]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
mm: make DEFERRED_STRUCT_PAGE_INIT explicitly depend on SPARSEMEM
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
5042db43 52#include <linux/memremap.h>
9a840895 53#include <linux/ksm.h>
1da177e4 54#include <linux/rmap.h>
b95f1b31 55#include <linux/export.h>
0ff92245 56#include <linux/delayacct.h>
1da177e4 57#include <linux/init.h>
01c8f1c4 58#include <linux/pfn_t.h>
edc79b2a 59#include <linux/writeback.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
3dc14741
HD
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
1da177e4 72
6952b61d 73#include <asm/io.h>
33a709b2 74#include <asm/mmu_context.h>
1da177e4 75#include <asm/pgalloc.h>
7c0f6ba6 76#include <linux/uaccess.h>
1da177e4
LT
77#include <asm/tlb.h>
78#include <asm/tlbflush.h>
79#include <asm/pgtable.h>
80
42b77728
JB
81#include "internal.h"
82
af27d940 83#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
85#endif
86
d41dee36 87#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
88/* use the per-pgdat data instead for discontigmem - mbligh */
89unsigned long max_mapnr;
1da177e4 90EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
91
92struct page *mem_map;
1da177e4
LT
93EXPORT_SYMBOL(mem_map);
94#endif
95
1da177e4
LT
96/*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
166f61b9 103void *high_memory;
1da177e4 104EXPORT_SYMBOL(high_memory);
1da177e4 105
32a93233
IM
106/*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112int randomize_va_space __read_mostly =
113#ifdef CONFIG_COMPAT_BRK
114 1;
115#else
116 2;
117#endif
a62eaf15
AK
118
119static int __init disable_randmaps(char *s)
120{
121 randomize_va_space = 0;
9b41046c 122 return 1;
a62eaf15
AK
123}
124__setup("norandmaps", disable_randmaps);
125
62eede62 126unsigned long zero_pfn __read_mostly;
0b70068e
AB
127EXPORT_SYMBOL(zero_pfn);
128
166f61b9
TH
129unsigned long highest_memmap_pfn __read_mostly;
130
a13ea5b7
HD
131/*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134static int __init init_zero_pfn(void)
135{
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138}
139core_initcall(init_zero_pfn);
a62eaf15 140
d559db08 141
34e55232
KH
142#if defined(SPLIT_RSS_COUNTING)
143
ea48cf78 144void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
145{
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
34e55232
KH
152 }
153 }
05af2e10 154 current->rss_stat.events = 0;
34e55232
KH
155}
156
157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158{
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165}
166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169/* sync counter once per 64 page faults */
170#define TASK_RSS_EVENTS_THRESH (64)
171static void check_sync_rss_stat(struct task_struct *task)
172{
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 176 sync_mm_rss(task->mm);
34e55232 177}
9547d01b 178#else /* SPLIT_RSS_COUNTING */
34e55232
KH
179
180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183static void check_sync_rss_stat(struct task_struct *task)
184{
185}
186
9547d01b
PZ
187#endif /* SPLIT_RSS_COUNTING */
188
189#ifdef HAVE_GENERIC_MMU_GATHER
190
ca1d6c7d 191static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
192{
193 struct mmu_gather_batch *batch;
194
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
ca1d6c7d 198 return true;
9547d01b
PZ
199 }
200
53a59fc6 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 202 return false;
53a59fc6 203
9547d01b
PZ
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
ca1d6c7d 206 return false;
9547d01b 207
53a59fc6 208 tlb->batch_count++;
9547d01b
PZ
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
212
213 tlb->active->next = batch;
214 tlb->active = batch;
215
ca1d6c7d 216 return true;
9547d01b
PZ
217}
218
56236a59
MK
219void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
9547d01b
PZ
221{
222 tlb->mm = mm;
223
2b047252
LT
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
1de14c3c 226 tlb->need_flush_all = 0;
9547d01b
PZ
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
53a59fc6 231 tlb->batch_count = 0;
9547d01b
PZ
232
233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235#endif
e77b0852 236 tlb->page_size = 0;
fb7332a9
WD
237
238 __tlb_reset_range(tlb);
9547d01b
PZ
239}
240
1cf35d47 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 242{
721c21c1
WD
243 if (!tlb->end)
244 return;
245
9547d01b 246 tlb_flush(tlb);
34ee645e 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
34e55232 250#endif
fb7332a9 251 __tlb_reset_range(tlb);
1cf35d47
LT
252}
253
254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255{
256 struct mmu_gather_batch *batch;
34e55232 257
721c21c1 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263}
264
1cf35d47
LT
265void tlb_flush_mmu(struct mmu_gather *tlb)
266{
1cf35d47
LT
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269}
270
9547d01b
PZ
271/* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
56236a59 275void arch_tlb_finish_mmu(struct mmu_gather *tlb,
99baac21 276 unsigned long start, unsigned long end, bool force)
9547d01b
PZ
277{
278 struct mmu_gather_batch *batch, *next;
279
99baac21
MK
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
282
9547d01b
PZ
283 tlb_flush_mmu(tlb);
284
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
287
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
291 }
292 tlb->local.next = NULL;
293}
294
295/* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 300 *returns true if the caller should flush.
9547d01b 301 */
e77b0852 302bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
9547d01b
PZ
303{
304 struct mmu_gather_batch *batch;
305
fb7332a9 306 VM_BUG_ON(!tlb->end);
692a68c1 307 VM_WARN_ON(tlb->page_size != page_size);
e77b0852 308
9547d01b 309 batch = tlb->active;
692a68c1
AK
310 /*
311 * Add the page and check if we are full. If so
312 * force a flush.
313 */
314 batch->pages[batch->nr++] = page;
9547d01b
PZ
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
e9d55e15 317 return true;
0b43c3aa 318 batch = tlb->active;
9547d01b 319 }
309381fe 320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 321
e9d55e15 322 return false;
9547d01b
PZ
323}
324
325#endif /* HAVE_GENERIC_MMU_GATHER */
326
26723911
PZ
327#ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
26723911
PZ
329static void tlb_remove_table_smp_sync(void *arg)
330{
2ff6ddf1
RR
331 struct mm_struct __maybe_unused *mm = arg;
332 /*
333 * On most architectures this does nothing. Simply delivering the
334 * interrupt is enough to prevent races with software page table
335 * walking like that done in get_user_pages_fast.
336 *
337 * See the comment near struct mmu_table_batch.
338 */
339 tlb_flush_remove_tables_local(mm);
26723911
PZ
340}
341
2ff6ddf1 342static void tlb_remove_table_one(void *table, struct mmu_gather *tlb)
26723911
PZ
343{
344 /*
345 * This isn't an RCU grace period and hence the page-tables cannot be
346 * assumed to be actually RCU-freed.
347 *
348 * It is however sufficient for software page-table walkers that rely on
349 * IRQ disabling. See the comment near struct mmu_table_batch.
350 */
2ff6ddf1 351 smp_call_function(tlb_remove_table_smp_sync, tlb->mm, 1);
26723911
PZ
352 __tlb_remove_table(table);
353}
354
355static void tlb_remove_table_rcu(struct rcu_head *head)
356{
357 struct mmu_table_batch *batch;
358 int i;
359
360 batch = container_of(head, struct mmu_table_batch, rcu);
361
362 for (i = 0; i < batch->nr; i++)
363 __tlb_remove_table(batch->tables[i]);
364
365 free_page((unsigned long)batch);
366}
367
368void tlb_table_flush(struct mmu_gather *tlb)
369{
370 struct mmu_table_batch **batch = &tlb->batch;
371
2ff6ddf1
RR
372 tlb_flush_remove_tables(tlb->mm);
373
26723911
PZ
374 if (*batch) {
375 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
376 *batch = NULL;
377 }
378}
379
380void tlb_remove_table(struct mmu_gather *tlb, void *table)
381{
382 struct mmu_table_batch **batch = &tlb->batch;
383
26723911
PZ
384 /*
385 * When there's less then two users of this mm there cannot be a
386 * concurrent page-table walk.
387 */
388 if (atomic_read(&tlb->mm->mm_users) < 2) {
389 __tlb_remove_table(table);
390 return;
391 }
392
393 if (*batch == NULL) {
394 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
395 if (*batch == NULL) {
2ff6ddf1 396 tlb_remove_table_one(table, tlb);
26723911
PZ
397 return;
398 }
399 (*batch)->nr = 0;
400 }
401 (*batch)->tables[(*batch)->nr++] = table;
402 if ((*batch)->nr == MAX_TABLE_BATCH)
403 tlb_table_flush(tlb);
404}
405
9547d01b 406#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 407
ef549e13
MR
408/**
409 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
410 * @tlb: the mmu_gather structure to initialize
411 * @mm: the mm_struct of the target address space
412 * @start: start of the region that will be removed from the page-table
413 * @end: end of the region that will be removed from the page-table
414 *
415 * Called to initialize an (on-stack) mmu_gather structure for page-table
416 * tear-down from @mm. The @start and @end are set to 0 and -1
417 * respectively when @mm is without users and we're going to destroy
418 * the full address space (exit/execve).
56236a59
MK
419 */
420void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
421 unsigned long start, unsigned long end)
422{
423 arch_tlb_gather_mmu(tlb, mm, start, end);
99baac21 424 inc_tlb_flush_pending(tlb->mm);
56236a59
MK
425}
426
427void tlb_finish_mmu(struct mmu_gather *tlb,
428 unsigned long start, unsigned long end)
429{
99baac21
MK
430 /*
431 * If there are parallel threads are doing PTE changes on same range
432 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
433 * flush by batching, a thread has stable TLB entry can fail to flush
434 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
435 * forcefully if we detect parallel PTE batching threads.
436 */
437 bool force = mm_tlb_flush_nested(tlb->mm);
438
439 arch_tlb_finish_mmu(tlb, start, end, force);
440 dec_tlb_flush_pending(tlb->mm);
56236a59
MK
441}
442
1da177e4
LT
443/*
444 * Note: this doesn't free the actual pages themselves. That
445 * has been handled earlier when unmapping all the memory regions.
446 */
9e1b32ca
BH
447static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
448 unsigned long addr)
1da177e4 449{
2f569afd 450 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 451 pmd_clear(pmd);
9e1b32ca 452 pte_free_tlb(tlb, token, addr);
c4812909 453 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
454}
455
e0da382c
HD
456static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
457 unsigned long addr, unsigned long end,
458 unsigned long floor, unsigned long ceiling)
1da177e4
LT
459{
460 pmd_t *pmd;
461 unsigned long next;
e0da382c 462 unsigned long start;
1da177e4 463
e0da382c 464 start = addr;
1da177e4 465 pmd = pmd_offset(pud, addr);
1da177e4
LT
466 do {
467 next = pmd_addr_end(addr, end);
468 if (pmd_none_or_clear_bad(pmd))
469 continue;
9e1b32ca 470 free_pte_range(tlb, pmd, addr);
1da177e4
LT
471 } while (pmd++, addr = next, addr != end);
472
e0da382c
HD
473 start &= PUD_MASK;
474 if (start < floor)
475 return;
476 if (ceiling) {
477 ceiling &= PUD_MASK;
478 if (!ceiling)
479 return;
1da177e4 480 }
e0da382c
HD
481 if (end - 1 > ceiling - 1)
482 return;
483
484 pmd = pmd_offset(pud, start);
485 pud_clear(pud);
9e1b32ca 486 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 487 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
488}
489
c2febafc 490static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
491 unsigned long addr, unsigned long end,
492 unsigned long floor, unsigned long ceiling)
1da177e4
LT
493{
494 pud_t *pud;
495 unsigned long next;
e0da382c 496 unsigned long start;
1da177e4 497
e0da382c 498 start = addr;
c2febafc 499 pud = pud_offset(p4d, addr);
1da177e4
LT
500 do {
501 next = pud_addr_end(addr, end);
502 if (pud_none_or_clear_bad(pud))
503 continue;
e0da382c 504 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
505 } while (pud++, addr = next, addr != end);
506
c2febafc
KS
507 start &= P4D_MASK;
508 if (start < floor)
509 return;
510 if (ceiling) {
511 ceiling &= P4D_MASK;
512 if (!ceiling)
513 return;
514 }
515 if (end - 1 > ceiling - 1)
516 return;
517
518 pud = pud_offset(p4d, start);
519 p4d_clear(p4d);
520 pud_free_tlb(tlb, pud, start);
b4e98d9a 521 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
522}
523
524static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 unsigned long floor, unsigned long ceiling)
527{
528 p4d_t *p4d;
529 unsigned long next;
530 unsigned long start;
531
532 start = addr;
533 p4d = p4d_offset(pgd, addr);
534 do {
535 next = p4d_addr_end(addr, end);
536 if (p4d_none_or_clear_bad(p4d))
537 continue;
538 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
539 } while (p4d++, addr = next, addr != end);
540
e0da382c
HD
541 start &= PGDIR_MASK;
542 if (start < floor)
543 return;
544 if (ceiling) {
545 ceiling &= PGDIR_MASK;
546 if (!ceiling)
547 return;
1da177e4 548 }
e0da382c
HD
549 if (end - 1 > ceiling - 1)
550 return;
551
c2febafc 552 p4d = p4d_offset(pgd, start);
e0da382c 553 pgd_clear(pgd);
c2febafc 554 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
555}
556
557/*
e0da382c 558 * This function frees user-level page tables of a process.
1da177e4 559 */
42b77728 560void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
561 unsigned long addr, unsigned long end,
562 unsigned long floor, unsigned long ceiling)
1da177e4
LT
563{
564 pgd_t *pgd;
565 unsigned long next;
e0da382c
HD
566
567 /*
568 * The next few lines have given us lots of grief...
569 *
570 * Why are we testing PMD* at this top level? Because often
571 * there will be no work to do at all, and we'd prefer not to
572 * go all the way down to the bottom just to discover that.
573 *
574 * Why all these "- 1"s? Because 0 represents both the bottom
575 * of the address space and the top of it (using -1 for the
576 * top wouldn't help much: the masks would do the wrong thing).
577 * The rule is that addr 0 and floor 0 refer to the bottom of
578 * the address space, but end 0 and ceiling 0 refer to the top
579 * Comparisons need to use "end - 1" and "ceiling - 1" (though
580 * that end 0 case should be mythical).
581 *
582 * Wherever addr is brought up or ceiling brought down, we must
583 * be careful to reject "the opposite 0" before it confuses the
584 * subsequent tests. But what about where end is brought down
585 * by PMD_SIZE below? no, end can't go down to 0 there.
586 *
587 * Whereas we round start (addr) and ceiling down, by different
588 * masks at different levels, in order to test whether a table
589 * now has no other vmas using it, so can be freed, we don't
590 * bother to round floor or end up - the tests don't need that.
591 */
1da177e4 592
e0da382c
HD
593 addr &= PMD_MASK;
594 if (addr < floor) {
595 addr += PMD_SIZE;
596 if (!addr)
597 return;
598 }
599 if (ceiling) {
600 ceiling &= PMD_MASK;
601 if (!ceiling)
602 return;
603 }
604 if (end - 1 > ceiling - 1)
605 end -= PMD_SIZE;
606 if (addr > end - 1)
607 return;
07e32661
AK
608 /*
609 * We add page table cache pages with PAGE_SIZE,
610 * (see pte_free_tlb()), flush the tlb if we need
611 */
612 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 613 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
614 do {
615 next = pgd_addr_end(addr, end);
616 if (pgd_none_or_clear_bad(pgd))
617 continue;
c2febafc 618 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 619 } while (pgd++, addr = next, addr != end);
e0da382c
HD
620}
621
42b77728 622void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 623 unsigned long floor, unsigned long ceiling)
e0da382c
HD
624{
625 while (vma) {
626 struct vm_area_struct *next = vma->vm_next;
627 unsigned long addr = vma->vm_start;
628
8f4f8c16 629 /*
25d9e2d1
NP
630 * Hide vma from rmap and truncate_pagecache before freeing
631 * pgtables
8f4f8c16 632 */
5beb4930 633 unlink_anon_vmas(vma);
8f4f8c16
HD
634 unlink_file_vma(vma);
635
9da61aef 636 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 637 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 638 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
639 } else {
640 /*
641 * Optimization: gather nearby vmas into one call down
642 */
643 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 644 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
645 vma = next;
646 next = vma->vm_next;
5beb4930 647 unlink_anon_vmas(vma);
8f4f8c16 648 unlink_file_vma(vma);
3bf5ee95
HD
649 }
650 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 651 floor, next ? next->vm_start : ceiling);
3bf5ee95 652 }
e0da382c
HD
653 vma = next;
654 }
1da177e4
LT
655}
656
3ed3a4f0 657int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 658{
c4088ebd 659 spinlock_t *ptl;
2f569afd 660 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
661 if (!new)
662 return -ENOMEM;
663
362a61ad
NP
664 /*
665 * Ensure all pte setup (eg. pte page lock and page clearing) are
666 * visible before the pte is made visible to other CPUs by being
667 * put into page tables.
668 *
669 * The other side of the story is the pointer chasing in the page
670 * table walking code (when walking the page table without locking;
671 * ie. most of the time). Fortunately, these data accesses consist
672 * of a chain of data-dependent loads, meaning most CPUs (alpha
673 * being the notable exception) will already guarantee loads are
674 * seen in-order. See the alpha page table accessors for the
675 * smp_read_barrier_depends() barriers in page table walking code.
676 */
677 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
678
c4088ebd 679 ptl = pmd_lock(mm, pmd);
8ac1f832 680 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 681 mm_inc_nr_ptes(mm);
1da177e4 682 pmd_populate(mm, pmd, new);
2f569afd 683 new = NULL;
4b471e88 684 }
c4088ebd 685 spin_unlock(ptl);
2f569afd
MS
686 if (new)
687 pte_free(mm, new);
1bb3630e 688 return 0;
1da177e4
LT
689}
690
1bb3630e 691int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 692{
1bb3630e
HD
693 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
694 if (!new)
695 return -ENOMEM;
696
362a61ad
NP
697 smp_wmb(); /* See comment in __pte_alloc */
698
1bb3630e 699 spin_lock(&init_mm.page_table_lock);
8ac1f832 700 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 701 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 702 new = NULL;
4b471e88 703 }
1bb3630e 704 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
705 if (new)
706 pte_free_kernel(&init_mm, new);
1bb3630e 707 return 0;
1da177e4
LT
708}
709
d559db08
KH
710static inline void init_rss_vec(int *rss)
711{
712 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
713}
714
715static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 716{
d559db08
KH
717 int i;
718
34e55232 719 if (current->mm == mm)
05af2e10 720 sync_mm_rss(mm);
d559db08
KH
721 for (i = 0; i < NR_MM_COUNTERS; i++)
722 if (rss[i])
723 add_mm_counter(mm, i, rss[i]);
ae859762
HD
724}
725
b5810039 726/*
6aab341e
LT
727 * This function is called to print an error when a bad pte
728 * is found. For example, we might have a PFN-mapped pte in
729 * a region that doesn't allow it.
b5810039
NP
730 *
731 * The calling function must still handle the error.
732 */
3dc14741
HD
733static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
734 pte_t pte, struct page *page)
b5810039 735{
3dc14741 736 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
737 p4d_t *p4d = p4d_offset(pgd, addr);
738 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
739 pmd_t *pmd = pmd_offset(pud, addr);
740 struct address_space *mapping;
741 pgoff_t index;
d936cf9b
HD
742 static unsigned long resume;
743 static unsigned long nr_shown;
744 static unsigned long nr_unshown;
745
746 /*
747 * Allow a burst of 60 reports, then keep quiet for that minute;
748 * or allow a steady drip of one report per second.
749 */
750 if (nr_shown == 60) {
751 if (time_before(jiffies, resume)) {
752 nr_unshown++;
753 return;
754 }
755 if (nr_unshown) {
1170532b
JP
756 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
757 nr_unshown);
d936cf9b
HD
758 nr_unshown = 0;
759 }
760 nr_shown = 0;
761 }
762 if (nr_shown++ == 0)
763 resume = jiffies + 60 * HZ;
3dc14741
HD
764
765 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
766 index = linear_page_index(vma, addr);
767
1170532b
JP
768 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
769 current->comm,
770 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 771 if (page)
f0b791a3 772 dump_page(page, "bad pte");
1170532b
JP
773 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
774 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
2682582a
KK
775 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
776 vma->vm_file,
777 vma->vm_ops ? vma->vm_ops->fault : NULL,
778 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
779 mapping ? mapping->a_ops->readpage : NULL);
b5810039 780 dump_stack();
373d4d09 781 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
782}
783
ee498ed7 784/*
7e675137 785 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 786 *
7e675137
NP
787 * "Special" mappings do not wish to be associated with a "struct page" (either
788 * it doesn't exist, or it exists but they don't want to touch it). In this
789 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 790 *
7e675137
NP
791 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
792 * pte bit, in which case this function is trivial. Secondly, an architecture
793 * may not have a spare pte bit, which requires a more complicated scheme,
794 * described below.
795 *
796 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
797 * special mapping (even if there are underlying and valid "struct pages").
798 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 799 *
b379d790
JH
800 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
801 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
802 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
803 * mapping will always honor the rule
6aab341e
LT
804 *
805 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806 *
7e675137
NP
807 * And for normal mappings this is false.
808 *
809 * This restricts such mappings to be a linear translation from virtual address
810 * to pfn. To get around this restriction, we allow arbitrary mappings so long
811 * as the vma is not a COW mapping; in that case, we know that all ptes are
812 * special (because none can have been COWed).
b379d790 813 *
b379d790 814 *
7e675137 815 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
816 *
817 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
818 * page" backing, however the difference is that _all_ pages with a struct
819 * page (that is, those where pfn_valid is true) are refcounted and considered
820 * normal pages by the VM. The disadvantage is that pages are refcounted
821 * (which can be slower and simply not an option for some PFNMAP users). The
822 * advantage is that we don't have to follow the strict linearity rule of
823 * PFNMAP mappings in order to support COWable mappings.
824 *
ee498ed7 825 */
df6ad698
JG
826struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
827 pte_t pte, bool with_public_device)
ee498ed7 828{
22b31eec 829 unsigned long pfn = pte_pfn(pte);
7e675137 830
00b3a331 831 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 832 if (likely(!pte_special(pte)))
22b31eec 833 goto check_pfn;
667a0a06
DV
834 if (vma->vm_ops && vma->vm_ops->find_special_page)
835 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
836 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
837 return NULL;
df6ad698
JG
838 if (is_zero_pfn(pfn))
839 return NULL;
840
841 /*
842 * Device public pages are special pages (they are ZONE_DEVICE
843 * pages but different from persistent memory). They behave
844 * allmost like normal pages. The difference is that they are
845 * not on the lru and thus should never be involve with any-
846 * thing that involve lru manipulation (mlock, numa balancing,
847 * ...).
848 *
849 * This is why we still want to return NULL for such page from
850 * vm_normal_page() so that we do not have to special case all
851 * call site of vm_normal_page().
852 */
7d790d2d 853 if (likely(pfn <= highest_memmap_pfn)) {
df6ad698
JG
854 struct page *page = pfn_to_page(pfn);
855
856 if (is_device_public_page(page)) {
857 if (with_public_device)
858 return page;
859 return NULL;
860 }
861 }
e1fb4a08
DJ
862
863 if (pte_devmap(pte))
864 return NULL;
865
df6ad698 866 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
867 return NULL;
868 }
869
00b3a331 870 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 871
b379d790
JH
872 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
873 if (vma->vm_flags & VM_MIXEDMAP) {
874 if (!pfn_valid(pfn))
875 return NULL;
876 goto out;
877 } else {
7e675137
NP
878 unsigned long off;
879 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
880 if (pfn == vma->vm_pgoff + off)
881 return NULL;
882 if (!is_cow_mapping(vma->vm_flags))
883 return NULL;
884 }
6aab341e
LT
885 }
886
b38af472
HD
887 if (is_zero_pfn(pfn))
888 return NULL;
00b3a331 889
22b31eec
HD
890check_pfn:
891 if (unlikely(pfn > highest_memmap_pfn)) {
892 print_bad_pte(vma, addr, pte, NULL);
893 return NULL;
894 }
6aab341e
LT
895
896 /*
7e675137 897 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 898 * eg. VDSO mappings can cause them to exist.
6aab341e 899 */
b379d790 900out:
6aab341e 901 return pfn_to_page(pfn);
ee498ed7
HD
902}
903
28093f9f
GS
904#ifdef CONFIG_TRANSPARENT_HUGEPAGE
905struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
906 pmd_t pmd)
907{
908 unsigned long pfn = pmd_pfn(pmd);
909
910 /*
911 * There is no pmd_special() but there may be special pmds, e.g.
912 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 913 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
914 */
915 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
916 if (vma->vm_flags & VM_MIXEDMAP) {
917 if (!pfn_valid(pfn))
918 return NULL;
919 goto out;
920 } else {
921 unsigned long off;
922 off = (addr - vma->vm_start) >> PAGE_SHIFT;
923 if (pfn == vma->vm_pgoff + off)
924 return NULL;
925 if (!is_cow_mapping(vma->vm_flags))
926 return NULL;
927 }
928 }
929
e1fb4a08
DJ
930 if (pmd_devmap(pmd))
931 return NULL;
28093f9f
GS
932 if (is_zero_pfn(pfn))
933 return NULL;
934 if (unlikely(pfn > highest_memmap_pfn))
935 return NULL;
936
937 /*
938 * NOTE! We still have PageReserved() pages in the page tables.
939 * eg. VDSO mappings can cause them to exist.
940 */
941out:
942 return pfn_to_page(pfn);
943}
944#endif
945
1da177e4
LT
946/*
947 * copy one vm_area from one task to the other. Assumes the page tables
948 * already present in the new task to be cleared in the whole range
949 * covered by this vma.
1da177e4
LT
950 */
951
570a335b 952static inline unsigned long
1da177e4 953copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 954 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 955 unsigned long addr, int *rss)
1da177e4 956{
b5810039 957 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
958 pte_t pte = *src_pte;
959 struct page *page;
1da177e4
LT
960
961 /* pte contains position in swap or file, so copy. */
962 if (unlikely(!pte_present(pte))) {
0661a336
KS
963 swp_entry_t entry = pte_to_swp_entry(pte);
964
965 if (likely(!non_swap_entry(entry))) {
966 if (swap_duplicate(entry) < 0)
967 return entry.val;
968
969 /* make sure dst_mm is on swapoff's mmlist. */
970 if (unlikely(list_empty(&dst_mm->mmlist))) {
971 spin_lock(&mmlist_lock);
972 if (list_empty(&dst_mm->mmlist))
973 list_add(&dst_mm->mmlist,
974 &src_mm->mmlist);
975 spin_unlock(&mmlist_lock);
976 }
977 rss[MM_SWAPENTS]++;
978 } else if (is_migration_entry(entry)) {
979 page = migration_entry_to_page(entry);
980
eca56ff9 981 rss[mm_counter(page)]++;
0661a336
KS
982
983 if (is_write_migration_entry(entry) &&
984 is_cow_mapping(vm_flags)) {
985 /*
986 * COW mappings require pages in both
987 * parent and child to be set to read.
988 */
989 make_migration_entry_read(&entry);
990 pte = swp_entry_to_pte(entry);
991 if (pte_swp_soft_dirty(*src_pte))
992 pte = pte_swp_mksoft_dirty(pte);
993 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 994 }
5042db43
JG
995 } else if (is_device_private_entry(entry)) {
996 page = device_private_entry_to_page(entry);
997
998 /*
999 * Update rss count even for unaddressable pages, as
1000 * they should treated just like normal pages in this
1001 * respect.
1002 *
1003 * We will likely want to have some new rss counters
1004 * for unaddressable pages, at some point. But for now
1005 * keep things as they are.
1006 */
1007 get_page(page);
1008 rss[mm_counter(page)]++;
1009 page_dup_rmap(page, false);
1010
1011 /*
1012 * We do not preserve soft-dirty information, because so
1013 * far, checkpoint/restore is the only feature that
1014 * requires that. And checkpoint/restore does not work
1015 * when a device driver is involved (you cannot easily
1016 * save and restore device driver state).
1017 */
1018 if (is_write_device_private_entry(entry) &&
1019 is_cow_mapping(vm_flags)) {
1020 make_device_private_entry_read(&entry);
1021 pte = swp_entry_to_pte(entry);
1022 set_pte_at(src_mm, addr, src_pte, pte);
1023 }
1da177e4 1024 }
ae859762 1025 goto out_set_pte;
1da177e4
LT
1026 }
1027
1da177e4
LT
1028 /*
1029 * If it's a COW mapping, write protect it both
1030 * in the parent and the child
1031 */
67121172 1032 if (is_cow_mapping(vm_flags)) {
1da177e4 1033 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 1034 pte = pte_wrprotect(pte);
1da177e4
LT
1035 }
1036
1037 /*
1038 * If it's a shared mapping, mark it clean in
1039 * the child
1040 */
1041 if (vm_flags & VM_SHARED)
1042 pte = pte_mkclean(pte);
1043 pte = pte_mkold(pte);
6aab341e
LT
1044
1045 page = vm_normal_page(vma, addr, pte);
1046 if (page) {
1047 get_page(page);
53f9263b 1048 page_dup_rmap(page, false);
eca56ff9 1049 rss[mm_counter(page)]++;
df6ad698
JG
1050 } else if (pte_devmap(pte)) {
1051 page = pte_page(pte);
1052
1053 /*
1054 * Cache coherent device memory behave like regular page and
1055 * not like persistent memory page. For more informations see
1056 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1057 */
1058 if (is_device_public_page(page)) {
1059 get_page(page);
1060 page_dup_rmap(page, false);
1061 rss[mm_counter(page)]++;
1062 }
6aab341e 1063 }
ae859762
HD
1064
1065out_set_pte:
1066 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 1067 return 0;
1da177e4
LT
1068}
1069
21bda264 1070static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
1071 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1072 unsigned long addr, unsigned long end)
1da177e4 1073{
c36987e2 1074 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1075 pte_t *src_pte, *dst_pte;
c74df32c 1076 spinlock_t *src_ptl, *dst_ptl;
e040f218 1077 int progress = 0;
d559db08 1078 int rss[NR_MM_COUNTERS];
570a335b 1079 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
1080
1081again:
d559db08
KH
1082 init_rss_vec(rss);
1083
c74df32c 1084 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
1085 if (!dst_pte)
1086 return -ENOMEM;
ece0e2b6 1087 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1088 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1089 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1090 orig_src_pte = src_pte;
1091 orig_dst_pte = dst_pte;
6606c3e0 1092 arch_enter_lazy_mmu_mode();
1da177e4 1093
1da177e4
LT
1094 do {
1095 /*
1096 * We are holding two locks at this point - either of them
1097 * could generate latencies in another task on another CPU.
1098 */
e040f218
HD
1099 if (progress >= 32) {
1100 progress = 0;
1101 if (need_resched() ||
95c354fe 1102 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1103 break;
1104 }
1da177e4
LT
1105 if (pte_none(*src_pte)) {
1106 progress++;
1107 continue;
1108 }
570a335b
HD
1109 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1110 vma, addr, rss);
1111 if (entry.val)
1112 break;
1da177e4
LT
1113 progress += 8;
1114 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1115
6606c3e0 1116 arch_leave_lazy_mmu_mode();
c74df32c 1117 spin_unlock(src_ptl);
ece0e2b6 1118 pte_unmap(orig_src_pte);
d559db08 1119 add_mm_rss_vec(dst_mm, rss);
c36987e2 1120 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1121 cond_resched();
570a335b
HD
1122
1123 if (entry.val) {
1124 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1125 return -ENOMEM;
1126 progress = 0;
1127 }
1da177e4
LT
1128 if (addr != end)
1129 goto again;
1130 return 0;
1131}
1132
1133static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1134 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1135 unsigned long addr, unsigned long end)
1136{
1137 pmd_t *src_pmd, *dst_pmd;
1138 unsigned long next;
1139
1140 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1141 if (!dst_pmd)
1142 return -ENOMEM;
1143 src_pmd = pmd_offset(src_pud, addr);
1144 do {
1145 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1146 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147 || pmd_devmap(*src_pmd)) {
71e3aac0 1148 int err;
a00cc7d9 1149 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
1150 err = copy_huge_pmd(dst_mm, src_mm,
1151 dst_pmd, src_pmd, addr, vma);
1152 if (err == -ENOMEM)
1153 return -ENOMEM;
1154 if (!err)
1155 continue;
1156 /* fall through */
1157 }
1da177e4
LT
1158 if (pmd_none_or_clear_bad(src_pmd))
1159 continue;
1160 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1161 vma, addr, next))
1162 return -ENOMEM;
1163 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1164 return 0;
1165}
1166
1167static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 1168 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
1169 unsigned long addr, unsigned long end)
1170{
1171 pud_t *src_pud, *dst_pud;
1172 unsigned long next;
1173
c2febafc 1174 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1175 if (!dst_pud)
1176 return -ENOMEM;
c2febafc 1177 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1178 do {
1179 next = pud_addr_end(addr, end);
a00cc7d9
MW
1180 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1181 int err;
1182
1183 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1184 err = copy_huge_pud(dst_mm, src_mm,
1185 dst_pud, src_pud, addr, vma);
1186 if (err == -ENOMEM)
1187 return -ENOMEM;
1188 if (!err)
1189 continue;
1190 /* fall through */
1191 }
1da177e4
LT
1192 if (pud_none_or_clear_bad(src_pud))
1193 continue;
1194 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1195 vma, addr, next))
1196 return -ENOMEM;
1197 } while (dst_pud++, src_pud++, addr = next, addr != end);
1198 return 0;
1199}
1200
c2febafc
KS
1201static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1202 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1203 unsigned long addr, unsigned long end)
1204{
1205 p4d_t *src_p4d, *dst_p4d;
1206 unsigned long next;
1207
1208 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1209 if (!dst_p4d)
1210 return -ENOMEM;
1211 src_p4d = p4d_offset(src_pgd, addr);
1212 do {
1213 next = p4d_addr_end(addr, end);
1214 if (p4d_none_or_clear_bad(src_p4d))
1215 continue;
1216 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1217 vma, addr, next))
1218 return -ENOMEM;
1219 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1220 return 0;
1221}
1222
1da177e4
LT
1223int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1224 struct vm_area_struct *vma)
1225{
1226 pgd_t *src_pgd, *dst_pgd;
1227 unsigned long next;
1228 unsigned long addr = vma->vm_start;
1229 unsigned long end = vma->vm_end;
2ec74c3e
SG
1230 unsigned long mmun_start; /* For mmu_notifiers */
1231 unsigned long mmun_end; /* For mmu_notifiers */
1232 bool is_cow;
cddb8a5c 1233 int ret;
1da177e4 1234
d992895b
NP
1235 /*
1236 * Don't copy ptes where a page fault will fill them correctly.
1237 * Fork becomes much lighter when there are big shared or private
1238 * readonly mappings. The tradeoff is that copy_page_range is more
1239 * efficient than faulting.
1240 */
0661a336
KS
1241 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1242 !vma->anon_vma)
1243 return 0;
d992895b 1244
1da177e4
LT
1245 if (is_vm_hugetlb_page(vma))
1246 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1247
b3b9c293 1248 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1249 /*
1250 * We do not free on error cases below as remove_vma
1251 * gets called on error from higher level routine
1252 */
5180da41 1253 ret = track_pfn_copy(vma);
2ab64037 1254 if (ret)
1255 return ret;
1256 }
1257
cddb8a5c
AA
1258 /*
1259 * We need to invalidate the secondary MMU mappings only when
1260 * there could be a permission downgrade on the ptes of the
1261 * parent mm. And a permission downgrade will only happen if
1262 * is_cow_mapping() returns true.
1263 */
2ec74c3e
SG
1264 is_cow = is_cow_mapping(vma->vm_flags);
1265 mmun_start = addr;
1266 mmun_end = end;
1267 if (is_cow)
1268 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1269 mmun_end);
cddb8a5c
AA
1270
1271 ret = 0;
1da177e4
LT
1272 dst_pgd = pgd_offset(dst_mm, addr);
1273 src_pgd = pgd_offset(src_mm, addr);
1274 do {
1275 next = pgd_addr_end(addr, end);
1276 if (pgd_none_or_clear_bad(src_pgd))
1277 continue;
c2febafc 1278 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1279 vma, addr, next))) {
1280 ret = -ENOMEM;
1281 break;
1282 }
1da177e4 1283 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1284
2ec74c3e
SG
1285 if (is_cow)
1286 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1287 return ret;
1da177e4
LT
1288}
1289
51c6f666 1290static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1291 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1292 unsigned long addr, unsigned long end,
97a89413 1293 struct zap_details *details)
1da177e4 1294{
b5810039 1295 struct mm_struct *mm = tlb->mm;
d16dfc55 1296 int force_flush = 0;
d559db08 1297 int rss[NR_MM_COUNTERS];
97a89413 1298 spinlock_t *ptl;
5f1a1907 1299 pte_t *start_pte;
97a89413 1300 pte_t *pte;
8a5f14a2 1301 swp_entry_t entry;
d559db08 1302
07e32661 1303 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1304again:
e303297e 1305 init_rss_vec(rss);
5f1a1907
SR
1306 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1307 pte = start_pte;
3ea27719 1308 flush_tlb_batched_pending(mm);
6606c3e0 1309 arch_enter_lazy_mmu_mode();
1da177e4
LT
1310 do {
1311 pte_t ptent = *pte;
166f61b9 1312 if (pte_none(ptent))
1da177e4 1313 continue;
6f5e6b9e 1314
1da177e4 1315 if (pte_present(ptent)) {
ee498ed7 1316 struct page *page;
51c6f666 1317
df6ad698 1318 page = _vm_normal_page(vma, addr, ptent, true);
1da177e4
LT
1319 if (unlikely(details) && page) {
1320 /*
1321 * unmap_shared_mapping_pages() wants to
1322 * invalidate cache without truncating:
1323 * unmap shared but keep private pages.
1324 */
1325 if (details->check_mapping &&
800d8c63 1326 details->check_mapping != page_rmapping(page))
1da177e4 1327 continue;
1da177e4 1328 }
b5810039 1329 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1330 tlb->fullmm);
1da177e4
LT
1331 tlb_remove_tlb_entry(tlb, pte, addr);
1332 if (unlikely(!page))
1333 continue;
eca56ff9
JM
1334
1335 if (!PageAnon(page)) {
1cf35d47
LT
1336 if (pte_dirty(ptent)) {
1337 force_flush = 1;
6237bcd9 1338 set_page_dirty(page);
1cf35d47 1339 }
4917e5d0 1340 if (pte_young(ptent) &&
64363aad 1341 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1342 mark_page_accessed(page);
6237bcd9 1343 }
eca56ff9 1344 rss[mm_counter(page)]--;
d281ee61 1345 page_remove_rmap(page, false);
3dc14741
HD
1346 if (unlikely(page_mapcount(page) < 0))
1347 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1348 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1349 force_flush = 1;
ce9ec37b 1350 addr += PAGE_SIZE;
d16dfc55 1351 break;
1cf35d47 1352 }
1da177e4
LT
1353 continue;
1354 }
5042db43
JG
1355
1356 entry = pte_to_swp_entry(ptent);
1357 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1358 struct page *page = device_private_entry_to_page(entry);
1359
1360 if (unlikely(details && details->check_mapping)) {
1361 /*
1362 * unmap_shared_mapping_pages() wants to
1363 * invalidate cache without truncating:
1364 * unmap shared but keep private pages.
1365 */
1366 if (details->check_mapping !=
1367 page_rmapping(page))
1368 continue;
1369 }
1370
1371 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1372 rss[mm_counter(page)]--;
1373 page_remove_rmap(page, false);
1374 put_page(page);
1375 continue;
1376 }
1377
3e8715fd
KS
1378 /* If details->check_mapping, we leave swap entries. */
1379 if (unlikely(details))
1da177e4 1380 continue;
b084d435 1381
8a5f14a2
KS
1382 entry = pte_to_swp_entry(ptent);
1383 if (!non_swap_entry(entry))
1384 rss[MM_SWAPENTS]--;
1385 else if (is_migration_entry(entry)) {
1386 struct page *page;
9f9f1acd 1387
8a5f14a2 1388 page = migration_entry_to_page(entry);
eca56ff9 1389 rss[mm_counter(page)]--;
b084d435 1390 }
8a5f14a2
KS
1391 if (unlikely(!free_swap_and_cache(entry)))
1392 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1393 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1394 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1395
d559db08 1396 add_mm_rss_vec(mm, rss);
6606c3e0 1397 arch_leave_lazy_mmu_mode();
51c6f666 1398
1cf35d47 1399 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1400 if (force_flush)
1cf35d47 1401 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1402 pte_unmap_unlock(start_pte, ptl);
1403
1404 /*
1405 * If we forced a TLB flush (either due to running out of
1406 * batch buffers or because we needed to flush dirty TLB
1407 * entries before releasing the ptl), free the batched
1408 * memory too. Restart if we didn't do everything.
1409 */
1410 if (force_flush) {
1411 force_flush = 0;
1412 tlb_flush_mmu_free(tlb);
2b047252 1413 if (addr != end)
d16dfc55
PZ
1414 goto again;
1415 }
1416
51c6f666 1417 return addr;
1da177e4
LT
1418}
1419
51c6f666 1420static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1421 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1422 unsigned long addr, unsigned long end,
97a89413 1423 struct zap_details *details)
1da177e4
LT
1424{
1425 pmd_t *pmd;
1426 unsigned long next;
1427
1428 pmd = pmd_offset(pud, addr);
1429 do {
1430 next = pmd_addr_end(addr, end);
84c3fc4e 1431 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1432 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1433 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1434 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1435 goto next;
71e3aac0
AA
1436 /* fall through */
1437 }
1a5a9906
AA
1438 /*
1439 * Here there can be other concurrent MADV_DONTNEED or
1440 * trans huge page faults running, and if the pmd is
1441 * none or trans huge it can change under us. This is
1442 * because MADV_DONTNEED holds the mmap_sem in read
1443 * mode.
1444 */
1445 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1446 goto next;
97a89413 1447 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1448next:
97a89413
PZ
1449 cond_resched();
1450 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1451
1452 return addr;
1da177e4
LT
1453}
1454
51c6f666 1455static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1456 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1457 unsigned long addr, unsigned long end,
97a89413 1458 struct zap_details *details)
1da177e4
LT
1459{
1460 pud_t *pud;
1461 unsigned long next;
1462
c2febafc 1463 pud = pud_offset(p4d, addr);
1da177e4
LT
1464 do {
1465 next = pud_addr_end(addr, end);
a00cc7d9
MW
1466 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1467 if (next - addr != HPAGE_PUD_SIZE) {
1468 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1469 split_huge_pud(vma, pud, addr);
1470 } else if (zap_huge_pud(tlb, vma, pud, addr))
1471 goto next;
1472 /* fall through */
1473 }
97a89413 1474 if (pud_none_or_clear_bad(pud))
1da177e4 1475 continue;
97a89413 1476 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1477next:
1478 cond_resched();
97a89413 1479 } while (pud++, addr = next, addr != end);
51c6f666
RH
1480
1481 return addr;
1da177e4
LT
1482}
1483
c2febafc
KS
1484static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1485 struct vm_area_struct *vma, pgd_t *pgd,
1486 unsigned long addr, unsigned long end,
1487 struct zap_details *details)
1488{
1489 p4d_t *p4d;
1490 unsigned long next;
1491
1492 p4d = p4d_offset(pgd, addr);
1493 do {
1494 next = p4d_addr_end(addr, end);
1495 if (p4d_none_or_clear_bad(p4d))
1496 continue;
1497 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1498 } while (p4d++, addr = next, addr != end);
1499
1500 return addr;
1501}
1502
aac45363 1503void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1504 struct vm_area_struct *vma,
1505 unsigned long addr, unsigned long end,
1506 struct zap_details *details)
1da177e4
LT
1507{
1508 pgd_t *pgd;
1509 unsigned long next;
1510
1da177e4
LT
1511 BUG_ON(addr >= end);
1512 tlb_start_vma(tlb, vma);
1513 pgd = pgd_offset(vma->vm_mm, addr);
1514 do {
1515 next = pgd_addr_end(addr, end);
97a89413 1516 if (pgd_none_or_clear_bad(pgd))
1da177e4 1517 continue;
c2febafc 1518 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1519 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1520 tlb_end_vma(tlb, vma);
1521}
51c6f666 1522
f5cc4eef
AV
1523
1524static void unmap_single_vma(struct mmu_gather *tlb,
1525 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1526 unsigned long end_addr,
f5cc4eef
AV
1527 struct zap_details *details)
1528{
1529 unsigned long start = max(vma->vm_start, start_addr);
1530 unsigned long end;
1531
1532 if (start >= vma->vm_end)
1533 return;
1534 end = min(vma->vm_end, end_addr);
1535 if (end <= vma->vm_start)
1536 return;
1537
cbc91f71
SD
1538 if (vma->vm_file)
1539 uprobe_munmap(vma, start, end);
1540
b3b9c293 1541 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1542 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1543
1544 if (start != end) {
1545 if (unlikely(is_vm_hugetlb_page(vma))) {
1546 /*
1547 * It is undesirable to test vma->vm_file as it
1548 * should be non-null for valid hugetlb area.
1549 * However, vm_file will be NULL in the error
7aa6b4ad 1550 * cleanup path of mmap_region. When
f5cc4eef 1551 * hugetlbfs ->mmap method fails,
7aa6b4ad 1552 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1553 * before calling this function to clean up.
1554 * Since no pte has actually been setup, it is
1555 * safe to do nothing in this case.
1556 */
24669e58 1557 if (vma->vm_file) {
83cde9e8 1558 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1559 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1560 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1561 }
f5cc4eef
AV
1562 } else
1563 unmap_page_range(tlb, vma, start, end, details);
1564 }
1da177e4
LT
1565}
1566
1da177e4
LT
1567/**
1568 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1569 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1570 * @vma: the starting vma
1571 * @start_addr: virtual address at which to start unmapping
1572 * @end_addr: virtual address at which to end unmapping
1da177e4 1573 *
508034a3 1574 * Unmap all pages in the vma list.
1da177e4 1575 *
1da177e4
LT
1576 * Only addresses between `start' and `end' will be unmapped.
1577 *
1578 * The VMA list must be sorted in ascending virtual address order.
1579 *
1580 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1581 * range after unmap_vmas() returns. So the only responsibility here is to
1582 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1583 * drops the lock and schedules.
1584 */
6e8bb019 1585void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1586 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1587 unsigned long end_addr)
1da177e4 1588{
cddb8a5c 1589 struct mm_struct *mm = vma->vm_mm;
1da177e4 1590
cddb8a5c 1591 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1592 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1593 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1594 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1595}
1596
1597/**
1598 * zap_page_range - remove user pages in a given range
1599 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1600 * @start: starting address of pages to zap
1da177e4 1601 * @size: number of bytes to zap
f5cc4eef
AV
1602 *
1603 * Caller must protect the VMA list
1da177e4 1604 */
7e027b14 1605void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1606 unsigned long size)
1da177e4
LT
1607{
1608 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1609 struct mmu_gather tlb;
7e027b14 1610 unsigned long end = start + size;
1da177e4 1611
1da177e4 1612 lru_add_drain();
2b047252 1613 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1614 update_hiwater_rss(mm);
7e027b14 1615 mmu_notifier_invalidate_range_start(mm, start, end);
4647706e 1616 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
ecf1385d 1617 unmap_single_vma(&tlb, vma, start, end, NULL);
4647706e
MG
1618
1619 /*
1620 * zap_page_range does not specify whether mmap_sem should be
1621 * held for read or write. That allows parallel zap_page_range
1622 * operations to unmap a PTE and defer a flush meaning that
1623 * this call observes pte_none and fails to flush the TLB.
1624 * Rather than adding a complex API, ensure that no stale
1625 * TLB entries exist when this call returns.
1626 */
1627 flush_tlb_range(vma, start, end);
1628 }
1629
7e027b14
LT
1630 mmu_notifier_invalidate_range_end(mm, start, end);
1631 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1632}
1633
f5cc4eef
AV
1634/**
1635 * zap_page_range_single - remove user pages in a given range
1636 * @vma: vm_area_struct holding the applicable pages
1637 * @address: starting address of pages to zap
1638 * @size: number of bytes to zap
8a5f14a2 1639 * @details: details of shared cache invalidation
f5cc4eef
AV
1640 *
1641 * The range must fit into one VMA.
1da177e4 1642 */
f5cc4eef 1643static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1644 unsigned long size, struct zap_details *details)
1645{
1646 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1647 struct mmu_gather tlb;
1da177e4 1648 unsigned long end = address + size;
1da177e4 1649
1da177e4 1650 lru_add_drain();
2b047252 1651 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1652 update_hiwater_rss(mm);
f5cc4eef 1653 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1654 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1655 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1656 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1657}
1658
c627f9cc
JS
1659/**
1660 * zap_vma_ptes - remove ptes mapping the vma
1661 * @vma: vm_area_struct holding ptes to be zapped
1662 * @address: starting address of pages to zap
1663 * @size: number of bytes to zap
1664 *
1665 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1666 *
1667 * The entire address range must be fully contained within the vma.
1668 *
c627f9cc 1669 */
27d036e3 1670void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1671 unsigned long size)
1672{
1673 if (address < vma->vm_start || address + size > vma->vm_end ||
1674 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1675 return;
1676
f5cc4eef 1677 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1678}
1679EXPORT_SYMBOL_GPL(zap_vma_ptes);
1680
25ca1d6c 1681pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1682 spinlock_t **ptl)
c9cfcddf 1683{
c2febafc
KS
1684 pgd_t *pgd;
1685 p4d_t *p4d;
1686 pud_t *pud;
1687 pmd_t *pmd;
1688
1689 pgd = pgd_offset(mm, addr);
1690 p4d = p4d_alloc(mm, pgd, addr);
1691 if (!p4d)
1692 return NULL;
1693 pud = pud_alloc(mm, p4d, addr);
1694 if (!pud)
1695 return NULL;
1696 pmd = pmd_alloc(mm, pud, addr);
1697 if (!pmd)
1698 return NULL;
1699
1700 VM_BUG_ON(pmd_trans_huge(*pmd));
1701 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1702}
1703
238f58d8
LT
1704/*
1705 * This is the old fallback for page remapping.
1706 *
1707 * For historical reasons, it only allows reserved pages. Only
1708 * old drivers should use this, and they needed to mark their
1709 * pages reserved for the old functions anyway.
1710 */
423bad60
NP
1711static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1712 struct page *page, pgprot_t prot)
238f58d8 1713{
423bad60 1714 struct mm_struct *mm = vma->vm_mm;
238f58d8 1715 int retval;
c9cfcddf 1716 pte_t *pte;
8a9f3ccd
BS
1717 spinlock_t *ptl;
1718
238f58d8 1719 retval = -EINVAL;
a145dd41 1720 if (PageAnon(page))
5b4e655e 1721 goto out;
238f58d8
LT
1722 retval = -ENOMEM;
1723 flush_dcache_page(page);
c9cfcddf 1724 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1725 if (!pte)
5b4e655e 1726 goto out;
238f58d8
LT
1727 retval = -EBUSY;
1728 if (!pte_none(*pte))
1729 goto out_unlock;
1730
1731 /* Ok, finally just insert the thing.. */
1732 get_page(page);
eca56ff9 1733 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1734 page_add_file_rmap(page, false);
238f58d8
LT
1735 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1736
1737 retval = 0;
8a9f3ccd
BS
1738 pte_unmap_unlock(pte, ptl);
1739 return retval;
238f58d8
LT
1740out_unlock:
1741 pte_unmap_unlock(pte, ptl);
1742out:
1743 return retval;
1744}
1745
bfa5bf6d
REB
1746/**
1747 * vm_insert_page - insert single page into user vma
1748 * @vma: user vma to map to
1749 * @addr: target user address of this page
1750 * @page: source kernel page
1751 *
a145dd41
LT
1752 * This allows drivers to insert individual pages they've allocated
1753 * into a user vma.
1754 *
1755 * The page has to be a nice clean _individual_ kernel allocation.
1756 * If you allocate a compound page, you need to have marked it as
1757 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1758 * (see split_page()).
a145dd41
LT
1759 *
1760 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1761 * took an arbitrary page protection parameter. This doesn't allow
1762 * that. Your vma protection will have to be set up correctly, which
1763 * means that if you want a shared writable mapping, you'd better
1764 * ask for a shared writable mapping!
1765 *
1766 * The page does not need to be reserved.
4b6e1e37
KK
1767 *
1768 * Usually this function is called from f_op->mmap() handler
1769 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1770 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1771 * function from other places, for example from page-fault handler.
a145dd41 1772 */
423bad60
NP
1773int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1774 struct page *page)
a145dd41
LT
1775{
1776 if (addr < vma->vm_start || addr >= vma->vm_end)
1777 return -EFAULT;
1778 if (!page_count(page))
1779 return -EINVAL;
4b6e1e37
KK
1780 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1781 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1782 BUG_ON(vma->vm_flags & VM_PFNMAP);
1783 vma->vm_flags |= VM_MIXEDMAP;
1784 }
423bad60 1785 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1786}
e3c3374f 1787EXPORT_SYMBOL(vm_insert_page);
a145dd41 1788
423bad60 1789static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1790 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1791{
1792 struct mm_struct *mm = vma->vm_mm;
1793 int retval;
1794 pte_t *pte, entry;
1795 spinlock_t *ptl;
1796
1797 retval = -ENOMEM;
1798 pte = get_locked_pte(mm, addr, &ptl);
1799 if (!pte)
1800 goto out;
1801 retval = -EBUSY;
b2770da6
RZ
1802 if (!pte_none(*pte)) {
1803 if (mkwrite) {
1804 /*
1805 * For read faults on private mappings the PFN passed
1806 * in may not match the PFN we have mapped if the
1807 * mapped PFN is a writeable COW page. In the mkwrite
1808 * case we are creating a writable PTE for a shared
1809 * mapping and we expect the PFNs to match.
1810 */
1811 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1812 goto out_unlock;
1813 entry = *pte;
1814 goto out_mkwrite;
1815 } else
1816 goto out_unlock;
1817 }
423bad60
NP
1818
1819 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1820 if (pfn_t_devmap(pfn))
1821 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1822 else
1823 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6
RZ
1824
1825out_mkwrite:
1826 if (mkwrite) {
1827 entry = pte_mkyoung(entry);
1828 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1829 }
1830
423bad60 1831 set_pte_at(mm, addr, pte, entry);
4b3073e1 1832 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1833
1834 retval = 0;
1835out_unlock:
1836 pte_unmap_unlock(pte, ptl);
1837out:
1838 return retval;
1839}
1840
e0dc0d8f
NP
1841/**
1842 * vm_insert_pfn - insert single pfn into user vma
1843 * @vma: user vma to map to
1844 * @addr: target user address of this page
1845 * @pfn: source kernel pfn
1846 *
c462f179 1847 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1848 * they've allocated into a user vma. Same comments apply.
1849 *
1850 * This function should only be called from a vm_ops->fault handler, and
1851 * in that case the handler should return NULL.
0d71d10a
NP
1852 *
1853 * vma cannot be a COW mapping.
1854 *
1855 * As this is called only for pages that do not currently exist, we
1856 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1857 */
1858int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1859 unsigned long pfn)
1745cbc5
AL
1860{
1861 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1862}
1863EXPORT_SYMBOL(vm_insert_pfn);
1864
1865/**
1866 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1867 * @vma: user vma to map to
1868 * @addr: target user address of this page
1869 * @pfn: source kernel pfn
1870 * @pgprot: pgprot flags for the inserted page
1871 *
1872 * This is exactly like vm_insert_pfn, except that it allows drivers to
1873 * to override pgprot on a per-page basis.
1874 *
1875 * This only makes sense for IO mappings, and it makes no sense for
1876 * cow mappings. In general, using multiple vmas is preferable;
1877 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1878 * impractical.
1879 */
1880int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1881 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1882{
2ab64037 1883 int ret;
7e675137
NP
1884 /*
1885 * Technically, architectures with pte_special can avoid all these
1886 * restrictions (same for remap_pfn_range). However we would like
1887 * consistency in testing and feature parity among all, so we should
1888 * try to keep these invariants in place for everybody.
1889 */
b379d790
JH
1890 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1891 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1892 (VM_PFNMAP|VM_MIXEDMAP));
1893 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1894 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1895
423bad60
NP
1896 if (addr < vma->vm_start || addr >= vma->vm_end)
1897 return -EFAULT;
308a047c 1898
42e4089c
AK
1899 if (!pfn_modify_allowed(pfn, pgprot))
1900 return -EACCES;
1901
308a047c 1902 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1903
b2770da6
RZ
1904 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1905 false);
2ab64037 1906
2ab64037 1907 return ret;
423bad60 1908}
1745cbc5 1909EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1910
785a3fab
DW
1911static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1912{
1913 /* these checks mirror the abort conditions in vm_normal_page */
1914 if (vma->vm_flags & VM_MIXEDMAP)
1915 return true;
1916 if (pfn_t_devmap(pfn))
1917 return true;
1918 if (pfn_t_special(pfn))
1919 return true;
1920 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1921 return true;
1922 return false;
1923}
1924
b2770da6
RZ
1925static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1926 pfn_t pfn, bool mkwrite)
423bad60 1927{
87744ab3
DW
1928 pgprot_t pgprot = vma->vm_page_prot;
1929
785a3fab 1930 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1931
423bad60
NP
1932 if (addr < vma->vm_start || addr >= vma->vm_end)
1933 return -EFAULT;
308a047c
BP
1934
1935 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1936
42e4089c
AK
1937 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1938 return -EACCES;
1939
423bad60
NP
1940 /*
1941 * If we don't have pte special, then we have to use the pfn_valid()
1942 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1943 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1944 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1945 * without pte special, it would there be refcounted as a normal page.
423bad60 1946 */
00b3a331
LD
1947 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1948 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1949 struct page *page;
1950
03fc2da6
DW
1951 /*
1952 * At this point we are committed to insert_page()
1953 * regardless of whether the caller specified flags that
1954 * result in pfn_t_has_page() == false.
1955 */
1956 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1957 return insert_page(vma, addr, page, pgprot);
423bad60 1958 }
b2770da6
RZ
1959 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1960}
1961
1962int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1963 pfn_t pfn)
1964{
1965 return __vm_insert_mixed(vma, addr, pfn, false);
1966
e0dc0d8f 1967}
423bad60 1968EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1969
ab77dab4
SJ
1970/*
1971 * If the insertion of PTE failed because someone else already added a
1972 * different entry in the mean time, we treat that as success as we assume
1973 * the same entry was actually inserted.
1974 */
1975
1976vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1977 unsigned long addr, pfn_t pfn)
b2770da6 1978{
ab77dab4
SJ
1979 int err;
1980
1981 err = __vm_insert_mixed(vma, addr, pfn, true);
1982 if (err == -ENOMEM)
1983 return VM_FAULT_OOM;
1984 if (err < 0 && err != -EBUSY)
1985 return VM_FAULT_SIGBUS;
1986 return VM_FAULT_NOPAGE;
b2770da6 1987}
ab77dab4 1988EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1989
1da177e4
LT
1990/*
1991 * maps a range of physical memory into the requested pages. the old
1992 * mappings are removed. any references to nonexistent pages results
1993 * in null mappings (currently treated as "copy-on-access")
1994 */
1995static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1996 unsigned long addr, unsigned long end,
1997 unsigned long pfn, pgprot_t prot)
1998{
1999 pte_t *pte;
c74df32c 2000 spinlock_t *ptl;
42e4089c 2001 int err = 0;
1da177e4 2002
c74df32c 2003 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2004 if (!pte)
2005 return -ENOMEM;
6606c3e0 2006 arch_enter_lazy_mmu_mode();
1da177e4
LT
2007 do {
2008 BUG_ON(!pte_none(*pte));
42e4089c
AK
2009 if (!pfn_modify_allowed(pfn, prot)) {
2010 err = -EACCES;
2011 break;
2012 }
7e675137 2013 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2014 pfn++;
2015 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2016 arch_leave_lazy_mmu_mode();
c74df32c 2017 pte_unmap_unlock(pte - 1, ptl);
42e4089c 2018 return err;
1da177e4
LT
2019}
2020
2021static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2022 unsigned long addr, unsigned long end,
2023 unsigned long pfn, pgprot_t prot)
2024{
2025 pmd_t *pmd;
2026 unsigned long next;
42e4089c 2027 int err;
1da177e4
LT
2028
2029 pfn -= addr >> PAGE_SHIFT;
2030 pmd = pmd_alloc(mm, pud, addr);
2031 if (!pmd)
2032 return -ENOMEM;
f66055ab 2033 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2034 do {
2035 next = pmd_addr_end(addr, end);
42e4089c
AK
2036 err = remap_pte_range(mm, pmd, addr, next,
2037 pfn + (addr >> PAGE_SHIFT), prot);
2038 if (err)
2039 return err;
1da177e4
LT
2040 } while (pmd++, addr = next, addr != end);
2041 return 0;
2042}
2043
c2febafc 2044static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2045 unsigned long addr, unsigned long end,
2046 unsigned long pfn, pgprot_t prot)
2047{
2048 pud_t *pud;
2049 unsigned long next;
42e4089c 2050 int err;
1da177e4
LT
2051
2052 pfn -= addr >> PAGE_SHIFT;
c2febafc 2053 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2054 if (!pud)
2055 return -ENOMEM;
2056 do {
2057 next = pud_addr_end(addr, end);
42e4089c
AK
2058 err = remap_pmd_range(mm, pud, addr, next,
2059 pfn + (addr >> PAGE_SHIFT), prot);
2060 if (err)
2061 return err;
1da177e4
LT
2062 } while (pud++, addr = next, addr != end);
2063 return 0;
2064}
2065
c2febafc
KS
2066static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2067 unsigned long addr, unsigned long end,
2068 unsigned long pfn, pgprot_t prot)
2069{
2070 p4d_t *p4d;
2071 unsigned long next;
42e4089c 2072 int err;
c2febafc
KS
2073
2074 pfn -= addr >> PAGE_SHIFT;
2075 p4d = p4d_alloc(mm, pgd, addr);
2076 if (!p4d)
2077 return -ENOMEM;
2078 do {
2079 next = p4d_addr_end(addr, end);
42e4089c
AK
2080 err = remap_pud_range(mm, p4d, addr, next,
2081 pfn + (addr >> PAGE_SHIFT), prot);
2082 if (err)
2083 return err;
c2febafc
KS
2084 } while (p4d++, addr = next, addr != end);
2085 return 0;
2086}
2087
bfa5bf6d
REB
2088/**
2089 * remap_pfn_range - remap kernel memory to userspace
2090 * @vma: user vma to map to
2091 * @addr: target user address to start at
2092 * @pfn: physical address of kernel memory
2093 * @size: size of map area
2094 * @prot: page protection flags for this mapping
2095 *
2096 * Note: this is only safe if the mm semaphore is held when called.
2097 */
1da177e4
LT
2098int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2099 unsigned long pfn, unsigned long size, pgprot_t prot)
2100{
2101 pgd_t *pgd;
2102 unsigned long next;
2d15cab8 2103 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2104 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2105 unsigned long remap_pfn = pfn;
1da177e4
LT
2106 int err;
2107
2108 /*
2109 * Physically remapped pages are special. Tell the
2110 * rest of the world about it:
2111 * VM_IO tells people not to look at these pages
2112 * (accesses can have side effects).
6aab341e
LT
2113 * VM_PFNMAP tells the core MM that the base pages are just
2114 * raw PFN mappings, and do not have a "struct page" associated
2115 * with them.
314e51b9
KK
2116 * VM_DONTEXPAND
2117 * Disable vma merging and expanding with mremap().
2118 * VM_DONTDUMP
2119 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2120 *
2121 * There's a horrible special case to handle copy-on-write
2122 * behaviour that some programs depend on. We mark the "original"
2123 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2124 * See vm_normal_page() for details.
1da177e4 2125 */
b3b9c293
KK
2126 if (is_cow_mapping(vma->vm_flags)) {
2127 if (addr != vma->vm_start || end != vma->vm_end)
2128 return -EINVAL;
fb155c16 2129 vma->vm_pgoff = pfn;
b3b9c293
KK
2130 }
2131
d5957d2f 2132 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2133 if (err)
3c8bb73a 2134 return -EINVAL;
fb155c16 2135
314e51b9 2136 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2137
2138 BUG_ON(addr >= end);
2139 pfn -= addr >> PAGE_SHIFT;
2140 pgd = pgd_offset(mm, addr);
2141 flush_cache_range(vma, addr, end);
1da177e4
LT
2142 do {
2143 next = pgd_addr_end(addr, end);
c2febafc 2144 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2145 pfn + (addr >> PAGE_SHIFT), prot);
2146 if (err)
2147 break;
2148 } while (pgd++, addr = next, addr != end);
2ab64037 2149
2150 if (err)
d5957d2f 2151 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2152
1da177e4
LT
2153 return err;
2154}
2155EXPORT_SYMBOL(remap_pfn_range);
2156
b4cbb197
LT
2157/**
2158 * vm_iomap_memory - remap memory to userspace
2159 * @vma: user vma to map to
2160 * @start: start of area
2161 * @len: size of area
2162 *
2163 * This is a simplified io_remap_pfn_range() for common driver use. The
2164 * driver just needs to give us the physical memory range to be mapped,
2165 * we'll figure out the rest from the vma information.
2166 *
2167 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2168 * whatever write-combining details or similar.
2169 */
2170int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2171{
2172 unsigned long vm_len, pfn, pages;
2173
2174 /* Check that the physical memory area passed in looks valid */
2175 if (start + len < start)
2176 return -EINVAL;
2177 /*
2178 * You *really* shouldn't map things that aren't page-aligned,
2179 * but we've historically allowed it because IO memory might
2180 * just have smaller alignment.
2181 */
2182 len += start & ~PAGE_MASK;
2183 pfn = start >> PAGE_SHIFT;
2184 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2185 if (pfn + pages < pfn)
2186 return -EINVAL;
2187
2188 /* We start the mapping 'vm_pgoff' pages into the area */
2189 if (vma->vm_pgoff > pages)
2190 return -EINVAL;
2191 pfn += vma->vm_pgoff;
2192 pages -= vma->vm_pgoff;
2193
2194 /* Can we fit all of the mapping? */
2195 vm_len = vma->vm_end - vma->vm_start;
2196 if (vm_len >> PAGE_SHIFT > pages)
2197 return -EINVAL;
2198
2199 /* Ok, let it rip */
2200 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2201}
2202EXPORT_SYMBOL(vm_iomap_memory);
2203
aee16b3c
JF
2204static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2205 unsigned long addr, unsigned long end,
2206 pte_fn_t fn, void *data)
2207{
2208 pte_t *pte;
2209 int err;
2f569afd 2210 pgtable_t token;
94909914 2211 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2212
2213 pte = (mm == &init_mm) ?
2214 pte_alloc_kernel(pmd, addr) :
2215 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2216 if (!pte)
2217 return -ENOMEM;
2218
2219 BUG_ON(pmd_huge(*pmd));
2220
38e0edb1
JF
2221 arch_enter_lazy_mmu_mode();
2222
2f569afd 2223 token = pmd_pgtable(*pmd);
aee16b3c
JF
2224
2225 do {
c36987e2 2226 err = fn(pte++, token, addr, data);
aee16b3c
JF
2227 if (err)
2228 break;
c36987e2 2229 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2230
38e0edb1
JF
2231 arch_leave_lazy_mmu_mode();
2232
aee16b3c
JF
2233 if (mm != &init_mm)
2234 pte_unmap_unlock(pte-1, ptl);
2235 return err;
2236}
2237
2238static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2239 unsigned long addr, unsigned long end,
2240 pte_fn_t fn, void *data)
2241{
2242 pmd_t *pmd;
2243 unsigned long next;
2244 int err;
2245
ceb86879
AK
2246 BUG_ON(pud_huge(*pud));
2247
aee16b3c
JF
2248 pmd = pmd_alloc(mm, pud, addr);
2249 if (!pmd)
2250 return -ENOMEM;
2251 do {
2252 next = pmd_addr_end(addr, end);
2253 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2254 if (err)
2255 break;
2256 } while (pmd++, addr = next, addr != end);
2257 return err;
2258}
2259
c2febafc 2260static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2261 unsigned long addr, unsigned long end,
2262 pte_fn_t fn, void *data)
2263{
2264 pud_t *pud;
2265 unsigned long next;
2266 int err;
2267
c2febafc 2268 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2269 if (!pud)
2270 return -ENOMEM;
2271 do {
2272 next = pud_addr_end(addr, end);
2273 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2274 if (err)
2275 break;
2276 } while (pud++, addr = next, addr != end);
2277 return err;
2278}
2279
c2febafc
KS
2280static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2281 unsigned long addr, unsigned long end,
2282 pte_fn_t fn, void *data)
2283{
2284 p4d_t *p4d;
2285 unsigned long next;
2286 int err;
2287
2288 p4d = p4d_alloc(mm, pgd, addr);
2289 if (!p4d)
2290 return -ENOMEM;
2291 do {
2292 next = p4d_addr_end(addr, end);
2293 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2294 if (err)
2295 break;
2296 } while (p4d++, addr = next, addr != end);
2297 return err;
2298}
2299
aee16b3c
JF
2300/*
2301 * Scan a region of virtual memory, filling in page tables as necessary
2302 * and calling a provided function on each leaf page table.
2303 */
2304int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2305 unsigned long size, pte_fn_t fn, void *data)
2306{
2307 pgd_t *pgd;
2308 unsigned long next;
57250a5b 2309 unsigned long end = addr + size;
aee16b3c
JF
2310 int err;
2311
9cb65bc3
MP
2312 if (WARN_ON(addr >= end))
2313 return -EINVAL;
2314
aee16b3c
JF
2315 pgd = pgd_offset(mm, addr);
2316 do {
2317 next = pgd_addr_end(addr, end);
c2febafc 2318 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2319 if (err)
2320 break;
2321 } while (pgd++, addr = next, addr != end);
57250a5b 2322
aee16b3c
JF
2323 return err;
2324}
2325EXPORT_SYMBOL_GPL(apply_to_page_range);
2326
8f4e2101 2327/*
9b4bdd2f
KS
2328 * handle_pte_fault chooses page fault handler according to an entry which was
2329 * read non-atomically. Before making any commitment, on those architectures
2330 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2331 * parts, do_swap_page must check under lock before unmapping the pte and
2332 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2333 * and do_anonymous_page can safely check later on).
8f4e2101 2334 */
4c21e2f2 2335static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2336 pte_t *page_table, pte_t orig_pte)
2337{
2338 int same = 1;
2339#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2340 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2341 spinlock_t *ptl = pte_lockptr(mm, pmd);
2342 spin_lock(ptl);
8f4e2101 2343 same = pte_same(*page_table, orig_pte);
4c21e2f2 2344 spin_unlock(ptl);
8f4e2101
HD
2345 }
2346#endif
2347 pte_unmap(page_table);
2348 return same;
2349}
2350
9de455b2 2351static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2352{
0abdd7a8
DW
2353 debug_dma_assert_idle(src);
2354
6aab341e
LT
2355 /*
2356 * If the source page was a PFN mapping, we don't have
2357 * a "struct page" for it. We do a best-effort copy by
2358 * just copying from the original user address. If that
2359 * fails, we just zero-fill it. Live with it.
2360 */
2361 if (unlikely(!src)) {
9b04c5fe 2362 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2363 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2364
2365 /*
2366 * This really shouldn't fail, because the page is there
2367 * in the page tables. But it might just be unreadable,
2368 * in which case we just give up and fill the result with
2369 * zeroes.
2370 */
2371 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2372 clear_page(kaddr);
9b04c5fe 2373 kunmap_atomic(kaddr);
c4ec7b0d 2374 flush_dcache_page(dst);
0ed361de
NP
2375 } else
2376 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2377}
2378
c20cd45e
MH
2379static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2380{
2381 struct file *vm_file = vma->vm_file;
2382
2383 if (vm_file)
2384 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2385
2386 /*
2387 * Special mappings (e.g. VDSO) do not have any file so fake
2388 * a default GFP_KERNEL for them.
2389 */
2390 return GFP_KERNEL;
2391}
2392
fb09a464
KS
2393/*
2394 * Notify the address space that the page is about to become writable so that
2395 * it can prohibit this or wait for the page to get into an appropriate state.
2396 *
2397 * We do this without the lock held, so that it can sleep if it needs to.
2398 */
38b8cb7f 2399static int do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2400{
fb09a464 2401 int ret;
38b8cb7f
JK
2402 struct page *page = vmf->page;
2403 unsigned int old_flags = vmf->flags;
fb09a464 2404
38b8cb7f 2405 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2406
11bac800 2407 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2408 /* Restore original flags so that caller is not surprised */
2409 vmf->flags = old_flags;
fb09a464
KS
2410 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2411 return ret;
2412 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2413 lock_page(page);
2414 if (!page->mapping) {
2415 unlock_page(page);
2416 return 0; /* retry */
2417 }
2418 ret |= VM_FAULT_LOCKED;
2419 } else
2420 VM_BUG_ON_PAGE(!PageLocked(page), page);
2421 return ret;
2422}
2423
97ba0c2b
JK
2424/*
2425 * Handle dirtying of a page in shared file mapping on a write fault.
2426 *
2427 * The function expects the page to be locked and unlocks it.
2428 */
2429static void fault_dirty_shared_page(struct vm_area_struct *vma,
2430 struct page *page)
2431{
2432 struct address_space *mapping;
2433 bool dirtied;
2434 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2435
2436 dirtied = set_page_dirty(page);
2437 VM_BUG_ON_PAGE(PageAnon(page), page);
2438 /*
2439 * Take a local copy of the address_space - page.mapping may be zeroed
2440 * by truncate after unlock_page(). The address_space itself remains
2441 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2442 * release semantics to prevent the compiler from undoing this copying.
2443 */
2444 mapping = page_rmapping(page);
2445 unlock_page(page);
2446
2447 if ((dirtied || page_mkwrite) && mapping) {
2448 /*
2449 * Some device drivers do not set page.mapping
2450 * but still dirty their pages
2451 */
2452 balance_dirty_pages_ratelimited(mapping);
2453 }
2454
2455 if (!page_mkwrite)
2456 file_update_time(vma->vm_file);
2457}
2458
4e047f89
SR
2459/*
2460 * Handle write page faults for pages that can be reused in the current vma
2461 *
2462 * This can happen either due to the mapping being with the VM_SHARED flag,
2463 * or due to us being the last reference standing to the page. In either
2464 * case, all we need to do here is to mark the page as writable and update
2465 * any related book-keeping.
2466 */
997dd98d 2467static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2468 __releases(vmf->ptl)
4e047f89 2469{
82b0f8c3 2470 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2471 struct page *page = vmf->page;
4e047f89
SR
2472 pte_t entry;
2473 /*
2474 * Clear the pages cpupid information as the existing
2475 * information potentially belongs to a now completely
2476 * unrelated process.
2477 */
2478 if (page)
2479 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2480
2994302b
JK
2481 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2482 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2483 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2484 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2485 update_mmu_cache(vma, vmf->address, vmf->pte);
2486 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2487}
2488
2f38ab2c
SR
2489/*
2490 * Handle the case of a page which we actually need to copy to a new page.
2491 *
2492 * Called with mmap_sem locked and the old page referenced, but
2493 * without the ptl held.
2494 *
2495 * High level logic flow:
2496 *
2497 * - Allocate a page, copy the content of the old page to the new one.
2498 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2499 * - Take the PTL. If the pte changed, bail out and release the allocated page
2500 * - If the pte is still the way we remember it, update the page table and all
2501 * relevant references. This includes dropping the reference the page-table
2502 * held to the old page, as well as updating the rmap.
2503 * - In any case, unlock the PTL and drop the reference we took to the old page.
2504 */
a41b70d6 2505static int wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2506{
82b0f8c3 2507 struct vm_area_struct *vma = vmf->vma;
bae473a4 2508 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2509 struct page *old_page = vmf->page;
2f38ab2c 2510 struct page *new_page = NULL;
2f38ab2c
SR
2511 pte_t entry;
2512 int page_copied = 0;
82b0f8c3 2513 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2514 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2515 struct mem_cgroup *memcg;
2516
2517 if (unlikely(anon_vma_prepare(vma)))
2518 goto oom;
2519
2994302b 2520 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2521 new_page = alloc_zeroed_user_highpage_movable(vma,
2522 vmf->address);
2f38ab2c
SR
2523 if (!new_page)
2524 goto oom;
2525 } else {
bae473a4 2526 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2527 vmf->address);
2f38ab2c
SR
2528 if (!new_page)
2529 goto oom;
82b0f8c3 2530 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2531 }
2f38ab2c 2532
2cf85583 2533 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2534 goto oom_free_new;
2535
eb3c24f3
MG
2536 __SetPageUptodate(new_page);
2537
2f38ab2c
SR
2538 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2539
2540 /*
2541 * Re-check the pte - we dropped the lock
2542 */
82b0f8c3 2543 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2544 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2545 if (old_page) {
2546 if (!PageAnon(old_page)) {
eca56ff9
JM
2547 dec_mm_counter_fast(mm,
2548 mm_counter_file(old_page));
2f38ab2c
SR
2549 inc_mm_counter_fast(mm, MM_ANONPAGES);
2550 }
2551 } else {
2552 inc_mm_counter_fast(mm, MM_ANONPAGES);
2553 }
2994302b 2554 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2555 entry = mk_pte(new_page, vma->vm_page_prot);
2556 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2557 /*
2558 * Clear the pte entry and flush it first, before updating the
2559 * pte with the new entry. This will avoid a race condition
2560 * seen in the presence of one thread doing SMC and another
2561 * thread doing COW.
2562 */
82b0f8c3
JK
2563 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2564 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2565 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2566 lru_cache_add_active_or_unevictable(new_page, vma);
2567 /*
2568 * We call the notify macro here because, when using secondary
2569 * mmu page tables (such as kvm shadow page tables), we want the
2570 * new page to be mapped directly into the secondary page table.
2571 */
82b0f8c3
JK
2572 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2573 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2574 if (old_page) {
2575 /*
2576 * Only after switching the pte to the new page may
2577 * we remove the mapcount here. Otherwise another
2578 * process may come and find the rmap count decremented
2579 * before the pte is switched to the new page, and
2580 * "reuse" the old page writing into it while our pte
2581 * here still points into it and can be read by other
2582 * threads.
2583 *
2584 * The critical issue is to order this
2585 * page_remove_rmap with the ptp_clear_flush above.
2586 * Those stores are ordered by (if nothing else,)
2587 * the barrier present in the atomic_add_negative
2588 * in page_remove_rmap.
2589 *
2590 * Then the TLB flush in ptep_clear_flush ensures that
2591 * no process can access the old page before the
2592 * decremented mapcount is visible. And the old page
2593 * cannot be reused until after the decremented
2594 * mapcount is visible. So transitively, TLBs to
2595 * old page will be flushed before it can be reused.
2596 */
d281ee61 2597 page_remove_rmap(old_page, false);
2f38ab2c
SR
2598 }
2599
2600 /* Free the old page.. */
2601 new_page = old_page;
2602 page_copied = 1;
2603 } else {
f627c2f5 2604 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2605 }
2606
2607 if (new_page)
09cbfeaf 2608 put_page(new_page);
2f38ab2c 2609
82b0f8c3 2610 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2611 /*
2612 * No need to double call mmu_notifier->invalidate_range() callback as
2613 * the above ptep_clear_flush_notify() did already call it.
2614 */
2615 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2f38ab2c
SR
2616 if (old_page) {
2617 /*
2618 * Don't let another task, with possibly unlocked vma,
2619 * keep the mlocked page.
2620 */
2621 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2622 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2623 if (PageMlocked(old_page))
2624 munlock_vma_page(old_page);
2f38ab2c
SR
2625 unlock_page(old_page);
2626 }
09cbfeaf 2627 put_page(old_page);
2f38ab2c
SR
2628 }
2629 return page_copied ? VM_FAULT_WRITE : 0;
2630oom_free_new:
09cbfeaf 2631 put_page(new_page);
2f38ab2c
SR
2632oom:
2633 if (old_page)
09cbfeaf 2634 put_page(old_page);
2f38ab2c
SR
2635 return VM_FAULT_OOM;
2636}
2637
66a6197c
JK
2638/**
2639 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2640 * writeable once the page is prepared
2641 *
2642 * @vmf: structure describing the fault
2643 *
2644 * This function handles all that is needed to finish a write page fault in a
2645 * shared mapping due to PTE being read-only once the mapped page is prepared.
2646 * It handles locking of PTE and modifying it. The function returns
2647 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2648 * lock.
2649 *
2650 * The function expects the page to be locked or other protection against
2651 * concurrent faults / writeback (such as DAX radix tree locks).
2652 */
2653int finish_mkwrite_fault(struct vm_fault *vmf)
2654{
2655 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2656 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2657 &vmf->ptl);
2658 /*
2659 * We might have raced with another page fault while we released the
2660 * pte_offset_map_lock.
2661 */
2662 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2663 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2664 return VM_FAULT_NOPAGE;
66a6197c
JK
2665 }
2666 wp_page_reuse(vmf);
a19e2553 2667 return 0;
66a6197c
JK
2668}
2669
dd906184
BH
2670/*
2671 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2672 * mapping
2673 */
2994302b 2674static int wp_pfn_shared(struct vm_fault *vmf)
dd906184 2675{
82b0f8c3 2676 struct vm_area_struct *vma = vmf->vma;
bae473a4 2677
dd906184 2678 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
dd906184
BH
2679 int ret;
2680
82b0f8c3 2681 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2682 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2683 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2684 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2685 return ret;
66a6197c 2686 return finish_mkwrite_fault(vmf);
dd906184 2687 }
997dd98d
JK
2688 wp_page_reuse(vmf);
2689 return VM_FAULT_WRITE;
dd906184
BH
2690}
2691
a41b70d6 2692static int wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2693 __releases(vmf->ptl)
93e478d4 2694{
82b0f8c3 2695 struct vm_area_struct *vma = vmf->vma;
93e478d4 2696
a41b70d6 2697 get_page(vmf->page);
93e478d4 2698
93e478d4
SR
2699 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2700 int tmp;
2701
82b0f8c3 2702 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2703 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2704 if (unlikely(!tmp || (tmp &
2705 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2706 put_page(vmf->page);
93e478d4
SR
2707 return tmp;
2708 }
66a6197c 2709 tmp = finish_mkwrite_fault(vmf);
a19e2553 2710 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2711 unlock_page(vmf->page);
a41b70d6 2712 put_page(vmf->page);
66a6197c 2713 return tmp;
93e478d4 2714 }
66a6197c
JK
2715 } else {
2716 wp_page_reuse(vmf);
997dd98d 2717 lock_page(vmf->page);
93e478d4 2718 }
997dd98d
JK
2719 fault_dirty_shared_page(vma, vmf->page);
2720 put_page(vmf->page);
93e478d4 2721
997dd98d 2722 return VM_FAULT_WRITE;
93e478d4
SR
2723}
2724
1da177e4
LT
2725/*
2726 * This routine handles present pages, when users try to write
2727 * to a shared page. It is done by copying the page to a new address
2728 * and decrementing the shared-page counter for the old page.
2729 *
1da177e4
LT
2730 * Note that this routine assumes that the protection checks have been
2731 * done by the caller (the low-level page fault routine in most cases).
2732 * Thus we can safely just mark it writable once we've done any necessary
2733 * COW.
2734 *
2735 * We also mark the page dirty at this point even though the page will
2736 * change only once the write actually happens. This avoids a few races,
2737 * and potentially makes it more efficient.
2738 *
8f4e2101
HD
2739 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2740 * but allow concurrent faults), with pte both mapped and locked.
2741 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2742 */
2994302b 2743static int do_wp_page(struct vm_fault *vmf)
82b0f8c3 2744 __releases(vmf->ptl)
1da177e4 2745{
82b0f8c3 2746 struct vm_area_struct *vma = vmf->vma;
1da177e4 2747
a41b70d6
JK
2748 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2749 if (!vmf->page) {
251b97f5 2750 /*
64e45507
PF
2751 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2752 * VM_PFNMAP VMA.
251b97f5
PZ
2753 *
2754 * We should not cow pages in a shared writeable mapping.
dd906184 2755 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2756 */
2757 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2758 (VM_WRITE|VM_SHARED))
2994302b 2759 return wp_pfn_shared(vmf);
2f38ab2c 2760
82b0f8c3 2761 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2762 return wp_page_copy(vmf);
251b97f5 2763 }
1da177e4 2764
d08b3851 2765 /*
ee6a6457
PZ
2766 * Take out anonymous pages first, anonymous shared vmas are
2767 * not dirty accountable.
d08b3851 2768 */
a41b70d6 2769 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
ba3c4ce6 2770 int total_map_swapcount;
a41b70d6
JK
2771 if (!trylock_page(vmf->page)) {
2772 get_page(vmf->page);
82b0f8c3 2773 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2774 lock_page(vmf->page);
82b0f8c3
JK
2775 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2776 vmf->address, &vmf->ptl);
2994302b 2777 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2778 unlock_page(vmf->page);
82b0f8c3 2779 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2780 put_page(vmf->page);
28766805 2781 return 0;
ab967d86 2782 }
a41b70d6 2783 put_page(vmf->page);
ee6a6457 2784 }
ba3c4ce6
HY
2785 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2786 if (total_map_swapcount == 1) {
6d0a07ed
AA
2787 /*
2788 * The page is all ours. Move it to
2789 * our anon_vma so the rmap code will
2790 * not search our parent or siblings.
2791 * Protected against the rmap code by
2792 * the page lock.
2793 */
a41b70d6 2794 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2795 }
a41b70d6 2796 unlock_page(vmf->page);
997dd98d
JK
2797 wp_page_reuse(vmf);
2798 return VM_FAULT_WRITE;
b009c024 2799 }
a41b70d6 2800 unlock_page(vmf->page);
ee6a6457 2801 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2802 (VM_WRITE|VM_SHARED))) {
a41b70d6 2803 return wp_page_shared(vmf);
1da177e4 2804 }
1da177e4
LT
2805
2806 /*
2807 * Ok, we need to copy. Oh, well..
2808 */
a41b70d6 2809 get_page(vmf->page);
28766805 2810
82b0f8c3 2811 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2812 return wp_page_copy(vmf);
1da177e4
LT
2813}
2814
97a89413 2815static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2816 unsigned long start_addr, unsigned long end_addr,
2817 struct zap_details *details)
2818{
f5cc4eef 2819 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2820}
2821
f808c13f 2822static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2823 struct zap_details *details)
2824{
2825 struct vm_area_struct *vma;
1da177e4
LT
2826 pgoff_t vba, vea, zba, zea;
2827
6b2dbba8 2828 vma_interval_tree_foreach(vma, root,
1da177e4 2829 details->first_index, details->last_index) {
1da177e4
LT
2830
2831 vba = vma->vm_pgoff;
d6e93217 2832 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2833 zba = details->first_index;
2834 if (zba < vba)
2835 zba = vba;
2836 zea = details->last_index;
2837 if (zea > vea)
2838 zea = vea;
2839
97a89413 2840 unmap_mapping_range_vma(vma,
1da177e4
LT
2841 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2842 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2843 details);
1da177e4
LT
2844 }
2845}
2846
977fbdcd
MW
2847/**
2848 * unmap_mapping_pages() - Unmap pages from processes.
2849 * @mapping: The address space containing pages to be unmapped.
2850 * @start: Index of first page to be unmapped.
2851 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2852 * @even_cows: Whether to unmap even private COWed pages.
2853 *
2854 * Unmap the pages in this address space from any userspace process which
2855 * has them mmaped. Generally, you want to remove COWed pages as well when
2856 * a file is being truncated, but not when invalidating pages from the page
2857 * cache.
2858 */
2859void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2860 pgoff_t nr, bool even_cows)
2861{
2862 struct zap_details details = { };
2863
2864 details.check_mapping = even_cows ? NULL : mapping;
2865 details.first_index = start;
2866 details.last_index = start + nr - 1;
2867 if (details.last_index < details.first_index)
2868 details.last_index = ULONG_MAX;
2869
2870 i_mmap_lock_write(mapping);
2871 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2872 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2873 i_mmap_unlock_write(mapping);
2874}
2875
1da177e4 2876/**
8a5f14a2 2877 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2878 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2879 * file.
2880 *
3d41088f 2881 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2882 * @holebegin: byte in first page to unmap, relative to the start of
2883 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2884 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2885 * must keep the partial page. In contrast, we must get rid of
2886 * partial pages.
2887 * @holelen: size of prospective hole in bytes. This will be rounded
2888 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2889 * end of the file.
2890 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2891 * but 0 when invalidating pagecache, don't throw away private data.
2892 */
2893void unmap_mapping_range(struct address_space *mapping,
2894 loff_t const holebegin, loff_t const holelen, int even_cows)
2895{
1da177e4
LT
2896 pgoff_t hba = holebegin >> PAGE_SHIFT;
2897 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2898
2899 /* Check for overflow. */
2900 if (sizeof(holelen) > sizeof(hlen)) {
2901 long long holeend =
2902 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2903 if (holeend & ~(long long)ULONG_MAX)
2904 hlen = ULONG_MAX - hba + 1;
2905 }
2906
977fbdcd 2907 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2908}
2909EXPORT_SYMBOL(unmap_mapping_range);
2910
1da177e4 2911/*
8f4e2101
HD
2912 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2913 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2914 * We return with pte unmapped and unlocked.
2915 *
2916 * We return with the mmap_sem locked or unlocked in the same cases
2917 * as does filemap_fault().
1da177e4 2918 */
2994302b 2919int do_swap_page(struct vm_fault *vmf)
1da177e4 2920{
82b0f8c3 2921 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2922 struct page *page = NULL, *swapcache;
00501b53 2923 struct mem_cgroup *memcg;
65500d23 2924 swp_entry_t entry;
1da177e4 2925 pte_t pte;
d065bd81 2926 int locked;
ad8c2ee8 2927 int exclusive = 0;
83c54070 2928 int ret = 0;
1da177e4 2929
eaf649eb 2930 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2931 goto out;
65500d23 2932
2994302b 2933 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2934 if (unlikely(non_swap_entry(entry))) {
2935 if (is_migration_entry(entry)) {
82b0f8c3
JK
2936 migration_entry_wait(vma->vm_mm, vmf->pmd,
2937 vmf->address);
5042db43
JG
2938 } else if (is_device_private_entry(entry)) {
2939 /*
2940 * For un-addressable device memory we call the pgmap
2941 * fault handler callback. The callback must migrate
2942 * the page back to some CPU accessible page.
2943 */
2944 ret = device_private_entry_fault(vma, vmf->address, entry,
2945 vmf->flags, vmf->pmd);
d1737fdb
AK
2946 } else if (is_hwpoison_entry(entry)) {
2947 ret = VM_FAULT_HWPOISON;
2948 } else {
2994302b 2949 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2950 ret = VM_FAULT_SIGBUS;
d1737fdb 2951 }
0697212a
CL
2952 goto out;
2953 }
0bcac06f
MK
2954
2955
0ff92245 2956 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2957 page = lookup_swap_cache(entry, vma, vmf->address);
2958 swapcache = page;
f8020772 2959
1da177e4 2960 if (!page) {
0bcac06f
MK
2961 struct swap_info_struct *si = swp_swap_info(entry);
2962
aa8d22a1
MK
2963 if (si->flags & SWP_SYNCHRONOUS_IO &&
2964 __swap_count(si, entry) == 1) {
0bcac06f 2965 /* skip swapcache */
e9e9b7ec
MK
2966 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2967 vmf->address);
0bcac06f
MK
2968 if (page) {
2969 __SetPageLocked(page);
2970 __SetPageSwapBacked(page);
2971 set_page_private(page, entry.val);
2972 lru_cache_add_anon(page);
2973 swap_readpage(page, true);
2974 }
aa8d22a1 2975 } else {
e9e9b7ec
MK
2976 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2977 vmf);
aa8d22a1 2978 swapcache = page;
0bcac06f
MK
2979 }
2980
1da177e4
LT
2981 if (!page) {
2982 /*
8f4e2101
HD
2983 * Back out if somebody else faulted in this pte
2984 * while we released the pte lock.
1da177e4 2985 */
82b0f8c3
JK
2986 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2987 vmf->address, &vmf->ptl);
2994302b 2988 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2989 ret = VM_FAULT_OOM;
0ff92245 2990 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2991 goto unlock;
1da177e4
LT
2992 }
2993
2994 /* Had to read the page from swap area: Major fault */
2995 ret = VM_FAULT_MAJOR;
f8891e5e 2996 count_vm_event(PGMAJFAULT);
2262185c 2997 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2998 } else if (PageHWPoison(page)) {
71f72525
WF
2999 /*
3000 * hwpoisoned dirty swapcache pages are kept for killing
3001 * owner processes (which may be unknown at hwpoison time)
3002 */
d1737fdb
AK
3003 ret = VM_FAULT_HWPOISON;
3004 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3005 goto out_release;
1da177e4
LT
3006 }
3007
82b0f8c3 3008 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3009
073e587e 3010 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3011 if (!locked) {
3012 ret |= VM_FAULT_RETRY;
3013 goto out_release;
3014 }
073e587e 3015
4969c119 3016 /*
31c4a3d3
HD
3017 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3018 * release the swapcache from under us. The page pin, and pte_same
3019 * test below, are not enough to exclude that. Even if it is still
3020 * swapcache, we need to check that the page's swap has not changed.
4969c119 3021 */
0bcac06f
MK
3022 if (unlikely((!PageSwapCache(page) ||
3023 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3024 goto out_page;
3025
82b0f8c3 3026 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3027 if (unlikely(!page)) {
3028 ret = VM_FAULT_OOM;
3029 page = swapcache;
cbf86cfe 3030 goto out_page;
5ad64688
HD
3031 }
3032
2cf85583
TH
3033 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3034 &memcg, false)) {
8a9f3ccd 3035 ret = VM_FAULT_OOM;
bc43f75c 3036 goto out_page;
8a9f3ccd
BS
3037 }
3038
1da177e4 3039 /*
8f4e2101 3040 * Back out if somebody else already faulted in this pte.
1da177e4 3041 */
82b0f8c3
JK
3042 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3043 &vmf->ptl);
2994302b 3044 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3045 goto out_nomap;
b8107480
KK
3046
3047 if (unlikely(!PageUptodate(page))) {
3048 ret = VM_FAULT_SIGBUS;
3049 goto out_nomap;
1da177e4
LT
3050 }
3051
8c7c6e34
KH
3052 /*
3053 * The page isn't present yet, go ahead with the fault.
3054 *
3055 * Be careful about the sequence of operations here.
3056 * To get its accounting right, reuse_swap_page() must be called
3057 * while the page is counted on swap but not yet in mapcount i.e.
3058 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3059 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3060 */
1da177e4 3061
bae473a4
KS
3062 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3063 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3064 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3065 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3066 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3067 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3068 ret |= VM_FAULT_WRITE;
d281ee61 3069 exclusive = RMAP_EXCLUSIVE;
1da177e4 3070 }
1da177e4 3071 flush_icache_page(vma, page);
2994302b 3072 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3073 pte = pte_mksoft_dirty(pte);
82b0f8c3 3074 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3075 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3076 vmf->orig_pte = pte;
0bcac06f
MK
3077
3078 /* ksm created a completely new copy */
3079 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3080 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3081 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3082 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
3083 } else {
3084 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3085 mem_cgroup_commit_charge(page, memcg, true, false);
3086 activate_page(page);
00501b53 3087 }
1da177e4 3088
c475a8ab 3089 swap_free(entry);
5ccc5aba
VD
3090 if (mem_cgroup_swap_full(page) ||
3091 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3092 try_to_free_swap(page);
c475a8ab 3093 unlock_page(page);
0bcac06f 3094 if (page != swapcache && swapcache) {
4969c119
AA
3095 /*
3096 * Hold the lock to avoid the swap entry to be reused
3097 * until we take the PT lock for the pte_same() check
3098 * (to avoid false positives from pte_same). For
3099 * further safety release the lock after the swap_free
3100 * so that the swap count won't change under a
3101 * parallel locked swapcache.
3102 */
3103 unlock_page(swapcache);
09cbfeaf 3104 put_page(swapcache);
4969c119 3105 }
c475a8ab 3106
82b0f8c3 3107 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3108 ret |= do_wp_page(vmf);
61469f1d
HD
3109 if (ret & VM_FAULT_ERROR)
3110 ret &= VM_FAULT_ERROR;
1da177e4
LT
3111 goto out;
3112 }
3113
3114 /* No need to invalidate - it was non-present before */
82b0f8c3 3115 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3116unlock:
82b0f8c3 3117 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3118out:
3119 return ret;
b8107480 3120out_nomap:
f627c2f5 3121 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 3122 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3123out_page:
b8107480 3124 unlock_page(page);
4779cb31 3125out_release:
09cbfeaf 3126 put_page(page);
0bcac06f 3127 if (page != swapcache && swapcache) {
4969c119 3128 unlock_page(swapcache);
09cbfeaf 3129 put_page(swapcache);
4969c119 3130 }
65500d23 3131 return ret;
1da177e4
LT
3132}
3133
3134/*
8f4e2101
HD
3135 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3136 * but allow concurrent faults), and pte mapped but not yet locked.
3137 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3138 */
82b0f8c3 3139static int do_anonymous_page(struct vm_fault *vmf)
1da177e4 3140{
82b0f8c3 3141 struct vm_area_struct *vma = vmf->vma;
00501b53 3142 struct mem_cgroup *memcg;
8f4e2101 3143 struct page *page;
6b31d595 3144 int ret = 0;
1da177e4 3145 pte_t entry;
1da177e4 3146
6b7339f4
KS
3147 /* File mapping without ->vm_ops ? */
3148 if (vma->vm_flags & VM_SHARED)
3149 return VM_FAULT_SIGBUS;
3150
7267ec00
KS
3151 /*
3152 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3153 * pte_offset_map() on pmds where a huge pmd might be created
3154 * from a different thread.
3155 *
3156 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3157 * parallel threads are excluded by other means.
3158 *
3159 * Here we only have down_read(mmap_sem).
3160 */
82b0f8c3 3161 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
3162 return VM_FAULT_OOM;
3163
3164 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3165 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3166 return 0;
3167
11ac5524 3168 /* Use the zero-page for reads */
82b0f8c3 3169 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3170 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3171 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3172 vma->vm_page_prot));
82b0f8c3
JK
3173 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3174 vmf->address, &vmf->ptl);
3175 if (!pte_none(*vmf->pte))
a13ea5b7 3176 goto unlock;
6b31d595
MH
3177 ret = check_stable_address_space(vma->vm_mm);
3178 if (ret)
3179 goto unlock;
6b251fc9
AA
3180 /* Deliver the page fault to userland, check inside PT lock */
3181 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3182 pte_unmap_unlock(vmf->pte, vmf->ptl);
3183 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3184 }
a13ea5b7
HD
3185 goto setpte;
3186 }
3187
557ed1fa 3188 /* Allocate our own private page. */
557ed1fa
NP
3189 if (unlikely(anon_vma_prepare(vma)))
3190 goto oom;
82b0f8c3 3191 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3192 if (!page)
3193 goto oom;
eb3c24f3 3194
2cf85583
TH
3195 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3196 false))
eb3c24f3
MG
3197 goto oom_free_page;
3198
52f37629
MK
3199 /*
3200 * The memory barrier inside __SetPageUptodate makes sure that
3201 * preceeding stores to the page contents become visible before
3202 * the set_pte_at() write.
3203 */
0ed361de 3204 __SetPageUptodate(page);
8f4e2101 3205
557ed1fa 3206 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3207 if (vma->vm_flags & VM_WRITE)
3208 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3209
82b0f8c3
JK
3210 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3211 &vmf->ptl);
3212 if (!pte_none(*vmf->pte))
557ed1fa 3213 goto release;
9ba69294 3214
6b31d595
MH
3215 ret = check_stable_address_space(vma->vm_mm);
3216 if (ret)
3217 goto release;
3218
6b251fc9
AA
3219 /* Deliver the page fault to userland, check inside PT lock */
3220 if (userfaultfd_missing(vma)) {
82b0f8c3 3221 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3222 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3223 put_page(page);
82b0f8c3 3224 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3225 }
3226
bae473a4 3227 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3228 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3229 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3230 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3231setpte:
82b0f8c3 3232 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3233
3234 /* No need to invalidate - it was non-present before */
82b0f8c3 3235 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3236unlock:
82b0f8c3 3237 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3238 return ret;
8f4e2101 3239release:
f627c2f5 3240 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3241 put_page(page);
8f4e2101 3242 goto unlock;
8a9f3ccd 3243oom_free_page:
09cbfeaf 3244 put_page(page);
65500d23 3245oom:
1da177e4
LT
3246 return VM_FAULT_OOM;
3247}
3248
9a95f3cf
PC
3249/*
3250 * The mmap_sem must have been held on entry, and may have been
3251 * released depending on flags and vma->vm_ops->fault() return value.
3252 * See filemap_fault() and __lock_page_retry().
3253 */
936ca80d 3254static int __do_fault(struct vm_fault *vmf)
7eae74af 3255{
82b0f8c3 3256 struct vm_area_struct *vma = vmf->vma;
7eae74af
KS
3257 int ret;
3258
11bac800 3259 ret = vma->vm_ops->fault(vmf);
3917048d 3260 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3261 VM_FAULT_DONE_COW)))
bc2466e4 3262 return ret;
7eae74af 3263
667240e0 3264 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3265 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3266 unlock_page(vmf->page);
3267 put_page(vmf->page);
936ca80d 3268 vmf->page = NULL;
7eae74af
KS
3269 return VM_FAULT_HWPOISON;
3270 }
3271
3272 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3273 lock_page(vmf->page);
7eae74af 3274 else
667240e0 3275 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3276
7eae74af
KS
3277 return ret;
3278}
3279
d0f0931d
RZ
3280/*
3281 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3282 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3283 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3284 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3285 */
3286static int pmd_devmap_trans_unstable(pmd_t *pmd)
3287{
3288 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3289}
3290
82b0f8c3 3291static int pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3292{
82b0f8c3 3293 struct vm_area_struct *vma = vmf->vma;
7267ec00 3294
82b0f8c3 3295 if (!pmd_none(*vmf->pmd))
7267ec00 3296 goto map_pte;
82b0f8c3
JK
3297 if (vmf->prealloc_pte) {
3298 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3299 if (unlikely(!pmd_none(*vmf->pmd))) {
3300 spin_unlock(vmf->ptl);
7267ec00
KS
3301 goto map_pte;
3302 }
3303
c4812909 3304 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3305 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3306 spin_unlock(vmf->ptl);
7f2b6ce8 3307 vmf->prealloc_pte = NULL;
82b0f8c3 3308 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
3309 return VM_FAULT_OOM;
3310 }
3311map_pte:
3312 /*
3313 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3314 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3315 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3316 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3317 * running immediately after a huge pmd fault in a different thread of
3318 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3319 * All we have to ensure is that it is a regular pmd that we can walk
3320 * with pte_offset_map() and we can do that through an atomic read in
3321 * C, which is what pmd_trans_unstable() provides.
7267ec00 3322 */
d0f0931d 3323 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3324 return VM_FAULT_NOPAGE;
3325
d0f0931d
RZ
3326 /*
3327 * At this point we know that our vmf->pmd points to a page of ptes
3328 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3329 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3330 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3331 * be valid and we will re-check to make sure the vmf->pte isn't
3332 * pte_none() under vmf->ptl protection when we return to
3333 * alloc_set_pte().
3334 */
82b0f8c3
JK
3335 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3336 &vmf->ptl);
7267ec00
KS
3337 return 0;
3338}
3339
e496cf3d 3340#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3341
3342#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3343static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3344 unsigned long haddr)
3345{
3346 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3347 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3348 return false;
3349 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3350 return false;
3351 return true;
3352}
3353
82b0f8c3 3354static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3355{
82b0f8c3 3356 struct vm_area_struct *vma = vmf->vma;
953c66c2 3357
82b0f8c3 3358 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3359 /*
3360 * We are going to consume the prealloc table,
3361 * count that as nr_ptes.
3362 */
c4812909 3363 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3364 vmf->prealloc_pte = NULL;
953c66c2
AK
3365}
3366
82b0f8c3 3367static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3368{
82b0f8c3
JK
3369 struct vm_area_struct *vma = vmf->vma;
3370 bool write = vmf->flags & FAULT_FLAG_WRITE;
3371 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459
KS
3372 pmd_t entry;
3373 int i, ret;
3374
3375 if (!transhuge_vma_suitable(vma, haddr))
3376 return VM_FAULT_FALLBACK;
3377
3378 ret = VM_FAULT_FALLBACK;
3379 page = compound_head(page);
3380
953c66c2
AK
3381 /*
3382 * Archs like ppc64 need additonal space to store information
3383 * related to pte entry. Use the preallocated table for that.
3384 */
82b0f8c3
JK
3385 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3386 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3387 if (!vmf->prealloc_pte)
953c66c2
AK
3388 return VM_FAULT_OOM;
3389 smp_wmb(); /* See comment in __pte_alloc() */
3390 }
3391
82b0f8c3
JK
3392 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3393 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3394 goto out;
3395
3396 for (i = 0; i < HPAGE_PMD_NR; i++)
3397 flush_icache_page(vma, page + i);
3398
3399 entry = mk_huge_pmd(page, vma->vm_page_prot);
3400 if (write)
f55e1014 3401 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3402
fadae295 3403 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3404 page_add_file_rmap(page, true);
953c66c2
AK
3405 /*
3406 * deposit and withdraw with pmd lock held
3407 */
3408 if (arch_needs_pgtable_deposit())
82b0f8c3 3409 deposit_prealloc_pte(vmf);
10102459 3410
82b0f8c3 3411 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3412
82b0f8c3 3413 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3414
3415 /* fault is handled */
3416 ret = 0;
95ecedcd 3417 count_vm_event(THP_FILE_MAPPED);
10102459 3418out:
82b0f8c3 3419 spin_unlock(vmf->ptl);
10102459
KS
3420 return ret;
3421}
3422#else
82b0f8c3 3423static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3424{
3425 BUILD_BUG();
3426 return 0;
3427}
3428#endif
3429
8c6e50b0 3430/**
7267ec00
KS
3431 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3432 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3433 *
82b0f8c3 3434 * @vmf: fault environment
7267ec00 3435 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3436 * @page: page to map
8c6e50b0 3437 *
82b0f8c3
JK
3438 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3439 * return.
8c6e50b0
KS
3440 *
3441 * Target users are page handler itself and implementations of
3442 * vm_ops->map_pages.
3443 */
82b0f8c3 3444int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3445 struct page *page)
3bb97794 3446{
82b0f8c3
JK
3447 struct vm_area_struct *vma = vmf->vma;
3448 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3449 pte_t entry;
10102459
KS
3450 int ret;
3451
82b0f8c3 3452 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3453 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3454 /* THP on COW? */
3455 VM_BUG_ON_PAGE(memcg, page);
3456
82b0f8c3 3457 ret = do_set_pmd(vmf, page);
10102459 3458 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3459 return ret;
10102459 3460 }
3bb97794 3461
82b0f8c3
JK
3462 if (!vmf->pte) {
3463 ret = pte_alloc_one_map(vmf);
7267ec00 3464 if (ret)
b0b9b3df 3465 return ret;
7267ec00
KS
3466 }
3467
3468 /* Re-check under ptl */
b0b9b3df
HD
3469 if (unlikely(!pte_none(*vmf->pte)))
3470 return VM_FAULT_NOPAGE;
7267ec00 3471
3bb97794
KS
3472 flush_icache_page(vma, page);
3473 entry = mk_pte(page, vma->vm_page_prot);
3474 if (write)
3475 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3476 /* copy-on-write page */
3477 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3478 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3479 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3480 mem_cgroup_commit_charge(page, memcg, false, false);
3481 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3482 } else {
eca56ff9 3483 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3484 page_add_file_rmap(page, false);
3bb97794 3485 }
82b0f8c3 3486 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3487
3488 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3489 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3490
b0b9b3df 3491 return 0;
3bb97794
KS
3492}
3493
9118c0cb
JK
3494
3495/**
3496 * finish_fault - finish page fault once we have prepared the page to fault
3497 *
3498 * @vmf: structure describing the fault
3499 *
3500 * This function handles all that is needed to finish a page fault once the
3501 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3502 * given page, adds reverse page mapping, handles memcg charges and LRU
3503 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3504 * error.
3505 *
3506 * The function expects the page to be locked and on success it consumes a
3507 * reference of a page being mapped (for the PTE which maps it).
3508 */
3509int finish_fault(struct vm_fault *vmf)
3510{
3511 struct page *page;
6b31d595 3512 int ret = 0;
9118c0cb
JK
3513
3514 /* Did we COW the page? */
3515 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3516 !(vmf->vma->vm_flags & VM_SHARED))
3517 page = vmf->cow_page;
3518 else
3519 page = vmf->page;
6b31d595
MH
3520
3521 /*
3522 * check even for read faults because we might have lost our CoWed
3523 * page
3524 */
3525 if (!(vmf->vma->vm_flags & VM_SHARED))
3526 ret = check_stable_address_space(vmf->vma->vm_mm);
3527 if (!ret)
3528 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3529 if (vmf->pte)
3530 pte_unmap_unlock(vmf->pte, vmf->ptl);
3531 return ret;
3532}
3533
3a91053a
KS
3534static unsigned long fault_around_bytes __read_mostly =
3535 rounddown_pow_of_two(65536);
a9b0f861 3536
a9b0f861
KS
3537#ifdef CONFIG_DEBUG_FS
3538static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3539{
a9b0f861 3540 *val = fault_around_bytes;
1592eef0
KS
3541 return 0;
3542}
3543
b4903d6e 3544/*
da391d64
WK
3545 * fault_around_bytes must be rounded down to the nearest page order as it's
3546 * what do_fault_around() expects to see.
b4903d6e 3547 */
a9b0f861 3548static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3549{
a9b0f861 3550 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3551 return -EINVAL;
b4903d6e
AR
3552 if (val > PAGE_SIZE)
3553 fault_around_bytes = rounddown_pow_of_two(val);
3554 else
3555 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3556 return 0;
3557}
0a1345f8 3558DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3559 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3560
3561static int __init fault_around_debugfs(void)
3562{
3563 void *ret;
3564
0a1345f8 3565 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
a9b0f861 3566 &fault_around_bytes_fops);
1592eef0 3567 if (!ret)
a9b0f861 3568 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3569 return 0;
3570}
3571late_initcall(fault_around_debugfs);
1592eef0 3572#endif
8c6e50b0 3573
1fdb412b
KS
3574/*
3575 * do_fault_around() tries to map few pages around the fault address. The hope
3576 * is that the pages will be needed soon and this will lower the number of
3577 * faults to handle.
3578 *
3579 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3580 * not ready to be mapped: not up-to-date, locked, etc.
3581 *
3582 * This function is called with the page table lock taken. In the split ptlock
3583 * case the page table lock only protects only those entries which belong to
3584 * the page table corresponding to the fault address.
3585 *
3586 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3587 * only once.
3588 *
da391d64
WK
3589 * fault_around_bytes defines how many bytes we'll try to map.
3590 * do_fault_around() expects it to be set to a power of two less than or equal
3591 * to PTRS_PER_PTE.
1fdb412b 3592 *
da391d64
WK
3593 * The virtual address of the area that we map is naturally aligned to
3594 * fault_around_bytes rounded down to the machine page size
3595 * (and therefore to page order). This way it's easier to guarantee
3596 * that we don't cross page table boundaries.
1fdb412b 3597 */
0721ec8b 3598static int do_fault_around(struct vm_fault *vmf)
8c6e50b0 3599{
82b0f8c3 3600 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3601 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3602 pgoff_t end_pgoff;
7267ec00 3603 int off, ret = 0;
8c6e50b0 3604
4db0c3c2 3605 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3606 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3607
82b0f8c3
JK
3608 vmf->address = max(address & mask, vmf->vma->vm_start);
3609 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3610 start_pgoff -= off;
8c6e50b0
KS
3611
3612 /*
da391d64
WK
3613 * end_pgoff is either the end of the page table, the end of
3614 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3615 */
bae473a4 3616 end_pgoff = start_pgoff -
82b0f8c3 3617 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3618 PTRS_PER_PTE - 1;
82b0f8c3 3619 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3620 start_pgoff + nr_pages - 1);
8c6e50b0 3621
82b0f8c3
JK
3622 if (pmd_none(*vmf->pmd)) {
3623 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3624 vmf->address);
3625 if (!vmf->prealloc_pte)
c5f88bd2 3626 goto out;
7267ec00 3627 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3628 }
3629
82b0f8c3 3630 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3631
7267ec00 3632 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3633 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3634 ret = VM_FAULT_NOPAGE;
3635 goto out;
3636 }
3637
3638 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3639 if (!vmf->pte)
7267ec00
KS
3640 goto out;
3641
3642 /* check if the page fault is solved */
82b0f8c3
JK
3643 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3644 if (!pte_none(*vmf->pte))
7267ec00 3645 ret = VM_FAULT_NOPAGE;
82b0f8c3 3646 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3647out:
82b0f8c3
JK
3648 vmf->address = address;
3649 vmf->pte = NULL;
7267ec00 3650 return ret;
8c6e50b0
KS
3651}
3652
0721ec8b 3653static int do_read_fault(struct vm_fault *vmf)
e655fb29 3654{
82b0f8c3 3655 struct vm_area_struct *vma = vmf->vma;
8c6e50b0
KS
3656 int ret = 0;
3657
3658 /*
3659 * Let's call ->map_pages() first and use ->fault() as fallback
3660 * if page by the offset is not ready to be mapped (cold cache or
3661 * something).
3662 */
9b4bdd2f 3663 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3664 ret = do_fault_around(vmf);
7267ec00
KS
3665 if (ret)
3666 return ret;
8c6e50b0 3667 }
e655fb29 3668
936ca80d 3669 ret = __do_fault(vmf);
e655fb29
KS
3670 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3671 return ret;
3672
9118c0cb 3673 ret |= finish_fault(vmf);
936ca80d 3674 unlock_page(vmf->page);
7267ec00 3675 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3676 put_page(vmf->page);
e655fb29
KS
3677 return ret;
3678}
3679
0721ec8b 3680static int do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3681{
82b0f8c3 3682 struct vm_area_struct *vma = vmf->vma;
ec47c3b9
KS
3683 int ret;
3684
3685 if (unlikely(anon_vma_prepare(vma)))
3686 return VM_FAULT_OOM;
3687
936ca80d
JK
3688 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3689 if (!vmf->cow_page)
ec47c3b9
KS
3690 return VM_FAULT_OOM;
3691
2cf85583 3692 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3693 &vmf->memcg, false)) {
936ca80d 3694 put_page(vmf->cow_page);
ec47c3b9
KS
3695 return VM_FAULT_OOM;
3696 }
3697
936ca80d 3698 ret = __do_fault(vmf);
ec47c3b9
KS
3699 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3700 goto uncharge_out;
3917048d
JK
3701 if (ret & VM_FAULT_DONE_COW)
3702 return ret;
ec47c3b9 3703
b1aa812b 3704 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3705 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3706
9118c0cb 3707 ret |= finish_fault(vmf);
b1aa812b
JK
3708 unlock_page(vmf->page);
3709 put_page(vmf->page);
7267ec00
KS
3710 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3711 goto uncharge_out;
ec47c3b9
KS
3712 return ret;
3713uncharge_out:
3917048d 3714 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3715 put_page(vmf->cow_page);
ec47c3b9
KS
3716 return ret;
3717}
3718
0721ec8b 3719static int do_shared_fault(struct vm_fault *vmf)
1da177e4 3720{
82b0f8c3 3721 struct vm_area_struct *vma = vmf->vma;
f0c6d4d2 3722 int ret, tmp;
1d65f86d 3723
936ca80d 3724 ret = __do_fault(vmf);
7eae74af 3725 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3726 return ret;
1da177e4
LT
3727
3728 /*
f0c6d4d2
KS
3729 * Check if the backing address space wants to know that the page is
3730 * about to become writable
1da177e4 3731 */
fb09a464 3732 if (vma->vm_ops->page_mkwrite) {
936ca80d 3733 unlock_page(vmf->page);
38b8cb7f 3734 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3735 if (unlikely(!tmp ||
3736 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3737 put_page(vmf->page);
fb09a464 3738 return tmp;
4294621f 3739 }
fb09a464
KS
3740 }
3741
9118c0cb 3742 ret |= finish_fault(vmf);
7267ec00
KS
3743 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3744 VM_FAULT_RETRY))) {
936ca80d
JK
3745 unlock_page(vmf->page);
3746 put_page(vmf->page);
f0c6d4d2 3747 return ret;
1da177e4 3748 }
b827e496 3749
97ba0c2b 3750 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3751 return ret;
54cb8821 3752}
d00806b1 3753
9a95f3cf
PC
3754/*
3755 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3756 * but allow concurrent faults).
3757 * The mmap_sem may have been released depending on flags and our
3758 * return value. See filemap_fault() and __lock_page_or_retry().
3759 */
82b0f8c3 3760static int do_fault(struct vm_fault *vmf)
54cb8821 3761{
82b0f8c3 3762 struct vm_area_struct *vma = vmf->vma;
b0b9b3df 3763 int ret;
54cb8821 3764
6b7339f4
KS
3765 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3766 if (!vma->vm_ops->fault)
b0b9b3df
HD
3767 ret = VM_FAULT_SIGBUS;
3768 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3769 ret = do_read_fault(vmf);
3770 else if (!(vma->vm_flags & VM_SHARED))
3771 ret = do_cow_fault(vmf);
3772 else
3773 ret = do_shared_fault(vmf);
3774
3775 /* preallocated pagetable is unused: free it */
3776 if (vmf->prealloc_pte) {
3777 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3778 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3779 }
3780 return ret;
54cb8821
NP
3781}
3782
b19a9939 3783static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3784 unsigned long addr, int page_nid,
3785 int *flags)
9532fec1
MG
3786{
3787 get_page(page);
3788
3789 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3790 if (page_nid == numa_node_id()) {
9532fec1 3791 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3792 *flags |= TNF_FAULT_LOCAL;
3793 }
9532fec1
MG
3794
3795 return mpol_misplaced(page, vma, addr);
3796}
3797
2994302b 3798static int do_numa_page(struct vm_fault *vmf)
d10e63f2 3799{
82b0f8c3 3800 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3801 struct page *page = NULL;
8191acbd 3802 int page_nid = -1;
90572890 3803 int last_cpupid;
cbee9f88 3804 int target_nid;
b8593bfd 3805 bool migrated = false;
cee216a6 3806 pte_t pte;
288bc549 3807 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3808 int flags = 0;
d10e63f2
MG
3809
3810 /*
166f61b9
TH
3811 * The "pte" at this point cannot be used safely without
3812 * validation through pte_unmap_same(). It's of NUMA type but
3813 * the pfn may be screwed if the read is non atomic.
166f61b9 3814 */
82b0f8c3
JK
3815 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3816 spin_lock(vmf->ptl);
cee216a6 3817 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3818 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3819 goto out;
3820 }
3821
cee216a6
AK
3822 /*
3823 * Make it present again, Depending on how arch implementes non
3824 * accessible ptes, some can allow access by kernel mode.
3825 */
3826 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4d942466
MG
3827 pte = pte_modify(pte, vma->vm_page_prot);
3828 pte = pte_mkyoung(pte);
b191f9b1
MG
3829 if (was_writable)
3830 pte = pte_mkwrite(pte);
cee216a6 3831 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
82b0f8c3 3832 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3833
82b0f8c3 3834 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3835 if (!page) {
82b0f8c3 3836 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3837 return 0;
3838 }
3839
e81c4802
KS
3840 /* TODO: handle PTE-mapped THP */
3841 if (PageCompound(page)) {
82b0f8c3 3842 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3843 return 0;
3844 }
3845
6688cc05 3846 /*
bea66fbd
MG
3847 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3848 * much anyway since they can be in shared cache state. This misses
3849 * the case where a mapping is writable but the process never writes
3850 * to it but pte_write gets cleared during protection updates and
3851 * pte_dirty has unpredictable behaviour between PTE scan updates,
3852 * background writeback, dirty balancing and application behaviour.
6688cc05 3853 */
d59dc7bc 3854 if (!pte_write(pte))
6688cc05
PZ
3855 flags |= TNF_NO_GROUP;
3856
dabe1d99
RR
3857 /*
3858 * Flag if the page is shared between multiple address spaces. This
3859 * is later used when determining whether to group tasks together
3860 */
3861 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3862 flags |= TNF_SHARED;
3863
90572890 3864 last_cpupid = page_cpupid_last(page);
8191acbd 3865 page_nid = page_to_nid(page);
82b0f8c3 3866 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3867 &flags);
82b0f8c3 3868 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3869 if (target_nid == -1) {
4daae3b4
MG
3870 put_page(page);
3871 goto out;
3872 }
3873
3874 /* Migrate to the requested node */
1bc115d8 3875 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3876 if (migrated) {
8191acbd 3877 page_nid = target_nid;
6688cc05 3878 flags |= TNF_MIGRATED;
074c2381
MG
3879 } else
3880 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3881
3882out:
8191acbd 3883 if (page_nid != -1)
6688cc05 3884 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3885 return 0;
3886}
3887
91a90140 3888static inline int create_huge_pmd(struct vm_fault *vmf)
b96375f7 3889{
f4200391 3890 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3891 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3892 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3893 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3894 return VM_FAULT_FALLBACK;
3895}
3896
183f24aa
GU
3897/* `inline' is required to avoid gcc 4.1.2 build error */
3898static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3899{
82b0f8c3
JK
3900 if (vma_is_anonymous(vmf->vma))
3901 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3902 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3903 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3904
3905 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3906 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3907 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3908
b96375f7
MW
3909 return VM_FAULT_FALLBACK;
3910}
3911
38e08854
LS
3912static inline bool vma_is_accessible(struct vm_area_struct *vma)
3913{
3914 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3915}
3916
a00cc7d9
MW
3917static int create_huge_pud(struct vm_fault *vmf)
3918{
3919#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3920 /* No support for anonymous transparent PUD pages yet */
3921 if (vma_is_anonymous(vmf->vma))
3922 return VM_FAULT_FALLBACK;
3923 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3924 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3925#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3926 return VM_FAULT_FALLBACK;
3927}
3928
3929static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3930{
3931#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3932 /* No support for anonymous transparent PUD pages yet */
3933 if (vma_is_anonymous(vmf->vma))
3934 return VM_FAULT_FALLBACK;
3935 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3936 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3937#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3938 return VM_FAULT_FALLBACK;
3939}
3940
1da177e4
LT
3941/*
3942 * These routines also need to handle stuff like marking pages dirty
3943 * and/or accessed for architectures that don't do it in hardware (most
3944 * RISC architectures). The early dirtying is also good on the i386.
3945 *
3946 * There is also a hook called "update_mmu_cache()" that architectures
3947 * with external mmu caches can use to update those (ie the Sparc or
3948 * PowerPC hashed page tables that act as extended TLBs).
3949 *
7267ec00
KS
3950 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3951 * concurrent faults).
9a95f3cf 3952 *
7267ec00
KS
3953 * The mmap_sem may have been released depending on flags and our return value.
3954 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3955 */
82b0f8c3 3956static int handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3957{
3958 pte_t entry;
3959
82b0f8c3 3960 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3961 /*
3962 * Leave __pte_alloc() until later: because vm_ops->fault may
3963 * want to allocate huge page, and if we expose page table
3964 * for an instant, it will be difficult to retract from
3965 * concurrent faults and from rmap lookups.
3966 */
82b0f8c3 3967 vmf->pte = NULL;
7267ec00
KS
3968 } else {
3969 /* See comment in pte_alloc_one_map() */
d0f0931d 3970 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3971 return 0;
3972 /*
3973 * A regular pmd is established and it can't morph into a huge
3974 * pmd from under us anymore at this point because we hold the
3975 * mmap_sem read mode and khugepaged takes it in write mode.
3976 * So now it's safe to run pte_offset_map().
3977 */
82b0f8c3 3978 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3979 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3980
3981 /*
3982 * some architectures can have larger ptes than wordsize,
3983 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3984 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3985 * accesses. The code below just needs a consistent view
3986 * for the ifs and we later double check anyway with the
7267ec00
KS
3987 * ptl lock held. So here a barrier will do.
3988 */
3989 barrier();
2994302b 3990 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3991 pte_unmap(vmf->pte);
3992 vmf->pte = NULL;
65500d23 3993 }
1da177e4
LT
3994 }
3995
82b0f8c3
JK
3996 if (!vmf->pte) {
3997 if (vma_is_anonymous(vmf->vma))
3998 return do_anonymous_page(vmf);
7267ec00 3999 else
82b0f8c3 4000 return do_fault(vmf);
7267ec00
KS
4001 }
4002
2994302b
JK
4003 if (!pte_present(vmf->orig_pte))
4004 return do_swap_page(vmf);
7267ec00 4005
2994302b
JK
4006 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4007 return do_numa_page(vmf);
d10e63f2 4008
82b0f8c3
JK
4009 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4010 spin_lock(vmf->ptl);
2994302b 4011 entry = vmf->orig_pte;
82b0f8c3 4012 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 4013 goto unlock;
82b0f8c3 4014 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4015 if (!pte_write(entry))
2994302b 4016 return do_wp_page(vmf);
1da177e4
LT
4017 entry = pte_mkdirty(entry);
4018 }
4019 entry = pte_mkyoung(entry);
82b0f8c3
JK
4020 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4021 vmf->flags & FAULT_FLAG_WRITE)) {
4022 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
4023 } else {
4024 /*
4025 * This is needed only for protection faults but the arch code
4026 * is not yet telling us if this is a protection fault or not.
4027 * This still avoids useless tlb flushes for .text page faults
4028 * with threads.
4029 */
82b0f8c3
JK
4030 if (vmf->flags & FAULT_FLAG_WRITE)
4031 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4032 }
8f4e2101 4033unlock:
82b0f8c3 4034 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4035 return 0;
1da177e4
LT
4036}
4037
4038/*
4039 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
4040 *
4041 * The mmap_sem may have been released depending on flags and our
4042 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4043 */
dcddffd4
KS
4044static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4045 unsigned int flags)
1da177e4 4046{
82b0f8c3 4047 struct vm_fault vmf = {
bae473a4 4048 .vma = vma,
1a29d85e 4049 .address = address & PAGE_MASK,
bae473a4 4050 .flags = flags,
0721ec8b 4051 .pgoff = linear_page_index(vma, address),
667240e0 4052 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4053 };
fde26bed 4054 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4055 struct mm_struct *mm = vma->vm_mm;
1da177e4 4056 pgd_t *pgd;
c2febafc 4057 p4d_t *p4d;
a2d58167 4058 int ret;
1da177e4 4059
1da177e4 4060 pgd = pgd_offset(mm, address);
c2febafc
KS
4061 p4d = p4d_alloc(mm, pgd, address);
4062 if (!p4d)
4063 return VM_FAULT_OOM;
a00cc7d9 4064
c2febafc 4065 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4066 if (!vmf.pud)
c74df32c 4067 return VM_FAULT_OOM;
a00cc7d9 4068 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4069 ret = create_huge_pud(&vmf);
4070 if (!(ret & VM_FAULT_FALLBACK))
4071 return ret;
4072 } else {
4073 pud_t orig_pud = *vmf.pud;
4074
4075 barrier();
4076 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4077
a00cc7d9
MW
4078 /* NUMA case for anonymous PUDs would go here */
4079
f6f37321 4080 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4081 ret = wp_huge_pud(&vmf, orig_pud);
4082 if (!(ret & VM_FAULT_FALLBACK))
4083 return ret;
4084 } else {
4085 huge_pud_set_accessed(&vmf, orig_pud);
4086 return 0;
4087 }
4088 }
4089 }
4090
4091 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4092 if (!vmf.pmd)
c74df32c 4093 return VM_FAULT_OOM;
82b0f8c3 4094 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
a2d58167 4095 ret = create_huge_pmd(&vmf);
c0292554
KS
4096 if (!(ret & VM_FAULT_FALLBACK))
4097 return ret;
71e3aac0 4098 } else {
82b0f8c3 4099 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4100
71e3aac0 4101 barrier();
84c3fc4e
ZY
4102 if (unlikely(is_swap_pmd(orig_pmd))) {
4103 VM_BUG_ON(thp_migration_supported() &&
4104 !is_pmd_migration_entry(orig_pmd));
4105 if (is_pmd_migration_entry(orig_pmd))
4106 pmd_migration_entry_wait(mm, vmf.pmd);
4107 return 0;
4108 }
5c7fb56e 4109 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4110 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4111 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4112
f6f37321 4113 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4114 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4115 if (!(ret & VM_FAULT_FALLBACK))
4116 return ret;
a1dd450b 4117 } else {
82b0f8c3 4118 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4119 return 0;
1f1d06c3 4120 }
71e3aac0
AA
4121 }
4122 }
4123
82b0f8c3 4124 return handle_pte_fault(&vmf);
1da177e4
LT
4125}
4126
9a95f3cf
PC
4127/*
4128 * By the time we get here, we already hold the mm semaphore
4129 *
4130 * The mmap_sem may have been released depending on flags and our
4131 * return value. See filemap_fault() and __lock_page_or_retry().
4132 */
dcddffd4
KS
4133int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4134 unsigned int flags)
519e5247
JW
4135{
4136 int ret;
4137
4138 __set_current_state(TASK_RUNNING);
4139
4140 count_vm_event(PGFAULT);
2262185c 4141 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4142
4143 /* do counter updates before entering really critical section. */
4144 check_sync_rss_stat(current);
4145
de0c799b
LD
4146 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4147 flags & FAULT_FLAG_INSTRUCTION,
4148 flags & FAULT_FLAG_REMOTE))
4149 return VM_FAULT_SIGSEGV;
4150
519e5247
JW
4151 /*
4152 * Enable the memcg OOM handling for faults triggered in user
4153 * space. Kernel faults are handled more gracefully.
4154 */
4155 if (flags & FAULT_FLAG_USER)
49426420 4156 mem_cgroup_oom_enable();
519e5247 4157
bae473a4
KS
4158 if (unlikely(is_vm_hugetlb_page(vma)))
4159 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4160 else
4161 ret = __handle_mm_fault(vma, address, flags);
519e5247 4162
49426420
JW
4163 if (flags & FAULT_FLAG_USER) {
4164 mem_cgroup_oom_disable();
166f61b9
TH
4165 /*
4166 * The task may have entered a memcg OOM situation but
4167 * if the allocation error was handled gracefully (no
4168 * VM_FAULT_OOM), there is no need to kill anything.
4169 * Just clean up the OOM state peacefully.
4170 */
4171 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4172 mem_cgroup_oom_synchronize(false);
49426420 4173 }
3812c8c8 4174
519e5247
JW
4175 return ret;
4176}
e1d6d01a 4177EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4178
90eceff1
KS
4179#ifndef __PAGETABLE_P4D_FOLDED
4180/*
4181 * Allocate p4d page table.
4182 * We've already handled the fast-path in-line.
4183 */
4184int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4185{
4186 p4d_t *new = p4d_alloc_one(mm, address);
4187 if (!new)
4188 return -ENOMEM;
4189
4190 smp_wmb(); /* See comment in __pte_alloc */
4191
4192 spin_lock(&mm->page_table_lock);
4193 if (pgd_present(*pgd)) /* Another has populated it */
4194 p4d_free(mm, new);
4195 else
4196 pgd_populate(mm, pgd, new);
4197 spin_unlock(&mm->page_table_lock);
4198 return 0;
4199}
4200#endif /* __PAGETABLE_P4D_FOLDED */
4201
1da177e4
LT
4202#ifndef __PAGETABLE_PUD_FOLDED
4203/*
4204 * Allocate page upper directory.
872fec16 4205 * We've already handled the fast-path in-line.
1da177e4 4206 */
c2febafc 4207int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4208{
c74df32c
HD
4209 pud_t *new = pud_alloc_one(mm, address);
4210 if (!new)
1bb3630e 4211 return -ENOMEM;
1da177e4 4212
362a61ad
NP
4213 smp_wmb(); /* See comment in __pte_alloc */
4214
872fec16 4215 spin_lock(&mm->page_table_lock);
c2febafc 4216#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4217 if (!p4d_present(*p4d)) {
4218 mm_inc_nr_puds(mm);
c2febafc 4219 p4d_populate(mm, p4d, new);
b4e98d9a 4220 } else /* Another has populated it */
5e541973 4221 pud_free(mm, new);
b4e98d9a
KS
4222#else
4223 if (!pgd_present(*p4d)) {
4224 mm_inc_nr_puds(mm);
c2febafc 4225 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4226 } else /* Another has populated it */
4227 pud_free(mm, new);
c2febafc 4228#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4229 spin_unlock(&mm->page_table_lock);
1bb3630e 4230 return 0;
1da177e4
LT
4231}
4232#endif /* __PAGETABLE_PUD_FOLDED */
4233
4234#ifndef __PAGETABLE_PMD_FOLDED
4235/*
4236 * Allocate page middle directory.
872fec16 4237 * We've already handled the fast-path in-line.
1da177e4 4238 */
1bb3630e 4239int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4240{
a00cc7d9 4241 spinlock_t *ptl;
c74df32c
HD
4242 pmd_t *new = pmd_alloc_one(mm, address);
4243 if (!new)
1bb3630e 4244 return -ENOMEM;
1da177e4 4245
362a61ad
NP
4246 smp_wmb(); /* See comment in __pte_alloc */
4247
a00cc7d9 4248 ptl = pud_lock(mm, pud);
1da177e4 4249#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4250 if (!pud_present(*pud)) {
4251 mm_inc_nr_pmds(mm);
1bb3630e 4252 pud_populate(mm, pud, new);
dc6c9a35 4253 } else /* Another has populated it */
5e541973 4254 pmd_free(mm, new);
dc6c9a35
KS
4255#else
4256 if (!pgd_present(*pud)) {
4257 mm_inc_nr_pmds(mm);
1bb3630e 4258 pgd_populate(mm, pud, new);
dc6c9a35
KS
4259 } else /* Another has populated it */
4260 pmd_free(mm, new);
1da177e4 4261#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4262 spin_unlock(ptl);
1bb3630e 4263 return 0;
e0f39591 4264}
1da177e4
LT
4265#endif /* __PAGETABLE_PMD_FOLDED */
4266
09796395 4267static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885
JG
4268 unsigned long *start, unsigned long *end,
4269 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4270{
4271 pgd_t *pgd;
c2febafc 4272 p4d_t *p4d;
f8ad0f49
JW
4273 pud_t *pud;
4274 pmd_t *pmd;
4275 pte_t *ptep;
4276
4277 pgd = pgd_offset(mm, address);
4278 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4279 goto out;
4280
c2febafc
KS
4281 p4d = p4d_offset(pgd, address);
4282 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4283 goto out;
4284
4285 pud = pud_offset(p4d, address);
f8ad0f49
JW
4286 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4287 goto out;
4288
4289 pmd = pmd_offset(pud, address);
f66055ab 4290 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4291
09796395
RZ
4292 if (pmd_huge(*pmd)) {
4293 if (!pmdpp)
4294 goto out;
4295
a4d1a885
JG
4296 if (start && end) {
4297 *start = address & PMD_MASK;
4298 *end = *start + PMD_SIZE;
4299 mmu_notifier_invalidate_range_start(mm, *start, *end);
4300 }
09796395
RZ
4301 *ptlp = pmd_lock(mm, pmd);
4302 if (pmd_huge(*pmd)) {
4303 *pmdpp = pmd;
4304 return 0;
4305 }
4306 spin_unlock(*ptlp);
a4d1a885
JG
4307 if (start && end)
4308 mmu_notifier_invalidate_range_end(mm, *start, *end);
09796395
RZ
4309 }
4310
4311 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4312 goto out;
4313
a4d1a885
JG
4314 if (start && end) {
4315 *start = address & PAGE_MASK;
4316 *end = *start + PAGE_SIZE;
4317 mmu_notifier_invalidate_range_start(mm, *start, *end);
4318 }
f8ad0f49 4319 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4320 if (!pte_present(*ptep))
4321 goto unlock;
4322 *ptepp = ptep;
4323 return 0;
4324unlock:
4325 pte_unmap_unlock(ptep, *ptlp);
a4d1a885
JG
4326 if (start && end)
4327 mmu_notifier_invalidate_range_end(mm, *start, *end);
f8ad0f49
JW
4328out:
4329 return -EINVAL;
4330}
4331
f729c8c9
RZ
4332static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4333 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4334{
4335 int res;
4336
4337 /* (void) is needed to make gcc happy */
4338 (void) __cond_lock(*ptlp,
a4d1a885
JG
4339 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4340 ptepp, NULL, ptlp)));
09796395
RZ
4341 return res;
4342}
4343
4344int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 4345 unsigned long *start, unsigned long *end,
09796395
RZ
4346 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4347{
4348 int res;
4349
4350 /* (void) is needed to make gcc happy */
4351 (void) __cond_lock(*ptlp,
a4d1a885
JG
4352 !(res = __follow_pte_pmd(mm, address, start, end,
4353 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4354 return res;
4355}
09796395 4356EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4357
3b6748e2
JW
4358/**
4359 * follow_pfn - look up PFN at a user virtual address
4360 * @vma: memory mapping
4361 * @address: user virtual address
4362 * @pfn: location to store found PFN
4363 *
4364 * Only IO mappings and raw PFN mappings are allowed.
4365 *
4366 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4367 */
4368int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4369 unsigned long *pfn)
4370{
4371 int ret = -EINVAL;
4372 spinlock_t *ptl;
4373 pte_t *ptep;
4374
4375 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4376 return ret;
4377
4378 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4379 if (ret)
4380 return ret;
4381 *pfn = pte_pfn(*ptep);
4382 pte_unmap_unlock(ptep, ptl);
4383 return 0;
4384}
4385EXPORT_SYMBOL(follow_pfn);
4386
28b2ee20 4387#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4388int follow_phys(struct vm_area_struct *vma,
4389 unsigned long address, unsigned int flags,
4390 unsigned long *prot, resource_size_t *phys)
28b2ee20 4391{
03668a4d 4392 int ret = -EINVAL;
28b2ee20
RR
4393 pte_t *ptep, pte;
4394 spinlock_t *ptl;
28b2ee20 4395
d87fe660 4396 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4397 goto out;
28b2ee20 4398
03668a4d 4399 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4400 goto out;
28b2ee20 4401 pte = *ptep;
03668a4d 4402
f6f37321 4403 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4404 goto unlock;
28b2ee20
RR
4405
4406 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4407 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4408
03668a4d 4409 ret = 0;
28b2ee20
RR
4410unlock:
4411 pte_unmap_unlock(ptep, ptl);
4412out:
d87fe660 4413 return ret;
28b2ee20
RR
4414}
4415
4416int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4417 void *buf, int len, int write)
4418{
4419 resource_size_t phys_addr;
4420 unsigned long prot = 0;
2bc7273b 4421 void __iomem *maddr;
28b2ee20
RR
4422 int offset = addr & (PAGE_SIZE-1);
4423
d87fe660 4424 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4425 return -EINVAL;
4426
9cb12d7b 4427 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4428 if (!maddr)
4429 return -ENOMEM;
4430
28b2ee20
RR
4431 if (write)
4432 memcpy_toio(maddr + offset, buf, len);
4433 else
4434 memcpy_fromio(buf, maddr + offset, len);
4435 iounmap(maddr);
4436
4437 return len;
4438}
5a73633e 4439EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4440#endif
4441
0ec76a11 4442/*
206cb636
SW
4443 * Access another process' address space as given in mm. If non-NULL, use the
4444 * given task for page fault accounting.
0ec76a11 4445 */
84d77d3f 4446int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4447 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4448{
0ec76a11 4449 struct vm_area_struct *vma;
0ec76a11 4450 void *old_buf = buf;
442486ec 4451 int write = gup_flags & FOLL_WRITE;
0ec76a11 4452
0ec76a11 4453 down_read(&mm->mmap_sem);
183ff22b 4454 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4455 while (len) {
4456 int bytes, ret, offset;
4457 void *maddr;
28b2ee20 4458 struct page *page = NULL;
0ec76a11 4459
1e987790 4460 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4461 gup_flags, &page, &vma, NULL);
28b2ee20 4462 if (ret <= 0) {
dbffcd03
RR
4463#ifndef CONFIG_HAVE_IOREMAP_PROT
4464 break;
4465#else
28b2ee20
RR
4466 /*
4467 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4468 * we can access using slightly different code.
4469 */
28b2ee20 4470 vma = find_vma(mm, addr);
fe936dfc 4471 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4472 break;
4473 if (vma->vm_ops && vma->vm_ops->access)
4474 ret = vma->vm_ops->access(vma, addr, buf,
4475 len, write);
4476 if (ret <= 0)
28b2ee20
RR
4477 break;
4478 bytes = ret;
dbffcd03 4479#endif
0ec76a11 4480 } else {
28b2ee20
RR
4481 bytes = len;
4482 offset = addr & (PAGE_SIZE-1);
4483 if (bytes > PAGE_SIZE-offset)
4484 bytes = PAGE_SIZE-offset;
4485
4486 maddr = kmap(page);
4487 if (write) {
4488 copy_to_user_page(vma, page, addr,
4489 maddr + offset, buf, bytes);
4490 set_page_dirty_lock(page);
4491 } else {
4492 copy_from_user_page(vma, page, addr,
4493 buf, maddr + offset, bytes);
4494 }
4495 kunmap(page);
09cbfeaf 4496 put_page(page);
0ec76a11 4497 }
0ec76a11
DH
4498 len -= bytes;
4499 buf += bytes;
4500 addr += bytes;
4501 }
4502 up_read(&mm->mmap_sem);
0ec76a11
DH
4503
4504 return buf - old_buf;
4505}
03252919 4506
5ddd36b9 4507/**
ae91dbfc 4508 * access_remote_vm - access another process' address space
5ddd36b9
SW
4509 * @mm: the mm_struct of the target address space
4510 * @addr: start address to access
4511 * @buf: source or destination buffer
4512 * @len: number of bytes to transfer
6347e8d5 4513 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4514 *
4515 * The caller must hold a reference on @mm.
4516 */
4517int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4518 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4519{
6347e8d5 4520 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4521}
4522
206cb636
SW
4523/*
4524 * Access another process' address space.
4525 * Source/target buffer must be kernel space,
4526 * Do not walk the page table directly, use get_user_pages
4527 */
4528int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4529 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4530{
4531 struct mm_struct *mm;
4532 int ret;
4533
4534 mm = get_task_mm(tsk);
4535 if (!mm)
4536 return 0;
4537
f307ab6d 4538 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4539
206cb636
SW
4540 mmput(mm);
4541
4542 return ret;
4543}
fcd35857 4544EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4545
03252919
AK
4546/*
4547 * Print the name of a VMA.
4548 */
4549void print_vma_addr(char *prefix, unsigned long ip)
4550{
4551 struct mm_struct *mm = current->mm;
4552 struct vm_area_struct *vma;
4553
e8bff74a 4554 /*
0a7f682d 4555 * we might be running from an atomic context so we cannot sleep
e8bff74a 4556 */
0a7f682d 4557 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4558 return;
4559
03252919
AK
4560 vma = find_vma(mm, ip);
4561 if (vma && vma->vm_file) {
4562 struct file *f = vma->vm_file;
0a7f682d 4563 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4564 if (buf) {
2fbc57c5 4565 char *p;
03252919 4566
9bf39ab2 4567 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4568 if (IS_ERR(p))
4569 p = "?";
2fbc57c5 4570 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4571 vma->vm_start,
4572 vma->vm_end - vma->vm_start);
4573 free_page((unsigned long)buf);
4574 }
4575 }
51a07e50 4576 up_read(&mm->mmap_sem);
03252919 4577}
3ee1afa3 4578
662bbcb2 4579#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4580void __might_fault(const char *file, int line)
3ee1afa3 4581{
95156f00
PZ
4582 /*
4583 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4584 * holding the mmap_sem, this is safe because kernel memory doesn't
4585 * get paged out, therefore we'll never actually fault, and the
4586 * below annotations will generate false positives.
4587 */
db68ce10 4588 if (uaccess_kernel())
95156f00 4589 return;
9ec23531 4590 if (pagefault_disabled())
662bbcb2 4591 return;
9ec23531
DH
4592 __might_sleep(file, line, 0);
4593#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4594 if (current->mm)
3ee1afa3 4595 might_lock_read(&current->mm->mmap_sem);
9ec23531 4596#endif
3ee1afa3 4597}
9ec23531 4598EXPORT_SYMBOL(__might_fault);
3ee1afa3 4599#endif
47ad8475
AA
4600
4601#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4602/*
4603 * Process all subpages of the specified huge page with the specified
4604 * operation. The target subpage will be processed last to keep its
4605 * cache lines hot.
4606 */
4607static inline void process_huge_page(
4608 unsigned long addr_hint, unsigned int pages_per_huge_page,
4609 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4610 void *arg)
47ad8475 4611{
c79b57e4
HY
4612 int i, n, base, l;
4613 unsigned long addr = addr_hint &
4614 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4615
c6ddfb6c 4616 /* Process target subpage last to keep its cache lines hot */
47ad8475 4617 might_sleep();
c79b57e4
HY
4618 n = (addr_hint - addr) / PAGE_SIZE;
4619 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4620 /* If target subpage in first half of huge page */
c79b57e4
HY
4621 base = 0;
4622 l = n;
c6ddfb6c 4623 /* Process subpages at the end of huge page */
c79b57e4
HY
4624 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4625 cond_resched();
c6ddfb6c 4626 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4627 }
4628 } else {
c6ddfb6c 4629 /* If target subpage in second half of huge page */
c79b57e4
HY
4630 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4631 l = pages_per_huge_page - n;
c6ddfb6c 4632 /* Process subpages at the begin of huge page */
c79b57e4
HY
4633 for (i = 0; i < base; i++) {
4634 cond_resched();
c6ddfb6c 4635 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4636 }
4637 }
4638 /*
c6ddfb6c
HY
4639 * Process remaining subpages in left-right-left-right pattern
4640 * towards the target subpage
c79b57e4
HY
4641 */
4642 for (i = 0; i < l; i++) {
4643 int left_idx = base + i;
4644 int right_idx = base + 2 * l - 1 - i;
4645
4646 cond_resched();
c6ddfb6c 4647 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4648 cond_resched();
c6ddfb6c 4649 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4650 }
4651}
4652
c6ddfb6c
HY
4653static void clear_gigantic_page(struct page *page,
4654 unsigned long addr,
4655 unsigned int pages_per_huge_page)
4656{
4657 int i;
4658 struct page *p = page;
4659
4660 might_sleep();
4661 for (i = 0; i < pages_per_huge_page;
4662 i++, p = mem_map_next(p, page, i)) {
4663 cond_resched();
4664 clear_user_highpage(p, addr + i * PAGE_SIZE);
4665 }
4666}
4667
4668static void clear_subpage(unsigned long addr, int idx, void *arg)
4669{
4670 struct page *page = arg;
4671
4672 clear_user_highpage(page + idx, addr);
4673}
4674
4675void clear_huge_page(struct page *page,
4676 unsigned long addr_hint, unsigned int pages_per_huge_page)
4677{
4678 unsigned long addr = addr_hint &
4679 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4680
4681 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4682 clear_gigantic_page(page, addr, pages_per_huge_page);
4683 return;
4684 }
4685
4686 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4687}
4688
47ad8475
AA
4689static void copy_user_gigantic_page(struct page *dst, struct page *src,
4690 unsigned long addr,
4691 struct vm_area_struct *vma,
4692 unsigned int pages_per_huge_page)
4693{
4694 int i;
4695 struct page *dst_base = dst;
4696 struct page *src_base = src;
4697
4698 for (i = 0; i < pages_per_huge_page; ) {
4699 cond_resched();
4700 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4701
4702 i++;
4703 dst = mem_map_next(dst, dst_base, i);
4704 src = mem_map_next(src, src_base, i);
4705 }
4706}
4707
c9f4cd71
HY
4708struct copy_subpage_arg {
4709 struct page *dst;
4710 struct page *src;
4711 struct vm_area_struct *vma;
4712};
4713
4714static void copy_subpage(unsigned long addr, int idx, void *arg)
4715{
4716 struct copy_subpage_arg *copy_arg = arg;
4717
4718 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4719 addr, copy_arg->vma);
4720}
4721
47ad8475 4722void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4723 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4724 unsigned int pages_per_huge_page)
4725{
c9f4cd71
HY
4726 unsigned long addr = addr_hint &
4727 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4728 struct copy_subpage_arg arg = {
4729 .dst = dst,
4730 .src = src,
4731 .vma = vma,
4732 };
47ad8475
AA
4733
4734 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4735 copy_user_gigantic_page(dst, src, addr, vma,
4736 pages_per_huge_page);
4737 return;
4738 }
4739
c9f4cd71 4740 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4741}
fa4d75c1
MK
4742
4743long copy_huge_page_from_user(struct page *dst_page,
4744 const void __user *usr_src,
810a56b9
MK
4745 unsigned int pages_per_huge_page,
4746 bool allow_pagefault)
fa4d75c1
MK
4747{
4748 void *src = (void *)usr_src;
4749 void *page_kaddr;
4750 unsigned long i, rc = 0;
4751 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4752
4753 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4754 if (allow_pagefault)
4755 page_kaddr = kmap(dst_page + i);
4756 else
4757 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4758 rc = copy_from_user(page_kaddr,
4759 (const void __user *)(src + i * PAGE_SIZE),
4760 PAGE_SIZE);
810a56b9
MK
4761 if (allow_pagefault)
4762 kunmap(dst_page + i);
4763 else
4764 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4765
4766 ret_val -= (PAGE_SIZE - rc);
4767 if (rc)
4768 break;
4769
4770 cond_resched();
4771 }
4772 return ret_val;
4773}
47ad8475 4774#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4775
40b64acd 4776#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4777
4778static struct kmem_cache *page_ptl_cachep;
4779
4780void __init ptlock_cache_init(void)
4781{
4782 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4783 SLAB_PANIC, NULL);
4784}
4785
539edb58 4786bool ptlock_alloc(struct page *page)
49076ec2
KS
4787{
4788 spinlock_t *ptl;
4789
b35f1819 4790 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4791 if (!ptl)
4792 return false;
539edb58 4793 page->ptl = ptl;
49076ec2
KS
4794 return true;
4795}
4796
539edb58 4797void ptlock_free(struct page *page)
49076ec2 4798{
b35f1819 4799 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4800}
4801#endif