]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memory.c
mm: introduce arch-specific vma flag VM_ARCH_1
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
1da177e4 60
6952b61d 61#include <asm/io.h>
1da177e4
LT
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
42b77728
JB
68#include "internal.h"
69
d41dee36 70#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
1da177e4
LT
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
1da177e4 91
32a93233
IM
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100 1;
101#else
102 2;
103#endif
a62eaf15
AK
104
105static int __init disable_randmaps(char *s)
106{
107 randomize_va_space = 0;
9b41046c 108 return 1;
a62eaf15
AK
109}
110__setup("norandmaps", disable_randmaps);
111
62eede62 112unsigned long zero_pfn __read_mostly;
03f6462a 113unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122}
123core_initcall(init_zero_pfn);
a62eaf15 124
d559db08 125
34e55232
KH
126#if defined(SPLIT_RSS_COUNTING)
127
ea48cf78 128void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
129{
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
34e55232
KH
136 }
137 }
05af2e10 138 current->rss_stat.events = 0;
34e55232
KH
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 160 sync_mm_rss(task->mm);
34e55232 161}
9547d01b 162#else /* SPLIT_RSS_COUNTING */
34e55232
KH
163
164#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167static void check_sync_rss_stat(struct task_struct *task)
168{
169}
170
9547d01b
PZ
171#endif /* SPLIT_RSS_COUNTING */
172
173#ifdef HAVE_GENERIC_MMU_GATHER
174
175static int tlb_next_batch(struct mmu_gather *tlb)
176{
177 struct mmu_gather_batch *batch;
178
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
183 }
184
185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 if (!batch)
187 return 0;
188
189 batch->next = NULL;
190 batch->nr = 0;
191 batch->max = MAX_GATHER_BATCH;
192
193 tlb->active->next = batch;
194 tlb->active = batch;
195
196 return 1;
197}
198
199/* tlb_gather_mmu
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
203 */
204void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205{
206 tlb->mm = mm;
207
208 tlb->fullmm = fullmm;
597e1c35
AS
209 tlb->start = -1UL;
210 tlb->end = 0;
9547d01b
PZ
211 tlb->need_flush = 0;
212 tlb->fast_mode = (num_possible_cpus() == 1);
213 tlb->local.next = NULL;
214 tlb->local.nr = 0;
215 tlb->local.max = ARRAY_SIZE(tlb->__pages);
216 tlb->active = &tlb->local;
217
218#ifdef CONFIG_HAVE_RCU_TABLE_FREE
219 tlb->batch = NULL;
220#endif
221}
222
223void tlb_flush_mmu(struct mmu_gather *tlb)
224{
225 struct mmu_gather_batch *batch;
226
227 if (!tlb->need_flush)
228 return;
229 tlb->need_flush = 0;
230 tlb_flush(tlb);
231#ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 tlb_table_flush(tlb);
34e55232
KH
233#endif
234
9547d01b
PZ
235 if (tlb_fast_mode(tlb))
236 return;
237
238 for (batch = &tlb->local; batch; batch = batch->next) {
239 free_pages_and_swap_cache(batch->pages, batch->nr);
240 batch->nr = 0;
241 }
242 tlb->active = &tlb->local;
243}
244
245/* tlb_finish_mmu
246 * Called at the end of the shootdown operation to free up any resources
247 * that were required.
248 */
249void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
250{
251 struct mmu_gather_batch *batch, *next;
252
597e1c35
AS
253 tlb->start = start;
254 tlb->end = end;
9547d01b
PZ
255 tlb_flush_mmu(tlb);
256
257 /* keep the page table cache within bounds */
258 check_pgt_cache();
259
260 for (batch = tlb->local.next; batch; batch = next) {
261 next = batch->next;
262 free_pages((unsigned long)batch, 0);
263 }
264 tlb->local.next = NULL;
265}
266
267/* __tlb_remove_page
268 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
269 * handling the additional races in SMP caused by other CPUs caching valid
270 * mappings in their TLBs. Returns the number of free page slots left.
271 * When out of page slots we must call tlb_flush_mmu().
272 */
273int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
274{
275 struct mmu_gather_batch *batch;
276
f21760b1 277 VM_BUG_ON(!tlb->need_flush);
9547d01b
PZ
278
279 if (tlb_fast_mode(tlb)) {
280 free_page_and_swap_cache(page);
281 return 1; /* avoid calling tlb_flush_mmu() */
282 }
283
284 batch = tlb->active;
285 batch->pages[batch->nr++] = page;
286 if (batch->nr == batch->max) {
287 if (!tlb_next_batch(tlb))
288 return 0;
0b43c3aa 289 batch = tlb->active;
9547d01b
PZ
290 }
291 VM_BUG_ON(batch->nr > batch->max);
292
293 return batch->max - batch->nr;
294}
295
296#endif /* HAVE_GENERIC_MMU_GATHER */
297
26723911
PZ
298#ifdef CONFIG_HAVE_RCU_TABLE_FREE
299
300/*
301 * See the comment near struct mmu_table_batch.
302 */
303
304static void tlb_remove_table_smp_sync(void *arg)
305{
306 /* Simply deliver the interrupt */
307}
308
309static void tlb_remove_table_one(void *table)
310{
311 /*
312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed.
314 *
315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch.
317 */
318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 __tlb_remove_table(table);
320}
321
322static void tlb_remove_table_rcu(struct rcu_head *head)
323{
324 struct mmu_table_batch *batch;
325 int i;
326
327 batch = container_of(head, struct mmu_table_batch, rcu);
328
329 for (i = 0; i < batch->nr; i++)
330 __tlb_remove_table(batch->tables[i]);
331
332 free_page((unsigned long)batch);
333}
334
335void tlb_table_flush(struct mmu_gather *tlb)
336{
337 struct mmu_table_batch **batch = &tlb->batch;
338
339 if (*batch) {
340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 *batch = NULL;
342 }
343}
344
345void tlb_remove_table(struct mmu_gather *tlb, void *table)
346{
347 struct mmu_table_batch **batch = &tlb->batch;
348
349 tlb->need_flush = 1;
350
351 /*
352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk.
354 */
355 if (atomic_read(&tlb->mm->mm_users) < 2) {
356 __tlb_remove_table(table);
357 return;
358 }
359
360 if (*batch == NULL) {
361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 if (*batch == NULL) {
363 tlb_remove_table_one(table);
364 return;
365 }
366 (*batch)->nr = 0;
367 }
368 (*batch)->tables[(*batch)->nr++] = table;
369 if ((*batch)->nr == MAX_TABLE_BATCH)
370 tlb_table_flush(tlb);
371}
372
9547d01b 373#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 374
1da177e4
LT
375/*
376 * If a p?d_bad entry is found while walking page tables, report
377 * the error, before resetting entry to p?d_none. Usually (but
378 * very seldom) called out from the p?d_none_or_clear_bad macros.
379 */
380
381void pgd_clear_bad(pgd_t *pgd)
382{
383 pgd_ERROR(*pgd);
384 pgd_clear(pgd);
385}
386
387void pud_clear_bad(pud_t *pud)
388{
389 pud_ERROR(*pud);
390 pud_clear(pud);
391}
392
393void pmd_clear_bad(pmd_t *pmd)
394{
395 pmd_ERROR(*pmd);
396 pmd_clear(pmd);
397}
398
399/*
400 * Note: this doesn't free the actual pages themselves. That
401 * has been handled earlier when unmapping all the memory regions.
402 */
9e1b32ca
BH
403static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404 unsigned long addr)
1da177e4 405{
2f569afd 406 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 407 pmd_clear(pmd);
9e1b32ca 408 pte_free_tlb(tlb, token, addr);
e0da382c 409 tlb->mm->nr_ptes--;
1da177e4
LT
410}
411
e0da382c
HD
412static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413 unsigned long addr, unsigned long end,
414 unsigned long floor, unsigned long ceiling)
1da177e4
LT
415{
416 pmd_t *pmd;
417 unsigned long next;
e0da382c 418 unsigned long start;
1da177e4 419
e0da382c 420 start = addr;
1da177e4 421 pmd = pmd_offset(pud, addr);
1da177e4
LT
422 do {
423 next = pmd_addr_end(addr, end);
424 if (pmd_none_or_clear_bad(pmd))
425 continue;
9e1b32ca 426 free_pte_range(tlb, pmd, addr);
1da177e4
LT
427 } while (pmd++, addr = next, addr != end);
428
e0da382c
HD
429 start &= PUD_MASK;
430 if (start < floor)
431 return;
432 if (ceiling) {
433 ceiling &= PUD_MASK;
434 if (!ceiling)
435 return;
1da177e4 436 }
e0da382c
HD
437 if (end - 1 > ceiling - 1)
438 return;
439
440 pmd = pmd_offset(pud, start);
441 pud_clear(pud);
9e1b32ca 442 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
443}
444
e0da382c
HD
445static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 unsigned long addr, unsigned long end,
447 unsigned long floor, unsigned long ceiling)
1da177e4
LT
448{
449 pud_t *pud;
450 unsigned long next;
e0da382c 451 unsigned long start;
1da177e4 452
e0da382c 453 start = addr;
1da177e4 454 pud = pud_offset(pgd, addr);
1da177e4
LT
455 do {
456 next = pud_addr_end(addr, end);
457 if (pud_none_or_clear_bad(pud))
458 continue;
e0da382c 459 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
460 } while (pud++, addr = next, addr != end);
461
e0da382c
HD
462 start &= PGDIR_MASK;
463 if (start < floor)
464 return;
465 if (ceiling) {
466 ceiling &= PGDIR_MASK;
467 if (!ceiling)
468 return;
1da177e4 469 }
e0da382c
HD
470 if (end - 1 > ceiling - 1)
471 return;
472
473 pud = pud_offset(pgd, start);
474 pgd_clear(pgd);
9e1b32ca 475 pud_free_tlb(tlb, pud, start);
1da177e4
LT
476}
477
478/*
e0da382c
HD
479 * This function frees user-level page tables of a process.
480 *
1da177e4
LT
481 * Must be called with pagetable lock held.
482 */
42b77728 483void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
484 unsigned long addr, unsigned long end,
485 unsigned long floor, unsigned long ceiling)
1da177e4
LT
486{
487 pgd_t *pgd;
488 unsigned long next;
e0da382c
HD
489
490 /*
491 * The next few lines have given us lots of grief...
492 *
493 * Why are we testing PMD* at this top level? Because often
494 * there will be no work to do at all, and we'd prefer not to
495 * go all the way down to the bottom just to discover that.
496 *
497 * Why all these "- 1"s? Because 0 represents both the bottom
498 * of the address space and the top of it (using -1 for the
499 * top wouldn't help much: the masks would do the wrong thing).
500 * The rule is that addr 0 and floor 0 refer to the bottom of
501 * the address space, but end 0 and ceiling 0 refer to the top
502 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 * that end 0 case should be mythical).
504 *
505 * Wherever addr is brought up or ceiling brought down, we must
506 * be careful to reject "the opposite 0" before it confuses the
507 * subsequent tests. But what about where end is brought down
508 * by PMD_SIZE below? no, end can't go down to 0 there.
509 *
510 * Whereas we round start (addr) and ceiling down, by different
511 * masks at different levels, in order to test whether a table
512 * now has no other vmas using it, so can be freed, we don't
513 * bother to round floor or end up - the tests don't need that.
514 */
1da177e4 515
e0da382c
HD
516 addr &= PMD_MASK;
517 if (addr < floor) {
518 addr += PMD_SIZE;
519 if (!addr)
520 return;
521 }
522 if (ceiling) {
523 ceiling &= PMD_MASK;
524 if (!ceiling)
525 return;
526 }
527 if (end - 1 > ceiling - 1)
528 end -= PMD_SIZE;
529 if (addr > end - 1)
530 return;
531
42b77728 532 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
533 do {
534 next = pgd_addr_end(addr, end);
535 if (pgd_none_or_clear_bad(pgd))
536 continue;
42b77728 537 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 538 } while (pgd++, addr = next, addr != end);
e0da382c
HD
539}
540
42b77728 541void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 542 unsigned long floor, unsigned long ceiling)
e0da382c
HD
543{
544 while (vma) {
545 struct vm_area_struct *next = vma->vm_next;
546 unsigned long addr = vma->vm_start;
547
8f4f8c16 548 /*
25d9e2d1 549 * Hide vma from rmap and truncate_pagecache before freeing
550 * pgtables
8f4f8c16 551 */
5beb4930 552 unlink_anon_vmas(vma);
8f4f8c16
HD
553 unlink_file_vma(vma);
554
9da61aef 555 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 557 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
558 } else {
559 /*
560 * Optimization: gather nearby vmas into one call down
561 */
562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 563 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
564 vma = next;
565 next = vma->vm_next;
5beb4930 566 unlink_anon_vmas(vma);
8f4f8c16 567 unlink_file_vma(vma);
3bf5ee95
HD
568 }
569 free_pgd_range(tlb, addr, vma->vm_end,
570 floor, next? next->vm_start: ceiling);
571 }
e0da382c
HD
572 vma = next;
573 }
1da177e4
LT
574}
575
8ac1f832
AA
576int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577 pmd_t *pmd, unsigned long address)
1da177e4 578{
2f569afd 579 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 580 int wait_split_huge_page;
1bb3630e
HD
581 if (!new)
582 return -ENOMEM;
583
362a61ad
NP
584 /*
585 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 * visible before the pte is made visible to other CPUs by being
587 * put into page tables.
588 *
589 * The other side of the story is the pointer chasing in the page
590 * table walking code (when walking the page table without locking;
591 * ie. most of the time). Fortunately, these data accesses consist
592 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 * being the notable exception) will already guarantee loads are
594 * seen in-order. See the alpha page table accessors for the
595 * smp_read_barrier_depends() barriers in page table walking code.
596 */
597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
598
c74df32c 599 spin_lock(&mm->page_table_lock);
8ac1f832
AA
600 wait_split_huge_page = 0;
601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 602 mm->nr_ptes++;
1da177e4 603 pmd_populate(mm, pmd, new);
2f569afd 604 new = NULL;
8ac1f832
AA
605 } else if (unlikely(pmd_trans_splitting(*pmd)))
606 wait_split_huge_page = 1;
c74df32c 607 spin_unlock(&mm->page_table_lock);
2f569afd
MS
608 if (new)
609 pte_free(mm, new);
8ac1f832
AA
610 if (wait_split_huge_page)
611 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 612 return 0;
1da177e4
LT
613}
614
1bb3630e 615int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 616{
1bb3630e
HD
617 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618 if (!new)
619 return -ENOMEM;
620
362a61ad
NP
621 smp_wmb(); /* See comment in __pte_alloc */
622
1bb3630e 623 spin_lock(&init_mm.page_table_lock);
8ac1f832 624 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 625 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 626 new = NULL;
8ac1f832
AA
627 } else
628 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 629 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
630 if (new)
631 pte_free_kernel(&init_mm, new);
1bb3630e 632 return 0;
1da177e4
LT
633}
634
d559db08
KH
635static inline void init_rss_vec(int *rss)
636{
637 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
638}
639
640static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 641{
d559db08
KH
642 int i;
643
34e55232 644 if (current->mm == mm)
05af2e10 645 sync_mm_rss(mm);
d559db08
KH
646 for (i = 0; i < NR_MM_COUNTERS; i++)
647 if (rss[i])
648 add_mm_counter(mm, i, rss[i]);
ae859762
HD
649}
650
b5810039 651/*
6aab341e
LT
652 * This function is called to print an error when a bad pte
653 * is found. For example, we might have a PFN-mapped pte in
654 * a region that doesn't allow it.
b5810039
NP
655 *
656 * The calling function must still handle the error.
657 */
3dc14741
HD
658static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659 pte_t pte, struct page *page)
b5810039 660{
3dc14741
HD
661 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662 pud_t *pud = pud_offset(pgd, addr);
663 pmd_t *pmd = pmd_offset(pud, addr);
664 struct address_space *mapping;
665 pgoff_t index;
d936cf9b
HD
666 static unsigned long resume;
667 static unsigned long nr_shown;
668 static unsigned long nr_unshown;
669
670 /*
671 * Allow a burst of 60 reports, then keep quiet for that minute;
672 * or allow a steady drip of one report per second.
673 */
674 if (nr_shown == 60) {
675 if (time_before(jiffies, resume)) {
676 nr_unshown++;
677 return;
678 }
679 if (nr_unshown) {
1e9e6365
HD
680 printk(KERN_ALERT
681 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
682 nr_unshown);
683 nr_unshown = 0;
684 }
685 nr_shown = 0;
686 }
687 if (nr_shown++ == 0)
688 resume = jiffies + 60 * HZ;
3dc14741
HD
689
690 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691 index = linear_page_index(vma, addr);
692
1e9e6365
HD
693 printk(KERN_ALERT
694 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
695 current->comm,
696 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
697 if (page)
698 dump_page(page);
1e9e6365 699 printk(KERN_ALERT
3dc14741
HD
700 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
702 /*
703 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
704 */
705 if (vma->vm_ops)
1e9e6365 706 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
707 (unsigned long)vma->vm_ops->fault);
708 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 709 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 710 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 711 dump_stack();
3dc14741 712 add_taint(TAINT_BAD_PAGE);
b5810039
NP
713}
714
ca16d140 715static inline int is_cow_mapping(vm_flags_t flags)
67121172
LT
716{
717 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
718}
719
62eede62
HD
720#ifndef is_zero_pfn
721static inline int is_zero_pfn(unsigned long pfn)
722{
723 return pfn == zero_pfn;
724}
725#endif
726
727#ifndef my_zero_pfn
728static inline unsigned long my_zero_pfn(unsigned long addr)
729{
730 return zero_pfn;
731}
732#endif
733
ee498ed7 734/*
7e675137 735 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 736 *
7e675137
NP
737 * "Special" mappings do not wish to be associated with a "struct page" (either
738 * it doesn't exist, or it exists but they don't want to touch it). In this
739 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 740 *
7e675137
NP
741 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
742 * pte bit, in which case this function is trivial. Secondly, an architecture
743 * may not have a spare pte bit, which requires a more complicated scheme,
744 * described below.
745 *
746 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
747 * special mapping (even if there are underlying and valid "struct pages").
748 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 749 *
b379d790
JH
750 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
751 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
752 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
753 * mapping will always honor the rule
6aab341e
LT
754 *
755 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
756 *
7e675137
NP
757 * And for normal mappings this is false.
758 *
759 * This restricts such mappings to be a linear translation from virtual address
760 * to pfn. To get around this restriction, we allow arbitrary mappings so long
761 * as the vma is not a COW mapping; in that case, we know that all ptes are
762 * special (because none can have been COWed).
b379d790 763 *
b379d790 764 *
7e675137 765 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
766 *
767 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
768 * page" backing, however the difference is that _all_ pages with a struct
769 * page (that is, those where pfn_valid is true) are refcounted and considered
770 * normal pages by the VM. The disadvantage is that pages are refcounted
771 * (which can be slower and simply not an option for some PFNMAP users). The
772 * advantage is that we don't have to follow the strict linearity rule of
773 * PFNMAP mappings in order to support COWable mappings.
774 *
ee498ed7 775 */
7e675137
NP
776#ifdef __HAVE_ARCH_PTE_SPECIAL
777# define HAVE_PTE_SPECIAL 1
778#else
779# define HAVE_PTE_SPECIAL 0
780#endif
781struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
782 pte_t pte)
ee498ed7 783{
22b31eec 784 unsigned long pfn = pte_pfn(pte);
7e675137
NP
785
786 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
787 if (likely(!pte_special(pte)))
788 goto check_pfn;
a13ea5b7
HD
789 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
790 return NULL;
62eede62 791 if (!is_zero_pfn(pfn))
22b31eec 792 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
793 return NULL;
794 }
795
796 /* !HAVE_PTE_SPECIAL case follows: */
797
b379d790
JH
798 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
799 if (vma->vm_flags & VM_MIXEDMAP) {
800 if (!pfn_valid(pfn))
801 return NULL;
802 goto out;
803 } else {
7e675137
NP
804 unsigned long off;
805 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
806 if (pfn == vma->vm_pgoff + off)
807 return NULL;
808 if (!is_cow_mapping(vma->vm_flags))
809 return NULL;
810 }
6aab341e
LT
811 }
812
62eede62
HD
813 if (is_zero_pfn(pfn))
814 return NULL;
22b31eec
HD
815check_pfn:
816 if (unlikely(pfn > highest_memmap_pfn)) {
817 print_bad_pte(vma, addr, pte, NULL);
818 return NULL;
819 }
6aab341e
LT
820
821 /*
7e675137 822 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 823 * eg. VDSO mappings can cause them to exist.
6aab341e 824 */
b379d790 825out:
6aab341e 826 return pfn_to_page(pfn);
ee498ed7
HD
827}
828
1da177e4
LT
829/*
830 * copy one vm_area from one task to the other. Assumes the page tables
831 * already present in the new task to be cleared in the whole range
832 * covered by this vma.
1da177e4
LT
833 */
834
570a335b 835static inline unsigned long
1da177e4 836copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 837 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 838 unsigned long addr, int *rss)
1da177e4 839{
b5810039 840 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
841 pte_t pte = *src_pte;
842 struct page *page;
1da177e4
LT
843
844 /* pte contains position in swap or file, so copy. */
845 if (unlikely(!pte_present(pte))) {
846 if (!pte_file(pte)) {
0697212a
CL
847 swp_entry_t entry = pte_to_swp_entry(pte);
848
570a335b
HD
849 if (swap_duplicate(entry) < 0)
850 return entry.val;
851
1da177e4
LT
852 /* make sure dst_mm is on swapoff's mmlist. */
853 if (unlikely(list_empty(&dst_mm->mmlist))) {
854 spin_lock(&mmlist_lock);
f412ac08
HD
855 if (list_empty(&dst_mm->mmlist))
856 list_add(&dst_mm->mmlist,
857 &src_mm->mmlist);
1da177e4
LT
858 spin_unlock(&mmlist_lock);
859 }
b084d435
KH
860 if (likely(!non_swap_entry(entry)))
861 rss[MM_SWAPENTS]++;
9f9f1acd
KK
862 else if (is_migration_entry(entry)) {
863 page = migration_entry_to_page(entry);
864
865 if (PageAnon(page))
866 rss[MM_ANONPAGES]++;
867 else
868 rss[MM_FILEPAGES]++;
869
870 if (is_write_migration_entry(entry) &&
871 is_cow_mapping(vm_flags)) {
872 /*
873 * COW mappings require pages in both
874 * parent and child to be set to read.
875 */
876 make_migration_entry_read(&entry);
877 pte = swp_entry_to_pte(entry);
878 set_pte_at(src_mm, addr, src_pte, pte);
879 }
0697212a 880 }
1da177e4 881 }
ae859762 882 goto out_set_pte;
1da177e4
LT
883 }
884
1da177e4
LT
885 /*
886 * If it's a COW mapping, write protect it both
887 * in the parent and the child
888 */
67121172 889 if (is_cow_mapping(vm_flags)) {
1da177e4 890 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 891 pte = pte_wrprotect(pte);
1da177e4
LT
892 }
893
894 /*
895 * If it's a shared mapping, mark it clean in
896 * the child
897 */
898 if (vm_flags & VM_SHARED)
899 pte = pte_mkclean(pte);
900 pte = pte_mkold(pte);
6aab341e
LT
901
902 page = vm_normal_page(vma, addr, pte);
903 if (page) {
904 get_page(page);
21333b2b 905 page_dup_rmap(page);
d559db08
KH
906 if (PageAnon(page))
907 rss[MM_ANONPAGES]++;
908 else
909 rss[MM_FILEPAGES]++;
6aab341e 910 }
ae859762
HD
911
912out_set_pte:
913 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 914 return 0;
1da177e4
LT
915}
916
71e3aac0
AA
917int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
919 unsigned long addr, unsigned long end)
1da177e4 920{
c36987e2 921 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 922 pte_t *src_pte, *dst_pte;
c74df32c 923 spinlock_t *src_ptl, *dst_ptl;
e040f218 924 int progress = 0;
d559db08 925 int rss[NR_MM_COUNTERS];
570a335b 926 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
927
928again:
d559db08
KH
929 init_rss_vec(rss);
930
c74df32c 931 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
932 if (!dst_pte)
933 return -ENOMEM;
ece0e2b6 934 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 935 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 936 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
937 orig_src_pte = src_pte;
938 orig_dst_pte = dst_pte;
6606c3e0 939 arch_enter_lazy_mmu_mode();
1da177e4 940
1da177e4
LT
941 do {
942 /*
943 * We are holding two locks at this point - either of them
944 * could generate latencies in another task on another CPU.
945 */
e040f218
HD
946 if (progress >= 32) {
947 progress = 0;
948 if (need_resched() ||
95c354fe 949 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
950 break;
951 }
1da177e4
LT
952 if (pte_none(*src_pte)) {
953 progress++;
954 continue;
955 }
570a335b
HD
956 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
957 vma, addr, rss);
958 if (entry.val)
959 break;
1da177e4
LT
960 progress += 8;
961 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 962
6606c3e0 963 arch_leave_lazy_mmu_mode();
c74df32c 964 spin_unlock(src_ptl);
ece0e2b6 965 pte_unmap(orig_src_pte);
d559db08 966 add_mm_rss_vec(dst_mm, rss);
c36987e2 967 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 968 cond_resched();
570a335b
HD
969
970 if (entry.val) {
971 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
972 return -ENOMEM;
973 progress = 0;
974 }
1da177e4
LT
975 if (addr != end)
976 goto again;
977 return 0;
978}
979
980static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
982 unsigned long addr, unsigned long end)
983{
984 pmd_t *src_pmd, *dst_pmd;
985 unsigned long next;
986
987 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
988 if (!dst_pmd)
989 return -ENOMEM;
990 src_pmd = pmd_offset(src_pud, addr);
991 do {
992 next = pmd_addr_end(addr, end);
71e3aac0
AA
993 if (pmd_trans_huge(*src_pmd)) {
994 int err;
14d1a55c 995 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
996 err = copy_huge_pmd(dst_mm, src_mm,
997 dst_pmd, src_pmd, addr, vma);
998 if (err == -ENOMEM)
999 return -ENOMEM;
1000 if (!err)
1001 continue;
1002 /* fall through */
1003 }
1da177e4
LT
1004 if (pmd_none_or_clear_bad(src_pmd))
1005 continue;
1006 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1007 vma, addr, next))
1008 return -ENOMEM;
1009 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1010 return 0;
1011}
1012
1013static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1015 unsigned long addr, unsigned long end)
1016{
1017 pud_t *src_pud, *dst_pud;
1018 unsigned long next;
1019
1020 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1021 if (!dst_pud)
1022 return -ENOMEM;
1023 src_pud = pud_offset(src_pgd, addr);
1024 do {
1025 next = pud_addr_end(addr, end);
1026 if (pud_none_or_clear_bad(src_pud))
1027 continue;
1028 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1029 vma, addr, next))
1030 return -ENOMEM;
1031 } while (dst_pud++, src_pud++, addr = next, addr != end);
1032 return 0;
1033}
1034
1035int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1036 struct vm_area_struct *vma)
1037{
1038 pgd_t *src_pgd, *dst_pgd;
1039 unsigned long next;
1040 unsigned long addr = vma->vm_start;
1041 unsigned long end = vma->vm_end;
cddb8a5c 1042 int ret;
1da177e4 1043
d992895b
NP
1044 /*
1045 * Don't copy ptes where a page fault will fill them correctly.
1046 * Fork becomes much lighter when there are big shared or private
1047 * readonly mappings. The tradeoff is that copy_page_range is more
1048 * efficient than faulting.
1049 */
4d7672b4 1050 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
1051 if (!vma->anon_vma)
1052 return 0;
1053 }
1054
1da177e4
LT
1055 if (is_vm_hugetlb_page(vma))
1056 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1057
b3b9c293 1058 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1059 /*
1060 * We do not free on error cases below as remove_vma
1061 * gets called on error from higher level routine
1062 */
5180da41 1063 ret = track_pfn_copy(vma);
2ab64037 1064 if (ret)
1065 return ret;
1066 }
1067
cddb8a5c
AA
1068 /*
1069 * We need to invalidate the secondary MMU mappings only when
1070 * there could be a permission downgrade on the ptes of the
1071 * parent mm. And a permission downgrade will only happen if
1072 * is_cow_mapping() returns true.
1073 */
1074 if (is_cow_mapping(vma->vm_flags))
1075 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1076
1077 ret = 0;
1da177e4
LT
1078 dst_pgd = pgd_offset(dst_mm, addr);
1079 src_pgd = pgd_offset(src_mm, addr);
1080 do {
1081 next = pgd_addr_end(addr, end);
1082 if (pgd_none_or_clear_bad(src_pgd))
1083 continue;
cddb8a5c
AA
1084 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1085 vma, addr, next))) {
1086 ret = -ENOMEM;
1087 break;
1088 }
1da177e4 1089 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
1090
1091 if (is_cow_mapping(vma->vm_flags))
1092 mmu_notifier_invalidate_range_end(src_mm,
1093 vma->vm_start, end);
1094 return ret;
1da177e4
LT
1095}
1096
51c6f666 1097static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1098 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1099 unsigned long addr, unsigned long end,
97a89413 1100 struct zap_details *details)
1da177e4 1101{
b5810039 1102 struct mm_struct *mm = tlb->mm;
d16dfc55 1103 int force_flush = 0;
d559db08 1104 int rss[NR_MM_COUNTERS];
97a89413 1105 spinlock_t *ptl;
5f1a1907 1106 pte_t *start_pte;
97a89413 1107 pte_t *pte;
d559db08 1108
d16dfc55 1109again:
e303297e 1110 init_rss_vec(rss);
5f1a1907
SR
1111 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1112 pte = start_pte;
6606c3e0 1113 arch_enter_lazy_mmu_mode();
1da177e4
LT
1114 do {
1115 pte_t ptent = *pte;
51c6f666 1116 if (pte_none(ptent)) {
1da177e4 1117 continue;
51c6f666 1118 }
6f5e6b9e 1119
1da177e4 1120 if (pte_present(ptent)) {
ee498ed7 1121 struct page *page;
51c6f666 1122
6aab341e 1123 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1124 if (unlikely(details) && page) {
1125 /*
1126 * unmap_shared_mapping_pages() wants to
1127 * invalidate cache without truncating:
1128 * unmap shared but keep private pages.
1129 */
1130 if (details->check_mapping &&
1131 details->check_mapping != page->mapping)
1132 continue;
1133 /*
1134 * Each page->index must be checked when
1135 * invalidating or truncating nonlinear.
1136 */
1137 if (details->nonlinear_vma &&
1138 (page->index < details->first_index ||
1139 page->index > details->last_index))
1140 continue;
1141 }
b5810039 1142 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1143 tlb->fullmm);
1da177e4
LT
1144 tlb_remove_tlb_entry(tlb, pte, addr);
1145 if (unlikely(!page))
1146 continue;
1147 if (unlikely(details) && details->nonlinear_vma
1148 && linear_page_index(details->nonlinear_vma,
1149 addr) != page->index)
b5810039 1150 set_pte_at(mm, addr, pte,
1da177e4 1151 pgoff_to_pte(page->index));
1da177e4 1152 if (PageAnon(page))
d559db08 1153 rss[MM_ANONPAGES]--;
6237bcd9
HD
1154 else {
1155 if (pte_dirty(ptent))
1156 set_page_dirty(page);
4917e5d0
JW
1157 if (pte_young(ptent) &&
1158 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 1159 mark_page_accessed(page);
d559db08 1160 rss[MM_FILEPAGES]--;
6237bcd9 1161 }
edc315fd 1162 page_remove_rmap(page);
3dc14741
HD
1163 if (unlikely(page_mapcount(page) < 0))
1164 print_bad_pte(vma, addr, ptent, page);
d16dfc55
PZ
1165 force_flush = !__tlb_remove_page(tlb, page);
1166 if (force_flush)
1167 break;
1da177e4
LT
1168 continue;
1169 }
1170 /*
1171 * If details->check_mapping, we leave swap entries;
1172 * if details->nonlinear_vma, we leave file entries.
1173 */
1174 if (unlikely(details))
1175 continue;
2509ef26
HD
1176 if (pte_file(ptent)) {
1177 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1178 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1179 } else {
1180 swp_entry_t entry = pte_to_swp_entry(ptent);
1181
1182 if (!non_swap_entry(entry))
1183 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1184 else if (is_migration_entry(entry)) {
1185 struct page *page;
1186
1187 page = migration_entry_to_page(entry);
1188
1189 if (PageAnon(page))
1190 rss[MM_ANONPAGES]--;
1191 else
1192 rss[MM_FILEPAGES]--;
1193 }
b084d435
KH
1194 if (unlikely(!free_swap_and_cache(entry)))
1195 print_bad_pte(vma, addr, ptent, NULL);
1196 }
9888a1ca 1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1198 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1199
d559db08 1200 add_mm_rss_vec(mm, rss);
6606c3e0 1201 arch_leave_lazy_mmu_mode();
5f1a1907 1202 pte_unmap_unlock(start_pte, ptl);
51c6f666 1203
d16dfc55
PZ
1204 /*
1205 * mmu_gather ran out of room to batch pages, we break out of
1206 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207 * and page-free while holding it.
1208 */
1209 if (force_flush) {
1210 force_flush = 0;
597e1c35
AS
1211
1212#ifdef HAVE_GENERIC_MMU_GATHER
1213 tlb->start = addr;
1214 tlb->end = end;
1215#endif
d16dfc55
PZ
1216 tlb_flush_mmu(tlb);
1217 if (addr != end)
1218 goto again;
1219 }
1220
51c6f666 1221 return addr;
1da177e4
LT
1222}
1223
51c6f666 1224static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1225 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1226 unsigned long addr, unsigned long end,
97a89413 1227 struct zap_details *details)
1da177e4
LT
1228{
1229 pmd_t *pmd;
1230 unsigned long next;
1231
1232 pmd = pmd_offset(pud, addr);
1233 do {
1234 next = pmd_addr_end(addr, end);
71e3aac0 1235 if (pmd_trans_huge(*pmd)) {
1a5a9906 1236 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1237#ifdef CONFIG_DEBUG_VM
1238 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1239 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240 __func__, addr, end,
1241 vma->vm_start,
1242 vma->vm_end);
1243 BUG();
1244 }
1245#endif
71e3aac0 1246 split_huge_page_pmd(vma->vm_mm, pmd);
f21760b1 1247 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1248 goto next;
71e3aac0
AA
1249 /* fall through */
1250 }
1a5a9906
AA
1251 /*
1252 * Here there can be other concurrent MADV_DONTNEED or
1253 * trans huge page faults running, and if the pmd is
1254 * none or trans huge it can change under us. This is
1255 * because MADV_DONTNEED holds the mmap_sem in read
1256 * mode.
1257 */
1258 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259 goto next;
97a89413 1260 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1261next:
97a89413
PZ
1262 cond_resched();
1263 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1264
1265 return addr;
1da177e4
LT
1266}
1267
51c6f666 1268static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1269 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1270 unsigned long addr, unsigned long end,
97a89413 1271 struct zap_details *details)
1da177e4
LT
1272{
1273 pud_t *pud;
1274 unsigned long next;
1275
1276 pud = pud_offset(pgd, addr);
1277 do {
1278 next = pud_addr_end(addr, end);
97a89413 1279 if (pud_none_or_clear_bad(pud))
1da177e4 1280 continue;
97a89413
PZ
1281 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1282 } while (pud++, addr = next, addr != end);
51c6f666
RH
1283
1284 return addr;
1da177e4
LT
1285}
1286
038c7aa1
AV
1287static void unmap_page_range(struct mmu_gather *tlb,
1288 struct vm_area_struct *vma,
1289 unsigned long addr, unsigned long end,
1290 struct zap_details *details)
1da177e4
LT
1291{
1292 pgd_t *pgd;
1293 unsigned long next;
1294
1295 if (details && !details->check_mapping && !details->nonlinear_vma)
1296 details = NULL;
1297
1298 BUG_ON(addr >= end);
569b846d 1299 mem_cgroup_uncharge_start();
1da177e4
LT
1300 tlb_start_vma(tlb, vma);
1301 pgd = pgd_offset(vma->vm_mm, addr);
1302 do {
1303 next = pgd_addr_end(addr, end);
97a89413 1304 if (pgd_none_or_clear_bad(pgd))
1da177e4 1305 continue;
97a89413
PZ
1306 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307 } while (pgd++, addr = next, addr != end);
1da177e4 1308 tlb_end_vma(tlb, vma);
569b846d 1309 mem_cgroup_uncharge_end();
1da177e4 1310}
51c6f666 1311
f5cc4eef
AV
1312
1313static void unmap_single_vma(struct mmu_gather *tlb,
1314 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1315 unsigned long end_addr,
f5cc4eef
AV
1316 struct zap_details *details)
1317{
1318 unsigned long start = max(vma->vm_start, start_addr);
1319 unsigned long end;
1320
1321 if (start >= vma->vm_end)
1322 return;
1323 end = min(vma->vm_end, end_addr);
1324 if (end <= vma->vm_start)
1325 return;
1326
cbc91f71
SD
1327 if (vma->vm_file)
1328 uprobe_munmap(vma, start, end);
1329
b3b9c293 1330 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1331 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1332
1333 if (start != end) {
1334 if (unlikely(is_vm_hugetlb_page(vma))) {
1335 /*
1336 * It is undesirable to test vma->vm_file as it
1337 * should be non-null for valid hugetlb area.
1338 * However, vm_file will be NULL in the error
1339 * cleanup path of do_mmap_pgoff. When
1340 * hugetlbfs ->mmap method fails,
1341 * do_mmap_pgoff() nullifies vma->vm_file
1342 * before calling this function to clean up.
1343 * Since no pte has actually been setup, it is
1344 * safe to do nothing in this case.
1345 */
24669e58
AK
1346 if (vma->vm_file) {
1347 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
d833352a 1348 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
24669e58
AK
1349 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1350 }
f5cc4eef
AV
1351 } else
1352 unmap_page_range(tlb, vma, start, end, details);
1353 }
1da177e4
LT
1354}
1355
1da177e4
LT
1356/**
1357 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1358 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1359 * @vma: the starting vma
1360 * @start_addr: virtual address at which to start unmapping
1361 * @end_addr: virtual address at which to end unmapping
1da177e4 1362 *
508034a3 1363 * Unmap all pages in the vma list.
1da177e4 1364 *
1da177e4
LT
1365 * Only addresses between `start' and `end' will be unmapped.
1366 *
1367 * The VMA list must be sorted in ascending virtual address order.
1368 *
1369 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370 * range after unmap_vmas() returns. So the only responsibility here is to
1371 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372 * drops the lock and schedules.
1373 */
6e8bb019 1374void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1375 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1376 unsigned long end_addr)
1da177e4 1377{
cddb8a5c 1378 struct mm_struct *mm = vma->vm_mm;
1da177e4 1379
cddb8a5c 1380 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1381 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1382 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1383 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1384}
1385
1386/**
1387 * zap_page_range - remove user pages in a given range
1388 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1389 * @start: starting address of pages to zap
1da177e4
LT
1390 * @size: number of bytes to zap
1391 * @details: details of nonlinear truncation or shared cache invalidation
f5cc4eef
AV
1392 *
1393 * Caller must protect the VMA list
1da177e4 1394 */
7e027b14 1395void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1396 unsigned long size, struct zap_details *details)
1397{
1398 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1399 struct mmu_gather tlb;
7e027b14 1400 unsigned long end = start + size;
1da177e4 1401
1da177e4 1402 lru_add_drain();
d16dfc55 1403 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1404 update_hiwater_rss(mm);
7e027b14
LT
1405 mmu_notifier_invalidate_range_start(mm, start, end);
1406 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1407 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1408 mmu_notifier_invalidate_range_end(mm, start, end);
1409 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1410}
1411
f5cc4eef
AV
1412/**
1413 * zap_page_range_single - remove user pages in a given range
1414 * @vma: vm_area_struct holding the applicable pages
1415 * @address: starting address of pages to zap
1416 * @size: number of bytes to zap
1417 * @details: details of nonlinear truncation or shared cache invalidation
1418 *
1419 * The range must fit into one VMA.
1da177e4 1420 */
f5cc4eef 1421static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1422 unsigned long size, struct zap_details *details)
1423{
1424 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1425 struct mmu_gather tlb;
1da177e4 1426 unsigned long end = address + size;
1da177e4 1427
1da177e4 1428 lru_add_drain();
d16dfc55 1429 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1430 update_hiwater_rss(mm);
f5cc4eef 1431 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1432 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1433 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1434 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1435}
1436
c627f9cc
JS
1437/**
1438 * zap_vma_ptes - remove ptes mapping the vma
1439 * @vma: vm_area_struct holding ptes to be zapped
1440 * @address: starting address of pages to zap
1441 * @size: number of bytes to zap
1442 *
1443 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444 *
1445 * The entire address range must be fully contained within the vma.
1446 *
1447 * Returns 0 if successful.
1448 */
1449int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450 unsigned long size)
1451{
1452 if (address < vma->vm_start || address + size > vma->vm_end ||
1453 !(vma->vm_flags & VM_PFNMAP))
1454 return -1;
f5cc4eef 1455 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1456 return 0;
1457}
1458EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459
142762bd
JW
1460/**
1461 * follow_page - look up a page descriptor from a user-virtual address
1462 * @vma: vm_area_struct mapping @address
1463 * @address: virtual address to look up
1464 * @flags: flags modifying lookup behaviour
1465 *
1466 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1467 *
1468 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1469 * an error pointer if there is a mapping to something not represented
1470 * by a page descriptor (see also vm_normal_page()).
1da177e4 1471 */
6aab341e 1472struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1473 unsigned int flags)
1da177e4
LT
1474{
1475 pgd_t *pgd;
1476 pud_t *pud;
1477 pmd_t *pmd;
1478 pte_t *ptep, pte;
deceb6cd 1479 spinlock_t *ptl;
1da177e4 1480 struct page *page;
6aab341e 1481 struct mm_struct *mm = vma->vm_mm;
1da177e4 1482
deceb6cd
HD
1483 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1484 if (!IS_ERR(page)) {
1485 BUG_ON(flags & FOLL_GET);
1486 goto out;
1487 }
1da177e4 1488
deceb6cd 1489 page = NULL;
1da177e4
LT
1490 pgd = pgd_offset(mm, address);
1491 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1492 goto no_page_table;
1da177e4
LT
1493
1494 pud = pud_offset(pgd, address);
ceb86879 1495 if (pud_none(*pud))
deceb6cd 1496 goto no_page_table;
8a07651e 1497 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
ceb86879
AK
1498 BUG_ON(flags & FOLL_GET);
1499 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1500 goto out;
1501 }
1502 if (unlikely(pud_bad(*pud)))
1503 goto no_page_table;
1504
1da177e4 1505 pmd = pmd_offset(pud, address);
aeed5fce 1506 if (pmd_none(*pmd))
deceb6cd 1507 goto no_page_table;
71e3aac0 1508 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd
HD
1509 BUG_ON(flags & FOLL_GET);
1510 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1511 goto out;
deceb6cd 1512 }
71e3aac0 1513 if (pmd_trans_huge(*pmd)) {
500d65d4
AA
1514 if (flags & FOLL_SPLIT) {
1515 split_huge_page_pmd(mm, pmd);
1516 goto split_fallthrough;
1517 }
71e3aac0
AA
1518 spin_lock(&mm->page_table_lock);
1519 if (likely(pmd_trans_huge(*pmd))) {
1520 if (unlikely(pmd_trans_splitting(*pmd))) {
1521 spin_unlock(&mm->page_table_lock);
1522 wait_split_huge_page(vma->anon_vma, pmd);
1523 } else {
1524 page = follow_trans_huge_pmd(mm, address,
1525 pmd, flags);
1526 spin_unlock(&mm->page_table_lock);
1527 goto out;
1528 }
1529 } else
1530 spin_unlock(&mm->page_table_lock);
1531 /* fall through */
1532 }
500d65d4 1533split_fallthrough:
aeed5fce
HD
1534 if (unlikely(pmd_bad(*pmd)))
1535 goto no_page_table;
1536
deceb6cd 1537 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1538
1539 pte = *ptep;
deceb6cd 1540 if (!pte_present(pte))
89f5b7da 1541 goto no_page;
deceb6cd
HD
1542 if ((flags & FOLL_WRITE) && !pte_write(pte))
1543 goto unlock;
a13ea5b7 1544
6aab341e 1545 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1546 if (unlikely(!page)) {
1547 if ((flags & FOLL_DUMP) ||
62eede62 1548 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1549 goto bad_page;
1550 page = pte_page(pte);
1551 }
1da177e4 1552
deceb6cd 1553 if (flags & FOLL_GET)
70b50f94 1554 get_page_foll(page);
deceb6cd
HD
1555 if (flags & FOLL_TOUCH) {
1556 if ((flags & FOLL_WRITE) &&
1557 !pte_dirty(pte) && !PageDirty(page))
1558 set_page_dirty(page);
bd775c42
KM
1559 /*
1560 * pte_mkyoung() would be more correct here, but atomic care
1561 * is needed to avoid losing the dirty bit: it is easier to use
1562 * mark_page_accessed().
1563 */
deceb6cd
HD
1564 mark_page_accessed(page);
1565 }
a1fde08c 1566 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
110d74a9
ML
1567 /*
1568 * The preliminary mapping check is mainly to avoid the
1569 * pointless overhead of lock_page on the ZERO_PAGE
1570 * which might bounce very badly if there is contention.
1571 *
1572 * If the page is already locked, we don't need to
1573 * handle it now - vmscan will handle it later if and
1574 * when it attempts to reclaim the page.
1575 */
1576 if (page->mapping && trylock_page(page)) {
1577 lru_add_drain(); /* push cached pages to LRU */
1578 /*
1579 * Because we lock page here and migration is
1580 * blocked by the pte's page reference, we need
1581 * only check for file-cache page truncation.
1582 */
1583 if (page->mapping)
1584 mlock_vma_page(page);
1585 unlock_page(page);
1586 }
1587 }
deceb6cd
HD
1588unlock:
1589 pte_unmap_unlock(ptep, ptl);
1da177e4 1590out:
deceb6cd 1591 return page;
1da177e4 1592
89f5b7da
LT
1593bad_page:
1594 pte_unmap_unlock(ptep, ptl);
1595 return ERR_PTR(-EFAULT);
1596
1597no_page:
1598 pte_unmap_unlock(ptep, ptl);
1599 if (!pte_none(pte))
1600 return page;
8e4b9a60 1601
deceb6cd
HD
1602no_page_table:
1603 /*
1604 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1605 * has touched so far, we don't want to allocate unnecessary pages or
1606 * page tables. Return error instead of NULL to skip handle_mm_fault,
1607 * then get_dump_page() will return NULL to leave a hole in the dump.
1608 * But we can only make this optimization where a hole would surely
1609 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1610 */
8e4b9a60
HD
1611 if ((flags & FOLL_DUMP) &&
1612 (!vma->vm_ops || !vma->vm_ops->fault))
1613 return ERR_PTR(-EFAULT);
deceb6cd 1614 return page;
1da177e4
LT
1615}
1616
95042f9e
LT
1617static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1618{
a09a79f6
MP
1619 return stack_guard_page_start(vma, addr) ||
1620 stack_guard_page_end(vma, addr+PAGE_SIZE);
95042f9e
LT
1621}
1622
0014bd99
HY
1623/**
1624 * __get_user_pages() - pin user pages in memory
1625 * @tsk: task_struct of target task
1626 * @mm: mm_struct of target mm
1627 * @start: starting user address
1628 * @nr_pages: number of pages from start to pin
1629 * @gup_flags: flags modifying pin behaviour
1630 * @pages: array that receives pointers to the pages pinned.
1631 * Should be at least nr_pages long. Or NULL, if caller
1632 * only intends to ensure the pages are faulted in.
1633 * @vmas: array of pointers to vmas corresponding to each page.
1634 * Or NULL if the caller does not require them.
1635 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1636 *
1637 * Returns number of pages pinned. This may be fewer than the number
1638 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1639 * were pinned, returns -errno. Each page returned must be released
1640 * with a put_page() call when it is finished with. vmas will only
1641 * remain valid while mmap_sem is held.
1642 *
1643 * Must be called with mmap_sem held for read or write.
1644 *
1645 * __get_user_pages walks a process's page tables and takes a reference to
1646 * each struct page that each user address corresponds to at a given
1647 * instant. That is, it takes the page that would be accessed if a user
1648 * thread accesses the given user virtual address at that instant.
1649 *
1650 * This does not guarantee that the page exists in the user mappings when
1651 * __get_user_pages returns, and there may even be a completely different
1652 * page there in some cases (eg. if mmapped pagecache has been invalidated
1653 * and subsequently re faulted). However it does guarantee that the page
1654 * won't be freed completely. And mostly callers simply care that the page
1655 * contains data that was valid *at some point in time*. Typically, an IO
1656 * or similar operation cannot guarantee anything stronger anyway because
1657 * locks can't be held over the syscall boundary.
1658 *
1659 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1660 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1661 * appropriate) must be called after the page is finished with, and
1662 * before put_page is called.
1663 *
1664 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1665 * or mmap_sem contention, and if waiting is needed to pin all pages,
1666 * *@nonblocking will be set to 0.
1667 *
1668 * In most cases, get_user_pages or get_user_pages_fast should be used
1669 * instead of __get_user_pages. __get_user_pages should be used only if
1670 * you need some special @gup_flags.
1671 */
b291f000 1672int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1673 unsigned long start, int nr_pages, unsigned int gup_flags,
53a7706d
ML
1674 struct page **pages, struct vm_area_struct **vmas,
1675 int *nonblocking)
1da177e4
LT
1676{
1677 int i;
58fa879e 1678 unsigned long vm_flags;
1da177e4 1679
9d73777e 1680 if (nr_pages <= 0)
900cf086 1681 return 0;
58fa879e
HD
1682
1683 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1684
1da177e4
LT
1685 /*
1686 * Require read or write permissions.
58fa879e 1687 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1688 */
58fa879e
HD
1689 vm_flags = (gup_flags & FOLL_WRITE) ?
1690 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1691 vm_flags &= (gup_flags & FOLL_FORCE) ?
1692 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1693 i = 0;
1694
1695 do {
deceb6cd 1696 struct vm_area_struct *vma;
1da177e4
LT
1697
1698 vma = find_extend_vma(mm, start);
e7f22e20 1699 if (!vma && in_gate_area(mm, start)) {
1da177e4 1700 unsigned long pg = start & PAGE_MASK;
1da177e4
LT
1701 pgd_t *pgd;
1702 pud_t *pud;
1703 pmd_t *pmd;
1704 pte_t *pte;
b291f000
NP
1705
1706 /* user gate pages are read-only */
58fa879e 1707 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1708 return i ? : -EFAULT;
1709 if (pg > TASK_SIZE)
1710 pgd = pgd_offset_k(pg);
1711 else
1712 pgd = pgd_offset_gate(mm, pg);
1713 BUG_ON(pgd_none(*pgd));
1714 pud = pud_offset(pgd, pg);
1715 BUG_ON(pud_none(*pud));
1716 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1717 if (pmd_none(*pmd))
1718 return i ? : -EFAULT;
f66055ab 1719 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1720 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1721 if (pte_none(*pte)) {
1722 pte_unmap(pte);
1723 return i ? : -EFAULT;
1724 }
95042f9e 1725 vma = get_gate_vma(mm);
1da177e4 1726 if (pages) {
de51257a
HD
1727 struct page *page;
1728
95042f9e 1729 page = vm_normal_page(vma, start, *pte);
de51257a
HD
1730 if (!page) {
1731 if (!(gup_flags & FOLL_DUMP) &&
1732 is_zero_pfn(pte_pfn(*pte)))
1733 page = pte_page(*pte);
1734 else {
1735 pte_unmap(pte);
1736 return i ? : -EFAULT;
1737 }
1738 }
6aab341e 1739 pages[i] = page;
de51257a 1740 get_page(page);
1da177e4
LT
1741 }
1742 pte_unmap(pte);
95042f9e 1743 goto next_page;
1da177e4
LT
1744 }
1745
b291f000
NP
1746 if (!vma ||
1747 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1748 !(vm_flags & vma->vm_flags))
1da177e4
LT
1749 return i ? : -EFAULT;
1750
2a15efc9
HD
1751 if (is_vm_hugetlb_page(vma)) {
1752 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1753 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1754 continue;
1755 }
deceb6cd 1756
1da177e4 1757 do {
08ef4729 1758 struct page *page;
58fa879e 1759 unsigned int foll_flags = gup_flags;
1da177e4 1760
462e00cc 1761 /*
4779280d 1762 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1763 * pages and potentially allocating memory.
462e00cc 1764 */
1c3aff1c 1765 if (unlikely(fatal_signal_pending(current)))
4779280d 1766 return i ? i : -ERESTARTSYS;
462e00cc 1767
deceb6cd 1768 cond_resched();
6aab341e 1769 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1770 int ret;
53a7706d
ML
1771 unsigned int fault_flags = 0;
1772
a09a79f6
MP
1773 /* For mlock, just skip the stack guard page. */
1774 if (foll_flags & FOLL_MLOCK) {
1775 if (stack_guard_page(vma, start))
1776 goto next_page;
1777 }
53a7706d
ML
1778 if (foll_flags & FOLL_WRITE)
1779 fault_flags |= FAULT_FLAG_WRITE;
1780 if (nonblocking)
1781 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1782 if (foll_flags & FOLL_NOWAIT)
1783 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1784
d26ed650 1785 ret = handle_mm_fault(mm, vma, start,
53a7706d 1786 fault_flags);
d26ed650 1787
83c54070
NP
1788 if (ret & VM_FAULT_ERROR) {
1789 if (ret & VM_FAULT_OOM)
1790 return i ? i : -ENOMEM;
69ebb83e
HY
1791 if (ret & (VM_FAULT_HWPOISON |
1792 VM_FAULT_HWPOISON_LARGE)) {
1793 if (i)
1794 return i;
1795 else if (gup_flags & FOLL_HWPOISON)
1796 return -EHWPOISON;
1797 else
1798 return -EFAULT;
1799 }
1800 if (ret & VM_FAULT_SIGBUS)
83c54070
NP
1801 return i ? i : -EFAULT;
1802 BUG();
1803 }
e7f22e20
SW
1804
1805 if (tsk) {
1806 if (ret & VM_FAULT_MAJOR)
1807 tsk->maj_flt++;
1808 else
1809 tsk->min_flt++;
1810 }
83c54070 1811
53a7706d 1812 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1813 if (nonblocking)
1814 *nonblocking = 0;
53a7706d
ML
1815 return i;
1816 }
1817
a68d2ebc 1818 /*
83c54070
NP
1819 * The VM_FAULT_WRITE bit tells us that
1820 * do_wp_page has broken COW when necessary,
1821 * even if maybe_mkwrite decided not to set
1822 * pte_write. We can thus safely do subsequent
878b63ac
HD
1823 * page lookups as if they were reads. But only
1824 * do so when looping for pte_write is futile:
1825 * in some cases userspace may also be wanting
1826 * to write to the gotten user page, which a
1827 * read fault here might prevent (a readonly
1828 * page might get reCOWed by userspace write).
a68d2ebc 1829 */
878b63ac
HD
1830 if ((ret & VM_FAULT_WRITE) &&
1831 !(vma->vm_flags & VM_WRITE))
deceb6cd 1832 foll_flags &= ~FOLL_WRITE;
83c54070 1833
7f7bbbe5 1834 cond_resched();
1da177e4 1835 }
89f5b7da
LT
1836 if (IS_ERR(page))
1837 return i ? i : PTR_ERR(page);
1da177e4 1838 if (pages) {
08ef4729 1839 pages[i] = page;
03beb076 1840
a6f36be3 1841 flush_anon_page(vma, page, start);
08ef4729 1842 flush_dcache_page(page);
1da177e4 1843 }
95042f9e 1844next_page:
1da177e4
LT
1845 if (vmas)
1846 vmas[i] = vma;
1847 i++;
1848 start += PAGE_SIZE;
9d73777e
PZ
1849 nr_pages--;
1850 } while (nr_pages && start < vma->vm_end);
1851 } while (nr_pages);
1da177e4
LT
1852 return i;
1853}
0014bd99 1854EXPORT_SYMBOL(__get_user_pages);
b291f000 1855
2efaca92
BH
1856/*
1857 * fixup_user_fault() - manually resolve a user page fault
1858 * @tsk: the task_struct to use for page fault accounting, or
1859 * NULL if faults are not to be recorded.
1860 * @mm: mm_struct of target mm
1861 * @address: user address
1862 * @fault_flags:flags to pass down to handle_mm_fault()
1863 *
1864 * This is meant to be called in the specific scenario where for locking reasons
1865 * we try to access user memory in atomic context (within a pagefault_disable()
1866 * section), this returns -EFAULT, and we want to resolve the user fault before
1867 * trying again.
1868 *
1869 * Typically this is meant to be used by the futex code.
1870 *
1871 * The main difference with get_user_pages() is that this function will
1872 * unconditionally call handle_mm_fault() which will in turn perform all the
1873 * necessary SW fixup of the dirty and young bits in the PTE, while
1874 * handle_mm_fault() only guarantees to update these in the struct page.
1875 *
1876 * This is important for some architectures where those bits also gate the
1877 * access permission to the page because they are maintained in software. On
1878 * such architectures, gup() will not be enough to make a subsequent access
1879 * succeed.
1880 *
1881 * This should be called with the mm_sem held for read.
1882 */
1883int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1884 unsigned long address, unsigned int fault_flags)
1885{
1886 struct vm_area_struct *vma;
1887 int ret;
1888
1889 vma = find_extend_vma(mm, address);
1890 if (!vma || address < vma->vm_start)
1891 return -EFAULT;
1892
1893 ret = handle_mm_fault(mm, vma, address, fault_flags);
1894 if (ret & VM_FAULT_ERROR) {
1895 if (ret & VM_FAULT_OOM)
1896 return -ENOMEM;
1897 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1898 return -EHWPOISON;
1899 if (ret & VM_FAULT_SIGBUS)
1900 return -EFAULT;
1901 BUG();
1902 }
1903 if (tsk) {
1904 if (ret & VM_FAULT_MAJOR)
1905 tsk->maj_flt++;
1906 else
1907 tsk->min_flt++;
1908 }
1909 return 0;
1910}
1911
1912/*
d2bf6be8 1913 * get_user_pages() - pin user pages in memory
e7f22e20
SW
1914 * @tsk: the task_struct to use for page fault accounting, or
1915 * NULL if faults are not to be recorded.
d2bf6be8
NP
1916 * @mm: mm_struct of target mm
1917 * @start: starting user address
9d73777e 1918 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1919 * @write: whether pages will be written to by the caller
1920 * @force: whether to force write access even if user mapping is
1921 * readonly. This will result in the page being COWed even
1922 * in MAP_SHARED mappings. You do not want this.
1923 * @pages: array that receives pointers to the pages pinned.
1924 * Should be at least nr_pages long. Or NULL, if caller
1925 * only intends to ensure the pages are faulted in.
1926 * @vmas: array of pointers to vmas corresponding to each page.
1927 * Or NULL if the caller does not require them.
1928 *
1929 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1930 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1931 * were pinned, returns -errno. Each page returned must be released
1932 * with a put_page() call when it is finished with. vmas will only
1933 * remain valid while mmap_sem is held.
1934 *
1935 * Must be called with mmap_sem held for read or write.
1936 *
1937 * get_user_pages walks a process's page tables and takes a reference to
1938 * each struct page that each user address corresponds to at a given
1939 * instant. That is, it takes the page that would be accessed if a user
1940 * thread accesses the given user virtual address at that instant.
1941 *
1942 * This does not guarantee that the page exists in the user mappings when
1943 * get_user_pages returns, and there may even be a completely different
1944 * page there in some cases (eg. if mmapped pagecache has been invalidated
1945 * and subsequently re faulted). However it does guarantee that the page
1946 * won't be freed completely. And mostly callers simply care that the page
1947 * contains data that was valid *at some point in time*. Typically, an IO
1948 * or similar operation cannot guarantee anything stronger anyway because
1949 * locks can't be held over the syscall boundary.
1950 *
1951 * If write=0, the page must not be written to. If the page is written to,
1952 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1953 * after the page is finished with, and before put_page is called.
1954 *
1955 * get_user_pages is typically used for fewer-copy IO operations, to get a
1956 * handle on the memory by some means other than accesses via the user virtual
1957 * addresses. The pages may be submitted for DMA to devices or accessed via
1958 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1959 * use the correct cache flushing APIs.
1960 *
1961 * See also get_user_pages_fast, for performance critical applications.
1962 */
b291f000 1963int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1964 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1965 struct page **pages, struct vm_area_struct **vmas)
1966{
58fa879e 1967 int flags = FOLL_TOUCH;
b291f000 1968
58fa879e
HD
1969 if (pages)
1970 flags |= FOLL_GET;
b291f000 1971 if (write)
58fa879e 1972 flags |= FOLL_WRITE;
b291f000 1973 if (force)
58fa879e 1974 flags |= FOLL_FORCE;
b291f000 1975
53a7706d
ML
1976 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1977 NULL);
b291f000 1978}
1da177e4
LT
1979EXPORT_SYMBOL(get_user_pages);
1980
f3e8fccd
HD
1981/**
1982 * get_dump_page() - pin user page in memory while writing it to core dump
1983 * @addr: user address
1984 *
1985 * Returns struct page pointer of user page pinned for dump,
1986 * to be freed afterwards by page_cache_release() or put_page().
1987 *
1988 * Returns NULL on any kind of failure - a hole must then be inserted into
1989 * the corefile, to preserve alignment with its headers; and also returns
1990 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1991 * allowing a hole to be left in the corefile to save diskspace.
1992 *
1993 * Called without mmap_sem, but after all other threads have been killed.
1994 */
1995#ifdef CONFIG_ELF_CORE
1996struct page *get_dump_page(unsigned long addr)
1997{
1998 struct vm_area_struct *vma;
1999 struct page *page;
2000
2001 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
2002 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2003 NULL) < 1)
f3e8fccd 2004 return NULL;
f3e8fccd
HD
2005 flush_cache_page(vma, addr, page_to_pfn(page));
2006 return page;
2007}
2008#endif /* CONFIG_ELF_CORE */
2009
25ca1d6c 2010pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 2011 spinlock_t **ptl)
c9cfcddf
LT
2012{
2013 pgd_t * pgd = pgd_offset(mm, addr);
2014 pud_t * pud = pud_alloc(mm, pgd, addr);
2015 if (pud) {
49c91fb0 2016 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
2017 if (pmd) {
2018 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 2019 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 2020 }
c9cfcddf
LT
2021 }
2022 return NULL;
2023}
2024
238f58d8
LT
2025/*
2026 * This is the old fallback for page remapping.
2027 *
2028 * For historical reasons, it only allows reserved pages. Only
2029 * old drivers should use this, and they needed to mark their
2030 * pages reserved for the old functions anyway.
2031 */
423bad60
NP
2032static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2033 struct page *page, pgprot_t prot)
238f58d8 2034{
423bad60 2035 struct mm_struct *mm = vma->vm_mm;
238f58d8 2036 int retval;
c9cfcddf 2037 pte_t *pte;
8a9f3ccd
BS
2038 spinlock_t *ptl;
2039
238f58d8 2040 retval = -EINVAL;
a145dd41 2041 if (PageAnon(page))
5b4e655e 2042 goto out;
238f58d8
LT
2043 retval = -ENOMEM;
2044 flush_dcache_page(page);
c9cfcddf 2045 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 2046 if (!pte)
5b4e655e 2047 goto out;
238f58d8
LT
2048 retval = -EBUSY;
2049 if (!pte_none(*pte))
2050 goto out_unlock;
2051
2052 /* Ok, finally just insert the thing.. */
2053 get_page(page);
34e55232 2054 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
2055 page_add_file_rmap(page);
2056 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2057
2058 retval = 0;
8a9f3ccd
BS
2059 pte_unmap_unlock(pte, ptl);
2060 return retval;
238f58d8
LT
2061out_unlock:
2062 pte_unmap_unlock(pte, ptl);
2063out:
2064 return retval;
2065}
2066
bfa5bf6d
REB
2067/**
2068 * vm_insert_page - insert single page into user vma
2069 * @vma: user vma to map to
2070 * @addr: target user address of this page
2071 * @page: source kernel page
2072 *
a145dd41
LT
2073 * This allows drivers to insert individual pages they've allocated
2074 * into a user vma.
2075 *
2076 * The page has to be a nice clean _individual_ kernel allocation.
2077 * If you allocate a compound page, you need to have marked it as
2078 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2079 * (see split_page()).
a145dd41
LT
2080 *
2081 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2082 * took an arbitrary page protection parameter. This doesn't allow
2083 * that. Your vma protection will have to be set up correctly, which
2084 * means that if you want a shared writable mapping, you'd better
2085 * ask for a shared writable mapping!
2086 *
2087 * The page does not need to be reserved.
2088 */
423bad60
NP
2089int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2090 struct page *page)
a145dd41
LT
2091{
2092 if (addr < vma->vm_start || addr >= vma->vm_end)
2093 return -EFAULT;
2094 if (!page_count(page))
2095 return -EINVAL;
4d7672b4 2096 vma->vm_flags |= VM_INSERTPAGE;
423bad60 2097 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2098}
e3c3374f 2099EXPORT_SYMBOL(vm_insert_page);
a145dd41 2100
423bad60
NP
2101static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2102 unsigned long pfn, pgprot_t prot)
2103{
2104 struct mm_struct *mm = vma->vm_mm;
2105 int retval;
2106 pte_t *pte, entry;
2107 spinlock_t *ptl;
2108
2109 retval = -ENOMEM;
2110 pte = get_locked_pte(mm, addr, &ptl);
2111 if (!pte)
2112 goto out;
2113 retval = -EBUSY;
2114 if (!pte_none(*pte))
2115 goto out_unlock;
2116
2117 /* Ok, finally just insert the thing.. */
2118 entry = pte_mkspecial(pfn_pte(pfn, prot));
2119 set_pte_at(mm, addr, pte, entry);
4b3073e1 2120 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
2121
2122 retval = 0;
2123out_unlock:
2124 pte_unmap_unlock(pte, ptl);
2125out:
2126 return retval;
2127}
2128
e0dc0d8f
NP
2129/**
2130 * vm_insert_pfn - insert single pfn into user vma
2131 * @vma: user vma to map to
2132 * @addr: target user address of this page
2133 * @pfn: source kernel pfn
2134 *
2135 * Similar to vm_inert_page, this allows drivers to insert individual pages
2136 * they've allocated into a user vma. Same comments apply.
2137 *
2138 * This function should only be called from a vm_ops->fault handler, and
2139 * in that case the handler should return NULL.
0d71d10a
NP
2140 *
2141 * vma cannot be a COW mapping.
2142 *
2143 * As this is called only for pages that do not currently exist, we
2144 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
2145 */
2146int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 2147 unsigned long pfn)
e0dc0d8f 2148{
2ab64037 2149 int ret;
e4b866ed 2150 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
2151 /*
2152 * Technically, architectures with pte_special can avoid all these
2153 * restrictions (same for remap_pfn_range). However we would like
2154 * consistency in testing and feature parity among all, so we should
2155 * try to keep these invariants in place for everybody.
2156 */
b379d790
JH
2157 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2158 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2159 (VM_PFNMAP|VM_MIXEDMAP));
2160 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2161 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 2162
423bad60
NP
2163 if (addr < vma->vm_start || addr >= vma->vm_end)
2164 return -EFAULT;
5180da41 2165 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 2166 return -EINVAL;
2167
e4b866ed 2168 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 2169
2ab64037 2170 return ret;
423bad60
NP
2171}
2172EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 2173
423bad60
NP
2174int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2175 unsigned long pfn)
2176{
2177 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 2178
423bad60
NP
2179 if (addr < vma->vm_start || addr >= vma->vm_end)
2180 return -EFAULT;
e0dc0d8f 2181
423bad60
NP
2182 /*
2183 * If we don't have pte special, then we have to use the pfn_valid()
2184 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2185 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2186 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2187 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
2188 */
2189 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2190 struct page *page;
2191
2192 page = pfn_to_page(pfn);
2193 return insert_page(vma, addr, page, vma->vm_page_prot);
2194 }
2195 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 2196}
423bad60 2197EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 2198
1da177e4
LT
2199/*
2200 * maps a range of physical memory into the requested pages. the old
2201 * mappings are removed. any references to nonexistent pages results
2202 * in null mappings (currently treated as "copy-on-access")
2203 */
2204static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2205 unsigned long addr, unsigned long end,
2206 unsigned long pfn, pgprot_t prot)
2207{
2208 pte_t *pte;
c74df32c 2209 spinlock_t *ptl;
1da177e4 2210
c74df32c 2211 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2212 if (!pte)
2213 return -ENOMEM;
6606c3e0 2214 arch_enter_lazy_mmu_mode();
1da177e4
LT
2215 do {
2216 BUG_ON(!pte_none(*pte));
7e675137 2217 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2218 pfn++;
2219 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2220 arch_leave_lazy_mmu_mode();
c74df32c 2221 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
2222 return 0;
2223}
2224
2225static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2226 unsigned long addr, unsigned long end,
2227 unsigned long pfn, pgprot_t prot)
2228{
2229 pmd_t *pmd;
2230 unsigned long next;
2231
2232 pfn -= addr >> PAGE_SHIFT;
2233 pmd = pmd_alloc(mm, pud, addr);
2234 if (!pmd)
2235 return -ENOMEM;
f66055ab 2236 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2237 do {
2238 next = pmd_addr_end(addr, end);
2239 if (remap_pte_range(mm, pmd, addr, next,
2240 pfn + (addr >> PAGE_SHIFT), prot))
2241 return -ENOMEM;
2242 } while (pmd++, addr = next, addr != end);
2243 return 0;
2244}
2245
2246static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2247 unsigned long addr, unsigned long end,
2248 unsigned long pfn, pgprot_t prot)
2249{
2250 pud_t *pud;
2251 unsigned long next;
2252
2253 pfn -= addr >> PAGE_SHIFT;
2254 pud = pud_alloc(mm, pgd, addr);
2255 if (!pud)
2256 return -ENOMEM;
2257 do {
2258 next = pud_addr_end(addr, end);
2259 if (remap_pmd_range(mm, pud, addr, next,
2260 pfn + (addr >> PAGE_SHIFT), prot))
2261 return -ENOMEM;
2262 } while (pud++, addr = next, addr != end);
2263 return 0;
2264}
2265
bfa5bf6d
REB
2266/**
2267 * remap_pfn_range - remap kernel memory to userspace
2268 * @vma: user vma to map to
2269 * @addr: target user address to start at
2270 * @pfn: physical address of kernel memory
2271 * @size: size of map area
2272 * @prot: page protection flags for this mapping
2273 *
2274 * Note: this is only safe if the mm semaphore is held when called.
2275 */
1da177e4
LT
2276int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2277 unsigned long pfn, unsigned long size, pgprot_t prot)
2278{
2279 pgd_t *pgd;
2280 unsigned long next;
2d15cab8 2281 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2282 struct mm_struct *mm = vma->vm_mm;
2283 int err;
2284
2285 /*
2286 * Physically remapped pages are special. Tell the
2287 * rest of the world about it:
2288 * VM_IO tells people not to look at these pages
2289 * (accesses can have side effects).
0b14c179
HD
2290 * VM_RESERVED is specified all over the place, because
2291 * in 2.4 it kept swapout's vma scan off this vma; but
2292 * in 2.6 the LRU scan won't even find its pages, so this
2293 * flag means no more than count its pages in reserved_vm,
2294 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
2295 * VM_PFNMAP tells the core MM that the base pages are just
2296 * raw PFN mappings, and do not have a "struct page" associated
2297 * with them.
fb155c16
LT
2298 *
2299 * There's a horrible special case to handle copy-on-write
2300 * behaviour that some programs depend on. We mark the "original"
2301 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2302 * See vm_normal_page() for details.
1da177e4 2303 */
b3b9c293
KK
2304 if (is_cow_mapping(vma->vm_flags)) {
2305 if (addr != vma->vm_start || end != vma->vm_end)
2306 return -EINVAL;
fb155c16 2307 vma->vm_pgoff = pfn;
b3b9c293
KK
2308 }
2309
2310 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2311 if (err)
3c8bb73a 2312 return -EINVAL;
fb155c16 2313
6aab341e 2314 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4
LT
2315
2316 BUG_ON(addr >= end);
2317 pfn -= addr >> PAGE_SHIFT;
2318 pgd = pgd_offset(mm, addr);
2319 flush_cache_range(vma, addr, end);
1da177e4
LT
2320 do {
2321 next = pgd_addr_end(addr, end);
2322 err = remap_pud_range(mm, pgd, addr, next,
2323 pfn + (addr >> PAGE_SHIFT), prot);
2324 if (err)
2325 break;
2326 } while (pgd++, addr = next, addr != end);
2ab64037 2327
2328 if (err)
5180da41 2329 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 2330
1da177e4
LT
2331 return err;
2332}
2333EXPORT_SYMBOL(remap_pfn_range);
2334
aee16b3c
JF
2335static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2336 unsigned long addr, unsigned long end,
2337 pte_fn_t fn, void *data)
2338{
2339 pte_t *pte;
2340 int err;
2f569afd 2341 pgtable_t token;
94909914 2342 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2343
2344 pte = (mm == &init_mm) ?
2345 pte_alloc_kernel(pmd, addr) :
2346 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2347 if (!pte)
2348 return -ENOMEM;
2349
2350 BUG_ON(pmd_huge(*pmd));
2351
38e0edb1
JF
2352 arch_enter_lazy_mmu_mode();
2353
2f569afd 2354 token = pmd_pgtable(*pmd);
aee16b3c
JF
2355
2356 do {
c36987e2 2357 err = fn(pte++, token, addr, data);
aee16b3c
JF
2358 if (err)
2359 break;
c36987e2 2360 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2361
38e0edb1
JF
2362 arch_leave_lazy_mmu_mode();
2363
aee16b3c
JF
2364 if (mm != &init_mm)
2365 pte_unmap_unlock(pte-1, ptl);
2366 return err;
2367}
2368
2369static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2370 unsigned long addr, unsigned long end,
2371 pte_fn_t fn, void *data)
2372{
2373 pmd_t *pmd;
2374 unsigned long next;
2375 int err;
2376
ceb86879
AK
2377 BUG_ON(pud_huge(*pud));
2378
aee16b3c
JF
2379 pmd = pmd_alloc(mm, pud, addr);
2380 if (!pmd)
2381 return -ENOMEM;
2382 do {
2383 next = pmd_addr_end(addr, end);
2384 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2385 if (err)
2386 break;
2387 } while (pmd++, addr = next, addr != end);
2388 return err;
2389}
2390
2391static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2392 unsigned long addr, unsigned long end,
2393 pte_fn_t fn, void *data)
2394{
2395 pud_t *pud;
2396 unsigned long next;
2397 int err;
2398
2399 pud = pud_alloc(mm, pgd, addr);
2400 if (!pud)
2401 return -ENOMEM;
2402 do {
2403 next = pud_addr_end(addr, end);
2404 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2405 if (err)
2406 break;
2407 } while (pud++, addr = next, addr != end);
2408 return err;
2409}
2410
2411/*
2412 * Scan a region of virtual memory, filling in page tables as necessary
2413 * and calling a provided function on each leaf page table.
2414 */
2415int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2416 unsigned long size, pte_fn_t fn, void *data)
2417{
2418 pgd_t *pgd;
2419 unsigned long next;
57250a5b 2420 unsigned long end = addr + size;
aee16b3c
JF
2421 int err;
2422
2423 BUG_ON(addr >= end);
2424 pgd = pgd_offset(mm, addr);
2425 do {
2426 next = pgd_addr_end(addr, end);
2427 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2428 if (err)
2429 break;
2430 } while (pgd++, addr = next, addr != end);
57250a5b 2431
aee16b3c
JF
2432 return err;
2433}
2434EXPORT_SYMBOL_GPL(apply_to_page_range);
2435
8f4e2101
HD
2436/*
2437 * handle_pte_fault chooses page fault handler according to an entry
2438 * which was read non-atomically. Before making any commitment, on
2439 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2440 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2441 * must check under lock before unmapping the pte and proceeding
2442 * (but do_wp_page is only called after already making such a check;
a335b2e1 2443 * and do_anonymous_page can safely check later on).
8f4e2101 2444 */
4c21e2f2 2445static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2446 pte_t *page_table, pte_t orig_pte)
2447{
2448 int same = 1;
2449#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2450 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2451 spinlock_t *ptl = pte_lockptr(mm, pmd);
2452 spin_lock(ptl);
8f4e2101 2453 same = pte_same(*page_table, orig_pte);
4c21e2f2 2454 spin_unlock(ptl);
8f4e2101
HD
2455 }
2456#endif
2457 pte_unmap(page_table);
2458 return same;
2459}
2460
9de455b2 2461static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2462{
2463 /*
2464 * If the source page was a PFN mapping, we don't have
2465 * a "struct page" for it. We do a best-effort copy by
2466 * just copying from the original user address. If that
2467 * fails, we just zero-fill it. Live with it.
2468 */
2469 if (unlikely(!src)) {
9b04c5fe 2470 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2471 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2472
2473 /*
2474 * This really shouldn't fail, because the page is there
2475 * in the page tables. But it might just be unreadable,
2476 * in which case we just give up and fill the result with
2477 * zeroes.
2478 */
2479 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2480 clear_page(kaddr);
9b04c5fe 2481 kunmap_atomic(kaddr);
c4ec7b0d 2482 flush_dcache_page(dst);
0ed361de
NP
2483 } else
2484 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2485}
2486
1da177e4
LT
2487/*
2488 * This routine handles present pages, when users try to write
2489 * to a shared page. It is done by copying the page to a new address
2490 * and decrementing the shared-page counter for the old page.
2491 *
1da177e4
LT
2492 * Note that this routine assumes that the protection checks have been
2493 * done by the caller (the low-level page fault routine in most cases).
2494 * Thus we can safely just mark it writable once we've done any necessary
2495 * COW.
2496 *
2497 * We also mark the page dirty at this point even though the page will
2498 * change only once the write actually happens. This avoids a few races,
2499 * and potentially makes it more efficient.
2500 *
8f4e2101
HD
2501 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2502 * but allow concurrent faults), with pte both mapped and locked.
2503 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2504 */
65500d23
HD
2505static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2506 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2507 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2508 __releases(ptl)
1da177e4 2509{
e5bbe4df 2510 struct page *old_page, *new_page;
1da177e4 2511 pte_t entry;
b009c024 2512 int ret = 0;
a200ee18 2513 int page_mkwrite = 0;
d08b3851 2514 struct page *dirty_page = NULL;
1da177e4 2515
6aab341e 2516 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2517 if (!old_page) {
2518 /*
2519 * VM_MIXEDMAP !pfn_valid() case
2520 *
2521 * We should not cow pages in a shared writeable mapping.
2522 * Just mark the pages writable as we can't do any dirty
2523 * accounting on raw pfn maps.
2524 */
2525 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2526 (VM_WRITE|VM_SHARED))
2527 goto reuse;
6aab341e 2528 goto gotten;
251b97f5 2529 }
1da177e4 2530
d08b3851 2531 /*
ee6a6457
PZ
2532 * Take out anonymous pages first, anonymous shared vmas are
2533 * not dirty accountable.
d08b3851 2534 */
9a840895 2535 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2536 if (!trylock_page(old_page)) {
2537 page_cache_get(old_page);
2538 pte_unmap_unlock(page_table, ptl);
2539 lock_page(old_page);
2540 page_table = pte_offset_map_lock(mm, pmd, address,
2541 &ptl);
2542 if (!pte_same(*page_table, orig_pte)) {
2543 unlock_page(old_page);
ab967d86
HD
2544 goto unlock;
2545 }
2546 page_cache_release(old_page);
ee6a6457 2547 }
b009c024 2548 if (reuse_swap_page(old_page)) {
c44b6743
RR
2549 /*
2550 * The page is all ours. Move it to our anon_vma so
2551 * the rmap code will not search our parent or siblings.
2552 * Protected against the rmap code by the page lock.
2553 */
2554 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2555 unlock_page(old_page);
2556 goto reuse;
2557 }
ab967d86 2558 unlock_page(old_page);
ee6a6457 2559 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2560 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2561 /*
2562 * Only catch write-faults on shared writable pages,
2563 * read-only shared pages can get COWed by
2564 * get_user_pages(.write=1, .force=1).
2565 */
9637a5ef 2566 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2567 struct vm_fault vmf;
2568 int tmp;
2569
2570 vmf.virtual_address = (void __user *)(address &
2571 PAGE_MASK);
2572 vmf.pgoff = old_page->index;
2573 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2574 vmf.page = old_page;
2575
9637a5ef
DH
2576 /*
2577 * Notify the address space that the page is about to
2578 * become writable so that it can prohibit this or wait
2579 * for the page to get into an appropriate state.
2580 *
2581 * We do this without the lock held, so that it can
2582 * sleep if it needs to.
2583 */
2584 page_cache_get(old_page);
2585 pte_unmap_unlock(page_table, ptl);
2586
c2ec175c
NP
2587 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2588 if (unlikely(tmp &
2589 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2590 ret = tmp;
9637a5ef 2591 goto unwritable_page;
c2ec175c 2592 }
b827e496
NP
2593 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2594 lock_page(old_page);
2595 if (!old_page->mapping) {
2596 ret = 0; /* retry the fault */
2597 unlock_page(old_page);
2598 goto unwritable_page;
2599 }
2600 } else
2601 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2602
9637a5ef
DH
2603 /*
2604 * Since we dropped the lock we need to revalidate
2605 * the PTE as someone else may have changed it. If
2606 * they did, we just return, as we can count on the
2607 * MMU to tell us if they didn't also make it writable.
2608 */
2609 page_table = pte_offset_map_lock(mm, pmd, address,
2610 &ptl);
b827e496
NP
2611 if (!pte_same(*page_table, orig_pte)) {
2612 unlock_page(old_page);
9637a5ef 2613 goto unlock;
b827e496 2614 }
a200ee18
PZ
2615
2616 page_mkwrite = 1;
1da177e4 2617 }
d08b3851
PZ
2618 dirty_page = old_page;
2619 get_page(dirty_page);
9637a5ef 2620
251b97f5 2621reuse:
9637a5ef
DH
2622 flush_cache_page(vma, address, pte_pfn(orig_pte));
2623 entry = pte_mkyoung(orig_pte);
2624 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2625 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2626 update_mmu_cache(vma, address, page_table);
72ddc8f7 2627 pte_unmap_unlock(page_table, ptl);
9637a5ef 2628 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2629
2630 if (!dirty_page)
2631 return ret;
2632
2633 /*
2634 * Yes, Virginia, this is actually required to prevent a race
2635 * with clear_page_dirty_for_io() from clearing the page dirty
2636 * bit after it clear all dirty ptes, but before a racing
2637 * do_wp_page installs a dirty pte.
2638 *
a335b2e1 2639 * __do_fault is protected similarly.
72ddc8f7
ML
2640 */
2641 if (!page_mkwrite) {
2642 wait_on_page_locked(dirty_page);
2643 set_page_dirty_balance(dirty_page, page_mkwrite);
41c4d25f
JK
2644 /* file_update_time outside page_lock */
2645 if (vma->vm_file)
2646 file_update_time(vma->vm_file);
72ddc8f7
ML
2647 }
2648 put_page(dirty_page);
2649 if (page_mkwrite) {
2650 struct address_space *mapping = dirty_page->mapping;
2651
2652 set_page_dirty(dirty_page);
2653 unlock_page(dirty_page);
2654 page_cache_release(dirty_page);
2655 if (mapping) {
2656 /*
2657 * Some device drivers do not set page.mapping
2658 * but still dirty their pages
2659 */
2660 balance_dirty_pages_ratelimited(mapping);
2661 }
2662 }
2663
72ddc8f7 2664 return ret;
1da177e4 2665 }
1da177e4
LT
2666
2667 /*
2668 * Ok, we need to copy. Oh, well..
2669 */
b5810039 2670 page_cache_get(old_page);
920fc356 2671gotten:
8f4e2101 2672 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2673
2674 if (unlikely(anon_vma_prepare(vma)))
65500d23 2675 goto oom;
a13ea5b7 2676
62eede62 2677 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2678 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2679 if (!new_page)
2680 goto oom;
2681 } else {
2682 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2683 if (!new_page)
2684 goto oom;
2685 cow_user_page(new_page, old_page, address, vma);
2686 }
2687 __SetPageUptodate(new_page);
2688
2c26fdd7 2689 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2690 goto oom_free_new;
2691
1da177e4
LT
2692 /*
2693 * Re-check the pte - we dropped the lock
2694 */
8f4e2101 2695 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2696 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2697 if (old_page) {
920fc356 2698 if (!PageAnon(old_page)) {
34e55232
KH
2699 dec_mm_counter_fast(mm, MM_FILEPAGES);
2700 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2701 }
2702 } else
34e55232 2703 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2704 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2705 entry = mk_pte(new_page, vma->vm_page_prot);
2706 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2707 /*
2708 * Clear the pte entry and flush it first, before updating the
2709 * pte with the new entry. This will avoid a race condition
2710 * seen in the presence of one thread doing SMC and another
2711 * thread doing COW.
2712 */
828502d3 2713 ptep_clear_flush(vma, address, page_table);
9617d95e 2714 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2715 /*
2716 * We call the notify macro here because, when using secondary
2717 * mmu page tables (such as kvm shadow page tables), we want the
2718 * new page to be mapped directly into the secondary page table.
2719 */
2720 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2721 update_mmu_cache(vma, address, page_table);
945754a1
NP
2722 if (old_page) {
2723 /*
2724 * Only after switching the pte to the new page may
2725 * we remove the mapcount here. Otherwise another
2726 * process may come and find the rmap count decremented
2727 * before the pte is switched to the new page, and
2728 * "reuse" the old page writing into it while our pte
2729 * here still points into it and can be read by other
2730 * threads.
2731 *
2732 * The critical issue is to order this
2733 * page_remove_rmap with the ptp_clear_flush above.
2734 * Those stores are ordered by (if nothing else,)
2735 * the barrier present in the atomic_add_negative
2736 * in page_remove_rmap.
2737 *
2738 * Then the TLB flush in ptep_clear_flush ensures that
2739 * no process can access the old page before the
2740 * decremented mapcount is visible. And the old page
2741 * cannot be reused until after the decremented
2742 * mapcount is visible. So transitively, TLBs to
2743 * old page will be flushed before it can be reused.
2744 */
edc315fd 2745 page_remove_rmap(old_page);
945754a1
NP
2746 }
2747
1da177e4
LT
2748 /* Free the old page.. */
2749 new_page = old_page;
f33ea7f4 2750 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2751 } else
2752 mem_cgroup_uncharge_page(new_page);
2753
920fc356
HD
2754 if (new_page)
2755 page_cache_release(new_page);
65500d23 2756unlock:
8f4e2101 2757 pte_unmap_unlock(page_table, ptl);
e15f8c01
ML
2758 if (old_page) {
2759 /*
2760 * Don't let another task, with possibly unlocked vma,
2761 * keep the mlocked page.
2762 */
2763 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2764 lock_page(old_page); /* LRU manipulation */
2765 munlock_vma_page(old_page);
2766 unlock_page(old_page);
2767 }
2768 page_cache_release(old_page);
2769 }
f33ea7f4 2770 return ret;
8a9f3ccd 2771oom_free_new:
6dbf6d3b 2772 page_cache_release(new_page);
65500d23 2773oom:
b827e496
NP
2774 if (old_page) {
2775 if (page_mkwrite) {
2776 unlock_page(old_page);
2777 page_cache_release(old_page);
2778 }
920fc356 2779 page_cache_release(old_page);
b827e496 2780 }
1da177e4 2781 return VM_FAULT_OOM;
9637a5ef
DH
2782
2783unwritable_page:
2784 page_cache_release(old_page);
c2ec175c 2785 return ret;
1da177e4
LT
2786}
2787
97a89413 2788static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2789 unsigned long start_addr, unsigned long end_addr,
2790 struct zap_details *details)
2791{
f5cc4eef 2792 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2793}
2794
2795static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2796 struct zap_details *details)
2797{
2798 struct vm_area_struct *vma;
2799 struct prio_tree_iter iter;
2800 pgoff_t vba, vea, zba, zea;
2801
1da177e4
LT
2802 vma_prio_tree_foreach(vma, &iter, root,
2803 details->first_index, details->last_index) {
1da177e4
LT
2804
2805 vba = vma->vm_pgoff;
2806 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2807 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2808 zba = details->first_index;
2809 if (zba < vba)
2810 zba = vba;
2811 zea = details->last_index;
2812 if (zea > vea)
2813 zea = vea;
2814
97a89413 2815 unmap_mapping_range_vma(vma,
1da177e4
LT
2816 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2817 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2818 details);
1da177e4
LT
2819 }
2820}
2821
2822static inline void unmap_mapping_range_list(struct list_head *head,
2823 struct zap_details *details)
2824{
2825 struct vm_area_struct *vma;
2826
2827 /*
2828 * In nonlinear VMAs there is no correspondence between virtual address
2829 * offset and file offset. So we must perform an exhaustive search
2830 * across *all* the pages in each nonlinear VMA, not just the pages
2831 * whose virtual address lies outside the file truncation point.
2832 */
1da177e4 2833 list_for_each_entry(vma, head, shared.vm_set.list) {
1da177e4 2834 details->nonlinear_vma = vma;
97a89413 2835 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2836 }
2837}
2838
2839/**
72fd4a35 2840 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2841 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2842 * @holebegin: byte in first page to unmap, relative to the start of
2843 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2844 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2845 * must keep the partial page. In contrast, we must get rid of
2846 * partial pages.
2847 * @holelen: size of prospective hole in bytes. This will be rounded
2848 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2849 * end of the file.
2850 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2851 * but 0 when invalidating pagecache, don't throw away private data.
2852 */
2853void unmap_mapping_range(struct address_space *mapping,
2854 loff_t const holebegin, loff_t const holelen, int even_cows)
2855{
2856 struct zap_details details;
2857 pgoff_t hba = holebegin >> PAGE_SHIFT;
2858 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2859
2860 /* Check for overflow. */
2861 if (sizeof(holelen) > sizeof(hlen)) {
2862 long long holeend =
2863 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2864 if (holeend & ~(long long)ULONG_MAX)
2865 hlen = ULONG_MAX - hba + 1;
2866 }
2867
2868 details.check_mapping = even_cows? NULL: mapping;
2869 details.nonlinear_vma = NULL;
2870 details.first_index = hba;
2871 details.last_index = hba + hlen - 1;
2872 if (details.last_index < details.first_index)
2873 details.last_index = ULONG_MAX;
1da177e4 2874
1da177e4 2875
3d48ae45 2876 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
2877 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2878 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2879 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2880 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2881 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2882}
2883EXPORT_SYMBOL(unmap_mapping_range);
2884
1da177e4 2885/*
8f4e2101
HD
2886 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2887 * but allow concurrent faults), and pte mapped but not yet locked.
2888 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2889 */
65500d23
HD
2890static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2891 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2892 unsigned int flags, pte_t orig_pte)
1da177e4 2893{
8f4e2101 2894 spinlock_t *ptl;
4969c119 2895 struct page *page, *swapcache = NULL;
65500d23 2896 swp_entry_t entry;
1da177e4 2897 pte_t pte;
d065bd81 2898 int locked;
56039efa 2899 struct mem_cgroup *ptr;
ad8c2ee8 2900 int exclusive = 0;
83c54070 2901 int ret = 0;
1da177e4 2902
4c21e2f2 2903 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2904 goto out;
65500d23
HD
2905
2906 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2907 if (unlikely(non_swap_entry(entry))) {
2908 if (is_migration_entry(entry)) {
2909 migration_entry_wait(mm, pmd, address);
2910 } else if (is_hwpoison_entry(entry)) {
2911 ret = VM_FAULT_HWPOISON;
2912 } else {
2913 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2914 ret = VM_FAULT_SIGBUS;
d1737fdb 2915 }
0697212a
CL
2916 goto out;
2917 }
0ff92245 2918 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2919 page = lookup_swap_cache(entry);
2920 if (!page) {
02098fea
HD
2921 page = swapin_readahead(entry,
2922 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2923 if (!page) {
2924 /*
8f4e2101
HD
2925 * Back out if somebody else faulted in this pte
2926 * while we released the pte lock.
1da177e4 2927 */
8f4e2101 2928 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2929 if (likely(pte_same(*page_table, orig_pte)))
2930 ret = VM_FAULT_OOM;
0ff92245 2931 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2932 goto unlock;
1da177e4
LT
2933 }
2934
2935 /* Had to read the page from swap area: Major fault */
2936 ret = VM_FAULT_MAJOR;
f8891e5e 2937 count_vm_event(PGMAJFAULT);
456f998e 2938 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2939 } else if (PageHWPoison(page)) {
71f72525
WF
2940 /*
2941 * hwpoisoned dirty swapcache pages are kept for killing
2942 * owner processes (which may be unknown at hwpoison time)
2943 */
d1737fdb
AK
2944 ret = VM_FAULT_HWPOISON;
2945 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2946 goto out_release;
1da177e4
LT
2947 }
2948
d065bd81 2949 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2950
073e587e 2951 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2952 if (!locked) {
2953 ret |= VM_FAULT_RETRY;
2954 goto out_release;
2955 }
073e587e 2956
4969c119 2957 /*
31c4a3d3
HD
2958 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2959 * release the swapcache from under us. The page pin, and pte_same
2960 * test below, are not enough to exclude that. Even if it is still
2961 * swapcache, we need to check that the page's swap has not changed.
4969c119 2962 */
31c4a3d3 2963 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2964 goto out_page;
2965
2966 if (ksm_might_need_to_copy(page, vma, address)) {
2967 swapcache = page;
2968 page = ksm_does_need_to_copy(page, vma, address);
2969
2970 if (unlikely(!page)) {
2971 ret = VM_FAULT_OOM;
2972 page = swapcache;
2973 swapcache = NULL;
2974 goto out_page;
2975 }
5ad64688
HD
2976 }
2977
2c26fdd7 2978 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2979 ret = VM_FAULT_OOM;
bc43f75c 2980 goto out_page;
8a9f3ccd
BS
2981 }
2982
1da177e4 2983 /*
8f4e2101 2984 * Back out if somebody else already faulted in this pte.
1da177e4 2985 */
8f4e2101 2986 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2987 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2988 goto out_nomap;
b8107480
KK
2989
2990 if (unlikely(!PageUptodate(page))) {
2991 ret = VM_FAULT_SIGBUS;
2992 goto out_nomap;
1da177e4
LT
2993 }
2994
8c7c6e34
KH
2995 /*
2996 * The page isn't present yet, go ahead with the fault.
2997 *
2998 * Be careful about the sequence of operations here.
2999 * To get its accounting right, reuse_swap_page() must be called
3000 * while the page is counted on swap but not yet in mapcount i.e.
3001 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3002 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
3003 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3004 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3005 * in page->private. In this case, a record in swap_cgroup is silently
3006 * discarded at swap_free().
8c7c6e34 3007 */
1da177e4 3008
34e55232 3009 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 3010 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 3011 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 3012 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 3013 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 3014 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3015 ret |= VM_FAULT_WRITE;
ad8c2ee8 3016 exclusive = 1;
1da177e4 3017 }
1da177e4
LT
3018 flush_icache_page(vma, page);
3019 set_pte_at(mm, address, page_table, pte);
ad8c2ee8 3020 do_page_add_anon_rmap(page, vma, address, exclusive);
03f3c433
KH
3021 /* It's better to call commit-charge after rmap is established */
3022 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 3023
c475a8ab 3024 swap_free(entry);
b291f000 3025 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3026 try_to_free_swap(page);
c475a8ab 3027 unlock_page(page);
4969c119
AA
3028 if (swapcache) {
3029 /*
3030 * Hold the lock to avoid the swap entry to be reused
3031 * until we take the PT lock for the pte_same() check
3032 * (to avoid false positives from pte_same). For
3033 * further safety release the lock after the swap_free
3034 * so that the swap count won't change under a
3035 * parallel locked swapcache.
3036 */
3037 unlock_page(swapcache);
3038 page_cache_release(swapcache);
3039 }
c475a8ab 3040
30c9f3a9 3041 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
3042 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3043 if (ret & VM_FAULT_ERROR)
3044 ret &= VM_FAULT_ERROR;
1da177e4
LT
3045 goto out;
3046 }
3047
3048 /* No need to invalidate - it was non-present before */
4b3073e1 3049 update_mmu_cache(vma, address, page_table);
65500d23 3050unlock:
8f4e2101 3051 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
3052out:
3053 return ret;
b8107480 3054out_nomap:
7a81b88c 3055 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 3056 pte_unmap_unlock(page_table, ptl);
bc43f75c 3057out_page:
b8107480 3058 unlock_page(page);
4779cb31 3059out_release:
b8107480 3060 page_cache_release(page);
4969c119
AA
3061 if (swapcache) {
3062 unlock_page(swapcache);
3063 page_cache_release(swapcache);
3064 }
65500d23 3065 return ret;
1da177e4
LT
3066}
3067
320b2b8d 3068/*
8ca3eb08
TL
3069 * This is like a special single-page "expand_{down|up}wards()",
3070 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 3071 * doesn't hit another vma.
320b2b8d
LT
3072 */
3073static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3074{
3075 address &= PAGE_MASK;
3076 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
3077 struct vm_area_struct *prev = vma->vm_prev;
3078
3079 /*
3080 * Is there a mapping abutting this one below?
3081 *
3082 * That's only ok if it's the same stack mapping
3083 * that has gotten split..
3084 */
3085 if (prev && prev->vm_end == address)
3086 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 3087
d05f3169 3088 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 3089 }
8ca3eb08
TL
3090 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3091 struct vm_area_struct *next = vma->vm_next;
3092
3093 /* As VM_GROWSDOWN but s/below/above/ */
3094 if (next && next->vm_start == address + PAGE_SIZE)
3095 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3096
3097 expand_upwards(vma, address + PAGE_SIZE);
3098 }
320b2b8d
LT
3099 return 0;
3100}
3101
1da177e4 3102/*
8f4e2101
HD
3103 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3104 * but allow concurrent faults), and pte mapped but not yet locked.
3105 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3106 */
65500d23
HD
3107static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3108 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3109 unsigned int flags)
1da177e4 3110{
8f4e2101
HD
3111 struct page *page;
3112 spinlock_t *ptl;
1da177e4 3113 pte_t entry;
1da177e4 3114
11ac5524
LT
3115 pte_unmap(page_table);
3116
3117 /* Check if we need to add a guard page to the stack */
3118 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
3119 return VM_FAULT_SIGBUS;
3120
11ac5524 3121 /* Use the zero-page for reads */
62eede62
HD
3122 if (!(flags & FAULT_FLAG_WRITE)) {
3123 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3124 vma->vm_page_prot));
11ac5524 3125 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
3126 if (!pte_none(*page_table))
3127 goto unlock;
3128 goto setpte;
3129 }
3130
557ed1fa 3131 /* Allocate our own private page. */
557ed1fa
NP
3132 if (unlikely(anon_vma_prepare(vma)))
3133 goto oom;
3134 page = alloc_zeroed_user_highpage_movable(vma, address);
3135 if (!page)
3136 goto oom;
0ed361de 3137 __SetPageUptodate(page);
8f4e2101 3138
2c26fdd7 3139 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3140 goto oom_free_page;
3141
557ed1fa 3142 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3143 if (vma->vm_flags & VM_WRITE)
3144 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3145
557ed1fa 3146 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3147 if (!pte_none(*page_table))
557ed1fa 3148 goto release;
9ba69294 3149
34e55232 3150 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3151 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3152setpte:
65500d23 3153 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3154
3155 /* No need to invalidate - it was non-present before */
4b3073e1 3156 update_mmu_cache(vma, address, page_table);
65500d23 3157unlock:
8f4e2101 3158 pte_unmap_unlock(page_table, ptl);
83c54070 3159 return 0;
8f4e2101 3160release:
8a9f3ccd 3161 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3162 page_cache_release(page);
3163 goto unlock;
8a9f3ccd 3164oom_free_page:
6dbf6d3b 3165 page_cache_release(page);
65500d23 3166oom:
1da177e4
LT
3167 return VM_FAULT_OOM;
3168}
3169
3170/*
54cb8821 3171 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 3172 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
3173 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3174 * the next page fault.
1da177e4
LT
3175 *
3176 * As this is called only for pages that do not currently exist, we
3177 * do not need to flush old virtual caches or the TLB.
3178 *
8f4e2101 3179 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 3180 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 3181 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3182 */
54cb8821 3183static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3184 unsigned long address, pmd_t *pmd,
54cb8821 3185 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3186{
16abfa08 3187 pte_t *page_table;
8f4e2101 3188 spinlock_t *ptl;
d0217ac0 3189 struct page *page;
1d65f86d 3190 struct page *cow_page;
1da177e4 3191 pte_t entry;
1da177e4 3192 int anon = 0;
d08b3851 3193 struct page *dirty_page = NULL;
d0217ac0
NP
3194 struct vm_fault vmf;
3195 int ret;
a200ee18 3196 int page_mkwrite = 0;
54cb8821 3197
1d65f86d
KH
3198 /*
3199 * If we do COW later, allocate page befor taking lock_page()
3200 * on the file cache page. This will reduce lock holding time.
3201 */
3202 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3203
3204 if (unlikely(anon_vma_prepare(vma)))
3205 return VM_FAULT_OOM;
3206
3207 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3208 if (!cow_page)
3209 return VM_FAULT_OOM;
3210
3211 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3212 page_cache_release(cow_page);
3213 return VM_FAULT_OOM;
3214 }
3215 } else
3216 cow_page = NULL;
3217
d0217ac0
NP
3218 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3219 vmf.pgoff = pgoff;
3220 vmf.flags = flags;
3221 vmf.page = NULL;
1da177e4 3222
3c18ddd1 3223 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3224 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3225 VM_FAULT_RETRY)))
1d65f86d 3226 goto uncharge_out;
1da177e4 3227
a3b947ea
AK
3228 if (unlikely(PageHWPoison(vmf.page))) {
3229 if (ret & VM_FAULT_LOCKED)
3230 unlock_page(vmf.page);
1d65f86d
KH
3231 ret = VM_FAULT_HWPOISON;
3232 goto uncharge_out;
a3b947ea
AK
3233 }
3234
d00806b1 3235 /*
d0217ac0 3236 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3237 * locked.
3238 */
83c54070 3239 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3240 lock_page(vmf.page);
54cb8821 3241 else
d0217ac0 3242 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3243
1da177e4
LT
3244 /*
3245 * Should we do an early C-O-W break?
3246 */
d0217ac0 3247 page = vmf.page;
54cb8821 3248 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3249 if (!(vma->vm_flags & VM_SHARED)) {
1d65f86d 3250 page = cow_page;
54cb8821 3251 anon = 1;
d0217ac0 3252 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3253 __SetPageUptodate(page);
9637a5ef 3254 } else {
54cb8821
NP
3255 /*
3256 * If the page will be shareable, see if the backing
9637a5ef 3257 * address space wants to know that the page is about
54cb8821
NP
3258 * to become writable
3259 */
69676147 3260 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3261 int tmp;
3262
69676147 3263 unlock_page(page);
b827e496 3264 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3265 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3266 if (unlikely(tmp &
3267 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3268 ret = tmp;
b827e496 3269 goto unwritable_page;
d0217ac0 3270 }
b827e496
NP
3271 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3272 lock_page(page);
3273 if (!page->mapping) {
3274 ret = 0; /* retry the fault */
3275 unlock_page(page);
3276 goto unwritable_page;
3277 }
3278 } else
3279 VM_BUG_ON(!PageLocked(page));
a200ee18 3280 page_mkwrite = 1;
9637a5ef
DH
3281 }
3282 }
54cb8821 3283
1da177e4
LT
3284 }
3285
8f4e2101 3286 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3287
3288 /*
3289 * This silly early PAGE_DIRTY setting removes a race
3290 * due to the bad i386 page protection. But it's valid
3291 * for other architectures too.
3292 *
30c9f3a9 3293 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3294 * an exclusive copy of the page, or this is a shared mapping,
3295 * so we can make it writable and dirty to avoid having to
3296 * handle that later.
3297 */
3298 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3299 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3300 flush_icache_page(vma, page);
3301 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3302 if (flags & FAULT_FLAG_WRITE)
1da177e4 3303 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 3304 if (anon) {
34e55232 3305 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3306 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3307 } else {
34e55232 3308 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3309 page_add_file_rmap(page);
54cb8821 3310 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3311 dirty_page = page;
d08b3851
PZ
3312 get_page(dirty_page);
3313 }
4294621f 3314 }
64d6519d 3315 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3316
3317 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3318 update_mmu_cache(vma, address, page_table);
1da177e4 3319 } else {
1d65f86d
KH
3320 if (cow_page)
3321 mem_cgroup_uncharge_page(cow_page);
d00806b1
NP
3322 if (anon)
3323 page_cache_release(page);
3324 else
54cb8821 3325 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3326 }
3327
8f4e2101 3328 pte_unmap_unlock(page_table, ptl);
d00806b1 3329
b827e496
NP
3330 if (dirty_page) {
3331 struct address_space *mapping = page->mapping;
41c4d25f 3332 int dirtied = 0;
8f7b3d15 3333
b827e496 3334 if (set_page_dirty(dirty_page))
41c4d25f 3335 dirtied = 1;
b827e496 3336 unlock_page(dirty_page);
d08b3851 3337 put_page(dirty_page);
41c4d25f 3338 if ((dirtied || page_mkwrite) && mapping) {
b827e496
NP
3339 /*
3340 * Some device drivers do not set page.mapping but still
3341 * dirty their pages
3342 */
3343 balance_dirty_pages_ratelimited(mapping);
3344 }
3345
3346 /* file_update_time outside page_lock */
41c4d25f 3347 if (vma->vm_file && !page_mkwrite)
b827e496
NP
3348 file_update_time(vma->vm_file);
3349 } else {
3350 unlock_page(vmf.page);
3351 if (anon)
3352 page_cache_release(vmf.page);
d08b3851 3353 }
d00806b1 3354
83c54070 3355 return ret;
b827e496
NP
3356
3357unwritable_page:
3358 page_cache_release(page);
3359 return ret;
1d65f86d
KH
3360uncharge_out:
3361 /* fs's fault handler get error */
3362 if (cow_page) {
3363 mem_cgroup_uncharge_page(cow_page);
3364 page_cache_release(cow_page);
3365 }
3366 return ret;
54cb8821 3367}
d00806b1 3368
54cb8821
NP
3369static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3370 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3371 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3372{
3373 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3374 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3375
16abfa08
HD
3376 pte_unmap(page_table);
3377 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3378}
3379
1da177e4
LT
3380/*
3381 * Fault of a previously existing named mapping. Repopulate the pte
3382 * from the encoded file_pte if possible. This enables swappable
3383 * nonlinear vmas.
8f4e2101
HD
3384 *
3385 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3386 * but allow concurrent faults), and pte mapped but not yet locked.
3387 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3388 */
d0217ac0 3389static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3390 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3391 unsigned int flags, pte_t orig_pte)
1da177e4 3392{
65500d23 3393 pgoff_t pgoff;
1da177e4 3394
30c9f3a9
LT
3395 flags |= FAULT_FLAG_NONLINEAR;
3396
4c21e2f2 3397 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3398 return 0;
1da177e4 3399
2509ef26 3400 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3401 /*
3402 * Page table corrupted: show pte and kill process.
3403 */
3dc14741 3404 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3405 return VM_FAULT_SIGBUS;
65500d23 3406 }
65500d23
HD
3407
3408 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3409 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3410}
3411
3412/*
3413 * These routines also need to handle stuff like marking pages dirty
3414 * and/or accessed for architectures that don't do it in hardware (most
3415 * RISC architectures). The early dirtying is also good on the i386.
3416 *
3417 * There is also a hook called "update_mmu_cache()" that architectures
3418 * with external mmu caches can use to update those (ie the Sparc or
3419 * PowerPC hashed page tables that act as extended TLBs).
3420 *
c74df32c
HD
3421 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3422 * but allow concurrent faults), and pte mapped but not yet locked.
3423 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3424 */
71e3aac0
AA
3425int handle_pte_fault(struct mm_struct *mm,
3426 struct vm_area_struct *vma, unsigned long address,
3427 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3428{
3429 pte_t entry;
8f4e2101 3430 spinlock_t *ptl;
1da177e4 3431
8dab5241 3432 entry = *pte;
1da177e4 3433 if (!pte_present(entry)) {
65500d23 3434 if (pte_none(entry)) {
f4b81804 3435 if (vma->vm_ops) {
3c18ddd1 3436 if (likely(vma->vm_ops->fault))
54cb8821 3437 return do_linear_fault(mm, vma, address,
30c9f3a9 3438 pte, pmd, flags, entry);
f4b81804
JS
3439 }
3440 return do_anonymous_page(mm, vma, address,
30c9f3a9 3441 pte, pmd, flags);
65500d23 3442 }
1da177e4 3443 if (pte_file(entry))
d0217ac0 3444 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3445 pte, pmd, flags, entry);
65500d23 3446 return do_swap_page(mm, vma, address,
30c9f3a9 3447 pte, pmd, flags, entry);
1da177e4
LT
3448 }
3449
4c21e2f2 3450 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3451 spin_lock(ptl);
3452 if (unlikely(!pte_same(*pte, entry)))
3453 goto unlock;
30c9f3a9 3454 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3455 if (!pte_write(entry))
8f4e2101
HD
3456 return do_wp_page(mm, vma, address,
3457 pte, pmd, ptl, entry);
1da177e4
LT
3458 entry = pte_mkdirty(entry);
3459 }
3460 entry = pte_mkyoung(entry);
30c9f3a9 3461 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3462 update_mmu_cache(vma, address, pte);
1a44e149
AA
3463 } else {
3464 /*
3465 * This is needed only for protection faults but the arch code
3466 * is not yet telling us if this is a protection fault or not.
3467 * This still avoids useless tlb flushes for .text page faults
3468 * with threads.
3469 */
30c9f3a9 3470 if (flags & FAULT_FLAG_WRITE)
61c77326 3471 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3472 }
8f4e2101
HD
3473unlock:
3474 pte_unmap_unlock(pte, ptl);
83c54070 3475 return 0;
1da177e4
LT
3476}
3477
3478/*
3479 * By the time we get here, we already hold the mm semaphore
3480 */
83c54070 3481int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3482 unsigned long address, unsigned int flags)
1da177e4
LT
3483{
3484 pgd_t *pgd;
3485 pud_t *pud;
3486 pmd_t *pmd;
3487 pte_t *pte;
3488
3489 __set_current_state(TASK_RUNNING);
3490
f8891e5e 3491 count_vm_event(PGFAULT);
456f998e 3492 mem_cgroup_count_vm_event(mm, PGFAULT);
1da177e4 3493
34e55232
KH
3494 /* do counter updates before entering really critical section. */
3495 check_sync_rss_stat(current);
3496
ac9b9c66 3497 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3498 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3499
1f1d06c3 3500retry:
1da177e4 3501 pgd = pgd_offset(mm, address);
1da177e4
LT
3502 pud = pud_alloc(mm, pgd, address);
3503 if (!pud)
c74df32c 3504 return VM_FAULT_OOM;
1da177e4
LT
3505 pmd = pmd_alloc(mm, pud, address);
3506 if (!pmd)
c74df32c 3507 return VM_FAULT_OOM;
71e3aac0
AA
3508 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3509 if (!vma->vm_ops)
3510 return do_huge_pmd_anonymous_page(mm, vma, address,
3511 pmd, flags);
3512 } else {
3513 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3514 int ret;
3515
71e3aac0
AA
3516 barrier();
3517 if (pmd_trans_huge(orig_pmd)) {
3518 if (flags & FAULT_FLAG_WRITE &&
3519 !pmd_write(orig_pmd) &&
1f1d06c3
DR
3520 !pmd_trans_splitting(orig_pmd)) {
3521 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3522 orig_pmd);
3523 /*
3524 * If COW results in an oom, the huge pmd will
3525 * have been split, so retry the fault on the
3526 * pte for a smaller charge.
3527 */
3528 if (unlikely(ret & VM_FAULT_OOM))
3529 goto retry;
3530 return ret;
3531 }
71e3aac0
AA
3532 return 0;
3533 }
3534 }
3535
3536 /*
3537 * Use __pte_alloc instead of pte_alloc_map, because we can't
3538 * run pte_offset_map on the pmd, if an huge pmd could
3539 * materialize from under us from a different thread.
3540 */
cc03638d 3541 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
c74df32c 3542 return VM_FAULT_OOM;
71e3aac0
AA
3543 /* if an huge pmd materialized from under us just retry later */
3544 if (unlikely(pmd_trans_huge(*pmd)))
3545 return 0;
3546 /*
3547 * A regular pmd is established and it can't morph into a huge pmd
3548 * from under us anymore at this point because we hold the mmap_sem
3549 * read mode and khugepaged takes it in write mode. So now it's
3550 * safe to run pte_offset_map().
3551 */
3552 pte = pte_offset_map(pmd, address);
1da177e4 3553
30c9f3a9 3554 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3555}
3556
3557#ifndef __PAGETABLE_PUD_FOLDED
3558/*
3559 * Allocate page upper directory.
872fec16 3560 * We've already handled the fast-path in-line.
1da177e4 3561 */
1bb3630e 3562int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3563{
c74df32c
HD
3564 pud_t *new = pud_alloc_one(mm, address);
3565 if (!new)
1bb3630e 3566 return -ENOMEM;
1da177e4 3567
362a61ad
NP
3568 smp_wmb(); /* See comment in __pte_alloc */
3569
872fec16 3570 spin_lock(&mm->page_table_lock);
1bb3630e 3571 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3572 pud_free(mm, new);
1bb3630e
HD
3573 else
3574 pgd_populate(mm, pgd, new);
c74df32c 3575 spin_unlock(&mm->page_table_lock);
1bb3630e 3576 return 0;
1da177e4
LT
3577}
3578#endif /* __PAGETABLE_PUD_FOLDED */
3579
3580#ifndef __PAGETABLE_PMD_FOLDED
3581/*
3582 * Allocate page middle directory.
872fec16 3583 * We've already handled the fast-path in-line.
1da177e4 3584 */
1bb3630e 3585int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3586{
c74df32c
HD
3587 pmd_t *new = pmd_alloc_one(mm, address);
3588 if (!new)
1bb3630e 3589 return -ENOMEM;
1da177e4 3590
362a61ad
NP
3591 smp_wmb(); /* See comment in __pte_alloc */
3592
872fec16 3593 spin_lock(&mm->page_table_lock);
1da177e4 3594#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3595 if (pud_present(*pud)) /* Another has populated it */
5e541973 3596 pmd_free(mm, new);
1bb3630e
HD
3597 else
3598 pud_populate(mm, pud, new);
1da177e4 3599#else
1bb3630e 3600 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3601 pmd_free(mm, new);
1bb3630e
HD
3602 else
3603 pgd_populate(mm, pud, new);
1da177e4 3604#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3605 spin_unlock(&mm->page_table_lock);
1bb3630e 3606 return 0;
e0f39591 3607}
1da177e4
LT
3608#endif /* __PAGETABLE_PMD_FOLDED */
3609
3610int make_pages_present(unsigned long addr, unsigned long end)
3611{
3612 int ret, len, write;
3613 struct vm_area_struct * vma;
3614
3615 vma = find_vma(current->mm, addr);
3616 if (!vma)
a477097d 3617 return -ENOMEM;
5ecfda04
ML
3618 /*
3619 * We want to touch writable mappings with a write fault in order
3620 * to break COW, except for shared mappings because these don't COW
3621 * and we would not want to dirty them for nothing.
3622 */
3623 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
5bcb28b1
ES
3624 BUG_ON(addr >= end);
3625 BUG_ON(end > vma->vm_end);
68e116a3 3626 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3627 ret = get_user_pages(current, current->mm, addr,
3628 len, write, 0, NULL, NULL);
c11d69d8 3629 if (ret < 0)
1da177e4 3630 return ret;
9978ad58 3631 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3632}
3633
1da177e4
LT
3634#if !defined(__HAVE_ARCH_GATE_AREA)
3635
3636#if defined(AT_SYSINFO_EHDR)
5ce7852c 3637static struct vm_area_struct gate_vma;
1da177e4
LT
3638
3639static int __init gate_vma_init(void)
3640{
3641 gate_vma.vm_mm = NULL;
3642 gate_vma.vm_start = FIXADDR_USER_START;
3643 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3644 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3645 gate_vma.vm_page_prot = __P101;
909af768 3646
1da177e4
LT
3647 return 0;
3648}
3649__initcall(gate_vma_init);
3650#endif
3651
31db58b3 3652struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3653{
3654#ifdef AT_SYSINFO_EHDR
3655 return &gate_vma;
3656#else
3657 return NULL;
3658#endif
3659}
3660
cae5d390 3661int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3662{
3663#ifdef AT_SYSINFO_EHDR
3664 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3665 return 1;
3666#endif
3667 return 0;
3668}
3669
3670#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3671
1b36ba81 3672static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3673 pte_t **ptepp, spinlock_t **ptlp)
3674{
3675 pgd_t *pgd;
3676 pud_t *pud;
3677 pmd_t *pmd;
3678 pte_t *ptep;
3679
3680 pgd = pgd_offset(mm, address);
3681 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3682 goto out;
3683
3684 pud = pud_offset(pgd, address);
3685 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3686 goto out;
3687
3688 pmd = pmd_offset(pud, address);
f66055ab 3689 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3690 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3691 goto out;
3692
3693 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3694 if (pmd_huge(*pmd))
3695 goto out;
3696
3697 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3698 if (!ptep)
3699 goto out;
3700 if (!pte_present(*ptep))
3701 goto unlock;
3702 *ptepp = ptep;
3703 return 0;
3704unlock:
3705 pte_unmap_unlock(ptep, *ptlp);
3706out:
3707 return -EINVAL;
3708}
3709
1b36ba81
NK
3710static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3711 pte_t **ptepp, spinlock_t **ptlp)
3712{
3713 int res;
3714
3715 /* (void) is needed to make gcc happy */
3716 (void) __cond_lock(*ptlp,
3717 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3718 return res;
3719}
3720
3b6748e2
JW
3721/**
3722 * follow_pfn - look up PFN at a user virtual address
3723 * @vma: memory mapping
3724 * @address: user virtual address
3725 * @pfn: location to store found PFN
3726 *
3727 * Only IO mappings and raw PFN mappings are allowed.
3728 *
3729 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3730 */
3731int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3732 unsigned long *pfn)
3733{
3734 int ret = -EINVAL;
3735 spinlock_t *ptl;
3736 pte_t *ptep;
3737
3738 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3739 return ret;
3740
3741 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3742 if (ret)
3743 return ret;
3744 *pfn = pte_pfn(*ptep);
3745 pte_unmap_unlock(ptep, ptl);
3746 return 0;
3747}
3748EXPORT_SYMBOL(follow_pfn);
3749
28b2ee20 3750#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3751int follow_phys(struct vm_area_struct *vma,
3752 unsigned long address, unsigned int flags,
3753 unsigned long *prot, resource_size_t *phys)
28b2ee20 3754{
03668a4d 3755 int ret = -EINVAL;
28b2ee20
RR
3756 pte_t *ptep, pte;
3757 spinlock_t *ptl;
28b2ee20 3758
d87fe660 3759 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3760 goto out;
28b2ee20 3761
03668a4d 3762 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3763 goto out;
28b2ee20 3764 pte = *ptep;
03668a4d 3765
28b2ee20
RR
3766 if ((flags & FOLL_WRITE) && !pte_write(pte))
3767 goto unlock;
28b2ee20
RR
3768
3769 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3770 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3771
03668a4d 3772 ret = 0;
28b2ee20
RR
3773unlock:
3774 pte_unmap_unlock(ptep, ptl);
3775out:
d87fe660 3776 return ret;
28b2ee20
RR
3777}
3778
3779int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3780 void *buf, int len, int write)
3781{
3782 resource_size_t phys_addr;
3783 unsigned long prot = 0;
2bc7273b 3784 void __iomem *maddr;
28b2ee20
RR
3785 int offset = addr & (PAGE_SIZE-1);
3786
d87fe660 3787 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3788 return -EINVAL;
3789
3790 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3791 if (write)
3792 memcpy_toio(maddr + offset, buf, len);
3793 else
3794 memcpy_fromio(buf, maddr + offset, len);
3795 iounmap(maddr);
3796
3797 return len;
3798}
3799#endif
3800
0ec76a11 3801/*
206cb636
SW
3802 * Access another process' address space as given in mm. If non-NULL, use the
3803 * given task for page fault accounting.
0ec76a11 3804 */
206cb636
SW
3805static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3806 unsigned long addr, void *buf, int len, int write)
0ec76a11 3807{
0ec76a11 3808 struct vm_area_struct *vma;
0ec76a11
DH
3809 void *old_buf = buf;
3810
0ec76a11 3811 down_read(&mm->mmap_sem);
183ff22b 3812 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3813 while (len) {
3814 int bytes, ret, offset;
3815 void *maddr;
28b2ee20 3816 struct page *page = NULL;
0ec76a11
DH
3817
3818 ret = get_user_pages(tsk, mm, addr, 1,
3819 write, 1, &page, &vma);
28b2ee20
RR
3820 if (ret <= 0) {
3821 /*
3822 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3823 * we can access using slightly different code.
3824 */
3825#ifdef CONFIG_HAVE_IOREMAP_PROT
3826 vma = find_vma(mm, addr);
fe936dfc 3827 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3828 break;
3829 if (vma->vm_ops && vma->vm_ops->access)
3830 ret = vma->vm_ops->access(vma, addr, buf,
3831 len, write);
3832 if (ret <= 0)
3833#endif
3834 break;
3835 bytes = ret;
0ec76a11 3836 } else {
28b2ee20
RR
3837 bytes = len;
3838 offset = addr & (PAGE_SIZE-1);
3839 if (bytes > PAGE_SIZE-offset)
3840 bytes = PAGE_SIZE-offset;
3841
3842 maddr = kmap(page);
3843 if (write) {
3844 copy_to_user_page(vma, page, addr,
3845 maddr + offset, buf, bytes);
3846 set_page_dirty_lock(page);
3847 } else {
3848 copy_from_user_page(vma, page, addr,
3849 buf, maddr + offset, bytes);
3850 }
3851 kunmap(page);
3852 page_cache_release(page);
0ec76a11 3853 }
0ec76a11
DH
3854 len -= bytes;
3855 buf += bytes;
3856 addr += bytes;
3857 }
3858 up_read(&mm->mmap_sem);
0ec76a11
DH
3859
3860 return buf - old_buf;
3861}
03252919 3862
5ddd36b9 3863/**
ae91dbfc 3864 * access_remote_vm - access another process' address space
5ddd36b9
SW
3865 * @mm: the mm_struct of the target address space
3866 * @addr: start address to access
3867 * @buf: source or destination buffer
3868 * @len: number of bytes to transfer
3869 * @write: whether the access is a write
3870 *
3871 * The caller must hold a reference on @mm.
3872 */
3873int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3874 void *buf, int len, int write)
3875{
3876 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3877}
3878
206cb636
SW
3879/*
3880 * Access another process' address space.
3881 * Source/target buffer must be kernel space,
3882 * Do not walk the page table directly, use get_user_pages
3883 */
3884int access_process_vm(struct task_struct *tsk, unsigned long addr,
3885 void *buf, int len, int write)
3886{
3887 struct mm_struct *mm;
3888 int ret;
3889
3890 mm = get_task_mm(tsk);
3891 if (!mm)
3892 return 0;
3893
3894 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3895 mmput(mm);
3896
3897 return ret;
3898}
3899
03252919
AK
3900/*
3901 * Print the name of a VMA.
3902 */
3903void print_vma_addr(char *prefix, unsigned long ip)
3904{
3905 struct mm_struct *mm = current->mm;
3906 struct vm_area_struct *vma;
3907
e8bff74a
IM
3908 /*
3909 * Do not print if we are in atomic
3910 * contexts (in exception stacks, etc.):
3911 */
3912 if (preempt_count())
3913 return;
3914
03252919
AK
3915 down_read(&mm->mmap_sem);
3916 vma = find_vma(mm, ip);
3917 if (vma && vma->vm_file) {
3918 struct file *f = vma->vm_file;
3919 char *buf = (char *)__get_free_page(GFP_KERNEL);
3920 if (buf) {
3921 char *p, *s;
3922
cf28b486 3923 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3924 if (IS_ERR(p))
3925 p = "?";
3926 s = strrchr(p, '/');
3927 if (s)
3928 p = s+1;
3929 printk("%s%s[%lx+%lx]", prefix, p,
3930 vma->vm_start,
3931 vma->vm_end - vma->vm_start);
3932 free_page((unsigned long)buf);
3933 }
3934 }
51a07e50 3935 up_read(&mm->mmap_sem);
03252919 3936}
3ee1afa3
NP
3937
3938#ifdef CONFIG_PROVE_LOCKING
3939void might_fault(void)
3940{
95156f00
PZ
3941 /*
3942 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3943 * holding the mmap_sem, this is safe because kernel memory doesn't
3944 * get paged out, therefore we'll never actually fault, and the
3945 * below annotations will generate false positives.
3946 */
3947 if (segment_eq(get_fs(), KERNEL_DS))
3948 return;
3949
3ee1afa3
NP
3950 might_sleep();
3951 /*
3952 * it would be nicer only to annotate paths which are not under
3953 * pagefault_disable, however that requires a larger audit and
3954 * providing helpers like get_user_atomic.
3955 */
3956 if (!in_atomic() && current->mm)
3957 might_lock_read(&current->mm->mmap_sem);
3958}
3959EXPORT_SYMBOL(might_fault);
3960#endif
47ad8475
AA
3961
3962#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3963static void clear_gigantic_page(struct page *page,
3964 unsigned long addr,
3965 unsigned int pages_per_huge_page)
3966{
3967 int i;
3968 struct page *p = page;
3969
3970 might_sleep();
3971 for (i = 0; i < pages_per_huge_page;
3972 i++, p = mem_map_next(p, page, i)) {
3973 cond_resched();
3974 clear_user_highpage(p, addr + i * PAGE_SIZE);
3975 }
3976}
3977void clear_huge_page(struct page *page,
3978 unsigned long addr, unsigned int pages_per_huge_page)
3979{
3980 int i;
3981
3982 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3983 clear_gigantic_page(page, addr, pages_per_huge_page);
3984 return;
3985 }
3986
3987 might_sleep();
3988 for (i = 0; i < pages_per_huge_page; i++) {
3989 cond_resched();
3990 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3991 }
3992}
3993
3994static void copy_user_gigantic_page(struct page *dst, struct page *src,
3995 unsigned long addr,
3996 struct vm_area_struct *vma,
3997 unsigned int pages_per_huge_page)
3998{
3999 int i;
4000 struct page *dst_base = dst;
4001 struct page *src_base = src;
4002
4003 for (i = 0; i < pages_per_huge_page; ) {
4004 cond_resched();
4005 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4006
4007 i++;
4008 dst = mem_map_next(dst, dst_base, i);
4009 src = mem_map_next(src, src_base, i);
4010 }
4011}
4012
4013void copy_user_huge_page(struct page *dst, struct page *src,
4014 unsigned long addr, struct vm_area_struct *vma,
4015 unsigned int pages_per_huge_page)
4016{
4017 int i;
4018
4019 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4020 copy_user_gigantic_page(dst, src, addr, vma,
4021 pages_per_huge_page);
4022 return;
4023 }
4024
4025 might_sleep();
4026 for (i = 0; i < pages_per_huge_page; i++) {
4027 cond_resched();
4028 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4029 }
4030}
4031#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */