]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
Merge tag 'trace-v5.9-rc5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
bce617ed
PX
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
e80d3909 76#include <linux/vmalloc.h>
1da177e4 77
b3d1411b
JFG
78#include <trace/events/kmem.h>
79
6952b61d 80#include <asm/io.h>
33a709b2 81#include <asm/mmu_context.h>
1da177e4 82#include <asm/pgalloc.h>
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4
LT
84#include <asm/tlb.h>
85#include <asm/tlbflush.h>
1da177e4 86
e80d3909 87#include "pgalloc-track.h"
42b77728
JB
88#include "internal.h"
89
af27d940 90#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 91#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
92#endif
93
d41dee36 94#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
95/* use the per-pgdat data instead for discontigmem - mbligh */
96unsigned long max_mapnr;
1da177e4 97EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
98
99struct page *mem_map;
1da177e4
LT
100EXPORT_SYMBOL(mem_map);
101#endif
102
1da177e4
LT
103/*
104 * A number of key systems in x86 including ioremap() rely on the assumption
105 * that high_memory defines the upper bound on direct map memory, then end
106 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
107 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108 * and ZONE_HIGHMEM.
109 */
166f61b9 110void *high_memory;
1da177e4 111EXPORT_SYMBOL(high_memory);
1da177e4 112
32a93233
IM
113/*
114 * Randomize the address space (stacks, mmaps, brk, etc.).
115 *
116 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117 * as ancient (libc5 based) binaries can segfault. )
118 */
119int randomize_va_space __read_mostly =
120#ifdef CONFIG_COMPAT_BRK
121 1;
122#else
123 2;
124#endif
a62eaf15 125
83d116c5
JH
126#ifndef arch_faults_on_old_pte
127static inline bool arch_faults_on_old_pte(void)
128{
129 /*
130 * Those arches which don't have hw access flag feature need to
131 * implement their own helper. By default, "true" means pagefault
132 * will be hit on old pte.
133 */
134 return true;
135}
136#endif
137
a62eaf15
AK
138static int __init disable_randmaps(char *s)
139{
140 randomize_va_space = 0;
9b41046c 141 return 1;
a62eaf15
AK
142}
143__setup("norandmaps", disable_randmaps);
144
62eede62 145unsigned long zero_pfn __read_mostly;
0b70068e
AB
146EXPORT_SYMBOL(zero_pfn);
147
166f61b9
TH
148unsigned long highest_memmap_pfn __read_mostly;
149
a13ea5b7
HD
150/*
151 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152 */
153static int __init init_zero_pfn(void)
154{
155 zero_pfn = page_to_pfn(ZERO_PAGE(0));
156 return 0;
157}
158core_initcall(init_zero_pfn);
a62eaf15 159
e4dcad20 160void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 161{
e4dcad20 162 trace_rss_stat(mm, member, count);
b3d1411b 163}
d559db08 164
34e55232
KH
165#if defined(SPLIT_RSS_COUNTING)
166
ea48cf78 167void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
168{
169 int i;
170
171 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
172 if (current->rss_stat.count[i]) {
173 add_mm_counter(mm, i, current->rss_stat.count[i]);
174 current->rss_stat.count[i] = 0;
34e55232
KH
175 }
176 }
05af2e10 177 current->rss_stat.events = 0;
34e55232
KH
178}
179
180static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181{
182 struct task_struct *task = current;
183
184 if (likely(task->mm == mm))
185 task->rss_stat.count[member] += val;
186 else
187 add_mm_counter(mm, member, val);
188}
189#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191
192/* sync counter once per 64 page faults */
193#define TASK_RSS_EVENTS_THRESH (64)
194static void check_sync_rss_stat(struct task_struct *task)
195{
196 if (unlikely(task != current))
197 return;
198 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 199 sync_mm_rss(task->mm);
34e55232 200}
9547d01b 201#else /* SPLIT_RSS_COUNTING */
34e55232
KH
202
203#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205
206static void check_sync_rss_stat(struct task_struct *task)
207{
208}
209
9547d01b
PZ
210#endif /* SPLIT_RSS_COUNTING */
211
1da177e4
LT
212/*
213 * Note: this doesn't free the actual pages themselves. That
214 * has been handled earlier when unmapping all the memory regions.
215 */
9e1b32ca
BH
216static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217 unsigned long addr)
1da177e4 218{
2f569afd 219 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 220 pmd_clear(pmd);
9e1b32ca 221 pte_free_tlb(tlb, token, addr);
c4812909 222 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
223}
224
e0da382c
HD
225static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226 unsigned long addr, unsigned long end,
227 unsigned long floor, unsigned long ceiling)
1da177e4
LT
228{
229 pmd_t *pmd;
230 unsigned long next;
e0da382c 231 unsigned long start;
1da177e4 232
e0da382c 233 start = addr;
1da177e4 234 pmd = pmd_offset(pud, addr);
1da177e4
LT
235 do {
236 next = pmd_addr_end(addr, end);
237 if (pmd_none_or_clear_bad(pmd))
238 continue;
9e1b32ca 239 free_pte_range(tlb, pmd, addr);
1da177e4
LT
240 } while (pmd++, addr = next, addr != end);
241
e0da382c
HD
242 start &= PUD_MASK;
243 if (start < floor)
244 return;
245 if (ceiling) {
246 ceiling &= PUD_MASK;
247 if (!ceiling)
248 return;
1da177e4 249 }
e0da382c
HD
250 if (end - 1 > ceiling - 1)
251 return;
252
253 pmd = pmd_offset(pud, start);
254 pud_clear(pud);
9e1b32ca 255 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 256 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
257}
258
c2febafc 259static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
260 unsigned long addr, unsigned long end,
261 unsigned long floor, unsigned long ceiling)
1da177e4
LT
262{
263 pud_t *pud;
264 unsigned long next;
e0da382c 265 unsigned long start;
1da177e4 266
e0da382c 267 start = addr;
c2febafc 268 pud = pud_offset(p4d, addr);
1da177e4
LT
269 do {
270 next = pud_addr_end(addr, end);
271 if (pud_none_or_clear_bad(pud))
272 continue;
e0da382c 273 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
274 } while (pud++, addr = next, addr != end);
275
c2febafc
KS
276 start &= P4D_MASK;
277 if (start < floor)
278 return;
279 if (ceiling) {
280 ceiling &= P4D_MASK;
281 if (!ceiling)
282 return;
283 }
284 if (end - 1 > ceiling - 1)
285 return;
286
287 pud = pud_offset(p4d, start);
288 p4d_clear(p4d);
289 pud_free_tlb(tlb, pud, start);
b4e98d9a 290 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
291}
292
293static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294 unsigned long addr, unsigned long end,
295 unsigned long floor, unsigned long ceiling)
296{
297 p4d_t *p4d;
298 unsigned long next;
299 unsigned long start;
300
301 start = addr;
302 p4d = p4d_offset(pgd, addr);
303 do {
304 next = p4d_addr_end(addr, end);
305 if (p4d_none_or_clear_bad(p4d))
306 continue;
307 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308 } while (p4d++, addr = next, addr != end);
309
e0da382c
HD
310 start &= PGDIR_MASK;
311 if (start < floor)
312 return;
313 if (ceiling) {
314 ceiling &= PGDIR_MASK;
315 if (!ceiling)
316 return;
1da177e4 317 }
e0da382c
HD
318 if (end - 1 > ceiling - 1)
319 return;
320
c2febafc 321 p4d = p4d_offset(pgd, start);
e0da382c 322 pgd_clear(pgd);
c2febafc 323 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
324}
325
326/*
e0da382c 327 * This function frees user-level page tables of a process.
1da177e4 328 */
42b77728 329void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
330 unsigned long addr, unsigned long end,
331 unsigned long floor, unsigned long ceiling)
1da177e4
LT
332{
333 pgd_t *pgd;
334 unsigned long next;
e0da382c
HD
335
336 /*
337 * The next few lines have given us lots of grief...
338 *
339 * Why are we testing PMD* at this top level? Because often
340 * there will be no work to do at all, and we'd prefer not to
341 * go all the way down to the bottom just to discover that.
342 *
343 * Why all these "- 1"s? Because 0 represents both the bottom
344 * of the address space and the top of it (using -1 for the
345 * top wouldn't help much: the masks would do the wrong thing).
346 * The rule is that addr 0 and floor 0 refer to the bottom of
347 * the address space, but end 0 and ceiling 0 refer to the top
348 * Comparisons need to use "end - 1" and "ceiling - 1" (though
349 * that end 0 case should be mythical).
350 *
351 * Wherever addr is brought up or ceiling brought down, we must
352 * be careful to reject "the opposite 0" before it confuses the
353 * subsequent tests. But what about where end is brought down
354 * by PMD_SIZE below? no, end can't go down to 0 there.
355 *
356 * Whereas we round start (addr) and ceiling down, by different
357 * masks at different levels, in order to test whether a table
358 * now has no other vmas using it, so can be freed, we don't
359 * bother to round floor or end up - the tests don't need that.
360 */
1da177e4 361
e0da382c
HD
362 addr &= PMD_MASK;
363 if (addr < floor) {
364 addr += PMD_SIZE;
365 if (!addr)
366 return;
367 }
368 if (ceiling) {
369 ceiling &= PMD_MASK;
370 if (!ceiling)
371 return;
372 }
373 if (end - 1 > ceiling - 1)
374 end -= PMD_SIZE;
375 if (addr > end - 1)
376 return;
07e32661
AK
377 /*
378 * We add page table cache pages with PAGE_SIZE,
379 * (see pte_free_tlb()), flush the tlb if we need
380 */
ed6a7935 381 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 382 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
383 do {
384 next = pgd_addr_end(addr, end);
385 if (pgd_none_or_clear_bad(pgd))
386 continue;
c2febafc 387 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 388 } while (pgd++, addr = next, addr != end);
e0da382c
HD
389}
390
42b77728 391void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 392 unsigned long floor, unsigned long ceiling)
e0da382c
HD
393{
394 while (vma) {
395 struct vm_area_struct *next = vma->vm_next;
396 unsigned long addr = vma->vm_start;
397
8f4f8c16 398 /*
25d9e2d1
NP
399 * Hide vma from rmap and truncate_pagecache before freeing
400 * pgtables
8f4f8c16 401 */
5beb4930 402 unlink_anon_vmas(vma);
8f4f8c16
HD
403 unlink_file_vma(vma);
404
9da61aef 405 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 406 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 407 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
408 } else {
409 /*
410 * Optimization: gather nearby vmas into one call down
411 */
412 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 413 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
414 vma = next;
415 next = vma->vm_next;
5beb4930 416 unlink_anon_vmas(vma);
8f4f8c16 417 unlink_file_vma(vma);
3bf5ee95
HD
418 }
419 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 420 floor, next ? next->vm_start : ceiling);
3bf5ee95 421 }
e0da382c
HD
422 vma = next;
423 }
1da177e4
LT
424}
425
4cf58924 426int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 427{
c4088ebd 428 spinlock_t *ptl;
4cf58924 429 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
430 if (!new)
431 return -ENOMEM;
432
362a61ad
NP
433 /*
434 * Ensure all pte setup (eg. pte page lock and page clearing) are
435 * visible before the pte is made visible to other CPUs by being
436 * put into page tables.
437 *
438 * The other side of the story is the pointer chasing in the page
439 * table walking code (when walking the page table without locking;
440 * ie. most of the time). Fortunately, these data accesses consist
441 * of a chain of data-dependent loads, meaning most CPUs (alpha
442 * being the notable exception) will already guarantee loads are
443 * seen in-order. See the alpha page table accessors for the
bb7cdd38 444 * smp_rmb() barriers in page table walking code.
362a61ad
NP
445 */
446 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447
c4088ebd 448 ptl = pmd_lock(mm, pmd);
8ac1f832 449 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 450 mm_inc_nr_ptes(mm);
1da177e4 451 pmd_populate(mm, pmd, new);
2f569afd 452 new = NULL;
4b471e88 453 }
c4088ebd 454 spin_unlock(ptl);
2f569afd
MS
455 if (new)
456 pte_free(mm, new);
1bb3630e 457 return 0;
1da177e4
LT
458}
459
4cf58924 460int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 461{
4cf58924 462 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
463 if (!new)
464 return -ENOMEM;
465
362a61ad
NP
466 smp_wmb(); /* See comment in __pte_alloc */
467
1bb3630e 468 spin_lock(&init_mm.page_table_lock);
8ac1f832 469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 470 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 471 new = NULL;
4b471e88 472 }
1bb3630e 473 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
474 if (new)
475 pte_free_kernel(&init_mm, new);
1bb3630e 476 return 0;
1da177e4
LT
477}
478
d559db08
KH
479static inline void init_rss_vec(int *rss)
480{
481 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482}
483
484static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 485{
d559db08
KH
486 int i;
487
34e55232 488 if (current->mm == mm)
05af2e10 489 sync_mm_rss(mm);
d559db08
KH
490 for (i = 0; i < NR_MM_COUNTERS; i++)
491 if (rss[i])
492 add_mm_counter(mm, i, rss[i]);
ae859762
HD
493}
494
b5810039 495/*
6aab341e
LT
496 * This function is called to print an error when a bad pte
497 * is found. For example, we might have a PFN-mapped pte in
498 * a region that doesn't allow it.
b5810039
NP
499 *
500 * The calling function must still handle the error.
501 */
3dc14741
HD
502static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503 pte_t pte, struct page *page)
b5810039 504{
3dc14741 505 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
506 p4d_t *p4d = p4d_offset(pgd, addr);
507 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
508 pmd_t *pmd = pmd_offset(pud, addr);
509 struct address_space *mapping;
510 pgoff_t index;
d936cf9b
HD
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 return;
523 }
524 if (nr_unshown) {
1170532b
JP
525 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526 nr_unshown);
d936cf9b
HD
527 nr_unshown = 0;
528 }
529 nr_shown = 0;
530 }
531 if (nr_shown++ == 0)
532 resume = jiffies + 60 * HZ;
3dc14741
HD
533
534 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535 index = linear_page_index(vma, addr);
536
1170532b
JP
537 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
538 current->comm,
539 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 540 if (page)
f0b791a3 541 dump_page(page, "bad pte");
6aa9b8b2 542 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 543 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 544 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
545 vma->vm_file,
546 vma->vm_ops ? vma->vm_ops->fault : NULL,
547 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548 mapping ? mapping->a_ops->readpage : NULL);
b5810039 549 dump_stack();
373d4d09 550 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
551}
552
ee498ed7 553/*
7e675137 554 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 555 *
7e675137
NP
556 * "Special" mappings do not wish to be associated with a "struct page" (either
557 * it doesn't exist, or it exists but they don't want to touch it). In this
558 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 559 *
7e675137
NP
560 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561 * pte bit, in which case this function is trivial. Secondly, an architecture
562 * may not have a spare pte bit, which requires a more complicated scheme,
563 * described below.
564 *
565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566 * special mapping (even if there are underlying and valid "struct pages").
567 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 568 *
b379d790
JH
569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572 * mapping will always honor the rule
6aab341e
LT
573 *
574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575 *
7e675137
NP
576 * And for normal mappings this is false.
577 *
578 * This restricts such mappings to be a linear translation from virtual address
579 * to pfn. To get around this restriction, we allow arbitrary mappings so long
580 * as the vma is not a COW mapping; in that case, we know that all ptes are
581 * special (because none can have been COWed).
b379d790 582 *
b379d790 583 *
7e675137 584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
585 *
586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587 * page" backing, however the difference is that _all_ pages with a struct
588 * page (that is, those where pfn_valid is true) are refcounted and considered
589 * normal pages by the VM. The disadvantage is that pages are refcounted
590 * (which can be slower and simply not an option for some PFNMAP users). The
591 * advantage is that we don't have to follow the strict linearity rule of
592 * PFNMAP mappings in order to support COWable mappings.
593 *
ee498ed7 594 */
25b2995a
CH
595struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 pte_t pte)
ee498ed7 597{
22b31eec 598 unsigned long pfn = pte_pfn(pte);
7e675137 599
00b3a331 600 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 601 if (likely(!pte_special(pte)))
22b31eec 602 goto check_pfn;
667a0a06
DV
603 if (vma->vm_ops && vma->vm_ops->find_special_page)
604 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 return NULL;
df6ad698
JG
607 if (is_zero_pfn(pfn))
608 return NULL;
e1fb4a08
DJ
609 if (pte_devmap(pte))
610 return NULL;
611
df6ad698 612 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
613 return NULL;
614 }
615
00b3a331 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 617
b379d790
JH
618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 if (vma->vm_flags & VM_MIXEDMAP) {
620 if (!pfn_valid(pfn))
621 return NULL;
622 goto out;
623 } else {
7e675137
NP
624 unsigned long off;
625 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
626 if (pfn == vma->vm_pgoff + off)
627 return NULL;
628 if (!is_cow_mapping(vma->vm_flags))
629 return NULL;
630 }
6aab341e
LT
631 }
632
b38af472
HD
633 if (is_zero_pfn(pfn))
634 return NULL;
00b3a331 635
22b31eec
HD
636check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
640 }
6aab341e
LT
641
642 /*
7e675137 643 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 644 * eg. VDSO mappings can cause them to exist.
6aab341e 645 */
b379d790 646out:
6aab341e 647 return pfn_to_page(pfn);
ee498ed7
HD
648}
649
28093f9f
GS
650#ifdef CONFIG_TRANSPARENT_HUGEPAGE
651struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 pmd_t pmd)
653{
654 unsigned long pfn = pmd_pfn(pmd);
655
656 /*
657 * There is no pmd_special() but there may be special pmds, e.g.
658 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
660 */
661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 if (vma->vm_flags & VM_MIXEDMAP) {
663 if (!pfn_valid(pfn))
664 return NULL;
665 goto out;
666 } else {
667 unsigned long off;
668 off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 if (pfn == vma->vm_pgoff + off)
670 return NULL;
671 if (!is_cow_mapping(vma->vm_flags))
672 return NULL;
673 }
674 }
675
e1fb4a08
DJ
676 if (pmd_devmap(pmd))
677 return NULL;
3cde287b 678 if (is_huge_zero_pmd(pmd))
28093f9f
GS
679 return NULL;
680 if (unlikely(pfn > highest_memmap_pfn))
681 return NULL;
682
683 /*
684 * NOTE! We still have PageReserved() pages in the page tables.
685 * eg. VDSO mappings can cause them to exist.
686 */
687out:
688 return pfn_to_page(pfn);
689}
690#endif
691
1da177e4
LT
692/*
693 * copy one vm_area from one task to the other. Assumes the page tables
694 * already present in the new task to be cleared in the whole range
695 * covered by this vma.
1da177e4
LT
696 */
697
df3a57d1
LT
698static unsigned long
699copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 701 unsigned long addr, int *rss)
1da177e4 702{
b5810039 703 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
704 pte_t pte = *src_pte;
705 struct page *page;
df3a57d1
LT
706 swp_entry_t entry = pte_to_swp_entry(pte);
707
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
710 return entry.val;
711
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
717 &src_mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 rss[MM_SWAPENTS]++;
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
1da177e4 723
df3a57d1 724 rss[mm_counter(page)]++;
5042db43 725
df3a57d1
LT
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
5042db43 728 /*
df3a57d1
LT
729 * COW mappings require pages in both
730 * parent and child to be set to read.
5042db43 731 */
df3a57d1
LT
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
736 if (pte_swp_uffd_wp(*src_pte))
737 pte = pte_swp_mkuffd_wp(pte);
738 set_pte_at(src_mm, addr, src_pte, pte);
739 }
740 } else if (is_device_private_entry(entry)) {
741 page = device_private_entry_to_page(entry);
5042db43 742
df3a57d1
LT
743 /*
744 * Update rss count even for unaddressable pages, as
745 * they should treated just like normal pages in this
746 * respect.
747 *
748 * We will likely want to have some new rss counters
749 * for unaddressable pages, at some point. But for now
750 * keep things as they are.
751 */
752 get_page(page);
753 rss[mm_counter(page)]++;
754 page_dup_rmap(page, false);
755
756 /*
757 * We do not preserve soft-dirty information, because so
758 * far, checkpoint/restore is the only feature that
759 * requires that. And checkpoint/restore does not work
760 * when a device driver is involved (you cannot easily
761 * save and restore device driver state).
762 */
763 if (is_write_device_private_entry(entry) &&
764 is_cow_mapping(vm_flags)) {
765 make_device_private_entry_read(&entry);
766 pte = swp_entry_to_pte(entry);
767 if (pte_swp_uffd_wp(*src_pte))
768 pte = pte_swp_mkuffd_wp(pte);
769 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 770 }
1da177e4 771 }
df3a57d1
LT
772 set_pte_at(dst_mm, addr, dst_pte, pte);
773 return 0;
774}
775
79a1971c
LT
776static inline void
777copy_present_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
df3a57d1
LT
778 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
779 unsigned long addr, int *rss)
780{
781 unsigned long vm_flags = vma->vm_flags;
782 pte_t pte = *src_pte;
783 struct page *page;
784
1da177e4
LT
785 /*
786 * If it's a COW mapping, write protect it both
787 * in the parent and the child
788 */
1b2de5d0 789 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 790 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 791 pte = pte_wrprotect(pte);
1da177e4
LT
792 }
793
794 /*
795 * If it's a shared mapping, mark it clean in
796 * the child
797 */
798 if (vm_flags & VM_SHARED)
799 pte = pte_mkclean(pte);
800 pte = pte_mkold(pte);
6aab341e 801
b569a176
PX
802 /*
803 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
804 * does not have the VM_UFFD_WP, which means that the uffd
805 * fork event is not enabled.
806 */
807 if (!(vm_flags & VM_UFFD_WP))
808 pte = pte_clear_uffd_wp(pte);
809
6aab341e
LT
810 page = vm_normal_page(vma, addr, pte);
811 if (page) {
812 get_page(page);
53f9263b 813 page_dup_rmap(page, false);
eca56ff9 814 rss[mm_counter(page)]++;
6aab341e 815 }
ae859762 816
ae859762 817 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
818}
819
21bda264 820static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
821 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
822 unsigned long addr, unsigned long end)
1da177e4 823{
c36987e2 824 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 825 pte_t *src_pte, *dst_pte;
c74df32c 826 spinlock_t *src_ptl, *dst_ptl;
e040f218 827 int progress = 0;
d559db08 828 int rss[NR_MM_COUNTERS];
570a335b 829 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
830
831again:
d559db08
KH
832 init_rss_vec(rss);
833
c74df32c 834 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
835 if (!dst_pte)
836 return -ENOMEM;
ece0e2b6 837 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 838 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 839 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
840 orig_src_pte = src_pte;
841 orig_dst_pte = dst_pte;
6606c3e0 842 arch_enter_lazy_mmu_mode();
1da177e4 843
1da177e4
LT
844 do {
845 /*
846 * We are holding two locks at this point - either of them
847 * could generate latencies in another task on another CPU.
848 */
e040f218
HD
849 if (progress >= 32) {
850 progress = 0;
851 if (need_resched() ||
95c354fe 852 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
853 break;
854 }
1da177e4
LT
855 if (pte_none(*src_pte)) {
856 progress++;
857 continue;
858 }
79a1971c
LT
859 if (unlikely(!pte_present(*src_pte))) {
860 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
861 dst_pte, src_pte,
570a335b 862 vma, addr, rss);
79a1971c
LT
863 if (entry.val)
864 break;
865 progress += 8;
866 continue;
867 }
868 copy_present_pte(dst_mm, src_mm, dst_pte, src_pte,
869 vma, addr, rss);
1da177e4
LT
870 progress += 8;
871 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 872
6606c3e0 873 arch_leave_lazy_mmu_mode();
c74df32c 874 spin_unlock(src_ptl);
ece0e2b6 875 pte_unmap(orig_src_pte);
d559db08 876 add_mm_rss_vec(dst_mm, rss);
c36987e2 877 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 878 cond_resched();
570a335b
HD
879
880 if (entry.val) {
881 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
882 return -ENOMEM;
883 progress = 0;
884 }
1da177e4
LT
885 if (addr != end)
886 goto again;
887 return 0;
888}
889
890static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
891 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
892 unsigned long addr, unsigned long end)
893{
894 pmd_t *src_pmd, *dst_pmd;
895 unsigned long next;
896
897 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
898 if (!dst_pmd)
899 return -ENOMEM;
900 src_pmd = pmd_offset(src_pud, addr);
901 do {
902 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
903 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
904 || pmd_devmap(*src_pmd)) {
71e3aac0 905 int err;
a00cc7d9 906 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
907 err = copy_huge_pmd(dst_mm, src_mm,
908 dst_pmd, src_pmd, addr, vma);
909 if (err == -ENOMEM)
910 return -ENOMEM;
911 if (!err)
912 continue;
913 /* fall through */
914 }
1da177e4
LT
915 if (pmd_none_or_clear_bad(src_pmd))
916 continue;
917 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
918 vma, addr, next))
919 return -ENOMEM;
920 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
921 return 0;
922}
923
924static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 925 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
926 unsigned long addr, unsigned long end)
927{
928 pud_t *src_pud, *dst_pud;
929 unsigned long next;
930
c2febafc 931 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
932 if (!dst_pud)
933 return -ENOMEM;
c2febafc 934 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
935 do {
936 next = pud_addr_end(addr, end);
a00cc7d9
MW
937 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
938 int err;
939
940 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
941 err = copy_huge_pud(dst_mm, src_mm,
942 dst_pud, src_pud, addr, vma);
943 if (err == -ENOMEM)
944 return -ENOMEM;
945 if (!err)
946 continue;
947 /* fall through */
948 }
1da177e4
LT
949 if (pud_none_or_clear_bad(src_pud))
950 continue;
951 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
952 vma, addr, next))
953 return -ENOMEM;
954 } while (dst_pud++, src_pud++, addr = next, addr != end);
955 return 0;
956}
957
c2febafc
KS
958static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
959 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
960 unsigned long addr, unsigned long end)
961{
962 p4d_t *src_p4d, *dst_p4d;
963 unsigned long next;
964
965 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
966 if (!dst_p4d)
967 return -ENOMEM;
968 src_p4d = p4d_offset(src_pgd, addr);
969 do {
970 next = p4d_addr_end(addr, end);
971 if (p4d_none_or_clear_bad(src_p4d))
972 continue;
973 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
974 vma, addr, next))
975 return -ENOMEM;
976 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
977 return 0;
978}
979
1da177e4
LT
980int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 struct vm_area_struct *vma)
982{
983 pgd_t *src_pgd, *dst_pgd;
984 unsigned long next;
985 unsigned long addr = vma->vm_start;
986 unsigned long end = vma->vm_end;
ac46d4f3 987 struct mmu_notifier_range range;
2ec74c3e 988 bool is_cow;
cddb8a5c 989 int ret;
1da177e4 990
d992895b
NP
991 /*
992 * Don't copy ptes where a page fault will fill them correctly.
993 * Fork becomes much lighter when there are big shared or private
994 * readonly mappings. The tradeoff is that copy_page_range is more
995 * efficient than faulting.
996 */
0661a336
KS
997 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
998 !vma->anon_vma)
999 return 0;
d992895b 1000
1da177e4
LT
1001 if (is_vm_hugetlb_page(vma))
1002 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1003
b3b9c293 1004 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1005 /*
1006 * We do not free on error cases below as remove_vma
1007 * gets called on error from higher level routine
1008 */
5180da41 1009 ret = track_pfn_copy(vma);
2ab64037 1010 if (ret)
1011 return ret;
1012 }
1013
cddb8a5c
AA
1014 /*
1015 * We need to invalidate the secondary MMU mappings only when
1016 * there could be a permission downgrade on the ptes of the
1017 * parent mm. And a permission downgrade will only happen if
1018 * is_cow_mapping() returns true.
1019 */
2ec74c3e 1020 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
1021
1022 if (is_cow) {
7269f999
JG
1023 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1024 0, vma, src_mm, addr, end);
ac46d4f3
JG
1025 mmu_notifier_invalidate_range_start(&range);
1026 }
cddb8a5c
AA
1027
1028 ret = 0;
1da177e4
LT
1029 dst_pgd = pgd_offset(dst_mm, addr);
1030 src_pgd = pgd_offset(src_mm, addr);
1031 do {
1032 next = pgd_addr_end(addr, end);
1033 if (pgd_none_or_clear_bad(src_pgd))
1034 continue;
c2febafc 1035 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1036 vma, addr, next))) {
1037 ret = -ENOMEM;
1038 break;
1039 }
1da177e4 1040 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1041
2ec74c3e 1042 if (is_cow)
ac46d4f3 1043 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1044 return ret;
1da177e4
LT
1045}
1046
51c6f666 1047static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1048 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1049 unsigned long addr, unsigned long end,
97a89413 1050 struct zap_details *details)
1da177e4 1051{
b5810039 1052 struct mm_struct *mm = tlb->mm;
d16dfc55 1053 int force_flush = 0;
d559db08 1054 int rss[NR_MM_COUNTERS];
97a89413 1055 spinlock_t *ptl;
5f1a1907 1056 pte_t *start_pte;
97a89413 1057 pte_t *pte;
8a5f14a2 1058 swp_entry_t entry;
d559db08 1059
ed6a7935 1060 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1061again:
e303297e 1062 init_rss_vec(rss);
5f1a1907
SR
1063 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1064 pte = start_pte;
3ea27719 1065 flush_tlb_batched_pending(mm);
6606c3e0 1066 arch_enter_lazy_mmu_mode();
1da177e4
LT
1067 do {
1068 pte_t ptent = *pte;
166f61b9 1069 if (pte_none(ptent))
1da177e4 1070 continue;
6f5e6b9e 1071
7b167b68
MK
1072 if (need_resched())
1073 break;
1074
1da177e4 1075 if (pte_present(ptent)) {
ee498ed7 1076 struct page *page;
51c6f666 1077
25b2995a 1078 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1079 if (unlikely(details) && page) {
1080 /*
1081 * unmap_shared_mapping_pages() wants to
1082 * invalidate cache without truncating:
1083 * unmap shared but keep private pages.
1084 */
1085 if (details->check_mapping &&
800d8c63 1086 details->check_mapping != page_rmapping(page))
1da177e4 1087 continue;
1da177e4 1088 }
b5810039 1089 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1090 tlb->fullmm);
1da177e4
LT
1091 tlb_remove_tlb_entry(tlb, pte, addr);
1092 if (unlikely(!page))
1093 continue;
eca56ff9
JM
1094
1095 if (!PageAnon(page)) {
1cf35d47
LT
1096 if (pte_dirty(ptent)) {
1097 force_flush = 1;
6237bcd9 1098 set_page_dirty(page);
1cf35d47 1099 }
4917e5d0 1100 if (pte_young(ptent) &&
64363aad 1101 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1102 mark_page_accessed(page);
6237bcd9 1103 }
eca56ff9 1104 rss[mm_counter(page)]--;
d281ee61 1105 page_remove_rmap(page, false);
3dc14741
HD
1106 if (unlikely(page_mapcount(page) < 0))
1107 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1108 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1109 force_flush = 1;
ce9ec37b 1110 addr += PAGE_SIZE;
d16dfc55 1111 break;
1cf35d47 1112 }
1da177e4
LT
1113 continue;
1114 }
5042db43
JG
1115
1116 entry = pte_to_swp_entry(ptent);
463b7a17 1117 if (is_device_private_entry(entry)) {
5042db43
JG
1118 struct page *page = device_private_entry_to_page(entry);
1119
1120 if (unlikely(details && details->check_mapping)) {
1121 /*
1122 * unmap_shared_mapping_pages() wants to
1123 * invalidate cache without truncating:
1124 * unmap shared but keep private pages.
1125 */
1126 if (details->check_mapping !=
1127 page_rmapping(page))
1128 continue;
1129 }
1130
1131 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1132 rss[mm_counter(page)]--;
1133 page_remove_rmap(page, false);
1134 put_page(page);
1135 continue;
1136 }
1137
3e8715fd
KS
1138 /* If details->check_mapping, we leave swap entries. */
1139 if (unlikely(details))
1da177e4 1140 continue;
b084d435 1141
8a5f14a2
KS
1142 if (!non_swap_entry(entry))
1143 rss[MM_SWAPENTS]--;
1144 else if (is_migration_entry(entry)) {
1145 struct page *page;
9f9f1acd 1146
8a5f14a2 1147 page = migration_entry_to_page(entry);
eca56ff9 1148 rss[mm_counter(page)]--;
b084d435 1149 }
8a5f14a2
KS
1150 if (unlikely(!free_swap_and_cache(entry)))
1151 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1152 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1153 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1154
d559db08 1155 add_mm_rss_vec(mm, rss);
6606c3e0 1156 arch_leave_lazy_mmu_mode();
51c6f666 1157
1cf35d47 1158 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1159 if (force_flush)
1cf35d47 1160 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1161 pte_unmap_unlock(start_pte, ptl);
1162
1163 /*
1164 * If we forced a TLB flush (either due to running out of
1165 * batch buffers or because we needed to flush dirty TLB
1166 * entries before releasing the ptl), free the batched
1167 * memory too. Restart if we didn't do everything.
1168 */
1169 if (force_flush) {
1170 force_flush = 0;
fa0aafb8 1171 tlb_flush_mmu(tlb);
7b167b68
MK
1172 }
1173
1174 if (addr != end) {
1175 cond_resched();
1176 goto again;
d16dfc55
PZ
1177 }
1178
51c6f666 1179 return addr;
1da177e4
LT
1180}
1181
51c6f666 1182static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1183 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1184 unsigned long addr, unsigned long end,
97a89413 1185 struct zap_details *details)
1da177e4
LT
1186{
1187 pmd_t *pmd;
1188 unsigned long next;
1189
1190 pmd = pmd_offset(pud, addr);
1191 do {
1192 next = pmd_addr_end(addr, end);
84c3fc4e 1193 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1194 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1195 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1196 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1197 goto next;
71e3aac0
AA
1198 /* fall through */
1199 }
1a5a9906
AA
1200 /*
1201 * Here there can be other concurrent MADV_DONTNEED or
1202 * trans huge page faults running, and if the pmd is
1203 * none or trans huge it can change under us. This is
c1e8d7c6 1204 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1205 * mode.
1206 */
1207 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1208 goto next;
97a89413 1209 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1210next:
97a89413
PZ
1211 cond_resched();
1212 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1213
1214 return addr;
1da177e4
LT
1215}
1216
51c6f666 1217static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1218 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1219 unsigned long addr, unsigned long end,
97a89413 1220 struct zap_details *details)
1da177e4
LT
1221{
1222 pud_t *pud;
1223 unsigned long next;
1224
c2febafc 1225 pud = pud_offset(p4d, addr);
1da177e4
LT
1226 do {
1227 next = pud_addr_end(addr, end);
a00cc7d9
MW
1228 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1229 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1230 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1231 split_huge_pud(vma, pud, addr);
1232 } else if (zap_huge_pud(tlb, vma, pud, addr))
1233 goto next;
1234 /* fall through */
1235 }
97a89413 1236 if (pud_none_or_clear_bad(pud))
1da177e4 1237 continue;
97a89413 1238 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1239next:
1240 cond_resched();
97a89413 1241 } while (pud++, addr = next, addr != end);
51c6f666
RH
1242
1243 return addr;
1da177e4
LT
1244}
1245
c2febafc
KS
1246static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1247 struct vm_area_struct *vma, pgd_t *pgd,
1248 unsigned long addr, unsigned long end,
1249 struct zap_details *details)
1250{
1251 p4d_t *p4d;
1252 unsigned long next;
1253
1254 p4d = p4d_offset(pgd, addr);
1255 do {
1256 next = p4d_addr_end(addr, end);
1257 if (p4d_none_or_clear_bad(p4d))
1258 continue;
1259 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1260 } while (p4d++, addr = next, addr != end);
1261
1262 return addr;
1263}
1264
aac45363 1265void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1266 struct vm_area_struct *vma,
1267 unsigned long addr, unsigned long end,
1268 struct zap_details *details)
1da177e4
LT
1269{
1270 pgd_t *pgd;
1271 unsigned long next;
1272
1da177e4
LT
1273 BUG_ON(addr >= end);
1274 tlb_start_vma(tlb, vma);
1275 pgd = pgd_offset(vma->vm_mm, addr);
1276 do {
1277 next = pgd_addr_end(addr, end);
97a89413 1278 if (pgd_none_or_clear_bad(pgd))
1da177e4 1279 continue;
c2febafc 1280 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1281 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1282 tlb_end_vma(tlb, vma);
1283}
51c6f666 1284
f5cc4eef
AV
1285
1286static void unmap_single_vma(struct mmu_gather *tlb,
1287 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1288 unsigned long end_addr,
f5cc4eef
AV
1289 struct zap_details *details)
1290{
1291 unsigned long start = max(vma->vm_start, start_addr);
1292 unsigned long end;
1293
1294 if (start >= vma->vm_end)
1295 return;
1296 end = min(vma->vm_end, end_addr);
1297 if (end <= vma->vm_start)
1298 return;
1299
cbc91f71
SD
1300 if (vma->vm_file)
1301 uprobe_munmap(vma, start, end);
1302
b3b9c293 1303 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1304 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1305
1306 if (start != end) {
1307 if (unlikely(is_vm_hugetlb_page(vma))) {
1308 /*
1309 * It is undesirable to test vma->vm_file as it
1310 * should be non-null for valid hugetlb area.
1311 * However, vm_file will be NULL in the error
7aa6b4ad 1312 * cleanup path of mmap_region. When
f5cc4eef 1313 * hugetlbfs ->mmap method fails,
7aa6b4ad 1314 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1315 * before calling this function to clean up.
1316 * Since no pte has actually been setup, it is
1317 * safe to do nothing in this case.
1318 */
24669e58 1319 if (vma->vm_file) {
83cde9e8 1320 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1321 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1322 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1323 }
f5cc4eef
AV
1324 } else
1325 unmap_page_range(tlb, vma, start, end, details);
1326 }
1da177e4
LT
1327}
1328
1da177e4
LT
1329/**
1330 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1331 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1332 * @vma: the starting vma
1333 * @start_addr: virtual address at which to start unmapping
1334 * @end_addr: virtual address at which to end unmapping
1da177e4 1335 *
508034a3 1336 * Unmap all pages in the vma list.
1da177e4 1337 *
1da177e4
LT
1338 * Only addresses between `start' and `end' will be unmapped.
1339 *
1340 * The VMA list must be sorted in ascending virtual address order.
1341 *
1342 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1343 * range after unmap_vmas() returns. So the only responsibility here is to
1344 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1345 * drops the lock and schedules.
1346 */
6e8bb019 1347void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1348 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1349 unsigned long end_addr)
1da177e4 1350{
ac46d4f3 1351 struct mmu_notifier_range range;
1da177e4 1352
6f4f13e8
JG
1353 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1354 start_addr, end_addr);
ac46d4f3 1355 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1356 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1357 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1358 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1359}
1360
1361/**
1362 * zap_page_range - remove user pages in a given range
1363 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1364 * @start: starting address of pages to zap
1da177e4 1365 * @size: number of bytes to zap
f5cc4eef
AV
1366 *
1367 * Caller must protect the VMA list
1da177e4 1368 */
7e027b14 1369void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1370 unsigned long size)
1da177e4 1371{
ac46d4f3 1372 struct mmu_notifier_range range;
d16dfc55 1373 struct mmu_gather tlb;
1da177e4 1374
1da177e4 1375 lru_add_drain();
7269f999 1376 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1377 start, start + size);
ac46d4f3
JG
1378 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1379 update_hiwater_rss(vma->vm_mm);
1380 mmu_notifier_invalidate_range_start(&range);
1381 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1382 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1383 mmu_notifier_invalidate_range_end(&range);
1384 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1385}
1386
f5cc4eef
AV
1387/**
1388 * zap_page_range_single - remove user pages in a given range
1389 * @vma: vm_area_struct holding the applicable pages
1390 * @address: starting address of pages to zap
1391 * @size: number of bytes to zap
8a5f14a2 1392 * @details: details of shared cache invalidation
f5cc4eef
AV
1393 *
1394 * The range must fit into one VMA.
1da177e4 1395 */
f5cc4eef 1396static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1397 unsigned long size, struct zap_details *details)
1398{
ac46d4f3 1399 struct mmu_notifier_range range;
d16dfc55 1400 struct mmu_gather tlb;
1da177e4 1401
1da177e4 1402 lru_add_drain();
7269f999 1403 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1404 address, address + size);
ac46d4f3
JG
1405 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1406 update_hiwater_rss(vma->vm_mm);
1407 mmu_notifier_invalidate_range_start(&range);
1408 unmap_single_vma(&tlb, vma, address, range.end, details);
1409 mmu_notifier_invalidate_range_end(&range);
1410 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1411}
1412
c627f9cc
JS
1413/**
1414 * zap_vma_ptes - remove ptes mapping the vma
1415 * @vma: vm_area_struct holding ptes to be zapped
1416 * @address: starting address of pages to zap
1417 * @size: number of bytes to zap
1418 *
1419 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1420 *
1421 * The entire address range must be fully contained within the vma.
1422 *
c627f9cc 1423 */
27d036e3 1424void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1425 unsigned long size)
1426{
1427 if (address < vma->vm_start || address + size > vma->vm_end ||
1428 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1429 return;
1430
f5cc4eef 1431 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1432}
1433EXPORT_SYMBOL_GPL(zap_vma_ptes);
1434
8cd3984d 1435static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1436{
c2febafc
KS
1437 pgd_t *pgd;
1438 p4d_t *p4d;
1439 pud_t *pud;
1440 pmd_t *pmd;
1441
1442 pgd = pgd_offset(mm, addr);
1443 p4d = p4d_alloc(mm, pgd, addr);
1444 if (!p4d)
1445 return NULL;
1446 pud = pud_alloc(mm, p4d, addr);
1447 if (!pud)
1448 return NULL;
1449 pmd = pmd_alloc(mm, pud, addr);
1450 if (!pmd)
1451 return NULL;
1452
1453 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1454 return pmd;
1455}
1456
1457pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1458 spinlock_t **ptl)
1459{
1460 pmd_t *pmd = walk_to_pmd(mm, addr);
1461
1462 if (!pmd)
1463 return NULL;
c2febafc 1464 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1465}
1466
8efd6f5b
AR
1467static int validate_page_before_insert(struct page *page)
1468{
1469 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1470 return -EINVAL;
1471 flush_dcache_page(page);
1472 return 0;
1473}
1474
1475static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1476 unsigned long addr, struct page *page, pgprot_t prot)
1477{
1478 if (!pte_none(*pte))
1479 return -EBUSY;
1480 /* Ok, finally just insert the thing.. */
1481 get_page(page);
1482 inc_mm_counter_fast(mm, mm_counter_file(page));
1483 page_add_file_rmap(page, false);
1484 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1485 return 0;
1486}
1487
238f58d8
LT
1488/*
1489 * This is the old fallback for page remapping.
1490 *
1491 * For historical reasons, it only allows reserved pages. Only
1492 * old drivers should use this, and they needed to mark their
1493 * pages reserved for the old functions anyway.
1494 */
423bad60
NP
1495static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1496 struct page *page, pgprot_t prot)
238f58d8 1497{
423bad60 1498 struct mm_struct *mm = vma->vm_mm;
238f58d8 1499 int retval;
c9cfcddf 1500 pte_t *pte;
8a9f3ccd
BS
1501 spinlock_t *ptl;
1502
8efd6f5b
AR
1503 retval = validate_page_before_insert(page);
1504 if (retval)
5b4e655e 1505 goto out;
238f58d8 1506 retval = -ENOMEM;
c9cfcddf 1507 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1508 if (!pte)
5b4e655e 1509 goto out;
8efd6f5b 1510 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1511 pte_unmap_unlock(pte, ptl);
1512out:
1513 return retval;
1514}
1515
8cd3984d 1516#ifdef pte_index
7f70c2a6 1517static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1518 unsigned long addr, struct page *page, pgprot_t prot)
1519{
1520 int err;
1521
1522 if (!page_count(page))
1523 return -EINVAL;
1524 err = validate_page_before_insert(page);
7f70c2a6
AR
1525 if (err)
1526 return err;
1527 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1528}
1529
1530/* insert_pages() amortizes the cost of spinlock operations
1531 * when inserting pages in a loop. Arch *must* define pte_index.
1532 */
1533static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1534 struct page **pages, unsigned long *num, pgprot_t prot)
1535{
1536 pmd_t *pmd = NULL;
7f70c2a6
AR
1537 pte_t *start_pte, *pte;
1538 spinlock_t *pte_lock;
8cd3984d
AR
1539 struct mm_struct *const mm = vma->vm_mm;
1540 unsigned long curr_page_idx = 0;
1541 unsigned long remaining_pages_total = *num;
1542 unsigned long pages_to_write_in_pmd;
1543 int ret;
1544more:
1545 ret = -EFAULT;
1546 pmd = walk_to_pmd(mm, addr);
1547 if (!pmd)
1548 goto out;
1549
1550 pages_to_write_in_pmd = min_t(unsigned long,
1551 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1552
1553 /* Allocate the PTE if necessary; takes PMD lock once only. */
1554 ret = -ENOMEM;
1555 if (pte_alloc(mm, pmd))
1556 goto out;
8cd3984d
AR
1557
1558 while (pages_to_write_in_pmd) {
1559 int pte_idx = 0;
1560 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1561
7f70c2a6
AR
1562 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1563 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1564 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1565 addr, pages[curr_page_idx], prot);
1566 if (unlikely(err)) {
7f70c2a6 1567 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1568 ret = err;
1569 remaining_pages_total -= pte_idx;
1570 goto out;
1571 }
1572 addr += PAGE_SIZE;
1573 ++curr_page_idx;
1574 }
7f70c2a6 1575 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1576 pages_to_write_in_pmd -= batch_size;
1577 remaining_pages_total -= batch_size;
1578 }
1579 if (remaining_pages_total)
1580 goto more;
1581 ret = 0;
1582out:
1583 *num = remaining_pages_total;
1584 return ret;
1585}
1586#endif /* ifdef pte_index */
1587
1588/**
1589 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1590 * @vma: user vma to map to
1591 * @addr: target start user address of these pages
1592 * @pages: source kernel pages
1593 * @num: in: number of pages to map. out: number of pages that were *not*
1594 * mapped. (0 means all pages were successfully mapped).
1595 *
1596 * Preferred over vm_insert_page() when inserting multiple pages.
1597 *
1598 * In case of error, we may have mapped a subset of the provided
1599 * pages. It is the caller's responsibility to account for this case.
1600 *
1601 * The same restrictions apply as in vm_insert_page().
1602 */
1603int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1604 struct page **pages, unsigned long *num)
1605{
1606#ifdef pte_index
1607 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1608
1609 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1610 return -EFAULT;
1611 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1612 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1613 BUG_ON(vma->vm_flags & VM_PFNMAP);
1614 vma->vm_flags |= VM_MIXEDMAP;
1615 }
1616 /* Defer page refcount checking till we're about to map that page. */
1617 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1618#else
1619 unsigned long idx = 0, pgcount = *num;
45779b03 1620 int err = -EINVAL;
8cd3984d
AR
1621
1622 for (; idx < pgcount; ++idx) {
1623 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1624 if (err)
1625 break;
1626 }
1627 *num = pgcount - idx;
1628 return err;
1629#endif /* ifdef pte_index */
1630}
1631EXPORT_SYMBOL(vm_insert_pages);
1632
bfa5bf6d
REB
1633/**
1634 * vm_insert_page - insert single page into user vma
1635 * @vma: user vma to map to
1636 * @addr: target user address of this page
1637 * @page: source kernel page
1638 *
a145dd41
LT
1639 * This allows drivers to insert individual pages they've allocated
1640 * into a user vma.
1641 *
1642 * The page has to be a nice clean _individual_ kernel allocation.
1643 * If you allocate a compound page, you need to have marked it as
1644 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1645 * (see split_page()).
a145dd41
LT
1646 *
1647 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1648 * took an arbitrary page protection parameter. This doesn't allow
1649 * that. Your vma protection will have to be set up correctly, which
1650 * means that if you want a shared writable mapping, you'd better
1651 * ask for a shared writable mapping!
1652 *
1653 * The page does not need to be reserved.
4b6e1e37
KK
1654 *
1655 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1656 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1657 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1658 * function from other places, for example from page-fault handler.
a862f68a
MR
1659 *
1660 * Return: %0 on success, negative error code otherwise.
a145dd41 1661 */
423bad60
NP
1662int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1663 struct page *page)
a145dd41
LT
1664{
1665 if (addr < vma->vm_start || addr >= vma->vm_end)
1666 return -EFAULT;
1667 if (!page_count(page))
1668 return -EINVAL;
4b6e1e37 1669 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1670 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1671 BUG_ON(vma->vm_flags & VM_PFNMAP);
1672 vma->vm_flags |= VM_MIXEDMAP;
1673 }
423bad60 1674 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1675}
e3c3374f 1676EXPORT_SYMBOL(vm_insert_page);
a145dd41 1677
a667d745
SJ
1678/*
1679 * __vm_map_pages - maps range of kernel pages into user vma
1680 * @vma: user vma to map to
1681 * @pages: pointer to array of source kernel pages
1682 * @num: number of pages in page array
1683 * @offset: user's requested vm_pgoff
1684 *
1685 * This allows drivers to map range of kernel pages into a user vma.
1686 *
1687 * Return: 0 on success and error code otherwise.
1688 */
1689static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1690 unsigned long num, unsigned long offset)
1691{
1692 unsigned long count = vma_pages(vma);
1693 unsigned long uaddr = vma->vm_start;
1694 int ret, i;
1695
1696 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1697 if (offset >= num)
a667d745
SJ
1698 return -ENXIO;
1699
1700 /* Fail if the user requested size exceeds available object size */
1701 if (count > num - offset)
1702 return -ENXIO;
1703
1704 for (i = 0; i < count; i++) {
1705 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1706 if (ret < 0)
1707 return ret;
1708 uaddr += PAGE_SIZE;
1709 }
1710
1711 return 0;
1712}
1713
1714/**
1715 * vm_map_pages - maps range of kernel pages starts with non zero offset
1716 * @vma: user vma to map to
1717 * @pages: pointer to array of source kernel pages
1718 * @num: number of pages in page array
1719 *
1720 * Maps an object consisting of @num pages, catering for the user's
1721 * requested vm_pgoff
1722 *
1723 * If we fail to insert any page into the vma, the function will return
1724 * immediately leaving any previously inserted pages present. Callers
1725 * from the mmap handler may immediately return the error as their caller
1726 * will destroy the vma, removing any successfully inserted pages. Other
1727 * callers should make their own arrangements for calling unmap_region().
1728 *
1729 * Context: Process context. Called by mmap handlers.
1730 * Return: 0 on success and error code otherwise.
1731 */
1732int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1733 unsigned long num)
1734{
1735 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1736}
1737EXPORT_SYMBOL(vm_map_pages);
1738
1739/**
1740 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1741 * @vma: user vma to map to
1742 * @pages: pointer to array of source kernel pages
1743 * @num: number of pages in page array
1744 *
1745 * Similar to vm_map_pages(), except that it explicitly sets the offset
1746 * to 0. This function is intended for the drivers that did not consider
1747 * vm_pgoff.
1748 *
1749 * Context: Process context. Called by mmap handlers.
1750 * Return: 0 on success and error code otherwise.
1751 */
1752int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1753 unsigned long num)
1754{
1755 return __vm_map_pages(vma, pages, num, 0);
1756}
1757EXPORT_SYMBOL(vm_map_pages_zero);
1758
9b5a8e00 1759static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1760 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1761{
1762 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1763 pte_t *pte, entry;
1764 spinlock_t *ptl;
1765
423bad60
NP
1766 pte = get_locked_pte(mm, addr, &ptl);
1767 if (!pte)
9b5a8e00 1768 return VM_FAULT_OOM;
b2770da6
RZ
1769 if (!pte_none(*pte)) {
1770 if (mkwrite) {
1771 /*
1772 * For read faults on private mappings the PFN passed
1773 * in may not match the PFN we have mapped if the
1774 * mapped PFN is a writeable COW page. In the mkwrite
1775 * case we are creating a writable PTE for a shared
f2c57d91
JK
1776 * mapping and we expect the PFNs to match. If they
1777 * don't match, we are likely racing with block
1778 * allocation and mapping invalidation so just skip the
1779 * update.
b2770da6 1780 */
f2c57d91
JK
1781 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1782 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1783 goto out_unlock;
f2c57d91 1784 }
cae85cb8
JK
1785 entry = pte_mkyoung(*pte);
1786 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1787 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1788 update_mmu_cache(vma, addr, pte);
1789 }
1790 goto out_unlock;
b2770da6 1791 }
423bad60
NP
1792
1793 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1794 if (pfn_t_devmap(pfn))
1795 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1796 else
1797 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1798
b2770da6
RZ
1799 if (mkwrite) {
1800 entry = pte_mkyoung(entry);
1801 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1802 }
1803
423bad60 1804 set_pte_at(mm, addr, pte, entry);
4b3073e1 1805 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1806
423bad60
NP
1807out_unlock:
1808 pte_unmap_unlock(pte, ptl);
9b5a8e00 1809 return VM_FAULT_NOPAGE;
423bad60
NP
1810}
1811
f5e6d1d5
MW
1812/**
1813 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1814 * @vma: user vma to map to
1815 * @addr: target user address of this page
1816 * @pfn: source kernel pfn
1817 * @pgprot: pgprot flags for the inserted page
1818 *
a1a0aea5 1819 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
1820 * to override pgprot on a per-page basis.
1821 *
1822 * This only makes sense for IO mappings, and it makes no sense for
1823 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1824 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1825 * impractical.
1826 *
574c5b3d
TH
1827 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1828 * a value of @pgprot different from that of @vma->vm_page_prot.
1829 *
ae2b01f3 1830 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1831 * Return: vm_fault_t value.
1832 */
1833vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1834 unsigned long pfn, pgprot_t pgprot)
1835{
6d958546
MW
1836 /*
1837 * Technically, architectures with pte_special can avoid all these
1838 * restrictions (same for remap_pfn_range). However we would like
1839 * consistency in testing and feature parity among all, so we should
1840 * try to keep these invariants in place for everybody.
1841 */
1842 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1843 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1844 (VM_PFNMAP|VM_MIXEDMAP));
1845 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1846 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1847
1848 if (addr < vma->vm_start || addr >= vma->vm_end)
1849 return VM_FAULT_SIGBUS;
1850
1851 if (!pfn_modify_allowed(pfn, pgprot))
1852 return VM_FAULT_SIGBUS;
1853
1854 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1855
9b5a8e00 1856 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1857 false);
f5e6d1d5
MW
1858}
1859EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1860
ae2b01f3
MW
1861/**
1862 * vmf_insert_pfn - insert single pfn into user vma
1863 * @vma: user vma to map to
1864 * @addr: target user address of this page
1865 * @pfn: source kernel pfn
1866 *
1867 * Similar to vm_insert_page, this allows drivers to insert individual pages
1868 * they've allocated into a user vma. Same comments apply.
1869 *
1870 * This function should only be called from a vm_ops->fault handler, and
1871 * in that case the handler should return the result of this function.
1872 *
1873 * vma cannot be a COW mapping.
1874 *
1875 * As this is called only for pages that do not currently exist, we
1876 * do not need to flush old virtual caches or the TLB.
1877 *
1878 * Context: Process context. May allocate using %GFP_KERNEL.
1879 * Return: vm_fault_t value.
1880 */
1881vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1882 unsigned long pfn)
1883{
1884 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1885}
1886EXPORT_SYMBOL(vmf_insert_pfn);
1887
785a3fab
DW
1888static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1889{
1890 /* these checks mirror the abort conditions in vm_normal_page */
1891 if (vma->vm_flags & VM_MIXEDMAP)
1892 return true;
1893 if (pfn_t_devmap(pfn))
1894 return true;
1895 if (pfn_t_special(pfn))
1896 return true;
1897 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1898 return true;
1899 return false;
1900}
1901
79f3aa5b 1902static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
1903 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1904 bool mkwrite)
423bad60 1905{
79f3aa5b 1906 int err;
87744ab3 1907
785a3fab 1908 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1909
423bad60 1910 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1911 return VM_FAULT_SIGBUS;
308a047c
BP
1912
1913 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1914
42e4089c 1915 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1916 return VM_FAULT_SIGBUS;
42e4089c 1917
423bad60
NP
1918 /*
1919 * If we don't have pte special, then we have to use the pfn_valid()
1920 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1921 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1922 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1923 * without pte special, it would there be refcounted as a normal page.
423bad60 1924 */
00b3a331
LD
1925 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1926 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1927 struct page *page;
1928
03fc2da6
DW
1929 /*
1930 * At this point we are committed to insert_page()
1931 * regardless of whether the caller specified flags that
1932 * result in pfn_t_has_page() == false.
1933 */
1934 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1935 err = insert_page(vma, addr, page, pgprot);
1936 } else {
9b5a8e00 1937 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1938 }
b2770da6 1939
5d747637
MW
1940 if (err == -ENOMEM)
1941 return VM_FAULT_OOM;
1942 if (err < 0 && err != -EBUSY)
1943 return VM_FAULT_SIGBUS;
1944
1945 return VM_FAULT_NOPAGE;
e0dc0d8f 1946}
79f3aa5b 1947
574c5b3d
TH
1948/**
1949 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1950 * @vma: user vma to map to
1951 * @addr: target user address of this page
1952 * @pfn: source kernel pfn
1953 * @pgprot: pgprot flags for the inserted page
1954 *
a1a0aea5 1955 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
1956 * to override pgprot on a per-page basis.
1957 *
1958 * Typically this function should be used by drivers to set caching- and
1959 * encryption bits different than those of @vma->vm_page_prot, because
1960 * the caching- or encryption mode may not be known at mmap() time.
1961 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1962 * to set caching and encryption bits for those vmas (except for COW pages).
1963 * This is ensured by core vm only modifying these page table entries using
1964 * functions that don't touch caching- or encryption bits, using pte_modify()
1965 * if needed. (See for example mprotect()).
1966 * Also when new page-table entries are created, this is only done using the
1967 * fault() callback, and never using the value of vma->vm_page_prot,
1968 * except for page-table entries that point to anonymous pages as the result
1969 * of COW.
1970 *
1971 * Context: Process context. May allocate using %GFP_KERNEL.
1972 * Return: vm_fault_t value.
1973 */
1974vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1975 pfn_t pfn, pgprot_t pgprot)
1976{
1977 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1978}
5379e4dd 1979EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 1980
79f3aa5b
MW
1981vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1982 pfn_t pfn)
1983{
574c5b3d 1984 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 1985}
5d747637 1986EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1987
ab77dab4
SJ
1988/*
1989 * If the insertion of PTE failed because someone else already added a
1990 * different entry in the mean time, we treat that as success as we assume
1991 * the same entry was actually inserted.
1992 */
ab77dab4
SJ
1993vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1994 unsigned long addr, pfn_t pfn)
b2770da6 1995{
574c5b3d 1996 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 1997}
ab77dab4 1998EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1999
1da177e4
LT
2000/*
2001 * maps a range of physical memory into the requested pages. the old
2002 * mappings are removed. any references to nonexistent pages results
2003 * in null mappings (currently treated as "copy-on-access")
2004 */
2005static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2006 unsigned long addr, unsigned long end,
2007 unsigned long pfn, pgprot_t prot)
2008{
2009 pte_t *pte;
c74df32c 2010 spinlock_t *ptl;
42e4089c 2011 int err = 0;
1da177e4 2012
c74df32c 2013 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2014 if (!pte)
2015 return -ENOMEM;
6606c3e0 2016 arch_enter_lazy_mmu_mode();
1da177e4
LT
2017 do {
2018 BUG_ON(!pte_none(*pte));
42e4089c
AK
2019 if (!pfn_modify_allowed(pfn, prot)) {
2020 err = -EACCES;
2021 break;
2022 }
7e675137 2023 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2024 pfn++;
2025 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2026 arch_leave_lazy_mmu_mode();
c74df32c 2027 pte_unmap_unlock(pte - 1, ptl);
42e4089c 2028 return err;
1da177e4
LT
2029}
2030
2031static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2032 unsigned long addr, unsigned long end,
2033 unsigned long pfn, pgprot_t prot)
2034{
2035 pmd_t *pmd;
2036 unsigned long next;
42e4089c 2037 int err;
1da177e4
LT
2038
2039 pfn -= addr >> PAGE_SHIFT;
2040 pmd = pmd_alloc(mm, pud, addr);
2041 if (!pmd)
2042 return -ENOMEM;
f66055ab 2043 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2044 do {
2045 next = pmd_addr_end(addr, end);
42e4089c
AK
2046 err = remap_pte_range(mm, pmd, addr, next,
2047 pfn + (addr >> PAGE_SHIFT), prot);
2048 if (err)
2049 return err;
1da177e4
LT
2050 } while (pmd++, addr = next, addr != end);
2051 return 0;
2052}
2053
c2febafc 2054static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2055 unsigned long addr, unsigned long end,
2056 unsigned long pfn, pgprot_t prot)
2057{
2058 pud_t *pud;
2059 unsigned long next;
42e4089c 2060 int err;
1da177e4
LT
2061
2062 pfn -= addr >> PAGE_SHIFT;
c2febafc 2063 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2064 if (!pud)
2065 return -ENOMEM;
2066 do {
2067 next = pud_addr_end(addr, end);
42e4089c
AK
2068 err = remap_pmd_range(mm, pud, addr, next,
2069 pfn + (addr >> PAGE_SHIFT), prot);
2070 if (err)
2071 return err;
1da177e4
LT
2072 } while (pud++, addr = next, addr != end);
2073 return 0;
2074}
2075
c2febafc
KS
2076static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2077 unsigned long addr, unsigned long end,
2078 unsigned long pfn, pgprot_t prot)
2079{
2080 p4d_t *p4d;
2081 unsigned long next;
42e4089c 2082 int err;
c2febafc
KS
2083
2084 pfn -= addr >> PAGE_SHIFT;
2085 p4d = p4d_alloc(mm, pgd, addr);
2086 if (!p4d)
2087 return -ENOMEM;
2088 do {
2089 next = p4d_addr_end(addr, end);
42e4089c
AK
2090 err = remap_pud_range(mm, p4d, addr, next,
2091 pfn + (addr >> PAGE_SHIFT), prot);
2092 if (err)
2093 return err;
c2febafc
KS
2094 } while (p4d++, addr = next, addr != end);
2095 return 0;
2096}
2097
bfa5bf6d
REB
2098/**
2099 * remap_pfn_range - remap kernel memory to userspace
2100 * @vma: user vma to map to
0c4123e3 2101 * @addr: target page aligned user address to start at
86a76331 2102 * @pfn: page frame number of kernel physical memory address
552657b7 2103 * @size: size of mapping area
bfa5bf6d
REB
2104 * @prot: page protection flags for this mapping
2105 *
a862f68a
MR
2106 * Note: this is only safe if the mm semaphore is held when called.
2107 *
2108 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 2109 */
1da177e4
LT
2110int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2111 unsigned long pfn, unsigned long size, pgprot_t prot)
2112{
2113 pgd_t *pgd;
2114 unsigned long next;
2d15cab8 2115 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2116 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2117 unsigned long remap_pfn = pfn;
1da177e4
LT
2118 int err;
2119
0c4123e3
AZ
2120 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2121 return -EINVAL;
2122
1da177e4
LT
2123 /*
2124 * Physically remapped pages are special. Tell the
2125 * rest of the world about it:
2126 * VM_IO tells people not to look at these pages
2127 * (accesses can have side effects).
6aab341e
LT
2128 * VM_PFNMAP tells the core MM that the base pages are just
2129 * raw PFN mappings, and do not have a "struct page" associated
2130 * with them.
314e51b9
KK
2131 * VM_DONTEXPAND
2132 * Disable vma merging and expanding with mremap().
2133 * VM_DONTDUMP
2134 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2135 *
2136 * There's a horrible special case to handle copy-on-write
2137 * behaviour that some programs depend on. We mark the "original"
2138 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2139 * See vm_normal_page() for details.
1da177e4 2140 */
b3b9c293
KK
2141 if (is_cow_mapping(vma->vm_flags)) {
2142 if (addr != vma->vm_start || end != vma->vm_end)
2143 return -EINVAL;
fb155c16 2144 vma->vm_pgoff = pfn;
b3b9c293
KK
2145 }
2146
d5957d2f 2147 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2148 if (err)
3c8bb73a 2149 return -EINVAL;
fb155c16 2150
314e51b9 2151 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2152
2153 BUG_ON(addr >= end);
2154 pfn -= addr >> PAGE_SHIFT;
2155 pgd = pgd_offset(mm, addr);
2156 flush_cache_range(vma, addr, end);
1da177e4
LT
2157 do {
2158 next = pgd_addr_end(addr, end);
c2febafc 2159 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2160 pfn + (addr >> PAGE_SHIFT), prot);
2161 if (err)
2162 break;
2163 } while (pgd++, addr = next, addr != end);
2ab64037 2164
2165 if (err)
d5957d2f 2166 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2167
1da177e4
LT
2168 return err;
2169}
2170EXPORT_SYMBOL(remap_pfn_range);
2171
b4cbb197
LT
2172/**
2173 * vm_iomap_memory - remap memory to userspace
2174 * @vma: user vma to map to
abd69b9e 2175 * @start: start of the physical memory to be mapped
b4cbb197
LT
2176 * @len: size of area
2177 *
2178 * This is a simplified io_remap_pfn_range() for common driver use. The
2179 * driver just needs to give us the physical memory range to be mapped,
2180 * we'll figure out the rest from the vma information.
2181 *
2182 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2183 * whatever write-combining details or similar.
a862f68a
MR
2184 *
2185 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2186 */
2187int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2188{
2189 unsigned long vm_len, pfn, pages;
2190
2191 /* Check that the physical memory area passed in looks valid */
2192 if (start + len < start)
2193 return -EINVAL;
2194 /*
2195 * You *really* shouldn't map things that aren't page-aligned,
2196 * but we've historically allowed it because IO memory might
2197 * just have smaller alignment.
2198 */
2199 len += start & ~PAGE_MASK;
2200 pfn = start >> PAGE_SHIFT;
2201 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2202 if (pfn + pages < pfn)
2203 return -EINVAL;
2204
2205 /* We start the mapping 'vm_pgoff' pages into the area */
2206 if (vma->vm_pgoff > pages)
2207 return -EINVAL;
2208 pfn += vma->vm_pgoff;
2209 pages -= vma->vm_pgoff;
2210
2211 /* Can we fit all of the mapping? */
2212 vm_len = vma->vm_end - vma->vm_start;
2213 if (vm_len >> PAGE_SHIFT > pages)
2214 return -EINVAL;
2215
2216 /* Ok, let it rip */
2217 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2218}
2219EXPORT_SYMBOL(vm_iomap_memory);
2220
aee16b3c
JF
2221static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2222 unsigned long addr, unsigned long end,
e80d3909
JR
2223 pte_fn_t fn, void *data, bool create,
2224 pgtbl_mod_mask *mask)
aee16b3c
JF
2225{
2226 pte_t *pte;
be1db475 2227 int err = 0;
3f649ab7 2228 spinlock_t *ptl;
aee16b3c 2229
be1db475
DA
2230 if (create) {
2231 pte = (mm == &init_mm) ?
e80d3909 2232 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2233 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2234 if (!pte)
2235 return -ENOMEM;
2236 } else {
2237 pte = (mm == &init_mm) ?
2238 pte_offset_kernel(pmd, addr) :
2239 pte_offset_map_lock(mm, pmd, addr, &ptl);
2240 }
aee16b3c
JF
2241
2242 BUG_ON(pmd_huge(*pmd));
2243
38e0edb1
JF
2244 arch_enter_lazy_mmu_mode();
2245
aee16b3c 2246 do {
be1db475
DA
2247 if (create || !pte_none(*pte)) {
2248 err = fn(pte++, addr, data);
2249 if (err)
2250 break;
2251 }
c36987e2 2252 } while (addr += PAGE_SIZE, addr != end);
e80d3909 2253 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2254
38e0edb1
JF
2255 arch_leave_lazy_mmu_mode();
2256
aee16b3c
JF
2257 if (mm != &init_mm)
2258 pte_unmap_unlock(pte-1, ptl);
2259 return err;
2260}
2261
2262static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2263 unsigned long addr, unsigned long end,
e80d3909
JR
2264 pte_fn_t fn, void *data, bool create,
2265 pgtbl_mod_mask *mask)
aee16b3c
JF
2266{
2267 pmd_t *pmd;
2268 unsigned long next;
be1db475 2269 int err = 0;
aee16b3c 2270
ceb86879
AK
2271 BUG_ON(pud_huge(*pud));
2272
be1db475 2273 if (create) {
e80d3909 2274 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2275 if (!pmd)
2276 return -ENOMEM;
2277 } else {
2278 pmd = pmd_offset(pud, addr);
2279 }
aee16b3c
JF
2280 do {
2281 next = pmd_addr_end(addr, end);
be1db475
DA
2282 if (create || !pmd_none_or_clear_bad(pmd)) {
2283 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
e80d3909 2284 create, mask);
be1db475
DA
2285 if (err)
2286 break;
2287 }
aee16b3c
JF
2288 } while (pmd++, addr = next, addr != end);
2289 return err;
2290}
2291
c2febafc 2292static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2293 unsigned long addr, unsigned long end,
e80d3909
JR
2294 pte_fn_t fn, void *data, bool create,
2295 pgtbl_mod_mask *mask)
aee16b3c
JF
2296{
2297 pud_t *pud;
2298 unsigned long next;
be1db475 2299 int err = 0;
aee16b3c 2300
be1db475 2301 if (create) {
e80d3909 2302 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2303 if (!pud)
2304 return -ENOMEM;
2305 } else {
2306 pud = pud_offset(p4d, addr);
2307 }
aee16b3c
JF
2308 do {
2309 next = pud_addr_end(addr, end);
be1db475
DA
2310 if (create || !pud_none_or_clear_bad(pud)) {
2311 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
e80d3909 2312 create, mask);
be1db475
DA
2313 if (err)
2314 break;
2315 }
aee16b3c
JF
2316 } while (pud++, addr = next, addr != end);
2317 return err;
2318}
2319
c2febafc
KS
2320static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2321 unsigned long addr, unsigned long end,
e80d3909
JR
2322 pte_fn_t fn, void *data, bool create,
2323 pgtbl_mod_mask *mask)
c2febafc
KS
2324{
2325 p4d_t *p4d;
2326 unsigned long next;
be1db475 2327 int err = 0;
c2febafc 2328
be1db475 2329 if (create) {
e80d3909 2330 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2331 if (!p4d)
2332 return -ENOMEM;
2333 } else {
2334 p4d = p4d_offset(pgd, addr);
2335 }
c2febafc
KS
2336 do {
2337 next = p4d_addr_end(addr, end);
be1db475
DA
2338 if (create || !p4d_none_or_clear_bad(p4d)) {
2339 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
e80d3909 2340 create, mask);
be1db475
DA
2341 if (err)
2342 break;
2343 }
c2febafc
KS
2344 } while (p4d++, addr = next, addr != end);
2345 return err;
2346}
2347
be1db475
DA
2348static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2349 unsigned long size, pte_fn_t fn,
2350 void *data, bool create)
aee16b3c
JF
2351{
2352 pgd_t *pgd;
e80d3909 2353 unsigned long start = addr, next;
57250a5b 2354 unsigned long end = addr + size;
e80d3909 2355 pgtbl_mod_mask mask = 0;
be1db475 2356 int err = 0;
aee16b3c 2357
9cb65bc3
MP
2358 if (WARN_ON(addr >= end))
2359 return -EINVAL;
2360
aee16b3c
JF
2361 pgd = pgd_offset(mm, addr);
2362 do {
2363 next = pgd_addr_end(addr, end);
be1db475
DA
2364 if (!create && pgd_none_or_clear_bad(pgd))
2365 continue;
e80d3909 2366 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
aee16b3c
JF
2367 if (err)
2368 break;
2369 } while (pgd++, addr = next, addr != end);
57250a5b 2370
e80d3909
JR
2371 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2372 arch_sync_kernel_mappings(start, start + size);
2373
aee16b3c
JF
2374 return err;
2375}
be1db475
DA
2376
2377/*
2378 * Scan a region of virtual memory, filling in page tables as necessary
2379 * and calling a provided function on each leaf page table.
2380 */
2381int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2382 unsigned long size, pte_fn_t fn, void *data)
2383{
2384 return __apply_to_page_range(mm, addr, size, fn, data, true);
2385}
aee16b3c
JF
2386EXPORT_SYMBOL_GPL(apply_to_page_range);
2387
be1db475
DA
2388/*
2389 * Scan a region of virtual memory, calling a provided function on
2390 * each leaf page table where it exists.
2391 *
2392 * Unlike apply_to_page_range, this does _not_ fill in page tables
2393 * where they are absent.
2394 */
2395int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2396 unsigned long size, pte_fn_t fn, void *data)
2397{
2398 return __apply_to_page_range(mm, addr, size, fn, data, false);
2399}
2400EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2401
8f4e2101 2402/*
9b4bdd2f
KS
2403 * handle_pte_fault chooses page fault handler according to an entry which was
2404 * read non-atomically. Before making any commitment, on those architectures
2405 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2406 * parts, do_swap_page must check under lock before unmapping the pte and
2407 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2408 * and do_anonymous_page can safely check later on).
8f4e2101 2409 */
4c21e2f2 2410static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2411 pte_t *page_table, pte_t orig_pte)
2412{
2413 int same = 1;
923717cb 2414#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2415 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2416 spinlock_t *ptl = pte_lockptr(mm, pmd);
2417 spin_lock(ptl);
8f4e2101 2418 same = pte_same(*page_table, orig_pte);
4c21e2f2 2419 spin_unlock(ptl);
8f4e2101
HD
2420 }
2421#endif
2422 pte_unmap(page_table);
2423 return same;
2424}
2425
83d116c5
JH
2426static inline bool cow_user_page(struct page *dst, struct page *src,
2427 struct vm_fault *vmf)
6aab341e 2428{
83d116c5
JH
2429 bool ret;
2430 void *kaddr;
2431 void __user *uaddr;
c3e5ea6e 2432 bool locked = false;
83d116c5
JH
2433 struct vm_area_struct *vma = vmf->vma;
2434 struct mm_struct *mm = vma->vm_mm;
2435 unsigned long addr = vmf->address;
2436
83d116c5
JH
2437 if (likely(src)) {
2438 copy_user_highpage(dst, src, addr, vma);
2439 return true;
2440 }
2441
6aab341e
LT
2442 /*
2443 * If the source page was a PFN mapping, we don't have
2444 * a "struct page" for it. We do a best-effort copy by
2445 * just copying from the original user address. If that
2446 * fails, we just zero-fill it. Live with it.
2447 */
83d116c5
JH
2448 kaddr = kmap_atomic(dst);
2449 uaddr = (void __user *)(addr & PAGE_MASK);
2450
2451 /*
2452 * On architectures with software "accessed" bits, we would
2453 * take a double page fault, so mark it accessed here.
2454 */
c3e5ea6e 2455 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2456 pte_t entry;
5d2a2dbb 2457
83d116c5 2458 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2459 locked = true;
83d116c5
JH
2460 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2461 /*
2462 * Other thread has already handled the fault
7df67697 2463 * and update local tlb only
83d116c5 2464 */
7df67697 2465 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2466 ret = false;
2467 goto pte_unlock;
2468 }
2469
2470 entry = pte_mkyoung(vmf->orig_pte);
2471 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2472 update_mmu_cache(vma, addr, vmf->pte);
2473 }
2474
2475 /*
2476 * This really shouldn't fail, because the page is there
2477 * in the page tables. But it might just be unreadable,
2478 * in which case we just give up and fill the result with
2479 * zeroes.
2480 */
2481 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2482 if (locked)
2483 goto warn;
2484
2485 /* Re-validate under PTL if the page is still mapped */
2486 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2487 locked = true;
2488 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2489 /* The PTE changed under us, update local tlb */
2490 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2491 ret = false;
2492 goto pte_unlock;
2493 }
2494
5d2a2dbb 2495 /*
985ba004 2496 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2497 * Try to copy again under PTL.
5d2a2dbb 2498 */
c3e5ea6e
KS
2499 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2500 /*
2501 * Give a warn in case there can be some obscure
2502 * use-case
2503 */
2504warn:
2505 WARN_ON_ONCE(1);
2506 clear_page(kaddr);
2507 }
83d116c5
JH
2508 }
2509
2510 ret = true;
2511
2512pte_unlock:
c3e5ea6e 2513 if (locked)
83d116c5
JH
2514 pte_unmap_unlock(vmf->pte, vmf->ptl);
2515 kunmap_atomic(kaddr);
2516 flush_dcache_page(dst);
2517
2518 return ret;
6aab341e
LT
2519}
2520
c20cd45e
MH
2521static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2522{
2523 struct file *vm_file = vma->vm_file;
2524
2525 if (vm_file)
2526 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2527
2528 /*
2529 * Special mappings (e.g. VDSO) do not have any file so fake
2530 * a default GFP_KERNEL for them.
2531 */
2532 return GFP_KERNEL;
2533}
2534
fb09a464
KS
2535/*
2536 * Notify the address space that the page is about to become writable so that
2537 * it can prohibit this or wait for the page to get into an appropriate state.
2538 *
2539 * We do this without the lock held, so that it can sleep if it needs to.
2540 */
2b740303 2541static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2542{
2b740303 2543 vm_fault_t ret;
38b8cb7f
JK
2544 struct page *page = vmf->page;
2545 unsigned int old_flags = vmf->flags;
fb09a464 2546
38b8cb7f 2547 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2548
dc617f29
DW
2549 if (vmf->vma->vm_file &&
2550 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2551 return VM_FAULT_SIGBUS;
2552
11bac800 2553 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2554 /* Restore original flags so that caller is not surprised */
2555 vmf->flags = old_flags;
fb09a464
KS
2556 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2557 return ret;
2558 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2559 lock_page(page);
2560 if (!page->mapping) {
2561 unlock_page(page);
2562 return 0; /* retry */
2563 }
2564 ret |= VM_FAULT_LOCKED;
2565 } else
2566 VM_BUG_ON_PAGE(!PageLocked(page), page);
2567 return ret;
2568}
2569
97ba0c2b
JK
2570/*
2571 * Handle dirtying of a page in shared file mapping on a write fault.
2572 *
2573 * The function expects the page to be locked and unlocks it.
2574 */
89b15332 2575static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2576{
89b15332 2577 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2578 struct address_space *mapping;
89b15332 2579 struct page *page = vmf->page;
97ba0c2b
JK
2580 bool dirtied;
2581 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2582
2583 dirtied = set_page_dirty(page);
2584 VM_BUG_ON_PAGE(PageAnon(page), page);
2585 /*
2586 * Take a local copy of the address_space - page.mapping may be zeroed
2587 * by truncate after unlock_page(). The address_space itself remains
2588 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2589 * release semantics to prevent the compiler from undoing this copying.
2590 */
2591 mapping = page_rmapping(page);
2592 unlock_page(page);
2593
89b15332
JW
2594 if (!page_mkwrite)
2595 file_update_time(vma->vm_file);
2596
2597 /*
2598 * Throttle page dirtying rate down to writeback speed.
2599 *
2600 * mapping may be NULL here because some device drivers do not
2601 * set page.mapping but still dirty their pages
2602 *
c1e8d7c6 2603 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2604 * is pinning the mapping, as per above.
2605 */
97ba0c2b 2606 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2607 struct file *fpin;
2608
2609 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2610 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2611 if (fpin) {
2612 fput(fpin);
2613 return VM_FAULT_RETRY;
2614 }
97ba0c2b
JK
2615 }
2616
89b15332 2617 return 0;
97ba0c2b
JK
2618}
2619
4e047f89
SR
2620/*
2621 * Handle write page faults for pages that can be reused in the current vma
2622 *
2623 * This can happen either due to the mapping being with the VM_SHARED flag,
2624 * or due to us being the last reference standing to the page. In either
2625 * case, all we need to do here is to mark the page as writable and update
2626 * any related book-keeping.
2627 */
997dd98d 2628static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2629 __releases(vmf->ptl)
4e047f89 2630{
82b0f8c3 2631 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2632 struct page *page = vmf->page;
4e047f89
SR
2633 pte_t entry;
2634 /*
2635 * Clear the pages cpupid information as the existing
2636 * information potentially belongs to a now completely
2637 * unrelated process.
2638 */
2639 if (page)
2640 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2641
2994302b
JK
2642 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2643 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2644 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2645 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2646 update_mmu_cache(vma, vmf->address, vmf->pte);
2647 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2648 count_vm_event(PGREUSE);
4e047f89
SR
2649}
2650
2f38ab2c
SR
2651/*
2652 * Handle the case of a page which we actually need to copy to a new page.
2653 *
c1e8d7c6 2654 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2655 * without the ptl held.
2656 *
2657 * High level logic flow:
2658 *
2659 * - Allocate a page, copy the content of the old page to the new one.
2660 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2661 * - Take the PTL. If the pte changed, bail out and release the allocated page
2662 * - If the pte is still the way we remember it, update the page table and all
2663 * relevant references. This includes dropping the reference the page-table
2664 * held to the old page, as well as updating the rmap.
2665 * - In any case, unlock the PTL and drop the reference we took to the old page.
2666 */
2b740303 2667static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2668{
82b0f8c3 2669 struct vm_area_struct *vma = vmf->vma;
bae473a4 2670 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2671 struct page *old_page = vmf->page;
2f38ab2c 2672 struct page *new_page = NULL;
2f38ab2c
SR
2673 pte_t entry;
2674 int page_copied = 0;
ac46d4f3 2675 struct mmu_notifier_range range;
2f38ab2c
SR
2676
2677 if (unlikely(anon_vma_prepare(vma)))
2678 goto oom;
2679
2994302b 2680 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2681 new_page = alloc_zeroed_user_highpage_movable(vma,
2682 vmf->address);
2f38ab2c
SR
2683 if (!new_page)
2684 goto oom;
2685 } else {
bae473a4 2686 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2687 vmf->address);
2f38ab2c
SR
2688 if (!new_page)
2689 goto oom;
83d116c5
JH
2690
2691 if (!cow_user_page(new_page, old_page, vmf)) {
2692 /*
2693 * COW failed, if the fault was solved by other,
2694 * it's fine. If not, userspace would re-fault on
2695 * the same address and we will handle the fault
2696 * from the second attempt.
2697 */
2698 put_page(new_page);
2699 if (old_page)
2700 put_page(old_page);
2701 return 0;
2702 }
2f38ab2c 2703 }
2f38ab2c 2704
d9eb1ea2 2705 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2706 goto oom_free_new;
9d82c694 2707 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2708
eb3c24f3
MG
2709 __SetPageUptodate(new_page);
2710
7269f999 2711 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2712 vmf->address & PAGE_MASK,
ac46d4f3
JG
2713 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2714 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2715
2716 /*
2717 * Re-check the pte - we dropped the lock
2718 */
82b0f8c3 2719 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2720 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2721 if (old_page) {
2722 if (!PageAnon(old_page)) {
eca56ff9
JM
2723 dec_mm_counter_fast(mm,
2724 mm_counter_file(old_page));
2f38ab2c
SR
2725 inc_mm_counter_fast(mm, MM_ANONPAGES);
2726 }
2727 } else {
2728 inc_mm_counter_fast(mm, MM_ANONPAGES);
2729 }
2994302b 2730 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 2731 entry = mk_pte(new_page, vma->vm_page_prot);
44bf431b 2732 entry = pte_sw_mkyoung(entry);
2f38ab2c
SR
2733 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2734 /*
2735 * Clear the pte entry and flush it first, before updating the
2736 * pte with the new entry. This will avoid a race condition
2737 * seen in the presence of one thread doing SMC and another
2738 * thread doing COW.
2739 */
82b0f8c3
JK
2740 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2741 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 2742 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
2743 /*
2744 * We call the notify macro here because, when using secondary
2745 * mmu page tables (such as kvm shadow page tables), we want the
2746 * new page to be mapped directly into the secondary page table.
2747 */
82b0f8c3
JK
2748 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2749 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2750 if (old_page) {
2751 /*
2752 * Only after switching the pte to the new page may
2753 * we remove the mapcount here. Otherwise another
2754 * process may come and find the rmap count decremented
2755 * before the pte is switched to the new page, and
2756 * "reuse" the old page writing into it while our pte
2757 * here still points into it and can be read by other
2758 * threads.
2759 *
2760 * The critical issue is to order this
2761 * page_remove_rmap with the ptp_clear_flush above.
2762 * Those stores are ordered by (if nothing else,)
2763 * the barrier present in the atomic_add_negative
2764 * in page_remove_rmap.
2765 *
2766 * Then the TLB flush in ptep_clear_flush ensures that
2767 * no process can access the old page before the
2768 * decremented mapcount is visible. And the old page
2769 * cannot be reused until after the decremented
2770 * mapcount is visible. So transitively, TLBs to
2771 * old page will be flushed before it can be reused.
2772 */
d281ee61 2773 page_remove_rmap(old_page, false);
2f38ab2c
SR
2774 }
2775
2776 /* Free the old page.. */
2777 new_page = old_page;
2778 page_copied = 1;
2779 } else {
7df67697 2780 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2781 }
2782
2783 if (new_page)
09cbfeaf 2784 put_page(new_page);
2f38ab2c 2785
82b0f8c3 2786 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2787 /*
2788 * No need to double call mmu_notifier->invalidate_range() callback as
2789 * the above ptep_clear_flush_notify() did already call it.
2790 */
ac46d4f3 2791 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2792 if (old_page) {
2793 /*
2794 * Don't let another task, with possibly unlocked vma,
2795 * keep the mlocked page.
2796 */
2797 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2798 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2799 if (PageMlocked(old_page))
2800 munlock_vma_page(old_page);
2f38ab2c
SR
2801 unlock_page(old_page);
2802 }
09cbfeaf 2803 put_page(old_page);
2f38ab2c
SR
2804 }
2805 return page_copied ? VM_FAULT_WRITE : 0;
2806oom_free_new:
09cbfeaf 2807 put_page(new_page);
2f38ab2c
SR
2808oom:
2809 if (old_page)
09cbfeaf 2810 put_page(old_page);
2f38ab2c
SR
2811 return VM_FAULT_OOM;
2812}
2813
66a6197c
JK
2814/**
2815 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2816 * writeable once the page is prepared
2817 *
2818 * @vmf: structure describing the fault
2819 *
2820 * This function handles all that is needed to finish a write page fault in a
2821 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2822 * It handles locking of PTE and modifying it.
66a6197c
JK
2823 *
2824 * The function expects the page to be locked or other protection against
2825 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2826 *
2827 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2828 * we acquired PTE lock.
66a6197c 2829 */
2b740303 2830vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2831{
2832 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2833 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2834 &vmf->ptl);
2835 /*
2836 * We might have raced with another page fault while we released the
2837 * pte_offset_map_lock.
2838 */
2839 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 2840 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 2841 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2842 return VM_FAULT_NOPAGE;
66a6197c
JK
2843 }
2844 wp_page_reuse(vmf);
a19e2553 2845 return 0;
66a6197c
JK
2846}
2847
dd906184
BH
2848/*
2849 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2850 * mapping
2851 */
2b740303 2852static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2853{
82b0f8c3 2854 struct vm_area_struct *vma = vmf->vma;
bae473a4 2855
dd906184 2856 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2857 vm_fault_t ret;
dd906184 2858
82b0f8c3 2859 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2860 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2861 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2862 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2863 return ret;
66a6197c 2864 return finish_mkwrite_fault(vmf);
dd906184 2865 }
997dd98d
JK
2866 wp_page_reuse(vmf);
2867 return VM_FAULT_WRITE;
dd906184
BH
2868}
2869
2b740303 2870static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2871 __releases(vmf->ptl)
93e478d4 2872{
82b0f8c3 2873 struct vm_area_struct *vma = vmf->vma;
89b15332 2874 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 2875
a41b70d6 2876 get_page(vmf->page);
93e478d4 2877
93e478d4 2878 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2879 vm_fault_t tmp;
93e478d4 2880
82b0f8c3 2881 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2882 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2883 if (unlikely(!tmp || (tmp &
2884 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2885 put_page(vmf->page);
93e478d4
SR
2886 return tmp;
2887 }
66a6197c 2888 tmp = finish_mkwrite_fault(vmf);
a19e2553 2889 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2890 unlock_page(vmf->page);
a41b70d6 2891 put_page(vmf->page);
66a6197c 2892 return tmp;
93e478d4 2893 }
66a6197c
JK
2894 } else {
2895 wp_page_reuse(vmf);
997dd98d 2896 lock_page(vmf->page);
93e478d4 2897 }
89b15332 2898 ret |= fault_dirty_shared_page(vmf);
997dd98d 2899 put_page(vmf->page);
93e478d4 2900
89b15332 2901 return ret;
93e478d4
SR
2902}
2903
1da177e4
LT
2904/*
2905 * This routine handles present pages, when users try to write
2906 * to a shared page. It is done by copying the page to a new address
2907 * and decrementing the shared-page counter for the old page.
2908 *
1da177e4
LT
2909 * Note that this routine assumes that the protection checks have been
2910 * done by the caller (the low-level page fault routine in most cases).
2911 * Thus we can safely just mark it writable once we've done any necessary
2912 * COW.
2913 *
2914 * We also mark the page dirty at this point even though the page will
2915 * change only once the write actually happens. This avoids a few races,
2916 * and potentially makes it more efficient.
2917 *
c1e8d7c6 2918 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 2919 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 2920 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 2921 */
2b740303 2922static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2923 __releases(vmf->ptl)
1da177e4 2924{
82b0f8c3 2925 struct vm_area_struct *vma = vmf->vma;
1da177e4 2926
292924b2 2927 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
2928 pte_unmap_unlock(vmf->pte, vmf->ptl);
2929 return handle_userfault(vmf, VM_UFFD_WP);
2930 }
2931
a41b70d6
JK
2932 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2933 if (!vmf->page) {
251b97f5 2934 /*
64e45507
PF
2935 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2936 * VM_PFNMAP VMA.
251b97f5
PZ
2937 *
2938 * We should not cow pages in a shared writeable mapping.
dd906184 2939 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2940 */
2941 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2942 (VM_WRITE|VM_SHARED))
2994302b 2943 return wp_pfn_shared(vmf);
2f38ab2c 2944
82b0f8c3 2945 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2946 return wp_page_copy(vmf);
251b97f5 2947 }
1da177e4 2948
d08b3851 2949 /*
ee6a6457
PZ
2950 * Take out anonymous pages first, anonymous shared vmas are
2951 * not dirty accountable.
d08b3851 2952 */
52d1e606 2953 if (PageAnon(vmf->page)) {
09854ba9
LT
2954 struct page *page = vmf->page;
2955
2956 /* PageKsm() doesn't necessarily raise the page refcount */
2957 if (PageKsm(page) || page_count(page) != 1)
2958 goto copy;
2959 if (!trylock_page(page))
2960 goto copy;
2961 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
2962 unlock_page(page);
52d1e606 2963 goto copy;
b009c024 2964 }
09854ba9
LT
2965 /*
2966 * Ok, we've got the only map reference, and the only
2967 * page count reference, and the page is locked,
2968 * it's dark out, and we're wearing sunglasses. Hit it.
2969 */
2970 wp_page_reuse(vmf);
2971 unlock_page(page);
2972 return VM_FAULT_WRITE;
ee6a6457 2973 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2974 (VM_WRITE|VM_SHARED))) {
a41b70d6 2975 return wp_page_shared(vmf);
1da177e4 2976 }
52d1e606 2977copy:
1da177e4
LT
2978 /*
2979 * Ok, we need to copy. Oh, well..
2980 */
a41b70d6 2981 get_page(vmf->page);
28766805 2982
82b0f8c3 2983 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2984 return wp_page_copy(vmf);
1da177e4
LT
2985}
2986
97a89413 2987static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2988 unsigned long start_addr, unsigned long end_addr,
2989 struct zap_details *details)
2990{
f5cc4eef 2991 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2992}
2993
f808c13f 2994static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2995 struct zap_details *details)
2996{
2997 struct vm_area_struct *vma;
1da177e4
LT
2998 pgoff_t vba, vea, zba, zea;
2999
6b2dbba8 3000 vma_interval_tree_foreach(vma, root,
1da177e4 3001 details->first_index, details->last_index) {
1da177e4
LT
3002
3003 vba = vma->vm_pgoff;
d6e93217 3004 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3005 zba = details->first_index;
3006 if (zba < vba)
3007 zba = vba;
3008 zea = details->last_index;
3009 if (zea > vea)
3010 zea = vea;
3011
97a89413 3012 unmap_mapping_range_vma(vma,
1da177e4
LT
3013 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3014 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3015 details);
1da177e4
LT
3016 }
3017}
3018
977fbdcd
MW
3019/**
3020 * unmap_mapping_pages() - Unmap pages from processes.
3021 * @mapping: The address space containing pages to be unmapped.
3022 * @start: Index of first page to be unmapped.
3023 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3024 * @even_cows: Whether to unmap even private COWed pages.
3025 *
3026 * Unmap the pages in this address space from any userspace process which
3027 * has them mmaped. Generally, you want to remove COWed pages as well when
3028 * a file is being truncated, but not when invalidating pages from the page
3029 * cache.
3030 */
3031void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3032 pgoff_t nr, bool even_cows)
3033{
3034 struct zap_details details = { };
3035
3036 details.check_mapping = even_cows ? NULL : mapping;
3037 details.first_index = start;
3038 details.last_index = start + nr - 1;
3039 if (details.last_index < details.first_index)
3040 details.last_index = ULONG_MAX;
3041
3042 i_mmap_lock_write(mapping);
3043 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3044 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3045 i_mmap_unlock_write(mapping);
3046}
3047
1da177e4 3048/**
8a5f14a2 3049 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3050 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3051 * file.
3052 *
3d41088f 3053 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3054 * @holebegin: byte in first page to unmap, relative to the start of
3055 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3056 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3057 * must keep the partial page. In contrast, we must get rid of
3058 * partial pages.
3059 * @holelen: size of prospective hole in bytes. This will be rounded
3060 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3061 * end of the file.
3062 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3063 * but 0 when invalidating pagecache, don't throw away private data.
3064 */
3065void unmap_mapping_range(struct address_space *mapping,
3066 loff_t const holebegin, loff_t const holelen, int even_cows)
3067{
1da177e4
LT
3068 pgoff_t hba = holebegin >> PAGE_SHIFT;
3069 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3070
3071 /* Check for overflow. */
3072 if (sizeof(holelen) > sizeof(hlen)) {
3073 long long holeend =
3074 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3075 if (holeend & ~(long long)ULONG_MAX)
3076 hlen = ULONG_MAX - hba + 1;
3077 }
3078
977fbdcd 3079 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3080}
3081EXPORT_SYMBOL(unmap_mapping_range);
3082
1da177e4 3083/*
c1e8d7c6 3084 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3085 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3086 * We return with pte unmapped and unlocked.
3087 *
c1e8d7c6 3088 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3089 * as does filemap_fault().
1da177e4 3090 */
2b740303 3091vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3092{
82b0f8c3 3093 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3094 struct page *page = NULL, *swapcache;
65500d23 3095 swp_entry_t entry;
1da177e4 3096 pte_t pte;
d065bd81 3097 int locked;
ad8c2ee8 3098 int exclusive = 0;
2b740303 3099 vm_fault_t ret = 0;
aae466b0 3100 void *shadow = NULL;
1da177e4 3101
eaf649eb 3102 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3103 goto out;
65500d23 3104
2994302b 3105 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3106 if (unlikely(non_swap_entry(entry))) {
3107 if (is_migration_entry(entry)) {
82b0f8c3
JK
3108 migration_entry_wait(vma->vm_mm, vmf->pmd,
3109 vmf->address);
5042db43 3110 } else if (is_device_private_entry(entry)) {
897e6365
CH
3111 vmf->page = device_private_entry_to_page(entry);
3112 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3113 } else if (is_hwpoison_entry(entry)) {
3114 ret = VM_FAULT_HWPOISON;
3115 } else {
2994302b 3116 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3117 ret = VM_FAULT_SIGBUS;
d1737fdb 3118 }
0697212a
CL
3119 goto out;
3120 }
0bcac06f
MK
3121
3122
0ff92245 3123 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3124 page = lookup_swap_cache(entry, vma, vmf->address);
3125 swapcache = page;
f8020772 3126
1da177e4 3127 if (!page) {
0bcac06f
MK
3128 struct swap_info_struct *si = swp_swap_info(entry);
3129
a449bf58
QC
3130 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3131 __swap_count(entry) == 1) {
0bcac06f 3132 /* skip swapcache */
e9e9b7ec
MK
3133 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3134 vmf->address);
0bcac06f 3135 if (page) {
4c6355b2
JW
3136 int err;
3137
0bcac06f
MK
3138 __SetPageLocked(page);
3139 __SetPageSwapBacked(page);
3140 set_page_private(page, entry.val);
4c6355b2
JW
3141
3142 /* Tell memcg to use swap ownership records */
3143 SetPageSwapCache(page);
3144 err = mem_cgroup_charge(page, vma->vm_mm,
d9eb1ea2 3145 GFP_KERNEL);
4c6355b2 3146 ClearPageSwapCache(page);
545b1b07
MH
3147 if (err) {
3148 ret = VM_FAULT_OOM;
4c6355b2 3149 goto out_page;
545b1b07 3150 }
4c6355b2 3151
aae466b0
JK
3152 shadow = get_shadow_from_swap_cache(entry);
3153 if (shadow)
3154 workingset_refault(page, shadow);
0076f029 3155
6058eaec 3156 lru_cache_add(page);
0bcac06f
MK
3157 swap_readpage(page, true);
3158 }
aa8d22a1 3159 } else {
e9e9b7ec
MK
3160 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3161 vmf);
aa8d22a1 3162 swapcache = page;
0bcac06f
MK
3163 }
3164
1da177e4
LT
3165 if (!page) {
3166 /*
8f4e2101
HD
3167 * Back out if somebody else faulted in this pte
3168 * while we released the pte lock.
1da177e4 3169 */
82b0f8c3
JK
3170 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3171 vmf->address, &vmf->ptl);
2994302b 3172 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3173 ret = VM_FAULT_OOM;
0ff92245 3174 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3175 goto unlock;
1da177e4
LT
3176 }
3177
3178 /* Had to read the page from swap area: Major fault */
3179 ret = VM_FAULT_MAJOR;
f8891e5e 3180 count_vm_event(PGMAJFAULT);
2262185c 3181 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3182 } else if (PageHWPoison(page)) {
71f72525
WF
3183 /*
3184 * hwpoisoned dirty swapcache pages are kept for killing
3185 * owner processes (which may be unknown at hwpoison time)
3186 */
d1737fdb
AK
3187 ret = VM_FAULT_HWPOISON;
3188 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3189 goto out_release;
1da177e4
LT
3190 }
3191
82b0f8c3 3192 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3193
073e587e 3194 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3195 if (!locked) {
3196 ret |= VM_FAULT_RETRY;
3197 goto out_release;
3198 }
073e587e 3199
4969c119 3200 /*
31c4a3d3
HD
3201 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3202 * release the swapcache from under us. The page pin, and pte_same
3203 * test below, are not enough to exclude that. Even if it is still
3204 * swapcache, we need to check that the page's swap has not changed.
4969c119 3205 */
0bcac06f
MK
3206 if (unlikely((!PageSwapCache(page) ||
3207 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3208 goto out_page;
3209
82b0f8c3 3210 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3211 if (unlikely(!page)) {
3212 ret = VM_FAULT_OOM;
3213 page = swapcache;
cbf86cfe 3214 goto out_page;
5ad64688
HD
3215 }
3216
9d82c694 3217 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3218
1da177e4 3219 /*
8f4e2101 3220 * Back out if somebody else already faulted in this pte.
1da177e4 3221 */
82b0f8c3
JK
3222 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3223 &vmf->ptl);
2994302b 3224 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3225 goto out_nomap;
b8107480
KK
3226
3227 if (unlikely(!PageUptodate(page))) {
3228 ret = VM_FAULT_SIGBUS;
3229 goto out_nomap;
1da177e4
LT
3230 }
3231
8c7c6e34
KH
3232 /*
3233 * The page isn't present yet, go ahead with the fault.
3234 *
3235 * Be careful about the sequence of operations here.
3236 * To get its accounting right, reuse_swap_page() must be called
3237 * while the page is counted on swap but not yet in mapcount i.e.
3238 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3239 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3240 */
1da177e4 3241
bae473a4
KS
3242 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3243 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3244 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3245 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3246 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3247 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3248 ret |= VM_FAULT_WRITE;
d281ee61 3249 exclusive = RMAP_EXCLUSIVE;
1da177e4 3250 }
1da177e4 3251 flush_icache_page(vma, page);
2994302b 3252 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3253 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3254 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3255 pte = pte_mkuffd_wp(pte);
3256 pte = pte_wrprotect(pte);
3257 }
82b0f8c3 3258 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3259 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3260 vmf->orig_pte = pte;
0bcac06f
MK
3261
3262 /* ksm created a completely new copy */
3263 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3264 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3265 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3266 } else {
3267 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3268 }
1da177e4 3269
c475a8ab 3270 swap_free(entry);
5ccc5aba
VD
3271 if (mem_cgroup_swap_full(page) ||
3272 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3273 try_to_free_swap(page);
c475a8ab 3274 unlock_page(page);
0bcac06f 3275 if (page != swapcache && swapcache) {
4969c119
AA
3276 /*
3277 * Hold the lock to avoid the swap entry to be reused
3278 * until we take the PT lock for the pte_same() check
3279 * (to avoid false positives from pte_same). For
3280 * further safety release the lock after the swap_free
3281 * so that the swap count won't change under a
3282 * parallel locked swapcache.
3283 */
3284 unlock_page(swapcache);
09cbfeaf 3285 put_page(swapcache);
4969c119 3286 }
c475a8ab 3287
82b0f8c3 3288 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3289 ret |= do_wp_page(vmf);
61469f1d
HD
3290 if (ret & VM_FAULT_ERROR)
3291 ret &= VM_FAULT_ERROR;
1da177e4
LT
3292 goto out;
3293 }
3294
3295 /* No need to invalidate - it was non-present before */
82b0f8c3 3296 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3297unlock:
82b0f8c3 3298 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3299out:
3300 return ret;
b8107480 3301out_nomap:
82b0f8c3 3302 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3303out_page:
b8107480 3304 unlock_page(page);
4779cb31 3305out_release:
09cbfeaf 3306 put_page(page);
0bcac06f 3307 if (page != swapcache && swapcache) {
4969c119 3308 unlock_page(swapcache);
09cbfeaf 3309 put_page(swapcache);
4969c119 3310 }
65500d23 3311 return ret;
1da177e4
LT
3312}
3313
3314/*
c1e8d7c6 3315 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3316 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3317 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3318 */
2b740303 3319static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3320{
82b0f8c3 3321 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3322 struct page *page;
2b740303 3323 vm_fault_t ret = 0;
1da177e4 3324 pte_t entry;
1da177e4 3325
6b7339f4
KS
3326 /* File mapping without ->vm_ops ? */
3327 if (vma->vm_flags & VM_SHARED)
3328 return VM_FAULT_SIGBUS;
3329
7267ec00
KS
3330 /*
3331 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3332 * pte_offset_map() on pmds where a huge pmd might be created
3333 * from a different thread.
3334 *
3e4e28c5 3335 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3336 * parallel threads are excluded by other means.
3337 *
3e4e28c5 3338 * Here we only have mmap_read_lock(mm).
7267ec00 3339 */
4cf58924 3340 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3341 return VM_FAULT_OOM;
3342
3343 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3344 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3345 return 0;
3346
11ac5524 3347 /* Use the zero-page for reads */
82b0f8c3 3348 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3349 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3350 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3351 vma->vm_page_prot));
82b0f8c3
JK
3352 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3353 vmf->address, &vmf->ptl);
7df67697
BM
3354 if (!pte_none(*vmf->pte)) {
3355 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3356 goto unlock;
7df67697 3357 }
6b31d595
MH
3358 ret = check_stable_address_space(vma->vm_mm);
3359 if (ret)
3360 goto unlock;
6b251fc9
AA
3361 /* Deliver the page fault to userland, check inside PT lock */
3362 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3363 pte_unmap_unlock(vmf->pte, vmf->ptl);
3364 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3365 }
a13ea5b7
HD
3366 goto setpte;
3367 }
3368
557ed1fa 3369 /* Allocate our own private page. */
557ed1fa
NP
3370 if (unlikely(anon_vma_prepare(vma)))
3371 goto oom;
82b0f8c3 3372 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3373 if (!page)
3374 goto oom;
eb3c24f3 3375
d9eb1ea2 3376 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3377 goto oom_free_page;
9d82c694 3378 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3379
52f37629
MK
3380 /*
3381 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3382 * preceding stores to the page contents become visible before
52f37629
MK
3383 * the set_pte_at() write.
3384 */
0ed361de 3385 __SetPageUptodate(page);
8f4e2101 3386
557ed1fa 3387 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3388 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3389 if (vma->vm_flags & VM_WRITE)
3390 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3391
82b0f8c3
JK
3392 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3393 &vmf->ptl);
7df67697
BM
3394 if (!pte_none(*vmf->pte)) {
3395 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3396 goto release;
7df67697 3397 }
9ba69294 3398
6b31d595
MH
3399 ret = check_stable_address_space(vma->vm_mm);
3400 if (ret)
3401 goto release;
3402
6b251fc9
AA
3403 /* Deliver the page fault to userland, check inside PT lock */
3404 if (userfaultfd_missing(vma)) {
82b0f8c3 3405 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3406 put_page(page);
82b0f8c3 3407 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3408 }
3409
bae473a4 3410 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3411 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3412 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3413setpte:
82b0f8c3 3414 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3415
3416 /* No need to invalidate - it was non-present before */
82b0f8c3 3417 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3418unlock:
82b0f8c3 3419 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3420 return ret;
8f4e2101 3421release:
09cbfeaf 3422 put_page(page);
8f4e2101 3423 goto unlock;
8a9f3ccd 3424oom_free_page:
09cbfeaf 3425 put_page(page);
65500d23 3426oom:
1da177e4
LT
3427 return VM_FAULT_OOM;
3428}
3429
9a95f3cf 3430/*
c1e8d7c6 3431 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3432 * released depending on flags and vma->vm_ops->fault() return value.
3433 * See filemap_fault() and __lock_page_retry().
3434 */
2b740303 3435static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3436{
82b0f8c3 3437 struct vm_area_struct *vma = vmf->vma;
2b740303 3438 vm_fault_t ret;
7eae74af 3439
63f3655f
MH
3440 /*
3441 * Preallocate pte before we take page_lock because this might lead to
3442 * deadlocks for memcg reclaim which waits for pages under writeback:
3443 * lock_page(A)
3444 * SetPageWriteback(A)
3445 * unlock_page(A)
3446 * lock_page(B)
3447 * lock_page(B)
3448 * pte_alloc_pne
3449 * shrink_page_list
3450 * wait_on_page_writeback(A)
3451 * SetPageWriteback(B)
3452 * unlock_page(B)
3453 * # flush A, B to clear the writeback
3454 */
3455 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3456 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3457 if (!vmf->prealloc_pte)
3458 return VM_FAULT_OOM;
3459 smp_wmb(); /* See comment in __pte_alloc() */
3460 }
3461
11bac800 3462 ret = vma->vm_ops->fault(vmf);
3917048d 3463 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3464 VM_FAULT_DONE_COW)))
bc2466e4 3465 return ret;
7eae74af 3466
667240e0 3467 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3468 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3469 unlock_page(vmf->page);
3470 put_page(vmf->page);
936ca80d 3471 vmf->page = NULL;
7eae74af
KS
3472 return VM_FAULT_HWPOISON;
3473 }
3474
3475 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3476 lock_page(vmf->page);
7eae74af 3477 else
667240e0 3478 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3479
7eae74af
KS
3480 return ret;
3481}
3482
d0f0931d
RZ
3483/*
3484 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3485 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3486 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3487 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3488 */
3489static int pmd_devmap_trans_unstable(pmd_t *pmd)
3490{
3491 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3492}
3493
2b740303 3494static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3495{
82b0f8c3 3496 struct vm_area_struct *vma = vmf->vma;
7267ec00 3497
82b0f8c3 3498 if (!pmd_none(*vmf->pmd))
7267ec00 3499 goto map_pte;
82b0f8c3
JK
3500 if (vmf->prealloc_pte) {
3501 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3502 if (unlikely(!pmd_none(*vmf->pmd))) {
3503 spin_unlock(vmf->ptl);
7267ec00
KS
3504 goto map_pte;
3505 }
3506
c4812909 3507 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3508 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3509 spin_unlock(vmf->ptl);
7f2b6ce8 3510 vmf->prealloc_pte = NULL;
4cf58924 3511 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3512 return VM_FAULT_OOM;
3513 }
3514map_pte:
3515 /*
3516 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3517 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3518 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3519 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3520 * running immediately after a huge pmd fault in a different thread of
3521 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3522 * All we have to ensure is that it is a regular pmd that we can walk
3523 * with pte_offset_map() and we can do that through an atomic read in
3524 * C, which is what pmd_trans_unstable() provides.
7267ec00 3525 */
d0f0931d 3526 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3527 return VM_FAULT_NOPAGE;
3528
d0f0931d
RZ
3529 /*
3530 * At this point we know that our vmf->pmd points to a page of ptes
3531 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3532 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3533 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3534 * be valid and we will re-check to make sure the vmf->pte isn't
3535 * pte_none() under vmf->ptl protection when we return to
3536 * alloc_set_pte().
3537 */
82b0f8c3
JK
3538 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3539 &vmf->ptl);
7267ec00
KS
3540 return 0;
3541}
3542
396bcc52 3543#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3544static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3545{
82b0f8c3 3546 struct vm_area_struct *vma = vmf->vma;
953c66c2 3547
82b0f8c3 3548 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3549 /*
3550 * We are going to consume the prealloc table,
3551 * count that as nr_ptes.
3552 */
c4812909 3553 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3554 vmf->prealloc_pte = NULL;
953c66c2
AK
3555}
3556
2b740303 3557static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3558{
82b0f8c3
JK
3559 struct vm_area_struct *vma = vmf->vma;
3560 bool write = vmf->flags & FAULT_FLAG_WRITE;
3561 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3562 pmd_t entry;
2b740303
SJ
3563 int i;
3564 vm_fault_t ret;
10102459
KS
3565
3566 if (!transhuge_vma_suitable(vma, haddr))
3567 return VM_FAULT_FALLBACK;
3568
3569 ret = VM_FAULT_FALLBACK;
3570 page = compound_head(page);
3571
953c66c2
AK
3572 /*
3573 * Archs like ppc64 need additonal space to store information
3574 * related to pte entry. Use the preallocated table for that.
3575 */
82b0f8c3 3576 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3577 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3578 if (!vmf->prealloc_pte)
953c66c2
AK
3579 return VM_FAULT_OOM;
3580 smp_wmb(); /* See comment in __pte_alloc() */
3581 }
3582
82b0f8c3
JK
3583 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3584 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3585 goto out;
3586
3587 for (i = 0; i < HPAGE_PMD_NR; i++)
3588 flush_icache_page(vma, page + i);
3589
3590 entry = mk_huge_pmd(page, vma->vm_page_prot);
3591 if (write)
f55e1014 3592 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3593
fadae295 3594 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3595 page_add_file_rmap(page, true);
953c66c2
AK
3596 /*
3597 * deposit and withdraw with pmd lock held
3598 */
3599 if (arch_needs_pgtable_deposit())
82b0f8c3 3600 deposit_prealloc_pte(vmf);
10102459 3601
82b0f8c3 3602 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3603
82b0f8c3 3604 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3605
3606 /* fault is handled */
3607 ret = 0;
95ecedcd 3608 count_vm_event(THP_FILE_MAPPED);
10102459 3609out:
82b0f8c3 3610 spin_unlock(vmf->ptl);
10102459
KS
3611 return ret;
3612}
3613#else
2b740303 3614static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3615{
3616 BUILD_BUG();
3617 return 0;
3618}
3619#endif
3620
8c6e50b0 3621/**
7267ec00
KS
3622 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3623 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3624 *
82b0f8c3 3625 * @vmf: fault environment
8c6e50b0 3626 * @page: page to map
8c6e50b0 3627 *
82b0f8c3
JK
3628 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3629 * return.
8c6e50b0
KS
3630 *
3631 * Target users are page handler itself and implementations of
3632 * vm_ops->map_pages.
a862f68a
MR
3633 *
3634 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3635 */
9d82c694 3636vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3bb97794 3637{
82b0f8c3
JK
3638 struct vm_area_struct *vma = vmf->vma;
3639 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3640 pte_t entry;
2b740303 3641 vm_fault_t ret;
10102459 3642
396bcc52 3643 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
82b0f8c3 3644 ret = do_set_pmd(vmf, page);
10102459 3645 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3646 return ret;
10102459 3647 }
3bb97794 3648
82b0f8c3
JK
3649 if (!vmf->pte) {
3650 ret = pte_alloc_one_map(vmf);
7267ec00 3651 if (ret)
b0b9b3df 3652 return ret;
7267ec00
KS
3653 }
3654
3655 /* Re-check under ptl */
7df67697
BM
3656 if (unlikely(!pte_none(*vmf->pte))) {
3657 update_mmu_tlb(vma, vmf->address, vmf->pte);
b0b9b3df 3658 return VM_FAULT_NOPAGE;
7df67697 3659 }
7267ec00 3660
3bb97794
KS
3661 flush_icache_page(vma, page);
3662 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3663 entry = pte_sw_mkyoung(entry);
3bb97794
KS
3664 if (write)
3665 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3666 /* copy-on-write page */
3667 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3668 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3669 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3670 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3671 } else {
eca56ff9 3672 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3673 page_add_file_rmap(page, false);
3bb97794 3674 }
82b0f8c3 3675 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3676
3677 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3678 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3679
b0b9b3df 3680 return 0;
3bb97794
KS
3681}
3682
9118c0cb
JK
3683
3684/**
3685 * finish_fault - finish page fault once we have prepared the page to fault
3686 *
3687 * @vmf: structure describing the fault
3688 *
3689 * This function handles all that is needed to finish a page fault once the
3690 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3691 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3692 * addition.
9118c0cb
JK
3693 *
3694 * The function expects the page to be locked and on success it consumes a
3695 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3696 *
3697 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3698 */
2b740303 3699vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3700{
3701 struct page *page;
2b740303 3702 vm_fault_t ret = 0;
9118c0cb
JK
3703
3704 /* Did we COW the page? */
3705 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3706 !(vmf->vma->vm_flags & VM_SHARED))
3707 page = vmf->cow_page;
3708 else
3709 page = vmf->page;
6b31d595
MH
3710
3711 /*
3712 * check even for read faults because we might have lost our CoWed
3713 * page
3714 */
3715 if (!(vmf->vma->vm_flags & VM_SHARED))
3716 ret = check_stable_address_space(vmf->vma->vm_mm);
3717 if (!ret)
9d82c694 3718 ret = alloc_set_pte(vmf, page);
9118c0cb
JK
3719 if (vmf->pte)
3720 pte_unmap_unlock(vmf->pte, vmf->ptl);
3721 return ret;
3722}
3723
3a91053a
KS
3724static unsigned long fault_around_bytes __read_mostly =
3725 rounddown_pow_of_two(65536);
a9b0f861 3726
a9b0f861
KS
3727#ifdef CONFIG_DEBUG_FS
3728static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3729{
a9b0f861 3730 *val = fault_around_bytes;
1592eef0
KS
3731 return 0;
3732}
3733
b4903d6e 3734/*
da391d64
WK
3735 * fault_around_bytes must be rounded down to the nearest page order as it's
3736 * what do_fault_around() expects to see.
b4903d6e 3737 */
a9b0f861 3738static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3739{
a9b0f861 3740 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3741 return -EINVAL;
b4903d6e
AR
3742 if (val > PAGE_SIZE)
3743 fault_around_bytes = rounddown_pow_of_two(val);
3744 else
3745 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3746 return 0;
3747}
0a1345f8 3748DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3749 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3750
3751static int __init fault_around_debugfs(void)
3752{
d9f7979c
GKH
3753 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3754 &fault_around_bytes_fops);
1592eef0
KS
3755 return 0;
3756}
3757late_initcall(fault_around_debugfs);
1592eef0 3758#endif
8c6e50b0 3759
1fdb412b
KS
3760/*
3761 * do_fault_around() tries to map few pages around the fault address. The hope
3762 * is that the pages will be needed soon and this will lower the number of
3763 * faults to handle.
3764 *
3765 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3766 * not ready to be mapped: not up-to-date, locked, etc.
3767 *
3768 * This function is called with the page table lock taken. In the split ptlock
3769 * case the page table lock only protects only those entries which belong to
3770 * the page table corresponding to the fault address.
3771 *
3772 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3773 * only once.
3774 *
da391d64
WK
3775 * fault_around_bytes defines how many bytes we'll try to map.
3776 * do_fault_around() expects it to be set to a power of two less than or equal
3777 * to PTRS_PER_PTE.
1fdb412b 3778 *
da391d64
WK
3779 * The virtual address of the area that we map is naturally aligned to
3780 * fault_around_bytes rounded down to the machine page size
3781 * (and therefore to page order). This way it's easier to guarantee
3782 * that we don't cross page table boundaries.
1fdb412b 3783 */
2b740303 3784static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3785{
82b0f8c3 3786 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3787 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3788 pgoff_t end_pgoff;
2b740303
SJ
3789 int off;
3790 vm_fault_t ret = 0;
8c6e50b0 3791
4db0c3c2 3792 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3793 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3794
82b0f8c3
JK
3795 vmf->address = max(address & mask, vmf->vma->vm_start);
3796 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3797 start_pgoff -= off;
8c6e50b0
KS
3798
3799 /*
da391d64
WK
3800 * end_pgoff is either the end of the page table, the end of
3801 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3802 */
bae473a4 3803 end_pgoff = start_pgoff -
82b0f8c3 3804 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3805 PTRS_PER_PTE - 1;
82b0f8c3 3806 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3807 start_pgoff + nr_pages - 1);
8c6e50b0 3808
82b0f8c3 3809 if (pmd_none(*vmf->pmd)) {
4cf58924 3810 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3811 if (!vmf->prealloc_pte)
c5f88bd2 3812 goto out;
7267ec00 3813 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3814 }
3815
82b0f8c3 3816 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3817
7267ec00 3818 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3819 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3820 ret = VM_FAULT_NOPAGE;
3821 goto out;
3822 }
3823
3824 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3825 if (!vmf->pte)
7267ec00
KS
3826 goto out;
3827
3828 /* check if the page fault is solved */
82b0f8c3
JK
3829 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3830 if (!pte_none(*vmf->pte))
7267ec00 3831 ret = VM_FAULT_NOPAGE;
82b0f8c3 3832 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3833out:
82b0f8c3
JK
3834 vmf->address = address;
3835 vmf->pte = NULL;
7267ec00 3836 return ret;
8c6e50b0
KS
3837}
3838
2b740303 3839static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3840{
82b0f8c3 3841 struct vm_area_struct *vma = vmf->vma;
2b740303 3842 vm_fault_t ret = 0;
8c6e50b0
KS
3843
3844 /*
3845 * Let's call ->map_pages() first and use ->fault() as fallback
3846 * if page by the offset is not ready to be mapped (cold cache or
3847 * something).
3848 */
9b4bdd2f 3849 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3850 ret = do_fault_around(vmf);
7267ec00
KS
3851 if (ret)
3852 return ret;
8c6e50b0 3853 }
e655fb29 3854
936ca80d 3855 ret = __do_fault(vmf);
e655fb29
KS
3856 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3857 return ret;
3858
9118c0cb 3859 ret |= finish_fault(vmf);
936ca80d 3860 unlock_page(vmf->page);
7267ec00 3861 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3862 put_page(vmf->page);
e655fb29
KS
3863 return ret;
3864}
3865
2b740303 3866static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3867{
82b0f8c3 3868 struct vm_area_struct *vma = vmf->vma;
2b740303 3869 vm_fault_t ret;
ec47c3b9
KS
3870
3871 if (unlikely(anon_vma_prepare(vma)))
3872 return VM_FAULT_OOM;
3873
936ca80d
JK
3874 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3875 if (!vmf->cow_page)
ec47c3b9
KS
3876 return VM_FAULT_OOM;
3877
d9eb1ea2 3878 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 3879 put_page(vmf->cow_page);
ec47c3b9
KS
3880 return VM_FAULT_OOM;
3881 }
9d82c694 3882 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 3883
936ca80d 3884 ret = __do_fault(vmf);
ec47c3b9
KS
3885 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3886 goto uncharge_out;
3917048d
JK
3887 if (ret & VM_FAULT_DONE_COW)
3888 return ret;
ec47c3b9 3889
b1aa812b 3890 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3891 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3892
9118c0cb 3893 ret |= finish_fault(vmf);
b1aa812b
JK
3894 unlock_page(vmf->page);
3895 put_page(vmf->page);
7267ec00
KS
3896 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3897 goto uncharge_out;
ec47c3b9
KS
3898 return ret;
3899uncharge_out:
936ca80d 3900 put_page(vmf->cow_page);
ec47c3b9
KS
3901 return ret;
3902}
3903
2b740303 3904static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3905{
82b0f8c3 3906 struct vm_area_struct *vma = vmf->vma;
2b740303 3907 vm_fault_t ret, tmp;
1d65f86d 3908
936ca80d 3909 ret = __do_fault(vmf);
7eae74af 3910 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3911 return ret;
1da177e4
LT
3912
3913 /*
f0c6d4d2
KS
3914 * Check if the backing address space wants to know that the page is
3915 * about to become writable
1da177e4 3916 */
fb09a464 3917 if (vma->vm_ops->page_mkwrite) {
936ca80d 3918 unlock_page(vmf->page);
38b8cb7f 3919 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3920 if (unlikely(!tmp ||
3921 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3922 put_page(vmf->page);
fb09a464 3923 return tmp;
4294621f 3924 }
fb09a464
KS
3925 }
3926
9118c0cb 3927 ret |= finish_fault(vmf);
7267ec00
KS
3928 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3929 VM_FAULT_RETRY))) {
936ca80d
JK
3930 unlock_page(vmf->page);
3931 put_page(vmf->page);
f0c6d4d2 3932 return ret;
1da177e4 3933 }
b827e496 3934
89b15332 3935 ret |= fault_dirty_shared_page(vmf);
1d65f86d 3936 return ret;
54cb8821 3937}
d00806b1 3938
9a95f3cf 3939/*
c1e8d7c6 3940 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 3941 * but allow concurrent faults).
c1e8d7c6 3942 * The mmap_lock may have been released depending on flags and our
9a95f3cf 3943 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 3944 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 3945 * by other thread calling munmap()).
9a95f3cf 3946 */
2b740303 3947static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3948{
82b0f8c3 3949 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3950 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3951 vm_fault_t ret;
54cb8821 3952
ff09d7ec
AK
3953 /*
3954 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3955 */
3956 if (!vma->vm_ops->fault) {
3957 /*
3958 * If we find a migration pmd entry or a none pmd entry, which
3959 * should never happen, return SIGBUS
3960 */
3961 if (unlikely(!pmd_present(*vmf->pmd)))
3962 ret = VM_FAULT_SIGBUS;
3963 else {
3964 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3965 vmf->pmd,
3966 vmf->address,
3967 &vmf->ptl);
3968 /*
3969 * Make sure this is not a temporary clearing of pte
3970 * by holding ptl and checking again. A R/M/W update
3971 * of pte involves: take ptl, clearing the pte so that
3972 * we don't have concurrent modification by hardware
3973 * followed by an update.
3974 */
3975 if (unlikely(pte_none(*vmf->pte)))
3976 ret = VM_FAULT_SIGBUS;
3977 else
3978 ret = VM_FAULT_NOPAGE;
3979
3980 pte_unmap_unlock(vmf->pte, vmf->ptl);
3981 }
3982 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3983 ret = do_read_fault(vmf);
3984 else if (!(vma->vm_flags & VM_SHARED))
3985 ret = do_cow_fault(vmf);
3986 else
3987 ret = do_shared_fault(vmf);
3988
3989 /* preallocated pagetable is unused: free it */
3990 if (vmf->prealloc_pte) {
fc8efd2d 3991 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3992 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3993 }
3994 return ret;
54cb8821
NP
3995}
3996
b19a9939 3997static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3998 unsigned long addr, int page_nid,
3999 int *flags)
9532fec1
MG
4000{
4001 get_page(page);
4002
4003 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4004 if (page_nid == numa_node_id()) {
9532fec1 4005 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4006 *flags |= TNF_FAULT_LOCAL;
4007 }
9532fec1
MG
4008
4009 return mpol_misplaced(page, vma, addr);
4010}
4011
2b740303 4012static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4013{
82b0f8c3 4014 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4015 struct page *page = NULL;
98fa15f3 4016 int page_nid = NUMA_NO_NODE;
90572890 4017 int last_cpupid;
cbee9f88 4018 int target_nid;
b8593bfd 4019 bool migrated = false;
04a86453 4020 pte_t pte, old_pte;
288bc549 4021 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4022 int flags = 0;
d10e63f2
MG
4023
4024 /*
166f61b9
TH
4025 * The "pte" at this point cannot be used safely without
4026 * validation through pte_unmap_same(). It's of NUMA type but
4027 * the pfn may be screwed if the read is non atomic.
166f61b9 4028 */
82b0f8c3
JK
4029 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4030 spin_lock(vmf->ptl);
cee216a6 4031 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4032 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4033 goto out;
4034 }
4035
cee216a6
AK
4036 /*
4037 * Make it present again, Depending on how arch implementes non
4038 * accessible ptes, some can allow access by kernel mode.
4039 */
04a86453
AK
4040 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4041 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 4042 pte = pte_mkyoung(pte);
b191f9b1
MG
4043 if (was_writable)
4044 pte = pte_mkwrite(pte);
04a86453 4045 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 4046 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 4047
82b0f8c3 4048 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 4049 if (!page) {
82b0f8c3 4050 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
4051 return 0;
4052 }
4053
e81c4802
KS
4054 /* TODO: handle PTE-mapped THP */
4055 if (PageCompound(page)) {
82b0f8c3 4056 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
4057 return 0;
4058 }
4059
6688cc05 4060 /*
bea66fbd
MG
4061 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4062 * much anyway since they can be in shared cache state. This misses
4063 * the case where a mapping is writable but the process never writes
4064 * to it but pte_write gets cleared during protection updates and
4065 * pte_dirty has unpredictable behaviour between PTE scan updates,
4066 * background writeback, dirty balancing and application behaviour.
6688cc05 4067 */
d59dc7bc 4068 if (!pte_write(pte))
6688cc05
PZ
4069 flags |= TNF_NO_GROUP;
4070
dabe1d99
RR
4071 /*
4072 * Flag if the page is shared between multiple address spaces. This
4073 * is later used when determining whether to group tasks together
4074 */
4075 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4076 flags |= TNF_SHARED;
4077
90572890 4078 last_cpupid = page_cpupid_last(page);
8191acbd 4079 page_nid = page_to_nid(page);
82b0f8c3 4080 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4081 &flags);
82b0f8c3 4082 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 4083 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
4084 put_page(page);
4085 goto out;
4086 }
4087
4088 /* Migrate to the requested node */
1bc115d8 4089 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 4090 if (migrated) {
8191acbd 4091 page_nid = target_nid;
6688cc05 4092 flags |= TNF_MIGRATED;
074c2381
MG
4093 } else
4094 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
4095
4096out:
98fa15f3 4097 if (page_nid != NUMA_NO_NODE)
6688cc05 4098 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
4099 return 0;
4100}
4101
2b740303 4102static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4103{
f4200391 4104 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4105 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4106 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4107 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4108 return VM_FAULT_FALLBACK;
4109}
4110
183f24aa 4111/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4112static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4113{
529b930b 4114 if (vma_is_anonymous(vmf->vma)) {
292924b2 4115 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4116 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4117 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4118 }
327e9fd4
THV
4119 if (vmf->vma->vm_ops->huge_fault) {
4120 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4121
4122 if (!(ret & VM_FAULT_FALLBACK))
4123 return ret;
4124 }
af9e4d5f 4125
327e9fd4 4126 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4127 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4128
b96375f7
MW
4129 return VM_FAULT_FALLBACK;
4130}
4131
2b740303 4132static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4133{
327e9fd4
THV
4134#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4135 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4136 /* No support for anonymous transparent PUD pages yet */
4137 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4138 goto split;
4139 if (vmf->vma->vm_ops->huge_fault) {
4140 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4141
4142 if (!(ret & VM_FAULT_FALLBACK))
4143 return ret;
4144 }
4145split:
4146 /* COW or write-notify not handled on PUD level: split pud.*/
4147 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4148#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4149 return VM_FAULT_FALLBACK;
4150}
4151
2b740303 4152static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4153{
4154#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4155 /* No support for anonymous transparent PUD pages yet */
4156 if (vma_is_anonymous(vmf->vma))
4157 return VM_FAULT_FALLBACK;
4158 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4159 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4160#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4161 return VM_FAULT_FALLBACK;
4162}
4163
1da177e4
LT
4164/*
4165 * These routines also need to handle stuff like marking pages dirty
4166 * and/or accessed for architectures that don't do it in hardware (most
4167 * RISC architectures). The early dirtying is also good on the i386.
4168 *
4169 * There is also a hook called "update_mmu_cache()" that architectures
4170 * with external mmu caches can use to update those (ie the Sparc or
4171 * PowerPC hashed page tables that act as extended TLBs).
4172 *
c1e8d7c6 4173 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4174 * concurrent faults).
9a95f3cf 4175 *
c1e8d7c6 4176 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4177 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4178 */
2b740303 4179static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4180{
4181 pte_t entry;
4182
82b0f8c3 4183 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4184 /*
4185 * Leave __pte_alloc() until later: because vm_ops->fault may
4186 * want to allocate huge page, and if we expose page table
4187 * for an instant, it will be difficult to retract from
4188 * concurrent faults and from rmap lookups.
4189 */
82b0f8c3 4190 vmf->pte = NULL;
7267ec00
KS
4191 } else {
4192 /* See comment in pte_alloc_one_map() */
d0f0931d 4193 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4194 return 0;
4195 /*
4196 * A regular pmd is established and it can't morph into a huge
4197 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4198 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4199 * So now it's safe to run pte_offset_map().
4200 */
82b0f8c3 4201 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4202 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4203
4204 /*
4205 * some architectures can have larger ptes than wordsize,
4206 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4207 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4208 * accesses. The code below just needs a consistent view
4209 * for the ifs and we later double check anyway with the
7267ec00
KS
4210 * ptl lock held. So here a barrier will do.
4211 */
4212 barrier();
2994302b 4213 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4214 pte_unmap(vmf->pte);
4215 vmf->pte = NULL;
65500d23 4216 }
1da177e4
LT
4217 }
4218
82b0f8c3
JK
4219 if (!vmf->pte) {
4220 if (vma_is_anonymous(vmf->vma))
4221 return do_anonymous_page(vmf);
7267ec00 4222 else
82b0f8c3 4223 return do_fault(vmf);
7267ec00
KS
4224 }
4225
2994302b
JK
4226 if (!pte_present(vmf->orig_pte))
4227 return do_swap_page(vmf);
7267ec00 4228
2994302b
JK
4229 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4230 return do_numa_page(vmf);
d10e63f2 4231
82b0f8c3
JK
4232 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4233 spin_lock(vmf->ptl);
2994302b 4234 entry = vmf->orig_pte;
7df67697
BM
4235 if (unlikely(!pte_same(*vmf->pte, entry))) {
4236 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4237 goto unlock;
7df67697 4238 }
82b0f8c3 4239 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4240 if (!pte_write(entry))
2994302b 4241 return do_wp_page(vmf);
1da177e4
LT
4242 entry = pte_mkdirty(entry);
4243 }
4244 entry = pte_mkyoung(entry);
82b0f8c3
JK
4245 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4246 vmf->flags & FAULT_FLAG_WRITE)) {
4247 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4248 } else {
b7333b58
YS
4249 /* Skip spurious TLB flush for retried page fault */
4250 if (vmf->flags & FAULT_FLAG_TRIED)
4251 goto unlock;
1a44e149
AA
4252 /*
4253 * This is needed only for protection faults but the arch code
4254 * is not yet telling us if this is a protection fault or not.
4255 * This still avoids useless tlb flushes for .text page faults
4256 * with threads.
4257 */
82b0f8c3
JK
4258 if (vmf->flags & FAULT_FLAG_WRITE)
4259 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4260 }
8f4e2101 4261unlock:
82b0f8c3 4262 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4263 return 0;
1da177e4
LT
4264}
4265
4266/*
4267 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4268 *
c1e8d7c6 4269 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4270 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4271 */
2b740303
SJ
4272static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4273 unsigned long address, unsigned int flags)
1da177e4 4274{
82b0f8c3 4275 struct vm_fault vmf = {
bae473a4 4276 .vma = vma,
1a29d85e 4277 .address = address & PAGE_MASK,
bae473a4 4278 .flags = flags,
0721ec8b 4279 .pgoff = linear_page_index(vma, address),
667240e0 4280 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4281 };
fde26bed 4282 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4283 struct mm_struct *mm = vma->vm_mm;
1da177e4 4284 pgd_t *pgd;
c2febafc 4285 p4d_t *p4d;
2b740303 4286 vm_fault_t ret;
1da177e4 4287
1da177e4 4288 pgd = pgd_offset(mm, address);
c2febafc
KS
4289 p4d = p4d_alloc(mm, pgd, address);
4290 if (!p4d)
4291 return VM_FAULT_OOM;
a00cc7d9 4292
c2febafc 4293 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4294 if (!vmf.pud)
c74df32c 4295 return VM_FAULT_OOM;
625110b5 4296retry_pud:
7635d9cb 4297 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4298 ret = create_huge_pud(&vmf);
4299 if (!(ret & VM_FAULT_FALLBACK))
4300 return ret;
4301 } else {
4302 pud_t orig_pud = *vmf.pud;
4303
4304 barrier();
4305 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4306
a00cc7d9
MW
4307 /* NUMA case for anonymous PUDs would go here */
4308
f6f37321 4309 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4310 ret = wp_huge_pud(&vmf, orig_pud);
4311 if (!(ret & VM_FAULT_FALLBACK))
4312 return ret;
4313 } else {
4314 huge_pud_set_accessed(&vmf, orig_pud);
4315 return 0;
4316 }
4317 }
4318 }
4319
4320 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4321 if (!vmf.pmd)
c74df32c 4322 return VM_FAULT_OOM;
625110b5
TH
4323
4324 /* Huge pud page fault raced with pmd_alloc? */
4325 if (pud_trans_unstable(vmf.pud))
4326 goto retry_pud;
4327
7635d9cb 4328 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4329 ret = create_huge_pmd(&vmf);
c0292554
KS
4330 if (!(ret & VM_FAULT_FALLBACK))
4331 return ret;
71e3aac0 4332 } else {
82b0f8c3 4333 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4334
71e3aac0 4335 barrier();
84c3fc4e
ZY
4336 if (unlikely(is_swap_pmd(orig_pmd))) {
4337 VM_BUG_ON(thp_migration_supported() &&
4338 !is_pmd_migration_entry(orig_pmd));
4339 if (is_pmd_migration_entry(orig_pmd))
4340 pmd_migration_entry_wait(mm, vmf.pmd);
4341 return 0;
4342 }
5c7fb56e 4343 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4344 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4345 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4346
f6f37321 4347 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4348 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4349 if (!(ret & VM_FAULT_FALLBACK))
4350 return ret;
a1dd450b 4351 } else {
82b0f8c3 4352 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4353 return 0;
1f1d06c3 4354 }
71e3aac0
AA
4355 }
4356 }
4357
82b0f8c3 4358 return handle_pte_fault(&vmf);
1da177e4
LT
4359}
4360
bce617ed
PX
4361/**
4362 * mm_account_fault - Do page fault accountings
4363 *
4364 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4365 * of perf event counters, but we'll still do the per-task accounting to
4366 * the task who triggered this page fault.
4367 * @address: the faulted address.
4368 * @flags: the fault flags.
4369 * @ret: the fault retcode.
4370 *
4371 * This will take care of most of the page fault accountings. Meanwhile, it
4372 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4373 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4374 * still be in per-arch page fault handlers at the entry of page fault.
4375 */
4376static inline void mm_account_fault(struct pt_regs *regs,
4377 unsigned long address, unsigned int flags,
4378 vm_fault_t ret)
4379{
4380 bool major;
4381
4382 /*
4383 * We don't do accounting for some specific faults:
4384 *
4385 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4386 * includes arch_vma_access_permitted() failing before reaching here.
4387 * So this is not a "this many hardware page faults" counter. We
4388 * should use the hw profiling for that.
4389 *
4390 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4391 * once they're completed.
4392 */
4393 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4394 return;
4395
4396 /*
4397 * We define the fault as a major fault when the final successful fault
4398 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4399 * handle it immediately previously).
4400 */
4401 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4402
a2beb5f1
PX
4403 if (major)
4404 current->maj_flt++;
4405 else
4406 current->min_flt++;
4407
bce617ed 4408 /*
a2beb5f1
PX
4409 * If the fault is done for GUP, regs will be NULL. We only do the
4410 * accounting for the per thread fault counters who triggered the
4411 * fault, and we skip the perf event updates.
bce617ed
PX
4412 */
4413 if (!regs)
4414 return;
4415
a2beb5f1 4416 if (major)
bce617ed 4417 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4418 else
bce617ed 4419 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4420}
4421
9a95f3cf
PC
4422/*
4423 * By the time we get here, we already hold the mm semaphore
4424 *
c1e8d7c6 4425 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4426 * return value. See filemap_fault() and __lock_page_or_retry().
4427 */
2b740303 4428vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4429 unsigned int flags, struct pt_regs *regs)
519e5247 4430{
2b740303 4431 vm_fault_t ret;
519e5247
JW
4432
4433 __set_current_state(TASK_RUNNING);
4434
4435 count_vm_event(PGFAULT);
2262185c 4436 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4437
4438 /* do counter updates before entering really critical section. */
4439 check_sync_rss_stat(current);
4440
de0c799b
LD
4441 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4442 flags & FAULT_FLAG_INSTRUCTION,
4443 flags & FAULT_FLAG_REMOTE))
4444 return VM_FAULT_SIGSEGV;
4445
519e5247
JW
4446 /*
4447 * Enable the memcg OOM handling for faults triggered in user
4448 * space. Kernel faults are handled more gracefully.
4449 */
4450 if (flags & FAULT_FLAG_USER)
29ef680a 4451 mem_cgroup_enter_user_fault();
519e5247 4452
bae473a4
KS
4453 if (unlikely(is_vm_hugetlb_page(vma)))
4454 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4455 else
4456 ret = __handle_mm_fault(vma, address, flags);
519e5247 4457
49426420 4458 if (flags & FAULT_FLAG_USER) {
29ef680a 4459 mem_cgroup_exit_user_fault();
166f61b9
TH
4460 /*
4461 * The task may have entered a memcg OOM situation but
4462 * if the allocation error was handled gracefully (no
4463 * VM_FAULT_OOM), there is no need to kill anything.
4464 * Just clean up the OOM state peacefully.
4465 */
4466 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4467 mem_cgroup_oom_synchronize(false);
49426420 4468 }
3812c8c8 4469
bce617ed
PX
4470 mm_account_fault(regs, address, flags, ret);
4471
519e5247
JW
4472 return ret;
4473}
e1d6d01a 4474EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4475
90eceff1
KS
4476#ifndef __PAGETABLE_P4D_FOLDED
4477/*
4478 * Allocate p4d page table.
4479 * We've already handled the fast-path in-line.
4480 */
4481int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4482{
4483 p4d_t *new = p4d_alloc_one(mm, address);
4484 if (!new)
4485 return -ENOMEM;
4486
4487 smp_wmb(); /* See comment in __pte_alloc */
4488
4489 spin_lock(&mm->page_table_lock);
4490 if (pgd_present(*pgd)) /* Another has populated it */
4491 p4d_free(mm, new);
4492 else
4493 pgd_populate(mm, pgd, new);
4494 spin_unlock(&mm->page_table_lock);
4495 return 0;
4496}
4497#endif /* __PAGETABLE_P4D_FOLDED */
4498
1da177e4
LT
4499#ifndef __PAGETABLE_PUD_FOLDED
4500/*
4501 * Allocate page upper directory.
872fec16 4502 * We've already handled the fast-path in-line.
1da177e4 4503 */
c2febafc 4504int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4505{
c74df32c
HD
4506 pud_t *new = pud_alloc_one(mm, address);
4507 if (!new)
1bb3630e 4508 return -ENOMEM;
1da177e4 4509
362a61ad
NP
4510 smp_wmb(); /* See comment in __pte_alloc */
4511
872fec16 4512 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4513 if (!p4d_present(*p4d)) {
4514 mm_inc_nr_puds(mm);
c2febafc 4515 p4d_populate(mm, p4d, new);
b4e98d9a 4516 } else /* Another has populated it */
5e541973 4517 pud_free(mm, new);
c74df32c 4518 spin_unlock(&mm->page_table_lock);
1bb3630e 4519 return 0;
1da177e4
LT
4520}
4521#endif /* __PAGETABLE_PUD_FOLDED */
4522
4523#ifndef __PAGETABLE_PMD_FOLDED
4524/*
4525 * Allocate page middle directory.
872fec16 4526 * We've already handled the fast-path in-line.
1da177e4 4527 */
1bb3630e 4528int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4529{
a00cc7d9 4530 spinlock_t *ptl;
c74df32c
HD
4531 pmd_t *new = pmd_alloc_one(mm, address);
4532 if (!new)
1bb3630e 4533 return -ENOMEM;
1da177e4 4534
362a61ad
NP
4535 smp_wmb(); /* See comment in __pte_alloc */
4536
a00cc7d9 4537 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4538 if (!pud_present(*pud)) {
4539 mm_inc_nr_pmds(mm);
1bb3630e 4540 pud_populate(mm, pud, new);
dc6c9a35 4541 } else /* Another has populated it */
5e541973 4542 pmd_free(mm, new);
a00cc7d9 4543 spin_unlock(ptl);
1bb3630e 4544 return 0;
e0f39591 4545}
1da177e4
LT
4546#endif /* __PAGETABLE_PMD_FOLDED */
4547
09796395 4548static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4549 struct mmu_notifier_range *range,
a4d1a885 4550 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4551{
4552 pgd_t *pgd;
c2febafc 4553 p4d_t *p4d;
f8ad0f49
JW
4554 pud_t *pud;
4555 pmd_t *pmd;
4556 pte_t *ptep;
4557
4558 pgd = pgd_offset(mm, address);
4559 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4560 goto out;
4561
c2febafc
KS
4562 p4d = p4d_offset(pgd, address);
4563 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4564 goto out;
4565
4566 pud = pud_offset(p4d, address);
f8ad0f49
JW
4567 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4568 goto out;
4569
4570 pmd = pmd_offset(pud, address);
f66055ab 4571 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4572
09796395
RZ
4573 if (pmd_huge(*pmd)) {
4574 if (!pmdpp)
4575 goto out;
4576
ac46d4f3 4577 if (range) {
7269f999 4578 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4579 NULL, mm, address & PMD_MASK,
4580 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4581 mmu_notifier_invalidate_range_start(range);
a4d1a885 4582 }
09796395
RZ
4583 *ptlp = pmd_lock(mm, pmd);
4584 if (pmd_huge(*pmd)) {
4585 *pmdpp = pmd;
4586 return 0;
4587 }
4588 spin_unlock(*ptlp);
ac46d4f3
JG
4589 if (range)
4590 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4591 }
4592
4593 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4594 goto out;
4595
ac46d4f3 4596 if (range) {
7269f999 4597 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4598 address & PAGE_MASK,
4599 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4600 mmu_notifier_invalidate_range_start(range);
a4d1a885 4601 }
f8ad0f49 4602 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4603 if (!pte_present(*ptep))
4604 goto unlock;
4605 *ptepp = ptep;
4606 return 0;
4607unlock:
4608 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4609 if (range)
4610 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4611out:
4612 return -EINVAL;
4613}
4614
f729c8c9
RZ
4615static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4616 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4617{
4618 int res;
4619
4620 /* (void) is needed to make gcc happy */
4621 (void) __cond_lock(*ptlp,
ac46d4f3 4622 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4623 ptepp, NULL, ptlp)));
09796395
RZ
4624 return res;
4625}
4626
4627int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4628 struct mmu_notifier_range *range,
4629 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4630{
4631 int res;
4632
4633 /* (void) is needed to make gcc happy */
4634 (void) __cond_lock(*ptlp,
ac46d4f3 4635 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4636 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4637 return res;
4638}
09796395 4639EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4640
3b6748e2
JW
4641/**
4642 * follow_pfn - look up PFN at a user virtual address
4643 * @vma: memory mapping
4644 * @address: user virtual address
4645 * @pfn: location to store found PFN
4646 *
4647 * Only IO mappings and raw PFN mappings are allowed.
4648 *
a862f68a 4649 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4650 */
4651int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4652 unsigned long *pfn)
4653{
4654 int ret = -EINVAL;
4655 spinlock_t *ptl;
4656 pte_t *ptep;
4657
4658 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4659 return ret;
4660
4661 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4662 if (ret)
4663 return ret;
4664 *pfn = pte_pfn(*ptep);
4665 pte_unmap_unlock(ptep, ptl);
4666 return 0;
4667}
4668EXPORT_SYMBOL(follow_pfn);
4669
28b2ee20 4670#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4671int follow_phys(struct vm_area_struct *vma,
4672 unsigned long address, unsigned int flags,
4673 unsigned long *prot, resource_size_t *phys)
28b2ee20 4674{
03668a4d 4675 int ret = -EINVAL;
28b2ee20
RR
4676 pte_t *ptep, pte;
4677 spinlock_t *ptl;
28b2ee20 4678
d87fe660 4679 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4680 goto out;
28b2ee20 4681
03668a4d 4682 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4683 goto out;
28b2ee20 4684 pte = *ptep;
03668a4d 4685
f6f37321 4686 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4687 goto unlock;
28b2ee20
RR
4688
4689 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4690 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4691
03668a4d 4692 ret = 0;
28b2ee20
RR
4693unlock:
4694 pte_unmap_unlock(ptep, ptl);
4695out:
d87fe660 4696 return ret;
28b2ee20
RR
4697}
4698
4699int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4700 void *buf, int len, int write)
4701{
4702 resource_size_t phys_addr;
4703 unsigned long prot = 0;
2bc7273b 4704 void __iomem *maddr;
28b2ee20
RR
4705 int offset = addr & (PAGE_SIZE-1);
4706
d87fe660 4707 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4708 return -EINVAL;
4709
9cb12d7b 4710 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4711 if (!maddr)
4712 return -ENOMEM;
4713
28b2ee20
RR
4714 if (write)
4715 memcpy_toio(maddr + offset, buf, len);
4716 else
4717 memcpy_fromio(buf, maddr + offset, len);
4718 iounmap(maddr);
4719
4720 return len;
4721}
5a73633e 4722EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4723#endif
4724
0ec76a11 4725/*
206cb636
SW
4726 * Access another process' address space as given in mm. If non-NULL, use the
4727 * given task for page fault accounting.
0ec76a11 4728 */
84d77d3f 4729int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4730 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4731{
0ec76a11 4732 struct vm_area_struct *vma;
0ec76a11 4733 void *old_buf = buf;
442486ec 4734 int write = gup_flags & FOLL_WRITE;
0ec76a11 4735
d8ed45c5 4736 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4737 return 0;
4738
183ff22b 4739 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4740 while (len) {
4741 int bytes, ret, offset;
4742 void *maddr;
28b2ee20 4743 struct page *page = NULL;
0ec76a11 4744
64019a2e 4745 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 4746 gup_flags, &page, &vma, NULL);
28b2ee20 4747 if (ret <= 0) {
dbffcd03
RR
4748#ifndef CONFIG_HAVE_IOREMAP_PROT
4749 break;
4750#else
28b2ee20
RR
4751 /*
4752 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4753 * we can access using slightly different code.
4754 */
28b2ee20 4755 vma = find_vma(mm, addr);
fe936dfc 4756 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4757 break;
4758 if (vma->vm_ops && vma->vm_ops->access)
4759 ret = vma->vm_ops->access(vma, addr, buf,
4760 len, write);
4761 if (ret <= 0)
28b2ee20
RR
4762 break;
4763 bytes = ret;
dbffcd03 4764#endif
0ec76a11 4765 } else {
28b2ee20
RR
4766 bytes = len;
4767 offset = addr & (PAGE_SIZE-1);
4768 if (bytes > PAGE_SIZE-offset)
4769 bytes = PAGE_SIZE-offset;
4770
4771 maddr = kmap(page);
4772 if (write) {
4773 copy_to_user_page(vma, page, addr,
4774 maddr + offset, buf, bytes);
4775 set_page_dirty_lock(page);
4776 } else {
4777 copy_from_user_page(vma, page, addr,
4778 buf, maddr + offset, bytes);
4779 }
4780 kunmap(page);
09cbfeaf 4781 put_page(page);
0ec76a11 4782 }
0ec76a11
DH
4783 len -= bytes;
4784 buf += bytes;
4785 addr += bytes;
4786 }
d8ed45c5 4787 mmap_read_unlock(mm);
0ec76a11
DH
4788
4789 return buf - old_buf;
4790}
03252919 4791
5ddd36b9 4792/**
ae91dbfc 4793 * access_remote_vm - access another process' address space
5ddd36b9
SW
4794 * @mm: the mm_struct of the target address space
4795 * @addr: start address to access
4796 * @buf: source or destination buffer
4797 * @len: number of bytes to transfer
6347e8d5 4798 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4799 *
4800 * The caller must hold a reference on @mm.
a862f68a
MR
4801 *
4802 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4803 */
4804int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4805 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4806{
6347e8d5 4807 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4808}
4809
206cb636
SW
4810/*
4811 * Access another process' address space.
4812 * Source/target buffer must be kernel space,
4813 * Do not walk the page table directly, use get_user_pages
4814 */
4815int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4816 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4817{
4818 struct mm_struct *mm;
4819 int ret;
4820
4821 mm = get_task_mm(tsk);
4822 if (!mm)
4823 return 0;
4824
f307ab6d 4825 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4826
206cb636
SW
4827 mmput(mm);
4828
4829 return ret;
4830}
fcd35857 4831EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4832
03252919
AK
4833/*
4834 * Print the name of a VMA.
4835 */
4836void print_vma_addr(char *prefix, unsigned long ip)
4837{
4838 struct mm_struct *mm = current->mm;
4839 struct vm_area_struct *vma;
4840
e8bff74a 4841 /*
0a7f682d 4842 * we might be running from an atomic context so we cannot sleep
e8bff74a 4843 */
d8ed45c5 4844 if (!mmap_read_trylock(mm))
e8bff74a
IM
4845 return;
4846
03252919
AK
4847 vma = find_vma(mm, ip);
4848 if (vma && vma->vm_file) {
4849 struct file *f = vma->vm_file;
0a7f682d 4850 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4851 if (buf) {
2fbc57c5 4852 char *p;
03252919 4853
9bf39ab2 4854 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4855 if (IS_ERR(p))
4856 p = "?";
2fbc57c5 4857 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4858 vma->vm_start,
4859 vma->vm_end - vma->vm_start);
4860 free_page((unsigned long)buf);
4861 }
4862 }
d8ed45c5 4863 mmap_read_unlock(mm);
03252919 4864}
3ee1afa3 4865
662bbcb2 4866#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4867void __might_fault(const char *file, int line)
3ee1afa3 4868{
95156f00
PZ
4869 /*
4870 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 4871 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
4872 * get paged out, therefore we'll never actually fault, and the
4873 * below annotations will generate false positives.
4874 */
db68ce10 4875 if (uaccess_kernel())
95156f00 4876 return;
9ec23531 4877 if (pagefault_disabled())
662bbcb2 4878 return;
9ec23531
DH
4879 __might_sleep(file, line, 0);
4880#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4881 if (current->mm)
da1c55f1 4882 might_lock_read(&current->mm->mmap_lock);
9ec23531 4883#endif
3ee1afa3 4884}
9ec23531 4885EXPORT_SYMBOL(__might_fault);
3ee1afa3 4886#endif
47ad8475
AA
4887
4888#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4889/*
4890 * Process all subpages of the specified huge page with the specified
4891 * operation. The target subpage will be processed last to keep its
4892 * cache lines hot.
4893 */
4894static inline void process_huge_page(
4895 unsigned long addr_hint, unsigned int pages_per_huge_page,
4896 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4897 void *arg)
47ad8475 4898{
c79b57e4
HY
4899 int i, n, base, l;
4900 unsigned long addr = addr_hint &
4901 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4902
c6ddfb6c 4903 /* Process target subpage last to keep its cache lines hot */
47ad8475 4904 might_sleep();
c79b57e4
HY
4905 n = (addr_hint - addr) / PAGE_SIZE;
4906 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4907 /* If target subpage in first half of huge page */
c79b57e4
HY
4908 base = 0;
4909 l = n;
c6ddfb6c 4910 /* Process subpages at the end of huge page */
c79b57e4
HY
4911 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4912 cond_resched();
c6ddfb6c 4913 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4914 }
4915 } else {
c6ddfb6c 4916 /* If target subpage in second half of huge page */
c79b57e4
HY
4917 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4918 l = pages_per_huge_page - n;
c6ddfb6c 4919 /* Process subpages at the begin of huge page */
c79b57e4
HY
4920 for (i = 0; i < base; i++) {
4921 cond_resched();
c6ddfb6c 4922 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4923 }
4924 }
4925 /*
c6ddfb6c
HY
4926 * Process remaining subpages in left-right-left-right pattern
4927 * towards the target subpage
c79b57e4
HY
4928 */
4929 for (i = 0; i < l; i++) {
4930 int left_idx = base + i;
4931 int right_idx = base + 2 * l - 1 - i;
4932
4933 cond_resched();
c6ddfb6c 4934 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4935 cond_resched();
c6ddfb6c 4936 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4937 }
4938}
4939
c6ddfb6c
HY
4940static void clear_gigantic_page(struct page *page,
4941 unsigned long addr,
4942 unsigned int pages_per_huge_page)
4943{
4944 int i;
4945 struct page *p = page;
4946
4947 might_sleep();
4948 for (i = 0; i < pages_per_huge_page;
4949 i++, p = mem_map_next(p, page, i)) {
4950 cond_resched();
4951 clear_user_highpage(p, addr + i * PAGE_SIZE);
4952 }
4953}
4954
4955static void clear_subpage(unsigned long addr, int idx, void *arg)
4956{
4957 struct page *page = arg;
4958
4959 clear_user_highpage(page + idx, addr);
4960}
4961
4962void clear_huge_page(struct page *page,
4963 unsigned long addr_hint, unsigned int pages_per_huge_page)
4964{
4965 unsigned long addr = addr_hint &
4966 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4967
4968 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4969 clear_gigantic_page(page, addr, pages_per_huge_page);
4970 return;
4971 }
4972
4973 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4974}
4975
47ad8475
AA
4976static void copy_user_gigantic_page(struct page *dst, struct page *src,
4977 unsigned long addr,
4978 struct vm_area_struct *vma,
4979 unsigned int pages_per_huge_page)
4980{
4981 int i;
4982 struct page *dst_base = dst;
4983 struct page *src_base = src;
4984
4985 for (i = 0; i < pages_per_huge_page; ) {
4986 cond_resched();
4987 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4988
4989 i++;
4990 dst = mem_map_next(dst, dst_base, i);
4991 src = mem_map_next(src, src_base, i);
4992 }
4993}
4994
c9f4cd71
HY
4995struct copy_subpage_arg {
4996 struct page *dst;
4997 struct page *src;
4998 struct vm_area_struct *vma;
4999};
5000
5001static void copy_subpage(unsigned long addr, int idx, void *arg)
5002{
5003 struct copy_subpage_arg *copy_arg = arg;
5004
5005 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5006 addr, copy_arg->vma);
5007}
5008
47ad8475 5009void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5010 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5011 unsigned int pages_per_huge_page)
5012{
c9f4cd71
HY
5013 unsigned long addr = addr_hint &
5014 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5015 struct copy_subpage_arg arg = {
5016 .dst = dst,
5017 .src = src,
5018 .vma = vma,
5019 };
47ad8475
AA
5020
5021 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5022 copy_user_gigantic_page(dst, src, addr, vma,
5023 pages_per_huge_page);
5024 return;
5025 }
5026
c9f4cd71 5027 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5028}
fa4d75c1
MK
5029
5030long copy_huge_page_from_user(struct page *dst_page,
5031 const void __user *usr_src,
810a56b9
MK
5032 unsigned int pages_per_huge_page,
5033 bool allow_pagefault)
fa4d75c1
MK
5034{
5035 void *src = (void *)usr_src;
5036 void *page_kaddr;
5037 unsigned long i, rc = 0;
5038 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5039
5040 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
5041 if (allow_pagefault)
5042 page_kaddr = kmap(dst_page + i);
5043 else
5044 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
5045 rc = copy_from_user(page_kaddr,
5046 (const void __user *)(src + i * PAGE_SIZE),
5047 PAGE_SIZE);
810a56b9
MK
5048 if (allow_pagefault)
5049 kunmap(dst_page + i);
5050 else
5051 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5052
5053 ret_val -= (PAGE_SIZE - rc);
5054 if (rc)
5055 break;
5056
5057 cond_resched();
5058 }
5059 return ret_val;
5060}
47ad8475 5061#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5062
40b64acd 5063#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5064
5065static struct kmem_cache *page_ptl_cachep;
5066
5067void __init ptlock_cache_init(void)
5068{
5069 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5070 SLAB_PANIC, NULL);
5071}
5072
539edb58 5073bool ptlock_alloc(struct page *page)
49076ec2
KS
5074{
5075 spinlock_t *ptl;
5076
b35f1819 5077 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5078 if (!ptl)
5079 return false;
539edb58 5080 page->ptl = ptl;
49076ec2
KS
5081 return true;
5082}
5083
539edb58 5084void ptlock_free(struct page *page)
49076ec2 5085{
b35f1819 5086 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5087}
5088#endif