]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - mm/memory.c
docs/core-api/mm: fix user memory accessors formatting
[mirror_ubuntu-eoan-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
5042db43 52#include <linux/memremap.h>
9a840895 53#include <linux/ksm.h>
1da177e4 54#include <linux/rmap.h>
b95f1b31 55#include <linux/export.h>
0ff92245 56#include <linux/delayacct.h>
1da177e4 57#include <linux/init.h>
01c8f1c4 58#include <linux/pfn_t.h>
edc79b2a 59#include <linux/writeback.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
3dc14741
HD
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
1da177e4 73
6952b61d 74#include <asm/io.h>
33a709b2 75#include <asm/mmu_context.h>
1da177e4 76#include <asm/pgalloc.h>
7c0f6ba6 77#include <linux/uaccess.h>
1da177e4
LT
78#include <asm/tlb.h>
79#include <asm/tlbflush.h>
80#include <asm/pgtable.h>
81
42b77728
JB
82#include "internal.h"
83
af27d940 84#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 85#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
86#endif
87
d41dee36 88#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
89/* use the per-pgdat data instead for discontigmem - mbligh */
90unsigned long max_mapnr;
1da177e4 91EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
92
93struct page *mem_map;
1da177e4
LT
94EXPORT_SYMBOL(mem_map);
95#endif
96
1da177e4
LT
97/*
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
103 */
166f61b9 104void *high_memory;
1da177e4 105EXPORT_SYMBOL(high_memory);
1da177e4 106
32a93233
IM
107/*
108 * Randomize the address space (stacks, mmaps, brk, etc.).
109 *
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
112 */
113int randomize_va_space __read_mostly =
114#ifdef CONFIG_COMPAT_BRK
115 1;
116#else
117 2;
118#endif
a62eaf15
AK
119
120static int __init disable_randmaps(char *s)
121{
122 randomize_va_space = 0;
9b41046c 123 return 1;
a62eaf15
AK
124}
125__setup("norandmaps", disable_randmaps);
126
62eede62 127unsigned long zero_pfn __read_mostly;
0b70068e
AB
128EXPORT_SYMBOL(zero_pfn);
129
166f61b9
TH
130unsigned long highest_memmap_pfn __read_mostly;
131
a13ea5b7
HD
132/*
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 */
135static int __init init_zero_pfn(void)
136{
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
139}
140core_initcall(init_zero_pfn);
a62eaf15 141
d559db08 142
34e55232
KH
143#if defined(SPLIT_RSS_COUNTING)
144
ea48cf78 145void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
146{
147 int i;
148
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
34e55232
KH
153 }
154 }
05af2e10 155 current->rss_stat.events = 0;
34e55232
KH
156}
157
158static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159{
160 struct task_struct *task = current;
161
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
166}
167#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170/* sync counter once per 64 page faults */
171#define TASK_RSS_EVENTS_THRESH (64)
172static void check_sync_rss_stat(struct task_struct *task)
173{
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 177 sync_mm_rss(task->mm);
34e55232 178}
9547d01b 179#else /* SPLIT_RSS_COUNTING */
34e55232
KH
180
181#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184static void check_sync_rss_stat(struct task_struct *task)
185{
186}
187
9547d01b
PZ
188#endif /* SPLIT_RSS_COUNTING */
189
1da177e4
LT
190/*
191 * Note: this doesn't free the actual pages themselves. That
192 * has been handled earlier when unmapping all the memory regions.
193 */
9e1b32ca
BH
194static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
195 unsigned long addr)
1da177e4 196{
2f569afd 197 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 198 pmd_clear(pmd);
9e1b32ca 199 pte_free_tlb(tlb, token, addr);
c4812909 200 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
201}
202
e0da382c
HD
203static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
204 unsigned long addr, unsigned long end,
205 unsigned long floor, unsigned long ceiling)
1da177e4
LT
206{
207 pmd_t *pmd;
208 unsigned long next;
e0da382c 209 unsigned long start;
1da177e4 210
e0da382c 211 start = addr;
1da177e4 212 pmd = pmd_offset(pud, addr);
1da177e4
LT
213 do {
214 next = pmd_addr_end(addr, end);
215 if (pmd_none_or_clear_bad(pmd))
216 continue;
9e1b32ca 217 free_pte_range(tlb, pmd, addr);
1da177e4
LT
218 } while (pmd++, addr = next, addr != end);
219
e0da382c
HD
220 start &= PUD_MASK;
221 if (start < floor)
222 return;
223 if (ceiling) {
224 ceiling &= PUD_MASK;
225 if (!ceiling)
226 return;
1da177e4 227 }
e0da382c
HD
228 if (end - 1 > ceiling - 1)
229 return;
230
231 pmd = pmd_offset(pud, start);
232 pud_clear(pud);
9e1b32ca 233 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 234 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
235}
236
c2febafc 237static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
238 unsigned long addr, unsigned long end,
239 unsigned long floor, unsigned long ceiling)
1da177e4
LT
240{
241 pud_t *pud;
242 unsigned long next;
e0da382c 243 unsigned long start;
1da177e4 244
e0da382c 245 start = addr;
c2febafc 246 pud = pud_offset(p4d, addr);
1da177e4
LT
247 do {
248 next = pud_addr_end(addr, end);
249 if (pud_none_or_clear_bad(pud))
250 continue;
e0da382c 251 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
252 } while (pud++, addr = next, addr != end);
253
c2febafc
KS
254 start &= P4D_MASK;
255 if (start < floor)
256 return;
257 if (ceiling) {
258 ceiling &= P4D_MASK;
259 if (!ceiling)
260 return;
261 }
262 if (end - 1 > ceiling - 1)
263 return;
264
265 pud = pud_offset(p4d, start);
266 p4d_clear(p4d);
267 pud_free_tlb(tlb, pud, start);
b4e98d9a 268 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
269}
270
271static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
272 unsigned long addr, unsigned long end,
273 unsigned long floor, unsigned long ceiling)
274{
275 p4d_t *p4d;
276 unsigned long next;
277 unsigned long start;
278
279 start = addr;
280 p4d = p4d_offset(pgd, addr);
281 do {
282 next = p4d_addr_end(addr, end);
283 if (p4d_none_or_clear_bad(p4d))
284 continue;
285 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
286 } while (p4d++, addr = next, addr != end);
287
e0da382c
HD
288 start &= PGDIR_MASK;
289 if (start < floor)
290 return;
291 if (ceiling) {
292 ceiling &= PGDIR_MASK;
293 if (!ceiling)
294 return;
1da177e4 295 }
e0da382c
HD
296 if (end - 1 > ceiling - 1)
297 return;
298
c2febafc 299 p4d = p4d_offset(pgd, start);
e0da382c 300 pgd_clear(pgd);
c2febafc 301 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
302}
303
304/*
e0da382c 305 * This function frees user-level page tables of a process.
1da177e4 306 */
42b77728 307void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
308 unsigned long addr, unsigned long end,
309 unsigned long floor, unsigned long ceiling)
1da177e4
LT
310{
311 pgd_t *pgd;
312 unsigned long next;
e0da382c
HD
313
314 /*
315 * The next few lines have given us lots of grief...
316 *
317 * Why are we testing PMD* at this top level? Because often
318 * there will be no work to do at all, and we'd prefer not to
319 * go all the way down to the bottom just to discover that.
320 *
321 * Why all these "- 1"s? Because 0 represents both the bottom
322 * of the address space and the top of it (using -1 for the
323 * top wouldn't help much: the masks would do the wrong thing).
324 * The rule is that addr 0 and floor 0 refer to the bottom of
325 * the address space, but end 0 and ceiling 0 refer to the top
326 * Comparisons need to use "end - 1" and "ceiling - 1" (though
327 * that end 0 case should be mythical).
328 *
329 * Wherever addr is brought up or ceiling brought down, we must
330 * be careful to reject "the opposite 0" before it confuses the
331 * subsequent tests. But what about where end is brought down
332 * by PMD_SIZE below? no, end can't go down to 0 there.
333 *
334 * Whereas we round start (addr) and ceiling down, by different
335 * masks at different levels, in order to test whether a table
336 * now has no other vmas using it, so can be freed, we don't
337 * bother to round floor or end up - the tests don't need that.
338 */
1da177e4 339
e0da382c
HD
340 addr &= PMD_MASK;
341 if (addr < floor) {
342 addr += PMD_SIZE;
343 if (!addr)
344 return;
345 }
346 if (ceiling) {
347 ceiling &= PMD_MASK;
348 if (!ceiling)
349 return;
350 }
351 if (end - 1 > ceiling - 1)
352 end -= PMD_SIZE;
353 if (addr > end - 1)
354 return;
07e32661
AK
355 /*
356 * We add page table cache pages with PAGE_SIZE,
357 * (see pte_free_tlb()), flush the tlb if we need
358 */
359 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 360 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
361 do {
362 next = pgd_addr_end(addr, end);
363 if (pgd_none_or_clear_bad(pgd))
364 continue;
c2febafc 365 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 366 } while (pgd++, addr = next, addr != end);
e0da382c
HD
367}
368
42b77728 369void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 370 unsigned long floor, unsigned long ceiling)
e0da382c
HD
371{
372 while (vma) {
373 struct vm_area_struct *next = vma->vm_next;
374 unsigned long addr = vma->vm_start;
375
8f4f8c16 376 /*
25d9e2d1 377 * Hide vma from rmap and truncate_pagecache before freeing
378 * pgtables
8f4f8c16 379 */
5beb4930 380 unlink_anon_vmas(vma);
8f4f8c16
HD
381 unlink_file_vma(vma);
382
9da61aef 383 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 384 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 385 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
386 } else {
387 /*
388 * Optimization: gather nearby vmas into one call down
389 */
390 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 391 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
392 vma = next;
393 next = vma->vm_next;
5beb4930 394 unlink_anon_vmas(vma);
8f4f8c16 395 unlink_file_vma(vma);
3bf5ee95
HD
396 }
397 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 398 floor, next ? next->vm_start : ceiling);
3bf5ee95 399 }
e0da382c
HD
400 vma = next;
401 }
1da177e4
LT
402}
403
4cf58924 404int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 405{
c4088ebd 406 spinlock_t *ptl;
4cf58924 407 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
408 if (!new)
409 return -ENOMEM;
410
362a61ad
NP
411 /*
412 * Ensure all pte setup (eg. pte page lock and page clearing) are
413 * visible before the pte is made visible to other CPUs by being
414 * put into page tables.
415 *
416 * The other side of the story is the pointer chasing in the page
417 * table walking code (when walking the page table without locking;
418 * ie. most of the time). Fortunately, these data accesses consist
419 * of a chain of data-dependent loads, meaning most CPUs (alpha
420 * being the notable exception) will already guarantee loads are
421 * seen in-order. See the alpha page table accessors for the
422 * smp_read_barrier_depends() barriers in page table walking code.
423 */
424 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425
c4088ebd 426 ptl = pmd_lock(mm, pmd);
8ac1f832 427 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 428 mm_inc_nr_ptes(mm);
1da177e4 429 pmd_populate(mm, pmd, new);
2f569afd 430 new = NULL;
4b471e88 431 }
c4088ebd 432 spin_unlock(ptl);
2f569afd
MS
433 if (new)
434 pte_free(mm, new);
1bb3630e 435 return 0;
1da177e4
LT
436}
437
4cf58924 438int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 439{
4cf58924 440 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
441 if (!new)
442 return -ENOMEM;
443
362a61ad
NP
444 smp_wmb(); /* See comment in __pte_alloc */
445
1bb3630e 446 spin_lock(&init_mm.page_table_lock);
8ac1f832 447 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 448 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 449 new = NULL;
4b471e88 450 }
1bb3630e 451 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
452 if (new)
453 pte_free_kernel(&init_mm, new);
1bb3630e 454 return 0;
1da177e4
LT
455}
456
d559db08
KH
457static inline void init_rss_vec(int *rss)
458{
459 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
460}
461
462static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 463{
d559db08
KH
464 int i;
465
34e55232 466 if (current->mm == mm)
05af2e10 467 sync_mm_rss(mm);
d559db08
KH
468 for (i = 0; i < NR_MM_COUNTERS; i++)
469 if (rss[i])
470 add_mm_counter(mm, i, rss[i]);
ae859762
HD
471}
472
b5810039 473/*
6aab341e
LT
474 * This function is called to print an error when a bad pte
475 * is found. For example, we might have a PFN-mapped pte in
476 * a region that doesn't allow it.
b5810039
NP
477 *
478 * The calling function must still handle the error.
479 */
3dc14741
HD
480static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
481 pte_t pte, struct page *page)
b5810039 482{
3dc14741 483 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
484 p4d_t *p4d = p4d_offset(pgd, addr);
485 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
486 pmd_t *pmd = pmd_offset(pud, addr);
487 struct address_space *mapping;
488 pgoff_t index;
d936cf9b
HD
489 static unsigned long resume;
490 static unsigned long nr_shown;
491 static unsigned long nr_unshown;
492
493 /*
494 * Allow a burst of 60 reports, then keep quiet for that minute;
495 * or allow a steady drip of one report per second.
496 */
497 if (nr_shown == 60) {
498 if (time_before(jiffies, resume)) {
499 nr_unshown++;
500 return;
501 }
502 if (nr_unshown) {
1170532b
JP
503 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
504 nr_unshown);
d936cf9b
HD
505 nr_unshown = 0;
506 }
507 nr_shown = 0;
508 }
509 if (nr_shown++ == 0)
510 resume = jiffies + 60 * HZ;
3dc14741
HD
511
512 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
513 index = linear_page_index(vma, addr);
514
1170532b
JP
515 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
516 current->comm,
517 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 518 if (page)
f0b791a3 519 dump_page(page, "bad pte");
1170532b
JP
520 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
521 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
2682582a
KK
522 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
523 vma->vm_file,
524 vma->vm_ops ? vma->vm_ops->fault : NULL,
525 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
526 mapping ? mapping->a_ops->readpage : NULL);
b5810039 527 dump_stack();
373d4d09 528 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
529}
530
ee498ed7 531/*
7e675137 532 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 533 *
7e675137
NP
534 * "Special" mappings do not wish to be associated with a "struct page" (either
535 * it doesn't exist, or it exists but they don't want to touch it). In this
536 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 537 *
7e675137
NP
538 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
539 * pte bit, in which case this function is trivial. Secondly, an architecture
540 * may not have a spare pte bit, which requires a more complicated scheme,
541 * described below.
542 *
543 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
544 * special mapping (even if there are underlying and valid "struct pages").
545 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 546 *
b379d790
JH
547 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
548 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
549 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
550 * mapping will always honor the rule
6aab341e
LT
551 *
552 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553 *
7e675137
NP
554 * And for normal mappings this is false.
555 *
556 * This restricts such mappings to be a linear translation from virtual address
557 * to pfn. To get around this restriction, we allow arbitrary mappings so long
558 * as the vma is not a COW mapping; in that case, we know that all ptes are
559 * special (because none can have been COWed).
b379d790 560 *
b379d790 561 *
7e675137 562 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
563 *
564 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
565 * page" backing, however the difference is that _all_ pages with a struct
566 * page (that is, those where pfn_valid is true) are refcounted and considered
567 * normal pages by the VM. The disadvantage is that pages are refcounted
568 * (which can be slower and simply not an option for some PFNMAP users). The
569 * advantage is that we don't have to follow the strict linearity rule of
570 * PFNMAP mappings in order to support COWable mappings.
571 *
ee498ed7 572 */
df6ad698
JG
573struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
574 pte_t pte, bool with_public_device)
ee498ed7 575{
22b31eec 576 unsigned long pfn = pte_pfn(pte);
7e675137 577
00b3a331 578 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 579 if (likely(!pte_special(pte)))
22b31eec 580 goto check_pfn;
667a0a06
DV
581 if (vma->vm_ops && vma->vm_ops->find_special_page)
582 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
583 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
584 return NULL;
df6ad698
JG
585 if (is_zero_pfn(pfn))
586 return NULL;
587
588 /*
589 * Device public pages are special pages (they are ZONE_DEVICE
590 * pages but different from persistent memory). They behave
591 * allmost like normal pages. The difference is that they are
592 * not on the lru and thus should never be involve with any-
593 * thing that involve lru manipulation (mlock, numa balancing,
594 * ...).
595 *
596 * This is why we still want to return NULL for such page from
597 * vm_normal_page() so that we do not have to special case all
598 * call site of vm_normal_page().
599 */
7d790d2d 600 if (likely(pfn <= highest_memmap_pfn)) {
df6ad698
JG
601 struct page *page = pfn_to_page(pfn);
602
603 if (is_device_public_page(page)) {
604 if (with_public_device)
605 return page;
606 return NULL;
607 }
608 }
e1fb4a08
DJ
609
610 if (pte_devmap(pte))
611 return NULL;
612
df6ad698 613 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
614 return NULL;
615 }
616
00b3a331 617 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 618
b379d790
JH
619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 if (vma->vm_flags & VM_MIXEDMAP) {
621 if (!pfn_valid(pfn))
622 return NULL;
623 goto out;
624 } else {
7e675137
NP
625 unsigned long off;
626 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
627 if (pfn == vma->vm_pgoff + off)
628 return NULL;
629 if (!is_cow_mapping(vma->vm_flags))
630 return NULL;
631 }
6aab341e
LT
632 }
633
b38af472
HD
634 if (is_zero_pfn(pfn))
635 return NULL;
00b3a331 636
22b31eec
HD
637check_pfn:
638 if (unlikely(pfn > highest_memmap_pfn)) {
639 print_bad_pte(vma, addr, pte, NULL);
640 return NULL;
641 }
6aab341e
LT
642
643 /*
7e675137 644 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 645 * eg. VDSO mappings can cause them to exist.
6aab341e 646 */
b379d790 647out:
6aab341e 648 return pfn_to_page(pfn);
ee498ed7
HD
649}
650
28093f9f
GS
651#ifdef CONFIG_TRANSPARENT_HUGEPAGE
652struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
653 pmd_t pmd)
654{
655 unsigned long pfn = pmd_pfn(pmd);
656
657 /*
658 * There is no pmd_special() but there may be special pmds, e.g.
659 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 660 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
661 */
662 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
663 if (vma->vm_flags & VM_MIXEDMAP) {
664 if (!pfn_valid(pfn))
665 return NULL;
666 goto out;
667 } else {
668 unsigned long off;
669 off = (addr - vma->vm_start) >> PAGE_SHIFT;
670 if (pfn == vma->vm_pgoff + off)
671 return NULL;
672 if (!is_cow_mapping(vma->vm_flags))
673 return NULL;
674 }
675 }
676
e1fb4a08
DJ
677 if (pmd_devmap(pmd))
678 return NULL;
28093f9f
GS
679 if (is_zero_pfn(pfn))
680 return NULL;
681 if (unlikely(pfn > highest_memmap_pfn))
682 return NULL;
683
684 /*
685 * NOTE! We still have PageReserved() pages in the page tables.
686 * eg. VDSO mappings can cause them to exist.
687 */
688out:
689 return pfn_to_page(pfn);
690}
691#endif
692
1da177e4
LT
693/*
694 * copy one vm_area from one task to the other. Assumes the page tables
695 * already present in the new task to be cleared in the whole range
696 * covered by this vma.
1da177e4
LT
697 */
698
570a335b 699static inline unsigned long
1da177e4 700copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 701 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 702 unsigned long addr, int *rss)
1da177e4 703{
b5810039 704 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
705 pte_t pte = *src_pte;
706 struct page *page;
1da177e4
LT
707
708 /* pte contains position in swap or file, so copy. */
709 if (unlikely(!pte_present(pte))) {
0661a336
KS
710 swp_entry_t entry = pte_to_swp_entry(pte);
711
712 if (likely(!non_swap_entry(entry))) {
713 if (swap_duplicate(entry) < 0)
714 return entry.val;
715
716 /* make sure dst_mm is on swapoff's mmlist. */
717 if (unlikely(list_empty(&dst_mm->mmlist))) {
718 spin_lock(&mmlist_lock);
719 if (list_empty(&dst_mm->mmlist))
720 list_add(&dst_mm->mmlist,
721 &src_mm->mmlist);
722 spin_unlock(&mmlist_lock);
723 }
724 rss[MM_SWAPENTS]++;
725 } else if (is_migration_entry(entry)) {
726 page = migration_entry_to_page(entry);
727
eca56ff9 728 rss[mm_counter(page)]++;
0661a336
KS
729
730 if (is_write_migration_entry(entry) &&
731 is_cow_mapping(vm_flags)) {
732 /*
733 * COW mappings require pages in both
734 * parent and child to be set to read.
735 */
736 make_migration_entry_read(&entry);
737 pte = swp_entry_to_pte(entry);
738 if (pte_swp_soft_dirty(*src_pte))
739 pte = pte_swp_mksoft_dirty(pte);
740 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 741 }
5042db43
JG
742 } else if (is_device_private_entry(entry)) {
743 page = device_private_entry_to_page(entry);
744
745 /*
746 * Update rss count even for unaddressable pages, as
747 * they should treated just like normal pages in this
748 * respect.
749 *
750 * We will likely want to have some new rss counters
751 * for unaddressable pages, at some point. But for now
752 * keep things as they are.
753 */
754 get_page(page);
755 rss[mm_counter(page)]++;
756 page_dup_rmap(page, false);
757
758 /*
759 * We do not preserve soft-dirty information, because so
760 * far, checkpoint/restore is the only feature that
761 * requires that. And checkpoint/restore does not work
762 * when a device driver is involved (you cannot easily
763 * save and restore device driver state).
764 */
765 if (is_write_device_private_entry(entry) &&
766 is_cow_mapping(vm_flags)) {
767 make_device_private_entry_read(&entry);
768 pte = swp_entry_to_pte(entry);
769 set_pte_at(src_mm, addr, src_pte, pte);
770 }
1da177e4 771 }
ae859762 772 goto out_set_pte;
1da177e4
LT
773 }
774
1da177e4
LT
775 /*
776 * If it's a COW mapping, write protect it both
777 * in the parent and the child
778 */
1b2de5d0 779 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 780 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 781 pte = pte_wrprotect(pte);
1da177e4
LT
782 }
783
784 /*
785 * If it's a shared mapping, mark it clean in
786 * the child
787 */
788 if (vm_flags & VM_SHARED)
789 pte = pte_mkclean(pte);
790 pte = pte_mkold(pte);
6aab341e
LT
791
792 page = vm_normal_page(vma, addr, pte);
793 if (page) {
794 get_page(page);
53f9263b 795 page_dup_rmap(page, false);
eca56ff9 796 rss[mm_counter(page)]++;
df6ad698
JG
797 } else if (pte_devmap(pte)) {
798 page = pte_page(pte);
799
800 /*
801 * Cache coherent device memory behave like regular page and
802 * not like persistent memory page. For more informations see
803 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804 */
805 if (is_device_public_page(page)) {
806 get_page(page);
807 page_dup_rmap(page, false);
808 rss[mm_counter(page)]++;
809 }
6aab341e 810 }
ae859762
HD
811
812out_set_pte:
813 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 814 return 0;
1da177e4
LT
815}
816
21bda264 817static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
818 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
819 unsigned long addr, unsigned long end)
1da177e4 820{
c36987e2 821 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 822 pte_t *src_pte, *dst_pte;
c74df32c 823 spinlock_t *src_ptl, *dst_ptl;
e040f218 824 int progress = 0;
d559db08 825 int rss[NR_MM_COUNTERS];
570a335b 826 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
827
828again:
d559db08
KH
829 init_rss_vec(rss);
830
c74df32c 831 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
832 if (!dst_pte)
833 return -ENOMEM;
ece0e2b6 834 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 835 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 836 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
837 orig_src_pte = src_pte;
838 orig_dst_pte = dst_pte;
6606c3e0 839 arch_enter_lazy_mmu_mode();
1da177e4 840
1da177e4
LT
841 do {
842 /*
843 * We are holding two locks at this point - either of them
844 * could generate latencies in another task on another CPU.
845 */
e040f218
HD
846 if (progress >= 32) {
847 progress = 0;
848 if (need_resched() ||
95c354fe 849 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
850 break;
851 }
1da177e4
LT
852 if (pte_none(*src_pte)) {
853 progress++;
854 continue;
855 }
570a335b
HD
856 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
857 vma, addr, rss);
858 if (entry.val)
859 break;
1da177e4
LT
860 progress += 8;
861 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 862
6606c3e0 863 arch_leave_lazy_mmu_mode();
c74df32c 864 spin_unlock(src_ptl);
ece0e2b6 865 pte_unmap(orig_src_pte);
d559db08 866 add_mm_rss_vec(dst_mm, rss);
c36987e2 867 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 868 cond_resched();
570a335b
HD
869
870 if (entry.val) {
871 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
872 return -ENOMEM;
873 progress = 0;
874 }
1da177e4
LT
875 if (addr != end)
876 goto again;
877 return 0;
878}
879
880static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
881 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
882 unsigned long addr, unsigned long end)
883{
884 pmd_t *src_pmd, *dst_pmd;
885 unsigned long next;
886
887 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
888 if (!dst_pmd)
889 return -ENOMEM;
890 src_pmd = pmd_offset(src_pud, addr);
891 do {
892 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
893 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
894 || pmd_devmap(*src_pmd)) {
71e3aac0 895 int err;
a00cc7d9 896 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
897 err = copy_huge_pmd(dst_mm, src_mm,
898 dst_pmd, src_pmd, addr, vma);
899 if (err == -ENOMEM)
900 return -ENOMEM;
901 if (!err)
902 continue;
903 /* fall through */
904 }
1da177e4
LT
905 if (pmd_none_or_clear_bad(src_pmd))
906 continue;
907 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
908 vma, addr, next))
909 return -ENOMEM;
910 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
911 return 0;
912}
913
914static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 915 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
916 unsigned long addr, unsigned long end)
917{
918 pud_t *src_pud, *dst_pud;
919 unsigned long next;
920
c2febafc 921 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
922 if (!dst_pud)
923 return -ENOMEM;
c2febafc 924 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
925 do {
926 next = pud_addr_end(addr, end);
a00cc7d9
MW
927 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
928 int err;
929
930 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
931 err = copy_huge_pud(dst_mm, src_mm,
932 dst_pud, src_pud, addr, vma);
933 if (err == -ENOMEM)
934 return -ENOMEM;
935 if (!err)
936 continue;
937 /* fall through */
938 }
1da177e4
LT
939 if (pud_none_or_clear_bad(src_pud))
940 continue;
941 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
942 vma, addr, next))
943 return -ENOMEM;
944 } while (dst_pud++, src_pud++, addr = next, addr != end);
945 return 0;
946}
947
c2febafc
KS
948static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
949 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
950 unsigned long addr, unsigned long end)
951{
952 p4d_t *src_p4d, *dst_p4d;
953 unsigned long next;
954
955 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
956 if (!dst_p4d)
957 return -ENOMEM;
958 src_p4d = p4d_offset(src_pgd, addr);
959 do {
960 next = p4d_addr_end(addr, end);
961 if (p4d_none_or_clear_bad(src_p4d))
962 continue;
963 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
964 vma, addr, next))
965 return -ENOMEM;
966 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
967 return 0;
968}
969
1da177e4
LT
970int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971 struct vm_area_struct *vma)
972{
973 pgd_t *src_pgd, *dst_pgd;
974 unsigned long next;
975 unsigned long addr = vma->vm_start;
976 unsigned long end = vma->vm_end;
ac46d4f3 977 struct mmu_notifier_range range;
2ec74c3e 978 bool is_cow;
cddb8a5c 979 int ret;
1da177e4 980
d992895b
NP
981 /*
982 * Don't copy ptes where a page fault will fill them correctly.
983 * Fork becomes much lighter when there are big shared or private
984 * readonly mappings. The tradeoff is that copy_page_range is more
985 * efficient than faulting.
986 */
0661a336
KS
987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988 !vma->anon_vma)
989 return 0;
d992895b 990
1da177e4
LT
991 if (is_vm_hugetlb_page(vma))
992 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993
b3b9c293 994 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 995 /*
996 * We do not free on error cases below as remove_vma
997 * gets called on error from higher level routine
998 */
5180da41 999 ret = track_pfn_copy(vma);
2ab64037 1000 if (ret)
1001 return ret;
1002 }
1003
cddb8a5c
AA
1004 /*
1005 * We need to invalidate the secondary MMU mappings only when
1006 * there could be a permission downgrade on the ptes of the
1007 * parent mm. And a permission downgrade will only happen if
1008 * is_cow_mapping() returns true.
1009 */
2ec74c3e 1010 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
1011
1012 if (is_cow) {
1013 mmu_notifier_range_init(&range, src_mm, addr, end);
1014 mmu_notifier_invalidate_range_start(&range);
1015 }
cddb8a5c
AA
1016
1017 ret = 0;
1da177e4
LT
1018 dst_pgd = pgd_offset(dst_mm, addr);
1019 src_pgd = pgd_offset(src_mm, addr);
1020 do {
1021 next = pgd_addr_end(addr, end);
1022 if (pgd_none_or_clear_bad(src_pgd))
1023 continue;
c2febafc 1024 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1025 vma, addr, next))) {
1026 ret = -ENOMEM;
1027 break;
1028 }
1da177e4 1029 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1030
2ec74c3e 1031 if (is_cow)
ac46d4f3 1032 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1033 return ret;
1da177e4
LT
1034}
1035
51c6f666 1036static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1037 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1038 unsigned long addr, unsigned long end,
97a89413 1039 struct zap_details *details)
1da177e4 1040{
b5810039 1041 struct mm_struct *mm = tlb->mm;
d16dfc55 1042 int force_flush = 0;
d559db08 1043 int rss[NR_MM_COUNTERS];
97a89413 1044 spinlock_t *ptl;
5f1a1907 1045 pte_t *start_pte;
97a89413 1046 pte_t *pte;
8a5f14a2 1047 swp_entry_t entry;
d559db08 1048
07e32661 1049 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1050again:
e303297e 1051 init_rss_vec(rss);
5f1a1907
SR
1052 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1053 pte = start_pte;
3ea27719 1054 flush_tlb_batched_pending(mm);
6606c3e0 1055 arch_enter_lazy_mmu_mode();
1da177e4
LT
1056 do {
1057 pte_t ptent = *pte;
166f61b9 1058 if (pte_none(ptent))
1da177e4 1059 continue;
6f5e6b9e 1060
1da177e4 1061 if (pte_present(ptent)) {
ee498ed7 1062 struct page *page;
51c6f666 1063
df6ad698 1064 page = _vm_normal_page(vma, addr, ptent, true);
1da177e4
LT
1065 if (unlikely(details) && page) {
1066 /*
1067 * unmap_shared_mapping_pages() wants to
1068 * invalidate cache without truncating:
1069 * unmap shared but keep private pages.
1070 */
1071 if (details->check_mapping &&
800d8c63 1072 details->check_mapping != page_rmapping(page))
1da177e4 1073 continue;
1da177e4 1074 }
b5810039 1075 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1076 tlb->fullmm);
1da177e4
LT
1077 tlb_remove_tlb_entry(tlb, pte, addr);
1078 if (unlikely(!page))
1079 continue;
eca56ff9
JM
1080
1081 if (!PageAnon(page)) {
1cf35d47
LT
1082 if (pte_dirty(ptent)) {
1083 force_flush = 1;
6237bcd9 1084 set_page_dirty(page);
1cf35d47 1085 }
4917e5d0 1086 if (pte_young(ptent) &&
64363aad 1087 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1088 mark_page_accessed(page);
6237bcd9 1089 }
eca56ff9 1090 rss[mm_counter(page)]--;
d281ee61 1091 page_remove_rmap(page, false);
3dc14741
HD
1092 if (unlikely(page_mapcount(page) < 0))
1093 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1094 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1095 force_flush = 1;
ce9ec37b 1096 addr += PAGE_SIZE;
d16dfc55 1097 break;
1cf35d47 1098 }
1da177e4
LT
1099 continue;
1100 }
5042db43
JG
1101
1102 entry = pte_to_swp_entry(ptent);
1103 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1104 struct page *page = device_private_entry_to_page(entry);
1105
1106 if (unlikely(details && details->check_mapping)) {
1107 /*
1108 * unmap_shared_mapping_pages() wants to
1109 * invalidate cache without truncating:
1110 * unmap shared but keep private pages.
1111 */
1112 if (details->check_mapping !=
1113 page_rmapping(page))
1114 continue;
1115 }
1116
1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118 rss[mm_counter(page)]--;
1119 page_remove_rmap(page, false);
1120 put_page(page);
1121 continue;
1122 }
1123
3e8715fd
KS
1124 /* If details->check_mapping, we leave swap entries. */
1125 if (unlikely(details))
1da177e4 1126 continue;
b084d435 1127
8a5f14a2
KS
1128 entry = pte_to_swp_entry(ptent);
1129 if (!non_swap_entry(entry))
1130 rss[MM_SWAPENTS]--;
1131 else if (is_migration_entry(entry)) {
1132 struct page *page;
9f9f1acd 1133
8a5f14a2 1134 page = migration_entry_to_page(entry);
eca56ff9 1135 rss[mm_counter(page)]--;
b084d435 1136 }
8a5f14a2
KS
1137 if (unlikely(!free_swap_and_cache(entry)))
1138 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1140 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1141
d559db08 1142 add_mm_rss_vec(mm, rss);
6606c3e0 1143 arch_leave_lazy_mmu_mode();
51c6f666 1144
1cf35d47 1145 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1146 if (force_flush)
1cf35d47 1147 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1148 pte_unmap_unlock(start_pte, ptl);
1149
1150 /*
1151 * If we forced a TLB flush (either due to running out of
1152 * batch buffers or because we needed to flush dirty TLB
1153 * entries before releasing the ptl), free the batched
1154 * memory too. Restart if we didn't do everything.
1155 */
1156 if (force_flush) {
1157 force_flush = 0;
1158 tlb_flush_mmu_free(tlb);
2b047252 1159 if (addr != end)
d16dfc55
PZ
1160 goto again;
1161 }
1162
51c6f666 1163 return addr;
1da177e4
LT
1164}
1165
51c6f666 1166static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1167 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1168 unsigned long addr, unsigned long end,
97a89413 1169 struct zap_details *details)
1da177e4
LT
1170{
1171 pmd_t *pmd;
1172 unsigned long next;
1173
1174 pmd = pmd_offset(pud, addr);
1175 do {
1176 next = pmd_addr_end(addr, end);
84c3fc4e 1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1178 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1179 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1180 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1181 goto next;
71e3aac0
AA
1182 /* fall through */
1183 }
1a5a9906
AA
1184 /*
1185 * Here there can be other concurrent MADV_DONTNEED or
1186 * trans huge page faults running, and if the pmd is
1187 * none or trans huge it can change under us. This is
1188 * because MADV_DONTNEED holds the mmap_sem in read
1189 * mode.
1190 */
1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 goto next;
97a89413 1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1194next:
97a89413
PZ
1195 cond_resched();
1196 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1197
1198 return addr;
1da177e4
LT
1199}
1200
51c6f666 1201static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1202 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1203 unsigned long addr, unsigned long end,
97a89413 1204 struct zap_details *details)
1da177e4
LT
1205{
1206 pud_t *pud;
1207 unsigned long next;
1208
c2febafc 1209 pud = pud_offset(p4d, addr);
1da177e4
LT
1210 do {
1211 next = pud_addr_end(addr, end);
a00cc7d9
MW
1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 if (next - addr != HPAGE_PUD_SIZE) {
1214 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1215 split_huge_pud(vma, pud, addr);
1216 } else if (zap_huge_pud(tlb, vma, pud, addr))
1217 goto next;
1218 /* fall through */
1219 }
97a89413 1220 if (pud_none_or_clear_bad(pud))
1da177e4 1221 continue;
97a89413 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1223next:
1224 cond_resched();
97a89413 1225 } while (pud++, addr = next, addr != end);
51c6f666
RH
1226
1227 return addr;
1da177e4
LT
1228}
1229
c2febafc
KS
1230static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 struct vm_area_struct *vma, pgd_t *pgd,
1232 unsigned long addr, unsigned long end,
1233 struct zap_details *details)
1234{
1235 p4d_t *p4d;
1236 unsigned long next;
1237
1238 p4d = p4d_offset(pgd, addr);
1239 do {
1240 next = p4d_addr_end(addr, end);
1241 if (p4d_none_or_clear_bad(p4d))
1242 continue;
1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 } while (p4d++, addr = next, addr != end);
1245
1246 return addr;
1247}
1248
aac45363 1249void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1250 struct vm_area_struct *vma,
1251 unsigned long addr, unsigned long end,
1252 struct zap_details *details)
1da177e4
LT
1253{
1254 pgd_t *pgd;
1255 unsigned long next;
1256
1da177e4
LT
1257 BUG_ON(addr >= end);
1258 tlb_start_vma(tlb, vma);
1259 pgd = pgd_offset(vma->vm_mm, addr);
1260 do {
1261 next = pgd_addr_end(addr, end);
97a89413 1262 if (pgd_none_or_clear_bad(pgd))
1da177e4 1263 continue;
c2febafc 1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1265 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1266 tlb_end_vma(tlb, vma);
1267}
51c6f666 1268
f5cc4eef
AV
1269
1270static void unmap_single_vma(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1272 unsigned long end_addr,
f5cc4eef
AV
1273 struct zap_details *details)
1274{
1275 unsigned long start = max(vma->vm_start, start_addr);
1276 unsigned long end;
1277
1278 if (start >= vma->vm_end)
1279 return;
1280 end = min(vma->vm_end, end_addr);
1281 if (end <= vma->vm_start)
1282 return;
1283
cbc91f71
SD
1284 if (vma->vm_file)
1285 uprobe_munmap(vma, start, end);
1286
b3b9c293 1287 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1288 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1289
1290 if (start != end) {
1291 if (unlikely(is_vm_hugetlb_page(vma))) {
1292 /*
1293 * It is undesirable to test vma->vm_file as it
1294 * should be non-null for valid hugetlb area.
1295 * However, vm_file will be NULL in the error
7aa6b4ad 1296 * cleanup path of mmap_region. When
f5cc4eef 1297 * hugetlbfs ->mmap method fails,
7aa6b4ad 1298 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1299 * before calling this function to clean up.
1300 * Since no pte has actually been setup, it is
1301 * safe to do nothing in this case.
1302 */
24669e58 1303 if (vma->vm_file) {
83cde9e8 1304 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1306 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1307 }
f5cc4eef
AV
1308 } else
1309 unmap_page_range(tlb, vma, start, end, details);
1310 }
1da177e4
LT
1311}
1312
1da177e4
LT
1313/**
1314 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1315 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1316 * @vma: the starting vma
1317 * @start_addr: virtual address at which to start unmapping
1318 * @end_addr: virtual address at which to end unmapping
1da177e4 1319 *
508034a3 1320 * Unmap all pages in the vma list.
1da177e4 1321 *
1da177e4
LT
1322 * Only addresses between `start' and `end' will be unmapped.
1323 *
1324 * The VMA list must be sorted in ascending virtual address order.
1325 *
1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327 * range after unmap_vmas() returns. So the only responsibility here is to
1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329 * drops the lock and schedules.
1330 */
6e8bb019 1331void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1332 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1333 unsigned long end_addr)
1da177e4 1334{
ac46d4f3 1335 struct mmu_notifier_range range;
1da177e4 1336
ac46d4f3
JG
1337 mmu_notifier_range_init(&range, vma->vm_mm, start_addr, end_addr);
1338 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1339 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1340 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1341 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1342}
1343
1344/**
1345 * zap_page_range - remove user pages in a given range
1346 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1347 * @start: starting address of pages to zap
1da177e4 1348 * @size: number of bytes to zap
f5cc4eef
AV
1349 *
1350 * Caller must protect the VMA list
1da177e4 1351 */
7e027b14 1352void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1353 unsigned long size)
1da177e4 1354{
ac46d4f3 1355 struct mmu_notifier_range range;
d16dfc55 1356 struct mmu_gather tlb;
1da177e4 1357
1da177e4 1358 lru_add_drain();
ac46d4f3
JG
1359 mmu_notifier_range_init(&range, vma->vm_mm, start, start + size);
1360 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1361 update_hiwater_rss(vma->vm_mm);
1362 mmu_notifier_invalidate_range_start(&range);
1363 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1364 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1365 mmu_notifier_invalidate_range_end(&range);
1366 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1367}
1368
f5cc4eef
AV
1369/**
1370 * zap_page_range_single - remove user pages in a given range
1371 * @vma: vm_area_struct holding the applicable pages
1372 * @address: starting address of pages to zap
1373 * @size: number of bytes to zap
8a5f14a2 1374 * @details: details of shared cache invalidation
f5cc4eef
AV
1375 *
1376 * The range must fit into one VMA.
1da177e4 1377 */
f5cc4eef 1378static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1379 unsigned long size, struct zap_details *details)
1380{
ac46d4f3 1381 struct mmu_notifier_range range;
d16dfc55 1382 struct mmu_gather tlb;
1da177e4 1383
1da177e4 1384 lru_add_drain();
ac46d4f3
JG
1385 mmu_notifier_range_init(&range, vma->vm_mm, address, address + size);
1386 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1387 update_hiwater_rss(vma->vm_mm);
1388 mmu_notifier_invalidate_range_start(&range);
1389 unmap_single_vma(&tlb, vma, address, range.end, details);
1390 mmu_notifier_invalidate_range_end(&range);
1391 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1392}
1393
c627f9cc
JS
1394/**
1395 * zap_vma_ptes - remove ptes mapping the vma
1396 * @vma: vm_area_struct holding ptes to be zapped
1397 * @address: starting address of pages to zap
1398 * @size: number of bytes to zap
1399 *
1400 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1401 *
1402 * The entire address range must be fully contained within the vma.
1403 *
c627f9cc 1404 */
27d036e3 1405void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1406 unsigned long size)
1407{
1408 if (address < vma->vm_start || address + size > vma->vm_end ||
1409 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1410 return;
1411
f5cc4eef 1412 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1413}
1414EXPORT_SYMBOL_GPL(zap_vma_ptes);
1415
25ca1d6c 1416pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1417 spinlock_t **ptl)
c9cfcddf 1418{
c2febafc
KS
1419 pgd_t *pgd;
1420 p4d_t *p4d;
1421 pud_t *pud;
1422 pmd_t *pmd;
1423
1424 pgd = pgd_offset(mm, addr);
1425 p4d = p4d_alloc(mm, pgd, addr);
1426 if (!p4d)
1427 return NULL;
1428 pud = pud_alloc(mm, p4d, addr);
1429 if (!pud)
1430 return NULL;
1431 pmd = pmd_alloc(mm, pud, addr);
1432 if (!pmd)
1433 return NULL;
1434
1435 VM_BUG_ON(pmd_trans_huge(*pmd));
1436 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1437}
1438
238f58d8
LT
1439/*
1440 * This is the old fallback for page remapping.
1441 *
1442 * For historical reasons, it only allows reserved pages. Only
1443 * old drivers should use this, and they needed to mark their
1444 * pages reserved for the old functions anyway.
1445 */
423bad60
NP
1446static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1447 struct page *page, pgprot_t prot)
238f58d8 1448{
423bad60 1449 struct mm_struct *mm = vma->vm_mm;
238f58d8 1450 int retval;
c9cfcddf 1451 pte_t *pte;
8a9f3ccd
BS
1452 spinlock_t *ptl;
1453
238f58d8 1454 retval = -EINVAL;
0ee930e6 1455 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
5b4e655e 1456 goto out;
238f58d8
LT
1457 retval = -ENOMEM;
1458 flush_dcache_page(page);
c9cfcddf 1459 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1460 if (!pte)
5b4e655e 1461 goto out;
238f58d8
LT
1462 retval = -EBUSY;
1463 if (!pte_none(*pte))
1464 goto out_unlock;
1465
1466 /* Ok, finally just insert the thing.. */
1467 get_page(page);
eca56ff9 1468 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1469 page_add_file_rmap(page, false);
238f58d8
LT
1470 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1471
1472 retval = 0;
8a9f3ccd
BS
1473 pte_unmap_unlock(pte, ptl);
1474 return retval;
238f58d8
LT
1475out_unlock:
1476 pte_unmap_unlock(pte, ptl);
1477out:
1478 return retval;
1479}
1480
bfa5bf6d
REB
1481/**
1482 * vm_insert_page - insert single page into user vma
1483 * @vma: user vma to map to
1484 * @addr: target user address of this page
1485 * @page: source kernel page
1486 *
a145dd41
LT
1487 * This allows drivers to insert individual pages they've allocated
1488 * into a user vma.
1489 *
1490 * The page has to be a nice clean _individual_ kernel allocation.
1491 * If you allocate a compound page, you need to have marked it as
1492 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1493 * (see split_page()).
a145dd41
LT
1494 *
1495 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1496 * took an arbitrary page protection parameter. This doesn't allow
1497 * that. Your vma protection will have to be set up correctly, which
1498 * means that if you want a shared writable mapping, you'd better
1499 * ask for a shared writable mapping!
1500 *
1501 * The page does not need to be reserved.
4b6e1e37
KK
1502 *
1503 * Usually this function is called from f_op->mmap() handler
1504 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1505 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1506 * function from other places, for example from page-fault handler.
a145dd41 1507 */
423bad60
NP
1508int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1509 struct page *page)
a145dd41
LT
1510{
1511 if (addr < vma->vm_start || addr >= vma->vm_end)
1512 return -EFAULT;
1513 if (!page_count(page))
1514 return -EINVAL;
4b6e1e37
KK
1515 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1516 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1517 BUG_ON(vma->vm_flags & VM_PFNMAP);
1518 vma->vm_flags |= VM_MIXEDMAP;
1519 }
423bad60 1520 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1521}
e3c3374f 1522EXPORT_SYMBOL(vm_insert_page);
a145dd41 1523
9b5a8e00 1524static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1525 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1526{
1527 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1528 pte_t *pte, entry;
1529 spinlock_t *ptl;
1530
423bad60
NP
1531 pte = get_locked_pte(mm, addr, &ptl);
1532 if (!pte)
9b5a8e00 1533 return VM_FAULT_OOM;
b2770da6
RZ
1534 if (!pte_none(*pte)) {
1535 if (mkwrite) {
1536 /*
1537 * For read faults on private mappings the PFN passed
1538 * in may not match the PFN we have mapped if the
1539 * mapped PFN is a writeable COW page. In the mkwrite
1540 * case we are creating a writable PTE for a shared
f2c57d91
JK
1541 * mapping and we expect the PFNs to match. If they
1542 * don't match, we are likely racing with block
1543 * allocation and mapping invalidation so just skip the
1544 * update.
b2770da6 1545 */
f2c57d91
JK
1546 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1547 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1548 goto out_unlock;
f2c57d91 1549 }
b2770da6
RZ
1550 entry = *pte;
1551 goto out_mkwrite;
1552 } else
1553 goto out_unlock;
1554 }
423bad60
NP
1555
1556 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1557 if (pfn_t_devmap(pfn))
1558 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1559 else
1560 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6
RZ
1561
1562out_mkwrite:
1563 if (mkwrite) {
1564 entry = pte_mkyoung(entry);
1565 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1566 }
1567
423bad60 1568 set_pte_at(mm, addr, pte, entry);
4b3073e1 1569 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1570
423bad60
NP
1571out_unlock:
1572 pte_unmap_unlock(pte, ptl);
9b5a8e00 1573 return VM_FAULT_NOPAGE;
423bad60
NP
1574}
1575
f5e6d1d5
MW
1576/**
1577 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1578 * @vma: user vma to map to
1579 * @addr: target user address of this page
1580 * @pfn: source kernel pfn
1581 * @pgprot: pgprot flags for the inserted page
1582 *
1583 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1584 * to override pgprot on a per-page basis.
1585 *
1586 * This only makes sense for IO mappings, and it makes no sense for
1587 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1588 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1589 * impractical.
1590 *
ae2b01f3 1591 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1592 * Return: vm_fault_t value.
1593 */
1594vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1595 unsigned long pfn, pgprot_t pgprot)
1596{
6d958546
MW
1597 /*
1598 * Technically, architectures with pte_special can avoid all these
1599 * restrictions (same for remap_pfn_range). However we would like
1600 * consistency in testing and feature parity among all, so we should
1601 * try to keep these invariants in place for everybody.
1602 */
1603 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1604 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1605 (VM_PFNMAP|VM_MIXEDMAP));
1606 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1607 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1608
1609 if (addr < vma->vm_start || addr >= vma->vm_end)
1610 return VM_FAULT_SIGBUS;
1611
1612 if (!pfn_modify_allowed(pfn, pgprot))
1613 return VM_FAULT_SIGBUS;
1614
1615 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1616
9b5a8e00 1617 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1618 false);
f5e6d1d5
MW
1619}
1620EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1621
ae2b01f3
MW
1622/**
1623 * vmf_insert_pfn - insert single pfn into user vma
1624 * @vma: user vma to map to
1625 * @addr: target user address of this page
1626 * @pfn: source kernel pfn
1627 *
1628 * Similar to vm_insert_page, this allows drivers to insert individual pages
1629 * they've allocated into a user vma. Same comments apply.
1630 *
1631 * This function should only be called from a vm_ops->fault handler, and
1632 * in that case the handler should return the result of this function.
1633 *
1634 * vma cannot be a COW mapping.
1635 *
1636 * As this is called only for pages that do not currently exist, we
1637 * do not need to flush old virtual caches or the TLB.
1638 *
1639 * Context: Process context. May allocate using %GFP_KERNEL.
1640 * Return: vm_fault_t value.
1641 */
1642vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1643 unsigned long pfn)
1644{
1645 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1646}
1647EXPORT_SYMBOL(vmf_insert_pfn);
1648
785a3fab
DW
1649static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1650{
1651 /* these checks mirror the abort conditions in vm_normal_page */
1652 if (vma->vm_flags & VM_MIXEDMAP)
1653 return true;
1654 if (pfn_t_devmap(pfn))
1655 return true;
1656 if (pfn_t_special(pfn))
1657 return true;
1658 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1659 return true;
1660 return false;
1661}
1662
79f3aa5b
MW
1663static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1664 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 1665{
87744ab3 1666 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 1667 int err;
87744ab3 1668
785a3fab 1669 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1670
423bad60 1671 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1672 return VM_FAULT_SIGBUS;
308a047c
BP
1673
1674 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1675
42e4089c 1676 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1677 return VM_FAULT_SIGBUS;
42e4089c 1678
423bad60
NP
1679 /*
1680 * If we don't have pte special, then we have to use the pfn_valid()
1681 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1682 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1683 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1684 * without pte special, it would there be refcounted as a normal page.
423bad60 1685 */
00b3a331
LD
1686 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1687 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1688 struct page *page;
1689
03fc2da6
DW
1690 /*
1691 * At this point we are committed to insert_page()
1692 * regardless of whether the caller specified flags that
1693 * result in pfn_t_has_page() == false.
1694 */
1695 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1696 err = insert_page(vma, addr, page, pgprot);
1697 } else {
9b5a8e00 1698 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1699 }
b2770da6 1700
5d747637
MW
1701 if (err == -ENOMEM)
1702 return VM_FAULT_OOM;
1703 if (err < 0 && err != -EBUSY)
1704 return VM_FAULT_SIGBUS;
1705
1706 return VM_FAULT_NOPAGE;
e0dc0d8f 1707}
79f3aa5b
MW
1708
1709vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1710 pfn_t pfn)
1711{
1712 return __vm_insert_mixed(vma, addr, pfn, false);
1713}
5d747637 1714EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1715
ab77dab4
SJ
1716/*
1717 * If the insertion of PTE failed because someone else already added a
1718 * different entry in the mean time, we treat that as success as we assume
1719 * the same entry was actually inserted.
1720 */
ab77dab4
SJ
1721vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1722 unsigned long addr, pfn_t pfn)
b2770da6 1723{
79f3aa5b 1724 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 1725}
ab77dab4 1726EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1727
1da177e4
LT
1728/*
1729 * maps a range of physical memory into the requested pages. the old
1730 * mappings are removed. any references to nonexistent pages results
1731 * in null mappings (currently treated as "copy-on-access")
1732 */
1733static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1734 unsigned long addr, unsigned long end,
1735 unsigned long pfn, pgprot_t prot)
1736{
1737 pte_t *pte;
c74df32c 1738 spinlock_t *ptl;
42e4089c 1739 int err = 0;
1da177e4 1740
c74df32c 1741 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1742 if (!pte)
1743 return -ENOMEM;
6606c3e0 1744 arch_enter_lazy_mmu_mode();
1da177e4
LT
1745 do {
1746 BUG_ON(!pte_none(*pte));
42e4089c
AK
1747 if (!pfn_modify_allowed(pfn, prot)) {
1748 err = -EACCES;
1749 break;
1750 }
7e675137 1751 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1752 pfn++;
1753 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1754 arch_leave_lazy_mmu_mode();
c74df32c 1755 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1756 return err;
1da177e4
LT
1757}
1758
1759static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1760 unsigned long addr, unsigned long end,
1761 unsigned long pfn, pgprot_t prot)
1762{
1763 pmd_t *pmd;
1764 unsigned long next;
42e4089c 1765 int err;
1da177e4
LT
1766
1767 pfn -= addr >> PAGE_SHIFT;
1768 pmd = pmd_alloc(mm, pud, addr);
1769 if (!pmd)
1770 return -ENOMEM;
f66055ab 1771 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1772 do {
1773 next = pmd_addr_end(addr, end);
42e4089c
AK
1774 err = remap_pte_range(mm, pmd, addr, next,
1775 pfn + (addr >> PAGE_SHIFT), prot);
1776 if (err)
1777 return err;
1da177e4
LT
1778 } while (pmd++, addr = next, addr != end);
1779 return 0;
1780}
1781
c2febafc 1782static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1783 unsigned long addr, unsigned long end,
1784 unsigned long pfn, pgprot_t prot)
1785{
1786 pud_t *pud;
1787 unsigned long next;
42e4089c 1788 int err;
1da177e4
LT
1789
1790 pfn -= addr >> PAGE_SHIFT;
c2febafc 1791 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1792 if (!pud)
1793 return -ENOMEM;
1794 do {
1795 next = pud_addr_end(addr, end);
42e4089c
AK
1796 err = remap_pmd_range(mm, pud, addr, next,
1797 pfn + (addr >> PAGE_SHIFT), prot);
1798 if (err)
1799 return err;
1da177e4
LT
1800 } while (pud++, addr = next, addr != end);
1801 return 0;
1802}
1803
c2febafc
KS
1804static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1805 unsigned long addr, unsigned long end,
1806 unsigned long pfn, pgprot_t prot)
1807{
1808 p4d_t *p4d;
1809 unsigned long next;
42e4089c 1810 int err;
c2febafc
KS
1811
1812 pfn -= addr >> PAGE_SHIFT;
1813 p4d = p4d_alloc(mm, pgd, addr);
1814 if (!p4d)
1815 return -ENOMEM;
1816 do {
1817 next = p4d_addr_end(addr, end);
42e4089c
AK
1818 err = remap_pud_range(mm, p4d, addr, next,
1819 pfn + (addr >> PAGE_SHIFT), prot);
1820 if (err)
1821 return err;
c2febafc
KS
1822 } while (p4d++, addr = next, addr != end);
1823 return 0;
1824}
1825
bfa5bf6d
REB
1826/**
1827 * remap_pfn_range - remap kernel memory to userspace
1828 * @vma: user vma to map to
1829 * @addr: target user address to start at
1830 * @pfn: physical address of kernel memory
1831 * @size: size of map area
1832 * @prot: page protection flags for this mapping
1833 *
1834 * Note: this is only safe if the mm semaphore is held when called.
1835 */
1da177e4
LT
1836int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1837 unsigned long pfn, unsigned long size, pgprot_t prot)
1838{
1839 pgd_t *pgd;
1840 unsigned long next;
2d15cab8 1841 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1842 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1843 unsigned long remap_pfn = pfn;
1da177e4
LT
1844 int err;
1845
1846 /*
1847 * Physically remapped pages are special. Tell the
1848 * rest of the world about it:
1849 * VM_IO tells people not to look at these pages
1850 * (accesses can have side effects).
6aab341e
LT
1851 * VM_PFNMAP tells the core MM that the base pages are just
1852 * raw PFN mappings, and do not have a "struct page" associated
1853 * with them.
314e51b9
KK
1854 * VM_DONTEXPAND
1855 * Disable vma merging and expanding with mremap().
1856 * VM_DONTDUMP
1857 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1858 *
1859 * There's a horrible special case to handle copy-on-write
1860 * behaviour that some programs depend on. We mark the "original"
1861 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1862 * See vm_normal_page() for details.
1da177e4 1863 */
b3b9c293
KK
1864 if (is_cow_mapping(vma->vm_flags)) {
1865 if (addr != vma->vm_start || end != vma->vm_end)
1866 return -EINVAL;
fb155c16 1867 vma->vm_pgoff = pfn;
b3b9c293
KK
1868 }
1869
d5957d2f 1870 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1871 if (err)
3c8bb73a 1872 return -EINVAL;
fb155c16 1873
314e51b9 1874 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1875
1876 BUG_ON(addr >= end);
1877 pfn -= addr >> PAGE_SHIFT;
1878 pgd = pgd_offset(mm, addr);
1879 flush_cache_range(vma, addr, end);
1da177e4
LT
1880 do {
1881 next = pgd_addr_end(addr, end);
c2febafc 1882 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1883 pfn + (addr >> PAGE_SHIFT), prot);
1884 if (err)
1885 break;
1886 } while (pgd++, addr = next, addr != end);
2ab64037 1887
1888 if (err)
d5957d2f 1889 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1890
1da177e4
LT
1891 return err;
1892}
1893EXPORT_SYMBOL(remap_pfn_range);
1894
b4cbb197
LT
1895/**
1896 * vm_iomap_memory - remap memory to userspace
1897 * @vma: user vma to map to
1898 * @start: start of area
1899 * @len: size of area
1900 *
1901 * This is a simplified io_remap_pfn_range() for common driver use. The
1902 * driver just needs to give us the physical memory range to be mapped,
1903 * we'll figure out the rest from the vma information.
1904 *
1905 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1906 * whatever write-combining details or similar.
1907 */
1908int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1909{
1910 unsigned long vm_len, pfn, pages;
1911
1912 /* Check that the physical memory area passed in looks valid */
1913 if (start + len < start)
1914 return -EINVAL;
1915 /*
1916 * You *really* shouldn't map things that aren't page-aligned,
1917 * but we've historically allowed it because IO memory might
1918 * just have smaller alignment.
1919 */
1920 len += start & ~PAGE_MASK;
1921 pfn = start >> PAGE_SHIFT;
1922 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1923 if (pfn + pages < pfn)
1924 return -EINVAL;
1925
1926 /* We start the mapping 'vm_pgoff' pages into the area */
1927 if (vma->vm_pgoff > pages)
1928 return -EINVAL;
1929 pfn += vma->vm_pgoff;
1930 pages -= vma->vm_pgoff;
1931
1932 /* Can we fit all of the mapping? */
1933 vm_len = vma->vm_end - vma->vm_start;
1934 if (vm_len >> PAGE_SHIFT > pages)
1935 return -EINVAL;
1936
1937 /* Ok, let it rip */
1938 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1939}
1940EXPORT_SYMBOL(vm_iomap_memory);
1941
aee16b3c
JF
1942static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1943 unsigned long addr, unsigned long end,
1944 pte_fn_t fn, void *data)
1945{
1946 pte_t *pte;
1947 int err;
2f569afd 1948 pgtable_t token;
94909914 1949 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1950
1951 pte = (mm == &init_mm) ?
1952 pte_alloc_kernel(pmd, addr) :
1953 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1954 if (!pte)
1955 return -ENOMEM;
1956
1957 BUG_ON(pmd_huge(*pmd));
1958
38e0edb1
JF
1959 arch_enter_lazy_mmu_mode();
1960
2f569afd 1961 token = pmd_pgtable(*pmd);
aee16b3c
JF
1962
1963 do {
c36987e2 1964 err = fn(pte++, token, addr, data);
aee16b3c
JF
1965 if (err)
1966 break;
c36987e2 1967 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1968
38e0edb1
JF
1969 arch_leave_lazy_mmu_mode();
1970
aee16b3c
JF
1971 if (mm != &init_mm)
1972 pte_unmap_unlock(pte-1, ptl);
1973 return err;
1974}
1975
1976static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1977 unsigned long addr, unsigned long end,
1978 pte_fn_t fn, void *data)
1979{
1980 pmd_t *pmd;
1981 unsigned long next;
1982 int err;
1983
ceb86879
AK
1984 BUG_ON(pud_huge(*pud));
1985
aee16b3c
JF
1986 pmd = pmd_alloc(mm, pud, addr);
1987 if (!pmd)
1988 return -ENOMEM;
1989 do {
1990 next = pmd_addr_end(addr, end);
1991 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1992 if (err)
1993 break;
1994 } while (pmd++, addr = next, addr != end);
1995 return err;
1996}
1997
c2febafc 1998static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
1999 unsigned long addr, unsigned long end,
2000 pte_fn_t fn, void *data)
2001{
2002 pud_t *pud;
2003 unsigned long next;
2004 int err;
2005
c2febafc 2006 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2007 if (!pud)
2008 return -ENOMEM;
2009 do {
2010 next = pud_addr_end(addr, end);
2011 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2012 if (err)
2013 break;
2014 } while (pud++, addr = next, addr != end);
2015 return err;
2016}
2017
c2febafc
KS
2018static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2019 unsigned long addr, unsigned long end,
2020 pte_fn_t fn, void *data)
2021{
2022 p4d_t *p4d;
2023 unsigned long next;
2024 int err;
2025
2026 p4d = p4d_alloc(mm, pgd, addr);
2027 if (!p4d)
2028 return -ENOMEM;
2029 do {
2030 next = p4d_addr_end(addr, end);
2031 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2032 if (err)
2033 break;
2034 } while (p4d++, addr = next, addr != end);
2035 return err;
2036}
2037
aee16b3c
JF
2038/*
2039 * Scan a region of virtual memory, filling in page tables as necessary
2040 * and calling a provided function on each leaf page table.
2041 */
2042int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2043 unsigned long size, pte_fn_t fn, void *data)
2044{
2045 pgd_t *pgd;
2046 unsigned long next;
57250a5b 2047 unsigned long end = addr + size;
aee16b3c
JF
2048 int err;
2049
9cb65bc3
MP
2050 if (WARN_ON(addr >= end))
2051 return -EINVAL;
2052
aee16b3c
JF
2053 pgd = pgd_offset(mm, addr);
2054 do {
2055 next = pgd_addr_end(addr, end);
c2febafc 2056 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2057 if (err)
2058 break;
2059 } while (pgd++, addr = next, addr != end);
57250a5b 2060
aee16b3c
JF
2061 return err;
2062}
2063EXPORT_SYMBOL_GPL(apply_to_page_range);
2064
8f4e2101 2065/*
9b4bdd2f
KS
2066 * handle_pte_fault chooses page fault handler according to an entry which was
2067 * read non-atomically. Before making any commitment, on those architectures
2068 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2069 * parts, do_swap_page must check under lock before unmapping the pte and
2070 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2071 * and do_anonymous_page can safely check later on).
8f4e2101 2072 */
4c21e2f2 2073static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2074 pte_t *page_table, pte_t orig_pte)
2075{
2076 int same = 1;
2077#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2078 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2079 spinlock_t *ptl = pte_lockptr(mm, pmd);
2080 spin_lock(ptl);
8f4e2101 2081 same = pte_same(*page_table, orig_pte);
4c21e2f2 2082 spin_unlock(ptl);
8f4e2101
HD
2083 }
2084#endif
2085 pte_unmap(page_table);
2086 return same;
2087}
2088
9de455b2 2089static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2090{
0abdd7a8
DW
2091 debug_dma_assert_idle(src);
2092
6aab341e
LT
2093 /*
2094 * If the source page was a PFN mapping, we don't have
2095 * a "struct page" for it. We do a best-effort copy by
2096 * just copying from the original user address. If that
2097 * fails, we just zero-fill it. Live with it.
2098 */
2099 if (unlikely(!src)) {
9b04c5fe 2100 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2101 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2102
2103 /*
2104 * This really shouldn't fail, because the page is there
2105 * in the page tables. But it might just be unreadable,
2106 * in which case we just give up and fill the result with
2107 * zeroes.
2108 */
2109 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2110 clear_page(kaddr);
9b04c5fe 2111 kunmap_atomic(kaddr);
c4ec7b0d 2112 flush_dcache_page(dst);
0ed361de
NP
2113 } else
2114 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2115}
2116
c20cd45e
MH
2117static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2118{
2119 struct file *vm_file = vma->vm_file;
2120
2121 if (vm_file)
2122 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2123
2124 /*
2125 * Special mappings (e.g. VDSO) do not have any file so fake
2126 * a default GFP_KERNEL for them.
2127 */
2128 return GFP_KERNEL;
2129}
2130
fb09a464
KS
2131/*
2132 * Notify the address space that the page is about to become writable so that
2133 * it can prohibit this or wait for the page to get into an appropriate state.
2134 *
2135 * We do this without the lock held, so that it can sleep if it needs to.
2136 */
2b740303 2137static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2138{
2b740303 2139 vm_fault_t ret;
38b8cb7f
JK
2140 struct page *page = vmf->page;
2141 unsigned int old_flags = vmf->flags;
fb09a464 2142
38b8cb7f 2143 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2144
11bac800 2145 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2146 /* Restore original flags so that caller is not surprised */
2147 vmf->flags = old_flags;
fb09a464
KS
2148 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2149 return ret;
2150 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2151 lock_page(page);
2152 if (!page->mapping) {
2153 unlock_page(page);
2154 return 0; /* retry */
2155 }
2156 ret |= VM_FAULT_LOCKED;
2157 } else
2158 VM_BUG_ON_PAGE(!PageLocked(page), page);
2159 return ret;
2160}
2161
97ba0c2b
JK
2162/*
2163 * Handle dirtying of a page in shared file mapping on a write fault.
2164 *
2165 * The function expects the page to be locked and unlocks it.
2166 */
2167static void fault_dirty_shared_page(struct vm_area_struct *vma,
2168 struct page *page)
2169{
2170 struct address_space *mapping;
2171 bool dirtied;
2172 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2173
2174 dirtied = set_page_dirty(page);
2175 VM_BUG_ON_PAGE(PageAnon(page), page);
2176 /*
2177 * Take a local copy of the address_space - page.mapping may be zeroed
2178 * by truncate after unlock_page(). The address_space itself remains
2179 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2180 * release semantics to prevent the compiler from undoing this copying.
2181 */
2182 mapping = page_rmapping(page);
2183 unlock_page(page);
2184
2185 if ((dirtied || page_mkwrite) && mapping) {
2186 /*
2187 * Some device drivers do not set page.mapping
2188 * but still dirty their pages
2189 */
2190 balance_dirty_pages_ratelimited(mapping);
2191 }
2192
2193 if (!page_mkwrite)
2194 file_update_time(vma->vm_file);
2195}
2196
4e047f89
SR
2197/*
2198 * Handle write page faults for pages that can be reused in the current vma
2199 *
2200 * This can happen either due to the mapping being with the VM_SHARED flag,
2201 * or due to us being the last reference standing to the page. In either
2202 * case, all we need to do here is to mark the page as writable and update
2203 * any related book-keeping.
2204 */
997dd98d 2205static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2206 __releases(vmf->ptl)
4e047f89 2207{
82b0f8c3 2208 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2209 struct page *page = vmf->page;
4e047f89
SR
2210 pte_t entry;
2211 /*
2212 * Clear the pages cpupid information as the existing
2213 * information potentially belongs to a now completely
2214 * unrelated process.
2215 */
2216 if (page)
2217 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2218
2994302b
JK
2219 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2220 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2221 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2222 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2223 update_mmu_cache(vma, vmf->address, vmf->pte);
2224 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2225}
2226
2f38ab2c
SR
2227/*
2228 * Handle the case of a page which we actually need to copy to a new page.
2229 *
2230 * Called with mmap_sem locked and the old page referenced, but
2231 * without the ptl held.
2232 *
2233 * High level logic flow:
2234 *
2235 * - Allocate a page, copy the content of the old page to the new one.
2236 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2237 * - Take the PTL. If the pte changed, bail out and release the allocated page
2238 * - If the pte is still the way we remember it, update the page table and all
2239 * relevant references. This includes dropping the reference the page-table
2240 * held to the old page, as well as updating the rmap.
2241 * - In any case, unlock the PTL and drop the reference we took to the old page.
2242 */
2b740303 2243static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2244{
82b0f8c3 2245 struct vm_area_struct *vma = vmf->vma;
bae473a4 2246 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2247 struct page *old_page = vmf->page;
2f38ab2c 2248 struct page *new_page = NULL;
2f38ab2c
SR
2249 pte_t entry;
2250 int page_copied = 0;
2f38ab2c 2251 struct mem_cgroup *memcg;
ac46d4f3 2252 struct mmu_notifier_range range;
2f38ab2c
SR
2253
2254 if (unlikely(anon_vma_prepare(vma)))
2255 goto oom;
2256
2994302b 2257 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2258 new_page = alloc_zeroed_user_highpage_movable(vma,
2259 vmf->address);
2f38ab2c
SR
2260 if (!new_page)
2261 goto oom;
2262 } else {
bae473a4 2263 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2264 vmf->address);
2f38ab2c
SR
2265 if (!new_page)
2266 goto oom;
82b0f8c3 2267 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2268 }
2f38ab2c 2269
2cf85583 2270 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2271 goto oom_free_new;
2272
eb3c24f3
MG
2273 __SetPageUptodate(new_page);
2274
ac46d4f3
JG
2275 mmu_notifier_range_init(&range, mm, vmf->address & PAGE_MASK,
2276 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2277 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2278
2279 /*
2280 * Re-check the pte - we dropped the lock
2281 */
82b0f8c3 2282 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2283 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2284 if (old_page) {
2285 if (!PageAnon(old_page)) {
eca56ff9
JM
2286 dec_mm_counter_fast(mm,
2287 mm_counter_file(old_page));
2f38ab2c
SR
2288 inc_mm_counter_fast(mm, MM_ANONPAGES);
2289 }
2290 } else {
2291 inc_mm_counter_fast(mm, MM_ANONPAGES);
2292 }
2994302b 2293 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2294 entry = mk_pte(new_page, vma->vm_page_prot);
2295 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2296 /*
2297 * Clear the pte entry and flush it first, before updating the
2298 * pte with the new entry. This will avoid a race condition
2299 * seen in the presence of one thread doing SMC and another
2300 * thread doing COW.
2301 */
82b0f8c3
JK
2302 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2303 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2304 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2305 lru_cache_add_active_or_unevictable(new_page, vma);
2306 /*
2307 * We call the notify macro here because, when using secondary
2308 * mmu page tables (such as kvm shadow page tables), we want the
2309 * new page to be mapped directly into the secondary page table.
2310 */
82b0f8c3
JK
2311 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2312 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2313 if (old_page) {
2314 /*
2315 * Only after switching the pte to the new page may
2316 * we remove the mapcount here. Otherwise another
2317 * process may come and find the rmap count decremented
2318 * before the pte is switched to the new page, and
2319 * "reuse" the old page writing into it while our pte
2320 * here still points into it and can be read by other
2321 * threads.
2322 *
2323 * The critical issue is to order this
2324 * page_remove_rmap with the ptp_clear_flush above.
2325 * Those stores are ordered by (if nothing else,)
2326 * the barrier present in the atomic_add_negative
2327 * in page_remove_rmap.
2328 *
2329 * Then the TLB flush in ptep_clear_flush ensures that
2330 * no process can access the old page before the
2331 * decremented mapcount is visible. And the old page
2332 * cannot be reused until after the decremented
2333 * mapcount is visible. So transitively, TLBs to
2334 * old page will be flushed before it can be reused.
2335 */
d281ee61 2336 page_remove_rmap(old_page, false);
2f38ab2c
SR
2337 }
2338
2339 /* Free the old page.. */
2340 new_page = old_page;
2341 page_copied = 1;
2342 } else {
f627c2f5 2343 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2344 }
2345
2346 if (new_page)
09cbfeaf 2347 put_page(new_page);
2f38ab2c 2348
82b0f8c3 2349 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2350 /*
2351 * No need to double call mmu_notifier->invalidate_range() callback as
2352 * the above ptep_clear_flush_notify() did already call it.
2353 */
ac46d4f3 2354 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2355 if (old_page) {
2356 /*
2357 * Don't let another task, with possibly unlocked vma,
2358 * keep the mlocked page.
2359 */
2360 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2361 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2362 if (PageMlocked(old_page))
2363 munlock_vma_page(old_page);
2f38ab2c
SR
2364 unlock_page(old_page);
2365 }
09cbfeaf 2366 put_page(old_page);
2f38ab2c
SR
2367 }
2368 return page_copied ? VM_FAULT_WRITE : 0;
2369oom_free_new:
09cbfeaf 2370 put_page(new_page);
2f38ab2c
SR
2371oom:
2372 if (old_page)
09cbfeaf 2373 put_page(old_page);
2f38ab2c
SR
2374 return VM_FAULT_OOM;
2375}
2376
66a6197c
JK
2377/**
2378 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2379 * writeable once the page is prepared
2380 *
2381 * @vmf: structure describing the fault
2382 *
2383 * This function handles all that is needed to finish a write page fault in a
2384 * shared mapping due to PTE being read-only once the mapped page is prepared.
2385 * It handles locking of PTE and modifying it. The function returns
2386 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2387 * lock.
2388 *
2389 * The function expects the page to be locked or other protection against
2390 * concurrent faults / writeback (such as DAX radix tree locks).
2391 */
2b740303 2392vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2393{
2394 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2395 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2396 &vmf->ptl);
2397 /*
2398 * We might have raced with another page fault while we released the
2399 * pte_offset_map_lock.
2400 */
2401 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2402 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2403 return VM_FAULT_NOPAGE;
66a6197c
JK
2404 }
2405 wp_page_reuse(vmf);
a19e2553 2406 return 0;
66a6197c
JK
2407}
2408
dd906184
BH
2409/*
2410 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2411 * mapping
2412 */
2b740303 2413static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2414{
82b0f8c3 2415 struct vm_area_struct *vma = vmf->vma;
bae473a4 2416
dd906184 2417 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2418 vm_fault_t ret;
dd906184 2419
82b0f8c3 2420 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2421 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2422 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2423 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2424 return ret;
66a6197c 2425 return finish_mkwrite_fault(vmf);
dd906184 2426 }
997dd98d
JK
2427 wp_page_reuse(vmf);
2428 return VM_FAULT_WRITE;
dd906184
BH
2429}
2430
2b740303 2431static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2432 __releases(vmf->ptl)
93e478d4 2433{
82b0f8c3 2434 struct vm_area_struct *vma = vmf->vma;
93e478d4 2435
a41b70d6 2436 get_page(vmf->page);
93e478d4 2437
93e478d4 2438 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2439 vm_fault_t tmp;
93e478d4 2440
82b0f8c3 2441 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2442 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2443 if (unlikely(!tmp || (tmp &
2444 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2445 put_page(vmf->page);
93e478d4
SR
2446 return tmp;
2447 }
66a6197c 2448 tmp = finish_mkwrite_fault(vmf);
a19e2553 2449 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2450 unlock_page(vmf->page);
a41b70d6 2451 put_page(vmf->page);
66a6197c 2452 return tmp;
93e478d4 2453 }
66a6197c
JK
2454 } else {
2455 wp_page_reuse(vmf);
997dd98d 2456 lock_page(vmf->page);
93e478d4 2457 }
997dd98d
JK
2458 fault_dirty_shared_page(vma, vmf->page);
2459 put_page(vmf->page);
93e478d4 2460
997dd98d 2461 return VM_FAULT_WRITE;
93e478d4
SR
2462}
2463
1da177e4
LT
2464/*
2465 * This routine handles present pages, when users try to write
2466 * to a shared page. It is done by copying the page to a new address
2467 * and decrementing the shared-page counter for the old page.
2468 *
1da177e4
LT
2469 * Note that this routine assumes that the protection checks have been
2470 * done by the caller (the low-level page fault routine in most cases).
2471 * Thus we can safely just mark it writable once we've done any necessary
2472 * COW.
2473 *
2474 * We also mark the page dirty at this point even though the page will
2475 * change only once the write actually happens. This avoids a few races,
2476 * and potentially makes it more efficient.
2477 *
8f4e2101
HD
2478 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2479 * but allow concurrent faults), with pte both mapped and locked.
2480 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2481 */
2b740303 2482static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2483 __releases(vmf->ptl)
1da177e4 2484{
82b0f8c3 2485 struct vm_area_struct *vma = vmf->vma;
1da177e4 2486
a41b70d6
JK
2487 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2488 if (!vmf->page) {
251b97f5 2489 /*
64e45507
PF
2490 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2491 * VM_PFNMAP VMA.
251b97f5
PZ
2492 *
2493 * We should not cow pages in a shared writeable mapping.
dd906184 2494 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2495 */
2496 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2497 (VM_WRITE|VM_SHARED))
2994302b 2498 return wp_pfn_shared(vmf);
2f38ab2c 2499
82b0f8c3 2500 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2501 return wp_page_copy(vmf);
251b97f5 2502 }
1da177e4 2503
d08b3851 2504 /*
ee6a6457
PZ
2505 * Take out anonymous pages first, anonymous shared vmas are
2506 * not dirty accountable.
d08b3851 2507 */
52d1e606 2508 if (PageAnon(vmf->page)) {
ba3c4ce6 2509 int total_map_swapcount;
52d1e606
KT
2510 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2511 page_count(vmf->page) != 1))
2512 goto copy;
a41b70d6
JK
2513 if (!trylock_page(vmf->page)) {
2514 get_page(vmf->page);
82b0f8c3 2515 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2516 lock_page(vmf->page);
82b0f8c3
JK
2517 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2518 vmf->address, &vmf->ptl);
2994302b 2519 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2520 unlock_page(vmf->page);
82b0f8c3 2521 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2522 put_page(vmf->page);
28766805 2523 return 0;
ab967d86 2524 }
a41b70d6 2525 put_page(vmf->page);
ee6a6457 2526 }
52d1e606
KT
2527 if (PageKsm(vmf->page)) {
2528 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2529 vmf->address);
2530 unlock_page(vmf->page);
2531 if (!reused)
2532 goto copy;
2533 wp_page_reuse(vmf);
2534 return VM_FAULT_WRITE;
2535 }
ba3c4ce6
HY
2536 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2537 if (total_map_swapcount == 1) {
6d0a07ed
AA
2538 /*
2539 * The page is all ours. Move it to
2540 * our anon_vma so the rmap code will
2541 * not search our parent or siblings.
2542 * Protected against the rmap code by
2543 * the page lock.
2544 */
a41b70d6 2545 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2546 }
a41b70d6 2547 unlock_page(vmf->page);
997dd98d
JK
2548 wp_page_reuse(vmf);
2549 return VM_FAULT_WRITE;
b009c024 2550 }
a41b70d6 2551 unlock_page(vmf->page);
ee6a6457 2552 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2553 (VM_WRITE|VM_SHARED))) {
a41b70d6 2554 return wp_page_shared(vmf);
1da177e4 2555 }
52d1e606 2556copy:
1da177e4
LT
2557 /*
2558 * Ok, we need to copy. Oh, well..
2559 */
a41b70d6 2560 get_page(vmf->page);
28766805 2561
82b0f8c3 2562 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2563 return wp_page_copy(vmf);
1da177e4
LT
2564}
2565
97a89413 2566static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2567 unsigned long start_addr, unsigned long end_addr,
2568 struct zap_details *details)
2569{
f5cc4eef 2570 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2571}
2572
f808c13f 2573static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2574 struct zap_details *details)
2575{
2576 struct vm_area_struct *vma;
1da177e4
LT
2577 pgoff_t vba, vea, zba, zea;
2578
6b2dbba8 2579 vma_interval_tree_foreach(vma, root,
1da177e4 2580 details->first_index, details->last_index) {
1da177e4
LT
2581
2582 vba = vma->vm_pgoff;
d6e93217 2583 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2584 zba = details->first_index;
2585 if (zba < vba)
2586 zba = vba;
2587 zea = details->last_index;
2588 if (zea > vea)
2589 zea = vea;
2590
97a89413 2591 unmap_mapping_range_vma(vma,
1da177e4
LT
2592 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2593 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2594 details);
1da177e4
LT
2595 }
2596}
2597
977fbdcd
MW
2598/**
2599 * unmap_mapping_pages() - Unmap pages from processes.
2600 * @mapping: The address space containing pages to be unmapped.
2601 * @start: Index of first page to be unmapped.
2602 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2603 * @even_cows: Whether to unmap even private COWed pages.
2604 *
2605 * Unmap the pages in this address space from any userspace process which
2606 * has them mmaped. Generally, you want to remove COWed pages as well when
2607 * a file is being truncated, but not when invalidating pages from the page
2608 * cache.
2609 */
2610void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2611 pgoff_t nr, bool even_cows)
2612{
2613 struct zap_details details = { };
2614
2615 details.check_mapping = even_cows ? NULL : mapping;
2616 details.first_index = start;
2617 details.last_index = start + nr - 1;
2618 if (details.last_index < details.first_index)
2619 details.last_index = ULONG_MAX;
2620
2621 i_mmap_lock_write(mapping);
2622 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2623 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2624 i_mmap_unlock_write(mapping);
2625}
2626
1da177e4 2627/**
8a5f14a2 2628 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2629 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2630 * file.
2631 *
3d41088f 2632 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2633 * @holebegin: byte in first page to unmap, relative to the start of
2634 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2635 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2636 * must keep the partial page. In contrast, we must get rid of
2637 * partial pages.
2638 * @holelen: size of prospective hole in bytes. This will be rounded
2639 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2640 * end of the file.
2641 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2642 * but 0 when invalidating pagecache, don't throw away private data.
2643 */
2644void unmap_mapping_range(struct address_space *mapping,
2645 loff_t const holebegin, loff_t const holelen, int even_cows)
2646{
1da177e4
LT
2647 pgoff_t hba = holebegin >> PAGE_SHIFT;
2648 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2649
2650 /* Check for overflow. */
2651 if (sizeof(holelen) > sizeof(hlen)) {
2652 long long holeend =
2653 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2654 if (holeend & ~(long long)ULONG_MAX)
2655 hlen = ULONG_MAX - hba + 1;
2656 }
2657
977fbdcd 2658 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2659}
2660EXPORT_SYMBOL(unmap_mapping_range);
2661
1da177e4 2662/*
8f4e2101
HD
2663 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2664 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2665 * We return with pte unmapped and unlocked.
2666 *
2667 * We return with the mmap_sem locked or unlocked in the same cases
2668 * as does filemap_fault().
1da177e4 2669 */
2b740303 2670vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2671{
82b0f8c3 2672 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2673 struct page *page = NULL, *swapcache;
00501b53 2674 struct mem_cgroup *memcg;
65500d23 2675 swp_entry_t entry;
1da177e4 2676 pte_t pte;
d065bd81 2677 int locked;
ad8c2ee8 2678 int exclusive = 0;
2b740303 2679 vm_fault_t ret = 0;
1da177e4 2680
eaf649eb 2681 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2682 goto out;
65500d23 2683
2994302b 2684 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2685 if (unlikely(non_swap_entry(entry))) {
2686 if (is_migration_entry(entry)) {
82b0f8c3
JK
2687 migration_entry_wait(vma->vm_mm, vmf->pmd,
2688 vmf->address);
5042db43
JG
2689 } else if (is_device_private_entry(entry)) {
2690 /*
2691 * For un-addressable device memory we call the pgmap
2692 * fault handler callback. The callback must migrate
2693 * the page back to some CPU accessible page.
2694 */
2695 ret = device_private_entry_fault(vma, vmf->address, entry,
2696 vmf->flags, vmf->pmd);
d1737fdb
AK
2697 } else if (is_hwpoison_entry(entry)) {
2698 ret = VM_FAULT_HWPOISON;
2699 } else {
2994302b 2700 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2701 ret = VM_FAULT_SIGBUS;
d1737fdb 2702 }
0697212a
CL
2703 goto out;
2704 }
0bcac06f
MK
2705
2706
0ff92245 2707 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2708 page = lookup_swap_cache(entry, vma, vmf->address);
2709 swapcache = page;
f8020772 2710
1da177e4 2711 if (!page) {
0bcac06f
MK
2712 struct swap_info_struct *si = swp_swap_info(entry);
2713
aa8d22a1
MK
2714 if (si->flags & SWP_SYNCHRONOUS_IO &&
2715 __swap_count(si, entry) == 1) {
0bcac06f 2716 /* skip swapcache */
e9e9b7ec
MK
2717 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2718 vmf->address);
0bcac06f
MK
2719 if (page) {
2720 __SetPageLocked(page);
2721 __SetPageSwapBacked(page);
2722 set_page_private(page, entry.val);
2723 lru_cache_add_anon(page);
2724 swap_readpage(page, true);
2725 }
aa8d22a1 2726 } else {
e9e9b7ec
MK
2727 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2728 vmf);
aa8d22a1 2729 swapcache = page;
0bcac06f
MK
2730 }
2731
1da177e4
LT
2732 if (!page) {
2733 /*
8f4e2101
HD
2734 * Back out if somebody else faulted in this pte
2735 * while we released the pte lock.
1da177e4 2736 */
82b0f8c3
JK
2737 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2738 vmf->address, &vmf->ptl);
2994302b 2739 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2740 ret = VM_FAULT_OOM;
0ff92245 2741 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2742 goto unlock;
1da177e4
LT
2743 }
2744
2745 /* Had to read the page from swap area: Major fault */
2746 ret = VM_FAULT_MAJOR;
f8891e5e 2747 count_vm_event(PGMAJFAULT);
2262185c 2748 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2749 } else if (PageHWPoison(page)) {
71f72525
WF
2750 /*
2751 * hwpoisoned dirty swapcache pages are kept for killing
2752 * owner processes (which may be unknown at hwpoison time)
2753 */
d1737fdb
AK
2754 ret = VM_FAULT_HWPOISON;
2755 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2756 goto out_release;
1da177e4
LT
2757 }
2758
82b0f8c3 2759 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2760
073e587e 2761 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2762 if (!locked) {
2763 ret |= VM_FAULT_RETRY;
2764 goto out_release;
2765 }
073e587e 2766
4969c119 2767 /*
31c4a3d3
HD
2768 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2769 * release the swapcache from under us. The page pin, and pte_same
2770 * test below, are not enough to exclude that. Even if it is still
2771 * swapcache, we need to check that the page's swap has not changed.
4969c119 2772 */
0bcac06f
MK
2773 if (unlikely((!PageSwapCache(page) ||
2774 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2775 goto out_page;
2776
82b0f8c3 2777 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2778 if (unlikely(!page)) {
2779 ret = VM_FAULT_OOM;
2780 page = swapcache;
cbf86cfe 2781 goto out_page;
5ad64688
HD
2782 }
2783
2cf85583
TH
2784 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2785 &memcg, false)) {
8a9f3ccd 2786 ret = VM_FAULT_OOM;
bc43f75c 2787 goto out_page;
8a9f3ccd
BS
2788 }
2789
1da177e4 2790 /*
8f4e2101 2791 * Back out if somebody else already faulted in this pte.
1da177e4 2792 */
82b0f8c3
JK
2793 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2794 &vmf->ptl);
2994302b 2795 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2796 goto out_nomap;
b8107480
KK
2797
2798 if (unlikely(!PageUptodate(page))) {
2799 ret = VM_FAULT_SIGBUS;
2800 goto out_nomap;
1da177e4
LT
2801 }
2802
8c7c6e34
KH
2803 /*
2804 * The page isn't present yet, go ahead with the fault.
2805 *
2806 * Be careful about the sequence of operations here.
2807 * To get its accounting right, reuse_swap_page() must be called
2808 * while the page is counted on swap but not yet in mapcount i.e.
2809 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2810 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2811 */
1da177e4 2812
bae473a4
KS
2813 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2814 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2815 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2816 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2817 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2818 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2819 ret |= VM_FAULT_WRITE;
d281ee61 2820 exclusive = RMAP_EXCLUSIVE;
1da177e4 2821 }
1da177e4 2822 flush_icache_page(vma, page);
2994302b 2823 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2824 pte = pte_mksoft_dirty(pte);
82b0f8c3 2825 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 2826 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 2827 vmf->orig_pte = pte;
0bcac06f
MK
2828
2829 /* ksm created a completely new copy */
2830 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 2831 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2832 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2833 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
2834 } else {
2835 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2836 mem_cgroup_commit_charge(page, memcg, true, false);
2837 activate_page(page);
00501b53 2838 }
1da177e4 2839
c475a8ab 2840 swap_free(entry);
5ccc5aba
VD
2841 if (mem_cgroup_swap_full(page) ||
2842 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2843 try_to_free_swap(page);
c475a8ab 2844 unlock_page(page);
0bcac06f 2845 if (page != swapcache && swapcache) {
4969c119
AA
2846 /*
2847 * Hold the lock to avoid the swap entry to be reused
2848 * until we take the PT lock for the pte_same() check
2849 * (to avoid false positives from pte_same). For
2850 * further safety release the lock after the swap_free
2851 * so that the swap count won't change under a
2852 * parallel locked swapcache.
2853 */
2854 unlock_page(swapcache);
09cbfeaf 2855 put_page(swapcache);
4969c119 2856 }
c475a8ab 2857
82b0f8c3 2858 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2859 ret |= do_wp_page(vmf);
61469f1d
HD
2860 if (ret & VM_FAULT_ERROR)
2861 ret &= VM_FAULT_ERROR;
1da177e4
LT
2862 goto out;
2863 }
2864
2865 /* No need to invalidate - it was non-present before */
82b0f8c3 2866 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2867unlock:
82b0f8c3 2868 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2869out:
2870 return ret;
b8107480 2871out_nomap:
f627c2f5 2872 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2873 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2874out_page:
b8107480 2875 unlock_page(page);
4779cb31 2876out_release:
09cbfeaf 2877 put_page(page);
0bcac06f 2878 if (page != swapcache && swapcache) {
4969c119 2879 unlock_page(swapcache);
09cbfeaf 2880 put_page(swapcache);
4969c119 2881 }
65500d23 2882 return ret;
1da177e4
LT
2883}
2884
2885/*
8f4e2101
HD
2886 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2887 * but allow concurrent faults), and pte mapped but not yet locked.
2888 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2889 */
2b740303 2890static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 2891{
82b0f8c3 2892 struct vm_area_struct *vma = vmf->vma;
00501b53 2893 struct mem_cgroup *memcg;
8f4e2101 2894 struct page *page;
2b740303 2895 vm_fault_t ret = 0;
1da177e4 2896 pte_t entry;
1da177e4 2897
6b7339f4
KS
2898 /* File mapping without ->vm_ops ? */
2899 if (vma->vm_flags & VM_SHARED)
2900 return VM_FAULT_SIGBUS;
2901
7267ec00
KS
2902 /*
2903 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2904 * pte_offset_map() on pmds where a huge pmd might be created
2905 * from a different thread.
2906 *
2907 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2908 * parallel threads are excluded by other means.
2909 *
2910 * Here we only have down_read(mmap_sem).
2911 */
4cf58924 2912 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
2913 return VM_FAULT_OOM;
2914
2915 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2916 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2917 return 0;
2918
11ac5524 2919 /* Use the zero-page for reads */
82b0f8c3 2920 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2921 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2922 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2923 vma->vm_page_prot));
82b0f8c3
JK
2924 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2925 vmf->address, &vmf->ptl);
2926 if (!pte_none(*vmf->pte))
a13ea5b7 2927 goto unlock;
6b31d595
MH
2928 ret = check_stable_address_space(vma->vm_mm);
2929 if (ret)
2930 goto unlock;
6b251fc9
AA
2931 /* Deliver the page fault to userland, check inside PT lock */
2932 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2933 pte_unmap_unlock(vmf->pte, vmf->ptl);
2934 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2935 }
a13ea5b7
HD
2936 goto setpte;
2937 }
2938
557ed1fa 2939 /* Allocate our own private page. */
557ed1fa
NP
2940 if (unlikely(anon_vma_prepare(vma)))
2941 goto oom;
82b0f8c3 2942 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2943 if (!page)
2944 goto oom;
eb3c24f3 2945
2cf85583
TH
2946 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2947 false))
eb3c24f3
MG
2948 goto oom_free_page;
2949
52f37629
MK
2950 /*
2951 * The memory barrier inside __SetPageUptodate makes sure that
2952 * preceeding stores to the page contents become visible before
2953 * the set_pte_at() write.
2954 */
0ed361de 2955 __SetPageUptodate(page);
8f4e2101 2956
557ed1fa 2957 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2958 if (vma->vm_flags & VM_WRITE)
2959 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2960
82b0f8c3
JK
2961 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2962 &vmf->ptl);
2963 if (!pte_none(*vmf->pte))
557ed1fa 2964 goto release;
9ba69294 2965
6b31d595
MH
2966 ret = check_stable_address_space(vma->vm_mm);
2967 if (ret)
2968 goto release;
2969
6b251fc9
AA
2970 /* Deliver the page fault to userland, check inside PT lock */
2971 if (userfaultfd_missing(vma)) {
82b0f8c3 2972 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 2973 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2974 put_page(page);
82b0f8c3 2975 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
2976 }
2977
bae473a4 2978 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 2979 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2980 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2981 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2982setpte:
82b0f8c3 2983 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
2984
2985 /* No need to invalidate - it was non-present before */
82b0f8c3 2986 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2987unlock:
82b0f8c3 2988 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 2989 return ret;
8f4e2101 2990release:
f627c2f5 2991 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2992 put_page(page);
8f4e2101 2993 goto unlock;
8a9f3ccd 2994oom_free_page:
09cbfeaf 2995 put_page(page);
65500d23 2996oom:
1da177e4
LT
2997 return VM_FAULT_OOM;
2998}
2999
9a95f3cf
PC
3000/*
3001 * The mmap_sem must have been held on entry, and may have been
3002 * released depending on flags and vma->vm_ops->fault() return value.
3003 * See filemap_fault() and __lock_page_retry().
3004 */
2b740303 3005static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3006{
82b0f8c3 3007 struct vm_area_struct *vma = vmf->vma;
2b740303 3008 vm_fault_t ret;
7eae74af 3009
63f3655f
MH
3010 /*
3011 * Preallocate pte before we take page_lock because this might lead to
3012 * deadlocks for memcg reclaim which waits for pages under writeback:
3013 * lock_page(A)
3014 * SetPageWriteback(A)
3015 * unlock_page(A)
3016 * lock_page(B)
3017 * lock_page(B)
3018 * pte_alloc_pne
3019 * shrink_page_list
3020 * wait_on_page_writeback(A)
3021 * SetPageWriteback(B)
3022 * unlock_page(B)
3023 * # flush A, B to clear the writeback
3024 */
3025 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3026 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3027 if (!vmf->prealloc_pte)
3028 return VM_FAULT_OOM;
3029 smp_wmb(); /* See comment in __pte_alloc() */
3030 }
3031
11bac800 3032 ret = vma->vm_ops->fault(vmf);
3917048d 3033 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3034 VM_FAULT_DONE_COW)))
bc2466e4 3035 return ret;
7eae74af 3036
667240e0 3037 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3038 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3039 unlock_page(vmf->page);
3040 put_page(vmf->page);
936ca80d 3041 vmf->page = NULL;
7eae74af
KS
3042 return VM_FAULT_HWPOISON;
3043 }
3044
3045 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3046 lock_page(vmf->page);
7eae74af 3047 else
667240e0 3048 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3049
7eae74af
KS
3050 return ret;
3051}
3052
d0f0931d
RZ
3053/*
3054 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3055 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3056 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3057 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3058 */
3059static int pmd_devmap_trans_unstable(pmd_t *pmd)
3060{
3061 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3062}
3063
2b740303 3064static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3065{
82b0f8c3 3066 struct vm_area_struct *vma = vmf->vma;
7267ec00 3067
82b0f8c3 3068 if (!pmd_none(*vmf->pmd))
7267ec00 3069 goto map_pte;
82b0f8c3
JK
3070 if (vmf->prealloc_pte) {
3071 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3072 if (unlikely(!pmd_none(*vmf->pmd))) {
3073 spin_unlock(vmf->ptl);
7267ec00
KS
3074 goto map_pte;
3075 }
3076
c4812909 3077 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3078 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3079 spin_unlock(vmf->ptl);
7f2b6ce8 3080 vmf->prealloc_pte = NULL;
4cf58924 3081 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3082 return VM_FAULT_OOM;
3083 }
3084map_pte:
3085 /*
3086 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3087 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3088 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3089 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3090 * running immediately after a huge pmd fault in a different thread of
3091 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3092 * All we have to ensure is that it is a regular pmd that we can walk
3093 * with pte_offset_map() and we can do that through an atomic read in
3094 * C, which is what pmd_trans_unstable() provides.
7267ec00 3095 */
d0f0931d 3096 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3097 return VM_FAULT_NOPAGE;
3098
d0f0931d
RZ
3099 /*
3100 * At this point we know that our vmf->pmd points to a page of ptes
3101 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3102 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3103 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3104 * be valid and we will re-check to make sure the vmf->pte isn't
3105 * pte_none() under vmf->ptl protection when we return to
3106 * alloc_set_pte().
3107 */
82b0f8c3
JK
3108 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3109 &vmf->ptl);
7267ec00
KS
3110 return 0;
3111}
3112
e496cf3d 3113#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3114
3115#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3116static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3117 unsigned long haddr)
3118{
3119 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3120 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3121 return false;
3122 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3123 return false;
3124 return true;
3125}
3126
82b0f8c3 3127static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3128{
82b0f8c3 3129 struct vm_area_struct *vma = vmf->vma;
953c66c2 3130
82b0f8c3 3131 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3132 /*
3133 * We are going to consume the prealloc table,
3134 * count that as nr_ptes.
3135 */
c4812909 3136 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3137 vmf->prealloc_pte = NULL;
953c66c2
AK
3138}
3139
2b740303 3140static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3141{
82b0f8c3
JK
3142 struct vm_area_struct *vma = vmf->vma;
3143 bool write = vmf->flags & FAULT_FLAG_WRITE;
3144 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3145 pmd_t entry;
2b740303
SJ
3146 int i;
3147 vm_fault_t ret;
10102459
KS
3148
3149 if (!transhuge_vma_suitable(vma, haddr))
3150 return VM_FAULT_FALLBACK;
3151
3152 ret = VM_FAULT_FALLBACK;
3153 page = compound_head(page);
3154
953c66c2
AK
3155 /*
3156 * Archs like ppc64 need additonal space to store information
3157 * related to pte entry. Use the preallocated table for that.
3158 */
82b0f8c3 3159 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3160 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3161 if (!vmf->prealloc_pte)
953c66c2
AK
3162 return VM_FAULT_OOM;
3163 smp_wmb(); /* See comment in __pte_alloc() */
3164 }
3165
82b0f8c3
JK
3166 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3167 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3168 goto out;
3169
3170 for (i = 0; i < HPAGE_PMD_NR; i++)
3171 flush_icache_page(vma, page + i);
3172
3173 entry = mk_huge_pmd(page, vma->vm_page_prot);
3174 if (write)
f55e1014 3175 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3176
fadae295 3177 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3178 page_add_file_rmap(page, true);
953c66c2
AK
3179 /*
3180 * deposit and withdraw with pmd lock held
3181 */
3182 if (arch_needs_pgtable_deposit())
82b0f8c3 3183 deposit_prealloc_pte(vmf);
10102459 3184
82b0f8c3 3185 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3186
82b0f8c3 3187 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3188
3189 /* fault is handled */
3190 ret = 0;
95ecedcd 3191 count_vm_event(THP_FILE_MAPPED);
10102459 3192out:
82b0f8c3 3193 spin_unlock(vmf->ptl);
10102459
KS
3194 return ret;
3195}
3196#else
2b740303 3197static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3198{
3199 BUILD_BUG();
3200 return 0;
3201}
3202#endif
3203
8c6e50b0 3204/**
7267ec00
KS
3205 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3206 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3207 *
82b0f8c3 3208 * @vmf: fault environment
7267ec00 3209 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3210 * @page: page to map
8c6e50b0 3211 *
82b0f8c3
JK
3212 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3213 * return.
8c6e50b0
KS
3214 *
3215 * Target users are page handler itself and implementations of
3216 * vm_ops->map_pages.
3217 */
2b740303 3218vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3219 struct page *page)
3bb97794 3220{
82b0f8c3
JK
3221 struct vm_area_struct *vma = vmf->vma;
3222 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3223 pte_t entry;
2b740303 3224 vm_fault_t ret;
10102459 3225
82b0f8c3 3226 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3227 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3228 /* THP on COW? */
3229 VM_BUG_ON_PAGE(memcg, page);
3230
82b0f8c3 3231 ret = do_set_pmd(vmf, page);
10102459 3232 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3233 return ret;
10102459 3234 }
3bb97794 3235
82b0f8c3
JK
3236 if (!vmf->pte) {
3237 ret = pte_alloc_one_map(vmf);
7267ec00 3238 if (ret)
b0b9b3df 3239 return ret;
7267ec00
KS
3240 }
3241
3242 /* Re-check under ptl */
b0b9b3df
HD
3243 if (unlikely(!pte_none(*vmf->pte)))
3244 return VM_FAULT_NOPAGE;
7267ec00 3245
3bb97794
KS
3246 flush_icache_page(vma, page);
3247 entry = mk_pte(page, vma->vm_page_prot);
3248 if (write)
3249 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3250 /* copy-on-write page */
3251 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3252 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3253 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3254 mem_cgroup_commit_charge(page, memcg, false, false);
3255 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3256 } else {
eca56ff9 3257 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3258 page_add_file_rmap(page, false);
3bb97794 3259 }
82b0f8c3 3260 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3261
3262 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3263 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3264
b0b9b3df 3265 return 0;
3bb97794
KS
3266}
3267
9118c0cb
JK
3268
3269/**
3270 * finish_fault - finish page fault once we have prepared the page to fault
3271 *
3272 * @vmf: structure describing the fault
3273 *
3274 * This function handles all that is needed to finish a page fault once the
3275 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3276 * given page, adds reverse page mapping, handles memcg charges and LRU
3277 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3278 * error.
3279 *
3280 * The function expects the page to be locked and on success it consumes a
3281 * reference of a page being mapped (for the PTE which maps it).
3282 */
2b740303 3283vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3284{
3285 struct page *page;
2b740303 3286 vm_fault_t ret = 0;
9118c0cb
JK
3287
3288 /* Did we COW the page? */
3289 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3290 !(vmf->vma->vm_flags & VM_SHARED))
3291 page = vmf->cow_page;
3292 else
3293 page = vmf->page;
6b31d595
MH
3294
3295 /*
3296 * check even for read faults because we might have lost our CoWed
3297 * page
3298 */
3299 if (!(vmf->vma->vm_flags & VM_SHARED))
3300 ret = check_stable_address_space(vmf->vma->vm_mm);
3301 if (!ret)
3302 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3303 if (vmf->pte)
3304 pte_unmap_unlock(vmf->pte, vmf->ptl);
3305 return ret;
3306}
3307
3a91053a
KS
3308static unsigned long fault_around_bytes __read_mostly =
3309 rounddown_pow_of_two(65536);
a9b0f861 3310
a9b0f861
KS
3311#ifdef CONFIG_DEBUG_FS
3312static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3313{
a9b0f861 3314 *val = fault_around_bytes;
1592eef0
KS
3315 return 0;
3316}
3317
b4903d6e 3318/*
da391d64
WK
3319 * fault_around_bytes must be rounded down to the nearest page order as it's
3320 * what do_fault_around() expects to see.
b4903d6e 3321 */
a9b0f861 3322static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3323{
a9b0f861 3324 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3325 return -EINVAL;
b4903d6e
AR
3326 if (val > PAGE_SIZE)
3327 fault_around_bytes = rounddown_pow_of_two(val);
3328 else
3329 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3330 return 0;
3331}
0a1345f8 3332DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3333 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3334
3335static int __init fault_around_debugfs(void)
3336{
d9f7979c
GKH
3337 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3338 &fault_around_bytes_fops);
1592eef0
KS
3339 return 0;
3340}
3341late_initcall(fault_around_debugfs);
1592eef0 3342#endif
8c6e50b0 3343
1fdb412b
KS
3344/*
3345 * do_fault_around() tries to map few pages around the fault address. The hope
3346 * is that the pages will be needed soon and this will lower the number of
3347 * faults to handle.
3348 *
3349 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3350 * not ready to be mapped: not up-to-date, locked, etc.
3351 *
3352 * This function is called with the page table lock taken. In the split ptlock
3353 * case the page table lock only protects only those entries which belong to
3354 * the page table corresponding to the fault address.
3355 *
3356 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3357 * only once.
3358 *
da391d64
WK
3359 * fault_around_bytes defines how many bytes we'll try to map.
3360 * do_fault_around() expects it to be set to a power of two less than or equal
3361 * to PTRS_PER_PTE.
1fdb412b 3362 *
da391d64
WK
3363 * The virtual address of the area that we map is naturally aligned to
3364 * fault_around_bytes rounded down to the machine page size
3365 * (and therefore to page order). This way it's easier to guarantee
3366 * that we don't cross page table boundaries.
1fdb412b 3367 */
2b740303 3368static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3369{
82b0f8c3 3370 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3371 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3372 pgoff_t end_pgoff;
2b740303
SJ
3373 int off;
3374 vm_fault_t ret = 0;
8c6e50b0 3375
4db0c3c2 3376 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3377 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3378
82b0f8c3
JK
3379 vmf->address = max(address & mask, vmf->vma->vm_start);
3380 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3381 start_pgoff -= off;
8c6e50b0
KS
3382
3383 /*
da391d64
WK
3384 * end_pgoff is either the end of the page table, the end of
3385 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3386 */
bae473a4 3387 end_pgoff = start_pgoff -
82b0f8c3 3388 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3389 PTRS_PER_PTE - 1;
82b0f8c3 3390 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3391 start_pgoff + nr_pages - 1);
8c6e50b0 3392
82b0f8c3 3393 if (pmd_none(*vmf->pmd)) {
4cf58924 3394 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3395 if (!vmf->prealloc_pte)
c5f88bd2 3396 goto out;
7267ec00 3397 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3398 }
3399
82b0f8c3 3400 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3401
7267ec00 3402 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3403 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3404 ret = VM_FAULT_NOPAGE;
3405 goto out;
3406 }
3407
3408 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3409 if (!vmf->pte)
7267ec00
KS
3410 goto out;
3411
3412 /* check if the page fault is solved */
82b0f8c3
JK
3413 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3414 if (!pte_none(*vmf->pte))
7267ec00 3415 ret = VM_FAULT_NOPAGE;
82b0f8c3 3416 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3417out:
82b0f8c3
JK
3418 vmf->address = address;
3419 vmf->pte = NULL;
7267ec00 3420 return ret;
8c6e50b0
KS
3421}
3422
2b740303 3423static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3424{
82b0f8c3 3425 struct vm_area_struct *vma = vmf->vma;
2b740303 3426 vm_fault_t ret = 0;
8c6e50b0
KS
3427
3428 /*
3429 * Let's call ->map_pages() first and use ->fault() as fallback
3430 * if page by the offset is not ready to be mapped (cold cache or
3431 * something).
3432 */
9b4bdd2f 3433 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3434 ret = do_fault_around(vmf);
7267ec00
KS
3435 if (ret)
3436 return ret;
8c6e50b0 3437 }
e655fb29 3438
936ca80d 3439 ret = __do_fault(vmf);
e655fb29
KS
3440 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3441 return ret;
3442
9118c0cb 3443 ret |= finish_fault(vmf);
936ca80d 3444 unlock_page(vmf->page);
7267ec00 3445 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3446 put_page(vmf->page);
e655fb29
KS
3447 return ret;
3448}
3449
2b740303 3450static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3451{
82b0f8c3 3452 struct vm_area_struct *vma = vmf->vma;
2b740303 3453 vm_fault_t ret;
ec47c3b9
KS
3454
3455 if (unlikely(anon_vma_prepare(vma)))
3456 return VM_FAULT_OOM;
3457
936ca80d
JK
3458 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3459 if (!vmf->cow_page)
ec47c3b9
KS
3460 return VM_FAULT_OOM;
3461
2cf85583 3462 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3463 &vmf->memcg, false)) {
936ca80d 3464 put_page(vmf->cow_page);
ec47c3b9
KS
3465 return VM_FAULT_OOM;
3466 }
3467
936ca80d 3468 ret = __do_fault(vmf);
ec47c3b9
KS
3469 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3470 goto uncharge_out;
3917048d
JK
3471 if (ret & VM_FAULT_DONE_COW)
3472 return ret;
ec47c3b9 3473
b1aa812b 3474 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3475 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3476
9118c0cb 3477 ret |= finish_fault(vmf);
b1aa812b
JK
3478 unlock_page(vmf->page);
3479 put_page(vmf->page);
7267ec00
KS
3480 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3481 goto uncharge_out;
ec47c3b9
KS
3482 return ret;
3483uncharge_out:
3917048d 3484 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3485 put_page(vmf->cow_page);
ec47c3b9
KS
3486 return ret;
3487}
3488
2b740303 3489static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3490{
82b0f8c3 3491 struct vm_area_struct *vma = vmf->vma;
2b740303 3492 vm_fault_t ret, tmp;
1d65f86d 3493
936ca80d 3494 ret = __do_fault(vmf);
7eae74af 3495 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3496 return ret;
1da177e4
LT
3497
3498 /*
f0c6d4d2
KS
3499 * Check if the backing address space wants to know that the page is
3500 * about to become writable
1da177e4 3501 */
fb09a464 3502 if (vma->vm_ops->page_mkwrite) {
936ca80d 3503 unlock_page(vmf->page);
38b8cb7f 3504 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3505 if (unlikely(!tmp ||
3506 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3507 put_page(vmf->page);
fb09a464 3508 return tmp;
4294621f 3509 }
fb09a464
KS
3510 }
3511
9118c0cb 3512 ret |= finish_fault(vmf);
7267ec00
KS
3513 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3514 VM_FAULT_RETRY))) {
936ca80d
JK
3515 unlock_page(vmf->page);
3516 put_page(vmf->page);
f0c6d4d2 3517 return ret;
1da177e4 3518 }
b827e496 3519
97ba0c2b 3520 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3521 return ret;
54cb8821 3522}
d00806b1 3523
9a95f3cf
PC
3524/*
3525 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3526 * but allow concurrent faults).
3527 * The mmap_sem may have been released depending on flags and our
3528 * return value. See filemap_fault() and __lock_page_or_retry().
3529 */
2b740303 3530static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3531{
82b0f8c3 3532 struct vm_area_struct *vma = vmf->vma;
2b740303 3533 vm_fault_t ret;
54cb8821 3534
ff09d7ec
AK
3535 /*
3536 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3537 */
3538 if (!vma->vm_ops->fault) {
3539 /*
3540 * If we find a migration pmd entry or a none pmd entry, which
3541 * should never happen, return SIGBUS
3542 */
3543 if (unlikely(!pmd_present(*vmf->pmd)))
3544 ret = VM_FAULT_SIGBUS;
3545 else {
3546 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3547 vmf->pmd,
3548 vmf->address,
3549 &vmf->ptl);
3550 /*
3551 * Make sure this is not a temporary clearing of pte
3552 * by holding ptl and checking again. A R/M/W update
3553 * of pte involves: take ptl, clearing the pte so that
3554 * we don't have concurrent modification by hardware
3555 * followed by an update.
3556 */
3557 if (unlikely(pte_none(*vmf->pte)))
3558 ret = VM_FAULT_SIGBUS;
3559 else
3560 ret = VM_FAULT_NOPAGE;
3561
3562 pte_unmap_unlock(vmf->pte, vmf->ptl);
3563 }
3564 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3565 ret = do_read_fault(vmf);
3566 else if (!(vma->vm_flags & VM_SHARED))
3567 ret = do_cow_fault(vmf);
3568 else
3569 ret = do_shared_fault(vmf);
3570
3571 /* preallocated pagetable is unused: free it */
3572 if (vmf->prealloc_pte) {
3573 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3574 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3575 }
3576 return ret;
54cb8821
NP
3577}
3578
b19a9939 3579static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3580 unsigned long addr, int page_nid,
3581 int *flags)
9532fec1
MG
3582{
3583 get_page(page);
3584
3585 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3586 if (page_nid == numa_node_id()) {
9532fec1 3587 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3588 *flags |= TNF_FAULT_LOCAL;
3589 }
9532fec1
MG
3590
3591 return mpol_misplaced(page, vma, addr);
3592}
3593
2b740303 3594static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3595{
82b0f8c3 3596 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3597 struct page *page = NULL;
98fa15f3 3598 int page_nid = NUMA_NO_NODE;
90572890 3599 int last_cpupid;
cbee9f88 3600 int target_nid;
b8593bfd 3601 bool migrated = false;
04a86453 3602 pte_t pte, old_pte;
288bc549 3603 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3604 int flags = 0;
d10e63f2
MG
3605
3606 /*
166f61b9
TH
3607 * The "pte" at this point cannot be used safely without
3608 * validation through pte_unmap_same(). It's of NUMA type but
3609 * the pfn may be screwed if the read is non atomic.
166f61b9 3610 */
82b0f8c3
JK
3611 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3612 spin_lock(vmf->ptl);
cee216a6 3613 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3614 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3615 goto out;
3616 }
3617
cee216a6
AK
3618 /*
3619 * Make it present again, Depending on how arch implementes non
3620 * accessible ptes, some can allow access by kernel mode.
3621 */
04a86453
AK
3622 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3623 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 3624 pte = pte_mkyoung(pte);
b191f9b1
MG
3625 if (was_writable)
3626 pte = pte_mkwrite(pte);
04a86453 3627 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 3628 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3629
82b0f8c3 3630 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3631 if (!page) {
82b0f8c3 3632 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3633 return 0;
3634 }
3635
e81c4802
KS
3636 /* TODO: handle PTE-mapped THP */
3637 if (PageCompound(page)) {
82b0f8c3 3638 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3639 return 0;
3640 }
3641
6688cc05 3642 /*
bea66fbd
MG
3643 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3644 * much anyway since they can be in shared cache state. This misses
3645 * the case where a mapping is writable but the process never writes
3646 * to it but pte_write gets cleared during protection updates and
3647 * pte_dirty has unpredictable behaviour between PTE scan updates,
3648 * background writeback, dirty balancing and application behaviour.
6688cc05 3649 */
d59dc7bc 3650 if (!pte_write(pte))
6688cc05
PZ
3651 flags |= TNF_NO_GROUP;
3652
dabe1d99
RR
3653 /*
3654 * Flag if the page is shared between multiple address spaces. This
3655 * is later used when determining whether to group tasks together
3656 */
3657 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3658 flags |= TNF_SHARED;
3659
90572890 3660 last_cpupid = page_cpupid_last(page);
8191acbd 3661 page_nid = page_to_nid(page);
82b0f8c3 3662 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3663 &flags);
82b0f8c3 3664 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 3665 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
3666 put_page(page);
3667 goto out;
3668 }
3669
3670 /* Migrate to the requested node */
1bc115d8 3671 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3672 if (migrated) {
8191acbd 3673 page_nid = target_nid;
6688cc05 3674 flags |= TNF_MIGRATED;
074c2381
MG
3675 } else
3676 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3677
3678out:
98fa15f3 3679 if (page_nid != NUMA_NO_NODE)
6688cc05 3680 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3681 return 0;
3682}
3683
2b740303 3684static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3685{
f4200391 3686 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3687 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3688 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3689 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3690 return VM_FAULT_FALLBACK;
3691}
3692
183f24aa 3693/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3694static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3695{
82b0f8c3
JK
3696 if (vma_is_anonymous(vmf->vma))
3697 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3698 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3699 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3700
3701 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3702 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3703 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3704
b96375f7
MW
3705 return VM_FAULT_FALLBACK;
3706}
3707
38e08854
LS
3708static inline bool vma_is_accessible(struct vm_area_struct *vma)
3709{
3710 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3711}
3712
2b740303 3713static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3714{
3715#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3716 /* No support for anonymous transparent PUD pages yet */
3717 if (vma_is_anonymous(vmf->vma))
3718 return VM_FAULT_FALLBACK;
3719 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3720 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3721#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3722 return VM_FAULT_FALLBACK;
3723}
3724
2b740303 3725static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3726{
3727#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3728 /* No support for anonymous transparent PUD pages yet */
3729 if (vma_is_anonymous(vmf->vma))
3730 return VM_FAULT_FALLBACK;
3731 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3732 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3733#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3734 return VM_FAULT_FALLBACK;
3735}
3736
1da177e4
LT
3737/*
3738 * These routines also need to handle stuff like marking pages dirty
3739 * and/or accessed for architectures that don't do it in hardware (most
3740 * RISC architectures). The early dirtying is also good on the i386.
3741 *
3742 * There is also a hook called "update_mmu_cache()" that architectures
3743 * with external mmu caches can use to update those (ie the Sparc or
3744 * PowerPC hashed page tables that act as extended TLBs).
3745 *
7267ec00
KS
3746 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3747 * concurrent faults).
9a95f3cf 3748 *
7267ec00
KS
3749 * The mmap_sem may have been released depending on flags and our return value.
3750 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3751 */
2b740303 3752static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3753{
3754 pte_t entry;
3755
82b0f8c3 3756 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3757 /*
3758 * Leave __pte_alloc() until later: because vm_ops->fault may
3759 * want to allocate huge page, and if we expose page table
3760 * for an instant, it will be difficult to retract from
3761 * concurrent faults and from rmap lookups.
3762 */
82b0f8c3 3763 vmf->pte = NULL;
7267ec00
KS
3764 } else {
3765 /* See comment in pte_alloc_one_map() */
d0f0931d 3766 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3767 return 0;
3768 /*
3769 * A regular pmd is established and it can't morph into a huge
3770 * pmd from under us anymore at this point because we hold the
3771 * mmap_sem read mode and khugepaged takes it in write mode.
3772 * So now it's safe to run pte_offset_map().
3773 */
82b0f8c3 3774 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3775 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3776
3777 /*
3778 * some architectures can have larger ptes than wordsize,
3779 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3780 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3781 * accesses. The code below just needs a consistent view
3782 * for the ifs and we later double check anyway with the
7267ec00
KS
3783 * ptl lock held. So here a barrier will do.
3784 */
3785 barrier();
2994302b 3786 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3787 pte_unmap(vmf->pte);
3788 vmf->pte = NULL;
65500d23 3789 }
1da177e4
LT
3790 }
3791
82b0f8c3
JK
3792 if (!vmf->pte) {
3793 if (vma_is_anonymous(vmf->vma))
3794 return do_anonymous_page(vmf);
7267ec00 3795 else
82b0f8c3 3796 return do_fault(vmf);
7267ec00
KS
3797 }
3798
2994302b
JK
3799 if (!pte_present(vmf->orig_pte))
3800 return do_swap_page(vmf);
7267ec00 3801
2994302b
JK
3802 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3803 return do_numa_page(vmf);
d10e63f2 3804
82b0f8c3
JK
3805 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3806 spin_lock(vmf->ptl);
2994302b 3807 entry = vmf->orig_pte;
82b0f8c3 3808 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3809 goto unlock;
82b0f8c3 3810 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3811 if (!pte_write(entry))
2994302b 3812 return do_wp_page(vmf);
1da177e4
LT
3813 entry = pte_mkdirty(entry);
3814 }
3815 entry = pte_mkyoung(entry);
82b0f8c3
JK
3816 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3817 vmf->flags & FAULT_FLAG_WRITE)) {
3818 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3819 } else {
3820 /*
3821 * This is needed only for protection faults but the arch code
3822 * is not yet telling us if this is a protection fault or not.
3823 * This still avoids useless tlb flushes for .text page faults
3824 * with threads.
3825 */
82b0f8c3
JK
3826 if (vmf->flags & FAULT_FLAG_WRITE)
3827 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3828 }
8f4e2101 3829unlock:
82b0f8c3 3830 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3831 return 0;
1da177e4
LT
3832}
3833
3834/*
3835 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3836 *
3837 * The mmap_sem may have been released depending on flags and our
3838 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3839 */
2b740303
SJ
3840static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3841 unsigned long address, unsigned int flags)
1da177e4 3842{
82b0f8c3 3843 struct vm_fault vmf = {
bae473a4 3844 .vma = vma,
1a29d85e 3845 .address = address & PAGE_MASK,
bae473a4 3846 .flags = flags,
0721ec8b 3847 .pgoff = linear_page_index(vma, address),
667240e0 3848 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3849 };
fde26bed 3850 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 3851 struct mm_struct *mm = vma->vm_mm;
1da177e4 3852 pgd_t *pgd;
c2febafc 3853 p4d_t *p4d;
2b740303 3854 vm_fault_t ret;
1da177e4 3855
1da177e4 3856 pgd = pgd_offset(mm, address);
c2febafc
KS
3857 p4d = p4d_alloc(mm, pgd, address);
3858 if (!p4d)
3859 return VM_FAULT_OOM;
a00cc7d9 3860
c2febafc 3861 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3862 if (!vmf.pud)
c74df32c 3863 return VM_FAULT_OOM;
7635d9cb 3864 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3865 ret = create_huge_pud(&vmf);
3866 if (!(ret & VM_FAULT_FALLBACK))
3867 return ret;
3868 } else {
3869 pud_t orig_pud = *vmf.pud;
3870
3871 barrier();
3872 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 3873
a00cc7d9
MW
3874 /* NUMA case for anonymous PUDs would go here */
3875
f6f37321 3876 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
3877 ret = wp_huge_pud(&vmf, orig_pud);
3878 if (!(ret & VM_FAULT_FALLBACK))
3879 return ret;
3880 } else {
3881 huge_pud_set_accessed(&vmf, orig_pud);
3882 return 0;
3883 }
3884 }
3885 }
3886
3887 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3888 if (!vmf.pmd)
c74df32c 3889 return VM_FAULT_OOM;
7635d9cb 3890 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 3891 ret = create_huge_pmd(&vmf);
c0292554
KS
3892 if (!(ret & VM_FAULT_FALLBACK))
3893 return ret;
71e3aac0 3894 } else {
82b0f8c3 3895 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3896
71e3aac0 3897 barrier();
84c3fc4e
ZY
3898 if (unlikely(is_swap_pmd(orig_pmd))) {
3899 VM_BUG_ON(thp_migration_supported() &&
3900 !is_pmd_migration_entry(orig_pmd));
3901 if (is_pmd_migration_entry(orig_pmd))
3902 pmd_migration_entry_wait(mm, vmf.pmd);
3903 return 0;
3904 }
5c7fb56e 3905 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3906 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3907 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3908
f6f37321 3909 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 3910 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3911 if (!(ret & VM_FAULT_FALLBACK))
3912 return ret;
a1dd450b 3913 } else {
82b0f8c3 3914 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3915 return 0;
1f1d06c3 3916 }
71e3aac0
AA
3917 }
3918 }
3919
82b0f8c3 3920 return handle_pte_fault(&vmf);
1da177e4
LT
3921}
3922
9a95f3cf
PC
3923/*
3924 * By the time we get here, we already hold the mm semaphore
3925 *
3926 * The mmap_sem may have been released depending on flags and our
3927 * return value. See filemap_fault() and __lock_page_or_retry().
3928 */
2b740303 3929vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 3930 unsigned int flags)
519e5247 3931{
2b740303 3932 vm_fault_t ret;
519e5247
JW
3933
3934 __set_current_state(TASK_RUNNING);
3935
3936 count_vm_event(PGFAULT);
2262185c 3937 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
3938
3939 /* do counter updates before entering really critical section. */
3940 check_sync_rss_stat(current);
3941
de0c799b
LD
3942 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3943 flags & FAULT_FLAG_INSTRUCTION,
3944 flags & FAULT_FLAG_REMOTE))
3945 return VM_FAULT_SIGSEGV;
3946
519e5247
JW
3947 /*
3948 * Enable the memcg OOM handling for faults triggered in user
3949 * space. Kernel faults are handled more gracefully.
3950 */
3951 if (flags & FAULT_FLAG_USER)
29ef680a 3952 mem_cgroup_enter_user_fault();
519e5247 3953
bae473a4
KS
3954 if (unlikely(is_vm_hugetlb_page(vma)))
3955 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3956 else
3957 ret = __handle_mm_fault(vma, address, flags);
519e5247 3958
49426420 3959 if (flags & FAULT_FLAG_USER) {
29ef680a 3960 mem_cgroup_exit_user_fault();
166f61b9
TH
3961 /*
3962 * The task may have entered a memcg OOM situation but
3963 * if the allocation error was handled gracefully (no
3964 * VM_FAULT_OOM), there is no need to kill anything.
3965 * Just clean up the OOM state peacefully.
3966 */
3967 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3968 mem_cgroup_oom_synchronize(false);
49426420 3969 }
3812c8c8 3970
519e5247
JW
3971 return ret;
3972}
e1d6d01a 3973EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3974
90eceff1
KS
3975#ifndef __PAGETABLE_P4D_FOLDED
3976/*
3977 * Allocate p4d page table.
3978 * We've already handled the fast-path in-line.
3979 */
3980int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3981{
3982 p4d_t *new = p4d_alloc_one(mm, address);
3983 if (!new)
3984 return -ENOMEM;
3985
3986 smp_wmb(); /* See comment in __pte_alloc */
3987
3988 spin_lock(&mm->page_table_lock);
3989 if (pgd_present(*pgd)) /* Another has populated it */
3990 p4d_free(mm, new);
3991 else
3992 pgd_populate(mm, pgd, new);
3993 spin_unlock(&mm->page_table_lock);
3994 return 0;
3995}
3996#endif /* __PAGETABLE_P4D_FOLDED */
3997
1da177e4
LT
3998#ifndef __PAGETABLE_PUD_FOLDED
3999/*
4000 * Allocate page upper directory.
872fec16 4001 * We've already handled the fast-path in-line.
1da177e4 4002 */
c2febafc 4003int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4004{
c74df32c
HD
4005 pud_t *new = pud_alloc_one(mm, address);
4006 if (!new)
1bb3630e 4007 return -ENOMEM;
1da177e4 4008
362a61ad
NP
4009 smp_wmb(); /* See comment in __pte_alloc */
4010
872fec16 4011 spin_lock(&mm->page_table_lock);
c2febafc 4012#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4013 if (!p4d_present(*p4d)) {
4014 mm_inc_nr_puds(mm);
c2febafc 4015 p4d_populate(mm, p4d, new);
b4e98d9a 4016 } else /* Another has populated it */
5e541973 4017 pud_free(mm, new);
b4e98d9a
KS
4018#else
4019 if (!pgd_present(*p4d)) {
4020 mm_inc_nr_puds(mm);
c2febafc 4021 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4022 } else /* Another has populated it */
4023 pud_free(mm, new);
c2febafc 4024#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4025 spin_unlock(&mm->page_table_lock);
1bb3630e 4026 return 0;
1da177e4
LT
4027}
4028#endif /* __PAGETABLE_PUD_FOLDED */
4029
4030#ifndef __PAGETABLE_PMD_FOLDED
4031/*
4032 * Allocate page middle directory.
872fec16 4033 * We've already handled the fast-path in-line.
1da177e4 4034 */
1bb3630e 4035int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4036{
a00cc7d9 4037 spinlock_t *ptl;
c74df32c
HD
4038 pmd_t *new = pmd_alloc_one(mm, address);
4039 if (!new)
1bb3630e 4040 return -ENOMEM;
1da177e4 4041
362a61ad
NP
4042 smp_wmb(); /* See comment in __pte_alloc */
4043
a00cc7d9 4044 ptl = pud_lock(mm, pud);
1da177e4 4045#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4046 if (!pud_present(*pud)) {
4047 mm_inc_nr_pmds(mm);
1bb3630e 4048 pud_populate(mm, pud, new);
dc6c9a35 4049 } else /* Another has populated it */
5e541973 4050 pmd_free(mm, new);
dc6c9a35
KS
4051#else
4052 if (!pgd_present(*pud)) {
4053 mm_inc_nr_pmds(mm);
1bb3630e 4054 pgd_populate(mm, pud, new);
dc6c9a35
KS
4055 } else /* Another has populated it */
4056 pmd_free(mm, new);
1da177e4 4057#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4058 spin_unlock(ptl);
1bb3630e 4059 return 0;
e0f39591 4060}
1da177e4
LT
4061#endif /* __PAGETABLE_PMD_FOLDED */
4062
09796395 4063static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4064 struct mmu_notifier_range *range,
a4d1a885 4065 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4066{
4067 pgd_t *pgd;
c2febafc 4068 p4d_t *p4d;
f8ad0f49
JW
4069 pud_t *pud;
4070 pmd_t *pmd;
4071 pte_t *ptep;
4072
4073 pgd = pgd_offset(mm, address);
4074 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4075 goto out;
4076
c2febafc
KS
4077 p4d = p4d_offset(pgd, address);
4078 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4079 goto out;
4080
4081 pud = pud_offset(p4d, address);
f8ad0f49
JW
4082 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4083 goto out;
4084
4085 pmd = pmd_offset(pud, address);
f66055ab 4086 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4087
09796395
RZ
4088 if (pmd_huge(*pmd)) {
4089 if (!pmdpp)
4090 goto out;
4091
ac46d4f3
JG
4092 if (range) {
4093 mmu_notifier_range_init(range, mm, address & PMD_MASK,
4094 (address & PMD_MASK) + PMD_SIZE);
4095 mmu_notifier_invalidate_range_start(range);
a4d1a885 4096 }
09796395
RZ
4097 *ptlp = pmd_lock(mm, pmd);
4098 if (pmd_huge(*pmd)) {
4099 *pmdpp = pmd;
4100 return 0;
4101 }
4102 spin_unlock(*ptlp);
ac46d4f3
JG
4103 if (range)
4104 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4105 }
4106
4107 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4108 goto out;
4109
ac46d4f3 4110 if (range) {
1ed7293a
MW
4111 mmu_notifier_range_init(range, mm, address & PAGE_MASK,
4112 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4113 mmu_notifier_invalidate_range_start(range);
a4d1a885 4114 }
f8ad0f49 4115 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4116 if (!pte_present(*ptep))
4117 goto unlock;
4118 *ptepp = ptep;
4119 return 0;
4120unlock:
4121 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4122 if (range)
4123 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4124out:
4125 return -EINVAL;
4126}
4127
f729c8c9
RZ
4128static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4129 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4130{
4131 int res;
4132
4133 /* (void) is needed to make gcc happy */
4134 (void) __cond_lock(*ptlp,
ac46d4f3 4135 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4136 ptepp, NULL, ptlp)));
09796395
RZ
4137 return res;
4138}
4139
4140int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4141 struct mmu_notifier_range *range,
4142 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4143{
4144 int res;
4145
4146 /* (void) is needed to make gcc happy */
4147 (void) __cond_lock(*ptlp,
ac46d4f3 4148 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4149 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4150 return res;
4151}
09796395 4152EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4153
3b6748e2
JW
4154/**
4155 * follow_pfn - look up PFN at a user virtual address
4156 * @vma: memory mapping
4157 * @address: user virtual address
4158 * @pfn: location to store found PFN
4159 *
4160 * Only IO mappings and raw PFN mappings are allowed.
4161 *
4162 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4163 */
4164int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4165 unsigned long *pfn)
4166{
4167 int ret = -EINVAL;
4168 spinlock_t *ptl;
4169 pte_t *ptep;
4170
4171 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4172 return ret;
4173
4174 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4175 if (ret)
4176 return ret;
4177 *pfn = pte_pfn(*ptep);
4178 pte_unmap_unlock(ptep, ptl);
4179 return 0;
4180}
4181EXPORT_SYMBOL(follow_pfn);
4182
28b2ee20 4183#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4184int follow_phys(struct vm_area_struct *vma,
4185 unsigned long address, unsigned int flags,
4186 unsigned long *prot, resource_size_t *phys)
28b2ee20 4187{
03668a4d 4188 int ret = -EINVAL;
28b2ee20
RR
4189 pte_t *ptep, pte;
4190 spinlock_t *ptl;
28b2ee20 4191
d87fe660 4192 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4193 goto out;
28b2ee20 4194
03668a4d 4195 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4196 goto out;
28b2ee20 4197 pte = *ptep;
03668a4d 4198
f6f37321 4199 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4200 goto unlock;
28b2ee20
RR
4201
4202 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4203 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4204
03668a4d 4205 ret = 0;
28b2ee20
RR
4206unlock:
4207 pte_unmap_unlock(ptep, ptl);
4208out:
d87fe660 4209 return ret;
28b2ee20
RR
4210}
4211
4212int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4213 void *buf, int len, int write)
4214{
4215 resource_size_t phys_addr;
4216 unsigned long prot = 0;
2bc7273b 4217 void __iomem *maddr;
28b2ee20
RR
4218 int offset = addr & (PAGE_SIZE-1);
4219
d87fe660 4220 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4221 return -EINVAL;
4222
9cb12d7b 4223 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4224 if (!maddr)
4225 return -ENOMEM;
4226
28b2ee20
RR
4227 if (write)
4228 memcpy_toio(maddr + offset, buf, len);
4229 else
4230 memcpy_fromio(buf, maddr + offset, len);
4231 iounmap(maddr);
4232
4233 return len;
4234}
5a73633e 4235EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4236#endif
4237
0ec76a11 4238/*
206cb636
SW
4239 * Access another process' address space as given in mm. If non-NULL, use the
4240 * given task for page fault accounting.
0ec76a11 4241 */
84d77d3f 4242int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4243 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4244{
0ec76a11 4245 struct vm_area_struct *vma;
0ec76a11 4246 void *old_buf = buf;
442486ec 4247 int write = gup_flags & FOLL_WRITE;
0ec76a11 4248
0ec76a11 4249 down_read(&mm->mmap_sem);
183ff22b 4250 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4251 while (len) {
4252 int bytes, ret, offset;
4253 void *maddr;
28b2ee20 4254 struct page *page = NULL;
0ec76a11 4255
1e987790 4256 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4257 gup_flags, &page, &vma, NULL);
28b2ee20 4258 if (ret <= 0) {
dbffcd03
RR
4259#ifndef CONFIG_HAVE_IOREMAP_PROT
4260 break;
4261#else
28b2ee20
RR
4262 /*
4263 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4264 * we can access using slightly different code.
4265 */
28b2ee20 4266 vma = find_vma(mm, addr);
fe936dfc 4267 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4268 break;
4269 if (vma->vm_ops && vma->vm_ops->access)
4270 ret = vma->vm_ops->access(vma, addr, buf,
4271 len, write);
4272 if (ret <= 0)
28b2ee20
RR
4273 break;
4274 bytes = ret;
dbffcd03 4275#endif
0ec76a11 4276 } else {
28b2ee20
RR
4277 bytes = len;
4278 offset = addr & (PAGE_SIZE-1);
4279 if (bytes > PAGE_SIZE-offset)
4280 bytes = PAGE_SIZE-offset;
4281
4282 maddr = kmap(page);
4283 if (write) {
4284 copy_to_user_page(vma, page, addr,
4285 maddr + offset, buf, bytes);
4286 set_page_dirty_lock(page);
4287 } else {
4288 copy_from_user_page(vma, page, addr,
4289 buf, maddr + offset, bytes);
4290 }
4291 kunmap(page);
09cbfeaf 4292 put_page(page);
0ec76a11 4293 }
0ec76a11
DH
4294 len -= bytes;
4295 buf += bytes;
4296 addr += bytes;
4297 }
4298 up_read(&mm->mmap_sem);
0ec76a11
DH
4299
4300 return buf - old_buf;
4301}
03252919 4302
5ddd36b9 4303/**
ae91dbfc 4304 * access_remote_vm - access another process' address space
5ddd36b9
SW
4305 * @mm: the mm_struct of the target address space
4306 * @addr: start address to access
4307 * @buf: source or destination buffer
4308 * @len: number of bytes to transfer
6347e8d5 4309 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4310 *
4311 * The caller must hold a reference on @mm.
4312 */
4313int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4314 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4315{
6347e8d5 4316 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4317}
4318
206cb636
SW
4319/*
4320 * Access another process' address space.
4321 * Source/target buffer must be kernel space,
4322 * Do not walk the page table directly, use get_user_pages
4323 */
4324int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4325 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4326{
4327 struct mm_struct *mm;
4328 int ret;
4329
4330 mm = get_task_mm(tsk);
4331 if (!mm)
4332 return 0;
4333
f307ab6d 4334 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4335
206cb636
SW
4336 mmput(mm);
4337
4338 return ret;
4339}
fcd35857 4340EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4341
03252919
AK
4342/*
4343 * Print the name of a VMA.
4344 */
4345void print_vma_addr(char *prefix, unsigned long ip)
4346{
4347 struct mm_struct *mm = current->mm;
4348 struct vm_area_struct *vma;
4349
e8bff74a 4350 /*
0a7f682d 4351 * we might be running from an atomic context so we cannot sleep
e8bff74a 4352 */
0a7f682d 4353 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4354 return;
4355
03252919
AK
4356 vma = find_vma(mm, ip);
4357 if (vma && vma->vm_file) {
4358 struct file *f = vma->vm_file;
0a7f682d 4359 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4360 if (buf) {
2fbc57c5 4361 char *p;
03252919 4362
9bf39ab2 4363 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4364 if (IS_ERR(p))
4365 p = "?";
2fbc57c5 4366 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4367 vma->vm_start,
4368 vma->vm_end - vma->vm_start);
4369 free_page((unsigned long)buf);
4370 }
4371 }
51a07e50 4372 up_read(&mm->mmap_sem);
03252919 4373}
3ee1afa3 4374
662bbcb2 4375#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4376void __might_fault(const char *file, int line)
3ee1afa3 4377{
95156f00
PZ
4378 /*
4379 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4380 * holding the mmap_sem, this is safe because kernel memory doesn't
4381 * get paged out, therefore we'll never actually fault, and the
4382 * below annotations will generate false positives.
4383 */
db68ce10 4384 if (uaccess_kernel())
95156f00 4385 return;
9ec23531 4386 if (pagefault_disabled())
662bbcb2 4387 return;
9ec23531
DH
4388 __might_sleep(file, line, 0);
4389#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4390 if (current->mm)
3ee1afa3 4391 might_lock_read(&current->mm->mmap_sem);
9ec23531 4392#endif
3ee1afa3 4393}
9ec23531 4394EXPORT_SYMBOL(__might_fault);
3ee1afa3 4395#endif
47ad8475
AA
4396
4397#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4398/*
4399 * Process all subpages of the specified huge page with the specified
4400 * operation. The target subpage will be processed last to keep its
4401 * cache lines hot.
4402 */
4403static inline void process_huge_page(
4404 unsigned long addr_hint, unsigned int pages_per_huge_page,
4405 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4406 void *arg)
47ad8475 4407{
c79b57e4
HY
4408 int i, n, base, l;
4409 unsigned long addr = addr_hint &
4410 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4411
c6ddfb6c 4412 /* Process target subpage last to keep its cache lines hot */
47ad8475 4413 might_sleep();
c79b57e4
HY
4414 n = (addr_hint - addr) / PAGE_SIZE;
4415 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4416 /* If target subpage in first half of huge page */
c79b57e4
HY
4417 base = 0;
4418 l = n;
c6ddfb6c 4419 /* Process subpages at the end of huge page */
c79b57e4
HY
4420 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4421 cond_resched();
c6ddfb6c 4422 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4423 }
4424 } else {
c6ddfb6c 4425 /* If target subpage in second half of huge page */
c79b57e4
HY
4426 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4427 l = pages_per_huge_page - n;
c6ddfb6c 4428 /* Process subpages at the begin of huge page */
c79b57e4
HY
4429 for (i = 0; i < base; i++) {
4430 cond_resched();
c6ddfb6c 4431 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4432 }
4433 }
4434 /*
c6ddfb6c
HY
4435 * Process remaining subpages in left-right-left-right pattern
4436 * towards the target subpage
c79b57e4
HY
4437 */
4438 for (i = 0; i < l; i++) {
4439 int left_idx = base + i;
4440 int right_idx = base + 2 * l - 1 - i;
4441
4442 cond_resched();
c6ddfb6c 4443 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4444 cond_resched();
c6ddfb6c 4445 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4446 }
4447}
4448
c6ddfb6c
HY
4449static void clear_gigantic_page(struct page *page,
4450 unsigned long addr,
4451 unsigned int pages_per_huge_page)
4452{
4453 int i;
4454 struct page *p = page;
4455
4456 might_sleep();
4457 for (i = 0; i < pages_per_huge_page;
4458 i++, p = mem_map_next(p, page, i)) {
4459 cond_resched();
4460 clear_user_highpage(p, addr + i * PAGE_SIZE);
4461 }
4462}
4463
4464static void clear_subpage(unsigned long addr, int idx, void *arg)
4465{
4466 struct page *page = arg;
4467
4468 clear_user_highpage(page + idx, addr);
4469}
4470
4471void clear_huge_page(struct page *page,
4472 unsigned long addr_hint, unsigned int pages_per_huge_page)
4473{
4474 unsigned long addr = addr_hint &
4475 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4476
4477 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4478 clear_gigantic_page(page, addr, pages_per_huge_page);
4479 return;
4480 }
4481
4482 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4483}
4484
47ad8475
AA
4485static void copy_user_gigantic_page(struct page *dst, struct page *src,
4486 unsigned long addr,
4487 struct vm_area_struct *vma,
4488 unsigned int pages_per_huge_page)
4489{
4490 int i;
4491 struct page *dst_base = dst;
4492 struct page *src_base = src;
4493
4494 for (i = 0; i < pages_per_huge_page; ) {
4495 cond_resched();
4496 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4497
4498 i++;
4499 dst = mem_map_next(dst, dst_base, i);
4500 src = mem_map_next(src, src_base, i);
4501 }
4502}
4503
c9f4cd71
HY
4504struct copy_subpage_arg {
4505 struct page *dst;
4506 struct page *src;
4507 struct vm_area_struct *vma;
4508};
4509
4510static void copy_subpage(unsigned long addr, int idx, void *arg)
4511{
4512 struct copy_subpage_arg *copy_arg = arg;
4513
4514 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4515 addr, copy_arg->vma);
4516}
4517
47ad8475 4518void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4519 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4520 unsigned int pages_per_huge_page)
4521{
c9f4cd71
HY
4522 unsigned long addr = addr_hint &
4523 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4524 struct copy_subpage_arg arg = {
4525 .dst = dst,
4526 .src = src,
4527 .vma = vma,
4528 };
47ad8475
AA
4529
4530 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4531 copy_user_gigantic_page(dst, src, addr, vma,
4532 pages_per_huge_page);
4533 return;
4534 }
4535
c9f4cd71 4536 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4537}
fa4d75c1
MK
4538
4539long copy_huge_page_from_user(struct page *dst_page,
4540 const void __user *usr_src,
810a56b9
MK
4541 unsigned int pages_per_huge_page,
4542 bool allow_pagefault)
fa4d75c1
MK
4543{
4544 void *src = (void *)usr_src;
4545 void *page_kaddr;
4546 unsigned long i, rc = 0;
4547 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4548
4549 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4550 if (allow_pagefault)
4551 page_kaddr = kmap(dst_page + i);
4552 else
4553 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4554 rc = copy_from_user(page_kaddr,
4555 (const void __user *)(src + i * PAGE_SIZE),
4556 PAGE_SIZE);
810a56b9
MK
4557 if (allow_pagefault)
4558 kunmap(dst_page + i);
4559 else
4560 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4561
4562 ret_val -= (PAGE_SIZE - rc);
4563 if (rc)
4564 break;
4565
4566 cond_resched();
4567 }
4568 return ret_val;
4569}
47ad8475 4570#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4571
40b64acd 4572#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4573
4574static struct kmem_cache *page_ptl_cachep;
4575
4576void __init ptlock_cache_init(void)
4577{
4578 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4579 SLAB_PANIC, NULL);
4580}
4581
539edb58 4582bool ptlock_alloc(struct page *page)
49076ec2
KS
4583{
4584 spinlock_t *ptl;
4585
b35f1819 4586 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4587 if (!ptl)
4588 return false;
539edb58 4589 page->ptl = ptl;
49076ec2
KS
4590 return true;
4591}
4592
539edb58 4593void ptlock_free(struct page *page)
49076ec2 4594{
b35f1819 4595 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4596}
4597#endif