]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
mm: clean up mm_counter
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4
LT
49#include <linux/rmap.h>
50#include <linux/module.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
1da177e4 59
6952b61d 60#include <asm/io.h>
1da177e4
LT
61#include <asm/pgalloc.h>
62#include <asm/uaccess.h>
63#include <asm/tlb.h>
64#include <asm/tlbflush.h>
65#include <asm/pgtable.h>
66
42b77728
JB
67#include "internal.h"
68
d41dee36 69#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
70/* use the per-pgdat data instead for discontigmem - mbligh */
71unsigned long max_mapnr;
72struct page *mem_map;
73
74EXPORT_SYMBOL(max_mapnr);
75EXPORT_SYMBOL(mem_map);
76#endif
77
78unsigned long num_physpages;
79/*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86void * high_memory;
1da177e4
LT
87
88EXPORT_SYMBOL(num_physpages);
89EXPORT_SYMBOL(high_memory);
1da177e4 90
32a93233
IM
91/*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
96 */
97int randomize_va_space __read_mostly =
98#ifdef CONFIG_COMPAT_BRK
99 1;
100#else
101 2;
102#endif
a62eaf15
AK
103
104static int __init disable_randmaps(char *s)
105{
106 randomize_va_space = 0;
9b41046c 107 return 1;
a62eaf15
AK
108}
109__setup("norandmaps", disable_randmaps);
110
62eede62 111unsigned long zero_pfn __read_mostly;
03f6462a 112unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
113
114/*
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
116 */
117static int __init init_zero_pfn(void)
118{
119 zero_pfn = page_to_pfn(ZERO_PAGE(0));
120 return 0;
121}
122core_initcall(init_zero_pfn);
a62eaf15 123
d559db08 124
1da177e4
LT
125/*
126 * If a p?d_bad entry is found while walking page tables, report
127 * the error, before resetting entry to p?d_none. Usually (but
128 * very seldom) called out from the p?d_none_or_clear_bad macros.
129 */
130
131void pgd_clear_bad(pgd_t *pgd)
132{
133 pgd_ERROR(*pgd);
134 pgd_clear(pgd);
135}
136
137void pud_clear_bad(pud_t *pud)
138{
139 pud_ERROR(*pud);
140 pud_clear(pud);
141}
142
143void pmd_clear_bad(pmd_t *pmd)
144{
145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147}
148
149/*
150 * Note: this doesn't free the actual pages themselves. That
151 * has been handled earlier when unmapping all the memory regions.
152 */
9e1b32ca
BH
153static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
154 unsigned long addr)
1da177e4 155{
2f569afd 156 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 157 pmd_clear(pmd);
9e1b32ca 158 pte_free_tlb(tlb, token, addr);
e0da382c 159 tlb->mm->nr_ptes--;
1da177e4
LT
160}
161
e0da382c
HD
162static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
163 unsigned long addr, unsigned long end,
164 unsigned long floor, unsigned long ceiling)
1da177e4
LT
165{
166 pmd_t *pmd;
167 unsigned long next;
e0da382c 168 unsigned long start;
1da177e4 169
e0da382c 170 start = addr;
1da177e4 171 pmd = pmd_offset(pud, addr);
1da177e4
LT
172 do {
173 next = pmd_addr_end(addr, end);
174 if (pmd_none_or_clear_bad(pmd))
175 continue;
9e1b32ca 176 free_pte_range(tlb, pmd, addr);
1da177e4
LT
177 } while (pmd++, addr = next, addr != end);
178
e0da382c
HD
179 start &= PUD_MASK;
180 if (start < floor)
181 return;
182 if (ceiling) {
183 ceiling &= PUD_MASK;
184 if (!ceiling)
185 return;
1da177e4 186 }
e0da382c
HD
187 if (end - 1 > ceiling - 1)
188 return;
189
190 pmd = pmd_offset(pud, start);
191 pud_clear(pud);
9e1b32ca 192 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
193}
194
e0da382c
HD
195static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
196 unsigned long addr, unsigned long end,
197 unsigned long floor, unsigned long ceiling)
1da177e4
LT
198{
199 pud_t *pud;
200 unsigned long next;
e0da382c 201 unsigned long start;
1da177e4 202
e0da382c 203 start = addr;
1da177e4 204 pud = pud_offset(pgd, addr);
1da177e4
LT
205 do {
206 next = pud_addr_end(addr, end);
207 if (pud_none_or_clear_bad(pud))
208 continue;
e0da382c 209 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
210 } while (pud++, addr = next, addr != end);
211
e0da382c
HD
212 start &= PGDIR_MASK;
213 if (start < floor)
214 return;
215 if (ceiling) {
216 ceiling &= PGDIR_MASK;
217 if (!ceiling)
218 return;
1da177e4 219 }
e0da382c
HD
220 if (end - 1 > ceiling - 1)
221 return;
222
223 pud = pud_offset(pgd, start);
224 pgd_clear(pgd);
9e1b32ca 225 pud_free_tlb(tlb, pud, start);
1da177e4
LT
226}
227
228/*
e0da382c
HD
229 * This function frees user-level page tables of a process.
230 *
1da177e4
LT
231 * Must be called with pagetable lock held.
232 */
42b77728 233void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
1da177e4
LT
236{
237 pgd_t *pgd;
238 unsigned long next;
e0da382c
HD
239 unsigned long start;
240
241 /*
242 * The next few lines have given us lots of grief...
243 *
244 * Why are we testing PMD* at this top level? Because often
245 * there will be no work to do at all, and we'd prefer not to
246 * go all the way down to the bottom just to discover that.
247 *
248 * Why all these "- 1"s? Because 0 represents both the bottom
249 * of the address space and the top of it (using -1 for the
250 * top wouldn't help much: the masks would do the wrong thing).
251 * The rule is that addr 0 and floor 0 refer to the bottom of
252 * the address space, but end 0 and ceiling 0 refer to the top
253 * Comparisons need to use "end - 1" and "ceiling - 1" (though
254 * that end 0 case should be mythical).
255 *
256 * Wherever addr is brought up or ceiling brought down, we must
257 * be careful to reject "the opposite 0" before it confuses the
258 * subsequent tests. But what about where end is brought down
259 * by PMD_SIZE below? no, end can't go down to 0 there.
260 *
261 * Whereas we round start (addr) and ceiling down, by different
262 * masks at different levels, in order to test whether a table
263 * now has no other vmas using it, so can be freed, we don't
264 * bother to round floor or end up - the tests don't need that.
265 */
1da177e4 266
e0da382c
HD
267 addr &= PMD_MASK;
268 if (addr < floor) {
269 addr += PMD_SIZE;
270 if (!addr)
271 return;
272 }
273 if (ceiling) {
274 ceiling &= PMD_MASK;
275 if (!ceiling)
276 return;
277 }
278 if (end - 1 > ceiling - 1)
279 end -= PMD_SIZE;
280 if (addr > end - 1)
281 return;
282
283 start = addr;
42b77728 284 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
285 do {
286 next = pgd_addr_end(addr, end);
287 if (pgd_none_or_clear_bad(pgd))
288 continue;
42b77728 289 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 290 } while (pgd++, addr = next, addr != end);
e0da382c
HD
291}
292
42b77728 293void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 294 unsigned long floor, unsigned long ceiling)
e0da382c
HD
295{
296 while (vma) {
297 struct vm_area_struct *next = vma->vm_next;
298 unsigned long addr = vma->vm_start;
299
8f4f8c16 300 /*
25d9e2d1
NP
301 * Hide vma from rmap and truncate_pagecache before freeing
302 * pgtables
8f4f8c16
HD
303 */
304 anon_vma_unlink(vma);
305 unlink_file_vma(vma);
306
9da61aef 307 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 308 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 309 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
310 } else {
311 /*
312 * Optimization: gather nearby vmas into one call down
313 */
314 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 315 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
316 vma = next;
317 next = vma->vm_next;
8f4f8c16
HD
318 anon_vma_unlink(vma);
319 unlink_file_vma(vma);
3bf5ee95
HD
320 }
321 free_pgd_range(tlb, addr, vma->vm_end,
322 floor, next? next->vm_start: ceiling);
323 }
e0da382c
HD
324 vma = next;
325 }
1da177e4
LT
326}
327
1bb3630e 328int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 329{
2f569afd 330 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
331 if (!new)
332 return -ENOMEM;
333
362a61ad
NP
334 /*
335 * Ensure all pte setup (eg. pte page lock and page clearing) are
336 * visible before the pte is made visible to other CPUs by being
337 * put into page tables.
338 *
339 * The other side of the story is the pointer chasing in the page
340 * table walking code (when walking the page table without locking;
341 * ie. most of the time). Fortunately, these data accesses consist
342 * of a chain of data-dependent loads, meaning most CPUs (alpha
343 * being the notable exception) will already guarantee loads are
344 * seen in-order. See the alpha page table accessors for the
345 * smp_read_barrier_depends() barriers in page table walking code.
346 */
347 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
348
c74df32c 349 spin_lock(&mm->page_table_lock);
2f569afd 350 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 351 mm->nr_ptes++;
1da177e4 352 pmd_populate(mm, pmd, new);
2f569afd 353 new = NULL;
1da177e4 354 }
c74df32c 355 spin_unlock(&mm->page_table_lock);
2f569afd
MS
356 if (new)
357 pte_free(mm, new);
1bb3630e 358 return 0;
1da177e4
LT
359}
360
1bb3630e 361int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 362{
1bb3630e
HD
363 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
364 if (!new)
365 return -ENOMEM;
366
362a61ad
NP
367 smp_wmb(); /* See comment in __pte_alloc */
368
1bb3630e 369 spin_lock(&init_mm.page_table_lock);
2f569afd 370 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 371 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
372 new = NULL;
373 }
1bb3630e 374 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
375 if (new)
376 pte_free_kernel(&init_mm, new);
1bb3630e 377 return 0;
1da177e4
LT
378}
379
d559db08
KH
380static inline void init_rss_vec(int *rss)
381{
382 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
383}
384
385static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 386{
d559db08
KH
387 int i;
388
389 for (i = 0; i < NR_MM_COUNTERS; i++)
390 if (rss[i])
391 add_mm_counter(mm, i, rss[i]);
ae859762
HD
392}
393
b5810039 394/*
6aab341e
LT
395 * This function is called to print an error when a bad pte
396 * is found. For example, we might have a PFN-mapped pte in
397 * a region that doesn't allow it.
b5810039
NP
398 *
399 * The calling function must still handle the error.
400 */
3dc14741
HD
401static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
402 pte_t pte, struct page *page)
b5810039 403{
3dc14741
HD
404 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
405 pud_t *pud = pud_offset(pgd, addr);
406 pmd_t *pmd = pmd_offset(pud, addr);
407 struct address_space *mapping;
408 pgoff_t index;
d936cf9b
HD
409 static unsigned long resume;
410 static unsigned long nr_shown;
411 static unsigned long nr_unshown;
412
413 /*
414 * Allow a burst of 60 reports, then keep quiet for that minute;
415 * or allow a steady drip of one report per second.
416 */
417 if (nr_shown == 60) {
418 if (time_before(jiffies, resume)) {
419 nr_unshown++;
420 return;
421 }
422 if (nr_unshown) {
1e9e6365
HD
423 printk(KERN_ALERT
424 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
425 nr_unshown);
426 nr_unshown = 0;
427 }
428 nr_shown = 0;
429 }
430 if (nr_shown++ == 0)
431 resume = jiffies + 60 * HZ;
3dc14741
HD
432
433 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
434 index = linear_page_index(vma, addr);
435
1e9e6365
HD
436 printk(KERN_ALERT
437 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
438 current->comm,
439 (long long)pte_val(pte), (long long)pmd_val(*pmd));
440 if (page) {
1e9e6365 441 printk(KERN_ALERT
3dc14741
HD
442 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
443 page, (void *)page->flags, page_count(page),
444 page_mapcount(page), page->mapping, page->index);
445 }
1e9e6365 446 printk(KERN_ALERT
3dc14741
HD
447 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
448 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
449 /*
450 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
451 */
452 if (vma->vm_ops)
1e9e6365 453 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
454 (unsigned long)vma->vm_ops->fault);
455 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 456 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 457 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 458 dump_stack();
3dc14741 459 add_taint(TAINT_BAD_PAGE);
b5810039
NP
460}
461
67121172
LT
462static inline int is_cow_mapping(unsigned int flags)
463{
464 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
465}
466
62eede62
HD
467#ifndef is_zero_pfn
468static inline int is_zero_pfn(unsigned long pfn)
469{
470 return pfn == zero_pfn;
471}
472#endif
473
474#ifndef my_zero_pfn
475static inline unsigned long my_zero_pfn(unsigned long addr)
476{
477 return zero_pfn;
478}
479#endif
480
ee498ed7 481/*
7e675137 482 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 483 *
7e675137
NP
484 * "Special" mappings do not wish to be associated with a "struct page" (either
485 * it doesn't exist, or it exists but they don't want to touch it). In this
486 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 487 *
7e675137
NP
488 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
489 * pte bit, in which case this function is trivial. Secondly, an architecture
490 * may not have a spare pte bit, which requires a more complicated scheme,
491 * described below.
492 *
493 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
494 * special mapping (even if there are underlying and valid "struct pages").
495 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 496 *
b379d790
JH
497 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
498 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
499 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
500 * mapping will always honor the rule
6aab341e
LT
501 *
502 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
503 *
7e675137
NP
504 * And for normal mappings this is false.
505 *
506 * This restricts such mappings to be a linear translation from virtual address
507 * to pfn. To get around this restriction, we allow arbitrary mappings so long
508 * as the vma is not a COW mapping; in that case, we know that all ptes are
509 * special (because none can have been COWed).
b379d790 510 *
b379d790 511 *
7e675137 512 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
513 *
514 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
515 * page" backing, however the difference is that _all_ pages with a struct
516 * page (that is, those where pfn_valid is true) are refcounted and considered
517 * normal pages by the VM. The disadvantage is that pages are refcounted
518 * (which can be slower and simply not an option for some PFNMAP users). The
519 * advantage is that we don't have to follow the strict linearity rule of
520 * PFNMAP mappings in order to support COWable mappings.
521 *
ee498ed7 522 */
7e675137
NP
523#ifdef __HAVE_ARCH_PTE_SPECIAL
524# define HAVE_PTE_SPECIAL 1
525#else
526# define HAVE_PTE_SPECIAL 0
527#endif
528struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
529 pte_t pte)
ee498ed7 530{
22b31eec 531 unsigned long pfn = pte_pfn(pte);
7e675137
NP
532
533 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
534 if (likely(!pte_special(pte)))
535 goto check_pfn;
a13ea5b7
HD
536 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
537 return NULL;
62eede62 538 if (!is_zero_pfn(pfn))
22b31eec 539 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
540 return NULL;
541 }
542
543 /* !HAVE_PTE_SPECIAL case follows: */
544
b379d790
JH
545 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
546 if (vma->vm_flags & VM_MIXEDMAP) {
547 if (!pfn_valid(pfn))
548 return NULL;
549 goto out;
550 } else {
7e675137
NP
551 unsigned long off;
552 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
553 if (pfn == vma->vm_pgoff + off)
554 return NULL;
555 if (!is_cow_mapping(vma->vm_flags))
556 return NULL;
557 }
6aab341e
LT
558 }
559
62eede62
HD
560 if (is_zero_pfn(pfn))
561 return NULL;
22b31eec
HD
562check_pfn:
563 if (unlikely(pfn > highest_memmap_pfn)) {
564 print_bad_pte(vma, addr, pte, NULL);
565 return NULL;
566 }
6aab341e
LT
567
568 /*
7e675137 569 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 570 * eg. VDSO mappings can cause them to exist.
6aab341e 571 */
b379d790 572out:
6aab341e 573 return pfn_to_page(pfn);
ee498ed7
HD
574}
575
1da177e4
LT
576/*
577 * copy one vm_area from one task to the other. Assumes the page tables
578 * already present in the new task to be cleared in the whole range
579 * covered by this vma.
1da177e4
LT
580 */
581
570a335b 582static inline unsigned long
1da177e4 583copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 584 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 585 unsigned long addr, int *rss)
1da177e4 586{
b5810039 587 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
588 pte_t pte = *src_pte;
589 struct page *page;
1da177e4
LT
590
591 /* pte contains position in swap or file, so copy. */
592 if (unlikely(!pte_present(pte))) {
593 if (!pte_file(pte)) {
0697212a
CL
594 swp_entry_t entry = pte_to_swp_entry(pte);
595
570a335b
HD
596 if (swap_duplicate(entry) < 0)
597 return entry.val;
598
1da177e4
LT
599 /* make sure dst_mm is on swapoff's mmlist. */
600 if (unlikely(list_empty(&dst_mm->mmlist))) {
601 spin_lock(&mmlist_lock);
f412ac08
HD
602 if (list_empty(&dst_mm->mmlist))
603 list_add(&dst_mm->mmlist,
604 &src_mm->mmlist);
1da177e4
LT
605 spin_unlock(&mmlist_lock);
606 }
0697212a
CL
607 if (is_write_migration_entry(entry) &&
608 is_cow_mapping(vm_flags)) {
609 /*
610 * COW mappings require pages in both parent
611 * and child to be set to read.
612 */
613 make_migration_entry_read(&entry);
614 pte = swp_entry_to_pte(entry);
615 set_pte_at(src_mm, addr, src_pte, pte);
616 }
1da177e4 617 }
ae859762 618 goto out_set_pte;
1da177e4
LT
619 }
620
1da177e4
LT
621 /*
622 * If it's a COW mapping, write protect it both
623 * in the parent and the child
624 */
67121172 625 if (is_cow_mapping(vm_flags)) {
1da177e4 626 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 627 pte = pte_wrprotect(pte);
1da177e4
LT
628 }
629
630 /*
631 * If it's a shared mapping, mark it clean in
632 * the child
633 */
634 if (vm_flags & VM_SHARED)
635 pte = pte_mkclean(pte);
636 pte = pte_mkold(pte);
6aab341e
LT
637
638 page = vm_normal_page(vma, addr, pte);
639 if (page) {
640 get_page(page);
21333b2b 641 page_dup_rmap(page);
d559db08
KH
642 if (PageAnon(page))
643 rss[MM_ANONPAGES]++;
644 else
645 rss[MM_FILEPAGES]++;
6aab341e 646 }
ae859762
HD
647
648out_set_pte:
649 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 650 return 0;
1da177e4
LT
651}
652
653static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
654 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
655 unsigned long addr, unsigned long end)
656{
c36987e2 657 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 658 pte_t *src_pte, *dst_pte;
c74df32c 659 spinlock_t *src_ptl, *dst_ptl;
e040f218 660 int progress = 0;
d559db08 661 int rss[NR_MM_COUNTERS];
570a335b 662 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
663
664again:
d559db08
KH
665 init_rss_vec(rss);
666
c74df32c 667 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
668 if (!dst_pte)
669 return -ENOMEM;
670 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 671 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 672 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
673 orig_src_pte = src_pte;
674 orig_dst_pte = dst_pte;
6606c3e0 675 arch_enter_lazy_mmu_mode();
1da177e4 676
1da177e4
LT
677 do {
678 /*
679 * We are holding two locks at this point - either of them
680 * could generate latencies in another task on another CPU.
681 */
e040f218
HD
682 if (progress >= 32) {
683 progress = 0;
684 if (need_resched() ||
95c354fe 685 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
686 break;
687 }
1da177e4
LT
688 if (pte_none(*src_pte)) {
689 progress++;
690 continue;
691 }
570a335b
HD
692 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
693 vma, addr, rss);
694 if (entry.val)
695 break;
1da177e4
LT
696 progress += 8;
697 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 698
6606c3e0 699 arch_leave_lazy_mmu_mode();
c74df32c 700 spin_unlock(src_ptl);
c36987e2 701 pte_unmap_nested(orig_src_pte);
d559db08 702 add_mm_rss_vec(dst_mm, rss);
c36987e2 703 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 704 cond_resched();
570a335b
HD
705
706 if (entry.val) {
707 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
708 return -ENOMEM;
709 progress = 0;
710 }
1da177e4
LT
711 if (addr != end)
712 goto again;
713 return 0;
714}
715
716static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
717 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
718 unsigned long addr, unsigned long end)
719{
720 pmd_t *src_pmd, *dst_pmd;
721 unsigned long next;
722
723 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
724 if (!dst_pmd)
725 return -ENOMEM;
726 src_pmd = pmd_offset(src_pud, addr);
727 do {
728 next = pmd_addr_end(addr, end);
729 if (pmd_none_or_clear_bad(src_pmd))
730 continue;
731 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
732 vma, addr, next))
733 return -ENOMEM;
734 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
735 return 0;
736}
737
738static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
739 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
740 unsigned long addr, unsigned long end)
741{
742 pud_t *src_pud, *dst_pud;
743 unsigned long next;
744
745 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
746 if (!dst_pud)
747 return -ENOMEM;
748 src_pud = pud_offset(src_pgd, addr);
749 do {
750 next = pud_addr_end(addr, end);
751 if (pud_none_or_clear_bad(src_pud))
752 continue;
753 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
754 vma, addr, next))
755 return -ENOMEM;
756 } while (dst_pud++, src_pud++, addr = next, addr != end);
757 return 0;
758}
759
760int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
761 struct vm_area_struct *vma)
762{
763 pgd_t *src_pgd, *dst_pgd;
764 unsigned long next;
765 unsigned long addr = vma->vm_start;
766 unsigned long end = vma->vm_end;
cddb8a5c 767 int ret;
1da177e4 768
d992895b
NP
769 /*
770 * Don't copy ptes where a page fault will fill them correctly.
771 * Fork becomes much lighter when there are big shared or private
772 * readonly mappings. The tradeoff is that copy_page_range is more
773 * efficient than faulting.
774 */
4d7672b4 775 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
776 if (!vma->anon_vma)
777 return 0;
778 }
779
1da177e4
LT
780 if (is_vm_hugetlb_page(vma))
781 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
782
34801ba9 783 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 784 /*
785 * We do not free on error cases below as remove_vma
786 * gets called on error from higher level routine
787 */
788 ret = track_pfn_vma_copy(vma);
789 if (ret)
790 return ret;
791 }
792
cddb8a5c
AA
793 /*
794 * We need to invalidate the secondary MMU mappings only when
795 * there could be a permission downgrade on the ptes of the
796 * parent mm. And a permission downgrade will only happen if
797 * is_cow_mapping() returns true.
798 */
799 if (is_cow_mapping(vma->vm_flags))
800 mmu_notifier_invalidate_range_start(src_mm, addr, end);
801
802 ret = 0;
1da177e4
LT
803 dst_pgd = pgd_offset(dst_mm, addr);
804 src_pgd = pgd_offset(src_mm, addr);
805 do {
806 next = pgd_addr_end(addr, end);
807 if (pgd_none_or_clear_bad(src_pgd))
808 continue;
cddb8a5c
AA
809 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
810 vma, addr, next))) {
811 ret = -ENOMEM;
812 break;
813 }
1da177e4 814 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
815
816 if (is_cow_mapping(vma->vm_flags))
817 mmu_notifier_invalidate_range_end(src_mm,
818 vma->vm_start, end);
819 return ret;
1da177e4
LT
820}
821
51c6f666 822static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 823 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 824 unsigned long addr, unsigned long end,
51c6f666 825 long *zap_work, struct zap_details *details)
1da177e4 826{
b5810039 827 struct mm_struct *mm = tlb->mm;
1da177e4 828 pte_t *pte;
508034a3 829 spinlock_t *ptl;
d559db08
KH
830 int rss[NR_MM_COUNTERS];
831
832 init_rss_vec(rss);
1da177e4 833
508034a3 834 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 835 arch_enter_lazy_mmu_mode();
1da177e4
LT
836 do {
837 pte_t ptent = *pte;
51c6f666
RH
838 if (pte_none(ptent)) {
839 (*zap_work)--;
1da177e4 840 continue;
51c6f666 841 }
6f5e6b9e
HD
842
843 (*zap_work) -= PAGE_SIZE;
844
1da177e4 845 if (pte_present(ptent)) {
ee498ed7 846 struct page *page;
51c6f666 847
6aab341e 848 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
849 if (unlikely(details) && page) {
850 /*
851 * unmap_shared_mapping_pages() wants to
852 * invalidate cache without truncating:
853 * unmap shared but keep private pages.
854 */
855 if (details->check_mapping &&
856 details->check_mapping != page->mapping)
857 continue;
858 /*
859 * Each page->index must be checked when
860 * invalidating or truncating nonlinear.
861 */
862 if (details->nonlinear_vma &&
863 (page->index < details->first_index ||
864 page->index > details->last_index))
865 continue;
866 }
b5810039 867 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 868 tlb->fullmm);
1da177e4
LT
869 tlb_remove_tlb_entry(tlb, pte, addr);
870 if (unlikely(!page))
871 continue;
872 if (unlikely(details) && details->nonlinear_vma
873 && linear_page_index(details->nonlinear_vma,
874 addr) != page->index)
b5810039 875 set_pte_at(mm, addr, pte,
1da177e4 876 pgoff_to_pte(page->index));
1da177e4 877 if (PageAnon(page))
d559db08 878 rss[MM_ANONPAGES]--;
6237bcd9
HD
879 else {
880 if (pte_dirty(ptent))
881 set_page_dirty(page);
4917e5d0
JW
882 if (pte_young(ptent) &&
883 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 884 mark_page_accessed(page);
d559db08 885 rss[MM_FILEPAGES]--;
6237bcd9 886 }
edc315fd 887 page_remove_rmap(page);
3dc14741
HD
888 if (unlikely(page_mapcount(page) < 0))
889 print_bad_pte(vma, addr, ptent, page);
1da177e4
LT
890 tlb_remove_page(tlb, page);
891 continue;
892 }
893 /*
894 * If details->check_mapping, we leave swap entries;
895 * if details->nonlinear_vma, we leave file entries.
896 */
897 if (unlikely(details))
898 continue;
2509ef26
HD
899 if (pte_file(ptent)) {
900 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
901 print_bad_pte(vma, addr, ptent, NULL);
902 } else if
903 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
904 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 905 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 906 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 907
d559db08 908 add_mm_rss_vec(mm, rss);
6606c3e0 909 arch_leave_lazy_mmu_mode();
508034a3 910 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
911
912 return addr;
1da177e4
LT
913}
914
51c6f666 915static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 916 struct vm_area_struct *vma, pud_t *pud,
1da177e4 917 unsigned long addr, unsigned long end,
51c6f666 918 long *zap_work, struct zap_details *details)
1da177e4
LT
919{
920 pmd_t *pmd;
921 unsigned long next;
922
923 pmd = pmd_offset(pud, addr);
924 do {
925 next = pmd_addr_end(addr, end);
51c6f666
RH
926 if (pmd_none_or_clear_bad(pmd)) {
927 (*zap_work)--;
1da177e4 928 continue;
51c6f666
RH
929 }
930 next = zap_pte_range(tlb, vma, pmd, addr, next,
931 zap_work, details);
932 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
933
934 return addr;
1da177e4
LT
935}
936
51c6f666 937static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 938 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 939 unsigned long addr, unsigned long end,
51c6f666 940 long *zap_work, struct zap_details *details)
1da177e4
LT
941{
942 pud_t *pud;
943 unsigned long next;
944
945 pud = pud_offset(pgd, addr);
946 do {
947 next = pud_addr_end(addr, end);
51c6f666
RH
948 if (pud_none_or_clear_bad(pud)) {
949 (*zap_work)--;
1da177e4 950 continue;
51c6f666
RH
951 }
952 next = zap_pmd_range(tlb, vma, pud, addr, next,
953 zap_work, details);
954 } while (pud++, addr = next, (addr != end && *zap_work > 0));
955
956 return addr;
1da177e4
LT
957}
958
51c6f666
RH
959static unsigned long unmap_page_range(struct mmu_gather *tlb,
960 struct vm_area_struct *vma,
1da177e4 961 unsigned long addr, unsigned long end,
51c6f666 962 long *zap_work, struct zap_details *details)
1da177e4
LT
963{
964 pgd_t *pgd;
965 unsigned long next;
966
967 if (details && !details->check_mapping && !details->nonlinear_vma)
968 details = NULL;
969
970 BUG_ON(addr >= end);
569b846d 971 mem_cgroup_uncharge_start();
1da177e4
LT
972 tlb_start_vma(tlb, vma);
973 pgd = pgd_offset(vma->vm_mm, addr);
974 do {
975 next = pgd_addr_end(addr, end);
51c6f666
RH
976 if (pgd_none_or_clear_bad(pgd)) {
977 (*zap_work)--;
1da177e4 978 continue;
51c6f666
RH
979 }
980 next = zap_pud_range(tlb, vma, pgd, addr, next,
981 zap_work, details);
982 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 983 tlb_end_vma(tlb, vma);
569b846d 984 mem_cgroup_uncharge_end();
51c6f666
RH
985
986 return addr;
1da177e4
LT
987}
988
989#ifdef CONFIG_PREEMPT
990# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
991#else
992/* No preempt: go for improved straight-line efficiency */
993# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
994#endif
995
996/**
997 * unmap_vmas - unmap a range of memory covered by a list of vma's
998 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
999 * @vma: the starting vma
1000 * @start_addr: virtual address at which to start unmapping
1001 * @end_addr: virtual address at which to end unmapping
1002 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1003 * @details: details of nonlinear truncation or shared cache invalidation
1004 *
ee39b37b 1005 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 1006 *
508034a3 1007 * Unmap all pages in the vma list.
1da177e4 1008 *
508034a3
HD
1009 * We aim to not hold locks for too long (for scheduling latency reasons).
1010 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
1011 * return the ending mmu_gather to the caller.
1012 *
1013 * Only addresses between `start' and `end' will be unmapped.
1014 *
1015 * The VMA list must be sorted in ascending virtual address order.
1016 *
1017 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1018 * range after unmap_vmas() returns. So the only responsibility here is to
1019 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1020 * drops the lock and schedules.
1021 */
508034a3 1022unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
1023 struct vm_area_struct *vma, unsigned long start_addr,
1024 unsigned long end_addr, unsigned long *nr_accounted,
1025 struct zap_details *details)
1026{
51c6f666 1027 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1028 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1029 int tlb_start_valid = 0;
ee39b37b 1030 unsigned long start = start_addr;
1da177e4 1031 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 1032 int fullmm = (*tlbp)->fullmm;
cddb8a5c 1033 struct mm_struct *mm = vma->vm_mm;
1da177e4 1034
cddb8a5c 1035 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 1036 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
1037 unsigned long end;
1038
1039 start = max(vma->vm_start, start_addr);
1040 if (start >= vma->vm_end)
1041 continue;
1042 end = min(vma->vm_end, end_addr);
1043 if (end <= vma->vm_start)
1044 continue;
1045
1046 if (vma->vm_flags & VM_ACCOUNT)
1047 *nr_accounted += (end - start) >> PAGE_SHIFT;
1048
34801ba9 1049 if (unlikely(is_pfn_mapping(vma)))
2ab64037 1050 untrack_pfn_vma(vma, 0, 0);
1051
1da177e4 1052 while (start != end) {
1da177e4
LT
1053 if (!tlb_start_valid) {
1054 tlb_start = start;
1055 tlb_start_valid = 1;
1056 }
1057
51c6f666 1058 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
1059 /*
1060 * It is undesirable to test vma->vm_file as it
1061 * should be non-null for valid hugetlb area.
1062 * However, vm_file will be NULL in the error
1063 * cleanup path of do_mmap_pgoff. When
1064 * hugetlbfs ->mmap method fails,
1065 * do_mmap_pgoff() nullifies vma->vm_file
1066 * before calling this function to clean up.
1067 * Since no pte has actually been setup, it is
1068 * safe to do nothing in this case.
1069 */
1070 if (vma->vm_file) {
1071 unmap_hugepage_range(vma, start, end, NULL);
1072 zap_work -= (end - start) /
a5516438 1073 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
1074 }
1075
51c6f666
RH
1076 start = end;
1077 } else
1078 start = unmap_page_range(*tlbp, vma,
1079 start, end, &zap_work, details);
1080
1081 if (zap_work > 0) {
1082 BUG_ON(start != end);
1083 break;
1da177e4
LT
1084 }
1085
1da177e4
LT
1086 tlb_finish_mmu(*tlbp, tlb_start, start);
1087
1088 if (need_resched() ||
95c354fe 1089 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1090 if (i_mmap_lock) {
508034a3 1091 *tlbp = NULL;
1da177e4
LT
1092 goto out;
1093 }
1da177e4 1094 cond_resched();
1da177e4
LT
1095 }
1096
508034a3 1097 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1098 tlb_start_valid = 0;
51c6f666 1099 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1100 }
1101 }
1102out:
cddb8a5c 1103 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1104 return start; /* which is now the end (or restart) address */
1da177e4
LT
1105}
1106
1107/**
1108 * zap_page_range - remove user pages in a given range
1109 * @vma: vm_area_struct holding the applicable pages
1110 * @address: starting address of pages to zap
1111 * @size: number of bytes to zap
1112 * @details: details of nonlinear truncation or shared cache invalidation
1113 */
ee39b37b 1114unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1115 unsigned long size, struct zap_details *details)
1116{
1117 struct mm_struct *mm = vma->vm_mm;
1118 struct mmu_gather *tlb;
1119 unsigned long end = address + size;
1120 unsigned long nr_accounted = 0;
1121
1da177e4 1122 lru_add_drain();
1da177e4 1123 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1124 update_hiwater_rss(mm);
508034a3
HD
1125 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1126 if (tlb)
1127 tlb_finish_mmu(tlb, address, end);
ee39b37b 1128 return end;
1da177e4
LT
1129}
1130
c627f9cc
JS
1131/**
1132 * zap_vma_ptes - remove ptes mapping the vma
1133 * @vma: vm_area_struct holding ptes to be zapped
1134 * @address: starting address of pages to zap
1135 * @size: number of bytes to zap
1136 *
1137 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1138 *
1139 * The entire address range must be fully contained within the vma.
1140 *
1141 * Returns 0 if successful.
1142 */
1143int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1144 unsigned long size)
1145{
1146 if (address < vma->vm_start || address + size > vma->vm_end ||
1147 !(vma->vm_flags & VM_PFNMAP))
1148 return -1;
1149 zap_page_range(vma, address, size, NULL);
1150 return 0;
1151}
1152EXPORT_SYMBOL_GPL(zap_vma_ptes);
1153
1da177e4
LT
1154/*
1155 * Do a quick page-table lookup for a single page.
1da177e4 1156 */
6aab341e 1157struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1158 unsigned int flags)
1da177e4
LT
1159{
1160 pgd_t *pgd;
1161 pud_t *pud;
1162 pmd_t *pmd;
1163 pte_t *ptep, pte;
deceb6cd 1164 spinlock_t *ptl;
1da177e4 1165 struct page *page;
6aab341e 1166 struct mm_struct *mm = vma->vm_mm;
1da177e4 1167
deceb6cd
HD
1168 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1169 if (!IS_ERR(page)) {
1170 BUG_ON(flags & FOLL_GET);
1171 goto out;
1172 }
1da177e4 1173
deceb6cd 1174 page = NULL;
1da177e4
LT
1175 pgd = pgd_offset(mm, address);
1176 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1177 goto no_page_table;
1da177e4
LT
1178
1179 pud = pud_offset(pgd, address);
ceb86879 1180 if (pud_none(*pud))
deceb6cd 1181 goto no_page_table;
ceb86879
AK
1182 if (pud_huge(*pud)) {
1183 BUG_ON(flags & FOLL_GET);
1184 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1185 goto out;
1186 }
1187 if (unlikely(pud_bad(*pud)))
1188 goto no_page_table;
1189
1da177e4 1190 pmd = pmd_offset(pud, address);
aeed5fce 1191 if (pmd_none(*pmd))
deceb6cd 1192 goto no_page_table;
deceb6cd
HD
1193 if (pmd_huge(*pmd)) {
1194 BUG_ON(flags & FOLL_GET);
1195 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1196 goto out;
deceb6cd 1197 }
aeed5fce
HD
1198 if (unlikely(pmd_bad(*pmd)))
1199 goto no_page_table;
1200
deceb6cd 1201 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1202
1203 pte = *ptep;
deceb6cd 1204 if (!pte_present(pte))
89f5b7da 1205 goto no_page;
deceb6cd
HD
1206 if ((flags & FOLL_WRITE) && !pte_write(pte))
1207 goto unlock;
a13ea5b7 1208
6aab341e 1209 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1210 if (unlikely(!page)) {
1211 if ((flags & FOLL_DUMP) ||
62eede62 1212 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1213 goto bad_page;
1214 page = pte_page(pte);
1215 }
1da177e4 1216
deceb6cd
HD
1217 if (flags & FOLL_GET)
1218 get_page(page);
1219 if (flags & FOLL_TOUCH) {
1220 if ((flags & FOLL_WRITE) &&
1221 !pte_dirty(pte) && !PageDirty(page))
1222 set_page_dirty(page);
bd775c42
KM
1223 /*
1224 * pte_mkyoung() would be more correct here, but atomic care
1225 * is needed to avoid losing the dirty bit: it is easier to use
1226 * mark_page_accessed().
1227 */
deceb6cd
HD
1228 mark_page_accessed(page);
1229 }
1230unlock:
1231 pte_unmap_unlock(ptep, ptl);
1da177e4 1232out:
deceb6cd 1233 return page;
1da177e4 1234
89f5b7da
LT
1235bad_page:
1236 pte_unmap_unlock(ptep, ptl);
1237 return ERR_PTR(-EFAULT);
1238
1239no_page:
1240 pte_unmap_unlock(ptep, ptl);
1241 if (!pte_none(pte))
1242 return page;
8e4b9a60 1243
deceb6cd
HD
1244no_page_table:
1245 /*
1246 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1247 * has touched so far, we don't want to allocate unnecessary pages or
1248 * page tables. Return error instead of NULL to skip handle_mm_fault,
1249 * then get_dump_page() will return NULL to leave a hole in the dump.
1250 * But we can only make this optimization where a hole would surely
1251 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1252 */
8e4b9a60
HD
1253 if ((flags & FOLL_DUMP) &&
1254 (!vma->vm_ops || !vma->vm_ops->fault))
1255 return ERR_PTR(-EFAULT);
deceb6cd 1256 return page;
1da177e4
LT
1257}
1258
b291f000 1259int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1260 unsigned long start, int nr_pages, unsigned int gup_flags,
9d73777e 1261 struct page **pages, struct vm_area_struct **vmas)
1da177e4
LT
1262{
1263 int i;
58fa879e 1264 unsigned long vm_flags;
1da177e4 1265
9d73777e 1266 if (nr_pages <= 0)
900cf086 1267 return 0;
58fa879e
HD
1268
1269 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1270
1da177e4
LT
1271 /*
1272 * Require read or write permissions.
58fa879e 1273 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1274 */
58fa879e
HD
1275 vm_flags = (gup_flags & FOLL_WRITE) ?
1276 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1277 vm_flags &= (gup_flags & FOLL_FORCE) ?
1278 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1279 i = 0;
1280
1281 do {
deceb6cd 1282 struct vm_area_struct *vma;
1da177e4
LT
1283
1284 vma = find_extend_vma(mm, start);
1285 if (!vma && in_gate_area(tsk, start)) {
1286 unsigned long pg = start & PAGE_MASK;
1287 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1288 pgd_t *pgd;
1289 pud_t *pud;
1290 pmd_t *pmd;
1291 pte_t *pte;
b291f000
NP
1292
1293 /* user gate pages are read-only */
58fa879e 1294 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1295 return i ? : -EFAULT;
1296 if (pg > TASK_SIZE)
1297 pgd = pgd_offset_k(pg);
1298 else
1299 pgd = pgd_offset_gate(mm, pg);
1300 BUG_ON(pgd_none(*pgd));
1301 pud = pud_offset(pgd, pg);
1302 BUG_ON(pud_none(*pud));
1303 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1304 if (pmd_none(*pmd))
1305 return i ? : -EFAULT;
1da177e4 1306 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1307 if (pte_none(*pte)) {
1308 pte_unmap(pte);
1309 return i ? : -EFAULT;
1310 }
1da177e4 1311 if (pages) {
fa2a455b 1312 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1313 pages[i] = page;
1314 if (page)
1315 get_page(page);
1da177e4
LT
1316 }
1317 pte_unmap(pte);
1318 if (vmas)
1319 vmas[i] = gate_vma;
1320 i++;
1321 start += PAGE_SIZE;
9d73777e 1322 nr_pages--;
1da177e4
LT
1323 continue;
1324 }
1325
b291f000
NP
1326 if (!vma ||
1327 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1328 !(vm_flags & vma->vm_flags))
1da177e4
LT
1329 return i ? : -EFAULT;
1330
2a15efc9
HD
1331 if (is_vm_hugetlb_page(vma)) {
1332 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1333 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1334 continue;
1335 }
deceb6cd 1336
1da177e4 1337 do {
08ef4729 1338 struct page *page;
58fa879e 1339 unsigned int foll_flags = gup_flags;
1da177e4 1340
462e00cc 1341 /*
4779280d 1342 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1343 * pages and potentially allocating memory.
462e00cc 1344 */
1c3aff1c 1345 if (unlikely(fatal_signal_pending(current)))
4779280d 1346 return i ? i : -ERESTARTSYS;
462e00cc 1347
deceb6cd 1348 cond_resched();
6aab341e 1349 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1350 int ret;
d06063cc 1351
d26ed650
HD
1352 ret = handle_mm_fault(mm, vma, start,
1353 (foll_flags & FOLL_WRITE) ?
1354 FAULT_FLAG_WRITE : 0);
1355
83c54070
NP
1356 if (ret & VM_FAULT_ERROR) {
1357 if (ret & VM_FAULT_OOM)
1358 return i ? i : -ENOMEM;
d1737fdb
AK
1359 if (ret &
1360 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
83c54070
NP
1361 return i ? i : -EFAULT;
1362 BUG();
1363 }
1364 if (ret & VM_FAULT_MAJOR)
1365 tsk->maj_flt++;
1366 else
1367 tsk->min_flt++;
1368
a68d2ebc 1369 /*
83c54070
NP
1370 * The VM_FAULT_WRITE bit tells us that
1371 * do_wp_page has broken COW when necessary,
1372 * even if maybe_mkwrite decided not to set
1373 * pte_write. We can thus safely do subsequent
878b63ac
HD
1374 * page lookups as if they were reads. But only
1375 * do so when looping for pte_write is futile:
1376 * in some cases userspace may also be wanting
1377 * to write to the gotten user page, which a
1378 * read fault here might prevent (a readonly
1379 * page might get reCOWed by userspace write).
a68d2ebc 1380 */
878b63ac
HD
1381 if ((ret & VM_FAULT_WRITE) &&
1382 !(vma->vm_flags & VM_WRITE))
deceb6cd 1383 foll_flags &= ~FOLL_WRITE;
83c54070 1384
7f7bbbe5 1385 cond_resched();
1da177e4 1386 }
89f5b7da
LT
1387 if (IS_ERR(page))
1388 return i ? i : PTR_ERR(page);
1da177e4 1389 if (pages) {
08ef4729 1390 pages[i] = page;
03beb076 1391
a6f36be3 1392 flush_anon_page(vma, page, start);
08ef4729 1393 flush_dcache_page(page);
1da177e4
LT
1394 }
1395 if (vmas)
1396 vmas[i] = vma;
1397 i++;
1398 start += PAGE_SIZE;
9d73777e
PZ
1399 nr_pages--;
1400 } while (nr_pages && start < vma->vm_end);
1401 } while (nr_pages);
1da177e4
LT
1402 return i;
1403}
b291f000 1404
d2bf6be8
NP
1405/**
1406 * get_user_pages() - pin user pages in memory
1407 * @tsk: task_struct of target task
1408 * @mm: mm_struct of target mm
1409 * @start: starting user address
9d73777e 1410 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1411 * @write: whether pages will be written to by the caller
1412 * @force: whether to force write access even if user mapping is
1413 * readonly. This will result in the page being COWed even
1414 * in MAP_SHARED mappings. You do not want this.
1415 * @pages: array that receives pointers to the pages pinned.
1416 * Should be at least nr_pages long. Or NULL, if caller
1417 * only intends to ensure the pages are faulted in.
1418 * @vmas: array of pointers to vmas corresponding to each page.
1419 * Or NULL if the caller does not require them.
1420 *
1421 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1422 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1423 * were pinned, returns -errno. Each page returned must be released
1424 * with a put_page() call when it is finished with. vmas will only
1425 * remain valid while mmap_sem is held.
1426 *
1427 * Must be called with mmap_sem held for read or write.
1428 *
1429 * get_user_pages walks a process's page tables and takes a reference to
1430 * each struct page that each user address corresponds to at a given
1431 * instant. That is, it takes the page that would be accessed if a user
1432 * thread accesses the given user virtual address at that instant.
1433 *
1434 * This does not guarantee that the page exists in the user mappings when
1435 * get_user_pages returns, and there may even be a completely different
1436 * page there in some cases (eg. if mmapped pagecache has been invalidated
1437 * and subsequently re faulted). However it does guarantee that the page
1438 * won't be freed completely. And mostly callers simply care that the page
1439 * contains data that was valid *at some point in time*. Typically, an IO
1440 * or similar operation cannot guarantee anything stronger anyway because
1441 * locks can't be held over the syscall boundary.
1442 *
1443 * If write=0, the page must not be written to. If the page is written to,
1444 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1445 * after the page is finished with, and before put_page is called.
1446 *
1447 * get_user_pages is typically used for fewer-copy IO operations, to get a
1448 * handle on the memory by some means other than accesses via the user virtual
1449 * addresses. The pages may be submitted for DMA to devices or accessed via
1450 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1451 * use the correct cache flushing APIs.
1452 *
1453 * See also get_user_pages_fast, for performance critical applications.
1454 */
b291f000 1455int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1456 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1457 struct page **pages, struct vm_area_struct **vmas)
1458{
58fa879e 1459 int flags = FOLL_TOUCH;
b291f000 1460
58fa879e
HD
1461 if (pages)
1462 flags |= FOLL_GET;
b291f000 1463 if (write)
58fa879e 1464 flags |= FOLL_WRITE;
b291f000 1465 if (force)
58fa879e 1466 flags |= FOLL_FORCE;
b291f000 1467
9d73777e 1468 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
b291f000 1469}
1da177e4
LT
1470EXPORT_SYMBOL(get_user_pages);
1471
f3e8fccd
HD
1472/**
1473 * get_dump_page() - pin user page in memory while writing it to core dump
1474 * @addr: user address
1475 *
1476 * Returns struct page pointer of user page pinned for dump,
1477 * to be freed afterwards by page_cache_release() or put_page().
1478 *
1479 * Returns NULL on any kind of failure - a hole must then be inserted into
1480 * the corefile, to preserve alignment with its headers; and also returns
1481 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1482 * allowing a hole to be left in the corefile to save diskspace.
1483 *
1484 * Called without mmap_sem, but after all other threads have been killed.
1485 */
1486#ifdef CONFIG_ELF_CORE
1487struct page *get_dump_page(unsigned long addr)
1488{
1489 struct vm_area_struct *vma;
1490 struct page *page;
1491
1492 if (__get_user_pages(current, current->mm, addr, 1,
58fa879e 1493 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
f3e8fccd 1494 return NULL;
f3e8fccd
HD
1495 flush_cache_page(vma, addr, page_to_pfn(page));
1496 return page;
1497}
1498#endif /* CONFIG_ELF_CORE */
1499
920c7a5d
HH
1500pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1501 spinlock_t **ptl)
c9cfcddf
LT
1502{
1503 pgd_t * pgd = pgd_offset(mm, addr);
1504 pud_t * pud = pud_alloc(mm, pgd, addr);
1505 if (pud) {
49c91fb0 1506 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1507 if (pmd)
1508 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1509 }
1510 return NULL;
1511}
1512
238f58d8
LT
1513/*
1514 * This is the old fallback for page remapping.
1515 *
1516 * For historical reasons, it only allows reserved pages. Only
1517 * old drivers should use this, and they needed to mark their
1518 * pages reserved for the old functions anyway.
1519 */
423bad60
NP
1520static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1521 struct page *page, pgprot_t prot)
238f58d8 1522{
423bad60 1523 struct mm_struct *mm = vma->vm_mm;
238f58d8 1524 int retval;
c9cfcddf 1525 pte_t *pte;
8a9f3ccd
BS
1526 spinlock_t *ptl;
1527
238f58d8 1528 retval = -EINVAL;
a145dd41 1529 if (PageAnon(page))
5b4e655e 1530 goto out;
238f58d8
LT
1531 retval = -ENOMEM;
1532 flush_dcache_page(page);
c9cfcddf 1533 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1534 if (!pte)
5b4e655e 1535 goto out;
238f58d8
LT
1536 retval = -EBUSY;
1537 if (!pte_none(*pte))
1538 goto out_unlock;
1539
1540 /* Ok, finally just insert the thing.. */
1541 get_page(page);
d559db08 1542 inc_mm_counter(mm, MM_FILEPAGES);
238f58d8
LT
1543 page_add_file_rmap(page);
1544 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1545
1546 retval = 0;
8a9f3ccd
BS
1547 pte_unmap_unlock(pte, ptl);
1548 return retval;
238f58d8
LT
1549out_unlock:
1550 pte_unmap_unlock(pte, ptl);
1551out:
1552 return retval;
1553}
1554
bfa5bf6d
REB
1555/**
1556 * vm_insert_page - insert single page into user vma
1557 * @vma: user vma to map to
1558 * @addr: target user address of this page
1559 * @page: source kernel page
1560 *
a145dd41
LT
1561 * This allows drivers to insert individual pages they've allocated
1562 * into a user vma.
1563 *
1564 * The page has to be a nice clean _individual_ kernel allocation.
1565 * If you allocate a compound page, you need to have marked it as
1566 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1567 * (see split_page()).
a145dd41
LT
1568 *
1569 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1570 * took an arbitrary page protection parameter. This doesn't allow
1571 * that. Your vma protection will have to be set up correctly, which
1572 * means that if you want a shared writable mapping, you'd better
1573 * ask for a shared writable mapping!
1574 *
1575 * The page does not need to be reserved.
1576 */
423bad60
NP
1577int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1578 struct page *page)
a145dd41
LT
1579{
1580 if (addr < vma->vm_start || addr >= vma->vm_end)
1581 return -EFAULT;
1582 if (!page_count(page))
1583 return -EINVAL;
4d7672b4 1584 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1585 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1586}
e3c3374f 1587EXPORT_SYMBOL(vm_insert_page);
a145dd41 1588
423bad60
NP
1589static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1590 unsigned long pfn, pgprot_t prot)
1591{
1592 struct mm_struct *mm = vma->vm_mm;
1593 int retval;
1594 pte_t *pte, entry;
1595 spinlock_t *ptl;
1596
1597 retval = -ENOMEM;
1598 pte = get_locked_pte(mm, addr, &ptl);
1599 if (!pte)
1600 goto out;
1601 retval = -EBUSY;
1602 if (!pte_none(*pte))
1603 goto out_unlock;
1604
1605 /* Ok, finally just insert the thing.. */
1606 entry = pte_mkspecial(pfn_pte(pfn, prot));
1607 set_pte_at(mm, addr, pte, entry);
4b3073e1 1608 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1609
1610 retval = 0;
1611out_unlock:
1612 pte_unmap_unlock(pte, ptl);
1613out:
1614 return retval;
1615}
1616
e0dc0d8f
NP
1617/**
1618 * vm_insert_pfn - insert single pfn into user vma
1619 * @vma: user vma to map to
1620 * @addr: target user address of this page
1621 * @pfn: source kernel pfn
1622 *
1623 * Similar to vm_inert_page, this allows drivers to insert individual pages
1624 * they've allocated into a user vma. Same comments apply.
1625 *
1626 * This function should only be called from a vm_ops->fault handler, and
1627 * in that case the handler should return NULL.
0d71d10a
NP
1628 *
1629 * vma cannot be a COW mapping.
1630 *
1631 * As this is called only for pages that do not currently exist, we
1632 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1633 */
1634int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1635 unsigned long pfn)
e0dc0d8f 1636{
2ab64037 1637 int ret;
e4b866ed 1638 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1639 /*
1640 * Technically, architectures with pte_special can avoid all these
1641 * restrictions (same for remap_pfn_range). However we would like
1642 * consistency in testing and feature parity among all, so we should
1643 * try to keep these invariants in place for everybody.
1644 */
b379d790
JH
1645 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1646 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1647 (VM_PFNMAP|VM_MIXEDMAP));
1648 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1649 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1650
423bad60
NP
1651 if (addr < vma->vm_start || addr >= vma->vm_end)
1652 return -EFAULT;
e4b866ed 1653 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 1654 return -EINVAL;
1655
e4b866ed 1656 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1657
1658 if (ret)
1659 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1660
1661 return ret;
423bad60
NP
1662}
1663EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1664
423bad60
NP
1665int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1666 unsigned long pfn)
1667{
1668 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1669
423bad60
NP
1670 if (addr < vma->vm_start || addr >= vma->vm_end)
1671 return -EFAULT;
e0dc0d8f 1672
423bad60
NP
1673 /*
1674 * If we don't have pte special, then we have to use the pfn_valid()
1675 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1676 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1677 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1678 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1679 */
1680 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1681 struct page *page;
1682
1683 page = pfn_to_page(pfn);
1684 return insert_page(vma, addr, page, vma->vm_page_prot);
1685 }
1686 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1687}
423bad60 1688EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1689
1da177e4
LT
1690/*
1691 * maps a range of physical memory into the requested pages. the old
1692 * mappings are removed. any references to nonexistent pages results
1693 * in null mappings (currently treated as "copy-on-access")
1694 */
1695static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1696 unsigned long addr, unsigned long end,
1697 unsigned long pfn, pgprot_t prot)
1698{
1699 pte_t *pte;
c74df32c 1700 spinlock_t *ptl;
1da177e4 1701
c74df32c 1702 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1703 if (!pte)
1704 return -ENOMEM;
6606c3e0 1705 arch_enter_lazy_mmu_mode();
1da177e4
LT
1706 do {
1707 BUG_ON(!pte_none(*pte));
7e675137 1708 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1709 pfn++;
1710 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1711 arch_leave_lazy_mmu_mode();
c74df32c 1712 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1713 return 0;
1714}
1715
1716static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1717 unsigned long addr, unsigned long end,
1718 unsigned long pfn, pgprot_t prot)
1719{
1720 pmd_t *pmd;
1721 unsigned long next;
1722
1723 pfn -= addr >> PAGE_SHIFT;
1724 pmd = pmd_alloc(mm, pud, addr);
1725 if (!pmd)
1726 return -ENOMEM;
1727 do {
1728 next = pmd_addr_end(addr, end);
1729 if (remap_pte_range(mm, pmd, addr, next,
1730 pfn + (addr >> PAGE_SHIFT), prot))
1731 return -ENOMEM;
1732 } while (pmd++, addr = next, addr != end);
1733 return 0;
1734}
1735
1736static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1737 unsigned long addr, unsigned long end,
1738 unsigned long pfn, pgprot_t prot)
1739{
1740 pud_t *pud;
1741 unsigned long next;
1742
1743 pfn -= addr >> PAGE_SHIFT;
1744 pud = pud_alloc(mm, pgd, addr);
1745 if (!pud)
1746 return -ENOMEM;
1747 do {
1748 next = pud_addr_end(addr, end);
1749 if (remap_pmd_range(mm, pud, addr, next,
1750 pfn + (addr >> PAGE_SHIFT), prot))
1751 return -ENOMEM;
1752 } while (pud++, addr = next, addr != end);
1753 return 0;
1754}
1755
bfa5bf6d
REB
1756/**
1757 * remap_pfn_range - remap kernel memory to userspace
1758 * @vma: user vma to map to
1759 * @addr: target user address to start at
1760 * @pfn: physical address of kernel memory
1761 * @size: size of map area
1762 * @prot: page protection flags for this mapping
1763 *
1764 * Note: this is only safe if the mm semaphore is held when called.
1765 */
1da177e4
LT
1766int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1767 unsigned long pfn, unsigned long size, pgprot_t prot)
1768{
1769 pgd_t *pgd;
1770 unsigned long next;
2d15cab8 1771 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1772 struct mm_struct *mm = vma->vm_mm;
1773 int err;
1774
1775 /*
1776 * Physically remapped pages are special. Tell the
1777 * rest of the world about it:
1778 * VM_IO tells people not to look at these pages
1779 * (accesses can have side effects).
0b14c179
HD
1780 * VM_RESERVED is specified all over the place, because
1781 * in 2.4 it kept swapout's vma scan off this vma; but
1782 * in 2.6 the LRU scan won't even find its pages, so this
1783 * flag means no more than count its pages in reserved_vm,
1784 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1785 * VM_PFNMAP tells the core MM that the base pages are just
1786 * raw PFN mappings, and do not have a "struct page" associated
1787 * with them.
fb155c16
LT
1788 *
1789 * There's a horrible special case to handle copy-on-write
1790 * behaviour that some programs depend on. We mark the "original"
1791 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1792 */
4bb9c5c0 1793 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 1794 vma->vm_pgoff = pfn;
895791da 1795 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 1796 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 1797 return -EINVAL;
fb155c16 1798
6aab341e 1799 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1800
e4b866ed 1801 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 1802 if (err) {
1803 /*
1804 * To indicate that track_pfn related cleanup is not
1805 * needed from higher level routine calling unmap_vmas
1806 */
1807 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 1808 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 1809 return -EINVAL;
a3670613 1810 }
2ab64037 1811
1da177e4
LT
1812 BUG_ON(addr >= end);
1813 pfn -= addr >> PAGE_SHIFT;
1814 pgd = pgd_offset(mm, addr);
1815 flush_cache_range(vma, addr, end);
1da177e4
LT
1816 do {
1817 next = pgd_addr_end(addr, end);
1818 err = remap_pud_range(mm, pgd, addr, next,
1819 pfn + (addr >> PAGE_SHIFT), prot);
1820 if (err)
1821 break;
1822 } while (pgd++, addr = next, addr != end);
2ab64037 1823
1824 if (err)
1825 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1826
1da177e4
LT
1827 return err;
1828}
1829EXPORT_SYMBOL(remap_pfn_range);
1830
aee16b3c
JF
1831static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1832 unsigned long addr, unsigned long end,
1833 pte_fn_t fn, void *data)
1834{
1835 pte_t *pte;
1836 int err;
2f569afd 1837 pgtable_t token;
94909914 1838 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1839
1840 pte = (mm == &init_mm) ?
1841 pte_alloc_kernel(pmd, addr) :
1842 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1843 if (!pte)
1844 return -ENOMEM;
1845
1846 BUG_ON(pmd_huge(*pmd));
1847
38e0edb1
JF
1848 arch_enter_lazy_mmu_mode();
1849
2f569afd 1850 token = pmd_pgtable(*pmd);
aee16b3c
JF
1851
1852 do {
c36987e2 1853 err = fn(pte++, token, addr, data);
aee16b3c
JF
1854 if (err)
1855 break;
c36987e2 1856 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1857
38e0edb1
JF
1858 arch_leave_lazy_mmu_mode();
1859
aee16b3c
JF
1860 if (mm != &init_mm)
1861 pte_unmap_unlock(pte-1, ptl);
1862 return err;
1863}
1864
1865static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1866 unsigned long addr, unsigned long end,
1867 pte_fn_t fn, void *data)
1868{
1869 pmd_t *pmd;
1870 unsigned long next;
1871 int err;
1872
ceb86879
AK
1873 BUG_ON(pud_huge(*pud));
1874
aee16b3c
JF
1875 pmd = pmd_alloc(mm, pud, addr);
1876 if (!pmd)
1877 return -ENOMEM;
1878 do {
1879 next = pmd_addr_end(addr, end);
1880 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1881 if (err)
1882 break;
1883 } while (pmd++, addr = next, addr != end);
1884 return err;
1885}
1886
1887static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1888 unsigned long addr, unsigned long end,
1889 pte_fn_t fn, void *data)
1890{
1891 pud_t *pud;
1892 unsigned long next;
1893 int err;
1894
1895 pud = pud_alloc(mm, pgd, addr);
1896 if (!pud)
1897 return -ENOMEM;
1898 do {
1899 next = pud_addr_end(addr, end);
1900 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1901 if (err)
1902 break;
1903 } while (pud++, addr = next, addr != end);
1904 return err;
1905}
1906
1907/*
1908 * Scan a region of virtual memory, filling in page tables as necessary
1909 * and calling a provided function on each leaf page table.
1910 */
1911int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1912 unsigned long size, pte_fn_t fn, void *data)
1913{
1914 pgd_t *pgd;
1915 unsigned long next;
cddb8a5c 1916 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1917 int err;
1918
1919 BUG_ON(addr >= end);
cddb8a5c 1920 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1921 pgd = pgd_offset(mm, addr);
1922 do {
1923 next = pgd_addr_end(addr, end);
1924 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1925 if (err)
1926 break;
1927 } while (pgd++, addr = next, addr != end);
cddb8a5c 1928 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1929 return err;
1930}
1931EXPORT_SYMBOL_GPL(apply_to_page_range);
1932
8f4e2101
HD
1933/*
1934 * handle_pte_fault chooses page fault handler according to an entry
1935 * which was read non-atomically. Before making any commitment, on
1936 * those architectures or configurations (e.g. i386 with PAE) which
1937 * might give a mix of unmatched parts, do_swap_page and do_file_page
1938 * must check under lock before unmapping the pte and proceeding
1939 * (but do_wp_page is only called after already making such a check;
1940 * and do_anonymous_page and do_no_page can safely check later on).
1941 */
4c21e2f2 1942static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1943 pte_t *page_table, pte_t orig_pte)
1944{
1945 int same = 1;
1946#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1947 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1948 spinlock_t *ptl = pte_lockptr(mm, pmd);
1949 spin_lock(ptl);
8f4e2101 1950 same = pte_same(*page_table, orig_pte);
4c21e2f2 1951 spin_unlock(ptl);
8f4e2101
HD
1952 }
1953#endif
1954 pte_unmap(page_table);
1955 return same;
1956}
1957
1da177e4
LT
1958/*
1959 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1960 * servicing faults for write access. In the normal case, do always want
1961 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1962 * that do not have writing enabled, when used by access_process_vm.
1963 */
1964static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1965{
1966 if (likely(vma->vm_flags & VM_WRITE))
1967 pte = pte_mkwrite(pte);
1968 return pte;
1969}
1970
9de455b2 1971static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1972{
1973 /*
1974 * If the source page was a PFN mapping, we don't have
1975 * a "struct page" for it. We do a best-effort copy by
1976 * just copying from the original user address. If that
1977 * fails, we just zero-fill it. Live with it.
1978 */
1979 if (unlikely(!src)) {
1980 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1981 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1982
1983 /*
1984 * This really shouldn't fail, because the page is there
1985 * in the page tables. But it might just be unreadable,
1986 * in which case we just give up and fill the result with
1987 * zeroes.
1988 */
1989 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1990 memset(kaddr, 0, PAGE_SIZE);
1991 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1992 flush_dcache_page(dst);
0ed361de
NP
1993 } else
1994 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1995}
1996
1da177e4
LT
1997/*
1998 * This routine handles present pages, when users try to write
1999 * to a shared page. It is done by copying the page to a new address
2000 * and decrementing the shared-page counter for the old page.
2001 *
1da177e4
LT
2002 * Note that this routine assumes that the protection checks have been
2003 * done by the caller (the low-level page fault routine in most cases).
2004 * Thus we can safely just mark it writable once we've done any necessary
2005 * COW.
2006 *
2007 * We also mark the page dirty at this point even though the page will
2008 * change only once the write actually happens. This avoids a few races,
2009 * and potentially makes it more efficient.
2010 *
8f4e2101
HD
2011 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2012 * but allow concurrent faults), with pte both mapped and locked.
2013 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2014 */
65500d23
HD
2015static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2016 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2017 spinlock_t *ptl, pte_t orig_pte)
1da177e4 2018{
e5bbe4df 2019 struct page *old_page, *new_page;
1da177e4 2020 pte_t entry;
83c54070 2021 int reuse = 0, ret = 0;
a200ee18 2022 int page_mkwrite = 0;
d08b3851 2023 struct page *dirty_page = NULL;
1da177e4 2024
6aab341e 2025 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2026 if (!old_page) {
2027 /*
2028 * VM_MIXEDMAP !pfn_valid() case
2029 *
2030 * We should not cow pages in a shared writeable mapping.
2031 * Just mark the pages writable as we can't do any dirty
2032 * accounting on raw pfn maps.
2033 */
2034 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2035 (VM_WRITE|VM_SHARED))
2036 goto reuse;
6aab341e 2037 goto gotten;
251b97f5 2038 }
1da177e4 2039
d08b3851 2040 /*
ee6a6457
PZ
2041 * Take out anonymous pages first, anonymous shared vmas are
2042 * not dirty accountable.
d08b3851 2043 */
9a840895 2044 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2045 if (!trylock_page(old_page)) {
2046 page_cache_get(old_page);
2047 pte_unmap_unlock(page_table, ptl);
2048 lock_page(old_page);
2049 page_table = pte_offset_map_lock(mm, pmd, address,
2050 &ptl);
2051 if (!pte_same(*page_table, orig_pte)) {
2052 unlock_page(old_page);
2053 page_cache_release(old_page);
2054 goto unlock;
2055 }
2056 page_cache_release(old_page);
ee6a6457 2057 }
7b1fe597 2058 reuse = reuse_swap_page(old_page);
ab967d86 2059 unlock_page(old_page);
ee6a6457 2060 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2061 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2062 /*
2063 * Only catch write-faults on shared writable pages,
2064 * read-only shared pages can get COWed by
2065 * get_user_pages(.write=1, .force=1).
2066 */
9637a5ef 2067 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2068 struct vm_fault vmf;
2069 int tmp;
2070
2071 vmf.virtual_address = (void __user *)(address &
2072 PAGE_MASK);
2073 vmf.pgoff = old_page->index;
2074 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2075 vmf.page = old_page;
2076
9637a5ef
DH
2077 /*
2078 * Notify the address space that the page is about to
2079 * become writable so that it can prohibit this or wait
2080 * for the page to get into an appropriate state.
2081 *
2082 * We do this without the lock held, so that it can
2083 * sleep if it needs to.
2084 */
2085 page_cache_get(old_page);
2086 pte_unmap_unlock(page_table, ptl);
2087
c2ec175c
NP
2088 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2089 if (unlikely(tmp &
2090 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2091 ret = tmp;
9637a5ef 2092 goto unwritable_page;
c2ec175c 2093 }
b827e496
NP
2094 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2095 lock_page(old_page);
2096 if (!old_page->mapping) {
2097 ret = 0; /* retry the fault */
2098 unlock_page(old_page);
2099 goto unwritable_page;
2100 }
2101 } else
2102 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2103
9637a5ef
DH
2104 /*
2105 * Since we dropped the lock we need to revalidate
2106 * the PTE as someone else may have changed it. If
2107 * they did, we just return, as we can count on the
2108 * MMU to tell us if they didn't also make it writable.
2109 */
2110 page_table = pte_offset_map_lock(mm, pmd, address,
2111 &ptl);
b827e496
NP
2112 if (!pte_same(*page_table, orig_pte)) {
2113 unlock_page(old_page);
2114 page_cache_release(old_page);
9637a5ef 2115 goto unlock;
b827e496 2116 }
a200ee18
PZ
2117
2118 page_mkwrite = 1;
1da177e4 2119 }
d08b3851
PZ
2120 dirty_page = old_page;
2121 get_page(dirty_page);
9637a5ef 2122 reuse = 1;
9637a5ef
DH
2123 }
2124
2125 if (reuse) {
251b97f5 2126reuse:
9637a5ef
DH
2127 flush_cache_page(vma, address, pte_pfn(orig_pte));
2128 entry = pte_mkyoung(orig_pte);
2129 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2130 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2131 update_mmu_cache(vma, address, page_table);
9637a5ef
DH
2132 ret |= VM_FAULT_WRITE;
2133 goto unlock;
1da177e4 2134 }
1da177e4
LT
2135
2136 /*
2137 * Ok, we need to copy. Oh, well..
2138 */
b5810039 2139 page_cache_get(old_page);
920fc356 2140gotten:
8f4e2101 2141 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2142
2143 if (unlikely(anon_vma_prepare(vma)))
65500d23 2144 goto oom;
a13ea5b7 2145
62eede62 2146 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2147 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2148 if (!new_page)
2149 goto oom;
2150 } else {
2151 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2152 if (!new_page)
2153 goto oom;
2154 cow_user_page(new_page, old_page, address, vma);
2155 }
2156 __SetPageUptodate(new_page);
2157
b291f000
NP
2158 /*
2159 * Don't let another task, with possibly unlocked vma,
2160 * keep the mlocked page.
2161 */
ab92661d 2162 if ((vma->vm_flags & VM_LOCKED) && old_page) {
b291f000
NP
2163 lock_page(old_page); /* for LRU manipulation */
2164 clear_page_mlock(old_page);
2165 unlock_page(old_page);
2166 }
65500d23 2167
2c26fdd7 2168 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2169 goto oom_free_new;
2170
1da177e4
LT
2171 /*
2172 * Re-check the pte - we dropped the lock
2173 */
8f4e2101 2174 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2175 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2176 if (old_page) {
920fc356 2177 if (!PageAnon(old_page)) {
d559db08
KH
2178 dec_mm_counter(mm, MM_FILEPAGES);
2179 inc_mm_counter(mm, MM_ANONPAGES);
920fc356
HD
2180 }
2181 } else
d559db08 2182 inc_mm_counter(mm, MM_ANONPAGES);
eca35133 2183 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2184 entry = mk_pte(new_page, vma->vm_page_prot);
2185 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2186 /*
2187 * Clear the pte entry and flush it first, before updating the
2188 * pte with the new entry. This will avoid a race condition
2189 * seen in the presence of one thread doing SMC and another
2190 * thread doing COW.
2191 */
828502d3 2192 ptep_clear_flush(vma, address, page_table);
9617d95e 2193 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2194 /*
2195 * We call the notify macro here because, when using secondary
2196 * mmu page tables (such as kvm shadow page tables), we want the
2197 * new page to be mapped directly into the secondary page table.
2198 */
2199 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2200 update_mmu_cache(vma, address, page_table);
945754a1
NP
2201 if (old_page) {
2202 /*
2203 * Only after switching the pte to the new page may
2204 * we remove the mapcount here. Otherwise another
2205 * process may come and find the rmap count decremented
2206 * before the pte is switched to the new page, and
2207 * "reuse" the old page writing into it while our pte
2208 * here still points into it and can be read by other
2209 * threads.
2210 *
2211 * The critical issue is to order this
2212 * page_remove_rmap with the ptp_clear_flush above.
2213 * Those stores are ordered by (if nothing else,)
2214 * the barrier present in the atomic_add_negative
2215 * in page_remove_rmap.
2216 *
2217 * Then the TLB flush in ptep_clear_flush ensures that
2218 * no process can access the old page before the
2219 * decremented mapcount is visible. And the old page
2220 * cannot be reused until after the decremented
2221 * mapcount is visible. So transitively, TLBs to
2222 * old page will be flushed before it can be reused.
2223 */
edc315fd 2224 page_remove_rmap(old_page);
945754a1
NP
2225 }
2226
1da177e4
LT
2227 /* Free the old page.. */
2228 new_page = old_page;
f33ea7f4 2229 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2230 } else
2231 mem_cgroup_uncharge_page(new_page);
2232
920fc356
HD
2233 if (new_page)
2234 page_cache_release(new_page);
2235 if (old_page)
2236 page_cache_release(old_page);
65500d23 2237unlock:
8f4e2101 2238 pte_unmap_unlock(page_table, ptl);
d08b3851 2239 if (dirty_page) {
79352894
NP
2240 /*
2241 * Yes, Virginia, this is actually required to prevent a race
2242 * with clear_page_dirty_for_io() from clearing the page dirty
2243 * bit after it clear all dirty ptes, but before a racing
2244 * do_wp_page installs a dirty pte.
2245 *
2246 * do_no_page is protected similarly.
2247 */
b827e496
NP
2248 if (!page_mkwrite) {
2249 wait_on_page_locked(dirty_page);
2250 set_page_dirty_balance(dirty_page, page_mkwrite);
2251 }
d08b3851 2252 put_page(dirty_page);
b827e496
NP
2253 if (page_mkwrite) {
2254 struct address_space *mapping = dirty_page->mapping;
2255
2256 set_page_dirty(dirty_page);
2257 unlock_page(dirty_page);
2258 page_cache_release(dirty_page);
2259 if (mapping) {
2260 /*
2261 * Some device drivers do not set page.mapping
2262 * but still dirty their pages
2263 */
2264 balance_dirty_pages_ratelimited(mapping);
2265 }
2266 }
2267
2268 /* file_update_time outside page_lock */
2269 if (vma->vm_file)
2270 file_update_time(vma->vm_file);
d08b3851 2271 }
f33ea7f4 2272 return ret;
8a9f3ccd 2273oom_free_new:
6dbf6d3b 2274 page_cache_release(new_page);
65500d23 2275oom:
b827e496
NP
2276 if (old_page) {
2277 if (page_mkwrite) {
2278 unlock_page(old_page);
2279 page_cache_release(old_page);
2280 }
920fc356 2281 page_cache_release(old_page);
b827e496 2282 }
1da177e4 2283 return VM_FAULT_OOM;
9637a5ef
DH
2284
2285unwritable_page:
2286 page_cache_release(old_page);
c2ec175c 2287 return ret;
1da177e4
LT
2288}
2289
2290/*
2291 * Helper functions for unmap_mapping_range().
2292 *
2293 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2294 *
2295 * We have to restart searching the prio_tree whenever we drop the lock,
2296 * since the iterator is only valid while the lock is held, and anyway
2297 * a later vma might be split and reinserted earlier while lock dropped.
2298 *
2299 * The list of nonlinear vmas could be handled more efficiently, using
2300 * a placeholder, but handle it in the same way until a need is shown.
2301 * It is important to search the prio_tree before nonlinear list: a vma
2302 * may become nonlinear and be shifted from prio_tree to nonlinear list
2303 * while the lock is dropped; but never shifted from list to prio_tree.
2304 *
2305 * In order to make forward progress despite restarting the search,
2306 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2307 * quickly skip it next time around. Since the prio_tree search only
2308 * shows us those vmas affected by unmapping the range in question, we
2309 * can't efficiently keep all vmas in step with mapping->truncate_count:
2310 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2311 * mapping->truncate_count and vma->vm_truncate_count are protected by
2312 * i_mmap_lock.
2313 *
2314 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2315 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2316 * and restart from that address when we reach that vma again. It might
2317 * have been split or merged, shrunk or extended, but never shifted: so
2318 * restart_addr remains valid so long as it remains in the vma's range.
2319 * unmap_mapping_range forces truncate_count to leap over page-aligned
2320 * values so we can save vma's restart_addr in its truncate_count field.
2321 */
2322#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2323
2324static void reset_vma_truncate_counts(struct address_space *mapping)
2325{
2326 struct vm_area_struct *vma;
2327 struct prio_tree_iter iter;
2328
2329 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2330 vma->vm_truncate_count = 0;
2331 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2332 vma->vm_truncate_count = 0;
2333}
2334
2335static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2336 unsigned long start_addr, unsigned long end_addr,
2337 struct zap_details *details)
2338{
2339 unsigned long restart_addr;
2340 int need_break;
2341
d00806b1
NP
2342 /*
2343 * files that support invalidating or truncating portions of the
d0217ac0 2344 * file from under mmaped areas must have their ->fault function
83c54070
NP
2345 * return a locked page (and set VM_FAULT_LOCKED in the return).
2346 * This provides synchronisation against concurrent unmapping here.
d00806b1 2347 */
d00806b1 2348
1da177e4
LT
2349again:
2350 restart_addr = vma->vm_truncate_count;
2351 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2352 start_addr = restart_addr;
2353 if (start_addr >= end_addr) {
2354 /* Top of vma has been split off since last time */
2355 vma->vm_truncate_count = details->truncate_count;
2356 return 0;
2357 }
2358 }
2359
ee39b37b
HD
2360 restart_addr = zap_page_range(vma, start_addr,
2361 end_addr - start_addr, details);
95c354fe 2362 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2363
ee39b37b 2364 if (restart_addr >= end_addr) {
1da177e4
LT
2365 /* We have now completed this vma: mark it so */
2366 vma->vm_truncate_count = details->truncate_count;
2367 if (!need_break)
2368 return 0;
2369 } else {
2370 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2371 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2372 if (!need_break)
2373 goto again;
2374 }
2375
2376 spin_unlock(details->i_mmap_lock);
2377 cond_resched();
2378 spin_lock(details->i_mmap_lock);
2379 return -EINTR;
2380}
2381
2382static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2383 struct zap_details *details)
2384{
2385 struct vm_area_struct *vma;
2386 struct prio_tree_iter iter;
2387 pgoff_t vba, vea, zba, zea;
2388
2389restart:
2390 vma_prio_tree_foreach(vma, &iter, root,
2391 details->first_index, details->last_index) {
2392 /* Skip quickly over those we have already dealt with */
2393 if (vma->vm_truncate_count == details->truncate_count)
2394 continue;
2395
2396 vba = vma->vm_pgoff;
2397 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2398 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2399 zba = details->first_index;
2400 if (zba < vba)
2401 zba = vba;
2402 zea = details->last_index;
2403 if (zea > vea)
2404 zea = vea;
2405
2406 if (unmap_mapping_range_vma(vma,
2407 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2408 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2409 details) < 0)
2410 goto restart;
2411 }
2412}
2413
2414static inline void unmap_mapping_range_list(struct list_head *head,
2415 struct zap_details *details)
2416{
2417 struct vm_area_struct *vma;
2418
2419 /*
2420 * In nonlinear VMAs there is no correspondence between virtual address
2421 * offset and file offset. So we must perform an exhaustive search
2422 * across *all* the pages in each nonlinear VMA, not just the pages
2423 * whose virtual address lies outside the file truncation point.
2424 */
2425restart:
2426 list_for_each_entry(vma, head, shared.vm_set.list) {
2427 /* Skip quickly over those we have already dealt with */
2428 if (vma->vm_truncate_count == details->truncate_count)
2429 continue;
2430 details->nonlinear_vma = vma;
2431 if (unmap_mapping_range_vma(vma, vma->vm_start,
2432 vma->vm_end, details) < 0)
2433 goto restart;
2434 }
2435}
2436
2437/**
72fd4a35 2438 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2439 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2440 * @holebegin: byte in first page to unmap, relative to the start of
2441 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2442 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2443 * must keep the partial page. In contrast, we must get rid of
2444 * partial pages.
2445 * @holelen: size of prospective hole in bytes. This will be rounded
2446 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2447 * end of the file.
2448 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2449 * but 0 when invalidating pagecache, don't throw away private data.
2450 */
2451void unmap_mapping_range(struct address_space *mapping,
2452 loff_t const holebegin, loff_t const holelen, int even_cows)
2453{
2454 struct zap_details details;
2455 pgoff_t hba = holebegin >> PAGE_SHIFT;
2456 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2457
2458 /* Check for overflow. */
2459 if (sizeof(holelen) > sizeof(hlen)) {
2460 long long holeend =
2461 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2462 if (holeend & ~(long long)ULONG_MAX)
2463 hlen = ULONG_MAX - hba + 1;
2464 }
2465
2466 details.check_mapping = even_cows? NULL: mapping;
2467 details.nonlinear_vma = NULL;
2468 details.first_index = hba;
2469 details.last_index = hba + hlen - 1;
2470 if (details.last_index < details.first_index)
2471 details.last_index = ULONG_MAX;
2472 details.i_mmap_lock = &mapping->i_mmap_lock;
2473
2474 spin_lock(&mapping->i_mmap_lock);
2475
d00806b1 2476 /* Protect against endless unmapping loops */
1da177e4 2477 mapping->truncate_count++;
1da177e4
LT
2478 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2479 if (mapping->truncate_count == 0)
2480 reset_vma_truncate_counts(mapping);
2481 mapping->truncate_count++;
2482 }
2483 details.truncate_count = mapping->truncate_count;
2484
2485 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2486 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2487 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2488 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2489 spin_unlock(&mapping->i_mmap_lock);
2490}
2491EXPORT_SYMBOL(unmap_mapping_range);
2492
f6b3ec23
BP
2493int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2494{
2495 struct address_space *mapping = inode->i_mapping;
2496
2497 /*
2498 * If the underlying filesystem is not going to provide
2499 * a way to truncate a range of blocks (punch a hole) -
2500 * we should return failure right now.
2501 */
acfa4380 2502 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2503 return -ENOSYS;
2504
1b1dcc1b 2505 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2506 down_write(&inode->i_alloc_sem);
2507 unmap_mapping_range(mapping, offset, (end - offset), 1);
2508 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2509 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2510 inode->i_op->truncate_range(inode, offset, end);
2511 up_write(&inode->i_alloc_sem);
1b1dcc1b 2512 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2513
2514 return 0;
2515}
f6b3ec23 2516
1da177e4 2517/*
8f4e2101
HD
2518 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2519 * but allow concurrent faults), and pte mapped but not yet locked.
2520 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2521 */
65500d23
HD
2522static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2523 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2524 unsigned int flags, pte_t orig_pte)
1da177e4 2525{
8f4e2101 2526 spinlock_t *ptl;
1da177e4 2527 struct page *page;
65500d23 2528 swp_entry_t entry;
1da177e4 2529 pte_t pte;
7a81b88c 2530 struct mem_cgroup *ptr = NULL;
83c54070 2531 int ret = 0;
1da177e4 2532
4c21e2f2 2533 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2534 goto out;
65500d23
HD
2535
2536 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2537 if (unlikely(non_swap_entry(entry))) {
2538 if (is_migration_entry(entry)) {
2539 migration_entry_wait(mm, pmd, address);
2540 } else if (is_hwpoison_entry(entry)) {
2541 ret = VM_FAULT_HWPOISON;
2542 } else {
2543 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2544 ret = VM_FAULT_SIGBUS;
d1737fdb 2545 }
0697212a
CL
2546 goto out;
2547 }
0ff92245 2548 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2549 page = lookup_swap_cache(entry);
2550 if (!page) {
a5c9b696 2551 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2552 page = swapin_readahead(entry,
2553 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2554 if (!page) {
2555 /*
8f4e2101
HD
2556 * Back out if somebody else faulted in this pte
2557 * while we released the pte lock.
1da177e4 2558 */
8f4e2101 2559 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2560 if (likely(pte_same(*page_table, orig_pte)))
2561 ret = VM_FAULT_OOM;
0ff92245 2562 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2563 goto unlock;
1da177e4
LT
2564 }
2565
2566 /* Had to read the page from swap area: Major fault */
2567 ret = VM_FAULT_MAJOR;
f8891e5e 2568 count_vm_event(PGMAJFAULT);
d1737fdb 2569 } else if (PageHWPoison(page)) {
71f72525
WF
2570 /*
2571 * hwpoisoned dirty swapcache pages are kept for killing
2572 * owner processes (which may be unknown at hwpoison time)
2573 */
d1737fdb
AK
2574 ret = VM_FAULT_HWPOISON;
2575 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2576 goto out_release;
1da177e4
LT
2577 }
2578
073e587e
KH
2579 lock_page(page);
2580 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2581
5ad64688
HD
2582 page = ksm_might_need_to_copy(page, vma, address);
2583 if (!page) {
2584 ret = VM_FAULT_OOM;
2585 goto out;
2586 }
2587
2c26fdd7 2588 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2589 ret = VM_FAULT_OOM;
bc43f75c 2590 goto out_page;
8a9f3ccd
BS
2591 }
2592
1da177e4 2593 /*
8f4e2101 2594 * Back out if somebody else already faulted in this pte.
1da177e4 2595 */
8f4e2101 2596 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2597 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2598 goto out_nomap;
b8107480
KK
2599
2600 if (unlikely(!PageUptodate(page))) {
2601 ret = VM_FAULT_SIGBUS;
2602 goto out_nomap;
1da177e4
LT
2603 }
2604
8c7c6e34
KH
2605 /*
2606 * The page isn't present yet, go ahead with the fault.
2607 *
2608 * Be careful about the sequence of operations here.
2609 * To get its accounting right, reuse_swap_page() must be called
2610 * while the page is counted on swap but not yet in mapcount i.e.
2611 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2612 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2613 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2614 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2615 * in page->private. In this case, a record in swap_cgroup is silently
2616 * discarded at swap_free().
8c7c6e34 2617 */
1da177e4 2618
d559db08 2619 inc_mm_counter(mm, MM_ANONPAGES);
1da177e4 2620 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2621 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2622 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2623 flags &= ~FAULT_FLAG_WRITE;
1da177e4 2624 }
1da177e4
LT
2625 flush_icache_page(vma, page);
2626 set_pte_at(mm, address, page_table, pte);
2627 page_add_anon_rmap(page, vma, address);
03f3c433
KH
2628 /* It's better to call commit-charge after rmap is established */
2629 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2630
c475a8ab 2631 swap_free(entry);
b291f000 2632 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2633 try_to_free_swap(page);
c475a8ab
HD
2634 unlock_page(page);
2635
30c9f3a9 2636 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2637 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2638 if (ret & VM_FAULT_ERROR)
2639 ret &= VM_FAULT_ERROR;
1da177e4
LT
2640 goto out;
2641 }
2642
2643 /* No need to invalidate - it was non-present before */
4b3073e1 2644 update_mmu_cache(vma, address, page_table);
65500d23 2645unlock:
8f4e2101 2646 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2647out:
2648 return ret;
b8107480 2649out_nomap:
7a81b88c 2650 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 2651 pte_unmap_unlock(page_table, ptl);
bc43f75c 2652out_page:
b8107480 2653 unlock_page(page);
4779cb31 2654out_release:
b8107480 2655 page_cache_release(page);
65500d23 2656 return ret;
1da177e4
LT
2657}
2658
2659/*
8f4e2101
HD
2660 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2661 * but allow concurrent faults), and pte mapped but not yet locked.
2662 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2663 */
65500d23
HD
2664static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2665 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2666 unsigned int flags)
1da177e4 2667{
8f4e2101
HD
2668 struct page *page;
2669 spinlock_t *ptl;
1da177e4 2670 pte_t entry;
1da177e4 2671
62eede62
HD
2672 if (!(flags & FAULT_FLAG_WRITE)) {
2673 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2674 vma->vm_page_prot));
a13ea5b7
HD
2675 ptl = pte_lockptr(mm, pmd);
2676 spin_lock(ptl);
2677 if (!pte_none(*page_table))
2678 goto unlock;
2679 goto setpte;
2680 }
2681
557ed1fa
NP
2682 /* Allocate our own private page. */
2683 pte_unmap(page_table);
8f4e2101 2684
557ed1fa
NP
2685 if (unlikely(anon_vma_prepare(vma)))
2686 goto oom;
2687 page = alloc_zeroed_user_highpage_movable(vma, address);
2688 if (!page)
2689 goto oom;
0ed361de 2690 __SetPageUptodate(page);
8f4e2101 2691
2c26fdd7 2692 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2693 goto oom_free_page;
2694
557ed1fa 2695 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2696 if (vma->vm_flags & VM_WRITE)
2697 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2698
557ed1fa 2699 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2700 if (!pte_none(*page_table))
557ed1fa 2701 goto release;
9ba69294 2702
d559db08 2703 inc_mm_counter(mm, MM_ANONPAGES);
557ed1fa 2704 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 2705setpte:
65500d23 2706 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2707
2708 /* No need to invalidate - it was non-present before */
4b3073e1 2709 update_mmu_cache(vma, address, page_table);
65500d23 2710unlock:
8f4e2101 2711 pte_unmap_unlock(page_table, ptl);
83c54070 2712 return 0;
8f4e2101 2713release:
8a9f3ccd 2714 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2715 page_cache_release(page);
2716 goto unlock;
8a9f3ccd 2717oom_free_page:
6dbf6d3b 2718 page_cache_release(page);
65500d23 2719oom:
1da177e4
LT
2720 return VM_FAULT_OOM;
2721}
2722
2723/*
54cb8821 2724 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2725 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2726 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2727 * the next page fault.
1da177e4
LT
2728 *
2729 * As this is called only for pages that do not currently exist, we
2730 * do not need to flush old virtual caches or the TLB.
2731 *
8f4e2101 2732 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2733 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2734 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2735 */
54cb8821 2736static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2737 unsigned long address, pmd_t *pmd,
54cb8821 2738 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2739{
16abfa08 2740 pte_t *page_table;
8f4e2101 2741 spinlock_t *ptl;
d0217ac0 2742 struct page *page;
1da177e4 2743 pte_t entry;
1da177e4 2744 int anon = 0;
5b4e655e 2745 int charged = 0;
d08b3851 2746 struct page *dirty_page = NULL;
d0217ac0
NP
2747 struct vm_fault vmf;
2748 int ret;
a200ee18 2749 int page_mkwrite = 0;
54cb8821 2750
d0217ac0
NP
2751 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2752 vmf.pgoff = pgoff;
2753 vmf.flags = flags;
2754 vmf.page = NULL;
1da177e4 2755
3c18ddd1
NP
2756 ret = vma->vm_ops->fault(vma, &vmf);
2757 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2758 return ret;
1da177e4 2759
a3b947ea
AK
2760 if (unlikely(PageHWPoison(vmf.page))) {
2761 if (ret & VM_FAULT_LOCKED)
2762 unlock_page(vmf.page);
2763 return VM_FAULT_HWPOISON;
2764 }
2765
d00806b1 2766 /*
d0217ac0 2767 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2768 * locked.
2769 */
83c54070 2770 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2771 lock_page(vmf.page);
54cb8821 2772 else
d0217ac0 2773 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2774
1da177e4
LT
2775 /*
2776 * Should we do an early C-O-W break?
2777 */
d0217ac0 2778 page = vmf.page;
54cb8821 2779 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2780 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2781 anon = 1;
d00806b1 2782 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2783 ret = VM_FAULT_OOM;
54cb8821 2784 goto out;
d00806b1 2785 }
83c54070
NP
2786 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2787 vma, address);
d00806b1 2788 if (!page) {
d0217ac0 2789 ret = VM_FAULT_OOM;
54cb8821 2790 goto out;
d00806b1 2791 }
2c26fdd7 2792 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
5b4e655e
KH
2793 ret = VM_FAULT_OOM;
2794 page_cache_release(page);
2795 goto out;
2796 }
2797 charged = 1;
b291f000
NP
2798 /*
2799 * Don't let another task, with possibly unlocked vma,
2800 * keep the mlocked page.
2801 */
2802 if (vma->vm_flags & VM_LOCKED)
2803 clear_page_mlock(vmf.page);
d0217ac0 2804 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2805 __SetPageUptodate(page);
9637a5ef 2806 } else {
54cb8821
NP
2807 /*
2808 * If the page will be shareable, see if the backing
9637a5ef 2809 * address space wants to know that the page is about
54cb8821
NP
2810 * to become writable
2811 */
69676147 2812 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2813 int tmp;
2814
69676147 2815 unlock_page(page);
b827e496 2816 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
2817 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2818 if (unlikely(tmp &
2819 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2820 ret = tmp;
b827e496 2821 goto unwritable_page;
d0217ac0 2822 }
b827e496
NP
2823 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2824 lock_page(page);
2825 if (!page->mapping) {
2826 ret = 0; /* retry the fault */
2827 unlock_page(page);
2828 goto unwritable_page;
2829 }
2830 } else
2831 VM_BUG_ON(!PageLocked(page));
a200ee18 2832 page_mkwrite = 1;
9637a5ef
DH
2833 }
2834 }
54cb8821 2835
1da177e4
LT
2836 }
2837
8f4e2101 2838 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2839
2840 /*
2841 * This silly early PAGE_DIRTY setting removes a race
2842 * due to the bad i386 page protection. But it's valid
2843 * for other architectures too.
2844 *
30c9f3a9 2845 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
2846 * an exclusive copy of the page, or this is a shared mapping,
2847 * so we can make it writable and dirty to avoid having to
2848 * handle that later.
2849 */
2850 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 2851 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2852 flush_icache_page(vma, page);
2853 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2854 if (flags & FAULT_FLAG_WRITE)
1da177e4 2855 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2856 if (anon) {
d559db08 2857 inc_mm_counter(mm, MM_ANONPAGES);
64d6519d 2858 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2859 } else {
d559db08 2860 inc_mm_counter(mm, MM_FILEPAGES);
d00806b1 2861 page_add_file_rmap(page);
54cb8821 2862 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2863 dirty_page = page;
d08b3851
PZ
2864 get_page(dirty_page);
2865 }
4294621f 2866 }
64d6519d 2867 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2868
2869 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 2870 update_mmu_cache(vma, address, page_table);
1da177e4 2871 } else {
5b4e655e
KH
2872 if (charged)
2873 mem_cgroup_uncharge_page(page);
d00806b1
NP
2874 if (anon)
2875 page_cache_release(page);
2876 else
54cb8821 2877 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2878 }
2879
8f4e2101 2880 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2881
2882out:
b827e496
NP
2883 if (dirty_page) {
2884 struct address_space *mapping = page->mapping;
8f7b3d15 2885
b827e496
NP
2886 if (set_page_dirty(dirty_page))
2887 page_mkwrite = 1;
2888 unlock_page(dirty_page);
d08b3851 2889 put_page(dirty_page);
b827e496
NP
2890 if (page_mkwrite && mapping) {
2891 /*
2892 * Some device drivers do not set page.mapping but still
2893 * dirty their pages
2894 */
2895 balance_dirty_pages_ratelimited(mapping);
2896 }
2897
2898 /* file_update_time outside page_lock */
2899 if (vma->vm_file)
2900 file_update_time(vma->vm_file);
2901 } else {
2902 unlock_page(vmf.page);
2903 if (anon)
2904 page_cache_release(vmf.page);
d08b3851 2905 }
d00806b1 2906
83c54070 2907 return ret;
b827e496
NP
2908
2909unwritable_page:
2910 page_cache_release(page);
2911 return ret;
54cb8821 2912}
d00806b1 2913
54cb8821
NP
2914static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2915 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2916 unsigned int flags, pte_t orig_pte)
54cb8821
NP
2917{
2918 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2919 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 2920
16abfa08
HD
2921 pte_unmap(page_table);
2922 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2923}
2924
1da177e4
LT
2925/*
2926 * Fault of a previously existing named mapping. Repopulate the pte
2927 * from the encoded file_pte if possible. This enables swappable
2928 * nonlinear vmas.
8f4e2101
HD
2929 *
2930 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2931 * but allow concurrent faults), and pte mapped but not yet locked.
2932 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2933 */
d0217ac0 2934static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 2935 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2936 unsigned int flags, pte_t orig_pte)
1da177e4 2937{
65500d23 2938 pgoff_t pgoff;
1da177e4 2939
30c9f3a9
LT
2940 flags |= FAULT_FLAG_NONLINEAR;
2941
4c21e2f2 2942 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2943 return 0;
1da177e4 2944
2509ef26 2945 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
2946 /*
2947 * Page table corrupted: show pte and kill process.
2948 */
3dc14741 2949 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2950 return VM_FAULT_SIGBUS;
65500d23 2951 }
65500d23
HD
2952
2953 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2954 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2955}
2956
2957/*
2958 * These routines also need to handle stuff like marking pages dirty
2959 * and/or accessed for architectures that don't do it in hardware (most
2960 * RISC architectures). The early dirtying is also good on the i386.
2961 *
2962 * There is also a hook called "update_mmu_cache()" that architectures
2963 * with external mmu caches can use to update those (ie the Sparc or
2964 * PowerPC hashed page tables that act as extended TLBs).
2965 *
c74df32c
HD
2966 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2967 * but allow concurrent faults), and pte mapped but not yet locked.
2968 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2969 */
2970static inline int handle_pte_fault(struct mm_struct *mm,
65500d23 2971 struct vm_area_struct *vma, unsigned long address,
30c9f3a9 2972 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
2973{
2974 pte_t entry;
8f4e2101 2975 spinlock_t *ptl;
1da177e4 2976
8dab5241 2977 entry = *pte;
1da177e4 2978 if (!pte_present(entry)) {
65500d23 2979 if (pte_none(entry)) {
f4b81804 2980 if (vma->vm_ops) {
3c18ddd1 2981 if (likely(vma->vm_ops->fault))
54cb8821 2982 return do_linear_fault(mm, vma, address,
30c9f3a9 2983 pte, pmd, flags, entry);
f4b81804
JS
2984 }
2985 return do_anonymous_page(mm, vma, address,
30c9f3a9 2986 pte, pmd, flags);
65500d23 2987 }
1da177e4 2988 if (pte_file(entry))
d0217ac0 2989 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 2990 pte, pmd, flags, entry);
65500d23 2991 return do_swap_page(mm, vma, address,
30c9f3a9 2992 pte, pmd, flags, entry);
1da177e4
LT
2993 }
2994
4c21e2f2 2995 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2996 spin_lock(ptl);
2997 if (unlikely(!pte_same(*pte, entry)))
2998 goto unlock;
30c9f3a9 2999 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3000 if (!pte_write(entry))
8f4e2101
HD
3001 return do_wp_page(mm, vma, address,
3002 pte, pmd, ptl, entry);
1da177e4
LT
3003 entry = pte_mkdirty(entry);
3004 }
3005 entry = pte_mkyoung(entry);
30c9f3a9 3006 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3007 update_mmu_cache(vma, address, pte);
1a44e149
AA
3008 } else {
3009 /*
3010 * This is needed only for protection faults but the arch code
3011 * is not yet telling us if this is a protection fault or not.
3012 * This still avoids useless tlb flushes for .text page faults
3013 * with threads.
3014 */
30c9f3a9 3015 if (flags & FAULT_FLAG_WRITE)
1a44e149
AA
3016 flush_tlb_page(vma, address);
3017 }
8f4e2101
HD
3018unlock:
3019 pte_unmap_unlock(pte, ptl);
83c54070 3020 return 0;
1da177e4
LT
3021}
3022
3023/*
3024 * By the time we get here, we already hold the mm semaphore
3025 */
83c54070 3026int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3027 unsigned long address, unsigned int flags)
1da177e4
LT
3028{
3029 pgd_t *pgd;
3030 pud_t *pud;
3031 pmd_t *pmd;
3032 pte_t *pte;
3033
3034 __set_current_state(TASK_RUNNING);
3035
f8891e5e 3036 count_vm_event(PGFAULT);
1da177e4 3037
ac9b9c66 3038 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3039 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3040
1da177e4 3041 pgd = pgd_offset(mm, address);
1da177e4
LT
3042 pud = pud_alloc(mm, pgd, address);
3043 if (!pud)
c74df32c 3044 return VM_FAULT_OOM;
1da177e4
LT
3045 pmd = pmd_alloc(mm, pud, address);
3046 if (!pmd)
c74df32c 3047 return VM_FAULT_OOM;
1da177e4
LT
3048 pte = pte_alloc_map(mm, pmd, address);
3049 if (!pte)
c74df32c 3050 return VM_FAULT_OOM;
1da177e4 3051
30c9f3a9 3052 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3053}
3054
3055#ifndef __PAGETABLE_PUD_FOLDED
3056/*
3057 * Allocate page upper directory.
872fec16 3058 * We've already handled the fast-path in-line.
1da177e4 3059 */
1bb3630e 3060int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3061{
c74df32c
HD
3062 pud_t *new = pud_alloc_one(mm, address);
3063 if (!new)
1bb3630e 3064 return -ENOMEM;
1da177e4 3065
362a61ad
NP
3066 smp_wmb(); /* See comment in __pte_alloc */
3067
872fec16 3068 spin_lock(&mm->page_table_lock);
1bb3630e 3069 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3070 pud_free(mm, new);
1bb3630e
HD
3071 else
3072 pgd_populate(mm, pgd, new);
c74df32c 3073 spin_unlock(&mm->page_table_lock);
1bb3630e 3074 return 0;
1da177e4
LT
3075}
3076#endif /* __PAGETABLE_PUD_FOLDED */
3077
3078#ifndef __PAGETABLE_PMD_FOLDED
3079/*
3080 * Allocate page middle directory.
872fec16 3081 * We've already handled the fast-path in-line.
1da177e4 3082 */
1bb3630e 3083int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3084{
c74df32c
HD
3085 pmd_t *new = pmd_alloc_one(mm, address);
3086 if (!new)
1bb3630e 3087 return -ENOMEM;
1da177e4 3088
362a61ad
NP
3089 smp_wmb(); /* See comment in __pte_alloc */
3090
872fec16 3091 spin_lock(&mm->page_table_lock);
1da177e4 3092#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3093 if (pud_present(*pud)) /* Another has populated it */
5e541973 3094 pmd_free(mm, new);
1bb3630e
HD
3095 else
3096 pud_populate(mm, pud, new);
1da177e4 3097#else
1bb3630e 3098 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3099 pmd_free(mm, new);
1bb3630e
HD
3100 else
3101 pgd_populate(mm, pud, new);
1da177e4 3102#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3103 spin_unlock(&mm->page_table_lock);
1bb3630e 3104 return 0;
e0f39591 3105}
1da177e4
LT
3106#endif /* __PAGETABLE_PMD_FOLDED */
3107
3108int make_pages_present(unsigned long addr, unsigned long end)
3109{
3110 int ret, len, write;
3111 struct vm_area_struct * vma;
3112
3113 vma = find_vma(current->mm, addr);
3114 if (!vma)
a477097d 3115 return -ENOMEM;
1da177e4 3116 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
3117 BUG_ON(addr >= end);
3118 BUG_ON(end > vma->vm_end);
68e116a3 3119 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3120 ret = get_user_pages(current, current->mm, addr,
3121 len, write, 0, NULL, NULL);
c11d69d8 3122 if (ret < 0)
1da177e4 3123 return ret;
9978ad58 3124 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3125}
3126
1da177e4
LT
3127#if !defined(__HAVE_ARCH_GATE_AREA)
3128
3129#if defined(AT_SYSINFO_EHDR)
5ce7852c 3130static struct vm_area_struct gate_vma;
1da177e4
LT
3131
3132static int __init gate_vma_init(void)
3133{
3134 gate_vma.vm_mm = NULL;
3135 gate_vma.vm_start = FIXADDR_USER_START;
3136 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3137 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3138 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3139 /*
3140 * Make sure the vDSO gets into every core dump.
3141 * Dumping its contents makes post-mortem fully interpretable later
3142 * without matching up the same kernel and hardware config to see
3143 * what PC values meant.
3144 */
3145 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3146 return 0;
3147}
3148__initcall(gate_vma_init);
3149#endif
3150
3151struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3152{
3153#ifdef AT_SYSINFO_EHDR
3154 return &gate_vma;
3155#else
3156 return NULL;
3157#endif
3158}
3159
3160int in_gate_area_no_task(unsigned long addr)
3161{
3162#ifdef AT_SYSINFO_EHDR
3163 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3164 return 1;
3165#endif
3166 return 0;
3167}
3168
3169#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3170
f8ad0f49
JW
3171static int follow_pte(struct mm_struct *mm, unsigned long address,
3172 pte_t **ptepp, spinlock_t **ptlp)
3173{
3174 pgd_t *pgd;
3175 pud_t *pud;
3176 pmd_t *pmd;
3177 pte_t *ptep;
3178
3179 pgd = pgd_offset(mm, address);
3180 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3181 goto out;
3182
3183 pud = pud_offset(pgd, address);
3184 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3185 goto out;
3186
3187 pmd = pmd_offset(pud, address);
3188 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3189 goto out;
3190
3191 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3192 if (pmd_huge(*pmd))
3193 goto out;
3194
3195 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3196 if (!ptep)
3197 goto out;
3198 if (!pte_present(*ptep))
3199 goto unlock;
3200 *ptepp = ptep;
3201 return 0;
3202unlock:
3203 pte_unmap_unlock(ptep, *ptlp);
3204out:
3205 return -EINVAL;
3206}
3207
3b6748e2
JW
3208/**
3209 * follow_pfn - look up PFN at a user virtual address
3210 * @vma: memory mapping
3211 * @address: user virtual address
3212 * @pfn: location to store found PFN
3213 *
3214 * Only IO mappings and raw PFN mappings are allowed.
3215 *
3216 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3217 */
3218int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3219 unsigned long *pfn)
3220{
3221 int ret = -EINVAL;
3222 spinlock_t *ptl;
3223 pte_t *ptep;
3224
3225 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3226 return ret;
3227
3228 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3229 if (ret)
3230 return ret;
3231 *pfn = pte_pfn(*ptep);
3232 pte_unmap_unlock(ptep, ptl);
3233 return 0;
3234}
3235EXPORT_SYMBOL(follow_pfn);
3236
28b2ee20 3237#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3238int follow_phys(struct vm_area_struct *vma,
3239 unsigned long address, unsigned int flags,
3240 unsigned long *prot, resource_size_t *phys)
28b2ee20 3241{
03668a4d 3242 int ret = -EINVAL;
28b2ee20
RR
3243 pte_t *ptep, pte;
3244 spinlock_t *ptl;
28b2ee20 3245
d87fe660 3246 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3247 goto out;
28b2ee20 3248
03668a4d 3249 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3250 goto out;
28b2ee20 3251 pte = *ptep;
03668a4d 3252
28b2ee20
RR
3253 if ((flags & FOLL_WRITE) && !pte_write(pte))
3254 goto unlock;
28b2ee20
RR
3255
3256 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3257 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3258
03668a4d 3259 ret = 0;
28b2ee20
RR
3260unlock:
3261 pte_unmap_unlock(ptep, ptl);
3262out:
d87fe660 3263 return ret;
28b2ee20
RR
3264}
3265
3266int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3267 void *buf, int len, int write)
3268{
3269 resource_size_t phys_addr;
3270 unsigned long prot = 0;
2bc7273b 3271 void __iomem *maddr;
28b2ee20
RR
3272 int offset = addr & (PAGE_SIZE-1);
3273
d87fe660 3274 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3275 return -EINVAL;
3276
3277 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3278 if (write)
3279 memcpy_toio(maddr + offset, buf, len);
3280 else
3281 memcpy_fromio(buf, maddr + offset, len);
3282 iounmap(maddr);
3283
3284 return len;
3285}
3286#endif
3287
0ec76a11
DH
3288/*
3289 * Access another process' address space.
3290 * Source/target buffer must be kernel space,
3291 * Do not walk the page table directly, use get_user_pages
3292 */
3293int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3294{
3295 struct mm_struct *mm;
3296 struct vm_area_struct *vma;
0ec76a11
DH
3297 void *old_buf = buf;
3298
3299 mm = get_task_mm(tsk);
3300 if (!mm)
3301 return 0;
3302
3303 down_read(&mm->mmap_sem);
183ff22b 3304 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3305 while (len) {
3306 int bytes, ret, offset;
3307 void *maddr;
28b2ee20 3308 struct page *page = NULL;
0ec76a11
DH
3309
3310 ret = get_user_pages(tsk, mm, addr, 1,
3311 write, 1, &page, &vma);
28b2ee20
RR
3312 if (ret <= 0) {
3313 /*
3314 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3315 * we can access using slightly different code.
3316 */
3317#ifdef CONFIG_HAVE_IOREMAP_PROT
3318 vma = find_vma(mm, addr);
3319 if (!vma)
3320 break;
3321 if (vma->vm_ops && vma->vm_ops->access)
3322 ret = vma->vm_ops->access(vma, addr, buf,
3323 len, write);
3324 if (ret <= 0)
3325#endif
3326 break;
3327 bytes = ret;
0ec76a11 3328 } else {
28b2ee20
RR
3329 bytes = len;
3330 offset = addr & (PAGE_SIZE-1);
3331 if (bytes > PAGE_SIZE-offset)
3332 bytes = PAGE_SIZE-offset;
3333
3334 maddr = kmap(page);
3335 if (write) {
3336 copy_to_user_page(vma, page, addr,
3337 maddr + offset, buf, bytes);
3338 set_page_dirty_lock(page);
3339 } else {
3340 copy_from_user_page(vma, page, addr,
3341 buf, maddr + offset, bytes);
3342 }
3343 kunmap(page);
3344 page_cache_release(page);
0ec76a11 3345 }
0ec76a11
DH
3346 len -= bytes;
3347 buf += bytes;
3348 addr += bytes;
3349 }
3350 up_read(&mm->mmap_sem);
3351 mmput(mm);
3352
3353 return buf - old_buf;
3354}
03252919
AK
3355
3356/*
3357 * Print the name of a VMA.
3358 */
3359void print_vma_addr(char *prefix, unsigned long ip)
3360{
3361 struct mm_struct *mm = current->mm;
3362 struct vm_area_struct *vma;
3363
e8bff74a
IM
3364 /*
3365 * Do not print if we are in atomic
3366 * contexts (in exception stacks, etc.):
3367 */
3368 if (preempt_count())
3369 return;
3370
03252919
AK
3371 down_read(&mm->mmap_sem);
3372 vma = find_vma(mm, ip);
3373 if (vma && vma->vm_file) {
3374 struct file *f = vma->vm_file;
3375 char *buf = (char *)__get_free_page(GFP_KERNEL);
3376 if (buf) {
3377 char *p, *s;
3378
cf28b486 3379 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3380 if (IS_ERR(p))
3381 p = "?";
3382 s = strrchr(p, '/');
3383 if (s)
3384 p = s+1;
3385 printk("%s%s[%lx+%lx]", prefix, p,
3386 vma->vm_start,
3387 vma->vm_end - vma->vm_start);
3388 free_page((unsigned long)buf);
3389 }
3390 }
3391 up_read(&current->mm->mmap_sem);
3392}
3ee1afa3
NP
3393
3394#ifdef CONFIG_PROVE_LOCKING
3395void might_fault(void)
3396{
95156f00
PZ
3397 /*
3398 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3399 * holding the mmap_sem, this is safe because kernel memory doesn't
3400 * get paged out, therefore we'll never actually fault, and the
3401 * below annotations will generate false positives.
3402 */
3403 if (segment_eq(get_fs(), KERNEL_DS))
3404 return;
3405
3ee1afa3
NP
3406 might_sleep();
3407 /*
3408 * it would be nicer only to annotate paths which are not under
3409 * pagefault_disable, however that requires a larger audit and
3410 * providing helpers like get_user_atomic.
3411 */
3412 if (!in_atomic() && current->mm)
3413 might_lock_read(&current->mm->mmap_sem);
3414}
3415EXPORT_SYMBOL(might_fault);
3416#endif