(p, addr + i * PAGE_SIZE);
4426 }
4427}
4428
4429static void clear_subpage(unsigned long addr, int idx, void *arg)
4430{
4431 struct page *page = arg;
4432
4433 clear_user_highpage(page + idx, addr);
4434}
4435
4436void clear_huge_page(struct page *page,
4437 unsigned long addr_hint, unsigned int pages_per_huge_page)
4438{
4439 unsigned long addr = addr_hint &
4440 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4441
4442 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4443 clear_gigantic_page(page, addr, pages_per_huge_page);
4444 return;
4445 }
4446
4447 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4448}
4449
47ad8475
AA
4450static void copy_user_gigantic_page(struct page *dst, struct page *src,
4451 unsigned long addr,
4452 struct vm_area_struct *vma,
4453 unsigned int pages_per_huge_page)
4454{
4455 int i;
4456 struct page *dst_base = dst;
4457 struct page *src_base = src;
4458
4459 for (i = 0; i < pages_per_huge_page; ) {
4460 cond_resched();
4461 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4462
4463 i++;
4464 dst = mem_map_next(dst, dst_base, i);
4465 src = mem_map_next(src, src_base, i);
4466 }
4467}
4468
c9f4cd71
HY
4469struct copy_subpage_arg {
4470 struct page *dst;
4471 struct page *src;
4472 struct vm_area_struct *vma;
4473};
4474
4475static void copy_subpage(unsigned long addr, int idx, void *arg)
4476{
4477 struct copy_subpage_arg *copy_arg = arg;
4478
4479 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4480 addr, copy_arg->vma);
4481}
4482
47ad8475 4483void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4484 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4485 unsigned int pages_per_huge_page)
4486{
c9f4cd71
HY
4487 unsigned long addr = addr_hint &
4488 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4489 struct copy_subpage_arg arg = {
4490 .dst = dst,
4491 .src = src,
4492 .vma = vma,
4493 };
47ad8475
AA
4494
4495 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4496 copy_user_gigantic_page(dst, src, addr, vma,
4497 pages_per_huge_page);
4498 return;
4499 }
4500
c9f4cd71 4501 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4502}
fa4d75c1
MK
4503
4504long copy_huge_page_from_user(struct page *dst_page,
4505 const void __user *usr_src,
810a56b9
MK
4506 unsigned int pages_per_huge_page,
4507 bool allow_pagefault)
fa4d75c1
MK
4508{
4509 void *src = (void *)usr_src;
4510 void *page_kaddr;
4511 unsigned long i, rc = 0;
4512 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4513
4514 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4515 if (allow_pagefault)
4516 page_kaddr = kmap(dst_page + i);
4517 else
4518 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4519 rc = copy_from_user(page_kaddr,
4520 (const void __user *)(src + i * PAGE_SIZE),
4521 PAGE_SIZE);
810a56b9
MK
4522 if (allow_pagefault)
4523 kunmap(dst_page + i);
4524 else
4525 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4526
4527 ret_val -= (PAGE_SIZE - rc);
4528 if (rc)
4529 break;
4530
4531 cond_resched();
4532 }
4533 return ret_val;
4534}
47ad8475 4535#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4536
40b64acd 4537#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4538
4539static struct kmem_cache *page_ptl_cachep;
4540
4541void __init ptlock_cache_init(void)
4542{
4543 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4544 SLAB_PANIC, NULL);
4545}
4546
539edb58 4547bool ptlock_alloc(struct page *page)
49076ec2
KS
4548{
4549 spinlock_t *ptl;
4550
b35f1819 4551 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4552 if (!ptl)
4553 return false;
539edb58 4554 page->ptl = ptl;
49076ec2
KS
4555 return true;
4556}
4557
539edb58 4558void ptlock_free(struct page *page)
49076ec2 4559{
b35f1819 4560 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4561}
4562#endif