]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memory.c
mm, THP, swap: support to reclaim swap space for THP swapped out
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
9a840895 52#include <linux/ksm.h>
1da177e4 53#include <linux/rmap.h>
b95f1b31 54#include <linux/export.h>
0ff92245 55#include <linux/delayacct.h>
1da177e4 56#include <linux/init.h>
01c8f1c4 57#include <linux/pfn_t.h>
edc79b2a 58#include <linux/writeback.h>
8a9f3ccd 59#include <linux/memcontrol.h>
cddb8a5c 60#include <linux/mmu_notifier.h>
3dc14741
HD
61#include <linux/kallsyms.h>
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
1da177e4 72
6952b61d 73#include <asm/io.h>
33a709b2 74#include <asm/mmu_context.h>
1da177e4 75#include <asm/pgalloc.h>
7c0f6ba6 76#include <linux/uaccess.h>
1da177e4
LT
77#include <asm/tlb.h>
78#include <asm/tlbflush.h>
79#include <asm/pgtable.h>
80
42b77728
JB
81#include "internal.h"
82
90572890
PZ
83#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
85#endif
86
d41dee36 87#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
88/* use the per-pgdat data instead for discontigmem - mbligh */
89unsigned long max_mapnr;
1da177e4 90EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
91
92struct page *mem_map;
1da177e4
LT
93EXPORT_SYMBOL(mem_map);
94#endif
95
1da177e4
LT
96/*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
166f61b9 103void *high_memory;
1da177e4 104EXPORT_SYMBOL(high_memory);
1da177e4 105
32a93233
IM
106/*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112int randomize_va_space __read_mostly =
113#ifdef CONFIG_COMPAT_BRK
114 1;
115#else
116 2;
117#endif
a62eaf15
AK
118
119static int __init disable_randmaps(char *s)
120{
121 randomize_va_space = 0;
9b41046c 122 return 1;
a62eaf15
AK
123}
124__setup("norandmaps", disable_randmaps);
125
62eede62 126unsigned long zero_pfn __read_mostly;
0b70068e
AB
127EXPORT_SYMBOL(zero_pfn);
128
166f61b9
TH
129unsigned long highest_memmap_pfn __read_mostly;
130
a13ea5b7
HD
131/*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134static int __init init_zero_pfn(void)
135{
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138}
139core_initcall(init_zero_pfn);
a62eaf15 140
d559db08 141
34e55232
KH
142#if defined(SPLIT_RSS_COUNTING)
143
ea48cf78 144void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
145{
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
34e55232
KH
152 }
153 }
05af2e10 154 current->rss_stat.events = 0;
34e55232
KH
155}
156
157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158{
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165}
166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169/* sync counter once per 64 page faults */
170#define TASK_RSS_EVENTS_THRESH (64)
171static void check_sync_rss_stat(struct task_struct *task)
172{
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 176 sync_mm_rss(task->mm);
34e55232 177}
9547d01b 178#else /* SPLIT_RSS_COUNTING */
34e55232
KH
179
180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183static void check_sync_rss_stat(struct task_struct *task)
184{
185}
186
9547d01b
PZ
187#endif /* SPLIT_RSS_COUNTING */
188
189#ifdef HAVE_GENERIC_MMU_GATHER
190
ca1d6c7d 191static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
192{
193 struct mmu_gather_batch *batch;
194
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
ca1d6c7d 198 return true;
9547d01b
PZ
199 }
200
53a59fc6 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 202 return false;
53a59fc6 203
9547d01b
PZ
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
ca1d6c7d 206 return false;
9547d01b 207
53a59fc6 208 tlb->batch_count++;
9547d01b
PZ
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
212
213 tlb->active->next = batch;
214 tlb->active = batch;
215
ca1d6c7d 216 return true;
9547d01b
PZ
217}
218
56236a59
MK
219void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
9547d01b
PZ
221{
222 tlb->mm = mm;
223
2b047252
LT
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
1de14c3c 226 tlb->need_flush_all = 0;
9547d01b
PZ
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
53a59fc6 231 tlb->batch_count = 0;
9547d01b
PZ
232
233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235#endif
e77b0852 236 tlb->page_size = 0;
fb7332a9
WD
237
238 __tlb_reset_range(tlb);
9547d01b
PZ
239}
240
1cf35d47 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 242{
721c21c1
WD
243 if (!tlb->end)
244 return;
245
9547d01b 246 tlb_flush(tlb);
34ee645e 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
34e55232 250#endif
fb7332a9 251 __tlb_reset_range(tlb);
1cf35d47
LT
252}
253
254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255{
256 struct mmu_gather_batch *batch;
34e55232 257
721c21c1 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263}
264
1cf35d47
LT
265void tlb_flush_mmu(struct mmu_gather *tlb)
266{
1cf35d47
LT
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269}
270
9547d01b
PZ
271/* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
56236a59 275void arch_tlb_finish_mmu(struct mmu_gather *tlb,
99baac21 276 unsigned long start, unsigned long end, bool force)
9547d01b
PZ
277{
278 struct mmu_gather_batch *batch, *next;
279
99baac21
MK
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
282
9547d01b
PZ
283 tlb_flush_mmu(tlb);
284
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
287
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
291 }
292 tlb->local.next = NULL;
293}
294
295/* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 300 *returns true if the caller should flush.
9547d01b 301 */
e77b0852 302bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
9547d01b
PZ
303{
304 struct mmu_gather_batch *batch;
305
fb7332a9 306 VM_BUG_ON(!tlb->end);
692a68c1 307 VM_WARN_ON(tlb->page_size != page_size);
e77b0852 308
9547d01b 309 batch = tlb->active;
692a68c1
AK
310 /*
311 * Add the page and check if we are full. If so
312 * force a flush.
313 */
314 batch->pages[batch->nr++] = page;
9547d01b
PZ
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
e9d55e15 317 return true;
0b43c3aa 318 batch = tlb->active;
9547d01b 319 }
309381fe 320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 321
e9d55e15 322 return false;
9547d01b
PZ
323}
324
325#endif /* HAVE_GENERIC_MMU_GATHER */
326
26723911
PZ
327#ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329/*
330 * See the comment near struct mmu_table_batch.
331 */
332
333static void tlb_remove_table_smp_sync(void *arg)
334{
335 /* Simply deliver the interrupt */
336}
337
338static void tlb_remove_table_one(void *table)
339{
340 /*
341 * This isn't an RCU grace period and hence the page-tables cannot be
342 * assumed to be actually RCU-freed.
343 *
344 * It is however sufficient for software page-table walkers that rely on
345 * IRQ disabling. See the comment near struct mmu_table_batch.
346 */
347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 __tlb_remove_table(table);
349}
350
351static void tlb_remove_table_rcu(struct rcu_head *head)
352{
353 struct mmu_table_batch *batch;
354 int i;
355
356 batch = container_of(head, struct mmu_table_batch, rcu);
357
358 for (i = 0; i < batch->nr; i++)
359 __tlb_remove_table(batch->tables[i]);
360
361 free_page((unsigned long)batch);
362}
363
364void tlb_table_flush(struct mmu_gather *tlb)
365{
366 struct mmu_table_batch **batch = &tlb->batch;
367
368 if (*batch) {
369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 *batch = NULL;
371 }
372}
373
374void tlb_remove_table(struct mmu_gather *tlb, void *table)
375{
376 struct mmu_table_batch **batch = &tlb->batch;
377
26723911
PZ
378 /*
379 * When there's less then two users of this mm there cannot be a
380 * concurrent page-table walk.
381 */
382 if (atomic_read(&tlb->mm->mm_users) < 2) {
383 __tlb_remove_table(table);
384 return;
385 }
386
387 if (*batch == NULL) {
388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 if (*batch == NULL) {
390 tlb_remove_table_one(table);
391 return;
392 }
393 (*batch)->nr = 0;
394 }
395 (*batch)->tables[(*batch)->nr++] = table;
396 if ((*batch)->nr == MAX_TABLE_BATCH)
397 tlb_table_flush(tlb);
398}
399
9547d01b 400#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 401
56236a59
MK
402/* tlb_gather_mmu
403 * Called to initialize an (on-stack) mmu_gather structure for page-table
404 * tear-down from @mm. The @fullmm argument is used when @mm is without
405 * users and we're going to destroy the full address space (exit/execve).
406 */
407void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
408 unsigned long start, unsigned long end)
409{
410 arch_tlb_gather_mmu(tlb, mm, start, end);
99baac21 411 inc_tlb_flush_pending(tlb->mm);
56236a59
MK
412}
413
414void tlb_finish_mmu(struct mmu_gather *tlb,
415 unsigned long start, unsigned long end)
416{
99baac21
MK
417 /*
418 * If there are parallel threads are doing PTE changes on same range
419 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
420 * flush by batching, a thread has stable TLB entry can fail to flush
421 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
422 * forcefully if we detect parallel PTE batching threads.
423 */
424 bool force = mm_tlb_flush_nested(tlb->mm);
425
426 arch_tlb_finish_mmu(tlb, start, end, force);
427 dec_tlb_flush_pending(tlb->mm);
56236a59
MK
428}
429
1da177e4
LT
430/*
431 * Note: this doesn't free the actual pages themselves. That
432 * has been handled earlier when unmapping all the memory regions.
433 */
9e1b32ca
BH
434static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
435 unsigned long addr)
1da177e4 436{
2f569afd 437 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 438 pmd_clear(pmd);
9e1b32ca 439 pte_free_tlb(tlb, token, addr);
e1f56c89 440 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
441}
442
e0da382c
HD
443static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
444 unsigned long addr, unsigned long end,
445 unsigned long floor, unsigned long ceiling)
1da177e4
LT
446{
447 pmd_t *pmd;
448 unsigned long next;
e0da382c 449 unsigned long start;
1da177e4 450
e0da382c 451 start = addr;
1da177e4 452 pmd = pmd_offset(pud, addr);
1da177e4
LT
453 do {
454 next = pmd_addr_end(addr, end);
455 if (pmd_none_or_clear_bad(pmd))
456 continue;
9e1b32ca 457 free_pte_range(tlb, pmd, addr);
1da177e4
LT
458 } while (pmd++, addr = next, addr != end);
459
e0da382c
HD
460 start &= PUD_MASK;
461 if (start < floor)
462 return;
463 if (ceiling) {
464 ceiling &= PUD_MASK;
465 if (!ceiling)
466 return;
1da177e4 467 }
e0da382c
HD
468 if (end - 1 > ceiling - 1)
469 return;
470
471 pmd = pmd_offset(pud, start);
472 pud_clear(pud);
9e1b32ca 473 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 474 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
475}
476
c2febafc 477static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
478 unsigned long addr, unsigned long end,
479 unsigned long floor, unsigned long ceiling)
1da177e4
LT
480{
481 pud_t *pud;
482 unsigned long next;
e0da382c 483 unsigned long start;
1da177e4 484
e0da382c 485 start = addr;
c2febafc 486 pud = pud_offset(p4d, addr);
1da177e4
LT
487 do {
488 next = pud_addr_end(addr, end);
489 if (pud_none_or_clear_bad(pud))
490 continue;
e0da382c 491 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
492 } while (pud++, addr = next, addr != end);
493
c2febafc
KS
494 start &= P4D_MASK;
495 if (start < floor)
496 return;
497 if (ceiling) {
498 ceiling &= P4D_MASK;
499 if (!ceiling)
500 return;
501 }
502 if (end - 1 > ceiling - 1)
503 return;
504
505 pud = pud_offset(p4d, start);
506 p4d_clear(p4d);
507 pud_free_tlb(tlb, pud, start);
508}
509
510static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
511 unsigned long addr, unsigned long end,
512 unsigned long floor, unsigned long ceiling)
513{
514 p4d_t *p4d;
515 unsigned long next;
516 unsigned long start;
517
518 start = addr;
519 p4d = p4d_offset(pgd, addr);
520 do {
521 next = p4d_addr_end(addr, end);
522 if (p4d_none_or_clear_bad(p4d))
523 continue;
524 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
525 } while (p4d++, addr = next, addr != end);
526
e0da382c
HD
527 start &= PGDIR_MASK;
528 if (start < floor)
529 return;
530 if (ceiling) {
531 ceiling &= PGDIR_MASK;
532 if (!ceiling)
533 return;
1da177e4 534 }
e0da382c
HD
535 if (end - 1 > ceiling - 1)
536 return;
537
c2febafc 538 p4d = p4d_offset(pgd, start);
e0da382c 539 pgd_clear(pgd);
c2febafc 540 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
541}
542
543/*
e0da382c 544 * This function frees user-level page tables of a process.
1da177e4 545 */
42b77728 546void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
547 unsigned long addr, unsigned long end,
548 unsigned long floor, unsigned long ceiling)
1da177e4
LT
549{
550 pgd_t *pgd;
551 unsigned long next;
e0da382c
HD
552
553 /*
554 * The next few lines have given us lots of grief...
555 *
556 * Why are we testing PMD* at this top level? Because often
557 * there will be no work to do at all, and we'd prefer not to
558 * go all the way down to the bottom just to discover that.
559 *
560 * Why all these "- 1"s? Because 0 represents both the bottom
561 * of the address space and the top of it (using -1 for the
562 * top wouldn't help much: the masks would do the wrong thing).
563 * The rule is that addr 0 and floor 0 refer to the bottom of
564 * the address space, but end 0 and ceiling 0 refer to the top
565 * Comparisons need to use "end - 1" and "ceiling - 1" (though
566 * that end 0 case should be mythical).
567 *
568 * Wherever addr is brought up or ceiling brought down, we must
569 * be careful to reject "the opposite 0" before it confuses the
570 * subsequent tests. But what about where end is brought down
571 * by PMD_SIZE below? no, end can't go down to 0 there.
572 *
573 * Whereas we round start (addr) and ceiling down, by different
574 * masks at different levels, in order to test whether a table
575 * now has no other vmas using it, so can be freed, we don't
576 * bother to round floor or end up - the tests don't need that.
577 */
1da177e4 578
e0da382c
HD
579 addr &= PMD_MASK;
580 if (addr < floor) {
581 addr += PMD_SIZE;
582 if (!addr)
583 return;
584 }
585 if (ceiling) {
586 ceiling &= PMD_MASK;
587 if (!ceiling)
588 return;
589 }
590 if (end - 1 > ceiling - 1)
591 end -= PMD_SIZE;
592 if (addr > end - 1)
593 return;
07e32661
AK
594 /*
595 * We add page table cache pages with PAGE_SIZE,
596 * (see pte_free_tlb()), flush the tlb if we need
597 */
598 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 599 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
600 do {
601 next = pgd_addr_end(addr, end);
602 if (pgd_none_or_clear_bad(pgd))
603 continue;
c2febafc 604 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 605 } while (pgd++, addr = next, addr != end);
e0da382c
HD
606}
607
42b77728 608void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 609 unsigned long floor, unsigned long ceiling)
e0da382c
HD
610{
611 while (vma) {
612 struct vm_area_struct *next = vma->vm_next;
613 unsigned long addr = vma->vm_start;
614
8f4f8c16 615 /*
25d9e2d1 616 * Hide vma from rmap and truncate_pagecache before freeing
617 * pgtables
8f4f8c16 618 */
5beb4930 619 unlink_anon_vmas(vma);
8f4f8c16
HD
620 unlink_file_vma(vma);
621
9da61aef 622 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 623 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 624 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
625 } else {
626 /*
627 * Optimization: gather nearby vmas into one call down
628 */
629 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 630 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
631 vma = next;
632 next = vma->vm_next;
5beb4930 633 unlink_anon_vmas(vma);
8f4f8c16 634 unlink_file_vma(vma);
3bf5ee95
HD
635 }
636 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 637 floor, next ? next->vm_start : ceiling);
3bf5ee95 638 }
e0da382c
HD
639 vma = next;
640 }
1da177e4
LT
641}
642
3ed3a4f0 643int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 644{
c4088ebd 645 spinlock_t *ptl;
2f569afd 646 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
647 if (!new)
648 return -ENOMEM;
649
362a61ad
NP
650 /*
651 * Ensure all pte setup (eg. pte page lock and page clearing) are
652 * visible before the pte is made visible to other CPUs by being
653 * put into page tables.
654 *
655 * The other side of the story is the pointer chasing in the page
656 * table walking code (when walking the page table without locking;
657 * ie. most of the time). Fortunately, these data accesses consist
658 * of a chain of data-dependent loads, meaning most CPUs (alpha
659 * being the notable exception) will already guarantee loads are
660 * seen in-order. See the alpha page table accessors for the
661 * smp_read_barrier_depends() barriers in page table walking code.
662 */
663 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
664
c4088ebd 665 ptl = pmd_lock(mm, pmd);
8ac1f832 666 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 667 atomic_long_inc(&mm->nr_ptes);
1da177e4 668 pmd_populate(mm, pmd, new);
2f569afd 669 new = NULL;
4b471e88 670 }
c4088ebd 671 spin_unlock(ptl);
2f569afd
MS
672 if (new)
673 pte_free(mm, new);
1bb3630e 674 return 0;
1da177e4
LT
675}
676
1bb3630e 677int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 678{
1bb3630e
HD
679 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
680 if (!new)
681 return -ENOMEM;
682
362a61ad
NP
683 smp_wmb(); /* See comment in __pte_alloc */
684
1bb3630e 685 spin_lock(&init_mm.page_table_lock);
8ac1f832 686 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 687 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 688 new = NULL;
4b471e88 689 }
1bb3630e 690 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
691 if (new)
692 pte_free_kernel(&init_mm, new);
1bb3630e 693 return 0;
1da177e4
LT
694}
695
d559db08
KH
696static inline void init_rss_vec(int *rss)
697{
698 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
699}
700
701static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 702{
d559db08
KH
703 int i;
704
34e55232 705 if (current->mm == mm)
05af2e10 706 sync_mm_rss(mm);
d559db08
KH
707 for (i = 0; i < NR_MM_COUNTERS; i++)
708 if (rss[i])
709 add_mm_counter(mm, i, rss[i]);
ae859762
HD
710}
711
b5810039 712/*
6aab341e
LT
713 * This function is called to print an error when a bad pte
714 * is found. For example, we might have a PFN-mapped pte in
715 * a region that doesn't allow it.
b5810039
NP
716 *
717 * The calling function must still handle the error.
718 */
3dc14741
HD
719static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
720 pte_t pte, struct page *page)
b5810039 721{
3dc14741 722 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
723 p4d_t *p4d = p4d_offset(pgd, addr);
724 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
725 pmd_t *pmd = pmd_offset(pud, addr);
726 struct address_space *mapping;
727 pgoff_t index;
d936cf9b
HD
728 static unsigned long resume;
729 static unsigned long nr_shown;
730 static unsigned long nr_unshown;
731
732 /*
733 * Allow a burst of 60 reports, then keep quiet for that minute;
734 * or allow a steady drip of one report per second.
735 */
736 if (nr_shown == 60) {
737 if (time_before(jiffies, resume)) {
738 nr_unshown++;
739 return;
740 }
741 if (nr_unshown) {
1170532b
JP
742 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
743 nr_unshown);
d936cf9b
HD
744 nr_unshown = 0;
745 }
746 nr_shown = 0;
747 }
748 if (nr_shown++ == 0)
749 resume = jiffies + 60 * HZ;
3dc14741
HD
750
751 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
752 index = linear_page_index(vma, addr);
753
1170532b
JP
754 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
755 current->comm,
756 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 757 if (page)
f0b791a3 758 dump_page(page, "bad pte");
1170532b
JP
759 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
760 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
3dc14741
HD
761 /*
762 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
763 */
2682582a
KK
764 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
765 vma->vm_file,
766 vma->vm_ops ? vma->vm_ops->fault : NULL,
767 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
768 mapping ? mapping->a_ops->readpage : NULL);
b5810039 769 dump_stack();
373d4d09 770 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
771}
772
ee498ed7 773/*
7e675137 774 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 775 *
7e675137
NP
776 * "Special" mappings do not wish to be associated with a "struct page" (either
777 * it doesn't exist, or it exists but they don't want to touch it). In this
778 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 779 *
7e675137
NP
780 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
781 * pte bit, in which case this function is trivial. Secondly, an architecture
782 * may not have a spare pte bit, which requires a more complicated scheme,
783 * described below.
784 *
785 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
786 * special mapping (even if there are underlying and valid "struct pages").
787 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 788 *
b379d790
JH
789 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
790 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
791 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
792 * mapping will always honor the rule
6aab341e
LT
793 *
794 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
795 *
7e675137
NP
796 * And for normal mappings this is false.
797 *
798 * This restricts such mappings to be a linear translation from virtual address
799 * to pfn. To get around this restriction, we allow arbitrary mappings so long
800 * as the vma is not a COW mapping; in that case, we know that all ptes are
801 * special (because none can have been COWed).
b379d790 802 *
b379d790 803 *
7e675137 804 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
805 *
806 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
807 * page" backing, however the difference is that _all_ pages with a struct
808 * page (that is, those where pfn_valid is true) are refcounted and considered
809 * normal pages by the VM. The disadvantage is that pages are refcounted
810 * (which can be slower and simply not an option for some PFNMAP users). The
811 * advantage is that we don't have to follow the strict linearity rule of
812 * PFNMAP mappings in order to support COWable mappings.
813 *
ee498ed7 814 */
7e675137
NP
815#ifdef __HAVE_ARCH_PTE_SPECIAL
816# define HAVE_PTE_SPECIAL 1
817#else
818# define HAVE_PTE_SPECIAL 0
819#endif
820struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821 pte_t pte)
ee498ed7 822{
22b31eec 823 unsigned long pfn = pte_pfn(pte);
7e675137
NP
824
825 if (HAVE_PTE_SPECIAL) {
b38af472 826 if (likely(!pte_special(pte)))
22b31eec 827 goto check_pfn;
667a0a06
DV
828 if (vma->vm_ops && vma->vm_ops->find_special_page)
829 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
830 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831 return NULL;
62eede62 832 if (!is_zero_pfn(pfn))
22b31eec 833 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
834 return NULL;
835 }
836
837 /* !HAVE_PTE_SPECIAL case follows: */
838
b379d790
JH
839 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
840 if (vma->vm_flags & VM_MIXEDMAP) {
841 if (!pfn_valid(pfn))
842 return NULL;
843 goto out;
844 } else {
7e675137
NP
845 unsigned long off;
846 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
847 if (pfn == vma->vm_pgoff + off)
848 return NULL;
849 if (!is_cow_mapping(vma->vm_flags))
850 return NULL;
851 }
6aab341e
LT
852 }
853
b38af472
HD
854 if (is_zero_pfn(pfn))
855 return NULL;
22b31eec
HD
856check_pfn:
857 if (unlikely(pfn > highest_memmap_pfn)) {
858 print_bad_pte(vma, addr, pte, NULL);
859 return NULL;
860 }
6aab341e
LT
861
862 /*
7e675137 863 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 864 * eg. VDSO mappings can cause them to exist.
6aab341e 865 */
b379d790 866out:
6aab341e 867 return pfn_to_page(pfn);
ee498ed7
HD
868}
869
28093f9f
GS
870#ifdef CONFIG_TRANSPARENT_HUGEPAGE
871struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
872 pmd_t pmd)
873{
874 unsigned long pfn = pmd_pfn(pmd);
875
876 /*
877 * There is no pmd_special() but there may be special pmds, e.g.
878 * in a direct-access (dax) mapping, so let's just replicate the
879 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
880 */
881 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
882 if (vma->vm_flags & VM_MIXEDMAP) {
883 if (!pfn_valid(pfn))
884 return NULL;
885 goto out;
886 } else {
887 unsigned long off;
888 off = (addr - vma->vm_start) >> PAGE_SHIFT;
889 if (pfn == vma->vm_pgoff + off)
890 return NULL;
891 if (!is_cow_mapping(vma->vm_flags))
892 return NULL;
893 }
894 }
895
896 if (is_zero_pfn(pfn))
897 return NULL;
898 if (unlikely(pfn > highest_memmap_pfn))
899 return NULL;
900
901 /*
902 * NOTE! We still have PageReserved() pages in the page tables.
903 * eg. VDSO mappings can cause them to exist.
904 */
905out:
906 return pfn_to_page(pfn);
907}
908#endif
909
1da177e4
LT
910/*
911 * copy one vm_area from one task to the other. Assumes the page tables
912 * already present in the new task to be cleared in the whole range
913 * covered by this vma.
1da177e4
LT
914 */
915
570a335b 916static inline unsigned long
1da177e4 917copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 918 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 919 unsigned long addr, int *rss)
1da177e4 920{
b5810039 921 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
922 pte_t pte = *src_pte;
923 struct page *page;
1da177e4
LT
924
925 /* pte contains position in swap or file, so copy. */
926 if (unlikely(!pte_present(pte))) {
0661a336
KS
927 swp_entry_t entry = pte_to_swp_entry(pte);
928
929 if (likely(!non_swap_entry(entry))) {
930 if (swap_duplicate(entry) < 0)
931 return entry.val;
932
933 /* make sure dst_mm is on swapoff's mmlist. */
934 if (unlikely(list_empty(&dst_mm->mmlist))) {
935 spin_lock(&mmlist_lock);
936 if (list_empty(&dst_mm->mmlist))
937 list_add(&dst_mm->mmlist,
938 &src_mm->mmlist);
939 spin_unlock(&mmlist_lock);
940 }
941 rss[MM_SWAPENTS]++;
942 } else if (is_migration_entry(entry)) {
943 page = migration_entry_to_page(entry);
944
eca56ff9 945 rss[mm_counter(page)]++;
0661a336
KS
946
947 if (is_write_migration_entry(entry) &&
948 is_cow_mapping(vm_flags)) {
949 /*
950 * COW mappings require pages in both
951 * parent and child to be set to read.
952 */
953 make_migration_entry_read(&entry);
954 pte = swp_entry_to_pte(entry);
955 if (pte_swp_soft_dirty(*src_pte))
956 pte = pte_swp_mksoft_dirty(pte);
957 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 958 }
1da177e4 959 }
ae859762 960 goto out_set_pte;
1da177e4
LT
961 }
962
1da177e4
LT
963 /*
964 * If it's a COW mapping, write protect it both
965 * in the parent and the child
966 */
67121172 967 if (is_cow_mapping(vm_flags)) {
1da177e4 968 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 969 pte = pte_wrprotect(pte);
1da177e4
LT
970 }
971
972 /*
973 * If it's a shared mapping, mark it clean in
974 * the child
975 */
976 if (vm_flags & VM_SHARED)
977 pte = pte_mkclean(pte);
978 pte = pte_mkold(pte);
6aab341e
LT
979
980 page = vm_normal_page(vma, addr, pte);
981 if (page) {
982 get_page(page);
53f9263b 983 page_dup_rmap(page, false);
eca56ff9 984 rss[mm_counter(page)]++;
6aab341e 985 }
ae859762
HD
986
987out_set_pte:
988 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 989 return 0;
1da177e4
LT
990}
991
21bda264 992static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
993 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
994 unsigned long addr, unsigned long end)
1da177e4 995{
c36987e2 996 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 997 pte_t *src_pte, *dst_pte;
c74df32c 998 spinlock_t *src_ptl, *dst_ptl;
e040f218 999 int progress = 0;
d559db08 1000 int rss[NR_MM_COUNTERS];
570a335b 1001 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
1002
1003again:
d559db08
KH
1004 init_rss_vec(rss);
1005
c74df32c 1006 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
1007 if (!dst_pte)
1008 return -ENOMEM;
ece0e2b6 1009 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1010 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1011 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1012 orig_src_pte = src_pte;
1013 orig_dst_pte = dst_pte;
6606c3e0 1014 arch_enter_lazy_mmu_mode();
1da177e4 1015
1da177e4
LT
1016 do {
1017 /*
1018 * We are holding two locks at this point - either of them
1019 * could generate latencies in another task on another CPU.
1020 */
e040f218
HD
1021 if (progress >= 32) {
1022 progress = 0;
1023 if (need_resched() ||
95c354fe 1024 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1025 break;
1026 }
1da177e4
LT
1027 if (pte_none(*src_pte)) {
1028 progress++;
1029 continue;
1030 }
570a335b
HD
1031 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1032 vma, addr, rss);
1033 if (entry.val)
1034 break;
1da177e4
LT
1035 progress += 8;
1036 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1037
6606c3e0 1038 arch_leave_lazy_mmu_mode();
c74df32c 1039 spin_unlock(src_ptl);
ece0e2b6 1040 pte_unmap(orig_src_pte);
d559db08 1041 add_mm_rss_vec(dst_mm, rss);
c36987e2 1042 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1043 cond_resched();
570a335b
HD
1044
1045 if (entry.val) {
1046 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1047 return -ENOMEM;
1048 progress = 0;
1049 }
1da177e4
LT
1050 if (addr != end)
1051 goto again;
1052 return 0;
1053}
1054
1055static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1056 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1057 unsigned long addr, unsigned long end)
1058{
1059 pmd_t *src_pmd, *dst_pmd;
1060 unsigned long next;
1061
1062 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1063 if (!dst_pmd)
1064 return -ENOMEM;
1065 src_pmd = pmd_offset(src_pud, addr);
1066 do {
1067 next = pmd_addr_end(addr, end);
5c7fb56e 1068 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 1069 int err;
a00cc7d9 1070 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
1071 err = copy_huge_pmd(dst_mm, src_mm,
1072 dst_pmd, src_pmd, addr, vma);
1073 if (err == -ENOMEM)
1074 return -ENOMEM;
1075 if (!err)
1076 continue;
1077 /* fall through */
1078 }
1da177e4
LT
1079 if (pmd_none_or_clear_bad(src_pmd))
1080 continue;
1081 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1082 vma, addr, next))
1083 return -ENOMEM;
1084 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1085 return 0;
1086}
1087
1088static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 1089 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
1090 unsigned long addr, unsigned long end)
1091{
1092 pud_t *src_pud, *dst_pud;
1093 unsigned long next;
1094
c2febafc 1095 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1096 if (!dst_pud)
1097 return -ENOMEM;
c2febafc 1098 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1099 do {
1100 next = pud_addr_end(addr, end);
a00cc7d9
MW
1101 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1102 int err;
1103
1104 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1105 err = copy_huge_pud(dst_mm, src_mm,
1106 dst_pud, src_pud, addr, vma);
1107 if (err == -ENOMEM)
1108 return -ENOMEM;
1109 if (!err)
1110 continue;
1111 /* fall through */
1112 }
1da177e4
LT
1113 if (pud_none_or_clear_bad(src_pud))
1114 continue;
1115 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1116 vma, addr, next))
1117 return -ENOMEM;
1118 } while (dst_pud++, src_pud++, addr = next, addr != end);
1119 return 0;
1120}
1121
c2febafc
KS
1122static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1123 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1124 unsigned long addr, unsigned long end)
1125{
1126 p4d_t *src_p4d, *dst_p4d;
1127 unsigned long next;
1128
1129 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1130 if (!dst_p4d)
1131 return -ENOMEM;
1132 src_p4d = p4d_offset(src_pgd, addr);
1133 do {
1134 next = p4d_addr_end(addr, end);
1135 if (p4d_none_or_clear_bad(src_p4d))
1136 continue;
1137 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1138 vma, addr, next))
1139 return -ENOMEM;
1140 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1141 return 0;
1142}
1143
1da177e4
LT
1144int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1145 struct vm_area_struct *vma)
1146{
1147 pgd_t *src_pgd, *dst_pgd;
1148 unsigned long next;
1149 unsigned long addr = vma->vm_start;
1150 unsigned long end = vma->vm_end;
2ec74c3e
SG
1151 unsigned long mmun_start; /* For mmu_notifiers */
1152 unsigned long mmun_end; /* For mmu_notifiers */
1153 bool is_cow;
cddb8a5c 1154 int ret;
1da177e4 1155
d992895b
NP
1156 /*
1157 * Don't copy ptes where a page fault will fill them correctly.
1158 * Fork becomes much lighter when there are big shared or private
1159 * readonly mappings. The tradeoff is that copy_page_range is more
1160 * efficient than faulting.
1161 */
0661a336
KS
1162 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1163 !vma->anon_vma)
1164 return 0;
d992895b 1165
1da177e4
LT
1166 if (is_vm_hugetlb_page(vma))
1167 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1168
b3b9c293 1169 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1170 /*
1171 * We do not free on error cases below as remove_vma
1172 * gets called on error from higher level routine
1173 */
5180da41 1174 ret = track_pfn_copy(vma);
2ab64037 1175 if (ret)
1176 return ret;
1177 }
1178
cddb8a5c
AA
1179 /*
1180 * We need to invalidate the secondary MMU mappings only when
1181 * there could be a permission downgrade on the ptes of the
1182 * parent mm. And a permission downgrade will only happen if
1183 * is_cow_mapping() returns true.
1184 */
2ec74c3e
SG
1185 is_cow = is_cow_mapping(vma->vm_flags);
1186 mmun_start = addr;
1187 mmun_end = end;
1188 if (is_cow)
1189 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1190 mmun_end);
cddb8a5c
AA
1191
1192 ret = 0;
1da177e4
LT
1193 dst_pgd = pgd_offset(dst_mm, addr);
1194 src_pgd = pgd_offset(src_mm, addr);
1195 do {
1196 next = pgd_addr_end(addr, end);
1197 if (pgd_none_or_clear_bad(src_pgd))
1198 continue;
c2febafc 1199 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1200 vma, addr, next))) {
1201 ret = -ENOMEM;
1202 break;
1203 }
1da177e4 1204 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1205
2ec74c3e
SG
1206 if (is_cow)
1207 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1208 return ret;
1da177e4
LT
1209}
1210
51c6f666 1211static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1212 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1213 unsigned long addr, unsigned long end,
97a89413 1214 struct zap_details *details)
1da177e4 1215{
b5810039 1216 struct mm_struct *mm = tlb->mm;
d16dfc55 1217 int force_flush = 0;
d559db08 1218 int rss[NR_MM_COUNTERS];
97a89413 1219 spinlock_t *ptl;
5f1a1907 1220 pte_t *start_pte;
97a89413 1221 pte_t *pte;
8a5f14a2 1222 swp_entry_t entry;
d559db08 1223
07e32661 1224 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1225again:
e303297e 1226 init_rss_vec(rss);
5f1a1907
SR
1227 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1228 pte = start_pte;
3ea27719 1229 flush_tlb_batched_pending(mm);
6606c3e0 1230 arch_enter_lazy_mmu_mode();
1da177e4
LT
1231 do {
1232 pte_t ptent = *pte;
166f61b9 1233 if (pte_none(ptent))
1da177e4 1234 continue;
6f5e6b9e 1235
1da177e4 1236 if (pte_present(ptent)) {
ee498ed7 1237 struct page *page;
51c6f666 1238
6aab341e 1239 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1240 if (unlikely(details) && page) {
1241 /*
1242 * unmap_shared_mapping_pages() wants to
1243 * invalidate cache without truncating:
1244 * unmap shared but keep private pages.
1245 */
1246 if (details->check_mapping &&
800d8c63 1247 details->check_mapping != page_rmapping(page))
1da177e4 1248 continue;
1da177e4 1249 }
b5810039 1250 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1251 tlb->fullmm);
1da177e4
LT
1252 tlb_remove_tlb_entry(tlb, pte, addr);
1253 if (unlikely(!page))
1254 continue;
eca56ff9
JM
1255
1256 if (!PageAnon(page)) {
1cf35d47
LT
1257 if (pte_dirty(ptent)) {
1258 force_flush = 1;
6237bcd9 1259 set_page_dirty(page);
1cf35d47 1260 }
4917e5d0 1261 if (pte_young(ptent) &&
64363aad 1262 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1263 mark_page_accessed(page);
6237bcd9 1264 }
eca56ff9 1265 rss[mm_counter(page)]--;
d281ee61 1266 page_remove_rmap(page, false);
3dc14741
HD
1267 if (unlikely(page_mapcount(page) < 0))
1268 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1269 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1270 force_flush = 1;
ce9ec37b 1271 addr += PAGE_SIZE;
d16dfc55 1272 break;
1cf35d47 1273 }
1da177e4
LT
1274 continue;
1275 }
3e8715fd
KS
1276 /* If details->check_mapping, we leave swap entries. */
1277 if (unlikely(details))
1da177e4 1278 continue;
b084d435 1279
8a5f14a2
KS
1280 entry = pte_to_swp_entry(ptent);
1281 if (!non_swap_entry(entry))
1282 rss[MM_SWAPENTS]--;
1283 else if (is_migration_entry(entry)) {
1284 struct page *page;
9f9f1acd 1285
8a5f14a2 1286 page = migration_entry_to_page(entry);
eca56ff9 1287 rss[mm_counter(page)]--;
b084d435 1288 }
8a5f14a2
KS
1289 if (unlikely(!free_swap_and_cache(entry)))
1290 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1291 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1292 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1293
d559db08 1294 add_mm_rss_vec(mm, rss);
6606c3e0 1295 arch_leave_lazy_mmu_mode();
51c6f666 1296
1cf35d47 1297 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1298 if (force_flush)
1cf35d47 1299 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1300 pte_unmap_unlock(start_pte, ptl);
1301
1302 /*
1303 * If we forced a TLB flush (either due to running out of
1304 * batch buffers or because we needed to flush dirty TLB
1305 * entries before releasing the ptl), free the batched
1306 * memory too. Restart if we didn't do everything.
1307 */
1308 if (force_flush) {
1309 force_flush = 0;
1310 tlb_flush_mmu_free(tlb);
2b047252 1311 if (addr != end)
d16dfc55
PZ
1312 goto again;
1313 }
1314
51c6f666 1315 return addr;
1da177e4
LT
1316}
1317
51c6f666 1318static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1319 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1320 unsigned long addr, unsigned long end,
97a89413 1321 struct zap_details *details)
1da177e4
LT
1322{
1323 pmd_t *pmd;
1324 unsigned long next;
1325
1326 pmd = pmd_offset(pud, addr);
1327 do {
1328 next = pmd_addr_end(addr, end);
5c7fb56e 1329 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1330 if (next - addr != HPAGE_PMD_SIZE) {
68428398
HD
1331 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1332 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
fd60775a 1333 __split_huge_pmd(vma, pmd, addr, false, NULL);
f21760b1 1334 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1335 goto next;
71e3aac0
AA
1336 /* fall through */
1337 }
1a5a9906
AA
1338 /*
1339 * Here there can be other concurrent MADV_DONTNEED or
1340 * trans huge page faults running, and if the pmd is
1341 * none or trans huge it can change under us. This is
1342 * because MADV_DONTNEED holds the mmap_sem in read
1343 * mode.
1344 */
1345 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1346 goto next;
97a89413 1347 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1348next:
97a89413
PZ
1349 cond_resched();
1350 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1351
1352 return addr;
1da177e4
LT
1353}
1354
51c6f666 1355static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1356 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1357 unsigned long addr, unsigned long end,
97a89413 1358 struct zap_details *details)
1da177e4
LT
1359{
1360 pud_t *pud;
1361 unsigned long next;
1362
c2febafc 1363 pud = pud_offset(p4d, addr);
1da177e4
LT
1364 do {
1365 next = pud_addr_end(addr, end);
a00cc7d9
MW
1366 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1367 if (next - addr != HPAGE_PUD_SIZE) {
1368 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1369 split_huge_pud(vma, pud, addr);
1370 } else if (zap_huge_pud(tlb, vma, pud, addr))
1371 goto next;
1372 /* fall through */
1373 }
97a89413 1374 if (pud_none_or_clear_bad(pud))
1da177e4 1375 continue;
97a89413 1376 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1377next:
1378 cond_resched();
97a89413 1379 } while (pud++, addr = next, addr != end);
51c6f666
RH
1380
1381 return addr;
1da177e4
LT
1382}
1383
c2febafc
KS
1384static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1385 struct vm_area_struct *vma, pgd_t *pgd,
1386 unsigned long addr, unsigned long end,
1387 struct zap_details *details)
1388{
1389 p4d_t *p4d;
1390 unsigned long next;
1391
1392 p4d = p4d_offset(pgd, addr);
1393 do {
1394 next = p4d_addr_end(addr, end);
1395 if (p4d_none_or_clear_bad(p4d))
1396 continue;
1397 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1398 } while (p4d++, addr = next, addr != end);
1399
1400 return addr;
1401}
1402
aac45363 1403void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1404 struct vm_area_struct *vma,
1405 unsigned long addr, unsigned long end,
1406 struct zap_details *details)
1da177e4
LT
1407{
1408 pgd_t *pgd;
1409 unsigned long next;
1410
1da177e4
LT
1411 BUG_ON(addr >= end);
1412 tlb_start_vma(tlb, vma);
1413 pgd = pgd_offset(vma->vm_mm, addr);
1414 do {
1415 next = pgd_addr_end(addr, end);
97a89413 1416 if (pgd_none_or_clear_bad(pgd))
1da177e4 1417 continue;
c2febafc 1418 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1419 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1420 tlb_end_vma(tlb, vma);
1421}
51c6f666 1422
f5cc4eef
AV
1423
1424static void unmap_single_vma(struct mmu_gather *tlb,
1425 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1426 unsigned long end_addr,
f5cc4eef
AV
1427 struct zap_details *details)
1428{
1429 unsigned long start = max(vma->vm_start, start_addr);
1430 unsigned long end;
1431
1432 if (start >= vma->vm_end)
1433 return;
1434 end = min(vma->vm_end, end_addr);
1435 if (end <= vma->vm_start)
1436 return;
1437
cbc91f71
SD
1438 if (vma->vm_file)
1439 uprobe_munmap(vma, start, end);
1440
b3b9c293 1441 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1442 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1443
1444 if (start != end) {
1445 if (unlikely(is_vm_hugetlb_page(vma))) {
1446 /*
1447 * It is undesirable to test vma->vm_file as it
1448 * should be non-null for valid hugetlb area.
1449 * However, vm_file will be NULL in the error
7aa6b4ad 1450 * cleanup path of mmap_region. When
f5cc4eef 1451 * hugetlbfs ->mmap method fails,
7aa6b4ad 1452 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1453 * before calling this function to clean up.
1454 * Since no pte has actually been setup, it is
1455 * safe to do nothing in this case.
1456 */
24669e58 1457 if (vma->vm_file) {
83cde9e8 1458 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1459 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1460 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1461 }
f5cc4eef
AV
1462 } else
1463 unmap_page_range(tlb, vma, start, end, details);
1464 }
1da177e4
LT
1465}
1466
1da177e4
LT
1467/**
1468 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1469 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1470 * @vma: the starting vma
1471 * @start_addr: virtual address at which to start unmapping
1472 * @end_addr: virtual address at which to end unmapping
1da177e4 1473 *
508034a3 1474 * Unmap all pages in the vma list.
1da177e4 1475 *
1da177e4
LT
1476 * Only addresses between `start' and `end' will be unmapped.
1477 *
1478 * The VMA list must be sorted in ascending virtual address order.
1479 *
1480 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1481 * range after unmap_vmas() returns. So the only responsibility here is to
1482 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1483 * drops the lock and schedules.
1484 */
6e8bb019 1485void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1486 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1487 unsigned long end_addr)
1da177e4 1488{
cddb8a5c 1489 struct mm_struct *mm = vma->vm_mm;
1da177e4 1490
cddb8a5c 1491 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1492 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1493 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1494 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1495}
1496
1497/**
1498 * zap_page_range - remove user pages in a given range
1499 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1500 * @start: starting address of pages to zap
1da177e4 1501 * @size: number of bytes to zap
f5cc4eef
AV
1502 *
1503 * Caller must protect the VMA list
1da177e4 1504 */
7e027b14 1505void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1506 unsigned long size)
1da177e4
LT
1507{
1508 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1509 struct mmu_gather tlb;
7e027b14 1510 unsigned long end = start + size;
1da177e4 1511
1da177e4 1512 lru_add_drain();
2b047252 1513 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1514 update_hiwater_rss(mm);
7e027b14 1515 mmu_notifier_invalidate_range_start(mm, start, end);
4647706e 1516 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
ecf1385d 1517 unmap_single_vma(&tlb, vma, start, end, NULL);
4647706e
MG
1518
1519 /*
1520 * zap_page_range does not specify whether mmap_sem should be
1521 * held for read or write. That allows parallel zap_page_range
1522 * operations to unmap a PTE and defer a flush meaning that
1523 * this call observes pte_none and fails to flush the TLB.
1524 * Rather than adding a complex API, ensure that no stale
1525 * TLB entries exist when this call returns.
1526 */
1527 flush_tlb_range(vma, start, end);
1528 }
1529
7e027b14
LT
1530 mmu_notifier_invalidate_range_end(mm, start, end);
1531 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1532}
1533
f5cc4eef
AV
1534/**
1535 * zap_page_range_single - remove user pages in a given range
1536 * @vma: vm_area_struct holding the applicable pages
1537 * @address: starting address of pages to zap
1538 * @size: number of bytes to zap
8a5f14a2 1539 * @details: details of shared cache invalidation
f5cc4eef
AV
1540 *
1541 * The range must fit into one VMA.
1da177e4 1542 */
f5cc4eef 1543static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1544 unsigned long size, struct zap_details *details)
1545{
1546 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1547 struct mmu_gather tlb;
1da177e4 1548 unsigned long end = address + size;
1da177e4 1549
1da177e4 1550 lru_add_drain();
2b047252 1551 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1552 update_hiwater_rss(mm);
f5cc4eef 1553 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1554 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1555 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1556 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1557}
1558
c627f9cc
JS
1559/**
1560 * zap_vma_ptes - remove ptes mapping the vma
1561 * @vma: vm_area_struct holding ptes to be zapped
1562 * @address: starting address of pages to zap
1563 * @size: number of bytes to zap
1564 *
1565 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1566 *
1567 * The entire address range must be fully contained within the vma.
1568 *
1569 * Returns 0 if successful.
1570 */
1571int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1572 unsigned long size)
1573{
1574 if (address < vma->vm_start || address + size > vma->vm_end ||
1575 !(vma->vm_flags & VM_PFNMAP))
1576 return -1;
f5cc4eef 1577 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1578 return 0;
1579}
1580EXPORT_SYMBOL_GPL(zap_vma_ptes);
1581
25ca1d6c 1582pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1583 spinlock_t **ptl)
c9cfcddf 1584{
c2febafc
KS
1585 pgd_t *pgd;
1586 p4d_t *p4d;
1587 pud_t *pud;
1588 pmd_t *pmd;
1589
1590 pgd = pgd_offset(mm, addr);
1591 p4d = p4d_alloc(mm, pgd, addr);
1592 if (!p4d)
1593 return NULL;
1594 pud = pud_alloc(mm, p4d, addr);
1595 if (!pud)
1596 return NULL;
1597 pmd = pmd_alloc(mm, pud, addr);
1598 if (!pmd)
1599 return NULL;
1600
1601 VM_BUG_ON(pmd_trans_huge(*pmd));
1602 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1603}
1604
238f58d8
LT
1605/*
1606 * This is the old fallback for page remapping.
1607 *
1608 * For historical reasons, it only allows reserved pages. Only
1609 * old drivers should use this, and they needed to mark their
1610 * pages reserved for the old functions anyway.
1611 */
423bad60
NP
1612static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1613 struct page *page, pgprot_t prot)
238f58d8 1614{
423bad60 1615 struct mm_struct *mm = vma->vm_mm;
238f58d8 1616 int retval;
c9cfcddf 1617 pte_t *pte;
8a9f3ccd
BS
1618 spinlock_t *ptl;
1619
238f58d8 1620 retval = -EINVAL;
a145dd41 1621 if (PageAnon(page))
5b4e655e 1622 goto out;
238f58d8
LT
1623 retval = -ENOMEM;
1624 flush_dcache_page(page);
c9cfcddf 1625 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1626 if (!pte)
5b4e655e 1627 goto out;
238f58d8
LT
1628 retval = -EBUSY;
1629 if (!pte_none(*pte))
1630 goto out_unlock;
1631
1632 /* Ok, finally just insert the thing.. */
1633 get_page(page);
eca56ff9 1634 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1635 page_add_file_rmap(page, false);
238f58d8
LT
1636 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1637
1638 retval = 0;
8a9f3ccd
BS
1639 pte_unmap_unlock(pte, ptl);
1640 return retval;
238f58d8
LT
1641out_unlock:
1642 pte_unmap_unlock(pte, ptl);
1643out:
1644 return retval;
1645}
1646
bfa5bf6d
REB
1647/**
1648 * vm_insert_page - insert single page into user vma
1649 * @vma: user vma to map to
1650 * @addr: target user address of this page
1651 * @page: source kernel page
1652 *
a145dd41
LT
1653 * This allows drivers to insert individual pages they've allocated
1654 * into a user vma.
1655 *
1656 * The page has to be a nice clean _individual_ kernel allocation.
1657 * If you allocate a compound page, you need to have marked it as
1658 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1659 * (see split_page()).
a145dd41
LT
1660 *
1661 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1662 * took an arbitrary page protection parameter. This doesn't allow
1663 * that. Your vma protection will have to be set up correctly, which
1664 * means that if you want a shared writable mapping, you'd better
1665 * ask for a shared writable mapping!
1666 *
1667 * The page does not need to be reserved.
4b6e1e37
KK
1668 *
1669 * Usually this function is called from f_op->mmap() handler
1670 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1671 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1672 * function from other places, for example from page-fault handler.
a145dd41 1673 */
423bad60
NP
1674int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1675 struct page *page)
a145dd41
LT
1676{
1677 if (addr < vma->vm_start || addr >= vma->vm_end)
1678 return -EFAULT;
1679 if (!page_count(page))
1680 return -EINVAL;
4b6e1e37
KK
1681 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1682 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1683 BUG_ON(vma->vm_flags & VM_PFNMAP);
1684 vma->vm_flags |= VM_MIXEDMAP;
1685 }
423bad60 1686 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1687}
e3c3374f 1688EXPORT_SYMBOL(vm_insert_page);
a145dd41 1689
423bad60 1690static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1691 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1692{
1693 struct mm_struct *mm = vma->vm_mm;
1694 int retval;
1695 pte_t *pte, entry;
1696 spinlock_t *ptl;
1697
1698 retval = -ENOMEM;
1699 pte = get_locked_pte(mm, addr, &ptl);
1700 if (!pte)
1701 goto out;
1702 retval = -EBUSY;
b2770da6
RZ
1703 if (!pte_none(*pte)) {
1704 if (mkwrite) {
1705 /*
1706 * For read faults on private mappings the PFN passed
1707 * in may not match the PFN we have mapped if the
1708 * mapped PFN is a writeable COW page. In the mkwrite
1709 * case we are creating a writable PTE for a shared
1710 * mapping and we expect the PFNs to match.
1711 */
1712 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1713 goto out_unlock;
1714 entry = *pte;
1715 goto out_mkwrite;
1716 } else
1717 goto out_unlock;
1718 }
423bad60
NP
1719
1720 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1721 if (pfn_t_devmap(pfn))
1722 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1723 else
1724 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6
RZ
1725
1726out_mkwrite:
1727 if (mkwrite) {
1728 entry = pte_mkyoung(entry);
1729 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1730 }
1731
423bad60 1732 set_pte_at(mm, addr, pte, entry);
4b3073e1 1733 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1734
1735 retval = 0;
1736out_unlock:
1737 pte_unmap_unlock(pte, ptl);
1738out:
1739 return retval;
1740}
1741
e0dc0d8f
NP
1742/**
1743 * vm_insert_pfn - insert single pfn into user vma
1744 * @vma: user vma to map to
1745 * @addr: target user address of this page
1746 * @pfn: source kernel pfn
1747 *
c462f179 1748 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1749 * they've allocated into a user vma. Same comments apply.
1750 *
1751 * This function should only be called from a vm_ops->fault handler, and
1752 * in that case the handler should return NULL.
0d71d10a
NP
1753 *
1754 * vma cannot be a COW mapping.
1755 *
1756 * As this is called only for pages that do not currently exist, we
1757 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1758 */
1759int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1760 unsigned long pfn)
1745cbc5
AL
1761{
1762 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1763}
1764EXPORT_SYMBOL(vm_insert_pfn);
1765
1766/**
1767 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1768 * @vma: user vma to map to
1769 * @addr: target user address of this page
1770 * @pfn: source kernel pfn
1771 * @pgprot: pgprot flags for the inserted page
1772 *
1773 * This is exactly like vm_insert_pfn, except that it allows drivers to
1774 * to override pgprot on a per-page basis.
1775 *
1776 * This only makes sense for IO mappings, and it makes no sense for
1777 * cow mappings. In general, using multiple vmas is preferable;
1778 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1779 * impractical.
1780 */
1781int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1782 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1783{
2ab64037 1784 int ret;
7e675137
NP
1785 /*
1786 * Technically, architectures with pte_special can avoid all these
1787 * restrictions (same for remap_pfn_range). However we would like
1788 * consistency in testing and feature parity among all, so we should
1789 * try to keep these invariants in place for everybody.
1790 */
b379d790
JH
1791 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1792 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1793 (VM_PFNMAP|VM_MIXEDMAP));
1794 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1795 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1796
423bad60
NP
1797 if (addr < vma->vm_start || addr >= vma->vm_end)
1798 return -EFAULT;
308a047c
BP
1799
1800 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1801
b2770da6
RZ
1802 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1803 false);
2ab64037 1804
2ab64037 1805 return ret;
423bad60 1806}
1745cbc5 1807EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1808
b2770da6
RZ
1809static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1810 pfn_t pfn, bool mkwrite)
423bad60 1811{
87744ab3
DW
1812 pgprot_t pgprot = vma->vm_page_prot;
1813
423bad60 1814 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1815
423bad60
NP
1816 if (addr < vma->vm_start || addr >= vma->vm_end)
1817 return -EFAULT;
308a047c
BP
1818
1819 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1820
423bad60
NP
1821 /*
1822 * If we don't have pte special, then we have to use the pfn_valid()
1823 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1824 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1825 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1826 * without pte special, it would there be refcounted as a normal page.
423bad60 1827 */
03fc2da6 1828 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1829 struct page *page;
1830
03fc2da6
DW
1831 /*
1832 * At this point we are committed to insert_page()
1833 * regardless of whether the caller specified flags that
1834 * result in pfn_t_has_page() == false.
1835 */
1836 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1837 return insert_page(vma, addr, page, pgprot);
423bad60 1838 }
b2770da6
RZ
1839 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1840}
1841
1842int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1843 pfn_t pfn)
1844{
1845 return __vm_insert_mixed(vma, addr, pfn, false);
1846
e0dc0d8f 1847}
423bad60 1848EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1849
b2770da6
RZ
1850int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1851 pfn_t pfn)
1852{
1853 return __vm_insert_mixed(vma, addr, pfn, true);
1854}
1855EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1856
1da177e4
LT
1857/*
1858 * maps a range of physical memory into the requested pages. the old
1859 * mappings are removed. any references to nonexistent pages results
1860 * in null mappings (currently treated as "copy-on-access")
1861 */
1862static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1863 unsigned long addr, unsigned long end,
1864 unsigned long pfn, pgprot_t prot)
1865{
1866 pte_t *pte;
c74df32c 1867 spinlock_t *ptl;
1da177e4 1868
c74df32c 1869 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1870 if (!pte)
1871 return -ENOMEM;
6606c3e0 1872 arch_enter_lazy_mmu_mode();
1da177e4
LT
1873 do {
1874 BUG_ON(!pte_none(*pte));
7e675137 1875 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1876 pfn++;
1877 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1878 arch_leave_lazy_mmu_mode();
c74df32c 1879 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1880 return 0;
1881}
1882
1883static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1884 unsigned long addr, unsigned long end,
1885 unsigned long pfn, pgprot_t prot)
1886{
1887 pmd_t *pmd;
1888 unsigned long next;
1889
1890 pfn -= addr >> PAGE_SHIFT;
1891 pmd = pmd_alloc(mm, pud, addr);
1892 if (!pmd)
1893 return -ENOMEM;
f66055ab 1894 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1895 do {
1896 next = pmd_addr_end(addr, end);
1897 if (remap_pte_range(mm, pmd, addr, next,
1898 pfn + (addr >> PAGE_SHIFT), prot))
1899 return -ENOMEM;
1900 } while (pmd++, addr = next, addr != end);
1901 return 0;
1902}
1903
c2febafc 1904static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1905 unsigned long addr, unsigned long end,
1906 unsigned long pfn, pgprot_t prot)
1907{
1908 pud_t *pud;
1909 unsigned long next;
1910
1911 pfn -= addr >> PAGE_SHIFT;
c2febafc 1912 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1913 if (!pud)
1914 return -ENOMEM;
1915 do {
1916 next = pud_addr_end(addr, end);
1917 if (remap_pmd_range(mm, pud, addr, next,
1918 pfn + (addr >> PAGE_SHIFT), prot))
1919 return -ENOMEM;
1920 } while (pud++, addr = next, addr != end);
1921 return 0;
1922}
1923
c2febafc
KS
1924static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1925 unsigned long addr, unsigned long end,
1926 unsigned long pfn, pgprot_t prot)
1927{
1928 p4d_t *p4d;
1929 unsigned long next;
1930
1931 pfn -= addr >> PAGE_SHIFT;
1932 p4d = p4d_alloc(mm, pgd, addr);
1933 if (!p4d)
1934 return -ENOMEM;
1935 do {
1936 next = p4d_addr_end(addr, end);
1937 if (remap_pud_range(mm, p4d, addr, next,
1938 pfn + (addr >> PAGE_SHIFT), prot))
1939 return -ENOMEM;
1940 } while (p4d++, addr = next, addr != end);
1941 return 0;
1942}
1943
bfa5bf6d
REB
1944/**
1945 * remap_pfn_range - remap kernel memory to userspace
1946 * @vma: user vma to map to
1947 * @addr: target user address to start at
1948 * @pfn: physical address of kernel memory
1949 * @size: size of map area
1950 * @prot: page protection flags for this mapping
1951 *
1952 * Note: this is only safe if the mm semaphore is held when called.
1953 */
1da177e4
LT
1954int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1955 unsigned long pfn, unsigned long size, pgprot_t prot)
1956{
1957 pgd_t *pgd;
1958 unsigned long next;
2d15cab8 1959 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1960 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1961 unsigned long remap_pfn = pfn;
1da177e4
LT
1962 int err;
1963
1964 /*
1965 * Physically remapped pages are special. Tell the
1966 * rest of the world about it:
1967 * VM_IO tells people not to look at these pages
1968 * (accesses can have side effects).
6aab341e
LT
1969 * VM_PFNMAP tells the core MM that the base pages are just
1970 * raw PFN mappings, and do not have a "struct page" associated
1971 * with them.
314e51b9
KK
1972 * VM_DONTEXPAND
1973 * Disable vma merging and expanding with mremap().
1974 * VM_DONTDUMP
1975 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1976 *
1977 * There's a horrible special case to handle copy-on-write
1978 * behaviour that some programs depend on. We mark the "original"
1979 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1980 * See vm_normal_page() for details.
1da177e4 1981 */
b3b9c293
KK
1982 if (is_cow_mapping(vma->vm_flags)) {
1983 if (addr != vma->vm_start || end != vma->vm_end)
1984 return -EINVAL;
fb155c16 1985 vma->vm_pgoff = pfn;
b3b9c293
KK
1986 }
1987
d5957d2f 1988 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1989 if (err)
3c8bb73a 1990 return -EINVAL;
fb155c16 1991
314e51b9 1992 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1993
1994 BUG_ON(addr >= end);
1995 pfn -= addr >> PAGE_SHIFT;
1996 pgd = pgd_offset(mm, addr);
1997 flush_cache_range(vma, addr, end);
1da177e4
LT
1998 do {
1999 next = pgd_addr_end(addr, end);
c2febafc 2000 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2001 pfn + (addr >> PAGE_SHIFT), prot);
2002 if (err)
2003 break;
2004 } while (pgd++, addr = next, addr != end);
2ab64037 2005
2006 if (err)
d5957d2f 2007 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2008
1da177e4
LT
2009 return err;
2010}
2011EXPORT_SYMBOL(remap_pfn_range);
2012
b4cbb197
LT
2013/**
2014 * vm_iomap_memory - remap memory to userspace
2015 * @vma: user vma to map to
2016 * @start: start of area
2017 * @len: size of area
2018 *
2019 * This is a simplified io_remap_pfn_range() for common driver use. The
2020 * driver just needs to give us the physical memory range to be mapped,
2021 * we'll figure out the rest from the vma information.
2022 *
2023 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2024 * whatever write-combining details or similar.
2025 */
2026int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2027{
2028 unsigned long vm_len, pfn, pages;
2029
2030 /* Check that the physical memory area passed in looks valid */
2031 if (start + len < start)
2032 return -EINVAL;
2033 /*
2034 * You *really* shouldn't map things that aren't page-aligned,
2035 * but we've historically allowed it because IO memory might
2036 * just have smaller alignment.
2037 */
2038 len += start & ~PAGE_MASK;
2039 pfn = start >> PAGE_SHIFT;
2040 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2041 if (pfn + pages < pfn)
2042 return -EINVAL;
2043
2044 /* We start the mapping 'vm_pgoff' pages into the area */
2045 if (vma->vm_pgoff > pages)
2046 return -EINVAL;
2047 pfn += vma->vm_pgoff;
2048 pages -= vma->vm_pgoff;
2049
2050 /* Can we fit all of the mapping? */
2051 vm_len = vma->vm_end - vma->vm_start;
2052 if (vm_len >> PAGE_SHIFT > pages)
2053 return -EINVAL;
2054
2055 /* Ok, let it rip */
2056 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2057}
2058EXPORT_SYMBOL(vm_iomap_memory);
2059
aee16b3c
JF
2060static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2061 unsigned long addr, unsigned long end,
2062 pte_fn_t fn, void *data)
2063{
2064 pte_t *pte;
2065 int err;
2f569afd 2066 pgtable_t token;
94909914 2067 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2068
2069 pte = (mm == &init_mm) ?
2070 pte_alloc_kernel(pmd, addr) :
2071 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2072 if (!pte)
2073 return -ENOMEM;
2074
2075 BUG_ON(pmd_huge(*pmd));
2076
38e0edb1
JF
2077 arch_enter_lazy_mmu_mode();
2078
2f569afd 2079 token = pmd_pgtable(*pmd);
aee16b3c
JF
2080
2081 do {
c36987e2 2082 err = fn(pte++, token, addr, data);
aee16b3c
JF
2083 if (err)
2084 break;
c36987e2 2085 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2086
38e0edb1
JF
2087 arch_leave_lazy_mmu_mode();
2088
aee16b3c
JF
2089 if (mm != &init_mm)
2090 pte_unmap_unlock(pte-1, ptl);
2091 return err;
2092}
2093
2094static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2095 unsigned long addr, unsigned long end,
2096 pte_fn_t fn, void *data)
2097{
2098 pmd_t *pmd;
2099 unsigned long next;
2100 int err;
2101
ceb86879
AK
2102 BUG_ON(pud_huge(*pud));
2103
aee16b3c
JF
2104 pmd = pmd_alloc(mm, pud, addr);
2105 if (!pmd)
2106 return -ENOMEM;
2107 do {
2108 next = pmd_addr_end(addr, end);
2109 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2110 if (err)
2111 break;
2112 } while (pmd++, addr = next, addr != end);
2113 return err;
2114}
2115
c2febafc 2116static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2117 unsigned long addr, unsigned long end,
2118 pte_fn_t fn, void *data)
2119{
2120 pud_t *pud;
2121 unsigned long next;
2122 int err;
2123
c2febafc 2124 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2125 if (!pud)
2126 return -ENOMEM;
2127 do {
2128 next = pud_addr_end(addr, end);
2129 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2130 if (err)
2131 break;
2132 } while (pud++, addr = next, addr != end);
2133 return err;
2134}
2135
c2febafc
KS
2136static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2137 unsigned long addr, unsigned long end,
2138 pte_fn_t fn, void *data)
2139{
2140 p4d_t *p4d;
2141 unsigned long next;
2142 int err;
2143
2144 p4d = p4d_alloc(mm, pgd, addr);
2145 if (!p4d)
2146 return -ENOMEM;
2147 do {
2148 next = p4d_addr_end(addr, end);
2149 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2150 if (err)
2151 break;
2152 } while (p4d++, addr = next, addr != end);
2153 return err;
2154}
2155
aee16b3c
JF
2156/*
2157 * Scan a region of virtual memory, filling in page tables as necessary
2158 * and calling a provided function on each leaf page table.
2159 */
2160int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2161 unsigned long size, pte_fn_t fn, void *data)
2162{
2163 pgd_t *pgd;
2164 unsigned long next;
57250a5b 2165 unsigned long end = addr + size;
aee16b3c
JF
2166 int err;
2167
9cb65bc3
MP
2168 if (WARN_ON(addr >= end))
2169 return -EINVAL;
2170
aee16b3c
JF
2171 pgd = pgd_offset(mm, addr);
2172 do {
2173 next = pgd_addr_end(addr, end);
c2febafc 2174 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2175 if (err)
2176 break;
2177 } while (pgd++, addr = next, addr != end);
57250a5b 2178
aee16b3c
JF
2179 return err;
2180}
2181EXPORT_SYMBOL_GPL(apply_to_page_range);
2182
8f4e2101 2183/*
9b4bdd2f
KS
2184 * handle_pte_fault chooses page fault handler according to an entry which was
2185 * read non-atomically. Before making any commitment, on those architectures
2186 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2187 * parts, do_swap_page must check under lock before unmapping the pte and
2188 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2189 * and do_anonymous_page can safely check later on).
8f4e2101 2190 */
4c21e2f2 2191static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2192 pte_t *page_table, pte_t orig_pte)
2193{
2194 int same = 1;
2195#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2196 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2197 spinlock_t *ptl = pte_lockptr(mm, pmd);
2198 spin_lock(ptl);
8f4e2101 2199 same = pte_same(*page_table, orig_pte);
4c21e2f2 2200 spin_unlock(ptl);
8f4e2101
HD
2201 }
2202#endif
2203 pte_unmap(page_table);
2204 return same;
2205}
2206
9de455b2 2207static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2208{
0abdd7a8
DW
2209 debug_dma_assert_idle(src);
2210
6aab341e
LT
2211 /*
2212 * If the source page was a PFN mapping, we don't have
2213 * a "struct page" for it. We do a best-effort copy by
2214 * just copying from the original user address. If that
2215 * fails, we just zero-fill it. Live with it.
2216 */
2217 if (unlikely(!src)) {
9b04c5fe 2218 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2219 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2220
2221 /*
2222 * This really shouldn't fail, because the page is there
2223 * in the page tables. But it might just be unreadable,
2224 * in which case we just give up and fill the result with
2225 * zeroes.
2226 */
2227 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2228 clear_page(kaddr);
9b04c5fe 2229 kunmap_atomic(kaddr);
c4ec7b0d 2230 flush_dcache_page(dst);
0ed361de
NP
2231 } else
2232 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2233}
2234
c20cd45e
MH
2235static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2236{
2237 struct file *vm_file = vma->vm_file;
2238
2239 if (vm_file)
2240 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2241
2242 /*
2243 * Special mappings (e.g. VDSO) do not have any file so fake
2244 * a default GFP_KERNEL for them.
2245 */
2246 return GFP_KERNEL;
2247}
2248
fb09a464
KS
2249/*
2250 * Notify the address space that the page is about to become writable so that
2251 * it can prohibit this or wait for the page to get into an appropriate state.
2252 *
2253 * We do this without the lock held, so that it can sleep if it needs to.
2254 */
38b8cb7f 2255static int do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2256{
fb09a464 2257 int ret;
38b8cb7f
JK
2258 struct page *page = vmf->page;
2259 unsigned int old_flags = vmf->flags;
fb09a464 2260
38b8cb7f 2261 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2262
11bac800 2263 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2264 /* Restore original flags so that caller is not surprised */
2265 vmf->flags = old_flags;
fb09a464
KS
2266 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2267 return ret;
2268 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2269 lock_page(page);
2270 if (!page->mapping) {
2271 unlock_page(page);
2272 return 0; /* retry */
2273 }
2274 ret |= VM_FAULT_LOCKED;
2275 } else
2276 VM_BUG_ON_PAGE(!PageLocked(page), page);
2277 return ret;
2278}
2279
97ba0c2b
JK
2280/*
2281 * Handle dirtying of a page in shared file mapping on a write fault.
2282 *
2283 * The function expects the page to be locked and unlocks it.
2284 */
2285static void fault_dirty_shared_page(struct vm_area_struct *vma,
2286 struct page *page)
2287{
2288 struct address_space *mapping;
2289 bool dirtied;
2290 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2291
2292 dirtied = set_page_dirty(page);
2293 VM_BUG_ON_PAGE(PageAnon(page), page);
2294 /*
2295 * Take a local copy of the address_space - page.mapping may be zeroed
2296 * by truncate after unlock_page(). The address_space itself remains
2297 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2298 * release semantics to prevent the compiler from undoing this copying.
2299 */
2300 mapping = page_rmapping(page);
2301 unlock_page(page);
2302
2303 if ((dirtied || page_mkwrite) && mapping) {
2304 /*
2305 * Some device drivers do not set page.mapping
2306 * but still dirty their pages
2307 */
2308 balance_dirty_pages_ratelimited(mapping);
2309 }
2310
2311 if (!page_mkwrite)
2312 file_update_time(vma->vm_file);
2313}
2314
4e047f89
SR
2315/*
2316 * Handle write page faults for pages that can be reused in the current vma
2317 *
2318 * This can happen either due to the mapping being with the VM_SHARED flag,
2319 * or due to us being the last reference standing to the page. In either
2320 * case, all we need to do here is to mark the page as writable and update
2321 * any related book-keeping.
2322 */
997dd98d 2323static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2324 __releases(vmf->ptl)
4e047f89 2325{
82b0f8c3 2326 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2327 struct page *page = vmf->page;
4e047f89
SR
2328 pte_t entry;
2329 /*
2330 * Clear the pages cpupid information as the existing
2331 * information potentially belongs to a now completely
2332 * unrelated process.
2333 */
2334 if (page)
2335 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2336
2994302b
JK
2337 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2338 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2339 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2340 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2341 update_mmu_cache(vma, vmf->address, vmf->pte);
2342 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2343}
2344
2f38ab2c
SR
2345/*
2346 * Handle the case of a page which we actually need to copy to a new page.
2347 *
2348 * Called with mmap_sem locked and the old page referenced, but
2349 * without the ptl held.
2350 *
2351 * High level logic flow:
2352 *
2353 * - Allocate a page, copy the content of the old page to the new one.
2354 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2355 * - Take the PTL. If the pte changed, bail out and release the allocated page
2356 * - If the pte is still the way we remember it, update the page table and all
2357 * relevant references. This includes dropping the reference the page-table
2358 * held to the old page, as well as updating the rmap.
2359 * - In any case, unlock the PTL and drop the reference we took to the old page.
2360 */
a41b70d6 2361static int wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2362{
82b0f8c3 2363 struct vm_area_struct *vma = vmf->vma;
bae473a4 2364 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2365 struct page *old_page = vmf->page;
2f38ab2c 2366 struct page *new_page = NULL;
2f38ab2c
SR
2367 pte_t entry;
2368 int page_copied = 0;
82b0f8c3 2369 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2370 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2371 struct mem_cgroup *memcg;
2372
2373 if (unlikely(anon_vma_prepare(vma)))
2374 goto oom;
2375
2994302b 2376 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2377 new_page = alloc_zeroed_user_highpage_movable(vma,
2378 vmf->address);
2f38ab2c
SR
2379 if (!new_page)
2380 goto oom;
2381 } else {
bae473a4 2382 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2383 vmf->address);
2f38ab2c
SR
2384 if (!new_page)
2385 goto oom;
82b0f8c3 2386 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2387 }
2f38ab2c 2388
f627c2f5 2389 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2390 goto oom_free_new;
2391
eb3c24f3
MG
2392 __SetPageUptodate(new_page);
2393
2f38ab2c
SR
2394 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2395
2396 /*
2397 * Re-check the pte - we dropped the lock
2398 */
82b0f8c3 2399 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2400 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2401 if (old_page) {
2402 if (!PageAnon(old_page)) {
eca56ff9
JM
2403 dec_mm_counter_fast(mm,
2404 mm_counter_file(old_page));
2f38ab2c
SR
2405 inc_mm_counter_fast(mm, MM_ANONPAGES);
2406 }
2407 } else {
2408 inc_mm_counter_fast(mm, MM_ANONPAGES);
2409 }
2994302b 2410 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2411 entry = mk_pte(new_page, vma->vm_page_prot);
2412 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2413 /*
2414 * Clear the pte entry and flush it first, before updating the
2415 * pte with the new entry. This will avoid a race condition
2416 * seen in the presence of one thread doing SMC and another
2417 * thread doing COW.
2418 */
82b0f8c3
JK
2419 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2420 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2421 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2422 lru_cache_add_active_or_unevictable(new_page, vma);
2423 /*
2424 * We call the notify macro here because, when using secondary
2425 * mmu page tables (such as kvm shadow page tables), we want the
2426 * new page to be mapped directly into the secondary page table.
2427 */
82b0f8c3
JK
2428 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2429 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2430 if (old_page) {
2431 /*
2432 * Only after switching the pte to the new page may
2433 * we remove the mapcount here. Otherwise another
2434 * process may come and find the rmap count decremented
2435 * before the pte is switched to the new page, and
2436 * "reuse" the old page writing into it while our pte
2437 * here still points into it and can be read by other
2438 * threads.
2439 *
2440 * The critical issue is to order this
2441 * page_remove_rmap with the ptp_clear_flush above.
2442 * Those stores are ordered by (if nothing else,)
2443 * the barrier present in the atomic_add_negative
2444 * in page_remove_rmap.
2445 *
2446 * Then the TLB flush in ptep_clear_flush ensures that
2447 * no process can access the old page before the
2448 * decremented mapcount is visible. And the old page
2449 * cannot be reused until after the decremented
2450 * mapcount is visible. So transitively, TLBs to
2451 * old page will be flushed before it can be reused.
2452 */
d281ee61 2453 page_remove_rmap(old_page, false);
2f38ab2c
SR
2454 }
2455
2456 /* Free the old page.. */
2457 new_page = old_page;
2458 page_copied = 1;
2459 } else {
f627c2f5 2460 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2461 }
2462
2463 if (new_page)
09cbfeaf 2464 put_page(new_page);
2f38ab2c 2465
82b0f8c3 2466 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
2467 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2468 if (old_page) {
2469 /*
2470 * Don't let another task, with possibly unlocked vma,
2471 * keep the mlocked page.
2472 */
2473 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2474 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2475 if (PageMlocked(old_page))
2476 munlock_vma_page(old_page);
2f38ab2c
SR
2477 unlock_page(old_page);
2478 }
09cbfeaf 2479 put_page(old_page);
2f38ab2c
SR
2480 }
2481 return page_copied ? VM_FAULT_WRITE : 0;
2482oom_free_new:
09cbfeaf 2483 put_page(new_page);
2f38ab2c
SR
2484oom:
2485 if (old_page)
09cbfeaf 2486 put_page(old_page);
2f38ab2c
SR
2487 return VM_FAULT_OOM;
2488}
2489
66a6197c
JK
2490/**
2491 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2492 * writeable once the page is prepared
2493 *
2494 * @vmf: structure describing the fault
2495 *
2496 * This function handles all that is needed to finish a write page fault in a
2497 * shared mapping due to PTE being read-only once the mapped page is prepared.
2498 * It handles locking of PTE and modifying it. The function returns
2499 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2500 * lock.
2501 *
2502 * The function expects the page to be locked or other protection against
2503 * concurrent faults / writeback (such as DAX radix tree locks).
2504 */
2505int finish_mkwrite_fault(struct vm_fault *vmf)
2506{
2507 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2508 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2509 &vmf->ptl);
2510 /*
2511 * We might have raced with another page fault while we released the
2512 * pte_offset_map_lock.
2513 */
2514 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2515 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2516 return VM_FAULT_NOPAGE;
66a6197c
JK
2517 }
2518 wp_page_reuse(vmf);
a19e2553 2519 return 0;
66a6197c
JK
2520}
2521
dd906184
BH
2522/*
2523 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2524 * mapping
2525 */
2994302b 2526static int wp_pfn_shared(struct vm_fault *vmf)
dd906184 2527{
82b0f8c3 2528 struct vm_area_struct *vma = vmf->vma;
bae473a4 2529
dd906184 2530 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
dd906184
BH
2531 int ret;
2532
82b0f8c3 2533 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2534 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2535 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2536 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2537 return ret;
66a6197c 2538 return finish_mkwrite_fault(vmf);
dd906184 2539 }
997dd98d
JK
2540 wp_page_reuse(vmf);
2541 return VM_FAULT_WRITE;
dd906184
BH
2542}
2543
a41b70d6 2544static int wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2545 __releases(vmf->ptl)
93e478d4 2546{
82b0f8c3 2547 struct vm_area_struct *vma = vmf->vma;
93e478d4 2548
a41b70d6 2549 get_page(vmf->page);
93e478d4 2550
93e478d4
SR
2551 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2552 int tmp;
2553
82b0f8c3 2554 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2555 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2556 if (unlikely(!tmp || (tmp &
2557 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2558 put_page(vmf->page);
93e478d4
SR
2559 return tmp;
2560 }
66a6197c 2561 tmp = finish_mkwrite_fault(vmf);
a19e2553 2562 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2563 unlock_page(vmf->page);
a41b70d6 2564 put_page(vmf->page);
66a6197c 2565 return tmp;
93e478d4 2566 }
66a6197c
JK
2567 } else {
2568 wp_page_reuse(vmf);
997dd98d 2569 lock_page(vmf->page);
93e478d4 2570 }
997dd98d
JK
2571 fault_dirty_shared_page(vma, vmf->page);
2572 put_page(vmf->page);
93e478d4 2573
997dd98d 2574 return VM_FAULT_WRITE;
93e478d4
SR
2575}
2576
1da177e4
LT
2577/*
2578 * This routine handles present pages, when users try to write
2579 * to a shared page. It is done by copying the page to a new address
2580 * and decrementing the shared-page counter for the old page.
2581 *
1da177e4
LT
2582 * Note that this routine assumes that the protection checks have been
2583 * done by the caller (the low-level page fault routine in most cases).
2584 * Thus we can safely just mark it writable once we've done any necessary
2585 * COW.
2586 *
2587 * We also mark the page dirty at this point even though the page will
2588 * change only once the write actually happens. This avoids a few races,
2589 * and potentially makes it more efficient.
2590 *
8f4e2101
HD
2591 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2592 * but allow concurrent faults), with pte both mapped and locked.
2593 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2594 */
2994302b 2595static int do_wp_page(struct vm_fault *vmf)
82b0f8c3 2596 __releases(vmf->ptl)
1da177e4 2597{
82b0f8c3 2598 struct vm_area_struct *vma = vmf->vma;
1da177e4 2599
a41b70d6
JK
2600 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2601 if (!vmf->page) {
251b97f5 2602 /*
64e45507
PF
2603 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2604 * VM_PFNMAP VMA.
251b97f5
PZ
2605 *
2606 * We should not cow pages in a shared writeable mapping.
dd906184 2607 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2608 */
2609 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2610 (VM_WRITE|VM_SHARED))
2994302b 2611 return wp_pfn_shared(vmf);
2f38ab2c 2612
82b0f8c3 2613 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2614 return wp_page_copy(vmf);
251b97f5 2615 }
1da177e4 2616
d08b3851 2617 /*
ee6a6457
PZ
2618 * Take out anonymous pages first, anonymous shared vmas are
2619 * not dirty accountable.
d08b3851 2620 */
a41b70d6 2621 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
6d0a07ed 2622 int total_mapcount;
a41b70d6
JK
2623 if (!trylock_page(vmf->page)) {
2624 get_page(vmf->page);
82b0f8c3 2625 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2626 lock_page(vmf->page);
82b0f8c3
JK
2627 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2628 vmf->address, &vmf->ptl);
2994302b 2629 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2630 unlock_page(vmf->page);
82b0f8c3 2631 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2632 put_page(vmf->page);
28766805 2633 return 0;
ab967d86 2634 }
a41b70d6 2635 put_page(vmf->page);
ee6a6457 2636 }
a41b70d6 2637 if (reuse_swap_page(vmf->page, &total_mapcount)) {
6d0a07ed
AA
2638 if (total_mapcount == 1) {
2639 /*
2640 * The page is all ours. Move it to
2641 * our anon_vma so the rmap code will
2642 * not search our parent or siblings.
2643 * Protected against the rmap code by
2644 * the page lock.
2645 */
a41b70d6 2646 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2647 }
a41b70d6 2648 unlock_page(vmf->page);
997dd98d
JK
2649 wp_page_reuse(vmf);
2650 return VM_FAULT_WRITE;
b009c024 2651 }
a41b70d6 2652 unlock_page(vmf->page);
ee6a6457 2653 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2654 (VM_WRITE|VM_SHARED))) {
a41b70d6 2655 return wp_page_shared(vmf);
1da177e4 2656 }
1da177e4
LT
2657
2658 /*
2659 * Ok, we need to copy. Oh, well..
2660 */
a41b70d6 2661 get_page(vmf->page);
28766805 2662
82b0f8c3 2663 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2664 return wp_page_copy(vmf);
1da177e4
LT
2665}
2666
97a89413 2667static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2668 unsigned long start_addr, unsigned long end_addr,
2669 struct zap_details *details)
2670{
f5cc4eef 2671 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2672}
2673
6b2dbba8 2674static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2675 struct zap_details *details)
2676{
2677 struct vm_area_struct *vma;
1da177e4
LT
2678 pgoff_t vba, vea, zba, zea;
2679
6b2dbba8 2680 vma_interval_tree_foreach(vma, root,
1da177e4 2681 details->first_index, details->last_index) {
1da177e4
LT
2682
2683 vba = vma->vm_pgoff;
d6e93217 2684 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2685 zba = details->first_index;
2686 if (zba < vba)
2687 zba = vba;
2688 zea = details->last_index;
2689 if (zea > vea)
2690 zea = vea;
2691
97a89413 2692 unmap_mapping_range_vma(vma,
1da177e4
LT
2693 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2694 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2695 details);
1da177e4
LT
2696 }
2697}
2698
1da177e4 2699/**
8a5f14a2
KS
2700 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2701 * address_space corresponding to the specified page range in the underlying
2702 * file.
2703 *
3d41088f 2704 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2705 * @holebegin: byte in first page to unmap, relative to the start of
2706 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2707 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2708 * must keep the partial page. In contrast, we must get rid of
2709 * partial pages.
2710 * @holelen: size of prospective hole in bytes. This will be rounded
2711 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2712 * end of the file.
2713 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2714 * but 0 when invalidating pagecache, don't throw away private data.
2715 */
2716void unmap_mapping_range(struct address_space *mapping,
2717 loff_t const holebegin, loff_t const holelen, int even_cows)
2718{
aac45363 2719 struct zap_details details = { };
1da177e4
LT
2720 pgoff_t hba = holebegin >> PAGE_SHIFT;
2721 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2722
2723 /* Check for overflow. */
2724 if (sizeof(holelen) > sizeof(hlen)) {
2725 long long holeend =
2726 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2727 if (holeend & ~(long long)ULONG_MAX)
2728 hlen = ULONG_MAX - hba + 1;
2729 }
2730
166f61b9 2731 details.check_mapping = even_cows ? NULL : mapping;
1da177e4
LT
2732 details.first_index = hba;
2733 details.last_index = hba + hlen - 1;
2734 if (details.last_index < details.first_index)
2735 details.last_index = ULONG_MAX;
1da177e4 2736
46c043ed 2737 i_mmap_lock_write(mapping);
6b2dbba8 2738 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2739 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2740 i_mmap_unlock_write(mapping);
1da177e4
LT
2741}
2742EXPORT_SYMBOL(unmap_mapping_range);
2743
1da177e4 2744/*
8f4e2101
HD
2745 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2746 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2747 * We return with pte unmapped and unlocked.
2748 *
2749 * We return with the mmap_sem locked or unlocked in the same cases
2750 * as does filemap_fault().
1da177e4 2751 */
2994302b 2752int do_swap_page(struct vm_fault *vmf)
1da177e4 2753{
82b0f8c3 2754 struct vm_area_struct *vma = vmf->vma;
56f31801 2755 struct page *page, *swapcache;
00501b53 2756 struct mem_cgroup *memcg;
65500d23 2757 swp_entry_t entry;
1da177e4 2758 pte_t pte;
d065bd81 2759 int locked;
ad8c2ee8 2760 int exclusive = 0;
83c54070 2761 int ret = 0;
1da177e4 2762
2994302b 2763 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2764 goto out;
65500d23 2765
2994302b 2766 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2767 if (unlikely(non_swap_entry(entry))) {
2768 if (is_migration_entry(entry)) {
82b0f8c3
JK
2769 migration_entry_wait(vma->vm_mm, vmf->pmd,
2770 vmf->address);
d1737fdb
AK
2771 } else if (is_hwpoison_entry(entry)) {
2772 ret = VM_FAULT_HWPOISON;
2773 } else {
2994302b 2774 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2775 ret = VM_FAULT_SIGBUS;
d1737fdb 2776 }
0697212a
CL
2777 goto out;
2778 }
0ff92245 2779 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2780 page = lookup_swap_cache(entry);
2781 if (!page) {
82b0f8c3
JK
2782 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2783 vmf->address);
1da177e4
LT
2784 if (!page) {
2785 /*
8f4e2101
HD
2786 * Back out if somebody else faulted in this pte
2787 * while we released the pte lock.
1da177e4 2788 */
82b0f8c3
JK
2789 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2790 vmf->address, &vmf->ptl);
2994302b 2791 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2792 ret = VM_FAULT_OOM;
0ff92245 2793 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2794 goto unlock;
1da177e4
LT
2795 }
2796
2797 /* Had to read the page from swap area: Major fault */
2798 ret = VM_FAULT_MAJOR;
f8891e5e 2799 count_vm_event(PGMAJFAULT);
2262185c 2800 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2801 } else if (PageHWPoison(page)) {
71f72525
WF
2802 /*
2803 * hwpoisoned dirty swapcache pages are kept for killing
2804 * owner processes (which may be unknown at hwpoison time)
2805 */
d1737fdb
AK
2806 ret = VM_FAULT_HWPOISON;
2807 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2808 swapcache = page;
4779cb31 2809 goto out_release;
1da177e4
LT
2810 }
2811
56f31801 2812 swapcache = page;
82b0f8c3 2813 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2814
073e587e 2815 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2816 if (!locked) {
2817 ret |= VM_FAULT_RETRY;
2818 goto out_release;
2819 }
073e587e 2820
4969c119 2821 /*
31c4a3d3
HD
2822 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2823 * release the swapcache from under us. The page pin, and pte_same
2824 * test below, are not enough to exclude that. Even if it is still
2825 * swapcache, we need to check that the page's swap has not changed.
4969c119 2826 */
31c4a3d3 2827 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2828 goto out_page;
2829
82b0f8c3 2830 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2831 if (unlikely(!page)) {
2832 ret = VM_FAULT_OOM;
2833 page = swapcache;
cbf86cfe 2834 goto out_page;
5ad64688
HD
2835 }
2836
bae473a4
KS
2837 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2838 &memcg, false)) {
8a9f3ccd 2839 ret = VM_FAULT_OOM;
bc43f75c 2840 goto out_page;
8a9f3ccd
BS
2841 }
2842
1da177e4 2843 /*
8f4e2101 2844 * Back out if somebody else already faulted in this pte.
1da177e4 2845 */
82b0f8c3
JK
2846 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2847 &vmf->ptl);
2994302b 2848 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2849 goto out_nomap;
b8107480
KK
2850
2851 if (unlikely(!PageUptodate(page))) {
2852 ret = VM_FAULT_SIGBUS;
2853 goto out_nomap;
1da177e4
LT
2854 }
2855
8c7c6e34
KH
2856 /*
2857 * The page isn't present yet, go ahead with the fault.
2858 *
2859 * Be careful about the sequence of operations here.
2860 * To get its accounting right, reuse_swap_page() must be called
2861 * while the page is counted on swap but not yet in mapcount i.e.
2862 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2863 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2864 */
1da177e4 2865
bae473a4
KS
2866 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2867 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2868 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2869 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2870 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2871 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2872 ret |= VM_FAULT_WRITE;
d281ee61 2873 exclusive = RMAP_EXCLUSIVE;
1da177e4 2874 }
1da177e4 2875 flush_icache_page(vma, page);
2994302b 2876 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2877 pte = pte_mksoft_dirty(pte);
82b0f8c3 2878 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2994302b 2879 vmf->orig_pte = pte;
00501b53 2880 if (page == swapcache) {
82b0f8c3 2881 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
f627c2f5 2882 mem_cgroup_commit_charge(page, memcg, true, false);
1a8018fb 2883 activate_page(page);
00501b53 2884 } else { /* ksm created a completely new copy */
82b0f8c3 2885 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2886 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2887 lru_cache_add_active_or_unevictable(page, vma);
2888 }
1da177e4 2889
c475a8ab 2890 swap_free(entry);
5ccc5aba
VD
2891 if (mem_cgroup_swap_full(page) ||
2892 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2893 try_to_free_swap(page);
c475a8ab 2894 unlock_page(page);
56f31801 2895 if (page != swapcache) {
4969c119
AA
2896 /*
2897 * Hold the lock to avoid the swap entry to be reused
2898 * until we take the PT lock for the pte_same() check
2899 * (to avoid false positives from pte_same). For
2900 * further safety release the lock after the swap_free
2901 * so that the swap count won't change under a
2902 * parallel locked swapcache.
2903 */
2904 unlock_page(swapcache);
09cbfeaf 2905 put_page(swapcache);
4969c119 2906 }
c475a8ab 2907
82b0f8c3 2908 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2909 ret |= do_wp_page(vmf);
61469f1d
HD
2910 if (ret & VM_FAULT_ERROR)
2911 ret &= VM_FAULT_ERROR;
1da177e4
LT
2912 goto out;
2913 }
2914
2915 /* No need to invalidate - it was non-present before */
82b0f8c3 2916 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2917unlock:
82b0f8c3 2918 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2919out:
2920 return ret;
b8107480 2921out_nomap:
f627c2f5 2922 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2923 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2924out_page:
b8107480 2925 unlock_page(page);
4779cb31 2926out_release:
09cbfeaf 2927 put_page(page);
56f31801 2928 if (page != swapcache) {
4969c119 2929 unlock_page(swapcache);
09cbfeaf 2930 put_page(swapcache);
4969c119 2931 }
65500d23 2932 return ret;
1da177e4
LT
2933}
2934
2935/*
8f4e2101
HD
2936 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2937 * but allow concurrent faults), and pte mapped but not yet locked.
2938 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2939 */
82b0f8c3 2940static int do_anonymous_page(struct vm_fault *vmf)
1da177e4 2941{
82b0f8c3 2942 struct vm_area_struct *vma = vmf->vma;
00501b53 2943 struct mem_cgroup *memcg;
8f4e2101 2944 struct page *page;
6b31d595 2945 int ret = 0;
1da177e4 2946 pte_t entry;
1da177e4 2947
6b7339f4
KS
2948 /* File mapping without ->vm_ops ? */
2949 if (vma->vm_flags & VM_SHARED)
2950 return VM_FAULT_SIGBUS;
2951
7267ec00
KS
2952 /*
2953 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2954 * pte_offset_map() on pmds where a huge pmd might be created
2955 * from a different thread.
2956 *
2957 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2958 * parallel threads are excluded by other means.
2959 *
2960 * Here we only have down_read(mmap_sem).
2961 */
82b0f8c3 2962 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
2963 return VM_FAULT_OOM;
2964
2965 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2966 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2967 return 0;
2968
11ac5524 2969 /* Use the zero-page for reads */
82b0f8c3 2970 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2971 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2972 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2973 vma->vm_page_prot));
82b0f8c3
JK
2974 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2975 vmf->address, &vmf->ptl);
2976 if (!pte_none(*vmf->pte))
a13ea5b7 2977 goto unlock;
6b31d595
MH
2978 ret = check_stable_address_space(vma->vm_mm);
2979 if (ret)
2980 goto unlock;
6b251fc9
AA
2981 /* Deliver the page fault to userland, check inside PT lock */
2982 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2983 pte_unmap_unlock(vmf->pte, vmf->ptl);
2984 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2985 }
a13ea5b7
HD
2986 goto setpte;
2987 }
2988
557ed1fa 2989 /* Allocate our own private page. */
557ed1fa
NP
2990 if (unlikely(anon_vma_prepare(vma)))
2991 goto oom;
82b0f8c3 2992 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2993 if (!page)
2994 goto oom;
eb3c24f3 2995
bae473a4 2996 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2997 goto oom_free_page;
2998
52f37629
MK
2999 /*
3000 * The memory barrier inside __SetPageUptodate makes sure that
3001 * preceeding stores to the page contents become visible before
3002 * the set_pte_at() write.
3003 */
0ed361de 3004 __SetPageUptodate(page);
8f4e2101 3005
557ed1fa 3006 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3007 if (vma->vm_flags & VM_WRITE)
3008 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3009
82b0f8c3
JK
3010 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3011 &vmf->ptl);
3012 if (!pte_none(*vmf->pte))
557ed1fa 3013 goto release;
9ba69294 3014
6b31d595
MH
3015 ret = check_stable_address_space(vma->vm_mm);
3016 if (ret)
3017 goto release;
3018
6b251fc9
AA
3019 /* Deliver the page fault to userland, check inside PT lock */
3020 if (userfaultfd_missing(vma)) {
82b0f8c3 3021 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3022 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3023 put_page(page);
82b0f8c3 3024 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3025 }
3026
bae473a4 3027 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3028 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3029 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3030 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3031setpte:
82b0f8c3 3032 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3033
3034 /* No need to invalidate - it was non-present before */
82b0f8c3 3035 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3036unlock:
82b0f8c3 3037 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3038 return ret;
8f4e2101 3039release:
f627c2f5 3040 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3041 put_page(page);
8f4e2101 3042 goto unlock;
8a9f3ccd 3043oom_free_page:
09cbfeaf 3044 put_page(page);
65500d23 3045oom:
1da177e4
LT
3046 return VM_FAULT_OOM;
3047}
3048
9a95f3cf
PC
3049/*
3050 * The mmap_sem must have been held on entry, and may have been
3051 * released depending on flags and vma->vm_ops->fault() return value.
3052 * See filemap_fault() and __lock_page_retry().
3053 */
936ca80d 3054static int __do_fault(struct vm_fault *vmf)
7eae74af 3055{
82b0f8c3 3056 struct vm_area_struct *vma = vmf->vma;
7eae74af
KS
3057 int ret;
3058
11bac800 3059 ret = vma->vm_ops->fault(vmf);
3917048d 3060 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3061 VM_FAULT_DONE_COW)))
bc2466e4 3062 return ret;
7eae74af 3063
667240e0 3064 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3065 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3066 unlock_page(vmf->page);
3067 put_page(vmf->page);
936ca80d 3068 vmf->page = NULL;
7eae74af
KS
3069 return VM_FAULT_HWPOISON;
3070 }
3071
3072 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3073 lock_page(vmf->page);
7eae74af 3074 else
667240e0 3075 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3076
7eae74af
KS
3077 return ret;
3078}
3079
d0f0931d
RZ
3080/*
3081 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3082 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3083 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3084 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3085 */
3086static int pmd_devmap_trans_unstable(pmd_t *pmd)
3087{
3088 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3089}
3090
82b0f8c3 3091static int pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3092{
82b0f8c3 3093 struct vm_area_struct *vma = vmf->vma;
7267ec00 3094
82b0f8c3 3095 if (!pmd_none(*vmf->pmd))
7267ec00 3096 goto map_pte;
82b0f8c3
JK
3097 if (vmf->prealloc_pte) {
3098 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3099 if (unlikely(!pmd_none(*vmf->pmd))) {
3100 spin_unlock(vmf->ptl);
7267ec00
KS
3101 goto map_pte;
3102 }
3103
3104 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3
JK
3105 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3106 spin_unlock(vmf->ptl);
7f2b6ce8 3107 vmf->prealloc_pte = NULL;
82b0f8c3 3108 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
3109 return VM_FAULT_OOM;
3110 }
3111map_pte:
3112 /*
3113 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3114 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3115 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3116 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3117 * running immediately after a huge pmd fault in a different thread of
3118 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3119 * All we have to ensure is that it is a regular pmd that we can walk
3120 * with pte_offset_map() and we can do that through an atomic read in
3121 * C, which is what pmd_trans_unstable() provides.
7267ec00 3122 */
d0f0931d 3123 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3124 return VM_FAULT_NOPAGE;
3125
d0f0931d
RZ
3126 /*
3127 * At this point we know that our vmf->pmd points to a page of ptes
3128 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3129 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3130 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3131 * be valid and we will re-check to make sure the vmf->pte isn't
3132 * pte_none() under vmf->ptl protection when we return to
3133 * alloc_set_pte().
3134 */
82b0f8c3
JK
3135 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3136 &vmf->ptl);
7267ec00
KS
3137 return 0;
3138}
3139
e496cf3d 3140#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3141
3142#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3143static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3144 unsigned long haddr)
3145{
3146 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3147 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3148 return false;
3149 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3150 return false;
3151 return true;
3152}
3153
82b0f8c3 3154static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3155{
82b0f8c3 3156 struct vm_area_struct *vma = vmf->vma;
953c66c2 3157
82b0f8c3 3158 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3159 /*
3160 * We are going to consume the prealloc table,
3161 * count that as nr_ptes.
3162 */
3163 atomic_long_inc(&vma->vm_mm->nr_ptes);
7f2b6ce8 3164 vmf->prealloc_pte = NULL;
953c66c2
AK
3165}
3166
82b0f8c3 3167static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3168{
82b0f8c3
JK
3169 struct vm_area_struct *vma = vmf->vma;
3170 bool write = vmf->flags & FAULT_FLAG_WRITE;
3171 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459
KS
3172 pmd_t entry;
3173 int i, ret;
3174
3175 if (!transhuge_vma_suitable(vma, haddr))
3176 return VM_FAULT_FALLBACK;
3177
3178 ret = VM_FAULT_FALLBACK;
3179 page = compound_head(page);
3180
953c66c2
AK
3181 /*
3182 * Archs like ppc64 need additonal space to store information
3183 * related to pte entry. Use the preallocated table for that.
3184 */
82b0f8c3
JK
3185 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3186 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3187 if (!vmf->prealloc_pte)
953c66c2
AK
3188 return VM_FAULT_OOM;
3189 smp_wmb(); /* See comment in __pte_alloc() */
3190 }
3191
82b0f8c3
JK
3192 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3193 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3194 goto out;
3195
3196 for (i = 0; i < HPAGE_PMD_NR; i++)
3197 flush_icache_page(vma, page + i);
3198
3199 entry = mk_huge_pmd(page, vma->vm_page_prot);
3200 if (write)
3201 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3202
3203 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3204 page_add_file_rmap(page, true);
953c66c2
AK
3205 /*
3206 * deposit and withdraw with pmd lock held
3207 */
3208 if (arch_needs_pgtable_deposit())
82b0f8c3 3209 deposit_prealloc_pte(vmf);
10102459 3210
82b0f8c3 3211 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3212
82b0f8c3 3213 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3214
3215 /* fault is handled */
3216 ret = 0;
95ecedcd 3217 count_vm_event(THP_FILE_MAPPED);
10102459 3218out:
82b0f8c3 3219 spin_unlock(vmf->ptl);
10102459
KS
3220 return ret;
3221}
3222#else
82b0f8c3 3223static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3224{
3225 BUILD_BUG();
3226 return 0;
3227}
3228#endif
3229
8c6e50b0 3230/**
7267ec00
KS
3231 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3232 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3233 *
82b0f8c3 3234 * @vmf: fault environment
7267ec00 3235 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3236 * @page: page to map
8c6e50b0 3237 *
82b0f8c3
JK
3238 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3239 * return.
8c6e50b0
KS
3240 *
3241 * Target users are page handler itself and implementations of
3242 * vm_ops->map_pages.
3243 */
82b0f8c3 3244int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3245 struct page *page)
3bb97794 3246{
82b0f8c3
JK
3247 struct vm_area_struct *vma = vmf->vma;
3248 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3249 pte_t entry;
10102459
KS
3250 int ret;
3251
82b0f8c3 3252 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3253 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3254 /* THP on COW? */
3255 VM_BUG_ON_PAGE(memcg, page);
3256
82b0f8c3 3257 ret = do_set_pmd(vmf, page);
10102459 3258 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3259 return ret;
10102459 3260 }
3bb97794 3261
82b0f8c3
JK
3262 if (!vmf->pte) {
3263 ret = pte_alloc_one_map(vmf);
7267ec00 3264 if (ret)
b0b9b3df 3265 return ret;
7267ec00
KS
3266 }
3267
3268 /* Re-check under ptl */
b0b9b3df
HD
3269 if (unlikely(!pte_none(*vmf->pte)))
3270 return VM_FAULT_NOPAGE;
7267ec00 3271
3bb97794
KS
3272 flush_icache_page(vma, page);
3273 entry = mk_pte(page, vma->vm_page_prot);
3274 if (write)
3275 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3276 /* copy-on-write page */
3277 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3278 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3279 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3280 mem_cgroup_commit_charge(page, memcg, false, false);
3281 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3282 } else {
eca56ff9 3283 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3284 page_add_file_rmap(page, false);
3bb97794 3285 }
82b0f8c3 3286 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3287
3288 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3289 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3290
b0b9b3df 3291 return 0;
3bb97794
KS
3292}
3293
9118c0cb
JK
3294
3295/**
3296 * finish_fault - finish page fault once we have prepared the page to fault
3297 *
3298 * @vmf: structure describing the fault
3299 *
3300 * This function handles all that is needed to finish a page fault once the
3301 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3302 * given page, adds reverse page mapping, handles memcg charges and LRU
3303 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3304 * error.
3305 *
3306 * The function expects the page to be locked and on success it consumes a
3307 * reference of a page being mapped (for the PTE which maps it).
3308 */
3309int finish_fault(struct vm_fault *vmf)
3310{
3311 struct page *page;
6b31d595 3312 int ret = 0;
9118c0cb
JK
3313
3314 /* Did we COW the page? */
3315 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3316 !(vmf->vma->vm_flags & VM_SHARED))
3317 page = vmf->cow_page;
3318 else
3319 page = vmf->page;
6b31d595
MH
3320
3321 /*
3322 * check even for read faults because we might have lost our CoWed
3323 * page
3324 */
3325 if (!(vmf->vma->vm_flags & VM_SHARED))
3326 ret = check_stable_address_space(vmf->vma->vm_mm);
3327 if (!ret)
3328 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3329 if (vmf->pte)
3330 pte_unmap_unlock(vmf->pte, vmf->ptl);
3331 return ret;
3332}
3333
3a91053a
KS
3334static unsigned long fault_around_bytes __read_mostly =
3335 rounddown_pow_of_two(65536);
a9b0f861 3336
a9b0f861
KS
3337#ifdef CONFIG_DEBUG_FS
3338static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3339{
a9b0f861 3340 *val = fault_around_bytes;
1592eef0
KS
3341 return 0;
3342}
3343
b4903d6e
AR
3344/*
3345 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3346 * rounded down to nearest page order. It's what do_fault_around() expects to
3347 * see.
3348 */
a9b0f861 3349static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3350{
a9b0f861 3351 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3352 return -EINVAL;
b4903d6e
AR
3353 if (val > PAGE_SIZE)
3354 fault_around_bytes = rounddown_pow_of_two(val);
3355 else
3356 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3357 return 0;
3358}
0a1345f8 3359DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3360 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3361
3362static int __init fault_around_debugfs(void)
3363{
3364 void *ret;
3365
0a1345f8 3366 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
a9b0f861 3367 &fault_around_bytes_fops);
1592eef0 3368 if (!ret)
a9b0f861 3369 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3370 return 0;
3371}
3372late_initcall(fault_around_debugfs);
1592eef0 3373#endif
8c6e50b0 3374
1fdb412b
KS
3375/*
3376 * do_fault_around() tries to map few pages around the fault address. The hope
3377 * is that the pages will be needed soon and this will lower the number of
3378 * faults to handle.
3379 *
3380 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3381 * not ready to be mapped: not up-to-date, locked, etc.
3382 *
3383 * This function is called with the page table lock taken. In the split ptlock
3384 * case the page table lock only protects only those entries which belong to
3385 * the page table corresponding to the fault address.
3386 *
3387 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3388 * only once.
3389 *
3390 * fault_around_pages() defines how many pages we'll try to map.
3391 * do_fault_around() expects it to return a power of two less than or equal to
3392 * PTRS_PER_PTE.
3393 *
3394 * The virtual address of the area that we map is naturally aligned to the
3395 * fault_around_pages() value (and therefore to page order). This way it's
3396 * easier to guarantee that we don't cross page table boundaries.
3397 */
0721ec8b 3398static int do_fault_around(struct vm_fault *vmf)
8c6e50b0 3399{
82b0f8c3 3400 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3401 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3402 pgoff_t end_pgoff;
7267ec00 3403 int off, ret = 0;
8c6e50b0 3404
4db0c3c2 3405 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3406 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3407
82b0f8c3
JK
3408 vmf->address = max(address & mask, vmf->vma->vm_start);
3409 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3410 start_pgoff -= off;
8c6e50b0
KS
3411
3412 /*
bae473a4
KS
3413 * end_pgoff is either end of page table or end of vma
3414 * or fault_around_pages() from start_pgoff, depending what is nearest.
8c6e50b0 3415 */
bae473a4 3416 end_pgoff = start_pgoff -
82b0f8c3 3417 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3418 PTRS_PER_PTE - 1;
82b0f8c3 3419 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3420 start_pgoff + nr_pages - 1);
8c6e50b0 3421
82b0f8c3
JK
3422 if (pmd_none(*vmf->pmd)) {
3423 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3424 vmf->address);
3425 if (!vmf->prealloc_pte)
c5f88bd2 3426 goto out;
7267ec00 3427 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3428 }
3429
82b0f8c3 3430 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3431
7267ec00 3432 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3433 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3434 ret = VM_FAULT_NOPAGE;
3435 goto out;
3436 }
3437
3438 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3439 if (!vmf->pte)
7267ec00
KS
3440 goto out;
3441
3442 /* check if the page fault is solved */
82b0f8c3
JK
3443 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3444 if (!pte_none(*vmf->pte))
7267ec00 3445 ret = VM_FAULT_NOPAGE;
82b0f8c3 3446 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3447out:
82b0f8c3
JK
3448 vmf->address = address;
3449 vmf->pte = NULL;
7267ec00 3450 return ret;
8c6e50b0
KS
3451}
3452
0721ec8b 3453static int do_read_fault(struct vm_fault *vmf)
e655fb29 3454{
82b0f8c3 3455 struct vm_area_struct *vma = vmf->vma;
8c6e50b0
KS
3456 int ret = 0;
3457
3458 /*
3459 * Let's call ->map_pages() first and use ->fault() as fallback
3460 * if page by the offset is not ready to be mapped (cold cache or
3461 * something).
3462 */
9b4bdd2f 3463 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3464 ret = do_fault_around(vmf);
7267ec00
KS
3465 if (ret)
3466 return ret;
8c6e50b0 3467 }
e655fb29 3468
936ca80d 3469 ret = __do_fault(vmf);
e655fb29
KS
3470 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3471 return ret;
3472
9118c0cb 3473 ret |= finish_fault(vmf);
936ca80d 3474 unlock_page(vmf->page);
7267ec00 3475 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3476 put_page(vmf->page);
e655fb29
KS
3477 return ret;
3478}
3479
0721ec8b 3480static int do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3481{
82b0f8c3 3482 struct vm_area_struct *vma = vmf->vma;
ec47c3b9
KS
3483 int ret;
3484
3485 if (unlikely(anon_vma_prepare(vma)))
3486 return VM_FAULT_OOM;
3487
936ca80d
JK
3488 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3489 if (!vmf->cow_page)
ec47c3b9
KS
3490 return VM_FAULT_OOM;
3491
936ca80d 3492 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3493 &vmf->memcg, false)) {
936ca80d 3494 put_page(vmf->cow_page);
ec47c3b9
KS
3495 return VM_FAULT_OOM;
3496 }
3497
936ca80d 3498 ret = __do_fault(vmf);
ec47c3b9
KS
3499 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3500 goto uncharge_out;
3917048d
JK
3501 if (ret & VM_FAULT_DONE_COW)
3502 return ret;
ec47c3b9 3503
b1aa812b 3504 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3505 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3506
9118c0cb 3507 ret |= finish_fault(vmf);
b1aa812b
JK
3508 unlock_page(vmf->page);
3509 put_page(vmf->page);
7267ec00
KS
3510 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3511 goto uncharge_out;
ec47c3b9
KS
3512 return ret;
3513uncharge_out:
3917048d 3514 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3515 put_page(vmf->cow_page);
ec47c3b9
KS
3516 return ret;
3517}
3518
0721ec8b 3519static int do_shared_fault(struct vm_fault *vmf)
1da177e4 3520{
82b0f8c3 3521 struct vm_area_struct *vma = vmf->vma;
f0c6d4d2 3522 int ret, tmp;
1d65f86d 3523
936ca80d 3524 ret = __do_fault(vmf);
7eae74af 3525 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3526 return ret;
1da177e4
LT
3527
3528 /*
f0c6d4d2
KS
3529 * Check if the backing address space wants to know that the page is
3530 * about to become writable
1da177e4 3531 */
fb09a464 3532 if (vma->vm_ops->page_mkwrite) {
936ca80d 3533 unlock_page(vmf->page);
38b8cb7f 3534 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3535 if (unlikely(!tmp ||
3536 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3537 put_page(vmf->page);
fb09a464 3538 return tmp;
4294621f 3539 }
fb09a464
KS
3540 }
3541
9118c0cb 3542 ret |= finish_fault(vmf);
7267ec00
KS
3543 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3544 VM_FAULT_RETRY))) {
936ca80d
JK
3545 unlock_page(vmf->page);
3546 put_page(vmf->page);
f0c6d4d2 3547 return ret;
1da177e4 3548 }
b827e496 3549
97ba0c2b 3550 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3551 return ret;
54cb8821 3552}
d00806b1 3553
9a95f3cf
PC
3554/*
3555 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3556 * but allow concurrent faults).
3557 * The mmap_sem may have been released depending on flags and our
3558 * return value. See filemap_fault() and __lock_page_or_retry().
3559 */
82b0f8c3 3560static int do_fault(struct vm_fault *vmf)
54cb8821 3561{
82b0f8c3 3562 struct vm_area_struct *vma = vmf->vma;
b0b9b3df 3563 int ret;
54cb8821 3564
6b7339f4
KS
3565 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3566 if (!vma->vm_ops->fault)
b0b9b3df
HD
3567 ret = VM_FAULT_SIGBUS;
3568 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3569 ret = do_read_fault(vmf);
3570 else if (!(vma->vm_flags & VM_SHARED))
3571 ret = do_cow_fault(vmf);
3572 else
3573 ret = do_shared_fault(vmf);
3574
3575 /* preallocated pagetable is unused: free it */
3576 if (vmf->prealloc_pte) {
3577 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3578 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3579 }
3580 return ret;
54cb8821
NP
3581}
3582
b19a9939 3583static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3584 unsigned long addr, int page_nid,
3585 int *flags)
9532fec1
MG
3586{
3587 get_page(page);
3588
3589 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3590 if (page_nid == numa_node_id()) {
9532fec1 3591 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3592 *flags |= TNF_FAULT_LOCAL;
3593 }
9532fec1
MG
3594
3595 return mpol_misplaced(page, vma, addr);
3596}
3597
2994302b 3598static int do_numa_page(struct vm_fault *vmf)
d10e63f2 3599{
82b0f8c3 3600 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3601 struct page *page = NULL;
8191acbd 3602 int page_nid = -1;
90572890 3603 int last_cpupid;
cbee9f88 3604 int target_nid;
b8593bfd 3605 bool migrated = false;
cee216a6 3606 pte_t pte;
288bc549 3607 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3608 int flags = 0;
d10e63f2
MG
3609
3610 /*
166f61b9
TH
3611 * The "pte" at this point cannot be used safely without
3612 * validation through pte_unmap_same(). It's of NUMA type but
3613 * the pfn may be screwed if the read is non atomic.
166f61b9 3614 */
82b0f8c3
JK
3615 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3616 spin_lock(vmf->ptl);
cee216a6 3617 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3618 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3619 goto out;
3620 }
3621
cee216a6
AK
3622 /*
3623 * Make it present again, Depending on how arch implementes non
3624 * accessible ptes, some can allow access by kernel mode.
3625 */
3626 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4d942466
MG
3627 pte = pte_modify(pte, vma->vm_page_prot);
3628 pte = pte_mkyoung(pte);
b191f9b1
MG
3629 if (was_writable)
3630 pte = pte_mkwrite(pte);
cee216a6 3631 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
82b0f8c3 3632 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3633
82b0f8c3 3634 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3635 if (!page) {
82b0f8c3 3636 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3637 return 0;
3638 }
3639
e81c4802
KS
3640 /* TODO: handle PTE-mapped THP */
3641 if (PageCompound(page)) {
82b0f8c3 3642 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3643 return 0;
3644 }
3645
6688cc05 3646 /*
bea66fbd
MG
3647 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3648 * much anyway since they can be in shared cache state. This misses
3649 * the case where a mapping is writable but the process never writes
3650 * to it but pte_write gets cleared during protection updates and
3651 * pte_dirty has unpredictable behaviour between PTE scan updates,
3652 * background writeback, dirty balancing and application behaviour.
6688cc05 3653 */
d59dc7bc 3654 if (!pte_write(pte))
6688cc05
PZ
3655 flags |= TNF_NO_GROUP;
3656
dabe1d99
RR
3657 /*
3658 * Flag if the page is shared between multiple address spaces. This
3659 * is later used when determining whether to group tasks together
3660 */
3661 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3662 flags |= TNF_SHARED;
3663
90572890 3664 last_cpupid = page_cpupid_last(page);
8191acbd 3665 page_nid = page_to_nid(page);
82b0f8c3 3666 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3667 &flags);
82b0f8c3 3668 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3669 if (target_nid == -1) {
4daae3b4
MG
3670 put_page(page);
3671 goto out;
3672 }
3673
3674 /* Migrate to the requested node */
1bc115d8 3675 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3676 if (migrated) {
8191acbd 3677 page_nid = target_nid;
6688cc05 3678 flags |= TNF_MIGRATED;
074c2381
MG
3679 } else
3680 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3681
3682out:
8191acbd 3683 if (page_nid != -1)
6688cc05 3684 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3685 return 0;
3686}
3687
91a90140 3688static inline int create_huge_pmd(struct vm_fault *vmf)
b96375f7 3689{
f4200391 3690 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3691 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3692 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3693 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3694 return VM_FAULT_FALLBACK;
3695}
3696
82b0f8c3 3697static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3698{
82b0f8c3
JK
3699 if (vma_is_anonymous(vmf->vma))
3700 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3701 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3702 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3703
3704 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3705 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3706 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3707
b96375f7
MW
3708 return VM_FAULT_FALLBACK;
3709}
3710
38e08854
LS
3711static inline bool vma_is_accessible(struct vm_area_struct *vma)
3712{
3713 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3714}
3715
a00cc7d9
MW
3716static int create_huge_pud(struct vm_fault *vmf)
3717{
3718#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3719 /* No support for anonymous transparent PUD pages yet */
3720 if (vma_is_anonymous(vmf->vma))
3721 return VM_FAULT_FALLBACK;
3722 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3723 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3724#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3725 return VM_FAULT_FALLBACK;
3726}
3727
3728static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3729{
3730#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3731 /* No support for anonymous transparent PUD pages yet */
3732 if (vma_is_anonymous(vmf->vma))
3733 return VM_FAULT_FALLBACK;
3734 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3735 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3736#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3737 return VM_FAULT_FALLBACK;
3738}
3739
1da177e4
LT
3740/*
3741 * These routines also need to handle stuff like marking pages dirty
3742 * and/or accessed for architectures that don't do it in hardware (most
3743 * RISC architectures). The early dirtying is also good on the i386.
3744 *
3745 * There is also a hook called "update_mmu_cache()" that architectures
3746 * with external mmu caches can use to update those (ie the Sparc or
3747 * PowerPC hashed page tables that act as extended TLBs).
3748 *
7267ec00
KS
3749 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3750 * concurrent faults).
9a95f3cf 3751 *
7267ec00
KS
3752 * The mmap_sem may have been released depending on flags and our return value.
3753 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3754 */
82b0f8c3 3755static int handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3756{
3757 pte_t entry;
3758
82b0f8c3 3759 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3760 /*
3761 * Leave __pte_alloc() until later: because vm_ops->fault may
3762 * want to allocate huge page, and if we expose page table
3763 * for an instant, it will be difficult to retract from
3764 * concurrent faults and from rmap lookups.
3765 */
82b0f8c3 3766 vmf->pte = NULL;
7267ec00
KS
3767 } else {
3768 /* See comment in pte_alloc_one_map() */
d0f0931d 3769 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3770 return 0;
3771 /*
3772 * A regular pmd is established and it can't morph into a huge
3773 * pmd from under us anymore at this point because we hold the
3774 * mmap_sem read mode and khugepaged takes it in write mode.
3775 * So now it's safe to run pte_offset_map().
3776 */
82b0f8c3 3777 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3778 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3779
3780 /*
3781 * some architectures can have larger ptes than wordsize,
3782 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3783 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3784 * atomic accesses. The code below just needs a consistent
3785 * view for the ifs and we later double check anyway with the
3786 * ptl lock held. So here a barrier will do.
3787 */
3788 barrier();
2994302b 3789 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3790 pte_unmap(vmf->pte);
3791 vmf->pte = NULL;
65500d23 3792 }
1da177e4
LT
3793 }
3794
82b0f8c3
JK
3795 if (!vmf->pte) {
3796 if (vma_is_anonymous(vmf->vma))
3797 return do_anonymous_page(vmf);
7267ec00 3798 else
82b0f8c3 3799 return do_fault(vmf);
7267ec00
KS
3800 }
3801
2994302b
JK
3802 if (!pte_present(vmf->orig_pte))
3803 return do_swap_page(vmf);
7267ec00 3804
2994302b
JK
3805 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3806 return do_numa_page(vmf);
d10e63f2 3807
82b0f8c3
JK
3808 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3809 spin_lock(vmf->ptl);
2994302b 3810 entry = vmf->orig_pte;
82b0f8c3 3811 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3812 goto unlock;
82b0f8c3 3813 if (vmf->flags & FAULT_FLAG_WRITE) {
1da177e4 3814 if (!pte_write(entry))
2994302b 3815 return do_wp_page(vmf);
1da177e4
LT
3816 entry = pte_mkdirty(entry);
3817 }
3818 entry = pte_mkyoung(entry);
82b0f8c3
JK
3819 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3820 vmf->flags & FAULT_FLAG_WRITE)) {
3821 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3822 } else {
3823 /*
3824 * This is needed only for protection faults but the arch code
3825 * is not yet telling us if this is a protection fault or not.
3826 * This still avoids useless tlb flushes for .text page faults
3827 * with threads.
3828 */
82b0f8c3
JK
3829 if (vmf->flags & FAULT_FLAG_WRITE)
3830 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3831 }
8f4e2101 3832unlock:
82b0f8c3 3833 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3834 return 0;
1da177e4
LT
3835}
3836
3837/*
3838 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3839 *
3840 * The mmap_sem may have been released depending on flags and our
3841 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3842 */
dcddffd4
KS
3843static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3844 unsigned int flags)
1da177e4 3845{
82b0f8c3 3846 struct vm_fault vmf = {
bae473a4 3847 .vma = vma,
1a29d85e 3848 .address = address & PAGE_MASK,
bae473a4 3849 .flags = flags,
0721ec8b 3850 .pgoff = linear_page_index(vma, address),
667240e0 3851 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3852 };
dcddffd4 3853 struct mm_struct *mm = vma->vm_mm;
1da177e4 3854 pgd_t *pgd;
c2febafc 3855 p4d_t *p4d;
a2d58167 3856 int ret;
1da177e4 3857
1da177e4 3858 pgd = pgd_offset(mm, address);
c2febafc
KS
3859 p4d = p4d_alloc(mm, pgd, address);
3860 if (!p4d)
3861 return VM_FAULT_OOM;
a00cc7d9 3862
c2febafc 3863 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3864 if (!vmf.pud)
c74df32c 3865 return VM_FAULT_OOM;
a00cc7d9 3866 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3867 ret = create_huge_pud(&vmf);
3868 if (!(ret & VM_FAULT_FALLBACK))
3869 return ret;
3870 } else {
3871 pud_t orig_pud = *vmf.pud;
3872
3873 barrier();
3874 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3875 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3876
a00cc7d9
MW
3877 /* NUMA case for anonymous PUDs would go here */
3878
3879 if (dirty && !pud_write(orig_pud)) {
3880 ret = wp_huge_pud(&vmf, orig_pud);
3881 if (!(ret & VM_FAULT_FALLBACK))
3882 return ret;
3883 } else {
3884 huge_pud_set_accessed(&vmf, orig_pud);
3885 return 0;
3886 }
3887 }
3888 }
3889
3890 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3891 if (!vmf.pmd)
c74df32c 3892 return VM_FAULT_OOM;
82b0f8c3 3893 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
a2d58167 3894 ret = create_huge_pmd(&vmf);
c0292554
KS
3895 if (!(ret & VM_FAULT_FALLBACK))
3896 return ret;
71e3aac0 3897 } else {
82b0f8c3 3898 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3899
71e3aac0 3900 barrier();
5c7fb56e 3901 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3902 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3903 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3904
82b0f8c3 3905 if ((vmf.flags & FAULT_FLAG_WRITE) &&
bae473a4 3906 !pmd_write(orig_pmd)) {
82b0f8c3 3907 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3908 if (!(ret & VM_FAULT_FALLBACK))
3909 return ret;
a1dd450b 3910 } else {
82b0f8c3 3911 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3912 return 0;
1f1d06c3 3913 }
71e3aac0
AA
3914 }
3915 }
3916
82b0f8c3 3917 return handle_pte_fault(&vmf);
1da177e4
LT
3918}
3919
9a95f3cf
PC
3920/*
3921 * By the time we get here, we already hold the mm semaphore
3922 *
3923 * The mmap_sem may have been released depending on flags and our
3924 * return value. See filemap_fault() and __lock_page_or_retry().
3925 */
dcddffd4
KS
3926int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3927 unsigned int flags)
519e5247
JW
3928{
3929 int ret;
3930
3931 __set_current_state(TASK_RUNNING);
3932
3933 count_vm_event(PGFAULT);
2262185c 3934 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
3935
3936 /* do counter updates before entering really critical section. */
3937 check_sync_rss_stat(current);
3938
3939 /*
3940 * Enable the memcg OOM handling for faults triggered in user
3941 * space. Kernel faults are handled more gracefully.
3942 */
3943 if (flags & FAULT_FLAG_USER)
49426420 3944 mem_cgroup_oom_enable();
519e5247 3945
bae473a4
KS
3946 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3947 flags & FAULT_FLAG_INSTRUCTION,
3948 flags & FAULT_FLAG_REMOTE))
3949 return VM_FAULT_SIGSEGV;
3950
3951 if (unlikely(is_vm_hugetlb_page(vma)))
3952 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3953 else
3954 ret = __handle_mm_fault(vma, address, flags);
519e5247 3955
49426420
JW
3956 if (flags & FAULT_FLAG_USER) {
3957 mem_cgroup_oom_disable();
166f61b9
TH
3958 /*
3959 * The task may have entered a memcg OOM situation but
3960 * if the allocation error was handled gracefully (no
3961 * VM_FAULT_OOM), there is no need to kill anything.
3962 * Just clean up the OOM state peacefully.
3963 */
3964 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3965 mem_cgroup_oom_synchronize(false);
49426420 3966 }
3812c8c8 3967
519e5247
JW
3968 return ret;
3969}
e1d6d01a 3970EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3971
90eceff1
KS
3972#ifndef __PAGETABLE_P4D_FOLDED
3973/*
3974 * Allocate p4d page table.
3975 * We've already handled the fast-path in-line.
3976 */
3977int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3978{
3979 p4d_t *new = p4d_alloc_one(mm, address);
3980 if (!new)
3981 return -ENOMEM;
3982
3983 smp_wmb(); /* See comment in __pte_alloc */
3984
3985 spin_lock(&mm->page_table_lock);
3986 if (pgd_present(*pgd)) /* Another has populated it */
3987 p4d_free(mm, new);
3988 else
3989 pgd_populate(mm, pgd, new);
3990 spin_unlock(&mm->page_table_lock);
3991 return 0;
3992}
3993#endif /* __PAGETABLE_P4D_FOLDED */
3994
1da177e4
LT
3995#ifndef __PAGETABLE_PUD_FOLDED
3996/*
3997 * Allocate page upper directory.
872fec16 3998 * We've already handled the fast-path in-line.
1da177e4 3999 */
c2febafc 4000int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4001{
c74df32c
HD
4002 pud_t *new = pud_alloc_one(mm, address);
4003 if (!new)
1bb3630e 4004 return -ENOMEM;
1da177e4 4005
362a61ad
NP
4006 smp_wmb(); /* See comment in __pte_alloc */
4007
872fec16 4008 spin_lock(&mm->page_table_lock);
c2febafc
KS
4009#ifndef __ARCH_HAS_5LEVEL_HACK
4010 if (p4d_present(*p4d)) /* Another has populated it */
5e541973 4011 pud_free(mm, new);
1bb3630e 4012 else
c2febafc
KS
4013 p4d_populate(mm, p4d, new);
4014#else
4015 if (pgd_present(*p4d)) /* Another has populated it */
5e541973 4016 pud_free(mm, new);
1bb3630e 4017 else
c2febafc
KS
4018 pgd_populate(mm, p4d, new);
4019#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4020 spin_unlock(&mm->page_table_lock);
1bb3630e 4021 return 0;
1da177e4
LT
4022}
4023#endif /* __PAGETABLE_PUD_FOLDED */
4024
4025#ifndef __PAGETABLE_PMD_FOLDED
4026/*
4027 * Allocate page middle directory.
872fec16 4028 * We've already handled the fast-path in-line.
1da177e4 4029 */
1bb3630e 4030int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4031{
a00cc7d9 4032 spinlock_t *ptl;
c74df32c
HD
4033 pmd_t *new = pmd_alloc_one(mm, address);
4034 if (!new)
1bb3630e 4035 return -ENOMEM;
1da177e4 4036
362a61ad
NP
4037 smp_wmb(); /* See comment in __pte_alloc */
4038
a00cc7d9 4039 ptl = pud_lock(mm, pud);
1da177e4 4040#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4041 if (!pud_present(*pud)) {
4042 mm_inc_nr_pmds(mm);
1bb3630e 4043 pud_populate(mm, pud, new);
dc6c9a35 4044 } else /* Another has populated it */
5e541973 4045 pmd_free(mm, new);
dc6c9a35
KS
4046#else
4047 if (!pgd_present(*pud)) {
4048 mm_inc_nr_pmds(mm);
1bb3630e 4049 pgd_populate(mm, pud, new);
dc6c9a35
KS
4050 } else /* Another has populated it */
4051 pmd_free(mm, new);
1da177e4 4052#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4053 spin_unlock(ptl);
1bb3630e 4054 return 0;
e0f39591 4055}
1da177e4
LT
4056#endif /* __PAGETABLE_PMD_FOLDED */
4057
09796395 4058static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885
JG
4059 unsigned long *start, unsigned long *end,
4060 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4061{
4062 pgd_t *pgd;
c2febafc 4063 p4d_t *p4d;
f8ad0f49
JW
4064 pud_t *pud;
4065 pmd_t *pmd;
4066 pte_t *ptep;
4067
4068 pgd = pgd_offset(mm, address);
4069 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4070 goto out;
4071
c2febafc
KS
4072 p4d = p4d_offset(pgd, address);
4073 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4074 goto out;
4075
4076 pud = pud_offset(p4d, address);
f8ad0f49
JW
4077 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4078 goto out;
4079
4080 pmd = pmd_offset(pud, address);
f66055ab 4081 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4082
09796395
RZ
4083 if (pmd_huge(*pmd)) {
4084 if (!pmdpp)
4085 goto out;
4086
a4d1a885
JG
4087 if (start && end) {
4088 *start = address & PMD_MASK;
4089 *end = *start + PMD_SIZE;
4090 mmu_notifier_invalidate_range_start(mm, *start, *end);
4091 }
09796395
RZ
4092 *ptlp = pmd_lock(mm, pmd);
4093 if (pmd_huge(*pmd)) {
4094 *pmdpp = pmd;
4095 return 0;
4096 }
4097 spin_unlock(*ptlp);
a4d1a885
JG
4098 if (start && end)
4099 mmu_notifier_invalidate_range_end(mm, *start, *end);
09796395
RZ
4100 }
4101
4102 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4103 goto out;
4104
a4d1a885
JG
4105 if (start && end) {
4106 *start = address & PAGE_MASK;
4107 *end = *start + PAGE_SIZE;
4108 mmu_notifier_invalidate_range_start(mm, *start, *end);
4109 }
f8ad0f49 4110 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4111 if (!pte_present(*ptep))
4112 goto unlock;
4113 *ptepp = ptep;
4114 return 0;
4115unlock:
4116 pte_unmap_unlock(ptep, *ptlp);
a4d1a885
JG
4117 if (start && end)
4118 mmu_notifier_invalidate_range_end(mm, *start, *end);
f8ad0f49
JW
4119out:
4120 return -EINVAL;
4121}
4122
f729c8c9
RZ
4123static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4124 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4125{
4126 int res;
4127
4128 /* (void) is needed to make gcc happy */
4129 (void) __cond_lock(*ptlp,
a4d1a885
JG
4130 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4131 ptepp, NULL, ptlp)));
09796395
RZ
4132 return res;
4133}
4134
4135int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 4136 unsigned long *start, unsigned long *end,
09796395
RZ
4137 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4138{
4139 int res;
4140
4141 /* (void) is needed to make gcc happy */
4142 (void) __cond_lock(*ptlp,
a4d1a885
JG
4143 !(res = __follow_pte_pmd(mm, address, start, end,
4144 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4145 return res;
4146}
09796395 4147EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4148
3b6748e2
JW
4149/**
4150 * follow_pfn - look up PFN at a user virtual address
4151 * @vma: memory mapping
4152 * @address: user virtual address
4153 * @pfn: location to store found PFN
4154 *
4155 * Only IO mappings and raw PFN mappings are allowed.
4156 *
4157 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4158 */
4159int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4160 unsigned long *pfn)
4161{
4162 int ret = -EINVAL;
4163 spinlock_t *ptl;
4164 pte_t *ptep;
4165
4166 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4167 return ret;
4168
4169 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4170 if (ret)
4171 return ret;
4172 *pfn = pte_pfn(*ptep);
4173 pte_unmap_unlock(ptep, ptl);
4174 return 0;
4175}
4176EXPORT_SYMBOL(follow_pfn);
4177
28b2ee20 4178#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4179int follow_phys(struct vm_area_struct *vma,
4180 unsigned long address, unsigned int flags,
4181 unsigned long *prot, resource_size_t *phys)
28b2ee20 4182{
03668a4d 4183 int ret = -EINVAL;
28b2ee20
RR
4184 pte_t *ptep, pte;
4185 spinlock_t *ptl;
28b2ee20 4186
d87fe660 4187 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4188 goto out;
28b2ee20 4189
03668a4d 4190 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4191 goto out;
28b2ee20 4192 pte = *ptep;
03668a4d 4193
28b2ee20
RR
4194 if ((flags & FOLL_WRITE) && !pte_write(pte))
4195 goto unlock;
28b2ee20
RR
4196
4197 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4198 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4199
03668a4d 4200 ret = 0;
28b2ee20
RR
4201unlock:
4202 pte_unmap_unlock(ptep, ptl);
4203out:
d87fe660 4204 return ret;
28b2ee20
RR
4205}
4206
4207int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4208 void *buf, int len, int write)
4209{
4210 resource_size_t phys_addr;
4211 unsigned long prot = 0;
2bc7273b 4212 void __iomem *maddr;
28b2ee20
RR
4213 int offset = addr & (PAGE_SIZE-1);
4214
d87fe660 4215 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4216 return -EINVAL;
4217
9cb12d7b 4218 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
4219 if (write)
4220 memcpy_toio(maddr + offset, buf, len);
4221 else
4222 memcpy_fromio(buf, maddr + offset, len);
4223 iounmap(maddr);
4224
4225 return len;
4226}
5a73633e 4227EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4228#endif
4229
0ec76a11 4230/*
206cb636
SW
4231 * Access another process' address space as given in mm. If non-NULL, use the
4232 * given task for page fault accounting.
0ec76a11 4233 */
84d77d3f 4234int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4235 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4236{
0ec76a11 4237 struct vm_area_struct *vma;
0ec76a11 4238 void *old_buf = buf;
442486ec 4239 int write = gup_flags & FOLL_WRITE;
0ec76a11 4240
0ec76a11 4241 down_read(&mm->mmap_sem);
183ff22b 4242 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4243 while (len) {
4244 int bytes, ret, offset;
4245 void *maddr;
28b2ee20 4246 struct page *page = NULL;
0ec76a11 4247
1e987790 4248 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4249 gup_flags, &page, &vma, NULL);
28b2ee20 4250 if (ret <= 0) {
dbffcd03
RR
4251#ifndef CONFIG_HAVE_IOREMAP_PROT
4252 break;
4253#else
28b2ee20
RR
4254 /*
4255 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4256 * we can access using slightly different code.
4257 */
28b2ee20 4258 vma = find_vma(mm, addr);
fe936dfc 4259 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4260 break;
4261 if (vma->vm_ops && vma->vm_ops->access)
4262 ret = vma->vm_ops->access(vma, addr, buf,
4263 len, write);
4264 if (ret <= 0)
28b2ee20
RR
4265 break;
4266 bytes = ret;
dbffcd03 4267#endif
0ec76a11 4268 } else {
28b2ee20
RR
4269 bytes = len;
4270 offset = addr & (PAGE_SIZE-1);
4271 if (bytes > PAGE_SIZE-offset)
4272 bytes = PAGE_SIZE-offset;
4273
4274 maddr = kmap(page);
4275 if (write) {
4276 copy_to_user_page(vma, page, addr,
4277 maddr + offset, buf, bytes);
4278 set_page_dirty_lock(page);
4279 } else {
4280 copy_from_user_page(vma, page, addr,
4281 buf, maddr + offset, bytes);
4282 }
4283 kunmap(page);
09cbfeaf 4284 put_page(page);
0ec76a11 4285 }
0ec76a11
DH
4286 len -= bytes;
4287 buf += bytes;
4288 addr += bytes;
4289 }
4290 up_read(&mm->mmap_sem);
0ec76a11
DH
4291
4292 return buf - old_buf;
4293}
03252919 4294
5ddd36b9 4295/**
ae91dbfc 4296 * access_remote_vm - access another process' address space
5ddd36b9
SW
4297 * @mm: the mm_struct of the target address space
4298 * @addr: start address to access
4299 * @buf: source or destination buffer
4300 * @len: number of bytes to transfer
6347e8d5 4301 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4302 *
4303 * The caller must hold a reference on @mm.
4304 */
4305int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4306 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4307{
6347e8d5 4308 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4309}
4310
206cb636
SW
4311/*
4312 * Access another process' address space.
4313 * Source/target buffer must be kernel space,
4314 * Do not walk the page table directly, use get_user_pages
4315 */
4316int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4317 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4318{
4319 struct mm_struct *mm;
4320 int ret;
4321
4322 mm = get_task_mm(tsk);
4323 if (!mm)
4324 return 0;
4325
f307ab6d 4326 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4327
206cb636
SW
4328 mmput(mm);
4329
4330 return ret;
4331}
fcd35857 4332EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4333
03252919
AK
4334/*
4335 * Print the name of a VMA.
4336 */
4337void print_vma_addr(char *prefix, unsigned long ip)
4338{
4339 struct mm_struct *mm = current->mm;
4340 struct vm_area_struct *vma;
4341
e8bff74a
IM
4342 /*
4343 * Do not print if we are in atomic
4344 * contexts (in exception stacks, etc.):
4345 */
4346 if (preempt_count())
4347 return;
4348
03252919
AK
4349 down_read(&mm->mmap_sem);
4350 vma = find_vma(mm, ip);
4351 if (vma && vma->vm_file) {
4352 struct file *f = vma->vm_file;
4353 char *buf = (char *)__get_free_page(GFP_KERNEL);
4354 if (buf) {
2fbc57c5 4355 char *p;
03252919 4356
9bf39ab2 4357 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4358 if (IS_ERR(p))
4359 p = "?";
2fbc57c5 4360 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4361 vma->vm_start,
4362 vma->vm_end - vma->vm_start);
4363 free_page((unsigned long)buf);
4364 }
4365 }
51a07e50 4366 up_read(&mm->mmap_sem);
03252919 4367}
3ee1afa3 4368
662bbcb2 4369#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4370void __might_fault(const char *file, int line)
3ee1afa3 4371{
95156f00
PZ
4372 /*
4373 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4374 * holding the mmap_sem, this is safe because kernel memory doesn't
4375 * get paged out, therefore we'll never actually fault, and the
4376 * below annotations will generate false positives.
4377 */
db68ce10 4378 if (uaccess_kernel())
95156f00 4379 return;
9ec23531 4380 if (pagefault_disabled())
662bbcb2 4381 return;
9ec23531
DH
4382 __might_sleep(file, line, 0);
4383#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4384 if (current->mm)
3ee1afa3 4385 might_lock_read(&current->mm->mmap_sem);
9ec23531 4386#endif
3ee1afa3 4387}
9ec23531 4388EXPORT_SYMBOL(__might_fault);
3ee1afa3 4389#endif
47ad8475
AA
4390
4391#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4392static void clear_gigantic_page(struct page *page,
4393 unsigned long addr,
4394 unsigned int pages_per_huge_page)
4395{
4396 int i;
4397 struct page *p = page;
4398
4399 might_sleep();
4400 for (i = 0; i < pages_per_huge_page;
4401 i++, p = mem_map_next(p, page, i)) {
4402 cond_resched();
4403 clear_user_highpage(p, addr + i * PAGE_SIZE);
4404 }
4405}
4406void clear_huge_page(struct page *page,
4407 unsigned long addr, unsigned int pages_per_huge_page)
4408{
4409 int i;
4410
4411 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4412 clear_gigantic_page(page, addr, pages_per_huge_page);
4413 return;
4414 }
4415
4416 might_sleep();
4417 for (i = 0; i < pages_per_huge_page; i++) {
4418 cond_resched();
4419 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4420 }
4421}
4422
4423static void copy_user_gigantic_page(struct page *dst, struct page *src,
4424 unsigned long addr,
4425 struct vm_area_struct *vma,
4426 unsigned int pages_per_huge_page)
4427{
4428 int i;
4429 struct page *dst_base = dst;
4430 struct page *src_base = src;
4431
4432 for (i = 0; i < pages_per_huge_page; ) {
4433 cond_resched();
4434 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4435
4436 i++;
4437 dst = mem_map_next(dst, dst_base, i);
4438 src = mem_map_next(src, src_base, i);
4439 }
4440}
4441
4442void copy_user_huge_page(struct page *dst, struct page *src,
4443 unsigned long addr, struct vm_area_struct *vma,
4444 unsigned int pages_per_huge_page)
4445{
4446 int i;
4447
4448 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4449 copy_user_gigantic_page(dst, src, addr, vma,
4450 pages_per_huge_page);
4451 return;
4452 }
4453
4454 might_sleep();
4455 for (i = 0; i < pages_per_huge_page; i++) {
4456 cond_resched();
4457 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4458 }
4459}
fa4d75c1
MK
4460
4461long copy_huge_page_from_user(struct page *dst_page,
4462 const void __user *usr_src,
810a56b9
MK
4463 unsigned int pages_per_huge_page,
4464 bool allow_pagefault)
fa4d75c1
MK
4465{
4466 void *src = (void *)usr_src;
4467 void *page_kaddr;
4468 unsigned long i, rc = 0;
4469 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4470
4471 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4472 if (allow_pagefault)
4473 page_kaddr = kmap(dst_page + i);
4474 else
4475 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4476 rc = copy_from_user(page_kaddr,
4477 (const void __user *)(src + i * PAGE_SIZE),
4478 PAGE_SIZE);
810a56b9
MK
4479 if (allow_pagefault)
4480 kunmap(dst_page + i);
4481 else
4482 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4483
4484 ret_val -= (PAGE_SIZE - rc);
4485 if (rc)
4486 break;
4487
4488 cond_resched();
4489 }
4490 return ret_val;
4491}
47ad8475 4492#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4493
40b64acd 4494#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4495
4496static struct kmem_cache *page_ptl_cachep;
4497
4498void __init ptlock_cache_init(void)
4499{
4500 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4501 SLAB_PANIC, NULL);
4502}
4503
539edb58 4504bool ptlock_alloc(struct page *page)
49076ec2
KS
4505{
4506 spinlock_t *ptl;
4507
b35f1819 4508 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4509 if (!ptl)
4510 return false;
539edb58 4511 page->ptl = ptl;
49076ec2
KS
4512 return true;
4513}
4514
539edb58 4515void ptlock_free(struct page *page)
49076ec2 4516{
b35f1819 4517 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4518}
4519#endif