]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
hugetlb: fix update_and_free_page contig page struct assumption
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
bce617ed
PX
73#include <linux/perf_event.h>
74#include <linux/ptrace.h>
e80d3909 75#include <linux/vmalloc.h>
1da177e4 76
b3d1411b
JFG
77#include <trace/events/kmem.h>
78
6952b61d 79#include <asm/io.h>
33a709b2 80#include <asm/mmu_context.h>
1da177e4 81#include <asm/pgalloc.h>
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4
LT
83#include <asm/tlb.h>
84#include <asm/tlbflush.h>
1da177e4 85
e80d3909 86#include "pgalloc-track.h"
42b77728
JB
87#include "internal.h"
88
af27d940 89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
91#endif
92
d41dee36 93#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
94/* use the per-pgdat data instead for discontigmem - mbligh */
95unsigned long max_mapnr;
1da177e4 96EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
97
98struct page *mem_map;
1da177e4
LT
99EXPORT_SYMBOL(mem_map);
100#endif
101
1da177e4
LT
102/*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
166f61b9 109void *high_memory;
1da177e4 110EXPORT_SYMBOL(high_memory);
1da177e4 111
32a93233
IM
112/*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118int randomize_va_space __read_mostly =
119#ifdef CONFIG_COMPAT_BRK
120 1;
121#else
122 2;
123#endif
a62eaf15 124
83d116c5
JH
125#ifndef arch_faults_on_old_pte
126static inline bool arch_faults_on_old_pte(void)
127{
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134}
135#endif
136
46bdb427
WD
137#ifndef arch_wants_old_prefaulted_pte
138static inline bool arch_wants_old_prefaulted_pte(void)
139{
140 /*
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
144 */
145 return false;
146}
147#endif
148
a62eaf15
AK
149static int __init disable_randmaps(char *s)
150{
151 randomize_va_space = 0;
9b41046c 152 return 1;
a62eaf15
AK
153}
154__setup("norandmaps", disable_randmaps);
155
62eede62 156unsigned long zero_pfn __read_mostly;
0b70068e
AB
157EXPORT_SYMBOL(zero_pfn);
158
166f61b9
TH
159unsigned long highest_memmap_pfn __read_mostly;
160
a13ea5b7
HD
161/*
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163 */
164static int __init init_zero_pfn(void)
165{
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 return 0;
168}
169core_initcall(init_zero_pfn);
a62eaf15 170
e4dcad20 171void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 172{
e4dcad20 173 trace_rss_stat(mm, member, count);
b3d1411b 174}
d559db08 175
34e55232
KH
176#if defined(SPLIT_RSS_COUNTING)
177
ea48cf78 178void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
179{
180 int i;
181
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
34e55232
KH
186 }
187 }
05af2e10 188 current->rss_stat.events = 0;
34e55232
KH
189}
190
191static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192{
193 struct task_struct *task = current;
194
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
197 else
198 add_mm_counter(mm, member, val);
199}
200#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203/* sync counter once per 64 page faults */
204#define TASK_RSS_EVENTS_THRESH (64)
205static void check_sync_rss_stat(struct task_struct *task)
206{
207 if (unlikely(task != current))
208 return;
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 210 sync_mm_rss(task->mm);
34e55232 211}
9547d01b 212#else /* SPLIT_RSS_COUNTING */
34e55232
KH
213
214#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217static void check_sync_rss_stat(struct task_struct *task)
218{
219}
220
9547d01b
PZ
221#endif /* SPLIT_RSS_COUNTING */
222
1da177e4
LT
223/*
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
226 */
9e1b32ca
BH
227static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 unsigned long addr)
1da177e4 229{
2f569afd 230 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 231 pmd_clear(pmd);
9e1b32ca 232 pte_free_tlb(tlb, token, addr);
c4812909 233 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
234}
235
e0da382c
HD
236static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
1da177e4
LT
239{
240 pmd_t *pmd;
241 unsigned long next;
e0da382c 242 unsigned long start;
1da177e4 243
e0da382c 244 start = addr;
1da177e4 245 pmd = pmd_offset(pud, addr);
1da177e4
LT
246 do {
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
249 continue;
9e1b32ca 250 free_pte_range(tlb, pmd, addr);
1da177e4
LT
251 } while (pmd++, addr = next, addr != end);
252
e0da382c
HD
253 start &= PUD_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= PUD_MASK;
258 if (!ceiling)
259 return;
1da177e4 260 }
e0da382c
HD
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pmd = pmd_offset(pud, start);
265 pud_clear(pud);
9e1b32ca 266 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 267 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
268}
269
c2febafc 270static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
1da177e4
LT
273{
274 pud_t *pud;
275 unsigned long next;
e0da382c 276 unsigned long start;
1da177e4 277
e0da382c 278 start = addr;
c2febafc 279 pud = pud_offset(p4d, addr);
1da177e4
LT
280 do {
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
283 continue;
e0da382c 284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
285 } while (pud++, addr = next, addr != end);
286
c2febafc
KS
287 start &= P4D_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= P4D_MASK;
292 if (!ceiling)
293 return;
294 }
295 if (end - 1 > ceiling - 1)
296 return;
297
298 pud = pud_offset(p4d, start);
299 p4d_clear(p4d);
300 pud_free_tlb(tlb, pud, start);
b4e98d9a 301 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
302}
303
304static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
307{
308 p4d_t *p4d;
309 unsigned long next;
310 unsigned long start;
311
312 start = addr;
313 p4d = p4d_offset(pgd, addr);
314 do {
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
317 continue;
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
320
e0da382c
HD
321 start &= PGDIR_MASK;
322 if (start < floor)
323 return;
324 if (ceiling) {
325 ceiling &= PGDIR_MASK;
326 if (!ceiling)
327 return;
1da177e4 328 }
e0da382c
HD
329 if (end - 1 > ceiling - 1)
330 return;
331
c2febafc 332 p4d = p4d_offset(pgd, start);
e0da382c 333 pgd_clear(pgd);
c2febafc 334 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
335}
336
337/*
e0da382c 338 * This function frees user-level page tables of a process.
1da177e4 339 */
42b77728 340void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
1da177e4
LT
343{
344 pgd_t *pgd;
345 unsigned long next;
e0da382c
HD
346
347 /*
348 * The next few lines have given us lots of grief...
349 *
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
353 *
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
361 *
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
366 *
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
371 */
1da177e4 372
e0da382c
HD
373 addr &= PMD_MASK;
374 if (addr < floor) {
375 addr += PMD_SIZE;
376 if (!addr)
377 return;
378 }
379 if (ceiling) {
380 ceiling &= PMD_MASK;
381 if (!ceiling)
382 return;
383 }
384 if (end - 1 > ceiling - 1)
385 end -= PMD_SIZE;
386 if (addr > end - 1)
387 return;
07e32661
AK
388 /*
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
391 */
ed6a7935 392 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 393 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
394 do {
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
397 continue;
c2febafc 398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 399 } while (pgd++, addr = next, addr != end);
e0da382c
HD
400}
401
42b77728 402void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 403 unsigned long floor, unsigned long ceiling)
e0da382c
HD
404{
405 while (vma) {
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
408
8f4f8c16 409 /*
25d9e2d1
NP
410 * Hide vma from rmap and truncate_pagecache before freeing
411 * pgtables
8f4f8c16 412 */
5beb4930 413 unlink_anon_vmas(vma);
8f4f8c16
HD
414 unlink_file_vma(vma);
415
9da61aef 416 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 418 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
419 } else {
420 /*
421 * Optimization: gather nearby vmas into one call down
422 */
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 424 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
425 vma = next;
426 next = vma->vm_next;
5beb4930 427 unlink_anon_vmas(vma);
8f4f8c16 428 unlink_file_vma(vma);
3bf5ee95
HD
429 }
430 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 431 floor, next ? next->vm_start : ceiling);
3bf5ee95 432 }
e0da382c
HD
433 vma = next;
434 }
1da177e4
LT
435}
436
4cf58924 437int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 438{
c4088ebd 439 spinlock_t *ptl;
4cf58924 440 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
441 if (!new)
442 return -ENOMEM;
443
362a61ad
NP
444 /*
445 * Ensure all pte setup (eg. pte page lock and page clearing) are
446 * visible before the pte is made visible to other CPUs by being
447 * put into page tables.
448 *
449 * The other side of the story is the pointer chasing in the page
450 * table walking code (when walking the page table without locking;
451 * ie. most of the time). Fortunately, these data accesses consist
452 * of a chain of data-dependent loads, meaning most CPUs (alpha
453 * being the notable exception) will already guarantee loads are
454 * seen in-order. See the alpha page table accessors for the
bb7cdd38 455 * smp_rmb() barriers in page table walking code.
362a61ad
NP
456 */
457 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458
c4088ebd 459 ptl = pmd_lock(mm, pmd);
8ac1f832 460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 461 mm_inc_nr_ptes(mm);
1da177e4 462 pmd_populate(mm, pmd, new);
2f569afd 463 new = NULL;
4b471e88 464 }
c4088ebd 465 spin_unlock(ptl);
2f569afd
MS
466 if (new)
467 pte_free(mm, new);
1bb3630e 468 return 0;
1da177e4
LT
469}
470
4cf58924 471int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 472{
4cf58924 473 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
474 if (!new)
475 return -ENOMEM;
476
362a61ad
NP
477 smp_wmb(); /* See comment in __pte_alloc */
478
1bb3630e 479 spin_lock(&init_mm.page_table_lock);
8ac1f832 480 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 481 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 482 new = NULL;
4b471e88 483 }
1bb3630e 484 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
485 if (new)
486 pte_free_kernel(&init_mm, new);
1bb3630e 487 return 0;
1da177e4
LT
488}
489
d559db08
KH
490static inline void init_rss_vec(int *rss)
491{
492 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
493}
494
495static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 496{
d559db08
KH
497 int i;
498
34e55232 499 if (current->mm == mm)
05af2e10 500 sync_mm_rss(mm);
d559db08
KH
501 for (i = 0; i < NR_MM_COUNTERS; i++)
502 if (rss[i])
503 add_mm_counter(mm, i, rss[i]);
ae859762
HD
504}
505
b5810039 506/*
6aab341e
LT
507 * This function is called to print an error when a bad pte
508 * is found. For example, we might have a PFN-mapped pte in
509 * a region that doesn't allow it.
b5810039
NP
510 *
511 * The calling function must still handle the error.
512 */
3dc14741
HD
513static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
514 pte_t pte, struct page *page)
b5810039 515{
3dc14741 516 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
517 p4d_t *p4d = p4d_offset(pgd, addr);
518 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
519 pmd_t *pmd = pmd_offset(pud, addr);
520 struct address_space *mapping;
521 pgoff_t index;
d936cf9b
HD
522 static unsigned long resume;
523 static unsigned long nr_shown;
524 static unsigned long nr_unshown;
525
526 /*
527 * Allow a burst of 60 reports, then keep quiet for that minute;
528 * or allow a steady drip of one report per second.
529 */
530 if (nr_shown == 60) {
531 if (time_before(jiffies, resume)) {
532 nr_unshown++;
533 return;
534 }
535 if (nr_unshown) {
1170532b
JP
536 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
537 nr_unshown);
d936cf9b
HD
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
3dc14741
HD
544
545 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
546 index = linear_page_index(vma, addr);
547
1170532b
JP
548 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
549 current->comm,
550 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 551 if (page)
f0b791a3 552 dump_page(page, "bad pte");
6aa9b8b2 553 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 554 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 555 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
556 vma->vm_file,
557 vma->vm_ops ? vma->vm_ops->fault : NULL,
558 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
559 mapping ? mapping->a_ops->readpage : NULL);
b5810039 560 dump_stack();
373d4d09 561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
562}
563
ee498ed7 564/*
7e675137 565 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 566 *
7e675137
NP
567 * "Special" mappings do not wish to be associated with a "struct page" (either
568 * it doesn't exist, or it exists but they don't want to touch it). In this
569 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 570 *
7e675137
NP
571 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
572 * pte bit, in which case this function is trivial. Secondly, an architecture
573 * may not have a spare pte bit, which requires a more complicated scheme,
574 * described below.
575 *
576 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
577 * special mapping (even if there are underlying and valid "struct pages").
578 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 579 *
b379d790
JH
580 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
581 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
582 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
583 * mapping will always honor the rule
6aab341e
LT
584 *
585 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
586 *
7e675137
NP
587 * And for normal mappings this is false.
588 *
589 * This restricts such mappings to be a linear translation from virtual address
590 * to pfn. To get around this restriction, we allow arbitrary mappings so long
591 * as the vma is not a COW mapping; in that case, we know that all ptes are
592 * special (because none can have been COWed).
b379d790 593 *
b379d790 594 *
7e675137 595 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
596 *
597 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
598 * page" backing, however the difference is that _all_ pages with a struct
599 * page (that is, those where pfn_valid is true) are refcounted and considered
600 * normal pages by the VM. The disadvantage is that pages are refcounted
601 * (which can be slower and simply not an option for some PFNMAP users). The
602 * advantage is that we don't have to follow the strict linearity rule of
603 * PFNMAP mappings in order to support COWable mappings.
604 *
ee498ed7 605 */
25b2995a
CH
606struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
607 pte_t pte)
ee498ed7 608{
22b31eec 609 unsigned long pfn = pte_pfn(pte);
7e675137 610
00b3a331 611 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 612 if (likely(!pte_special(pte)))
22b31eec 613 goto check_pfn;
667a0a06
DV
614 if (vma->vm_ops && vma->vm_ops->find_special_page)
615 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
616 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
617 return NULL;
df6ad698
JG
618 if (is_zero_pfn(pfn))
619 return NULL;
e1fb4a08
DJ
620 if (pte_devmap(pte))
621 return NULL;
622
df6ad698 623 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
624 return NULL;
625 }
626
00b3a331 627 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 628
b379d790
JH
629 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
630 if (vma->vm_flags & VM_MIXEDMAP) {
631 if (!pfn_valid(pfn))
632 return NULL;
633 goto out;
634 } else {
7e675137
NP
635 unsigned long off;
636 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
637 if (pfn == vma->vm_pgoff + off)
638 return NULL;
639 if (!is_cow_mapping(vma->vm_flags))
640 return NULL;
641 }
6aab341e
LT
642 }
643
b38af472
HD
644 if (is_zero_pfn(pfn))
645 return NULL;
00b3a331 646
22b31eec
HD
647check_pfn:
648 if (unlikely(pfn > highest_memmap_pfn)) {
649 print_bad_pte(vma, addr, pte, NULL);
650 return NULL;
651 }
6aab341e
LT
652
653 /*
7e675137 654 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 655 * eg. VDSO mappings can cause them to exist.
6aab341e 656 */
b379d790 657out:
6aab341e 658 return pfn_to_page(pfn);
ee498ed7
HD
659}
660
28093f9f
GS
661#ifdef CONFIG_TRANSPARENT_HUGEPAGE
662struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
663 pmd_t pmd)
664{
665 unsigned long pfn = pmd_pfn(pmd);
666
667 /*
668 * There is no pmd_special() but there may be special pmds, e.g.
669 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 670 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
671 */
672 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
673 if (vma->vm_flags & VM_MIXEDMAP) {
674 if (!pfn_valid(pfn))
675 return NULL;
676 goto out;
677 } else {
678 unsigned long off;
679 off = (addr - vma->vm_start) >> PAGE_SHIFT;
680 if (pfn == vma->vm_pgoff + off)
681 return NULL;
682 if (!is_cow_mapping(vma->vm_flags))
683 return NULL;
684 }
685 }
686
e1fb4a08
DJ
687 if (pmd_devmap(pmd))
688 return NULL;
3cde287b 689 if (is_huge_zero_pmd(pmd))
28093f9f
GS
690 return NULL;
691 if (unlikely(pfn > highest_memmap_pfn))
692 return NULL;
693
694 /*
695 * NOTE! We still have PageReserved() pages in the page tables.
696 * eg. VDSO mappings can cause them to exist.
697 */
698out:
699 return pfn_to_page(pfn);
700}
701#endif
702
1da177e4
LT
703/*
704 * copy one vm_area from one task to the other. Assumes the page tables
705 * already present in the new task to be cleared in the whole range
706 * covered by this vma.
1da177e4
LT
707 */
708
df3a57d1
LT
709static unsigned long
710copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 711 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 712 unsigned long addr, int *rss)
1da177e4 713{
b5810039 714 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
715 pte_t pte = *src_pte;
716 struct page *page;
df3a57d1
LT
717 swp_entry_t entry = pte_to_swp_entry(pte);
718
719 if (likely(!non_swap_entry(entry))) {
720 if (swap_duplicate(entry) < 0)
721 return entry.val;
722
723 /* make sure dst_mm is on swapoff's mmlist. */
724 if (unlikely(list_empty(&dst_mm->mmlist))) {
725 spin_lock(&mmlist_lock);
726 if (list_empty(&dst_mm->mmlist))
727 list_add(&dst_mm->mmlist,
728 &src_mm->mmlist);
729 spin_unlock(&mmlist_lock);
730 }
731 rss[MM_SWAPENTS]++;
732 } else if (is_migration_entry(entry)) {
733 page = migration_entry_to_page(entry);
1da177e4 734
df3a57d1 735 rss[mm_counter(page)]++;
5042db43 736
df3a57d1
LT
737 if (is_write_migration_entry(entry) &&
738 is_cow_mapping(vm_flags)) {
5042db43 739 /*
df3a57d1
LT
740 * COW mappings require pages in both
741 * parent and child to be set to read.
5042db43 742 */
df3a57d1
LT
743 make_migration_entry_read(&entry);
744 pte = swp_entry_to_pte(entry);
745 if (pte_swp_soft_dirty(*src_pte))
746 pte = pte_swp_mksoft_dirty(pte);
747 if (pte_swp_uffd_wp(*src_pte))
748 pte = pte_swp_mkuffd_wp(pte);
749 set_pte_at(src_mm, addr, src_pte, pte);
750 }
751 } else if (is_device_private_entry(entry)) {
752 page = device_private_entry_to_page(entry);
5042db43 753
df3a57d1
LT
754 /*
755 * Update rss count even for unaddressable pages, as
756 * they should treated just like normal pages in this
757 * respect.
758 *
759 * We will likely want to have some new rss counters
760 * for unaddressable pages, at some point. But for now
761 * keep things as they are.
762 */
763 get_page(page);
764 rss[mm_counter(page)]++;
765 page_dup_rmap(page, false);
766
767 /*
768 * We do not preserve soft-dirty information, because so
769 * far, checkpoint/restore is the only feature that
770 * requires that. And checkpoint/restore does not work
771 * when a device driver is involved (you cannot easily
772 * save and restore device driver state).
773 */
774 if (is_write_device_private_entry(entry) &&
775 is_cow_mapping(vm_flags)) {
776 make_device_private_entry_read(&entry);
777 pte = swp_entry_to_pte(entry);
778 if (pte_swp_uffd_wp(*src_pte))
779 pte = pte_swp_mkuffd_wp(pte);
780 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 781 }
1da177e4 782 }
df3a57d1
LT
783 set_pte_at(dst_mm, addr, dst_pte, pte);
784 return 0;
785}
786
70e806e4
PX
787/*
788 * Copy a present and normal page if necessary.
789 *
790 * NOTE! The usual case is that this doesn't need to do
791 * anything, and can just return a positive value. That
792 * will let the caller know that it can just increase
793 * the page refcount and re-use the pte the traditional
794 * way.
795 *
796 * But _if_ we need to copy it because it needs to be
797 * pinned in the parent (and the child should get its own
798 * copy rather than just a reference to the same page),
799 * we'll do that here and return zero to let the caller
800 * know we're done.
801 *
802 * And if we need a pre-allocated page but don't yet have
803 * one, return a negative error to let the preallocation
804 * code know so that it can do so outside the page table
805 * lock.
806 */
807static inline int
c78f4636
PX
808copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
809 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
810 struct page **prealloc, pte_t pte, struct page *page)
70e806e4 811{
c78f4636 812 struct mm_struct *src_mm = src_vma->vm_mm;
70e806e4
PX
813 struct page *new_page;
814
c78f4636 815 if (!is_cow_mapping(src_vma->vm_flags))
70e806e4
PX
816 return 1;
817
818 /*
70e806e4
PX
819 * What we want to do is to check whether this page may
820 * have been pinned by the parent process. If so,
821 * instead of wrprotect the pte on both sides, we copy
822 * the page immediately so that we'll always guarantee
823 * the pinned page won't be randomly replaced in the
824 * future.
825 *
f3c64eda
LT
826 * The page pinning checks are just "has this mm ever
827 * seen pinning", along with the (inexact) check of
828 * the page count. That might give false positives for
829 * for pinning, but it will work correctly.
70e806e4
PX
830 */
831 if (likely(!atomic_read(&src_mm->has_pinned)))
832 return 1;
833 if (likely(!page_maybe_dma_pinned(page)))
834 return 1;
835
70e806e4
PX
836 new_page = *prealloc;
837 if (!new_page)
838 return -EAGAIN;
839
840 /*
841 * We have a prealloc page, all good! Take it
842 * over and copy the page & arm it.
843 */
844 *prealloc = NULL;
c78f4636 845 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 846 __SetPageUptodate(new_page);
c78f4636
PX
847 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
848 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
849 rss[mm_counter(new_page)]++;
850
851 /* All done, just insert the new page copy in the child */
c78f4636
PX
852 pte = mk_pte(new_page, dst_vma->vm_page_prot);
853 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
854 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
855 return 0;
856}
857
858/*
859 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
860 * is required to copy this pte.
861 */
862static inline int
c78f4636
PX
863copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
864 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
865 struct page **prealloc)
df3a57d1 866{
c78f4636
PX
867 struct mm_struct *src_mm = src_vma->vm_mm;
868 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
869 pte_t pte = *src_pte;
870 struct page *page;
871
c78f4636 872 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
873 if (page) {
874 int retval;
875
c78f4636
PX
876 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
877 addr, rss, prealloc, pte, page);
70e806e4
PX
878 if (retval <= 0)
879 return retval;
880
881 get_page(page);
882 page_dup_rmap(page, false);
883 rss[mm_counter(page)]++;
884 }
885
1da177e4
LT
886 /*
887 * If it's a COW mapping, write protect it both
888 * in the parent and the child
889 */
1b2de5d0 890 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 891 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 892 pte = pte_wrprotect(pte);
1da177e4
LT
893 }
894
895 /*
896 * If it's a shared mapping, mark it clean in
897 * the child
898 */
899 if (vm_flags & VM_SHARED)
900 pte = pte_mkclean(pte);
901 pte = pte_mkold(pte);
6aab341e 902
b569a176
PX
903 /*
904 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
905 * does not have the VM_UFFD_WP, which means that the uffd
906 * fork event is not enabled.
907 */
908 if (!(vm_flags & VM_UFFD_WP))
909 pte = pte_clear_uffd_wp(pte);
910
c78f4636 911 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
912 return 0;
913}
914
915static inline struct page *
916page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
917 unsigned long addr)
918{
919 struct page *new_page;
920
921 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
922 if (!new_page)
923 return NULL;
924
925 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
926 put_page(new_page);
927 return NULL;
6aab341e 928 }
70e806e4 929 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 930
70e806e4 931 return new_page;
1da177e4
LT
932}
933
c78f4636
PX
934static int
935copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
936 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
937 unsigned long end)
1da177e4 938{
c78f4636
PX
939 struct mm_struct *dst_mm = dst_vma->vm_mm;
940 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 941 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 942 pte_t *src_pte, *dst_pte;
c74df32c 943 spinlock_t *src_ptl, *dst_ptl;
70e806e4 944 int progress, ret = 0;
d559db08 945 int rss[NR_MM_COUNTERS];
570a335b 946 swp_entry_t entry = (swp_entry_t){0};
70e806e4 947 struct page *prealloc = NULL;
1da177e4
LT
948
949again:
70e806e4 950 progress = 0;
d559db08
KH
951 init_rss_vec(rss);
952
c74df32c 953 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
954 if (!dst_pte) {
955 ret = -ENOMEM;
956 goto out;
957 }
ece0e2b6 958 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 959 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 960 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
961 orig_src_pte = src_pte;
962 orig_dst_pte = dst_pte;
6606c3e0 963 arch_enter_lazy_mmu_mode();
1da177e4 964
1da177e4
LT
965 do {
966 /*
967 * We are holding two locks at this point - either of them
968 * could generate latencies in another task on another CPU.
969 */
e040f218
HD
970 if (progress >= 32) {
971 progress = 0;
972 if (need_resched() ||
95c354fe 973 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
974 break;
975 }
1da177e4
LT
976 if (pte_none(*src_pte)) {
977 progress++;
978 continue;
979 }
79a1971c
LT
980 if (unlikely(!pte_present(*src_pte))) {
981 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
982 dst_pte, src_pte,
c78f4636 983 src_vma, addr, rss);
79a1971c
LT
984 if (entry.val)
985 break;
986 progress += 8;
987 continue;
988 }
70e806e4 989 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
990 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
991 addr, rss, &prealloc);
70e806e4
PX
992 /*
993 * If we need a pre-allocated page for this pte, drop the
994 * locks, allocate, and try again.
995 */
996 if (unlikely(ret == -EAGAIN))
997 break;
998 if (unlikely(prealloc)) {
999 /*
1000 * pre-alloc page cannot be reused by next time so as
1001 * to strictly follow mempolicy (e.g., alloc_page_vma()
1002 * will allocate page according to address). This
1003 * could only happen if one pinned pte changed.
1004 */
1005 put_page(prealloc);
1006 prealloc = NULL;
1007 }
1da177e4
LT
1008 progress += 8;
1009 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1010
6606c3e0 1011 arch_leave_lazy_mmu_mode();
c74df32c 1012 spin_unlock(src_ptl);
ece0e2b6 1013 pte_unmap(orig_src_pte);
d559db08 1014 add_mm_rss_vec(dst_mm, rss);
c36987e2 1015 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1016 cond_resched();
570a335b
HD
1017
1018 if (entry.val) {
70e806e4
PX
1019 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1020 ret = -ENOMEM;
1021 goto out;
1022 }
1023 entry.val = 0;
1024 } else if (ret) {
1025 WARN_ON_ONCE(ret != -EAGAIN);
c78f4636 1026 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1027 if (!prealloc)
570a335b 1028 return -ENOMEM;
70e806e4
PX
1029 /* We've captured and resolved the error. Reset, try again. */
1030 ret = 0;
570a335b 1031 }
1da177e4
LT
1032 if (addr != end)
1033 goto again;
70e806e4
PX
1034out:
1035 if (unlikely(prealloc))
1036 put_page(prealloc);
1037 return ret;
1da177e4
LT
1038}
1039
c78f4636
PX
1040static inline int
1041copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1042 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1043 unsigned long end)
1da177e4 1044{
c78f4636
PX
1045 struct mm_struct *dst_mm = dst_vma->vm_mm;
1046 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1047 pmd_t *src_pmd, *dst_pmd;
1048 unsigned long next;
1049
1050 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1051 if (!dst_pmd)
1052 return -ENOMEM;
1053 src_pmd = pmd_offset(src_pud, addr);
1054 do {
1055 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1056 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1057 || pmd_devmap(*src_pmd)) {
71e3aac0 1058 int err;
c78f4636 1059 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
71e3aac0 1060 err = copy_huge_pmd(dst_mm, src_mm,
c78f4636 1061 dst_pmd, src_pmd, addr, src_vma);
71e3aac0
AA
1062 if (err == -ENOMEM)
1063 return -ENOMEM;
1064 if (!err)
1065 continue;
1066 /* fall through */
1067 }
1da177e4
LT
1068 if (pmd_none_or_clear_bad(src_pmd))
1069 continue;
c78f4636
PX
1070 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1071 addr, next))
1da177e4
LT
1072 return -ENOMEM;
1073 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1074 return 0;
1075}
1076
c78f4636
PX
1077static inline int
1078copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1079 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1080 unsigned long end)
1da177e4 1081{
c78f4636
PX
1082 struct mm_struct *dst_mm = dst_vma->vm_mm;
1083 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1084 pud_t *src_pud, *dst_pud;
1085 unsigned long next;
1086
c2febafc 1087 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1088 if (!dst_pud)
1089 return -ENOMEM;
c2febafc 1090 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1091 do {
1092 next = pud_addr_end(addr, end);
a00cc7d9
MW
1093 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1094 int err;
1095
c78f4636 1096 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1097 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1098 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1099 if (err == -ENOMEM)
1100 return -ENOMEM;
1101 if (!err)
1102 continue;
1103 /* fall through */
1104 }
1da177e4
LT
1105 if (pud_none_or_clear_bad(src_pud))
1106 continue;
c78f4636
PX
1107 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1108 addr, next))
1da177e4
LT
1109 return -ENOMEM;
1110 } while (dst_pud++, src_pud++, addr = next, addr != end);
1111 return 0;
1112}
1113
c78f4636
PX
1114static inline int
1115copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1116 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1117 unsigned long end)
c2febafc 1118{
c78f4636 1119 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1120 p4d_t *src_p4d, *dst_p4d;
1121 unsigned long next;
1122
1123 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1124 if (!dst_p4d)
1125 return -ENOMEM;
1126 src_p4d = p4d_offset(src_pgd, addr);
1127 do {
1128 next = p4d_addr_end(addr, end);
1129 if (p4d_none_or_clear_bad(src_p4d))
1130 continue;
c78f4636
PX
1131 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1132 addr, next))
c2febafc
KS
1133 return -ENOMEM;
1134 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1135 return 0;
1136}
1137
c78f4636
PX
1138int
1139copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1140{
1141 pgd_t *src_pgd, *dst_pgd;
1142 unsigned long next;
c78f4636
PX
1143 unsigned long addr = src_vma->vm_start;
1144 unsigned long end = src_vma->vm_end;
1145 struct mm_struct *dst_mm = dst_vma->vm_mm;
1146 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1147 struct mmu_notifier_range range;
2ec74c3e 1148 bool is_cow;
cddb8a5c 1149 int ret;
1da177e4 1150
d992895b
NP
1151 /*
1152 * Don't copy ptes where a page fault will fill them correctly.
1153 * Fork becomes much lighter when there are big shared or private
1154 * readonly mappings. The tradeoff is that copy_page_range is more
1155 * efficient than faulting.
1156 */
c78f4636
PX
1157 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1158 !src_vma->anon_vma)
0661a336 1159 return 0;
d992895b 1160
c78f4636
PX
1161 if (is_vm_hugetlb_page(src_vma))
1162 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1163
c78f4636 1164 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1165 /*
1166 * We do not free on error cases below as remove_vma
1167 * gets called on error from higher level routine
1168 */
c78f4636 1169 ret = track_pfn_copy(src_vma);
2ab64037 1170 if (ret)
1171 return ret;
1172 }
1173
cddb8a5c
AA
1174 /*
1175 * We need to invalidate the secondary MMU mappings only when
1176 * there could be a permission downgrade on the ptes of the
1177 * parent mm. And a permission downgrade will only happen if
1178 * is_cow_mapping() returns true.
1179 */
c78f4636 1180 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1181
1182 if (is_cow) {
7269f999 1183 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1184 0, src_vma, src_mm, addr, end);
ac46d4f3 1185 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1186 /*
1187 * Disabling preemption is not needed for the write side, as
1188 * the read side doesn't spin, but goes to the mmap_lock.
1189 *
1190 * Use the raw variant of the seqcount_t write API to avoid
1191 * lockdep complaining about preemptibility.
1192 */
1193 mmap_assert_write_locked(src_mm);
1194 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1195 }
cddb8a5c
AA
1196
1197 ret = 0;
1da177e4
LT
1198 dst_pgd = pgd_offset(dst_mm, addr);
1199 src_pgd = pgd_offset(src_mm, addr);
1200 do {
1201 next = pgd_addr_end(addr, end);
1202 if (pgd_none_or_clear_bad(src_pgd))
1203 continue;
c78f4636
PX
1204 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1205 addr, next))) {
cddb8a5c
AA
1206 ret = -ENOMEM;
1207 break;
1208 }
1da177e4 1209 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1210
57efa1fe
JG
1211 if (is_cow) {
1212 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1213 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1214 }
cddb8a5c 1215 return ret;
1da177e4
LT
1216}
1217
51c6f666 1218static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1219 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1220 unsigned long addr, unsigned long end,
97a89413 1221 struct zap_details *details)
1da177e4 1222{
b5810039 1223 struct mm_struct *mm = tlb->mm;
d16dfc55 1224 int force_flush = 0;
d559db08 1225 int rss[NR_MM_COUNTERS];
97a89413 1226 spinlock_t *ptl;
5f1a1907 1227 pte_t *start_pte;
97a89413 1228 pte_t *pte;
8a5f14a2 1229 swp_entry_t entry;
d559db08 1230
ed6a7935 1231 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1232again:
e303297e 1233 init_rss_vec(rss);
5f1a1907
SR
1234 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1235 pte = start_pte;
3ea27719 1236 flush_tlb_batched_pending(mm);
6606c3e0 1237 arch_enter_lazy_mmu_mode();
1da177e4
LT
1238 do {
1239 pte_t ptent = *pte;
166f61b9 1240 if (pte_none(ptent))
1da177e4 1241 continue;
6f5e6b9e 1242
7b167b68
MK
1243 if (need_resched())
1244 break;
1245
1da177e4 1246 if (pte_present(ptent)) {
ee498ed7 1247 struct page *page;
51c6f666 1248
25b2995a 1249 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1250 if (unlikely(details) && page) {
1251 /*
1252 * unmap_shared_mapping_pages() wants to
1253 * invalidate cache without truncating:
1254 * unmap shared but keep private pages.
1255 */
1256 if (details->check_mapping &&
800d8c63 1257 details->check_mapping != page_rmapping(page))
1da177e4 1258 continue;
1da177e4 1259 }
b5810039 1260 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1261 tlb->fullmm);
1da177e4
LT
1262 tlb_remove_tlb_entry(tlb, pte, addr);
1263 if (unlikely(!page))
1264 continue;
eca56ff9
JM
1265
1266 if (!PageAnon(page)) {
1cf35d47
LT
1267 if (pte_dirty(ptent)) {
1268 force_flush = 1;
6237bcd9 1269 set_page_dirty(page);
1cf35d47 1270 }
4917e5d0 1271 if (pte_young(ptent) &&
64363aad 1272 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1273 mark_page_accessed(page);
6237bcd9 1274 }
eca56ff9 1275 rss[mm_counter(page)]--;
d281ee61 1276 page_remove_rmap(page, false);
3dc14741
HD
1277 if (unlikely(page_mapcount(page) < 0))
1278 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1279 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1280 force_flush = 1;
ce9ec37b 1281 addr += PAGE_SIZE;
d16dfc55 1282 break;
1cf35d47 1283 }
1da177e4
LT
1284 continue;
1285 }
5042db43
JG
1286
1287 entry = pte_to_swp_entry(ptent);
463b7a17 1288 if (is_device_private_entry(entry)) {
5042db43
JG
1289 struct page *page = device_private_entry_to_page(entry);
1290
1291 if (unlikely(details && details->check_mapping)) {
1292 /*
1293 * unmap_shared_mapping_pages() wants to
1294 * invalidate cache without truncating:
1295 * unmap shared but keep private pages.
1296 */
1297 if (details->check_mapping !=
1298 page_rmapping(page))
1299 continue;
1300 }
1301
1302 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1303 rss[mm_counter(page)]--;
1304 page_remove_rmap(page, false);
1305 put_page(page);
1306 continue;
1307 }
1308
3e8715fd
KS
1309 /* If details->check_mapping, we leave swap entries. */
1310 if (unlikely(details))
1da177e4 1311 continue;
b084d435 1312
8a5f14a2
KS
1313 if (!non_swap_entry(entry))
1314 rss[MM_SWAPENTS]--;
1315 else if (is_migration_entry(entry)) {
1316 struct page *page;
9f9f1acd 1317
8a5f14a2 1318 page = migration_entry_to_page(entry);
eca56ff9 1319 rss[mm_counter(page)]--;
b084d435 1320 }
8a5f14a2
KS
1321 if (unlikely(!free_swap_and_cache(entry)))
1322 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1323 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1324 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1325
d559db08 1326 add_mm_rss_vec(mm, rss);
6606c3e0 1327 arch_leave_lazy_mmu_mode();
51c6f666 1328
1cf35d47 1329 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1330 if (force_flush)
1cf35d47 1331 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1332 pte_unmap_unlock(start_pte, ptl);
1333
1334 /*
1335 * If we forced a TLB flush (either due to running out of
1336 * batch buffers or because we needed to flush dirty TLB
1337 * entries before releasing the ptl), free the batched
1338 * memory too. Restart if we didn't do everything.
1339 */
1340 if (force_flush) {
1341 force_flush = 0;
fa0aafb8 1342 tlb_flush_mmu(tlb);
7b167b68
MK
1343 }
1344
1345 if (addr != end) {
1346 cond_resched();
1347 goto again;
d16dfc55
PZ
1348 }
1349
51c6f666 1350 return addr;
1da177e4
LT
1351}
1352
51c6f666 1353static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1354 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1355 unsigned long addr, unsigned long end,
97a89413 1356 struct zap_details *details)
1da177e4
LT
1357{
1358 pmd_t *pmd;
1359 unsigned long next;
1360
1361 pmd = pmd_offset(pud, addr);
1362 do {
1363 next = pmd_addr_end(addr, end);
84c3fc4e 1364 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1365 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1366 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1367 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1368 goto next;
71e3aac0
AA
1369 /* fall through */
1370 }
1a5a9906
AA
1371 /*
1372 * Here there can be other concurrent MADV_DONTNEED or
1373 * trans huge page faults running, and if the pmd is
1374 * none or trans huge it can change under us. This is
c1e8d7c6 1375 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1376 * mode.
1377 */
1378 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1379 goto next;
97a89413 1380 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1381next:
97a89413
PZ
1382 cond_resched();
1383 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1384
1385 return addr;
1da177e4
LT
1386}
1387
51c6f666 1388static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1389 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1390 unsigned long addr, unsigned long end,
97a89413 1391 struct zap_details *details)
1da177e4
LT
1392{
1393 pud_t *pud;
1394 unsigned long next;
1395
c2febafc 1396 pud = pud_offset(p4d, addr);
1da177e4
LT
1397 do {
1398 next = pud_addr_end(addr, end);
a00cc7d9
MW
1399 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1400 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1401 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1402 split_huge_pud(vma, pud, addr);
1403 } else if (zap_huge_pud(tlb, vma, pud, addr))
1404 goto next;
1405 /* fall through */
1406 }
97a89413 1407 if (pud_none_or_clear_bad(pud))
1da177e4 1408 continue;
97a89413 1409 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1410next:
1411 cond_resched();
97a89413 1412 } while (pud++, addr = next, addr != end);
51c6f666
RH
1413
1414 return addr;
1da177e4
LT
1415}
1416
c2febafc
KS
1417static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1418 struct vm_area_struct *vma, pgd_t *pgd,
1419 unsigned long addr, unsigned long end,
1420 struct zap_details *details)
1421{
1422 p4d_t *p4d;
1423 unsigned long next;
1424
1425 p4d = p4d_offset(pgd, addr);
1426 do {
1427 next = p4d_addr_end(addr, end);
1428 if (p4d_none_or_clear_bad(p4d))
1429 continue;
1430 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1431 } while (p4d++, addr = next, addr != end);
1432
1433 return addr;
1434}
1435
aac45363 1436void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1437 struct vm_area_struct *vma,
1438 unsigned long addr, unsigned long end,
1439 struct zap_details *details)
1da177e4
LT
1440{
1441 pgd_t *pgd;
1442 unsigned long next;
1443
1da177e4
LT
1444 BUG_ON(addr >= end);
1445 tlb_start_vma(tlb, vma);
1446 pgd = pgd_offset(vma->vm_mm, addr);
1447 do {
1448 next = pgd_addr_end(addr, end);
97a89413 1449 if (pgd_none_or_clear_bad(pgd))
1da177e4 1450 continue;
c2febafc 1451 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1452 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1453 tlb_end_vma(tlb, vma);
1454}
51c6f666 1455
f5cc4eef
AV
1456
1457static void unmap_single_vma(struct mmu_gather *tlb,
1458 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1459 unsigned long end_addr,
f5cc4eef
AV
1460 struct zap_details *details)
1461{
1462 unsigned long start = max(vma->vm_start, start_addr);
1463 unsigned long end;
1464
1465 if (start >= vma->vm_end)
1466 return;
1467 end = min(vma->vm_end, end_addr);
1468 if (end <= vma->vm_start)
1469 return;
1470
cbc91f71
SD
1471 if (vma->vm_file)
1472 uprobe_munmap(vma, start, end);
1473
b3b9c293 1474 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1475 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1476
1477 if (start != end) {
1478 if (unlikely(is_vm_hugetlb_page(vma))) {
1479 /*
1480 * It is undesirable to test vma->vm_file as it
1481 * should be non-null for valid hugetlb area.
1482 * However, vm_file will be NULL in the error
7aa6b4ad 1483 * cleanup path of mmap_region. When
f5cc4eef 1484 * hugetlbfs ->mmap method fails,
7aa6b4ad 1485 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1486 * before calling this function to clean up.
1487 * Since no pte has actually been setup, it is
1488 * safe to do nothing in this case.
1489 */
24669e58 1490 if (vma->vm_file) {
83cde9e8 1491 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1492 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1493 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1494 }
f5cc4eef
AV
1495 } else
1496 unmap_page_range(tlb, vma, start, end, details);
1497 }
1da177e4
LT
1498}
1499
1da177e4
LT
1500/**
1501 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1502 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1503 * @vma: the starting vma
1504 * @start_addr: virtual address at which to start unmapping
1505 * @end_addr: virtual address at which to end unmapping
1da177e4 1506 *
508034a3 1507 * Unmap all pages in the vma list.
1da177e4 1508 *
1da177e4
LT
1509 * Only addresses between `start' and `end' will be unmapped.
1510 *
1511 * The VMA list must be sorted in ascending virtual address order.
1512 *
1513 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1514 * range after unmap_vmas() returns. So the only responsibility here is to
1515 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1516 * drops the lock and schedules.
1517 */
6e8bb019 1518void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1519 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1520 unsigned long end_addr)
1da177e4 1521{
ac46d4f3 1522 struct mmu_notifier_range range;
1da177e4 1523
6f4f13e8
JG
1524 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1525 start_addr, end_addr);
ac46d4f3 1526 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1527 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1528 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1529 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1530}
1531
1532/**
1533 * zap_page_range - remove user pages in a given range
1534 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1535 * @start: starting address of pages to zap
1da177e4 1536 * @size: number of bytes to zap
f5cc4eef
AV
1537 *
1538 * Caller must protect the VMA list
1da177e4 1539 */
7e027b14 1540void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1541 unsigned long size)
1da177e4 1542{
ac46d4f3 1543 struct mmu_notifier_range range;
d16dfc55 1544 struct mmu_gather tlb;
1da177e4 1545
1da177e4 1546 lru_add_drain();
7269f999 1547 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1548 start, start + size);
a72afd87 1549 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1550 update_hiwater_rss(vma->vm_mm);
1551 mmu_notifier_invalidate_range_start(&range);
1552 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1553 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1554 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1555 tlb_finish_mmu(&tlb);
1da177e4
LT
1556}
1557
f5cc4eef
AV
1558/**
1559 * zap_page_range_single - remove user pages in a given range
1560 * @vma: vm_area_struct holding the applicable pages
1561 * @address: starting address of pages to zap
1562 * @size: number of bytes to zap
8a5f14a2 1563 * @details: details of shared cache invalidation
f5cc4eef
AV
1564 *
1565 * The range must fit into one VMA.
1da177e4 1566 */
f5cc4eef 1567static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1568 unsigned long size, struct zap_details *details)
1569{
ac46d4f3 1570 struct mmu_notifier_range range;
d16dfc55 1571 struct mmu_gather tlb;
1da177e4 1572
1da177e4 1573 lru_add_drain();
7269f999 1574 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1575 address, address + size);
a72afd87 1576 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1577 update_hiwater_rss(vma->vm_mm);
1578 mmu_notifier_invalidate_range_start(&range);
1579 unmap_single_vma(&tlb, vma, address, range.end, details);
1580 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1581 tlb_finish_mmu(&tlb);
1da177e4
LT
1582}
1583
c627f9cc
JS
1584/**
1585 * zap_vma_ptes - remove ptes mapping the vma
1586 * @vma: vm_area_struct holding ptes to be zapped
1587 * @address: starting address of pages to zap
1588 * @size: number of bytes to zap
1589 *
1590 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1591 *
1592 * The entire address range must be fully contained within the vma.
1593 *
c627f9cc 1594 */
27d036e3 1595void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1596 unsigned long size)
1597{
1598 if (address < vma->vm_start || address + size > vma->vm_end ||
1599 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1600 return;
1601
f5cc4eef 1602 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1603}
1604EXPORT_SYMBOL_GPL(zap_vma_ptes);
1605
8cd3984d 1606static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1607{
c2febafc
KS
1608 pgd_t *pgd;
1609 p4d_t *p4d;
1610 pud_t *pud;
1611 pmd_t *pmd;
1612
1613 pgd = pgd_offset(mm, addr);
1614 p4d = p4d_alloc(mm, pgd, addr);
1615 if (!p4d)
1616 return NULL;
1617 pud = pud_alloc(mm, p4d, addr);
1618 if (!pud)
1619 return NULL;
1620 pmd = pmd_alloc(mm, pud, addr);
1621 if (!pmd)
1622 return NULL;
1623
1624 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1625 return pmd;
1626}
1627
1628pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1629 spinlock_t **ptl)
1630{
1631 pmd_t *pmd = walk_to_pmd(mm, addr);
1632
1633 if (!pmd)
1634 return NULL;
c2febafc 1635 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1636}
1637
8efd6f5b
AR
1638static int validate_page_before_insert(struct page *page)
1639{
1640 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1641 return -EINVAL;
1642 flush_dcache_page(page);
1643 return 0;
1644}
1645
1646static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1647 unsigned long addr, struct page *page, pgprot_t prot)
1648{
1649 if (!pte_none(*pte))
1650 return -EBUSY;
1651 /* Ok, finally just insert the thing.. */
1652 get_page(page);
1653 inc_mm_counter_fast(mm, mm_counter_file(page));
1654 page_add_file_rmap(page, false);
1655 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1656 return 0;
1657}
1658
238f58d8
LT
1659/*
1660 * This is the old fallback for page remapping.
1661 *
1662 * For historical reasons, it only allows reserved pages. Only
1663 * old drivers should use this, and they needed to mark their
1664 * pages reserved for the old functions anyway.
1665 */
423bad60
NP
1666static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1667 struct page *page, pgprot_t prot)
238f58d8 1668{
423bad60 1669 struct mm_struct *mm = vma->vm_mm;
238f58d8 1670 int retval;
c9cfcddf 1671 pte_t *pte;
8a9f3ccd
BS
1672 spinlock_t *ptl;
1673
8efd6f5b
AR
1674 retval = validate_page_before_insert(page);
1675 if (retval)
5b4e655e 1676 goto out;
238f58d8 1677 retval = -ENOMEM;
c9cfcddf 1678 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1679 if (!pte)
5b4e655e 1680 goto out;
8efd6f5b 1681 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1682 pte_unmap_unlock(pte, ptl);
1683out:
1684 return retval;
1685}
1686
8cd3984d 1687#ifdef pte_index
7f70c2a6 1688static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1689 unsigned long addr, struct page *page, pgprot_t prot)
1690{
1691 int err;
1692
1693 if (!page_count(page))
1694 return -EINVAL;
1695 err = validate_page_before_insert(page);
7f70c2a6
AR
1696 if (err)
1697 return err;
1698 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1699}
1700
1701/* insert_pages() amortizes the cost of spinlock operations
1702 * when inserting pages in a loop. Arch *must* define pte_index.
1703 */
1704static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1705 struct page **pages, unsigned long *num, pgprot_t prot)
1706{
1707 pmd_t *pmd = NULL;
7f70c2a6
AR
1708 pte_t *start_pte, *pte;
1709 spinlock_t *pte_lock;
8cd3984d
AR
1710 struct mm_struct *const mm = vma->vm_mm;
1711 unsigned long curr_page_idx = 0;
1712 unsigned long remaining_pages_total = *num;
1713 unsigned long pages_to_write_in_pmd;
1714 int ret;
1715more:
1716 ret = -EFAULT;
1717 pmd = walk_to_pmd(mm, addr);
1718 if (!pmd)
1719 goto out;
1720
1721 pages_to_write_in_pmd = min_t(unsigned long,
1722 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1723
1724 /* Allocate the PTE if necessary; takes PMD lock once only. */
1725 ret = -ENOMEM;
1726 if (pte_alloc(mm, pmd))
1727 goto out;
8cd3984d
AR
1728
1729 while (pages_to_write_in_pmd) {
1730 int pte_idx = 0;
1731 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1732
7f70c2a6
AR
1733 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1734 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1735 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1736 addr, pages[curr_page_idx], prot);
1737 if (unlikely(err)) {
7f70c2a6 1738 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1739 ret = err;
1740 remaining_pages_total -= pte_idx;
1741 goto out;
1742 }
1743 addr += PAGE_SIZE;
1744 ++curr_page_idx;
1745 }
7f70c2a6 1746 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1747 pages_to_write_in_pmd -= batch_size;
1748 remaining_pages_total -= batch_size;
1749 }
1750 if (remaining_pages_total)
1751 goto more;
1752 ret = 0;
1753out:
1754 *num = remaining_pages_total;
1755 return ret;
1756}
1757#endif /* ifdef pte_index */
1758
1759/**
1760 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1761 * @vma: user vma to map to
1762 * @addr: target start user address of these pages
1763 * @pages: source kernel pages
1764 * @num: in: number of pages to map. out: number of pages that were *not*
1765 * mapped. (0 means all pages were successfully mapped).
1766 *
1767 * Preferred over vm_insert_page() when inserting multiple pages.
1768 *
1769 * In case of error, we may have mapped a subset of the provided
1770 * pages. It is the caller's responsibility to account for this case.
1771 *
1772 * The same restrictions apply as in vm_insert_page().
1773 */
1774int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1775 struct page **pages, unsigned long *num)
1776{
1777#ifdef pte_index
1778 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1779
1780 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1781 return -EFAULT;
1782 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1783 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1784 BUG_ON(vma->vm_flags & VM_PFNMAP);
1785 vma->vm_flags |= VM_MIXEDMAP;
1786 }
1787 /* Defer page refcount checking till we're about to map that page. */
1788 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1789#else
1790 unsigned long idx = 0, pgcount = *num;
45779b03 1791 int err = -EINVAL;
8cd3984d
AR
1792
1793 for (; idx < pgcount; ++idx) {
1794 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1795 if (err)
1796 break;
1797 }
1798 *num = pgcount - idx;
1799 return err;
1800#endif /* ifdef pte_index */
1801}
1802EXPORT_SYMBOL(vm_insert_pages);
1803
bfa5bf6d
REB
1804/**
1805 * vm_insert_page - insert single page into user vma
1806 * @vma: user vma to map to
1807 * @addr: target user address of this page
1808 * @page: source kernel page
1809 *
a145dd41
LT
1810 * This allows drivers to insert individual pages they've allocated
1811 * into a user vma.
1812 *
1813 * The page has to be a nice clean _individual_ kernel allocation.
1814 * If you allocate a compound page, you need to have marked it as
1815 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1816 * (see split_page()).
a145dd41
LT
1817 *
1818 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1819 * took an arbitrary page protection parameter. This doesn't allow
1820 * that. Your vma protection will have to be set up correctly, which
1821 * means that if you want a shared writable mapping, you'd better
1822 * ask for a shared writable mapping!
1823 *
1824 * The page does not need to be reserved.
4b6e1e37
KK
1825 *
1826 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1827 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1828 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1829 * function from other places, for example from page-fault handler.
a862f68a
MR
1830 *
1831 * Return: %0 on success, negative error code otherwise.
a145dd41 1832 */
423bad60
NP
1833int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1834 struct page *page)
a145dd41
LT
1835{
1836 if (addr < vma->vm_start || addr >= vma->vm_end)
1837 return -EFAULT;
1838 if (!page_count(page))
1839 return -EINVAL;
4b6e1e37 1840 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1841 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1842 BUG_ON(vma->vm_flags & VM_PFNMAP);
1843 vma->vm_flags |= VM_MIXEDMAP;
1844 }
423bad60 1845 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1846}
e3c3374f 1847EXPORT_SYMBOL(vm_insert_page);
a145dd41 1848
a667d745
SJ
1849/*
1850 * __vm_map_pages - maps range of kernel pages into user vma
1851 * @vma: user vma to map to
1852 * @pages: pointer to array of source kernel pages
1853 * @num: number of pages in page array
1854 * @offset: user's requested vm_pgoff
1855 *
1856 * This allows drivers to map range of kernel pages into a user vma.
1857 *
1858 * Return: 0 on success and error code otherwise.
1859 */
1860static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1861 unsigned long num, unsigned long offset)
1862{
1863 unsigned long count = vma_pages(vma);
1864 unsigned long uaddr = vma->vm_start;
1865 int ret, i;
1866
1867 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1868 if (offset >= num)
a667d745
SJ
1869 return -ENXIO;
1870
1871 /* Fail if the user requested size exceeds available object size */
1872 if (count > num - offset)
1873 return -ENXIO;
1874
1875 for (i = 0; i < count; i++) {
1876 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1877 if (ret < 0)
1878 return ret;
1879 uaddr += PAGE_SIZE;
1880 }
1881
1882 return 0;
1883}
1884
1885/**
1886 * vm_map_pages - maps range of kernel pages starts with non zero offset
1887 * @vma: user vma to map to
1888 * @pages: pointer to array of source kernel pages
1889 * @num: number of pages in page array
1890 *
1891 * Maps an object consisting of @num pages, catering for the user's
1892 * requested vm_pgoff
1893 *
1894 * If we fail to insert any page into the vma, the function will return
1895 * immediately leaving any previously inserted pages present. Callers
1896 * from the mmap handler may immediately return the error as their caller
1897 * will destroy the vma, removing any successfully inserted pages. Other
1898 * callers should make their own arrangements for calling unmap_region().
1899 *
1900 * Context: Process context. Called by mmap handlers.
1901 * Return: 0 on success and error code otherwise.
1902 */
1903int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1904 unsigned long num)
1905{
1906 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1907}
1908EXPORT_SYMBOL(vm_map_pages);
1909
1910/**
1911 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1912 * @vma: user vma to map to
1913 * @pages: pointer to array of source kernel pages
1914 * @num: number of pages in page array
1915 *
1916 * Similar to vm_map_pages(), except that it explicitly sets the offset
1917 * to 0. This function is intended for the drivers that did not consider
1918 * vm_pgoff.
1919 *
1920 * Context: Process context. Called by mmap handlers.
1921 * Return: 0 on success and error code otherwise.
1922 */
1923int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1924 unsigned long num)
1925{
1926 return __vm_map_pages(vma, pages, num, 0);
1927}
1928EXPORT_SYMBOL(vm_map_pages_zero);
1929
9b5a8e00 1930static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1931 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1932{
1933 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1934 pte_t *pte, entry;
1935 spinlock_t *ptl;
1936
423bad60
NP
1937 pte = get_locked_pte(mm, addr, &ptl);
1938 if (!pte)
9b5a8e00 1939 return VM_FAULT_OOM;
b2770da6
RZ
1940 if (!pte_none(*pte)) {
1941 if (mkwrite) {
1942 /*
1943 * For read faults on private mappings the PFN passed
1944 * in may not match the PFN we have mapped if the
1945 * mapped PFN is a writeable COW page. In the mkwrite
1946 * case we are creating a writable PTE for a shared
f2c57d91
JK
1947 * mapping and we expect the PFNs to match. If they
1948 * don't match, we are likely racing with block
1949 * allocation and mapping invalidation so just skip the
1950 * update.
b2770da6 1951 */
f2c57d91
JK
1952 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1953 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1954 goto out_unlock;
f2c57d91 1955 }
cae85cb8
JK
1956 entry = pte_mkyoung(*pte);
1957 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1958 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1959 update_mmu_cache(vma, addr, pte);
1960 }
1961 goto out_unlock;
b2770da6 1962 }
423bad60
NP
1963
1964 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1965 if (pfn_t_devmap(pfn))
1966 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1967 else
1968 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1969
b2770da6
RZ
1970 if (mkwrite) {
1971 entry = pte_mkyoung(entry);
1972 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1973 }
1974
423bad60 1975 set_pte_at(mm, addr, pte, entry);
4b3073e1 1976 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1977
423bad60
NP
1978out_unlock:
1979 pte_unmap_unlock(pte, ptl);
9b5a8e00 1980 return VM_FAULT_NOPAGE;
423bad60
NP
1981}
1982
f5e6d1d5
MW
1983/**
1984 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1985 * @vma: user vma to map to
1986 * @addr: target user address of this page
1987 * @pfn: source kernel pfn
1988 * @pgprot: pgprot flags for the inserted page
1989 *
a1a0aea5 1990 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
1991 * to override pgprot on a per-page basis.
1992 *
1993 * This only makes sense for IO mappings, and it makes no sense for
1994 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1995 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1996 * impractical.
1997 *
574c5b3d
TH
1998 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1999 * a value of @pgprot different from that of @vma->vm_page_prot.
2000 *
ae2b01f3 2001 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2002 * Return: vm_fault_t value.
2003 */
2004vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2005 unsigned long pfn, pgprot_t pgprot)
2006{
6d958546
MW
2007 /*
2008 * Technically, architectures with pte_special can avoid all these
2009 * restrictions (same for remap_pfn_range). However we would like
2010 * consistency in testing and feature parity among all, so we should
2011 * try to keep these invariants in place for everybody.
2012 */
2013 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2014 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2015 (VM_PFNMAP|VM_MIXEDMAP));
2016 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2017 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2018
2019 if (addr < vma->vm_start || addr >= vma->vm_end)
2020 return VM_FAULT_SIGBUS;
2021
2022 if (!pfn_modify_allowed(pfn, pgprot))
2023 return VM_FAULT_SIGBUS;
2024
2025 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2026
9b5a8e00 2027 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2028 false);
f5e6d1d5
MW
2029}
2030EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2031
ae2b01f3
MW
2032/**
2033 * vmf_insert_pfn - insert single pfn into user vma
2034 * @vma: user vma to map to
2035 * @addr: target user address of this page
2036 * @pfn: source kernel pfn
2037 *
2038 * Similar to vm_insert_page, this allows drivers to insert individual pages
2039 * they've allocated into a user vma. Same comments apply.
2040 *
2041 * This function should only be called from a vm_ops->fault handler, and
2042 * in that case the handler should return the result of this function.
2043 *
2044 * vma cannot be a COW mapping.
2045 *
2046 * As this is called only for pages that do not currently exist, we
2047 * do not need to flush old virtual caches or the TLB.
2048 *
2049 * Context: Process context. May allocate using %GFP_KERNEL.
2050 * Return: vm_fault_t value.
2051 */
2052vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2053 unsigned long pfn)
2054{
2055 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2056}
2057EXPORT_SYMBOL(vmf_insert_pfn);
2058
785a3fab
DW
2059static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2060{
2061 /* these checks mirror the abort conditions in vm_normal_page */
2062 if (vma->vm_flags & VM_MIXEDMAP)
2063 return true;
2064 if (pfn_t_devmap(pfn))
2065 return true;
2066 if (pfn_t_special(pfn))
2067 return true;
2068 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2069 return true;
2070 return false;
2071}
2072
79f3aa5b 2073static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2074 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2075 bool mkwrite)
423bad60 2076{
79f3aa5b 2077 int err;
87744ab3 2078
785a3fab 2079 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2080
423bad60 2081 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2082 return VM_FAULT_SIGBUS;
308a047c
BP
2083
2084 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2085
42e4089c 2086 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2087 return VM_FAULT_SIGBUS;
42e4089c 2088
423bad60
NP
2089 /*
2090 * If we don't have pte special, then we have to use the pfn_valid()
2091 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2092 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2093 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2094 * without pte special, it would there be refcounted as a normal page.
423bad60 2095 */
00b3a331
LD
2096 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2097 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2098 struct page *page;
2099
03fc2da6
DW
2100 /*
2101 * At this point we are committed to insert_page()
2102 * regardless of whether the caller specified flags that
2103 * result in pfn_t_has_page() == false.
2104 */
2105 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2106 err = insert_page(vma, addr, page, pgprot);
2107 } else {
9b5a8e00 2108 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2109 }
b2770da6 2110
5d747637
MW
2111 if (err == -ENOMEM)
2112 return VM_FAULT_OOM;
2113 if (err < 0 && err != -EBUSY)
2114 return VM_FAULT_SIGBUS;
2115
2116 return VM_FAULT_NOPAGE;
e0dc0d8f 2117}
79f3aa5b 2118
574c5b3d
TH
2119/**
2120 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2121 * @vma: user vma to map to
2122 * @addr: target user address of this page
2123 * @pfn: source kernel pfn
2124 * @pgprot: pgprot flags for the inserted page
2125 *
a1a0aea5 2126 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2127 * to override pgprot on a per-page basis.
2128 *
2129 * Typically this function should be used by drivers to set caching- and
2130 * encryption bits different than those of @vma->vm_page_prot, because
2131 * the caching- or encryption mode may not be known at mmap() time.
2132 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2133 * to set caching and encryption bits for those vmas (except for COW pages).
2134 * This is ensured by core vm only modifying these page table entries using
2135 * functions that don't touch caching- or encryption bits, using pte_modify()
2136 * if needed. (See for example mprotect()).
2137 * Also when new page-table entries are created, this is only done using the
2138 * fault() callback, and never using the value of vma->vm_page_prot,
2139 * except for page-table entries that point to anonymous pages as the result
2140 * of COW.
2141 *
2142 * Context: Process context. May allocate using %GFP_KERNEL.
2143 * Return: vm_fault_t value.
2144 */
2145vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2146 pfn_t pfn, pgprot_t pgprot)
2147{
2148 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2149}
5379e4dd 2150EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2151
79f3aa5b
MW
2152vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2153 pfn_t pfn)
2154{
574c5b3d 2155 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2156}
5d747637 2157EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2158
ab77dab4
SJ
2159/*
2160 * If the insertion of PTE failed because someone else already added a
2161 * different entry in the mean time, we treat that as success as we assume
2162 * the same entry was actually inserted.
2163 */
ab77dab4
SJ
2164vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2165 unsigned long addr, pfn_t pfn)
b2770da6 2166{
574c5b3d 2167 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2168}
ab77dab4 2169EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2170
1da177e4
LT
2171/*
2172 * maps a range of physical memory into the requested pages. the old
2173 * mappings are removed. any references to nonexistent pages results
2174 * in null mappings (currently treated as "copy-on-access")
2175 */
2176static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2177 unsigned long addr, unsigned long end,
2178 unsigned long pfn, pgprot_t prot)
2179{
90a3e375 2180 pte_t *pte, *mapped_pte;
c74df32c 2181 spinlock_t *ptl;
42e4089c 2182 int err = 0;
1da177e4 2183
90a3e375 2184 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2185 if (!pte)
2186 return -ENOMEM;
6606c3e0 2187 arch_enter_lazy_mmu_mode();
1da177e4
LT
2188 do {
2189 BUG_ON(!pte_none(*pte));
42e4089c
AK
2190 if (!pfn_modify_allowed(pfn, prot)) {
2191 err = -EACCES;
2192 break;
2193 }
7e675137 2194 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2195 pfn++;
2196 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2197 arch_leave_lazy_mmu_mode();
90a3e375 2198 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2199 return err;
1da177e4
LT
2200}
2201
2202static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2203 unsigned long addr, unsigned long end,
2204 unsigned long pfn, pgprot_t prot)
2205{
2206 pmd_t *pmd;
2207 unsigned long next;
42e4089c 2208 int err;
1da177e4
LT
2209
2210 pfn -= addr >> PAGE_SHIFT;
2211 pmd = pmd_alloc(mm, pud, addr);
2212 if (!pmd)
2213 return -ENOMEM;
f66055ab 2214 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2215 do {
2216 next = pmd_addr_end(addr, end);
42e4089c
AK
2217 err = remap_pte_range(mm, pmd, addr, next,
2218 pfn + (addr >> PAGE_SHIFT), prot);
2219 if (err)
2220 return err;
1da177e4
LT
2221 } while (pmd++, addr = next, addr != end);
2222 return 0;
2223}
2224
c2febafc 2225static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2226 unsigned long addr, unsigned long end,
2227 unsigned long pfn, pgprot_t prot)
2228{
2229 pud_t *pud;
2230 unsigned long next;
42e4089c 2231 int err;
1da177e4
LT
2232
2233 pfn -= addr >> PAGE_SHIFT;
c2febafc 2234 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2235 if (!pud)
2236 return -ENOMEM;
2237 do {
2238 next = pud_addr_end(addr, end);
42e4089c
AK
2239 err = remap_pmd_range(mm, pud, addr, next,
2240 pfn + (addr >> PAGE_SHIFT), prot);
2241 if (err)
2242 return err;
1da177e4
LT
2243 } while (pud++, addr = next, addr != end);
2244 return 0;
2245}
2246
c2febafc
KS
2247static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2248 unsigned long addr, unsigned long end,
2249 unsigned long pfn, pgprot_t prot)
2250{
2251 p4d_t *p4d;
2252 unsigned long next;
42e4089c 2253 int err;
c2febafc
KS
2254
2255 pfn -= addr >> PAGE_SHIFT;
2256 p4d = p4d_alloc(mm, pgd, addr);
2257 if (!p4d)
2258 return -ENOMEM;
2259 do {
2260 next = p4d_addr_end(addr, end);
42e4089c
AK
2261 err = remap_pud_range(mm, p4d, addr, next,
2262 pfn + (addr >> PAGE_SHIFT), prot);
2263 if (err)
2264 return err;
c2febafc
KS
2265 } while (p4d++, addr = next, addr != end);
2266 return 0;
2267}
2268
bfa5bf6d
REB
2269/**
2270 * remap_pfn_range - remap kernel memory to userspace
2271 * @vma: user vma to map to
0c4123e3 2272 * @addr: target page aligned user address to start at
86a76331 2273 * @pfn: page frame number of kernel physical memory address
552657b7 2274 * @size: size of mapping area
bfa5bf6d
REB
2275 * @prot: page protection flags for this mapping
2276 *
a862f68a
MR
2277 * Note: this is only safe if the mm semaphore is held when called.
2278 *
2279 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 2280 */
1da177e4
LT
2281int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2282 unsigned long pfn, unsigned long size, pgprot_t prot)
2283{
2284 pgd_t *pgd;
2285 unsigned long next;
2d15cab8 2286 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2287 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2288 unsigned long remap_pfn = pfn;
1da177e4
LT
2289 int err;
2290
0c4123e3
AZ
2291 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2292 return -EINVAL;
2293
1da177e4
LT
2294 /*
2295 * Physically remapped pages are special. Tell the
2296 * rest of the world about it:
2297 * VM_IO tells people not to look at these pages
2298 * (accesses can have side effects).
6aab341e
LT
2299 * VM_PFNMAP tells the core MM that the base pages are just
2300 * raw PFN mappings, and do not have a "struct page" associated
2301 * with them.
314e51b9
KK
2302 * VM_DONTEXPAND
2303 * Disable vma merging and expanding with mremap().
2304 * VM_DONTDUMP
2305 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2306 *
2307 * There's a horrible special case to handle copy-on-write
2308 * behaviour that some programs depend on. We mark the "original"
2309 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2310 * See vm_normal_page() for details.
1da177e4 2311 */
b3b9c293
KK
2312 if (is_cow_mapping(vma->vm_flags)) {
2313 if (addr != vma->vm_start || end != vma->vm_end)
2314 return -EINVAL;
fb155c16 2315 vma->vm_pgoff = pfn;
b3b9c293
KK
2316 }
2317
d5957d2f 2318 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2319 if (err)
3c8bb73a 2320 return -EINVAL;
fb155c16 2321
314e51b9 2322 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2323
2324 BUG_ON(addr >= end);
2325 pfn -= addr >> PAGE_SHIFT;
2326 pgd = pgd_offset(mm, addr);
2327 flush_cache_range(vma, addr, end);
1da177e4
LT
2328 do {
2329 next = pgd_addr_end(addr, end);
c2febafc 2330 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2331 pfn + (addr >> PAGE_SHIFT), prot);
2332 if (err)
2333 break;
2334 } while (pgd++, addr = next, addr != end);
2ab64037 2335
2336 if (err)
d5957d2f 2337 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2338
1da177e4
LT
2339 return err;
2340}
2341EXPORT_SYMBOL(remap_pfn_range);
2342
b4cbb197
LT
2343/**
2344 * vm_iomap_memory - remap memory to userspace
2345 * @vma: user vma to map to
abd69b9e 2346 * @start: start of the physical memory to be mapped
b4cbb197
LT
2347 * @len: size of area
2348 *
2349 * This is a simplified io_remap_pfn_range() for common driver use. The
2350 * driver just needs to give us the physical memory range to be mapped,
2351 * we'll figure out the rest from the vma information.
2352 *
2353 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2354 * whatever write-combining details or similar.
a862f68a
MR
2355 *
2356 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2357 */
2358int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2359{
2360 unsigned long vm_len, pfn, pages;
2361
2362 /* Check that the physical memory area passed in looks valid */
2363 if (start + len < start)
2364 return -EINVAL;
2365 /*
2366 * You *really* shouldn't map things that aren't page-aligned,
2367 * but we've historically allowed it because IO memory might
2368 * just have smaller alignment.
2369 */
2370 len += start & ~PAGE_MASK;
2371 pfn = start >> PAGE_SHIFT;
2372 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2373 if (pfn + pages < pfn)
2374 return -EINVAL;
2375
2376 /* We start the mapping 'vm_pgoff' pages into the area */
2377 if (vma->vm_pgoff > pages)
2378 return -EINVAL;
2379 pfn += vma->vm_pgoff;
2380 pages -= vma->vm_pgoff;
2381
2382 /* Can we fit all of the mapping? */
2383 vm_len = vma->vm_end - vma->vm_start;
2384 if (vm_len >> PAGE_SHIFT > pages)
2385 return -EINVAL;
2386
2387 /* Ok, let it rip */
2388 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2389}
2390EXPORT_SYMBOL(vm_iomap_memory);
2391
aee16b3c
JF
2392static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2393 unsigned long addr, unsigned long end,
e80d3909
JR
2394 pte_fn_t fn, void *data, bool create,
2395 pgtbl_mod_mask *mask)
aee16b3c 2396{
8abb50c7 2397 pte_t *pte, *mapped_pte;
be1db475 2398 int err = 0;
3f649ab7 2399 spinlock_t *ptl;
aee16b3c 2400
be1db475 2401 if (create) {
8abb50c7 2402 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2403 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2404 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2405 if (!pte)
2406 return -ENOMEM;
2407 } else {
8abb50c7 2408 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2409 pte_offset_kernel(pmd, addr) :
2410 pte_offset_map_lock(mm, pmd, addr, &ptl);
2411 }
aee16b3c
JF
2412
2413 BUG_ON(pmd_huge(*pmd));
2414
38e0edb1
JF
2415 arch_enter_lazy_mmu_mode();
2416
eeb4a05f
CH
2417 if (fn) {
2418 do {
2419 if (create || !pte_none(*pte)) {
2420 err = fn(pte++, addr, data);
2421 if (err)
2422 break;
2423 }
2424 } while (addr += PAGE_SIZE, addr != end);
2425 }
e80d3909 2426 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2427
38e0edb1
JF
2428 arch_leave_lazy_mmu_mode();
2429
aee16b3c 2430 if (mm != &init_mm)
8abb50c7 2431 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2432 return err;
2433}
2434
2435static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2436 unsigned long addr, unsigned long end,
e80d3909
JR
2437 pte_fn_t fn, void *data, bool create,
2438 pgtbl_mod_mask *mask)
aee16b3c
JF
2439{
2440 pmd_t *pmd;
2441 unsigned long next;
be1db475 2442 int err = 0;
aee16b3c 2443
ceb86879
AK
2444 BUG_ON(pud_huge(*pud));
2445
be1db475 2446 if (create) {
e80d3909 2447 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2448 if (!pmd)
2449 return -ENOMEM;
2450 } else {
2451 pmd = pmd_offset(pud, addr);
2452 }
aee16b3c
JF
2453 do {
2454 next = pmd_addr_end(addr, end);
be1db475
DA
2455 if (create || !pmd_none_or_clear_bad(pmd)) {
2456 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
e80d3909 2457 create, mask);
be1db475
DA
2458 if (err)
2459 break;
2460 }
aee16b3c
JF
2461 } while (pmd++, addr = next, addr != end);
2462 return err;
2463}
2464
c2febafc 2465static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2466 unsigned long addr, unsigned long end,
e80d3909
JR
2467 pte_fn_t fn, void *data, bool create,
2468 pgtbl_mod_mask *mask)
aee16b3c
JF
2469{
2470 pud_t *pud;
2471 unsigned long next;
be1db475 2472 int err = 0;
aee16b3c 2473
be1db475 2474 if (create) {
e80d3909 2475 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2476 if (!pud)
2477 return -ENOMEM;
2478 } else {
2479 pud = pud_offset(p4d, addr);
2480 }
aee16b3c
JF
2481 do {
2482 next = pud_addr_end(addr, end);
be1db475
DA
2483 if (create || !pud_none_or_clear_bad(pud)) {
2484 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
e80d3909 2485 create, mask);
be1db475
DA
2486 if (err)
2487 break;
2488 }
aee16b3c
JF
2489 } while (pud++, addr = next, addr != end);
2490 return err;
2491}
2492
c2febafc
KS
2493static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2494 unsigned long addr, unsigned long end,
e80d3909
JR
2495 pte_fn_t fn, void *data, bool create,
2496 pgtbl_mod_mask *mask)
c2febafc
KS
2497{
2498 p4d_t *p4d;
2499 unsigned long next;
be1db475 2500 int err = 0;
c2febafc 2501
be1db475 2502 if (create) {
e80d3909 2503 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2504 if (!p4d)
2505 return -ENOMEM;
2506 } else {
2507 p4d = p4d_offset(pgd, addr);
2508 }
c2febafc
KS
2509 do {
2510 next = p4d_addr_end(addr, end);
be1db475
DA
2511 if (create || !p4d_none_or_clear_bad(p4d)) {
2512 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
e80d3909 2513 create, mask);
be1db475
DA
2514 if (err)
2515 break;
2516 }
c2febafc
KS
2517 } while (p4d++, addr = next, addr != end);
2518 return err;
2519}
2520
be1db475
DA
2521static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2522 unsigned long size, pte_fn_t fn,
2523 void *data, bool create)
aee16b3c
JF
2524{
2525 pgd_t *pgd;
e80d3909 2526 unsigned long start = addr, next;
57250a5b 2527 unsigned long end = addr + size;
e80d3909 2528 pgtbl_mod_mask mask = 0;
be1db475 2529 int err = 0;
aee16b3c 2530
9cb65bc3
MP
2531 if (WARN_ON(addr >= end))
2532 return -EINVAL;
2533
aee16b3c
JF
2534 pgd = pgd_offset(mm, addr);
2535 do {
2536 next = pgd_addr_end(addr, end);
be1db475
DA
2537 if (!create && pgd_none_or_clear_bad(pgd))
2538 continue;
e80d3909 2539 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
aee16b3c
JF
2540 if (err)
2541 break;
2542 } while (pgd++, addr = next, addr != end);
57250a5b 2543
e80d3909
JR
2544 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2545 arch_sync_kernel_mappings(start, start + size);
2546
aee16b3c
JF
2547 return err;
2548}
be1db475
DA
2549
2550/*
2551 * Scan a region of virtual memory, filling in page tables as necessary
2552 * and calling a provided function on each leaf page table.
2553 */
2554int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2555 unsigned long size, pte_fn_t fn, void *data)
2556{
2557 return __apply_to_page_range(mm, addr, size, fn, data, true);
2558}
aee16b3c
JF
2559EXPORT_SYMBOL_GPL(apply_to_page_range);
2560
be1db475
DA
2561/*
2562 * Scan a region of virtual memory, calling a provided function on
2563 * each leaf page table where it exists.
2564 *
2565 * Unlike apply_to_page_range, this does _not_ fill in page tables
2566 * where they are absent.
2567 */
2568int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2569 unsigned long size, pte_fn_t fn, void *data)
2570{
2571 return __apply_to_page_range(mm, addr, size, fn, data, false);
2572}
2573EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2574
8f4e2101 2575/*
9b4bdd2f
KS
2576 * handle_pte_fault chooses page fault handler according to an entry which was
2577 * read non-atomically. Before making any commitment, on those architectures
2578 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2579 * parts, do_swap_page must check under lock before unmapping the pte and
2580 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2581 * and do_anonymous_page can safely check later on).
8f4e2101 2582 */
4c21e2f2 2583static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2584 pte_t *page_table, pte_t orig_pte)
2585{
2586 int same = 1;
923717cb 2587#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2588 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2589 spinlock_t *ptl = pte_lockptr(mm, pmd);
2590 spin_lock(ptl);
8f4e2101 2591 same = pte_same(*page_table, orig_pte);
4c21e2f2 2592 spin_unlock(ptl);
8f4e2101
HD
2593 }
2594#endif
2595 pte_unmap(page_table);
2596 return same;
2597}
2598
83d116c5
JH
2599static inline bool cow_user_page(struct page *dst, struct page *src,
2600 struct vm_fault *vmf)
6aab341e 2601{
83d116c5
JH
2602 bool ret;
2603 void *kaddr;
2604 void __user *uaddr;
c3e5ea6e 2605 bool locked = false;
83d116c5
JH
2606 struct vm_area_struct *vma = vmf->vma;
2607 struct mm_struct *mm = vma->vm_mm;
2608 unsigned long addr = vmf->address;
2609
83d116c5
JH
2610 if (likely(src)) {
2611 copy_user_highpage(dst, src, addr, vma);
2612 return true;
2613 }
2614
6aab341e
LT
2615 /*
2616 * If the source page was a PFN mapping, we don't have
2617 * a "struct page" for it. We do a best-effort copy by
2618 * just copying from the original user address. If that
2619 * fails, we just zero-fill it. Live with it.
2620 */
83d116c5
JH
2621 kaddr = kmap_atomic(dst);
2622 uaddr = (void __user *)(addr & PAGE_MASK);
2623
2624 /*
2625 * On architectures with software "accessed" bits, we would
2626 * take a double page fault, so mark it accessed here.
2627 */
c3e5ea6e 2628 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2629 pte_t entry;
5d2a2dbb 2630
83d116c5 2631 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2632 locked = true;
83d116c5
JH
2633 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2634 /*
2635 * Other thread has already handled the fault
7df67697 2636 * and update local tlb only
83d116c5 2637 */
7df67697 2638 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2639 ret = false;
2640 goto pte_unlock;
2641 }
2642
2643 entry = pte_mkyoung(vmf->orig_pte);
2644 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2645 update_mmu_cache(vma, addr, vmf->pte);
2646 }
2647
2648 /*
2649 * This really shouldn't fail, because the page is there
2650 * in the page tables. But it might just be unreadable,
2651 * in which case we just give up and fill the result with
2652 * zeroes.
2653 */
2654 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2655 if (locked)
2656 goto warn;
2657
2658 /* Re-validate under PTL if the page is still mapped */
2659 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2660 locked = true;
2661 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2662 /* The PTE changed under us, update local tlb */
2663 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2664 ret = false;
2665 goto pte_unlock;
2666 }
2667
5d2a2dbb 2668 /*
985ba004 2669 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2670 * Try to copy again under PTL.
5d2a2dbb 2671 */
c3e5ea6e
KS
2672 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2673 /*
2674 * Give a warn in case there can be some obscure
2675 * use-case
2676 */
2677warn:
2678 WARN_ON_ONCE(1);
2679 clear_page(kaddr);
2680 }
83d116c5
JH
2681 }
2682
2683 ret = true;
2684
2685pte_unlock:
c3e5ea6e 2686 if (locked)
83d116c5
JH
2687 pte_unmap_unlock(vmf->pte, vmf->ptl);
2688 kunmap_atomic(kaddr);
2689 flush_dcache_page(dst);
2690
2691 return ret;
6aab341e
LT
2692}
2693
c20cd45e
MH
2694static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2695{
2696 struct file *vm_file = vma->vm_file;
2697
2698 if (vm_file)
2699 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2700
2701 /*
2702 * Special mappings (e.g. VDSO) do not have any file so fake
2703 * a default GFP_KERNEL for them.
2704 */
2705 return GFP_KERNEL;
2706}
2707
fb09a464
KS
2708/*
2709 * Notify the address space that the page is about to become writable so that
2710 * it can prohibit this or wait for the page to get into an appropriate state.
2711 *
2712 * We do this without the lock held, so that it can sleep if it needs to.
2713 */
2b740303 2714static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2715{
2b740303 2716 vm_fault_t ret;
38b8cb7f
JK
2717 struct page *page = vmf->page;
2718 unsigned int old_flags = vmf->flags;
fb09a464 2719
38b8cb7f 2720 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2721
dc617f29
DW
2722 if (vmf->vma->vm_file &&
2723 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2724 return VM_FAULT_SIGBUS;
2725
11bac800 2726 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2727 /* Restore original flags so that caller is not surprised */
2728 vmf->flags = old_flags;
fb09a464
KS
2729 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2730 return ret;
2731 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2732 lock_page(page);
2733 if (!page->mapping) {
2734 unlock_page(page);
2735 return 0; /* retry */
2736 }
2737 ret |= VM_FAULT_LOCKED;
2738 } else
2739 VM_BUG_ON_PAGE(!PageLocked(page), page);
2740 return ret;
2741}
2742
97ba0c2b
JK
2743/*
2744 * Handle dirtying of a page in shared file mapping on a write fault.
2745 *
2746 * The function expects the page to be locked and unlocks it.
2747 */
89b15332 2748static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2749{
89b15332 2750 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2751 struct address_space *mapping;
89b15332 2752 struct page *page = vmf->page;
97ba0c2b
JK
2753 bool dirtied;
2754 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2755
2756 dirtied = set_page_dirty(page);
2757 VM_BUG_ON_PAGE(PageAnon(page), page);
2758 /*
2759 * Take a local copy of the address_space - page.mapping may be zeroed
2760 * by truncate after unlock_page(). The address_space itself remains
2761 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2762 * release semantics to prevent the compiler from undoing this copying.
2763 */
2764 mapping = page_rmapping(page);
2765 unlock_page(page);
2766
89b15332
JW
2767 if (!page_mkwrite)
2768 file_update_time(vma->vm_file);
2769
2770 /*
2771 * Throttle page dirtying rate down to writeback speed.
2772 *
2773 * mapping may be NULL here because some device drivers do not
2774 * set page.mapping but still dirty their pages
2775 *
c1e8d7c6 2776 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2777 * is pinning the mapping, as per above.
2778 */
97ba0c2b 2779 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2780 struct file *fpin;
2781
2782 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2783 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2784 if (fpin) {
2785 fput(fpin);
2786 return VM_FAULT_RETRY;
2787 }
97ba0c2b
JK
2788 }
2789
89b15332 2790 return 0;
97ba0c2b
JK
2791}
2792
4e047f89
SR
2793/*
2794 * Handle write page faults for pages that can be reused in the current vma
2795 *
2796 * This can happen either due to the mapping being with the VM_SHARED flag,
2797 * or due to us being the last reference standing to the page. In either
2798 * case, all we need to do here is to mark the page as writable and update
2799 * any related book-keeping.
2800 */
997dd98d 2801static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2802 __releases(vmf->ptl)
4e047f89 2803{
82b0f8c3 2804 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2805 struct page *page = vmf->page;
4e047f89
SR
2806 pte_t entry;
2807 /*
2808 * Clear the pages cpupid information as the existing
2809 * information potentially belongs to a now completely
2810 * unrelated process.
2811 */
2812 if (page)
2813 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2814
2994302b
JK
2815 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2816 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2817 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2818 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2819 update_mmu_cache(vma, vmf->address, vmf->pte);
2820 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2821 count_vm_event(PGREUSE);
4e047f89
SR
2822}
2823
2f38ab2c
SR
2824/*
2825 * Handle the case of a page which we actually need to copy to a new page.
2826 *
c1e8d7c6 2827 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2828 * without the ptl held.
2829 *
2830 * High level logic flow:
2831 *
2832 * - Allocate a page, copy the content of the old page to the new one.
2833 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2834 * - Take the PTL. If the pte changed, bail out and release the allocated page
2835 * - If the pte is still the way we remember it, update the page table and all
2836 * relevant references. This includes dropping the reference the page-table
2837 * held to the old page, as well as updating the rmap.
2838 * - In any case, unlock the PTL and drop the reference we took to the old page.
2839 */
2b740303 2840static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2841{
82b0f8c3 2842 struct vm_area_struct *vma = vmf->vma;
bae473a4 2843 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2844 struct page *old_page = vmf->page;
2f38ab2c 2845 struct page *new_page = NULL;
2f38ab2c
SR
2846 pte_t entry;
2847 int page_copied = 0;
ac46d4f3 2848 struct mmu_notifier_range range;
2f38ab2c
SR
2849
2850 if (unlikely(anon_vma_prepare(vma)))
2851 goto oom;
2852
2994302b 2853 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2854 new_page = alloc_zeroed_user_highpage_movable(vma,
2855 vmf->address);
2f38ab2c
SR
2856 if (!new_page)
2857 goto oom;
2858 } else {
bae473a4 2859 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2860 vmf->address);
2f38ab2c
SR
2861 if (!new_page)
2862 goto oom;
83d116c5
JH
2863
2864 if (!cow_user_page(new_page, old_page, vmf)) {
2865 /*
2866 * COW failed, if the fault was solved by other,
2867 * it's fine. If not, userspace would re-fault on
2868 * the same address and we will handle the fault
2869 * from the second attempt.
2870 */
2871 put_page(new_page);
2872 if (old_page)
2873 put_page(old_page);
2874 return 0;
2875 }
2f38ab2c 2876 }
2f38ab2c 2877
d9eb1ea2 2878 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2879 goto oom_free_new;
9d82c694 2880 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2881
eb3c24f3
MG
2882 __SetPageUptodate(new_page);
2883
7269f999 2884 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2885 vmf->address & PAGE_MASK,
ac46d4f3
JG
2886 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2887 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2888
2889 /*
2890 * Re-check the pte - we dropped the lock
2891 */
82b0f8c3 2892 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2893 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2894 if (old_page) {
2895 if (!PageAnon(old_page)) {
eca56ff9
JM
2896 dec_mm_counter_fast(mm,
2897 mm_counter_file(old_page));
2f38ab2c
SR
2898 inc_mm_counter_fast(mm, MM_ANONPAGES);
2899 }
2900 } else {
2901 inc_mm_counter_fast(mm, MM_ANONPAGES);
2902 }
2994302b 2903 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 2904 entry = mk_pte(new_page, vma->vm_page_prot);
44bf431b 2905 entry = pte_sw_mkyoung(entry);
2f38ab2c 2906 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 2907
2f38ab2c
SR
2908 /*
2909 * Clear the pte entry and flush it first, before updating the
111fe718
NP
2910 * pte with the new entry, to keep TLBs on different CPUs in
2911 * sync. This code used to set the new PTE then flush TLBs, but
2912 * that left a window where the new PTE could be loaded into
2913 * some TLBs while the old PTE remains in others.
2f38ab2c 2914 */
82b0f8c3
JK
2915 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2916 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 2917 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
2918 /*
2919 * We call the notify macro here because, when using secondary
2920 * mmu page tables (such as kvm shadow page tables), we want the
2921 * new page to be mapped directly into the secondary page table.
2922 */
82b0f8c3
JK
2923 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2924 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2925 if (old_page) {
2926 /*
2927 * Only after switching the pte to the new page may
2928 * we remove the mapcount here. Otherwise another
2929 * process may come and find the rmap count decremented
2930 * before the pte is switched to the new page, and
2931 * "reuse" the old page writing into it while our pte
2932 * here still points into it and can be read by other
2933 * threads.
2934 *
2935 * The critical issue is to order this
2936 * page_remove_rmap with the ptp_clear_flush above.
2937 * Those stores are ordered by (if nothing else,)
2938 * the barrier present in the atomic_add_negative
2939 * in page_remove_rmap.
2940 *
2941 * Then the TLB flush in ptep_clear_flush ensures that
2942 * no process can access the old page before the
2943 * decremented mapcount is visible. And the old page
2944 * cannot be reused until after the decremented
2945 * mapcount is visible. So transitively, TLBs to
2946 * old page will be flushed before it can be reused.
2947 */
d281ee61 2948 page_remove_rmap(old_page, false);
2f38ab2c
SR
2949 }
2950
2951 /* Free the old page.. */
2952 new_page = old_page;
2953 page_copied = 1;
2954 } else {
7df67697 2955 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2956 }
2957
2958 if (new_page)
09cbfeaf 2959 put_page(new_page);
2f38ab2c 2960
82b0f8c3 2961 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2962 /*
2963 * No need to double call mmu_notifier->invalidate_range() callback as
2964 * the above ptep_clear_flush_notify() did already call it.
2965 */
ac46d4f3 2966 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2967 if (old_page) {
2968 /*
2969 * Don't let another task, with possibly unlocked vma,
2970 * keep the mlocked page.
2971 */
2972 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2973 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2974 if (PageMlocked(old_page))
2975 munlock_vma_page(old_page);
2f38ab2c
SR
2976 unlock_page(old_page);
2977 }
09cbfeaf 2978 put_page(old_page);
2f38ab2c
SR
2979 }
2980 return page_copied ? VM_FAULT_WRITE : 0;
2981oom_free_new:
09cbfeaf 2982 put_page(new_page);
2f38ab2c
SR
2983oom:
2984 if (old_page)
09cbfeaf 2985 put_page(old_page);
2f38ab2c
SR
2986 return VM_FAULT_OOM;
2987}
2988
66a6197c
JK
2989/**
2990 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2991 * writeable once the page is prepared
2992 *
2993 * @vmf: structure describing the fault
2994 *
2995 * This function handles all that is needed to finish a write page fault in a
2996 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2997 * It handles locking of PTE and modifying it.
66a6197c
JK
2998 *
2999 * The function expects the page to be locked or other protection against
3000 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
3001 *
3002 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3003 * we acquired PTE lock.
66a6197c 3004 */
2b740303 3005vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3006{
3007 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3008 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3009 &vmf->ptl);
3010 /*
3011 * We might have raced with another page fault while we released the
3012 * pte_offset_map_lock.
3013 */
3014 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3015 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3016 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3017 return VM_FAULT_NOPAGE;
66a6197c
JK
3018 }
3019 wp_page_reuse(vmf);
a19e2553 3020 return 0;
66a6197c
JK
3021}
3022
dd906184
BH
3023/*
3024 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3025 * mapping
3026 */
2b740303 3027static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3028{
82b0f8c3 3029 struct vm_area_struct *vma = vmf->vma;
bae473a4 3030
dd906184 3031 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3032 vm_fault_t ret;
dd906184 3033
82b0f8c3 3034 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3035 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3036 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3037 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3038 return ret;
66a6197c 3039 return finish_mkwrite_fault(vmf);
dd906184 3040 }
997dd98d
JK
3041 wp_page_reuse(vmf);
3042 return VM_FAULT_WRITE;
dd906184
BH
3043}
3044
2b740303 3045static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3046 __releases(vmf->ptl)
93e478d4 3047{
82b0f8c3 3048 struct vm_area_struct *vma = vmf->vma;
89b15332 3049 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3050
a41b70d6 3051 get_page(vmf->page);
93e478d4 3052
93e478d4 3053 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3054 vm_fault_t tmp;
93e478d4 3055
82b0f8c3 3056 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3057 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3058 if (unlikely(!tmp || (tmp &
3059 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3060 put_page(vmf->page);
93e478d4
SR
3061 return tmp;
3062 }
66a6197c 3063 tmp = finish_mkwrite_fault(vmf);
a19e2553 3064 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3065 unlock_page(vmf->page);
a41b70d6 3066 put_page(vmf->page);
66a6197c 3067 return tmp;
93e478d4 3068 }
66a6197c
JK
3069 } else {
3070 wp_page_reuse(vmf);
997dd98d 3071 lock_page(vmf->page);
93e478d4 3072 }
89b15332 3073 ret |= fault_dirty_shared_page(vmf);
997dd98d 3074 put_page(vmf->page);
93e478d4 3075
89b15332 3076 return ret;
93e478d4
SR
3077}
3078
1da177e4
LT
3079/*
3080 * This routine handles present pages, when users try to write
3081 * to a shared page. It is done by copying the page to a new address
3082 * and decrementing the shared-page counter for the old page.
3083 *
1da177e4
LT
3084 * Note that this routine assumes that the protection checks have been
3085 * done by the caller (the low-level page fault routine in most cases).
3086 * Thus we can safely just mark it writable once we've done any necessary
3087 * COW.
3088 *
3089 * We also mark the page dirty at this point even though the page will
3090 * change only once the write actually happens. This avoids a few races,
3091 * and potentially makes it more efficient.
3092 *
c1e8d7c6 3093 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3094 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3095 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3096 */
2b740303 3097static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3098 __releases(vmf->ptl)
1da177e4 3099{
82b0f8c3 3100 struct vm_area_struct *vma = vmf->vma;
1da177e4 3101
292924b2 3102 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3103 pte_unmap_unlock(vmf->pte, vmf->ptl);
3104 return handle_userfault(vmf, VM_UFFD_WP);
3105 }
3106
a41b70d6
JK
3107 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3108 if (!vmf->page) {
251b97f5 3109 /*
64e45507
PF
3110 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3111 * VM_PFNMAP VMA.
251b97f5
PZ
3112 *
3113 * We should not cow pages in a shared writeable mapping.
dd906184 3114 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3115 */
3116 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3117 (VM_WRITE|VM_SHARED))
2994302b 3118 return wp_pfn_shared(vmf);
2f38ab2c 3119
82b0f8c3 3120 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3121 return wp_page_copy(vmf);
251b97f5 3122 }
1da177e4 3123
d08b3851 3124 /*
ee6a6457
PZ
3125 * Take out anonymous pages first, anonymous shared vmas are
3126 * not dirty accountable.
d08b3851 3127 */
52d1e606 3128 if (PageAnon(vmf->page)) {
09854ba9
LT
3129 struct page *page = vmf->page;
3130
3131 /* PageKsm() doesn't necessarily raise the page refcount */
3132 if (PageKsm(page) || page_count(page) != 1)
3133 goto copy;
3134 if (!trylock_page(page))
3135 goto copy;
3136 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3137 unlock_page(page);
52d1e606 3138 goto copy;
b009c024 3139 }
09854ba9
LT
3140 /*
3141 * Ok, we've got the only map reference, and the only
3142 * page count reference, and the page is locked,
3143 * it's dark out, and we're wearing sunglasses. Hit it.
3144 */
09854ba9 3145 unlock_page(page);
be068f29 3146 wp_page_reuse(vmf);
09854ba9 3147 return VM_FAULT_WRITE;
ee6a6457 3148 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3149 (VM_WRITE|VM_SHARED))) {
a41b70d6 3150 return wp_page_shared(vmf);
1da177e4 3151 }
52d1e606 3152copy:
1da177e4
LT
3153 /*
3154 * Ok, we need to copy. Oh, well..
3155 */
a41b70d6 3156 get_page(vmf->page);
28766805 3157
82b0f8c3 3158 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3159 return wp_page_copy(vmf);
1da177e4
LT
3160}
3161
97a89413 3162static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3163 unsigned long start_addr, unsigned long end_addr,
3164 struct zap_details *details)
3165{
f5cc4eef 3166 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3167}
3168
f808c13f 3169static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
3170 struct zap_details *details)
3171{
3172 struct vm_area_struct *vma;
1da177e4
LT
3173 pgoff_t vba, vea, zba, zea;
3174
6b2dbba8 3175 vma_interval_tree_foreach(vma, root,
1da177e4 3176 details->first_index, details->last_index) {
1da177e4
LT
3177
3178 vba = vma->vm_pgoff;
d6e93217 3179 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3180 zba = details->first_index;
3181 if (zba < vba)
3182 zba = vba;
3183 zea = details->last_index;
3184 if (zea > vea)
3185 zea = vea;
3186
97a89413 3187 unmap_mapping_range_vma(vma,
1da177e4
LT
3188 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3189 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3190 details);
1da177e4
LT
3191 }
3192}
3193
977fbdcd
MW
3194/**
3195 * unmap_mapping_pages() - Unmap pages from processes.
3196 * @mapping: The address space containing pages to be unmapped.
3197 * @start: Index of first page to be unmapped.
3198 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3199 * @even_cows: Whether to unmap even private COWed pages.
3200 *
3201 * Unmap the pages in this address space from any userspace process which
3202 * has them mmaped. Generally, you want to remove COWed pages as well when
3203 * a file is being truncated, but not when invalidating pages from the page
3204 * cache.
3205 */
3206void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3207 pgoff_t nr, bool even_cows)
3208{
3209 struct zap_details details = { };
3210
3211 details.check_mapping = even_cows ? NULL : mapping;
3212 details.first_index = start;
3213 details.last_index = start + nr - 1;
3214 if (details.last_index < details.first_index)
3215 details.last_index = ULONG_MAX;
3216
3217 i_mmap_lock_write(mapping);
3218 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3219 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3220 i_mmap_unlock_write(mapping);
3221}
3222
1da177e4 3223/**
8a5f14a2 3224 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3225 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3226 * file.
3227 *
3d41088f 3228 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3229 * @holebegin: byte in first page to unmap, relative to the start of
3230 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3231 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3232 * must keep the partial page. In contrast, we must get rid of
3233 * partial pages.
3234 * @holelen: size of prospective hole in bytes. This will be rounded
3235 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3236 * end of the file.
3237 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3238 * but 0 when invalidating pagecache, don't throw away private data.
3239 */
3240void unmap_mapping_range(struct address_space *mapping,
3241 loff_t const holebegin, loff_t const holelen, int even_cows)
3242{
1da177e4
LT
3243 pgoff_t hba = holebegin >> PAGE_SHIFT;
3244 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3245
3246 /* Check for overflow. */
3247 if (sizeof(holelen) > sizeof(hlen)) {
3248 long long holeend =
3249 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3250 if (holeend & ~(long long)ULONG_MAX)
3251 hlen = ULONG_MAX - hba + 1;
3252 }
3253
977fbdcd 3254 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3255}
3256EXPORT_SYMBOL(unmap_mapping_range);
3257
1da177e4 3258/*
c1e8d7c6 3259 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3260 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3261 * We return with pte unmapped and unlocked.
3262 *
c1e8d7c6 3263 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3264 * as does filemap_fault().
1da177e4 3265 */
2b740303 3266vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3267{
82b0f8c3 3268 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3269 struct page *page = NULL, *swapcache;
65500d23 3270 swp_entry_t entry;
1da177e4 3271 pte_t pte;
d065bd81 3272 int locked;
ad8c2ee8 3273 int exclusive = 0;
2b740303 3274 vm_fault_t ret = 0;
aae466b0 3275 void *shadow = NULL;
1da177e4 3276
eaf649eb 3277 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3278 goto out;
65500d23 3279
2994302b 3280 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3281 if (unlikely(non_swap_entry(entry))) {
3282 if (is_migration_entry(entry)) {
82b0f8c3
JK
3283 migration_entry_wait(vma->vm_mm, vmf->pmd,
3284 vmf->address);
5042db43 3285 } else if (is_device_private_entry(entry)) {
897e6365
CH
3286 vmf->page = device_private_entry_to_page(entry);
3287 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3288 } else if (is_hwpoison_entry(entry)) {
3289 ret = VM_FAULT_HWPOISON;
3290 } else {
2994302b 3291 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3292 ret = VM_FAULT_SIGBUS;
d1737fdb 3293 }
0697212a
CL
3294 goto out;
3295 }
0bcac06f
MK
3296
3297
0ff92245 3298 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3299 page = lookup_swap_cache(entry, vma, vmf->address);
3300 swapcache = page;
f8020772 3301
1da177e4 3302 if (!page) {
0bcac06f
MK
3303 struct swap_info_struct *si = swp_swap_info(entry);
3304
a449bf58
QC
3305 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3306 __swap_count(entry) == 1) {
0bcac06f 3307 /* skip swapcache */
e9e9b7ec
MK
3308 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3309 vmf->address);
0bcac06f 3310 if (page) {
4c6355b2
JW
3311 int err;
3312
0bcac06f
MK
3313 __SetPageLocked(page);
3314 __SetPageSwapBacked(page);
3315 set_page_private(page, entry.val);
4c6355b2
JW
3316
3317 /* Tell memcg to use swap ownership records */
3318 SetPageSwapCache(page);
3319 err = mem_cgroup_charge(page, vma->vm_mm,
d9eb1ea2 3320 GFP_KERNEL);
4c6355b2 3321 ClearPageSwapCache(page);
545b1b07
MH
3322 if (err) {
3323 ret = VM_FAULT_OOM;
4c6355b2 3324 goto out_page;
545b1b07 3325 }
4c6355b2 3326
aae466b0
JK
3327 shadow = get_shadow_from_swap_cache(entry);
3328 if (shadow)
3329 workingset_refault(page, shadow);
0076f029 3330
6058eaec 3331 lru_cache_add(page);
0bcac06f
MK
3332 swap_readpage(page, true);
3333 }
aa8d22a1 3334 } else {
e9e9b7ec
MK
3335 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3336 vmf);
aa8d22a1 3337 swapcache = page;
0bcac06f
MK
3338 }
3339
1da177e4
LT
3340 if (!page) {
3341 /*
8f4e2101
HD
3342 * Back out if somebody else faulted in this pte
3343 * while we released the pte lock.
1da177e4 3344 */
82b0f8c3
JK
3345 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3346 vmf->address, &vmf->ptl);
2994302b 3347 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3348 ret = VM_FAULT_OOM;
0ff92245 3349 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3350 goto unlock;
1da177e4
LT
3351 }
3352
3353 /* Had to read the page from swap area: Major fault */
3354 ret = VM_FAULT_MAJOR;
f8891e5e 3355 count_vm_event(PGMAJFAULT);
2262185c 3356 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3357 } else if (PageHWPoison(page)) {
71f72525
WF
3358 /*
3359 * hwpoisoned dirty swapcache pages are kept for killing
3360 * owner processes (which may be unknown at hwpoison time)
3361 */
d1737fdb
AK
3362 ret = VM_FAULT_HWPOISON;
3363 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3364 goto out_release;
1da177e4
LT
3365 }
3366
82b0f8c3 3367 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3368
073e587e 3369 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3370 if (!locked) {
3371 ret |= VM_FAULT_RETRY;
3372 goto out_release;
3373 }
073e587e 3374
4969c119 3375 /*
31c4a3d3
HD
3376 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3377 * release the swapcache from under us. The page pin, and pte_same
3378 * test below, are not enough to exclude that. Even if it is still
3379 * swapcache, we need to check that the page's swap has not changed.
4969c119 3380 */
0bcac06f
MK
3381 if (unlikely((!PageSwapCache(page) ||
3382 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3383 goto out_page;
3384
82b0f8c3 3385 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3386 if (unlikely(!page)) {
3387 ret = VM_FAULT_OOM;
3388 page = swapcache;
cbf86cfe 3389 goto out_page;
5ad64688
HD
3390 }
3391
9d82c694 3392 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3393
1da177e4 3394 /*
8f4e2101 3395 * Back out if somebody else already faulted in this pte.
1da177e4 3396 */
82b0f8c3
JK
3397 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3398 &vmf->ptl);
2994302b 3399 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3400 goto out_nomap;
b8107480
KK
3401
3402 if (unlikely(!PageUptodate(page))) {
3403 ret = VM_FAULT_SIGBUS;
3404 goto out_nomap;
1da177e4
LT
3405 }
3406
8c7c6e34
KH
3407 /*
3408 * The page isn't present yet, go ahead with the fault.
3409 *
3410 * Be careful about the sequence of operations here.
3411 * To get its accounting right, reuse_swap_page() must be called
3412 * while the page is counted on swap but not yet in mapcount i.e.
3413 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3414 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3415 */
1da177e4 3416
bae473a4
KS
3417 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3418 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3419 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3420 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3421 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3422 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3423 ret |= VM_FAULT_WRITE;
d281ee61 3424 exclusive = RMAP_EXCLUSIVE;
1da177e4 3425 }
1da177e4 3426 flush_icache_page(vma, page);
2994302b 3427 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3428 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3429 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3430 pte = pte_mkuffd_wp(pte);
3431 pte = pte_wrprotect(pte);
3432 }
82b0f8c3 3433 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3434 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3435 vmf->orig_pte = pte;
0bcac06f
MK
3436
3437 /* ksm created a completely new copy */
3438 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3439 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3440 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3441 } else {
3442 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3443 }
1da177e4 3444
c475a8ab 3445 swap_free(entry);
5ccc5aba
VD
3446 if (mem_cgroup_swap_full(page) ||
3447 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3448 try_to_free_swap(page);
c475a8ab 3449 unlock_page(page);
0bcac06f 3450 if (page != swapcache && swapcache) {
4969c119
AA
3451 /*
3452 * Hold the lock to avoid the swap entry to be reused
3453 * until we take the PT lock for the pte_same() check
3454 * (to avoid false positives from pte_same). For
3455 * further safety release the lock after the swap_free
3456 * so that the swap count won't change under a
3457 * parallel locked swapcache.
3458 */
3459 unlock_page(swapcache);
09cbfeaf 3460 put_page(swapcache);
4969c119 3461 }
c475a8ab 3462
82b0f8c3 3463 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3464 ret |= do_wp_page(vmf);
61469f1d
HD
3465 if (ret & VM_FAULT_ERROR)
3466 ret &= VM_FAULT_ERROR;
1da177e4
LT
3467 goto out;
3468 }
3469
3470 /* No need to invalidate - it was non-present before */
82b0f8c3 3471 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3472unlock:
82b0f8c3 3473 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3474out:
3475 return ret;
b8107480 3476out_nomap:
82b0f8c3 3477 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3478out_page:
b8107480 3479 unlock_page(page);
4779cb31 3480out_release:
09cbfeaf 3481 put_page(page);
0bcac06f 3482 if (page != swapcache && swapcache) {
4969c119 3483 unlock_page(swapcache);
09cbfeaf 3484 put_page(swapcache);
4969c119 3485 }
65500d23 3486 return ret;
1da177e4
LT
3487}
3488
3489/*
c1e8d7c6 3490 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3491 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3492 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3493 */
2b740303 3494static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3495{
82b0f8c3 3496 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3497 struct page *page;
2b740303 3498 vm_fault_t ret = 0;
1da177e4 3499 pte_t entry;
1da177e4 3500
6b7339f4
KS
3501 /* File mapping without ->vm_ops ? */
3502 if (vma->vm_flags & VM_SHARED)
3503 return VM_FAULT_SIGBUS;
3504
7267ec00
KS
3505 /*
3506 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3507 * pte_offset_map() on pmds where a huge pmd might be created
3508 * from a different thread.
3509 *
3e4e28c5 3510 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3511 * parallel threads are excluded by other means.
3512 *
3e4e28c5 3513 * Here we only have mmap_read_lock(mm).
7267ec00 3514 */
4cf58924 3515 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3516 return VM_FAULT_OOM;
3517
f9ce0be7 3518 /* See comment in handle_pte_fault() */
82b0f8c3 3519 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3520 return 0;
3521
11ac5524 3522 /* Use the zero-page for reads */
82b0f8c3 3523 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3524 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3525 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3526 vma->vm_page_prot));
82b0f8c3
JK
3527 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3528 vmf->address, &vmf->ptl);
7df67697
BM
3529 if (!pte_none(*vmf->pte)) {
3530 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3531 goto unlock;
7df67697 3532 }
6b31d595
MH
3533 ret = check_stable_address_space(vma->vm_mm);
3534 if (ret)
3535 goto unlock;
6b251fc9
AA
3536 /* Deliver the page fault to userland, check inside PT lock */
3537 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3538 pte_unmap_unlock(vmf->pte, vmf->ptl);
3539 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3540 }
a13ea5b7
HD
3541 goto setpte;
3542 }
3543
557ed1fa 3544 /* Allocate our own private page. */
557ed1fa
NP
3545 if (unlikely(anon_vma_prepare(vma)))
3546 goto oom;
82b0f8c3 3547 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3548 if (!page)
3549 goto oom;
eb3c24f3 3550
d9eb1ea2 3551 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3552 goto oom_free_page;
9d82c694 3553 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3554
52f37629
MK
3555 /*
3556 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3557 * preceding stores to the page contents become visible before
52f37629
MK
3558 * the set_pte_at() write.
3559 */
0ed361de 3560 __SetPageUptodate(page);
8f4e2101 3561
557ed1fa 3562 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3563 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3564 if (vma->vm_flags & VM_WRITE)
3565 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3566
82b0f8c3
JK
3567 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3568 &vmf->ptl);
7df67697
BM
3569 if (!pte_none(*vmf->pte)) {
3570 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3571 goto release;
7df67697 3572 }
9ba69294 3573
6b31d595
MH
3574 ret = check_stable_address_space(vma->vm_mm);
3575 if (ret)
3576 goto release;
3577
6b251fc9
AA
3578 /* Deliver the page fault to userland, check inside PT lock */
3579 if (userfaultfd_missing(vma)) {
82b0f8c3 3580 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3581 put_page(page);
82b0f8c3 3582 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3583 }
3584
bae473a4 3585 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3586 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3587 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3588setpte:
82b0f8c3 3589 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3590
3591 /* No need to invalidate - it was non-present before */
82b0f8c3 3592 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3593unlock:
82b0f8c3 3594 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3595 return ret;
8f4e2101 3596release:
09cbfeaf 3597 put_page(page);
8f4e2101 3598 goto unlock;
8a9f3ccd 3599oom_free_page:
09cbfeaf 3600 put_page(page);
65500d23 3601oom:
1da177e4
LT
3602 return VM_FAULT_OOM;
3603}
3604
9a95f3cf 3605/*
c1e8d7c6 3606 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3607 * released depending on flags and vma->vm_ops->fault() return value.
3608 * See filemap_fault() and __lock_page_retry().
3609 */
2b740303 3610static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3611{
82b0f8c3 3612 struct vm_area_struct *vma = vmf->vma;
2b740303 3613 vm_fault_t ret;
7eae74af 3614
63f3655f
MH
3615 /*
3616 * Preallocate pte before we take page_lock because this might lead to
3617 * deadlocks for memcg reclaim which waits for pages under writeback:
3618 * lock_page(A)
3619 * SetPageWriteback(A)
3620 * unlock_page(A)
3621 * lock_page(B)
3622 * lock_page(B)
d383807a 3623 * pte_alloc_one
63f3655f
MH
3624 * shrink_page_list
3625 * wait_on_page_writeback(A)
3626 * SetPageWriteback(B)
3627 * unlock_page(B)
3628 * # flush A, B to clear the writeback
3629 */
3630 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3631 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3632 if (!vmf->prealloc_pte)
3633 return VM_FAULT_OOM;
3634 smp_wmb(); /* See comment in __pte_alloc() */
3635 }
3636
11bac800 3637 ret = vma->vm_ops->fault(vmf);
3917048d 3638 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3639 VM_FAULT_DONE_COW)))
bc2466e4 3640 return ret;
7eae74af 3641
667240e0 3642 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3643 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3644 unlock_page(vmf->page);
3645 put_page(vmf->page);
936ca80d 3646 vmf->page = NULL;
7eae74af
KS
3647 return VM_FAULT_HWPOISON;
3648 }
3649
3650 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3651 lock_page(vmf->page);
7eae74af 3652 else
667240e0 3653 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3654
7eae74af
KS
3655 return ret;
3656}
3657
396bcc52 3658#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3659static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3660{
82b0f8c3 3661 struct vm_area_struct *vma = vmf->vma;
953c66c2 3662
82b0f8c3 3663 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3664 /*
3665 * We are going to consume the prealloc table,
3666 * count that as nr_ptes.
3667 */
c4812909 3668 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3669 vmf->prealloc_pte = NULL;
953c66c2
AK
3670}
3671
f9ce0be7 3672vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3673{
82b0f8c3
JK
3674 struct vm_area_struct *vma = vmf->vma;
3675 bool write = vmf->flags & FAULT_FLAG_WRITE;
3676 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3677 pmd_t entry;
2b740303 3678 int i;
d01ac3c3 3679 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3680
3681 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3682 return ret;
10102459 3683
10102459 3684 page = compound_head(page);
d01ac3c3
MWO
3685 if (compound_order(page) != HPAGE_PMD_ORDER)
3686 return ret;
10102459 3687
953c66c2
AK
3688 /*
3689 * Archs like ppc64 need additonal space to store information
3690 * related to pte entry. Use the preallocated table for that.
3691 */
82b0f8c3 3692 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3693 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3694 if (!vmf->prealloc_pte)
953c66c2
AK
3695 return VM_FAULT_OOM;
3696 smp_wmb(); /* See comment in __pte_alloc() */
3697 }
3698
82b0f8c3
JK
3699 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3700 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3701 goto out;
3702
3703 for (i = 0; i < HPAGE_PMD_NR; i++)
3704 flush_icache_page(vma, page + i);
3705
3706 entry = mk_huge_pmd(page, vma->vm_page_prot);
3707 if (write)
f55e1014 3708 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3709
fadae295 3710 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3711 page_add_file_rmap(page, true);
953c66c2
AK
3712 /*
3713 * deposit and withdraw with pmd lock held
3714 */
3715 if (arch_needs_pgtable_deposit())
82b0f8c3 3716 deposit_prealloc_pte(vmf);
10102459 3717
82b0f8c3 3718 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3719
82b0f8c3 3720 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3721
3722 /* fault is handled */
3723 ret = 0;
95ecedcd 3724 count_vm_event(THP_FILE_MAPPED);
10102459 3725out:
82b0f8c3 3726 spin_unlock(vmf->ptl);
10102459
KS
3727 return ret;
3728}
3729#else
f9ce0be7 3730vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3731{
f9ce0be7 3732 return VM_FAULT_FALLBACK;
10102459
KS
3733}
3734#endif
3735
9d3af4b4 3736void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 3737{
82b0f8c3
JK
3738 struct vm_area_struct *vma = vmf->vma;
3739 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 3740 bool prefault = vmf->address != addr;
3bb97794 3741 pte_t entry;
7267ec00 3742
3bb97794
KS
3743 flush_icache_page(vma, page);
3744 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
3745
3746 if (prefault && arch_wants_old_prefaulted_pte())
3747 entry = pte_mkold(entry);
3748 else
3749 entry = pte_sw_mkyoung(entry);
3750
3bb97794
KS
3751 if (write)
3752 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3753 /* copy-on-write page */
3754 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3755 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
9d3af4b4 3756 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 3757 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3758 } else {
eca56ff9 3759 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3760 page_add_file_rmap(page, false);
3bb97794 3761 }
9d3af4b4 3762 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
3763}
3764
9118c0cb
JK
3765/**
3766 * finish_fault - finish page fault once we have prepared the page to fault
3767 *
3768 * @vmf: structure describing the fault
3769 *
3770 * This function handles all that is needed to finish a page fault once the
3771 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3772 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3773 * addition.
9118c0cb
JK
3774 *
3775 * The function expects the page to be locked and on success it consumes a
3776 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3777 *
3778 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3779 */
2b740303 3780vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 3781{
f9ce0be7 3782 struct vm_area_struct *vma = vmf->vma;
9118c0cb 3783 struct page *page;
f9ce0be7 3784 vm_fault_t ret;
9118c0cb
JK
3785
3786 /* Did we COW the page? */
f9ce0be7 3787 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
3788 page = vmf->cow_page;
3789 else
3790 page = vmf->page;
6b31d595
MH
3791
3792 /*
3793 * check even for read faults because we might have lost our CoWed
3794 * page
3795 */
f9ce0be7
KS
3796 if (!(vma->vm_flags & VM_SHARED)) {
3797 ret = check_stable_address_space(vma->vm_mm);
3798 if (ret)
3799 return ret;
3800 }
3801
3802 if (pmd_none(*vmf->pmd)) {
3803 if (PageTransCompound(page)) {
3804 ret = do_set_pmd(vmf, page);
3805 if (ret != VM_FAULT_FALLBACK)
3806 return ret;
3807 }
3808
3809 if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3810 return VM_FAULT_OOM;
3811 }
3812
3813 /* See comment in handle_pte_fault() */
3814 if (pmd_devmap_trans_unstable(vmf->pmd))
3815 return 0;
3816
3817 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3818 vmf->address, &vmf->ptl);
3819 ret = 0;
3820 /* Re-check under ptl */
3821 if (likely(pte_none(*vmf->pte)))
9d3af4b4 3822 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
3823 else
3824 ret = VM_FAULT_NOPAGE;
3825
3826 update_mmu_tlb(vma, vmf->address, vmf->pte);
3827 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
3828 return ret;
3829}
3830
3a91053a
KS
3831static unsigned long fault_around_bytes __read_mostly =
3832 rounddown_pow_of_two(65536);
a9b0f861 3833
a9b0f861
KS
3834#ifdef CONFIG_DEBUG_FS
3835static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3836{
a9b0f861 3837 *val = fault_around_bytes;
1592eef0
KS
3838 return 0;
3839}
3840
b4903d6e 3841/*
da391d64
WK
3842 * fault_around_bytes must be rounded down to the nearest page order as it's
3843 * what do_fault_around() expects to see.
b4903d6e 3844 */
a9b0f861 3845static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3846{
a9b0f861 3847 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3848 return -EINVAL;
b4903d6e
AR
3849 if (val > PAGE_SIZE)
3850 fault_around_bytes = rounddown_pow_of_two(val);
3851 else
3852 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3853 return 0;
3854}
0a1345f8 3855DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3856 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3857
3858static int __init fault_around_debugfs(void)
3859{
d9f7979c
GKH
3860 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3861 &fault_around_bytes_fops);
1592eef0
KS
3862 return 0;
3863}
3864late_initcall(fault_around_debugfs);
1592eef0 3865#endif
8c6e50b0 3866
1fdb412b
KS
3867/*
3868 * do_fault_around() tries to map few pages around the fault address. The hope
3869 * is that the pages will be needed soon and this will lower the number of
3870 * faults to handle.
3871 *
3872 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3873 * not ready to be mapped: not up-to-date, locked, etc.
3874 *
3875 * This function is called with the page table lock taken. In the split ptlock
3876 * case the page table lock only protects only those entries which belong to
3877 * the page table corresponding to the fault address.
3878 *
3879 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3880 * only once.
3881 *
da391d64
WK
3882 * fault_around_bytes defines how many bytes we'll try to map.
3883 * do_fault_around() expects it to be set to a power of two less than or equal
3884 * to PTRS_PER_PTE.
1fdb412b 3885 *
da391d64
WK
3886 * The virtual address of the area that we map is naturally aligned to
3887 * fault_around_bytes rounded down to the machine page size
3888 * (and therefore to page order). This way it's easier to guarantee
3889 * that we don't cross page table boundaries.
1fdb412b 3890 */
2b740303 3891static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3892{
82b0f8c3 3893 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3894 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3895 pgoff_t end_pgoff;
2b740303 3896 int off;
8c6e50b0 3897
4db0c3c2 3898 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3899 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3900
f9ce0be7
KS
3901 address = max(address & mask, vmf->vma->vm_start);
3902 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3903 start_pgoff -= off;
8c6e50b0
KS
3904
3905 /*
da391d64
WK
3906 * end_pgoff is either the end of the page table, the end of
3907 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3908 */
bae473a4 3909 end_pgoff = start_pgoff -
f9ce0be7 3910 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3911 PTRS_PER_PTE - 1;
82b0f8c3 3912 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3913 start_pgoff + nr_pages - 1);
8c6e50b0 3914
82b0f8c3 3915 if (pmd_none(*vmf->pmd)) {
4cf58924 3916 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3917 if (!vmf->prealloc_pte)
f9ce0be7 3918 return VM_FAULT_OOM;
7267ec00 3919 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3920 }
3921
f9ce0be7 3922 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
3923}
3924
2b740303 3925static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3926{
82b0f8c3 3927 struct vm_area_struct *vma = vmf->vma;
2b740303 3928 vm_fault_t ret = 0;
8c6e50b0
KS
3929
3930 /*
3931 * Let's call ->map_pages() first and use ->fault() as fallback
3932 * if page by the offset is not ready to be mapped (cold cache or
3933 * something).
3934 */
9b4bdd2f 3935 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3936 ret = do_fault_around(vmf);
7267ec00
KS
3937 if (ret)
3938 return ret;
8c6e50b0 3939 }
e655fb29 3940
936ca80d 3941 ret = __do_fault(vmf);
e655fb29
KS
3942 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3943 return ret;
3944
9118c0cb 3945 ret |= finish_fault(vmf);
936ca80d 3946 unlock_page(vmf->page);
7267ec00 3947 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3948 put_page(vmf->page);
e655fb29
KS
3949 return ret;
3950}
3951
2b740303 3952static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3953{
82b0f8c3 3954 struct vm_area_struct *vma = vmf->vma;
2b740303 3955 vm_fault_t ret;
ec47c3b9
KS
3956
3957 if (unlikely(anon_vma_prepare(vma)))
3958 return VM_FAULT_OOM;
3959
936ca80d
JK
3960 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3961 if (!vmf->cow_page)
ec47c3b9
KS
3962 return VM_FAULT_OOM;
3963
d9eb1ea2 3964 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 3965 put_page(vmf->cow_page);
ec47c3b9
KS
3966 return VM_FAULT_OOM;
3967 }
9d82c694 3968 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 3969
936ca80d 3970 ret = __do_fault(vmf);
ec47c3b9
KS
3971 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3972 goto uncharge_out;
3917048d
JK
3973 if (ret & VM_FAULT_DONE_COW)
3974 return ret;
ec47c3b9 3975
b1aa812b 3976 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3977 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3978
9118c0cb 3979 ret |= finish_fault(vmf);
b1aa812b
JK
3980 unlock_page(vmf->page);
3981 put_page(vmf->page);
7267ec00
KS
3982 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3983 goto uncharge_out;
ec47c3b9
KS
3984 return ret;
3985uncharge_out:
936ca80d 3986 put_page(vmf->cow_page);
ec47c3b9
KS
3987 return ret;
3988}
3989
2b740303 3990static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3991{
82b0f8c3 3992 struct vm_area_struct *vma = vmf->vma;
2b740303 3993 vm_fault_t ret, tmp;
1d65f86d 3994
936ca80d 3995 ret = __do_fault(vmf);
7eae74af 3996 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3997 return ret;
1da177e4
LT
3998
3999 /*
f0c6d4d2
KS
4000 * Check if the backing address space wants to know that the page is
4001 * about to become writable
1da177e4 4002 */
fb09a464 4003 if (vma->vm_ops->page_mkwrite) {
936ca80d 4004 unlock_page(vmf->page);
38b8cb7f 4005 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4006 if (unlikely(!tmp ||
4007 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4008 put_page(vmf->page);
fb09a464 4009 return tmp;
4294621f 4010 }
fb09a464
KS
4011 }
4012
9118c0cb 4013 ret |= finish_fault(vmf);
7267ec00
KS
4014 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4015 VM_FAULT_RETRY))) {
936ca80d
JK
4016 unlock_page(vmf->page);
4017 put_page(vmf->page);
f0c6d4d2 4018 return ret;
1da177e4 4019 }
b827e496 4020
89b15332 4021 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4022 return ret;
54cb8821 4023}
d00806b1 4024
9a95f3cf 4025/*
c1e8d7c6 4026 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4027 * but allow concurrent faults).
c1e8d7c6 4028 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4029 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 4030 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4031 * by other thread calling munmap()).
9a95f3cf 4032 */
2b740303 4033static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4034{
82b0f8c3 4035 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4036 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4037 vm_fault_t ret;
54cb8821 4038
ff09d7ec
AK
4039 /*
4040 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4041 */
4042 if (!vma->vm_ops->fault) {
4043 /*
4044 * If we find a migration pmd entry or a none pmd entry, which
4045 * should never happen, return SIGBUS
4046 */
4047 if (unlikely(!pmd_present(*vmf->pmd)))
4048 ret = VM_FAULT_SIGBUS;
4049 else {
4050 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4051 vmf->pmd,
4052 vmf->address,
4053 &vmf->ptl);
4054 /*
4055 * Make sure this is not a temporary clearing of pte
4056 * by holding ptl and checking again. A R/M/W update
4057 * of pte involves: take ptl, clearing the pte so that
4058 * we don't have concurrent modification by hardware
4059 * followed by an update.
4060 */
4061 if (unlikely(pte_none(*vmf->pte)))
4062 ret = VM_FAULT_SIGBUS;
4063 else
4064 ret = VM_FAULT_NOPAGE;
4065
4066 pte_unmap_unlock(vmf->pte, vmf->ptl);
4067 }
4068 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4069 ret = do_read_fault(vmf);
4070 else if (!(vma->vm_flags & VM_SHARED))
4071 ret = do_cow_fault(vmf);
4072 else
4073 ret = do_shared_fault(vmf);
4074
4075 /* preallocated pagetable is unused: free it */
4076 if (vmf->prealloc_pte) {
fc8efd2d 4077 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4078 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4079 }
4080 return ret;
54cb8821
NP
4081}
4082
b19a9939 4083static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
4084 unsigned long addr, int page_nid,
4085 int *flags)
9532fec1
MG
4086{
4087 get_page(page);
4088
4089 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4090 if (page_nid == numa_node_id()) {
9532fec1 4091 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4092 *flags |= TNF_FAULT_LOCAL;
4093 }
9532fec1
MG
4094
4095 return mpol_misplaced(page, vma, addr);
4096}
4097
2b740303 4098static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4099{
82b0f8c3 4100 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4101 struct page *page = NULL;
98fa15f3 4102 int page_nid = NUMA_NO_NODE;
90572890 4103 int last_cpupid;
cbee9f88 4104 int target_nid;
b8593bfd 4105 bool migrated = false;
04a86453 4106 pte_t pte, old_pte;
288bc549 4107 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4108 int flags = 0;
d10e63f2
MG
4109
4110 /*
166f61b9
TH
4111 * The "pte" at this point cannot be used safely without
4112 * validation through pte_unmap_same(). It's of NUMA type but
4113 * the pfn may be screwed if the read is non atomic.
166f61b9 4114 */
82b0f8c3
JK
4115 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4116 spin_lock(vmf->ptl);
cee216a6 4117 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4118 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4119 goto out;
4120 }
4121
cee216a6
AK
4122 /*
4123 * Make it present again, Depending on how arch implementes non
4124 * accessible ptes, some can allow access by kernel mode.
4125 */
04a86453
AK
4126 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4127 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 4128 pte = pte_mkyoung(pte);
b191f9b1
MG
4129 if (was_writable)
4130 pte = pte_mkwrite(pte);
04a86453 4131 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 4132 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 4133
82b0f8c3 4134 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 4135 if (!page) {
82b0f8c3 4136 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
4137 return 0;
4138 }
4139
e81c4802
KS
4140 /* TODO: handle PTE-mapped THP */
4141 if (PageCompound(page)) {
82b0f8c3 4142 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
4143 return 0;
4144 }
4145
6688cc05 4146 /*
bea66fbd
MG
4147 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4148 * much anyway since they can be in shared cache state. This misses
4149 * the case where a mapping is writable but the process never writes
4150 * to it but pte_write gets cleared during protection updates and
4151 * pte_dirty has unpredictable behaviour between PTE scan updates,
4152 * background writeback, dirty balancing and application behaviour.
6688cc05 4153 */
d59dc7bc 4154 if (!pte_write(pte))
6688cc05
PZ
4155 flags |= TNF_NO_GROUP;
4156
dabe1d99
RR
4157 /*
4158 * Flag if the page is shared between multiple address spaces. This
4159 * is later used when determining whether to group tasks together
4160 */
4161 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4162 flags |= TNF_SHARED;
4163
90572890 4164 last_cpupid = page_cpupid_last(page);
8191acbd 4165 page_nid = page_to_nid(page);
82b0f8c3 4166 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4167 &flags);
82b0f8c3 4168 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 4169 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
4170 put_page(page);
4171 goto out;
4172 }
4173
4174 /* Migrate to the requested node */
1bc115d8 4175 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 4176 if (migrated) {
8191acbd 4177 page_nid = target_nid;
6688cc05 4178 flags |= TNF_MIGRATED;
074c2381
MG
4179 } else
4180 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
4181
4182out:
98fa15f3 4183 if (page_nid != NUMA_NO_NODE)
6688cc05 4184 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
4185 return 0;
4186}
4187
2b740303 4188static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4189{
f4200391 4190 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4191 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4192 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4193 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4194 return VM_FAULT_FALLBACK;
4195}
4196
183f24aa 4197/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4198static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4199{
529b930b 4200 if (vma_is_anonymous(vmf->vma)) {
292924b2 4201 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4202 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4203 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4204 }
327e9fd4
THV
4205 if (vmf->vma->vm_ops->huge_fault) {
4206 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4207
4208 if (!(ret & VM_FAULT_FALLBACK))
4209 return ret;
4210 }
af9e4d5f 4211
327e9fd4 4212 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4213 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4214
b96375f7
MW
4215 return VM_FAULT_FALLBACK;
4216}
4217
2b740303 4218static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4219{
327e9fd4
THV
4220#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4221 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4222 /* No support for anonymous transparent PUD pages yet */
4223 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4224 goto split;
4225 if (vmf->vma->vm_ops->huge_fault) {
4226 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4227
4228 if (!(ret & VM_FAULT_FALLBACK))
4229 return ret;
4230 }
4231split:
4232 /* COW or write-notify not handled on PUD level: split pud.*/
4233 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4234#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4235 return VM_FAULT_FALLBACK;
4236}
4237
2b740303 4238static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4239{
4240#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4241 /* No support for anonymous transparent PUD pages yet */
4242 if (vma_is_anonymous(vmf->vma))
4243 return VM_FAULT_FALLBACK;
4244 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4245 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4246#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4247 return VM_FAULT_FALLBACK;
4248}
4249
1da177e4
LT
4250/*
4251 * These routines also need to handle stuff like marking pages dirty
4252 * and/or accessed for architectures that don't do it in hardware (most
4253 * RISC architectures). The early dirtying is also good on the i386.
4254 *
4255 * There is also a hook called "update_mmu_cache()" that architectures
4256 * with external mmu caches can use to update those (ie the Sparc or
4257 * PowerPC hashed page tables that act as extended TLBs).
4258 *
c1e8d7c6 4259 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4260 * concurrent faults).
9a95f3cf 4261 *
c1e8d7c6 4262 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4263 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4264 */
2b740303 4265static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4266{
4267 pte_t entry;
4268
82b0f8c3 4269 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4270 /*
4271 * Leave __pte_alloc() until later: because vm_ops->fault may
4272 * want to allocate huge page, and if we expose page table
4273 * for an instant, it will be difficult to retract from
4274 * concurrent faults and from rmap lookups.
4275 */
82b0f8c3 4276 vmf->pte = NULL;
7267ec00 4277 } else {
f9ce0be7
KS
4278 /*
4279 * If a huge pmd materialized under us just retry later. Use
4280 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4281 * of pmd_trans_huge() to ensure the pmd didn't become
4282 * pmd_trans_huge under us and then back to pmd_none, as a
4283 * result of MADV_DONTNEED running immediately after a huge pmd
4284 * fault in a different thread of this mm, in turn leading to a
4285 * misleading pmd_trans_huge() retval. All we have to ensure is
4286 * that it is a regular pmd that we can walk with
4287 * pte_offset_map() and we can do that through an atomic read
4288 * in C, which is what pmd_trans_unstable() provides.
4289 */
d0f0931d 4290 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4291 return 0;
4292 /*
4293 * A regular pmd is established and it can't morph into a huge
4294 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4295 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4296 * So now it's safe to run pte_offset_map().
4297 */
82b0f8c3 4298 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4299 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4300
4301 /*
4302 * some architectures can have larger ptes than wordsize,
4303 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4304 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4305 * accesses. The code below just needs a consistent view
4306 * for the ifs and we later double check anyway with the
7267ec00
KS
4307 * ptl lock held. So here a barrier will do.
4308 */
4309 barrier();
2994302b 4310 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4311 pte_unmap(vmf->pte);
4312 vmf->pte = NULL;
65500d23 4313 }
1da177e4
LT
4314 }
4315
82b0f8c3
JK
4316 if (!vmf->pte) {
4317 if (vma_is_anonymous(vmf->vma))
4318 return do_anonymous_page(vmf);
7267ec00 4319 else
82b0f8c3 4320 return do_fault(vmf);
7267ec00
KS
4321 }
4322
2994302b
JK
4323 if (!pte_present(vmf->orig_pte))
4324 return do_swap_page(vmf);
7267ec00 4325
2994302b
JK
4326 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4327 return do_numa_page(vmf);
d10e63f2 4328
82b0f8c3
JK
4329 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4330 spin_lock(vmf->ptl);
2994302b 4331 entry = vmf->orig_pte;
7df67697
BM
4332 if (unlikely(!pte_same(*vmf->pte, entry))) {
4333 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4334 goto unlock;
7df67697 4335 }
82b0f8c3 4336 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4337 if (!pte_write(entry))
2994302b 4338 return do_wp_page(vmf);
1da177e4
LT
4339 entry = pte_mkdirty(entry);
4340 }
4341 entry = pte_mkyoung(entry);
82b0f8c3
JK
4342 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4343 vmf->flags & FAULT_FLAG_WRITE)) {
4344 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4345 } else {
b7333b58
YS
4346 /* Skip spurious TLB flush for retried page fault */
4347 if (vmf->flags & FAULT_FLAG_TRIED)
4348 goto unlock;
1a44e149
AA
4349 /*
4350 * This is needed only for protection faults but the arch code
4351 * is not yet telling us if this is a protection fault or not.
4352 * This still avoids useless tlb flushes for .text page faults
4353 * with threads.
4354 */
82b0f8c3
JK
4355 if (vmf->flags & FAULT_FLAG_WRITE)
4356 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4357 }
8f4e2101 4358unlock:
82b0f8c3 4359 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4360 return 0;
1da177e4
LT
4361}
4362
4363/*
4364 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4365 *
c1e8d7c6 4366 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4367 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4368 */
2b740303
SJ
4369static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4370 unsigned long address, unsigned int flags)
1da177e4 4371{
82b0f8c3 4372 struct vm_fault vmf = {
bae473a4 4373 .vma = vma,
1a29d85e 4374 .address = address & PAGE_MASK,
bae473a4 4375 .flags = flags,
0721ec8b 4376 .pgoff = linear_page_index(vma, address),
667240e0 4377 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4378 };
fde26bed 4379 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4380 struct mm_struct *mm = vma->vm_mm;
1da177e4 4381 pgd_t *pgd;
c2febafc 4382 p4d_t *p4d;
2b740303 4383 vm_fault_t ret;
1da177e4 4384
1da177e4 4385 pgd = pgd_offset(mm, address);
c2febafc
KS
4386 p4d = p4d_alloc(mm, pgd, address);
4387 if (!p4d)
4388 return VM_FAULT_OOM;
a00cc7d9 4389
c2febafc 4390 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4391 if (!vmf.pud)
c74df32c 4392 return VM_FAULT_OOM;
625110b5 4393retry_pud:
7635d9cb 4394 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4395 ret = create_huge_pud(&vmf);
4396 if (!(ret & VM_FAULT_FALLBACK))
4397 return ret;
4398 } else {
4399 pud_t orig_pud = *vmf.pud;
4400
4401 barrier();
4402 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4403
a00cc7d9
MW
4404 /* NUMA case for anonymous PUDs would go here */
4405
f6f37321 4406 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4407 ret = wp_huge_pud(&vmf, orig_pud);
4408 if (!(ret & VM_FAULT_FALLBACK))
4409 return ret;
4410 } else {
4411 huge_pud_set_accessed(&vmf, orig_pud);
4412 return 0;
4413 }
4414 }
4415 }
4416
4417 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4418 if (!vmf.pmd)
c74df32c 4419 return VM_FAULT_OOM;
625110b5
TH
4420
4421 /* Huge pud page fault raced with pmd_alloc? */
4422 if (pud_trans_unstable(vmf.pud))
4423 goto retry_pud;
4424
7635d9cb 4425 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4426 ret = create_huge_pmd(&vmf);
c0292554
KS
4427 if (!(ret & VM_FAULT_FALLBACK))
4428 return ret;
71e3aac0 4429 } else {
82b0f8c3 4430 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4431
71e3aac0 4432 barrier();
84c3fc4e
ZY
4433 if (unlikely(is_swap_pmd(orig_pmd))) {
4434 VM_BUG_ON(thp_migration_supported() &&
4435 !is_pmd_migration_entry(orig_pmd));
4436 if (is_pmd_migration_entry(orig_pmd))
4437 pmd_migration_entry_wait(mm, vmf.pmd);
4438 return 0;
4439 }
5c7fb56e 4440 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4441 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4442 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4443
f6f37321 4444 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4445 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4446 if (!(ret & VM_FAULT_FALLBACK))
4447 return ret;
a1dd450b 4448 } else {
82b0f8c3 4449 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4450 return 0;
1f1d06c3 4451 }
71e3aac0
AA
4452 }
4453 }
4454
82b0f8c3 4455 return handle_pte_fault(&vmf);
1da177e4
LT
4456}
4457
bce617ed
PX
4458/**
4459 * mm_account_fault - Do page fault accountings
4460 *
4461 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4462 * of perf event counters, but we'll still do the per-task accounting to
4463 * the task who triggered this page fault.
4464 * @address: the faulted address.
4465 * @flags: the fault flags.
4466 * @ret: the fault retcode.
4467 *
4468 * This will take care of most of the page fault accountings. Meanwhile, it
4469 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4470 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4471 * still be in per-arch page fault handlers at the entry of page fault.
4472 */
4473static inline void mm_account_fault(struct pt_regs *regs,
4474 unsigned long address, unsigned int flags,
4475 vm_fault_t ret)
4476{
4477 bool major;
4478
4479 /*
4480 * We don't do accounting for some specific faults:
4481 *
4482 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4483 * includes arch_vma_access_permitted() failing before reaching here.
4484 * So this is not a "this many hardware page faults" counter. We
4485 * should use the hw profiling for that.
4486 *
4487 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4488 * once they're completed.
4489 */
4490 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4491 return;
4492
4493 /*
4494 * We define the fault as a major fault when the final successful fault
4495 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4496 * handle it immediately previously).
4497 */
4498 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4499
a2beb5f1
PX
4500 if (major)
4501 current->maj_flt++;
4502 else
4503 current->min_flt++;
4504
bce617ed 4505 /*
a2beb5f1
PX
4506 * If the fault is done for GUP, regs will be NULL. We only do the
4507 * accounting for the per thread fault counters who triggered the
4508 * fault, and we skip the perf event updates.
bce617ed
PX
4509 */
4510 if (!regs)
4511 return;
4512
a2beb5f1 4513 if (major)
bce617ed 4514 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4515 else
bce617ed 4516 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4517}
4518
9a95f3cf
PC
4519/*
4520 * By the time we get here, we already hold the mm semaphore
4521 *
c1e8d7c6 4522 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4523 * return value. See filemap_fault() and __lock_page_or_retry().
4524 */
2b740303 4525vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4526 unsigned int flags, struct pt_regs *regs)
519e5247 4527{
2b740303 4528 vm_fault_t ret;
519e5247
JW
4529
4530 __set_current_state(TASK_RUNNING);
4531
4532 count_vm_event(PGFAULT);
2262185c 4533 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4534
4535 /* do counter updates before entering really critical section. */
4536 check_sync_rss_stat(current);
4537
de0c799b
LD
4538 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4539 flags & FAULT_FLAG_INSTRUCTION,
4540 flags & FAULT_FLAG_REMOTE))
4541 return VM_FAULT_SIGSEGV;
4542
519e5247
JW
4543 /*
4544 * Enable the memcg OOM handling for faults triggered in user
4545 * space. Kernel faults are handled more gracefully.
4546 */
4547 if (flags & FAULT_FLAG_USER)
29ef680a 4548 mem_cgroup_enter_user_fault();
519e5247 4549
bae473a4
KS
4550 if (unlikely(is_vm_hugetlb_page(vma)))
4551 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4552 else
4553 ret = __handle_mm_fault(vma, address, flags);
519e5247 4554
49426420 4555 if (flags & FAULT_FLAG_USER) {
29ef680a 4556 mem_cgroup_exit_user_fault();
166f61b9
TH
4557 /*
4558 * The task may have entered a memcg OOM situation but
4559 * if the allocation error was handled gracefully (no
4560 * VM_FAULT_OOM), there is no need to kill anything.
4561 * Just clean up the OOM state peacefully.
4562 */
4563 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4564 mem_cgroup_oom_synchronize(false);
49426420 4565 }
3812c8c8 4566
bce617ed
PX
4567 mm_account_fault(regs, address, flags, ret);
4568
519e5247
JW
4569 return ret;
4570}
e1d6d01a 4571EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4572
90eceff1
KS
4573#ifndef __PAGETABLE_P4D_FOLDED
4574/*
4575 * Allocate p4d page table.
4576 * We've already handled the fast-path in-line.
4577 */
4578int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4579{
4580 p4d_t *new = p4d_alloc_one(mm, address);
4581 if (!new)
4582 return -ENOMEM;
4583
4584 smp_wmb(); /* See comment in __pte_alloc */
4585
4586 spin_lock(&mm->page_table_lock);
4587 if (pgd_present(*pgd)) /* Another has populated it */
4588 p4d_free(mm, new);
4589 else
4590 pgd_populate(mm, pgd, new);
4591 spin_unlock(&mm->page_table_lock);
4592 return 0;
4593}
4594#endif /* __PAGETABLE_P4D_FOLDED */
4595
1da177e4
LT
4596#ifndef __PAGETABLE_PUD_FOLDED
4597/*
4598 * Allocate page upper directory.
872fec16 4599 * We've already handled the fast-path in-line.
1da177e4 4600 */
c2febafc 4601int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4602{
c74df32c
HD
4603 pud_t *new = pud_alloc_one(mm, address);
4604 if (!new)
1bb3630e 4605 return -ENOMEM;
1da177e4 4606
362a61ad
NP
4607 smp_wmb(); /* See comment in __pte_alloc */
4608
872fec16 4609 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4610 if (!p4d_present(*p4d)) {
4611 mm_inc_nr_puds(mm);
c2febafc 4612 p4d_populate(mm, p4d, new);
b4e98d9a 4613 } else /* Another has populated it */
5e541973 4614 pud_free(mm, new);
c74df32c 4615 spin_unlock(&mm->page_table_lock);
1bb3630e 4616 return 0;
1da177e4
LT
4617}
4618#endif /* __PAGETABLE_PUD_FOLDED */
4619
4620#ifndef __PAGETABLE_PMD_FOLDED
4621/*
4622 * Allocate page middle directory.
872fec16 4623 * We've already handled the fast-path in-line.
1da177e4 4624 */
1bb3630e 4625int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4626{
a00cc7d9 4627 spinlock_t *ptl;
c74df32c
HD
4628 pmd_t *new = pmd_alloc_one(mm, address);
4629 if (!new)
1bb3630e 4630 return -ENOMEM;
1da177e4 4631
362a61ad
NP
4632 smp_wmb(); /* See comment in __pte_alloc */
4633
a00cc7d9 4634 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4635 if (!pud_present(*pud)) {
4636 mm_inc_nr_pmds(mm);
1bb3630e 4637 pud_populate(mm, pud, new);
dc6c9a35 4638 } else /* Another has populated it */
5e541973 4639 pmd_free(mm, new);
a00cc7d9 4640 spin_unlock(ptl);
1bb3630e 4641 return 0;
e0f39591 4642}
1da177e4
LT
4643#endif /* __PAGETABLE_PMD_FOLDED */
4644
9fd6dad1
PB
4645int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4646 struct mmu_notifier_range *range, pte_t **ptepp,
4647 pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4648{
4649 pgd_t *pgd;
c2febafc 4650 p4d_t *p4d;
f8ad0f49
JW
4651 pud_t *pud;
4652 pmd_t *pmd;
4653 pte_t *ptep;
4654
4655 pgd = pgd_offset(mm, address);
4656 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4657 goto out;
4658
c2febafc
KS
4659 p4d = p4d_offset(pgd, address);
4660 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4661 goto out;
4662
4663 pud = pud_offset(p4d, address);
f8ad0f49
JW
4664 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4665 goto out;
4666
4667 pmd = pmd_offset(pud, address);
f66055ab 4668 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4669
09796395
RZ
4670 if (pmd_huge(*pmd)) {
4671 if (!pmdpp)
4672 goto out;
4673
ac46d4f3 4674 if (range) {
7269f999 4675 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4676 NULL, mm, address & PMD_MASK,
4677 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4678 mmu_notifier_invalidate_range_start(range);
a4d1a885 4679 }
09796395
RZ
4680 *ptlp = pmd_lock(mm, pmd);
4681 if (pmd_huge(*pmd)) {
4682 *pmdpp = pmd;
4683 return 0;
4684 }
4685 spin_unlock(*ptlp);
ac46d4f3
JG
4686 if (range)
4687 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4688 }
4689
4690 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4691 goto out;
4692
ac46d4f3 4693 if (range) {
7269f999 4694 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4695 address & PAGE_MASK,
4696 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4697 mmu_notifier_invalidate_range_start(range);
a4d1a885 4698 }
f8ad0f49 4699 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4700 if (!pte_present(*ptep))
4701 goto unlock;
4702 *ptepp = ptep;
4703 return 0;
4704unlock:
4705 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4706 if (range)
4707 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4708out:
4709 return -EINVAL;
4710}
4711
9fd6dad1
PB
4712/**
4713 * follow_pte - look up PTE at a user virtual address
4714 * @mm: the mm_struct of the target address space
4715 * @address: user virtual address
4716 * @ptepp: location to store found PTE
4717 * @ptlp: location to store the lock for the PTE
4718 *
4719 * On a successful return, the pointer to the PTE is stored in @ptepp;
4720 * the corresponding lock is taken and its location is stored in @ptlp.
4721 * The contents of the PTE are only stable until @ptlp is released;
4722 * any further use, if any, must be protected against invalidation
4723 * with MMU notifiers.
4724 *
4725 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4726 * should be taken for read.
4727 *
4728 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4729 * it is not a good general-purpose API.
4730 *
4731 * Return: zero on success, -ve otherwise.
4732 */
4733int follow_pte(struct mm_struct *mm, unsigned long address,
4734 pte_t **ptepp, spinlock_t **ptlp)
4735{
4736 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4737}
4738EXPORT_SYMBOL_GPL(follow_pte);
4739
3b6748e2
JW
4740/**
4741 * follow_pfn - look up PFN at a user virtual address
4742 * @vma: memory mapping
4743 * @address: user virtual address
4744 * @pfn: location to store found PFN
4745 *
4746 * Only IO mappings and raw PFN mappings are allowed.
4747 *
9fd6dad1
PB
4748 * This function does not allow the caller to read the permissions
4749 * of the PTE. Do not use it.
4750 *
a862f68a 4751 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4752 */
4753int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4754 unsigned long *pfn)
4755{
4756 int ret = -EINVAL;
4757 spinlock_t *ptl;
4758 pte_t *ptep;
4759
4760 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4761 return ret;
4762
9fd6dad1 4763 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
4764 if (ret)
4765 return ret;
4766 *pfn = pte_pfn(*ptep);
4767 pte_unmap_unlock(ptep, ptl);
4768 return 0;
4769}
4770EXPORT_SYMBOL(follow_pfn);
4771
28b2ee20 4772#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4773int follow_phys(struct vm_area_struct *vma,
4774 unsigned long address, unsigned int flags,
4775 unsigned long *prot, resource_size_t *phys)
28b2ee20 4776{
03668a4d 4777 int ret = -EINVAL;
28b2ee20
RR
4778 pte_t *ptep, pte;
4779 spinlock_t *ptl;
28b2ee20 4780
d87fe660 4781 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4782 goto out;
28b2ee20 4783
9fd6dad1 4784 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4785 goto out;
28b2ee20 4786 pte = *ptep;
03668a4d 4787
f6f37321 4788 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4789 goto unlock;
28b2ee20
RR
4790
4791 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4792 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4793
03668a4d 4794 ret = 0;
28b2ee20
RR
4795unlock:
4796 pte_unmap_unlock(ptep, ptl);
4797out:
d87fe660 4798 return ret;
28b2ee20
RR
4799}
4800
96667f8a
DV
4801/**
4802 * generic_access_phys - generic implementation for iomem mmap access
4803 * @vma: the vma to access
4804 * @addr: userspace addres, not relative offset within @vma
4805 * @buf: buffer to read/write
4806 * @len: length of transfer
4807 * @write: set to FOLL_WRITE when writing, otherwise reading
4808 *
4809 * This is a generic implementation for &vm_operations_struct.access for an
4810 * iomem mapping. This callback is used by access_process_vm() when the @vma is
4811 * not page based.
4812 */
28b2ee20
RR
4813int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4814 void *buf, int len, int write)
4815{
4816 resource_size_t phys_addr;
4817 unsigned long prot = 0;
2bc7273b 4818 void __iomem *maddr;
96667f8a
DV
4819 pte_t *ptep, pte;
4820 spinlock_t *ptl;
4821 int offset = offset_in_page(addr);
4822 int ret = -EINVAL;
4823
4824 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4825 return -EINVAL;
4826
4827retry:
e913a8cd 4828 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
4829 return -EINVAL;
4830 pte = *ptep;
4831 pte_unmap_unlock(ptep, ptl);
28b2ee20 4832
96667f8a
DV
4833 prot = pgprot_val(pte_pgprot(pte));
4834 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4835
4836 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
4837 return -EINVAL;
4838
9cb12d7b 4839 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4840 if (!maddr)
4841 return -ENOMEM;
4842
e913a8cd 4843 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
4844 goto out_unmap;
4845
4846 if (!pte_same(pte, *ptep)) {
4847 pte_unmap_unlock(ptep, ptl);
4848 iounmap(maddr);
4849
4850 goto retry;
4851 }
4852
28b2ee20
RR
4853 if (write)
4854 memcpy_toio(maddr + offset, buf, len);
4855 else
4856 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
4857 ret = len;
4858 pte_unmap_unlock(ptep, ptl);
4859out_unmap:
28b2ee20
RR
4860 iounmap(maddr);
4861
96667f8a 4862 return ret;
28b2ee20 4863}
5a73633e 4864EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4865#endif
4866
0ec76a11 4867/*
d3f5ffca 4868 * Access another process' address space as given in mm.
0ec76a11 4869 */
d3f5ffca
JH
4870int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4871 int len, unsigned int gup_flags)
0ec76a11 4872{
0ec76a11 4873 struct vm_area_struct *vma;
0ec76a11 4874 void *old_buf = buf;
442486ec 4875 int write = gup_flags & FOLL_WRITE;
0ec76a11 4876
d8ed45c5 4877 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4878 return 0;
4879
183ff22b 4880 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4881 while (len) {
4882 int bytes, ret, offset;
4883 void *maddr;
28b2ee20 4884 struct page *page = NULL;
0ec76a11 4885
64019a2e 4886 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 4887 gup_flags, &page, &vma, NULL);
28b2ee20 4888 if (ret <= 0) {
dbffcd03
RR
4889#ifndef CONFIG_HAVE_IOREMAP_PROT
4890 break;
4891#else
28b2ee20
RR
4892 /*
4893 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4894 * we can access using slightly different code.
4895 */
28b2ee20 4896 vma = find_vma(mm, addr);
fe936dfc 4897 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4898 break;
4899 if (vma->vm_ops && vma->vm_ops->access)
4900 ret = vma->vm_ops->access(vma, addr, buf,
4901 len, write);
4902 if (ret <= 0)
28b2ee20
RR
4903 break;
4904 bytes = ret;
dbffcd03 4905#endif
0ec76a11 4906 } else {
28b2ee20
RR
4907 bytes = len;
4908 offset = addr & (PAGE_SIZE-1);
4909 if (bytes > PAGE_SIZE-offset)
4910 bytes = PAGE_SIZE-offset;
4911
4912 maddr = kmap(page);
4913 if (write) {
4914 copy_to_user_page(vma, page, addr,
4915 maddr + offset, buf, bytes);
4916 set_page_dirty_lock(page);
4917 } else {
4918 copy_from_user_page(vma, page, addr,
4919 buf, maddr + offset, bytes);
4920 }
4921 kunmap(page);
09cbfeaf 4922 put_page(page);
0ec76a11 4923 }
0ec76a11
DH
4924 len -= bytes;
4925 buf += bytes;
4926 addr += bytes;
4927 }
d8ed45c5 4928 mmap_read_unlock(mm);
0ec76a11
DH
4929
4930 return buf - old_buf;
4931}
03252919 4932
5ddd36b9 4933/**
ae91dbfc 4934 * access_remote_vm - access another process' address space
5ddd36b9
SW
4935 * @mm: the mm_struct of the target address space
4936 * @addr: start address to access
4937 * @buf: source or destination buffer
4938 * @len: number of bytes to transfer
6347e8d5 4939 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4940 *
4941 * The caller must hold a reference on @mm.
a862f68a
MR
4942 *
4943 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4944 */
4945int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4946 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4947{
d3f5ffca 4948 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4949}
4950
206cb636
SW
4951/*
4952 * Access another process' address space.
4953 * Source/target buffer must be kernel space,
4954 * Do not walk the page table directly, use get_user_pages
4955 */
4956int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4957 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4958{
4959 struct mm_struct *mm;
4960 int ret;
4961
4962 mm = get_task_mm(tsk);
4963 if (!mm)
4964 return 0;
4965
d3f5ffca 4966 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 4967
206cb636
SW
4968 mmput(mm);
4969
4970 return ret;
4971}
fcd35857 4972EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4973
03252919
AK
4974/*
4975 * Print the name of a VMA.
4976 */
4977void print_vma_addr(char *prefix, unsigned long ip)
4978{
4979 struct mm_struct *mm = current->mm;
4980 struct vm_area_struct *vma;
4981
e8bff74a 4982 /*
0a7f682d 4983 * we might be running from an atomic context so we cannot sleep
e8bff74a 4984 */
d8ed45c5 4985 if (!mmap_read_trylock(mm))
e8bff74a
IM
4986 return;
4987
03252919
AK
4988 vma = find_vma(mm, ip);
4989 if (vma && vma->vm_file) {
4990 struct file *f = vma->vm_file;
0a7f682d 4991 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4992 if (buf) {
2fbc57c5 4993 char *p;
03252919 4994
9bf39ab2 4995 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4996 if (IS_ERR(p))
4997 p = "?";
2fbc57c5 4998 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4999 vma->vm_start,
5000 vma->vm_end - vma->vm_start);
5001 free_page((unsigned long)buf);
5002 }
5003 }
d8ed45c5 5004 mmap_read_unlock(mm);
03252919 5005}
3ee1afa3 5006
662bbcb2 5007#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5008void __might_fault(const char *file, int line)
3ee1afa3 5009{
95156f00
PZ
5010 /*
5011 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5012 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5013 * get paged out, therefore we'll never actually fault, and the
5014 * below annotations will generate false positives.
5015 */
db68ce10 5016 if (uaccess_kernel())
95156f00 5017 return;
9ec23531 5018 if (pagefault_disabled())
662bbcb2 5019 return;
9ec23531
DH
5020 __might_sleep(file, line, 0);
5021#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5022 if (current->mm)
da1c55f1 5023 might_lock_read(&current->mm->mmap_lock);
9ec23531 5024#endif
3ee1afa3 5025}
9ec23531 5026EXPORT_SYMBOL(__might_fault);
3ee1afa3 5027#endif
47ad8475
AA
5028
5029#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5030/*
5031 * Process all subpages of the specified huge page with the specified
5032 * operation. The target subpage will be processed last to keep its
5033 * cache lines hot.
5034 */
5035static inline void process_huge_page(
5036 unsigned long addr_hint, unsigned int pages_per_huge_page,
5037 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5038 void *arg)
47ad8475 5039{
c79b57e4
HY
5040 int i, n, base, l;
5041 unsigned long addr = addr_hint &
5042 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5043
c6ddfb6c 5044 /* Process target subpage last to keep its cache lines hot */
47ad8475 5045 might_sleep();
c79b57e4
HY
5046 n = (addr_hint - addr) / PAGE_SIZE;
5047 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5048 /* If target subpage in first half of huge page */
c79b57e4
HY
5049 base = 0;
5050 l = n;
c6ddfb6c 5051 /* Process subpages at the end of huge page */
c79b57e4
HY
5052 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5053 cond_resched();
c6ddfb6c 5054 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5055 }
5056 } else {
c6ddfb6c 5057 /* If target subpage in second half of huge page */
c79b57e4
HY
5058 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5059 l = pages_per_huge_page - n;
c6ddfb6c 5060 /* Process subpages at the begin of huge page */
c79b57e4
HY
5061 for (i = 0; i < base; i++) {
5062 cond_resched();
c6ddfb6c 5063 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5064 }
5065 }
5066 /*
c6ddfb6c
HY
5067 * Process remaining subpages in left-right-left-right pattern
5068 * towards the target subpage
c79b57e4
HY
5069 */
5070 for (i = 0; i < l; i++) {
5071 int left_idx = base + i;
5072 int right_idx = base + 2 * l - 1 - i;
5073
5074 cond_resched();
c6ddfb6c 5075 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5076 cond_resched();
c6ddfb6c 5077 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5078 }
5079}
5080
c6ddfb6c
HY
5081static void clear_gigantic_page(struct page *page,
5082 unsigned long addr,
5083 unsigned int pages_per_huge_page)
5084{
5085 int i;
5086 struct page *p = page;
5087
5088 might_sleep();
5089 for (i = 0; i < pages_per_huge_page;
5090 i++, p = mem_map_next(p, page, i)) {
5091 cond_resched();
5092 clear_user_highpage(p, addr + i * PAGE_SIZE);
5093 }
5094}
5095
5096static void clear_subpage(unsigned long addr, int idx, void *arg)
5097{
5098 struct page *page = arg;
5099
5100 clear_user_highpage(page + idx, addr);
5101}
5102
5103void clear_huge_page(struct page *page,
5104 unsigned long addr_hint, unsigned int pages_per_huge_page)
5105{
5106 unsigned long addr = addr_hint &
5107 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5108
5109 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5110 clear_gigantic_page(page, addr, pages_per_huge_page);
5111 return;
5112 }
5113
5114 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5115}
5116
47ad8475
AA
5117static void copy_user_gigantic_page(struct page *dst, struct page *src,
5118 unsigned long addr,
5119 struct vm_area_struct *vma,
5120 unsigned int pages_per_huge_page)
5121{
5122 int i;
5123 struct page *dst_base = dst;
5124 struct page *src_base = src;
5125
5126 for (i = 0; i < pages_per_huge_page; ) {
5127 cond_resched();
5128 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5129
5130 i++;
5131 dst = mem_map_next(dst, dst_base, i);
5132 src = mem_map_next(src, src_base, i);
5133 }
5134}
5135
c9f4cd71
HY
5136struct copy_subpage_arg {
5137 struct page *dst;
5138 struct page *src;
5139 struct vm_area_struct *vma;
5140};
5141
5142static void copy_subpage(unsigned long addr, int idx, void *arg)
5143{
5144 struct copy_subpage_arg *copy_arg = arg;
5145
5146 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5147 addr, copy_arg->vma);
5148}
5149
47ad8475 5150void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5151 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5152 unsigned int pages_per_huge_page)
5153{
c9f4cd71
HY
5154 unsigned long addr = addr_hint &
5155 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5156 struct copy_subpage_arg arg = {
5157 .dst = dst,
5158 .src = src,
5159 .vma = vma,
5160 };
47ad8475
AA
5161
5162 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5163 copy_user_gigantic_page(dst, src, addr, vma,
5164 pages_per_huge_page);
5165 return;
5166 }
5167
c9f4cd71 5168 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5169}
fa4d75c1
MK
5170
5171long copy_huge_page_from_user(struct page *dst_page,
5172 const void __user *usr_src,
810a56b9
MK
5173 unsigned int pages_per_huge_page,
5174 bool allow_pagefault)
fa4d75c1
MK
5175{
5176 void *src = (void *)usr_src;
5177 void *page_kaddr;
5178 unsigned long i, rc = 0;
5179 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5180
5181 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
5182 if (allow_pagefault)
5183 page_kaddr = kmap(dst_page + i);
5184 else
5185 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
5186 rc = copy_from_user(page_kaddr,
5187 (const void __user *)(src + i * PAGE_SIZE),
5188 PAGE_SIZE);
810a56b9
MK
5189 if (allow_pagefault)
5190 kunmap(dst_page + i);
5191 else
5192 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5193
5194 ret_val -= (PAGE_SIZE - rc);
5195 if (rc)
5196 break;
5197
5198 cond_resched();
5199 }
5200 return ret_val;
5201}
47ad8475 5202#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5203
40b64acd 5204#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5205
5206static struct kmem_cache *page_ptl_cachep;
5207
5208void __init ptlock_cache_init(void)
5209{
5210 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5211 SLAB_PANIC, NULL);
5212}
5213
539edb58 5214bool ptlock_alloc(struct page *page)
49076ec2
KS
5215{
5216 spinlock_t *ptl;
5217
b35f1819 5218 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5219 if (!ptl)
5220 return false;
539edb58 5221 page->ptl = ptl;
49076ec2
KS
5222 return true;
5223}
5224
539edb58 5225void ptlock_free(struct page *page)
49076ec2 5226{
b35f1819 5227 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5228}
5229#endif