]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memory.c
x86: PAT: add follow_pfnmp_pte routine to help tracking pfnmap pages - v3
[mirror_ubuntu-zesty-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
0ff92245 50#include <linux/delayacct.h>
1da177e4 51#include <linux/init.h>
edc79b2a 52#include <linux/writeback.h>
8a9f3ccd 53#include <linux/memcontrol.h>
cddb8a5c 54#include <linux/mmu_notifier.h>
1da177e4
LT
55
56#include <asm/pgalloc.h>
57#include <asm/uaccess.h>
58#include <asm/tlb.h>
59#include <asm/tlbflush.h>
60#include <asm/pgtable.h>
61
62#include <linux/swapops.h>
63#include <linux/elf.h>
64
42b77728
JB
65#include "internal.h"
66
d41dee36 67#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
68/* use the per-pgdat data instead for discontigmem - mbligh */
69unsigned long max_mapnr;
70struct page *mem_map;
71
72EXPORT_SYMBOL(max_mapnr);
73EXPORT_SYMBOL(mem_map);
74#endif
75
76unsigned long num_physpages;
77/*
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
83 */
84void * high_memory;
1da177e4
LT
85
86EXPORT_SYMBOL(num_physpages);
87EXPORT_SYMBOL(high_memory);
1da177e4 88
32a93233
IM
89/*
90 * Randomize the address space (stacks, mmaps, brk, etc.).
91 *
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
94 */
95int randomize_va_space __read_mostly =
96#ifdef CONFIG_COMPAT_BRK
97 1;
98#else
99 2;
100#endif
a62eaf15
AK
101
102static int __init disable_randmaps(char *s)
103{
104 randomize_va_space = 0;
9b41046c 105 return 1;
a62eaf15
AK
106}
107__setup("norandmaps", disable_randmaps);
108
109
1da177e4
LT
110/*
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none. Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
114 */
115
116void pgd_clear_bad(pgd_t *pgd)
117{
118 pgd_ERROR(*pgd);
119 pgd_clear(pgd);
120}
121
122void pud_clear_bad(pud_t *pud)
123{
124 pud_ERROR(*pud);
125 pud_clear(pud);
126}
127
128void pmd_clear_bad(pmd_t *pmd)
129{
130 pmd_ERROR(*pmd);
131 pmd_clear(pmd);
132}
133
134/*
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
137 */
e0da382c 138static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 139{
2f569afd 140 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 141 pmd_clear(pmd);
2f569afd 142 pte_free_tlb(tlb, token);
e0da382c 143 tlb->mm->nr_ptes--;
1da177e4
LT
144}
145
e0da382c
HD
146static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 unsigned long addr, unsigned long end,
148 unsigned long floor, unsigned long ceiling)
1da177e4
LT
149{
150 pmd_t *pmd;
151 unsigned long next;
e0da382c 152 unsigned long start;
1da177e4 153
e0da382c 154 start = addr;
1da177e4 155 pmd = pmd_offset(pud, addr);
1da177e4
LT
156 do {
157 next = pmd_addr_end(addr, end);
158 if (pmd_none_or_clear_bad(pmd))
159 continue;
e0da382c 160 free_pte_range(tlb, pmd);
1da177e4
LT
161 } while (pmd++, addr = next, addr != end);
162
e0da382c
HD
163 start &= PUD_MASK;
164 if (start < floor)
165 return;
166 if (ceiling) {
167 ceiling &= PUD_MASK;
168 if (!ceiling)
169 return;
1da177e4 170 }
e0da382c
HD
171 if (end - 1 > ceiling - 1)
172 return;
173
174 pmd = pmd_offset(pud, start);
175 pud_clear(pud);
176 pmd_free_tlb(tlb, pmd);
1da177e4
LT
177}
178
e0da382c
HD
179static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 unsigned long addr, unsigned long end,
181 unsigned long floor, unsigned long ceiling)
1da177e4
LT
182{
183 pud_t *pud;
184 unsigned long next;
e0da382c 185 unsigned long start;
1da177e4 186
e0da382c 187 start = addr;
1da177e4 188 pud = pud_offset(pgd, addr);
1da177e4
LT
189 do {
190 next = pud_addr_end(addr, end);
191 if (pud_none_or_clear_bad(pud))
192 continue;
e0da382c 193 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
194 } while (pud++, addr = next, addr != end);
195
e0da382c
HD
196 start &= PGDIR_MASK;
197 if (start < floor)
198 return;
199 if (ceiling) {
200 ceiling &= PGDIR_MASK;
201 if (!ceiling)
202 return;
1da177e4 203 }
e0da382c
HD
204 if (end - 1 > ceiling - 1)
205 return;
206
207 pud = pud_offset(pgd, start);
208 pgd_clear(pgd);
209 pud_free_tlb(tlb, pud);
1da177e4
LT
210}
211
212/*
e0da382c
HD
213 * This function frees user-level page tables of a process.
214 *
1da177e4
LT
215 * Must be called with pagetable lock held.
216 */
42b77728 217void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
1da177e4
LT
220{
221 pgd_t *pgd;
222 unsigned long next;
e0da382c
HD
223 unsigned long start;
224
225 /*
226 * The next few lines have given us lots of grief...
227 *
228 * Why are we testing PMD* at this top level? Because often
229 * there will be no work to do at all, and we'd prefer not to
230 * go all the way down to the bottom just to discover that.
231 *
232 * Why all these "- 1"s? Because 0 represents both the bottom
233 * of the address space and the top of it (using -1 for the
234 * top wouldn't help much: the masks would do the wrong thing).
235 * The rule is that addr 0 and floor 0 refer to the bottom of
236 * the address space, but end 0 and ceiling 0 refer to the top
237 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 * that end 0 case should be mythical).
239 *
240 * Wherever addr is brought up or ceiling brought down, we must
241 * be careful to reject "the opposite 0" before it confuses the
242 * subsequent tests. But what about where end is brought down
243 * by PMD_SIZE below? no, end can't go down to 0 there.
244 *
245 * Whereas we round start (addr) and ceiling down, by different
246 * masks at different levels, in order to test whether a table
247 * now has no other vmas using it, so can be freed, we don't
248 * bother to round floor or end up - the tests don't need that.
249 */
1da177e4 250
e0da382c
HD
251 addr &= PMD_MASK;
252 if (addr < floor) {
253 addr += PMD_SIZE;
254 if (!addr)
255 return;
256 }
257 if (ceiling) {
258 ceiling &= PMD_MASK;
259 if (!ceiling)
260 return;
261 }
262 if (end - 1 > ceiling - 1)
263 end -= PMD_SIZE;
264 if (addr > end - 1)
265 return;
266
267 start = addr;
42b77728 268 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
269 do {
270 next = pgd_addr_end(addr, end);
271 if (pgd_none_or_clear_bad(pgd))
272 continue;
42b77728 273 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 274 } while (pgd++, addr = next, addr != end);
e0da382c
HD
275}
276
42b77728 277void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 278 unsigned long floor, unsigned long ceiling)
e0da382c
HD
279{
280 while (vma) {
281 struct vm_area_struct *next = vma->vm_next;
282 unsigned long addr = vma->vm_start;
283
8f4f8c16
HD
284 /*
285 * Hide vma from rmap and vmtruncate before freeing pgtables
286 */
287 anon_vma_unlink(vma);
288 unlink_file_vma(vma);
289
9da61aef 290 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 292 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
293 } else {
294 /*
295 * Optimization: gather nearby vmas into one call down
296 */
297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 298 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
299 vma = next;
300 next = vma->vm_next;
8f4f8c16
HD
301 anon_vma_unlink(vma);
302 unlink_file_vma(vma);
3bf5ee95
HD
303 }
304 free_pgd_range(tlb, addr, vma->vm_end,
305 floor, next? next->vm_start: ceiling);
306 }
e0da382c
HD
307 vma = next;
308 }
1da177e4
LT
309}
310
1bb3630e 311int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 312{
2f569afd 313 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
314 if (!new)
315 return -ENOMEM;
316
362a61ad
NP
317 /*
318 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 * visible before the pte is made visible to other CPUs by being
320 * put into page tables.
321 *
322 * The other side of the story is the pointer chasing in the page
323 * table walking code (when walking the page table without locking;
324 * ie. most of the time). Fortunately, these data accesses consist
325 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 * being the notable exception) will already guarantee loads are
327 * seen in-order. See the alpha page table accessors for the
328 * smp_read_barrier_depends() barriers in page table walking code.
329 */
330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
c74df32c 332 spin_lock(&mm->page_table_lock);
2f569afd 333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 334 mm->nr_ptes++;
1da177e4 335 pmd_populate(mm, pmd, new);
2f569afd 336 new = NULL;
1da177e4 337 }
c74df32c 338 spin_unlock(&mm->page_table_lock);
2f569afd
MS
339 if (new)
340 pte_free(mm, new);
1bb3630e 341 return 0;
1da177e4
LT
342}
343
1bb3630e 344int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 345{
1bb3630e
HD
346 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 if (!new)
348 return -ENOMEM;
349
362a61ad
NP
350 smp_wmb(); /* See comment in __pte_alloc */
351
1bb3630e 352 spin_lock(&init_mm.page_table_lock);
2f569afd 353 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 354 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
355 new = NULL;
356 }
1bb3630e 357 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
358 if (new)
359 pte_free_kernel(&init_mm, new);
1bb3630e 360 return 0;
1da177e4
LT
361}
362
ae859762
HD
363static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364{
365 if (file_rss)
366 add_mm_counter(mm, file_rss, file_rss);
367 if (anon_rss)
368 add_mm_counter(mm, anon_rss, anon_rss);
369}
370
b5810039 371/*
6aab341e
LT
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
b5810039
NP
375 *
376 * The calling function must still handle the error.
377 */
15f59ada
AB
378static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
379 unsigned long vaddr)
b5810039
NP
380{
381 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
382 "vm_flags = %lx, vaddr = %lx\n",
383 (long long)pte_val(pte),
384 (vma->vm_mm == current->mm ? current->comm : "???"),
385 vma->vm_flags, vaddr);
386 dump_stack();
387}
388
67121172
LT
389static inline int is_cow_mapping(unsigned int flags)
390{
391 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
392}
393
ee498ed7 394/*
7e675137 395 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 396 *
7e675137
NP
397 * "Special" mappings do not wish to be associated with a "struct page" (either
398 * it doesn't exist, or it exists but they don't want to touch it). In this
399 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 400 *
7e675137
NP
401 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
402 * pte bit, in which case this function is trivial. Secondly, an architecture
403 * may not have a spare pte bit, which requires a more complicated scheme,
404 * described below.
405 *
406 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
407 * special mapping (even if there are underlying and valid "struct pages").
408 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 409 *
b379d790
JH
410 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
411 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
412 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
413 * mapping will always honor the rule
6aab341e
LT
414 *
415 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
416 *
7e675137
NP
417 * And for normal mappings this is false.
418 *
419 * This restricts such mappings to be a linear translation from virtual address
420 * to pfn. To get around this restriction, we allow arbitrary mappings so long
421 * as the vma is not a COW mapping; in that case, we know that all ptes are
422 * special (because none can have been COWed).
b379d790 423 *
b379d790 424 *
7e675137 425 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
426 *
427 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
428 * page" backing, however the difference is that _all_ pages with a struct
429 * page (that is, those where pfn_valid is true) are refcounted and considered
430 * normal pages by the VM. The disadvantage is that pages are refcounted
431 * (which can be slower and simply not an option for some PFNMAP users). The
432 * advantage is that we don't have to follow the strict linearity rule of
433 * PFNMAP mappings in order to support COWable mappings.
434 *
ee498ed7 435 */
7e675137
NP
436#ifdef __HAVE_ARCH_PTE_SPECIAL
437# define HAVE_PTE_SPECIAL 1
438#else
439# define HAVE_PTE_SPECIAL 0
440#endif
441struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442 pte_t pte)
ee498ed7 443{
7e675137
NP
444 unsigned long pfn;
445
446 if (HAVE_PTE_SPECIAL) {
447 if (likely(!pte_special(pte))) {
448 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
449 return pte_page(pte);
450 }
451 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
452 return NULL;
453 }
454
455 /* !HAVE_PTE_SPECIAL case follows: */
456
457 pfn = pte_pfn(pte);
6aab341e 458
b379d790
JH
459 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
460 if (vma->vm_flags & VM_MIXEDMAP) {
461 if (!pfn_valid(pfn))
462 return NULL;
463 goto out;
464 } else {
7e675137
NP
465 unsigned long off;
466 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
467 if (pfn == vma->vm_pgoff + off)
468 return NULL;
469 if (!is_cow_mapping(vma->vm_flags))
470 return NULL;
471 }
6aab341e
LT
472 }
473
7e675137 474 VM_BUG_ON(!pfn_valid(pfn));
6aab341e
LT
475
476 /*
7e675137 477 * NOTE! We still have PageReserved() pages in the page tables.
6aab341e 478 *
7e675137 479 * eg. VDSO mappings can cause them to exist.
6aab341e 480 */
b379d790 481out:
6aab341e 482 return pfn_to_page(pfn);
ee498ed7
HD
483}
484
1da177e4
LT
485/*
486 * copy one vm_area from one task to the other. Assumes the page tables
487 * already present in the new task to be cleared in the whole range
488 * covered by this vma.
1da177e4
LT
489 */
490
8c103762 491static inline void
1da177e4 492copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 493 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 494 unsigned long addr, int *rss)
1da177e4 495{
b5810039 496 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
497 pte_t pte = *src_pte;
498 struct page *page;
1da177e4
LT
499
500 /* pte contains position in swap or file, so copy. */
501 if (unlikely(!pte_present(pte))) {
502 if (!pte_file(pte)) {
0697212a
CL
503 swp_entry_t entry = pte_to_swp_entry(pte);
504
505 swap_duplicate(entry);
1da177e4
LT
506 /* make sure dst_mm is on swapoff's mmlist. */
507 if (unlikely(list_empty(&dst_mm->mmlist))) {
508 spin_lock(&mmlist_lock);
f412ac08
HD
509 if (list_empty(&dst_mm->mmlist))
510 list_add(&dst_mm->mmlist,
511 &src_mm->mmlist);
1da177e4
LT
512 spin_unlock(&mmlist_lock);
513 }
0697212a
CL
514 if (is_write_migration_entry(entry) &&
515 is_cow_mapping(vm_flags)) {
516 /*
517 * COW mappings require pages in both parent
518 * and child to be set to read.
519 */
520 make_migration_entry_read(&entry);
521 pte = swp_entry_to_pte(entry);
522 set_pte_at(src_mm, addr, src_pte, pte);
523 }
1da177e4 524 }
ae859762 525 goto out_set_pte;
1da177e4
LT
526 }
527
1da177e4
LT
528 /*
529 * If it's a COW mapping, write protect it both
530 * in the parent and the child
531 */
67121172 532 if (is_cow_mapping(vm_flags)) {
1da177e4 533 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 534 pte = pte_wrprotect(pte);
1da177e4
LT
535 }
536
537 /*
538 * If it's a shared mapping, mark it clean in
539 * the child
540 */
541 if (vm_flags & VM_SHARED)
542 pte = pte_mkclean(pte);
543 pte = pte_mkold(pte);
6aab341e
LT
544
545 page = vm_normal_page(vma, addr, pte);
546 if (page) {
547 get_page(page);
c97a9e10 548 page_dup_rmap(page, vma, addr);
6aab341e
LT
549 rss[!!PageAnon(page)]++;
550 }
ae859762
HD
551
552out_set_pte:
553 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
554}
555
556static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
558 unsigned long addr, unsigned long end)
559{
560 pte_t *src_pte, *dst_pte;
c74df32c 561 spinlock_t *src_ptl, *dst_ptl;
e040f218 562 int progress = 0;
8c103762 563 int rss[2];
1da177e4
LT
564
565again:
ae859762 566 rss[1] = rss[0] = 0;
c74df32c 567 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
568 if (!dst_pte)
569 return -ENOMEM;
570 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 571 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 572 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 573 arch_enter_lazy_mmu_mode();
1da177e4 574
1da177e4
LT
575 do {
576 /*
577 * We are holding two locks at this point - either of them
578 * could generate latencies in another task on another CPU.
579 */
e040f218
HD
580 if (progress >= 32) {
581 progress = 0;
582 if (need_resched() ||
95c354fe 583 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
584 break;
585 }
1da177e4
LT
586 if (pte_none(*src_pte)) {
587 progress++;
588 continue;
589 }
8c103762 590 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
591 progress += 8;
592 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 593
6606c3e0 594 arch_leave_lazy_mmu_mode();
c74df32c 595 spin_unlock(src_ptl);
1da177e4 596 pte_unmap_nested(src_pte - 1);
ae859762 597 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
598 pte_unmap_unlock(dst_pte - 1, dst_ptl);
599 cond_resched();
1da177e4
LT
600 if (addr != end)
601 goto again;
602 return 0;
603}
604
605static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
607 unsigned long addr, unsigned long end)
608{
609 pmd_t *src_pmd, *dst_pmd;
610 unsigned long next;
611
612 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613 if (!dst_pmd)
614 return -ENOMEM;
615 src_pmd = pmd_offset(src_pud, addr);
616 do {
617 next = pmd_addr_end(addr, end);
618 if (pmd_none_or_clear_bad(src_pmd))
619 continue;
620 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621 vma, addr, next))
622 return -ENOMEM;
623 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
624 return 0;
625}
626
627static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
628 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
629 unsigned long addr, unsigned long end)
630{
631 pud_t *src_pud, *dst_pud;
632 unsigned long next;
633
634 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635 if (!dst_pud)
636 return -ENOMEM;
637 src_pud = pud_offset(src_pgd, addr);
638 do {
639 next = pud_addr_end(addr, end);
640 if (pud_none_or_clear_bad(src_pud))
641 continue;
642 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643 vma, addr, next))
644 return -ENOMEM;
645 } while (dst_pud++, src_pud++, addr = next, addr != end);
646 return 0;
647}
648
649int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650 struct vm_area_struct *vma)
651{
652 pgd_t *src_pgd, *dst_pgd;
653 unsigned long next;
654 unsigned long addr = vma->vm_start;
655 unsigned long end = vma->vm_end;
cddb8a5c 656 int ret;
1da177e4 657
d992895b
NP
658 /*
659 * Don't copy ptes where a page fault will fill them correctly.
660 * Fork becomes much lighter when there are big shared or private
661 * readonly mappings. The tradeoff is that copy_page_range is more
662 * efficient than faulting.
663 */
4d7672b4 664 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
665 if (!vma->anon_vma)
666 return 0;
667 }
668
1da177e4
LT
669 if (is_vm_hugetlb_page(vma))
670 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
671
cddb8a5c
AA
672 /*
673 * We need to invalidate the secondary MMU mappings only when
674 * there could be a permission downgrade on the ptes of the
675 * parent mm. And a permission downgrade will only happen if
676 * is_cow_mapping() returns true.
677 */
678 if (is_cow_mapping(vma->vm_flags))
679 mmu_notifier_invalidate_range_start(src_mm, addr, end);
680
681 ret = 0;
1da177e4
LT
682 dst_pgd = pgd_offset(dst_mm, addr);
683 src_pgd = pgd_offset(src_mm, addr);
684 do {
685 next = pgd_addr_end(addr, end);
686 if (pgd_none_or_clear_bad(src_pgd))
687 continue;
cddb8a5c
AA
688 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
689 vma, addr, next))) {
690 ret = -ENOMEM;
691 break;
692 }
1da177e4 693 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
694
695 if (is_cow_mapping(vma->vm_flags))
696 mmu_notifier_invalidate_range_end(src_mm,
697 vma->vm_start, end);
698 return ret;
1da177e4
LT
699}
700
51c6f666 701static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 702 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 703 unsigned long addr, unsigned long end,
51c6f666 704 long *zap_work, struct zap_details *details)
1da177e4 705{
b5810039 706 struct mm_struct *mm = tlb->mm;
1da177e4 707 pte_t *pte;
508034a3 708 spinlock_t *ptl;
ae859762
HD
709 int file_rss = 0;
710 int anon_rss = 0;
1da177e4 711
508034a3 712 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 713 arch_enter_lazy_mmu_mode();
1da177e4
LT
714 do {
715 pte_t ptent = *pte;
51c6f666
RH
716 if (pte_none(ptent)) {
717 (*zap_work)--;
1da177e4 718 continue;
51c6f666 719 }
6f5e6b9e
HD
720
721 (*zap_work) -= PAGE_SIZE;
722
1da177e4 723 if (pte_present(ptent)) {
ee498ed7 724 struct page *page;
51c6f666 725
6aab341e 726 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
727 if (unlikely(details) && page) {
728 /*
729 * unmap_shared_mapping_pages() wants to
730 * invalidate cache without truncating:
731 * unmap shared but keep private pages.
732 */
733 if (details->check_mapping &&
734 details->check_mapping != page->mapping)
735 continue;
736 /*
737 * Each page->index must be checked when
738 * invalidating or truncating nonlinear.
739 */
740 if (details->nonlinear_vma &&
741 (page->index < details->first_index ||
742 page->index > details->last_index))
743 continue;
744 }
b5810039 745 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 746 tlb->fullmm);
1da177e4
LT
747 tlb_remove_tlb_entry(tlb, pte, addr);
748 if (unlikely(!page))
749 continue;
750 if (unlikely(details) && details->nonlinear_vma
751 && linear_page_index(details->nonlinear_vma,
752 addr) != page->index)
b5810039 753 set_pte_at(mm, addr, pte,
1da177e4 754 pgoff_to_pte(page->index));
1da177e4 755 if (PageAnon(page))
86d912f4 756 anon_rss--;
6237bcd9
HD
757 else {
758 if (pte_dirty(ptent))
759 set_page_dirty(page);
760 if (pte_young(ptent))
daa88c8d 761 SetPageReferenced(page);
86d912f4 762 file_rss--;
6237bcd9 763 }
7de6b805 764 page_remove_rmap(page, vma);
1da177e4
LT
765 tlb_remove_page(tlb, page);
766 continue;
767 }
768 /*
769 * If details->check_mapping, we leave swap entries;
770 * if details->nonlinear_vma, we leave file entries.
771 */
772 if (unlikely(details))
773 continue;
774 if (!pte_file(ptent))
775 free_swap_and_cache(pte_to_swp_entry(ptent));
9888a1ca 776 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 777 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 778
86d912f4 779 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 780 arch_leave_lazy_mmu_mode();
508034a3 781 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
782
783 return addr;
1da177e4
LT
784}
785
51c6f666 786static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 787 struct vm_area_struct *vma, pud_t *pud,
1da177e4 788 unsigned long addr, unsigned long end,
51c6f666 789 long *zap_work, struct zap_details *details)
1da177e4
LT
790{
791 pmd_t *pmd;
792 unsigned long next;
793
794 pmd = pmd_offset(pud, addr);
795 do {
796 next = pmd_addr_end(addr, end);
51c6f666
RH
797 if (pmd_none_or_clear_bad(pmd)) {
798 (*zap_work)--;
1da177e4 799 continue;
51c6f666
RH
800 }
801 next = zap_pte_range(tlb, vma, pmd, addr, next,
802 zap_work, details);
803 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
804
805 return addr;
1da177e4
LT
806}
807
51c6f666 808static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 809 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 810 unsigned long addr, unsigned long end,
51c6f666 811 long *zap_work, struct zap_details *details)
1da177e4
LT
812{
813 pud_t *pud;
814 unsigned long next;
815
816 pud = pud_offset(pgd, addr);
817 do {
818 next = pud_addr_end(addr, end);
51c6f666
RH
819 if (pud_none_or_clear_bad(pud)) {
820 (*zap_work)--;
1da177e4 821 continue;
51c6f666
RH
822 }
823 next = zap_pmd_range(tlb, vma, pud, addr, next,
824 zap_work, details);
825 } while (pud++, addr = next, (addr != end && *zap_work > 0));
826
827 return addr;
1da177e4
LT
828}
829
51c6f666
RH
830static unsigned long unmap_page_range(struct mmu_gather *tlb,
831 struct vm_area_struct *vma,
1da177e4 832 unsigned long addr, unsigned long end,
51c6f666 833 long *zap_work, struct zap_details *details)
1da177e4
LT
834{
835 pgd_t *pgd;
836 unsigned long next;
837
838 if (details && !details->check_mapping && !details->nonlinear_vma)
839 details = NULL;
840
841 BUG_ON(addr >= end);
842 tlb_start_vma(tlb, vma);
843 pgd = pgd_offset(vma->vm_mm, addr);
844 do {
845 next = pgd_addr_end(addr, end);
51c6f666
RH
846 if (pgd_none_or_clear_bad(pgd)) {
847 (*zap_work)--;
1da177e4 848 continue;
51c6f666
RH
849 }
850 next = zap_pud_range(tlb, vma, pgd, addr, next,
851 zap_work, details);
852 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 853 tlb_end_vma(tlb, vma);
51c6f666
RH
854
855 return addr;
1da177e4
LT
856}
857
858#ifdef CONFIG_PREEMPT
859# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
860#else
861/* No preempt: go for improved straight-line efficiency */
862# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
863#endif
864
865/**
866 * unmap_vmas - unmap a range of memory covered by a list of vma's
867 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
868 * @vma: the starting vma
869 * @start_addr: virtual address at which to start unmapping
870 * @end_addr: virtual address at which to end unmapping
871 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
872 * @details: details of nonlinear truncation or shared cache invalidation
873 *
ee39b37b 874 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 875 *
508034a3 876 * Unmap all pages in the vma list.
1da177e4 877 *
508034a3
HD
878 * We aim to not hold locks for too long (for scheduling latency reasons).
879 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
880 * return the ending mmu_gather to the caller.
881 *
882 * Only addresses between `start' and `end' will be unmapped.
883 *
884 * The VMA list must be sorted in ascending virtual address order.
885 *
886 * unmap_vmas() assumes that the caller will flush the whole unmapped address
887 * range after unmap_vmas() returns. So the only responsibility here is to
888 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
889 * drops the lock and schedules.
890 */
508034a3 891unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
892 struct vm_area_struct *vma, unsigned long start_addr,
893 unsigned long end_addr, unsigned long *nr_accounted,
894 struct zap_details *details)
895{
51c6f666 896 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
897 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
898 int tlb_start_valid = 0;
ee39b37b 899 unsigned long start = start_addr;
1da177e4 900 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 901 int fullmm = (*tlbp)->fullmm;
cddb8a5c 902 struct mm_struct *mm = vma->vm_mm;
1da177e4 903
cddb8a5c 904 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 905 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
906 unsigned long end;
907
908 start = max(vma->vm_start, start_addr);
909 if (start >= vma->vm_end)
910 continue;
911 end = min(vma->vm_end, end_addr);
912 if (end <= vma->vm_start)
913 continue;
914
915 if (vma->vm_flags & VM_ACCOUNT)
916 *nr_accounted += (end - start) >> PAGE_SHIFT;
917
1da177e4 918 while (start != end) {
1da177e4
LT
919 if (!tlb_start_valid) {
920 tlb_start = start;
921 tlb_start_valid = 1;
922 }
923
51c6f666 924 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
925 /*
926 * It is undesirable to test vma->vm_file as it
927 * should be non-null for valid hugetlb area.
928 * However, vm_file will be NULL in the error
929 * cleanup path of do_mmap_pgoff. When
930 * hugetlbfs ->mmap method fails,
931 * do_mmap_pgoff() nullifies vma->vm_file
932 * before calling this function to clean up.
933 * Since no pte has actually been setup, it is
934 * safe to do nothing in this case.
935 */
936 if (vma->vm_file) {
937 unmap_hugepage_range(vma, start, end, NULL);
938 zap_work -= (end - start) /
a5516438 939 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
940 }
941
51c6f666
RH
942 start = end;
943 } else
944 start = unmap_page_range(*tlbp, vma,
945 start, end, &zap_work, details);
946
947 if (zap_work > 0) {
948 BUG_ON(start != end);
949 break;
1da177e4
LT
950 }
951
1da177e4
LT
952 tlb_finish_mmu(*tlbp, tlb_start, start);
953
954 if (need_resched() ||
95c354fe 955 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 956 if (i_mmap_lock) {
508034a3 957 *tlbp = NULL;
1da177e4
LT
958 goto out;
959 }
1da177e4 960 cond_resched();
1da177e4
LT
961 }
962
508034a3 963 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 964 tlb_start_valid = 0;
51c6f666 965 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
966 }
967 }
968out:
cddb8a5c 969 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 970 return start; /* which is now the end (or restart) address */
1da177e4
LT
971}
972
973/**
974 * zap_page_range - remove user pages in a given range
975 * @vma: vm_area_struct holding the applicable pages
976 * @address: starting address of pages to zap
977 * @size: number of bytes to zap
978 * @details: details of nonlinear truncation or shared cache invalidation
979 */
ee39b37b 980unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
981 unsigned long size, struct zap_details *details)
982{
983 struct mm_struct *mm = vma->vm_mm;
984 struct mmu_gather *tlb;
985 unsigned long end = address + size;
986 unsigned long nr_accounted = 0;
987
1da177e4 988 lru_add_drain();
1da177e4 989 tlb = tlb_gather_mmu(mm, 0);
365e9c87 990 update_hiwater_rss(mm);
508034a3
HD
991 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
992 if (tlb)
993 tlb_finish_mmu(tlb, address, end);
ee39b37b 994 return end;
1da177e4
LT
995}
996
c627f9cc
JS
997/**
998 * zap_vma_ptes - remove ptes mapping the vma
999 * @vma: vm_area_struct holding ptes to be zapped
1000 * @address: starting address of pages to zap
1001 * @size: number of bytes to zap
1002 *
1003 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1004 *
1005 * The entire address range must be fully contained within the vma.
1006 *
1007 * Returns 0 if successful.
1008 */
1009int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1010 unsigned long size)
1011{
1012 if (address < vma->vm_start || address + size > vma->vm_end ||
1013 !(vma->vm_flags & VM_PFNMAP))
1014 return -1;
1015 zap_page_range(vma, address, size, NULL);
1016 return 0;
1017}
1018EXPORT_SYMBOL_GPL(zap_vma_ptes);
1019
1da177e4
LT
1020/*
1021 * Do a quick page-table lookup for a single page.
1da177e4 1022 */
6aab341e 1023struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1024 unsigned int flags)
1da177e4
LT
1025{
1026 pgd_t *pgd;
1027 pud_t *pud;
1028 pmd_t *pmd;
1029 pte_t *ptep, pte;
deceb6cd 1030 spinlock_t *ptl;
1da177e4 1031 struct page *page;
6aab341e 1032 struct mm_struct *mm = vma->vm_mm;
1da177e4 1033
deceb6cd
HD
1034 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1035 if (!IS_ERR(page)) {
1036 BUG_ON(flags & FOLL_GET);
1037 goto out;
1038 }
1da177e4 1039
deceb6cd 1040 page = NULL;
1da177e4
LT
1041 pgd = pgd_offset(mm, address);
1042 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1043 goto no_page_table;
1da177e4
LT
1044
1045 pud = pud_offset(pgd, address);
ceb86879 1046 if (pud_none(*pud))
deceb6cd 1047 goto no_page_table;
ceb86879
AK
1048 if (pud_huge(*pud)) {
1049 BUG_ON(flags & FOLL_GET);
1050 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1051 goto out;
1052 }
1053 if (unlikely(pud_bad(*pud)))
1054 goto no_page_table;
1055
1da177e4 1056 pmd = pmd_offset(pud, address);
aeed5fce 1057 if (pmd_none(*pmd))
deceb6cd 1058 goto no_page_table;
deceb6cd
HD
1059 if (pmd_huge(*pmd)) {
1060 BUG_ON(flags & FOLL_GET);
1061 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1062 goto out;
deceb6cd 1063 }
aeed5fce
HD
1064 if (unlikely(pmd_bad(*pmd)))
1065 goto no_page_table;
1066
deceb6cd 1067 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1068
1069 pte = *ptep;
deceb6cd 1070 if (!pte_present(pte))
89f5b7da 1071 goto no_page;
deceb6cd
HD
1072 if ((flags & FOLL_WRITE) && !pte_write(pte))
1073 goto unlock;
6aab341e
LT
1074 page = vm_normal_page(vma, address, pte);
1075 if (unlikely(!page))
89f5b7da 1076 goto bad_page;
1da177e4 1077
deceb6cd
HD
1078 if (flags & FOLL_GET)
1079 get_page(page);
1080 if (flags & FOLL_TOUCH) {
1081 if ((flags & FOLL_WRITE) &&
1082 !pte_dirty(pte) && !PageDirty(page))
1083 set_page_dirty(page);
1084 mark_page_accessed(page);
1085 }
1086unlock:
1087 pte_unmap_unlock(ptep, ptl);
1da177e4 1088out:
deceb6cd 1089 return page;
1da177e4 1090
89f5b7da
LT
1091bad_page:
1092 pte_unmap_unlock(ptep, ptl);
1093 return ERR_PTR(-EFAULT);
1094
1095no_page:
1096 pte_unmap_unlock(ptep, ptl);
1097 if (!pte_none(pte))
1098 return page;
1099 /* Fall through to ZERO_PAGE handling */
deceb6cd
HD
1100no_page_table:
1101 /*
1102 * When core dumping an enormous anonymous area that nobody
1103 * has touched so far, we don't want to allocate page tables.
1104 */
1105 if (flags & FOLL_ANON) {
557ed1fa 1106 page = ZERO_PAGE(0);
deceb6cd
HD
1107 if (flags & FOLL_GET)
1108 get_page(page);
1109 BUG_ON(flags & FOLL_WRITE);
1110 }
1111 return page;
1da177e4
LT
1112}
1113
e121e418 1114int follow_pfnmap_pte(struct vm_area_struct *vma, unsigned long address,
1115 pte_t *ret_ptep)
1116{
1117 pgd_t *pgd;
1118 pud_t *pud;
1119 pmd_t *pmd;
1120 pte_t *ptep, pte;
1121 spinlock_t *ptl;
1122 struct page *page;
1123 struct mm_struct *mm = vma->vm_mm;
1124
1125 if (!is_pfn_mapping(vma))
1126 goto err;
1127
1128 page = NULL;
1129 pgd = pgd_offset(mm, address);
1130 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1131 goto err;
1132
1133 pud = pud_offset(pgd, address);
1134 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
1135 goto err;
1136
1137 pmd = pmd_offset(pud, address);
1138 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
1139 goto err;
1140
1141 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1142
1143 pte = *ptep;
1144 if (!pte_present(pte))
1145 goto err_unlock;
1146
1147 *ret_ptep = pte;
1148 pte_unmap_unlock(ptep, ptl);
1149 return 0;
1150
1151err_unlock:
1152 pte_unmap_unlock(ptep, ptl);
1153err:
1154 return -EINVAL;
1155}
1156
672ca28e
LT
1157/* Can we do the FOLL_ANON optimization? */
1158static inline int use_zero_page(struct vm_area_struct *vma)
1159{
1160 /*
1161 * We don't want to optimize FOLL_ANON for make_pages_present()
1162 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1163 * we want to get the page from the page tables to make sure
1164 * that we serialize and update with any other user of that
1165 * mapping.
1166 */
1167 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1168 return 0;
1169 /*
0d71d10a 1170 * And if we have a fault routine, it's not an anonymous region.
672ca28e 1171 */
0d71d10a 1172 return !vma->vm_ops || !vma->vm_ops->fault;
672ca28e
LT
1173}
1174
b291f000
NP
1175
1176
1177int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1178 unsigned long start, int len, int flags,
1da177e4
LT
1179 struct page **pages, struct vm_area_struct **vmas)
1180{
1181 int i;
b291f000
NP
1182 unsigned int vm_flags = 0;
1183 int write = !!(flags & GUP_FLAGS_WRITE);
1184 int force = !!(flags & GUP_FLAGS_FORCE);
1185 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1da177e4 1186
900cf086
JC
1187 if (len <= 0)
1188 return 0;
1da177e4
LT
1189 /*
1190 * Require read or write permissions.
1191 * If 'force' is set, we only require the "MAY" flags.
1192 */
deceb6cd
HD
1193 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1194 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1195 i = 0;
1196
1197 do {
deceb6cd
HD
1198 struct vm_area_struct *vma;
1199 unsigned int foll_flags;
1da177e4
LT
1200
1201 vma = find_extend_vma(mm, start);
1202 if (!vma && in_gate_area(tsk, start)) {
1203 unsigned long pg = start & PAGE_MASK;
1204 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1205 pgd_t *pgd;
1206 pud_t *pud;
1207 pmd_t *pmd;
1208 pte_t *pte;
b291f000
NP
1209
1210 /* user gate pages are read-only */
1211 if (!ignore && write)
1da177e4
LT
1212 return i ? : -EFAULT;
1213 if (pg > TASK_SIZE)
1214 pgd = pgd_offset_k(pg);
1215 else
1216 pgd = pgd_offset_gate(mm, pg);
1217 BUG_ON(pgd_none(*pgd));
1218 pud = pud_offset(pgd, pg);
1219 BUG_ON(pud_none(*pud));
1220 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1221 if (pmd_none(*pmd))
1222 return i ? : -EFAULT;
1da177e4 1223 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1224 if (pte_none(*pte)) {
1225 pte_unmap(pte);
1226 return i ? : -EFAULT;
1227 }
1da177e4 1228 if (pages) {
fa2a455b 1229 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1230 pages[i] = page;
1231 if (page)
1232 get_page(page);
1da177e4
LT
1233 }
1234 pte_unmap(pte);
1235 if (vmas)
1236 vmas[i] = gate_vma;
1237 i++;
1238 start += PAGE_SIZE;
1239 len--;
1240 continue;
1241 }
1242
b291f000
NP
1243 if (!vma ||
1244 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1245 (!ignore && !(vm_flags & vma->vm_flags)))
1da177e4
LT
1246 return i ? : -EFAULT;
1247
1248 if (is_vm_hugetlb_page(vma)) {
1249 i = follow_hugetlb_page(mm, vma, pages, vmas,
5b23dbe8 1250 &start, &len, i, write);
1da177e4
LT
1251 continue;
1252 }
deceb6cd
HD
1253
1254 foll_flags = FOLL_TOUCH;
1255 if (pages)
1256 foll_flags |= FOLL_GET;
672ca28e 1257 if (!write && use_zero_page(vma))
deceb6cd
HD
1258 foll_flags |= FOLL_ANON;
1259
1da177e4 1260 do {
08ef4729 1261 struct page *page;
1da177e4 1262
462e00cc
ES
1263 /*
1264 * If tsk is ooming, cut off its access to large memory
1265 * allocations. It has a pending SIGKILL, but it can't
1266 * be processed until returning to user space.
1267 */
1268 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
7a36a752 1269 return i ? i : -ENOMEM;
462e00cc 1270
deceb6cd
HD
1271 if (write)
1272 foll_flags |= FOLL_WRITE;
a68d2ebc 1273
deceb6cd 1274 cond_resched();
6aab341e 1275 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1276 int ret;
83c54070 1277 ret = handle_mm_fault(mm, vma, start,
deceb6cd 1278 foll_flags & FOLL_WRITE);
83c54070
NP
1279 if (ret & VM_FAULT_ERROR) {
1280 if (ret & VM_FAULT_OOM)
1281 return i ? i : -ENOMEM;
1282 else if (ret & VM_FAULT_SIGBUS)
1283 return i ? i : -EFAULT;
1284 BUG();
1285 }
1286 if (ret & VM_FAULT_MAJOR)
1287 tsk->maj_flt++;
1288 else
1289 tsk->min_flt++;
1290
a68d2ebc 1291 /*
83c54070
NP
1292 * The VM_FAULT_WRITE bit tells us that
1293 * do_wp_page has broken COW when necessary,
1294 * even if maybe_mkwrite decided not to set
1295 * pte_write. We can thus safely do subsequent
1296 * page lookups as if they were reads.
a68d2ebc
LT
1297 */
1298 if (ret & VM_FAULT_WRITE)
deceb6cd 1299 foll_flags &= ~FOLL_WRITE;
83c54070 1300
7f7bbbe5 1301 cond_resched();
1da177e4 1302 }
89f5b7da
LT
1303 if (IS_ERR(page))
1304 return i ? i : PTR_ERR(page);
1da177e4 1305 if (pages) {
08ef4729 1306 pages[i] = page;
03beb076 1307
a6f36be3 1308 flush_anon_page(vma, page, start);
08ef4729 1309 flush_dcache_page(page);
1da177e4
LT
1310 }
1311 if (vmas)
1312 vmas[i] = vma;
1313 i++;
1314 start += PAGE_SIZE;
1315 len--;
08ef4729 1316 } while (len && start < vma->vm_end);
08ef4729 1317 } while (len);
1da177e4
LT
1318 return i;
1319}
b291f000
NP
1320
1321int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1322 unsigned long start, int len, int write, int force,
1323 struct page **pages, struct vm_area_struct **vmas)
1324{
1325 int flags = 0;
1326
1327 if (write)
1328 flags |= GUP_FLAGS_WRITE;
1329 if (force)
1330 flags |= GUP_FLAGS_FORCE;
1331
1332 return __get_user_pages(tsk, mm,
1333 start, len, flags,
1334 pages, vmas);
1335}
1336
1da177e4
LT
1337EXPORT_SYMBOL(get_user_pages);
1338
920c7a5d
HH
1339pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1340 spinlock_t **ptl)
c9cfcddf
LT
1341{
1342 pgd_t * pgd = pgd_offset(mm, addr);
1343 pud_t * pud = pud_alloc(mm, pgd, addr);
1344 if (pud) {
49c91fb0 1345 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1346 if (pmd)
1347 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1348 }
1349 return NULL;
1350}
1351
238f58d8
LT
1352/*
1353 * This is the old fallback for page remapping.
1354 *
1355 * For historical reasons, it only allows reserved pages. Only
1356 * old drivers should use this, and they needed to mark their
1357 * pages reserved for the old functions anyway.
1358 */
423bad60
NP
1359static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1360 struct page *page, pgprot_t prot)
238f58d8 1361{
423bad60 1362 struct mm_struct *mm = vma->vm_mm;
238f58d8 1363 int retval;
c9cfcddf 1364 pte_t *pte;
8a9f3ccd
BS
1365 spinlock_t *ptl;
1366
238f58d8 1367 retval = -EINVAL;
a145dd41 1368 if (PageAnon(page))
5b4e655e 1369 goto out;
238f58d8
LT
1370 retval = -ENOMEM;
1371 flush_dcache_page(page);
c9cfcddf 1372 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1373 if (!pte)
5b4e655e 1374 goto out;
238f58d8
LT
1375 retval = -EBUSY;
1376 if (!pte_none(*pte))
1377 goto out_unlock;
1378
1379 /* Ok, finally just insert the thing.. */
1380 get_page(page);
1381 inc_mm_counter(mm, file_rss);
1382 page_add_file_rmap(page);
1383 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1384
1385 retval = 0;
8a9f3ccd
BS
1386 pte_unmap_unlock(pte, ptl);
1387 return retval;
238f58d8
LT
1388out_unlock:
1389 pte_unmap_unlock(pte, ptl);
1390out:
1391 return retval;
1392}
1393
bfa5bf6d
REB
1394/**
1395 * vm_insert_page - insert single page into user vma
1396 * @vma: user vma to map to
1397 * @addr: target user address of this page
1398 * @page: source kernel page
1399 *
a145dd41
LT
1400 * This allows drivers to insert individual pages they've allocated
1401 * into a user vma.
1402 *
1403 * The page has to be a nice clean _individual_ kernel allocation.
1404 * If you allocate a compound page, you need to have marked it as
1405 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1406 * (see split_page()).
a145dd41
LT
1407 *
1408 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1409 * took an arbitrary page protection parameter. This doesn't allow
1410 * that. Your vma protection will have to be set up correctly, which
1411 * means that if you want a shared writable mapping, you'd better
1412 * ask for a shared writable mapping!
1413 *
1414 * The page does not need to be reserved.
1415 */
423bad60
NP
1416int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1417 struct page *page)
a145dd41
LT
1418{
1419 if (addr < vma->vm_start || addr >= vma->vm_end)
1420 return -EFAULT;
1421 if (!page_count(page))
1422 return -EINVAL;
4d7672b4 1423 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1424 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1425}
e3c3374f 1426EXPORT_SYMBOL(vm_insert_page);
a145dd41 1427
423bad60
NP
1428static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1429 unsigned long pfn, pgprot_t prot)
1430{
1431 struct mm_struct *mm = vma->vm_mm;
1432 int retval;
1433 pte_t *pte, entry;
1434 spinlock_t *ptl;
1435
1436 retval = -ENOMEM;
1437 pte = get_locked_pte(mm, addr, &ptl);
1438 if (!pte)
1439 goto out;
1440 retval = -EBUSY;
1441 if (!pte_none(*pte))
1442 goto out_unlock;
1443
1444 /* Ok, finally just insert the thing.. */
1445 entry = pte_mkspecial(pfn_pte(pfn, prot));
1446 set_pte_at(mm, addr, pte, entry);
1447 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1448
1449 retval = 0;
1450out_unlock:
1451 pte_unmap_unlock(pte, ptl);
1452out:
1453 return retval;
1454}
1455
e0dc0d8f
NP
1456/**
1457 * vm_insert_pfn - insert single pfn into user vma
1458 * @vma: user vma to map to
1459 * @addr: target user address of this page
1460 * @pfn: source kernel pfn
1461 *
1462 * Similar to vm_inert_page, this allows drivers to insert individual pages
1463 * they've allocated into a user vma. Same comments apply.
1464 *
1465 * This function should only be called from a vm_ops->fault handler, and
1466 * in that case the handler should return NULL.
0d71d10a
NP
1467 *
1468 * vma cannot be a COW mapping.
1469 *
1470 * As this is called only for pages that do not currently exist, we
1471 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1472 */
1473int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1474 unsigned long pfn)
e0dc0d8f 1475{
7e675137
NP
1476 /*
1477 * Technically, architectures with pte_special can avoid all these
1478 * restrictions (same for remap_pfn_range). However we would like
1479 * consistency in testing and feature parity among all, so we should
1480 * try to keep these invariants in place for everybody.
1481 */
b379d790
JH
1482 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1483 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1484 (VM_PFNMAP|VM_MIXEDMAP));
1485 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1486 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1487
423bad60
NP
1488 if (addr < vma->vm_start || addr >= vma->vm_end)
1489 return -EFAULT;
1490 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1491}
1492EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1493
423bad60
NP
1494int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1495 unsigned long pfn)
1496{
1497 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1498
423bad60
NP
1499 if (addr < vma->vm_start || addr >= vma->vm_end)
1500 return -EFAULT;
e0dc0d8f 1501
423bad60
NP
1502 /*
1503 * If we don't have pte special, then we have to use the pfn_valid()
1504 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1505 * refcount the page if pfn_valid is true (hence insert_page rather
1506 * than insert_pfn).
1507 */
1508 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1509 struct page *page;
1510
1511 page = pfn_to_page(pfn);
1512 return insert_page(vma, addr, page, vma->vm_page_prot);
1513 }
1514 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1515}
423bad60 1516EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1517
1da177e4
LT
1518/*
1519 * maps a range of physical memory into the requested pages. the old
1520 * mappings are removed. any references to nonexistent pages results
1521 * in null mappings (currently treated as "copy-on-access")
1522 */
1523static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1524 unsigned long addr, unsigned long end,
1525 unsigned long pfn, pgprot_t prot)
1526{
1527 pte_t *pte;
c74df32c 1528 spinlock_t *ptl;
1da177e4 1529
c74df32c 1530 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1531 if (!pte)
1532 return -ENOMEM;
6606c3e0 1533 arch_enter_lazy_mmu_mode();
1da177e4
LT
1534 do {
1535 BUG_ON(!pte_none(*pte));
7e675137 1536 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1537 pfn++;
1538 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1539 arch_leave_lazy_mmu_mode();
c74df32c 1540 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1541 return 0;
1542}
1543
1544static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1545 unsigned long addr, unsigned long end,
1546 unsigned long pfn, pgprot_t prot)
1547{
1548 pmd_t *pmd;
1549 unsigned long next;
1550
1551 pfn -= addr >> PAGE_SHIFT;
1552 pmd = pmd_alloc(mm, pud, addr);
1553 if (!pmd)
1554 return -ENOMEM;
1555 do {
1556 next = pmd_addr_end(addr, end);
1557 if (remap_pte_range(mm, pmd, addr, next,
1558 pfn + (addr >> PAGE_SHIFT), prot))
1559 return -ENOMEM;
1560 } while (pmd++, addr = next, addr != end);
1561 return 0;
1562}
1563
1564static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1565 unsigned long addr, unsigned long end,
1566 unsigned long pfn, pgprot_t prot)
1567{
1568 pud_t *pud;
1569 unsigned long next;
1570
1571 pfn -= addr >> PAGE_SHIFT;
1572 pud = pud_alloc(mm, pgd, addr);
1573 if (!pud)
1574 return -ENOMEM;
1575 do {
1576 next = pud_addr_end(addr, end);
1577 if (remap_pmd_range(mm, pud, addr, next,
1578 pfn + (addr >> PAGE_SHIFT), prot))
1579 return -ENOMEM;
1580 } while (pud++, addr = next, addr != end);
1581 return 0;
1582}
1583
bfa5bf6d
REB
1584/**
1585 * remap_pfn_range - remap kernel memory to userspace
1586 * @vma: user vma to map to
1587 * @addr: target user address to start at
1588 * @pfn: physical address of kernel memory
1589 * @size: size of map area
1590 * @prot: page protection flags for this mapping
1591 *
1592 * Note: this is only safe if the mm semaphore is held when called.
1593 */
1da177e4
LT
1594int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1595 unsigned long pfn, unsigned long size, pgprot_t prot)
1596{
1597 pgd_t *pgd;
1598 unsigned long next;
2d15cab8 1599 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1600 struct mm_struct *mm = vma->vm_mm;
1601 int err;
1602
1603 /*
1604 * Physically remapped pages are special. Tell the
1605 * rest of the world about it:
1606 * VM_IO tells people not to look at these pages
1607 * (accesses can have side effects).
0b14c179
HD
1608 * VM_RESERVED is specified all over the place, because
1609 * in 2.4 it kept swapout's vma scan off this vma; but
1610 * in 2.6 the LRU scan won't even find its pages, so this
1611 * flag means no more than count its pages in reserved_vm,
1612 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1613 * VM_PFNMAP tells the core MM that the base pages are just
1614 * raw PFN mappings, and do not have a "struct page" associated
1615 * with them.
fb155c16
LT
1616 *
1617 * There's a horrible special case to handle copy-on-write
1618 * behaviour that some programs depend on. We mark the "original"
1619 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1620 */
3c8bb73a 1621 if (addr == vma->vm_start && end == vma->vm_end)
fb155c16 1622 vma->vm_pgoff = pfn;
3c8bb73a 1623 else if (is_cow_mapping(vma->vm_flags))
1624 return -EINVAL;
fb155c16 1625
6aab341e 1626 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4
LT
1627
1628 BUG_ON(addr >= end);
1629 pfn -= addr >> PAGE_SHIFT;
1630 pgd = pgd_offset(mm, addr);
1631 flush_cache_range(vma, addr, end);
1da177e4
LT
1632 do {
1633 next = pgd_addr_end(addr, end);
1634 err = remap_pud_range(mm, pgd, addr, next,
1635 pfn + (addr >> PAGE_SHIFT), prot);
1636 if (err)
1637 break;
1638 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1639 return err;
1640}
1641EXPORT_SYMBOL(remap_pfn_range);
1642
aee16b3c
JF
1643static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1644 unsigned long addr, unsigned long end,
1645 pte_fn_t fn, void *data)
1646{
1647 pte_t *pte;
1648 int err;
2f569afd 1649 pgtable_t token;
94909914 1650 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1651
1652 pte = (mm == &init_mm) ?
1653 pte_alloc_kernel(pmd, addr) :
1654 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1655 if (!pte)
1656 return -ENOMEM;
1657
1658 BUG_ON(pmd_huge(*pmd));
1659
2f569afd 1660 token = pmd_pgtable(*pmd);
aee16b3c
JF
1661
1662 do {
2f569afd 1663 err = fn(pte, token, addr, data);
aee16b3c
JF
1664 if (err)
1665 break;
1666 } while (pte++, addr += PAGE_SIZE, addr != end);
1667
1668 if (mm != &init_mm)
1669 pte_unmap_unlock(pte-1, ptl);
1670 return err;
1671}
1672
1673static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1674 unsigned long addr, unsigned long end,
1675 pte_fn_t fn, void *data)
1676{
1677 pmd_t *pmd;
1678 unsigned long next;
1679 int err;
1680
ceb86879
AK
1681 BUG_ON(pud_huge(*pud));
1682
aee16b3c
JF
1683 pmd = pmd_alloc(mm, pud, addr);
1684 if (!pmd)
1685 return -ENOMEM;
1686 do {
1687 next = pmd_addr_end(addr, end);
1688 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1689 if (err)
1690 break;
1691 } while (pmd++, addr = next, addr != end);
1692 return err;
1693}
1694
1695static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1696 unsigned long addr, unsigned long end,
1697 pte_fn_t fn, void *data)
1698{
1699 pud_t *pud;
1700 unsigned long next;
1701 int err;
1702
1703 pud = pud_alloc(mm, pgd, addr);
1704 if (!pud)
1705 return -ENOMEM;
1706 do {
1707 next = pud_addr_end(addr, end);
1708 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1709 if (err)
1710 break;
1711 } while (pud++, addr = next, addr != end);
1712 return err;
1713}
1714
1715/*
1716 * Scan a region of virtual memory, filling in page tables as necessary
1717 * and calling a provided function on each leaf page table.
1718 */
1719int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1720 unsigned long size, pte_fn_t fn, void *data)
1721{
1722 pgd_t *pgd;
1723 unsigned long next;
cddb8a5c 1724 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1725 int err;
1726
1727 BUG_ON(addr >= end);
cddb8a5c 1728 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1729 pgd = pgd_offset(mm, addr);
1730 do {
1731 next = pgd_addr_end(addr, end);
1732 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1733 if (err)
1734 break;
1735 } while (pgd++, addr = next, addr != end);
cddb8a5c 1736 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1737 return err;
1738}
1739EXPORT_SYMBOL_GPL(apply_to_page_range);
1740
8f4e2101
HD
1741/*
1742 * handle_pte_fault chooses page fault handler according to an entry
1743 * which was read non-atomically. Before making any commitment, on
1744 * those architectures or configurations (e.g. i386 with PAE) which
1745 * might give a mix of unmatched parts, do_swap_page and do_file_page
1746 * must check under lock before unmapping the pte and proceeding
1747 * (but do_wp_page is only called after already making such a check;
1748 * and do_anonymous_page and do_no_page can safely check later on).
1749 */
4c21e2f2 1750static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1751 pte_t *page_table, pte_t orig_pte)
1752{
1753 int same = 1;
1754#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1755 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1756 spinlock_t *ptl = pte_lockptr(mm, pmd);
1757 spin_lock(ptl);
8f4e2101 1758 same = pte_same(*page_table, orig_pte);
4c21e2f2 1759 spin_unlock(ptl);
8f4e2101
HD
1760 }
1761#endif
1762 pte_unmap(page_table);
1763 return same;
1764}
1765
1da177e4
LT
1766/*
1767 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1768 * servicing faults for write access. In the normal case, do always want
1769 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1770 * that do not have writing enabled, when used by access_process_vm.
1771 */
1772static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1773{
1774 if (likely(vma->vm_flags & VM_WRITE))
1775 pte = pte_mkwrite(pte);
1776 return pte;
1777}
1778
9de455b2 1779static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1780{
1781 /*
1782 * If the source page was a PFN mapping, we don't have
1783 * a "struct page" for it. We do a best-effort copy by
1784 * just copying from the original user address. If that
1785 * fails, we just zero-fill it. Live with it.
1786 */
1787 if (unlikely(!src)) {
1788 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1789 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1790
1791 /*
1792 * This really shouldn't fail, because the page is there
1793 * in the page tables. But it might just be unreadable,
1794 * in which case we just give up and fill the result with
1795 * zeroes.
1796 */
1797 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1798 memset(kaddr, 0, PAGE_SIZE);
1799 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1800 flush_dcache_page(dst);
0ed361de
NP
1801 } else
1802 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1803}
1804
1da177e4
LT
1805/*
1806 * This routine handles present pages, when users try to write
1807 * to a shared page. It is done by copying the page to a new address
1808 * and decrementing the shared-page counter for the old page.
1809 *
1da177e4
LT
1810 * Note that this routine assumes that the protection checks have been
1811 * done by the caller (the low-level page fault routine in most cases).
1812 * Thus we can safely just mark it writable once we've done any necessary
1813 * COW.
1814 *
1815 * We also mark the page dirty at this point even though the page will
1816 * change only once the write actually happens. This avoids a few races,
1817 * and potentially makes it more efficient.
1818 *
8f4e2101
HD
1819 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1820 * but allow concurrent faults), with pte both mapped and locked.
1821 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1822 */
65500d23
HD
1823static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1824 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1825 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1826{
e5bbe4df 1827 struct page *old_page, *new_page;
1da177e4 1828 pte_t entry;
83c54070 1829 int reuse = 0, ret = 0;
a200ee18 1830 int page_mkwrite = 0;
d08b3851 1831 struct page *dirty_page = NULL;
1da177e4 1832
6aab341e 1833 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1834 if (!old_page) {
1835 /*
1836 * VM_MIXEDMAP !pfn_valid() case
1837 *
1838 * We should not cow pages in a shared writeable mapping.
1839 * Just mark the pages writable as we can't do any dirty
1840 * accounting on raw pfn maps.
1841 */
1842 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1843 (VM_WRITE|VM_SHARED))
1844 goto reuse;
6aab341e 1845 goto gotten;
251b97f5 1846 }
1da177e4 1847
d08b3851 1848 /*
ee6a6457
PZ
1849 * Take out anonymous pages first, anonymous shared vmas are
1850 * not dirty accountable.
d08b3851 1851 */
ee6a6457 1852 if (PageAnon(old_page)) {
529ae9aa 1853 if (trylock_page(old_page)) {
ee6a6457
PZ
1854 reuse = can_share_swap_page(old_page);
1855 unlock_page(old_page);
1856 }
1857 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 1858 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
1859 /*
1860 * Only catch write-faults on shared writable pages,
1861 * read-only shared pages can get COWed by
1862 * get_user_pages(.write=1, .force=1).
1863 */
9637a5ef
DH
1864 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1865 /*
1866 * Notify the address space that the page is about to
1867 * become writable so that it can prohibit this or wait
1868 * for the page to get into an appropriate state.
1869 *
1870 * We do this without the lock held, so that it can
1871 * sleep if it needs to.
1872 */
1873 page_cache_get(old_page);
1874 pte_unmap_unlock(page_table, ptl);
1875
1876 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1877 goto unwritable_page;
1878
9637a5ef
DH
1879 /*
1880 * Since we dropped the lock we need to revalidate
1881 * the PTE as someone else may have changed it. If
1882 * they did, we just return, as we can count on the
1883 * MMU to tell us if they didn't also make it writable.
1884 */
1885 page_table = pte_offset_map_lock(mm, pmd, address,
1886 &ptl);
c3704ceb 1887 page_cache_release(old_page);
9637a5ef
DH
1888 if (!pte_same(*page_table, orig_pte))
1889 goto unlock;
a200ee18
PZ
1890
1891 page_mkwrite = 1;
1da177e4 1892 }
d08b3851
PZ
1893 dirty_page = old_page;
1894 get_page(dirty_page);
9637a5ef 1895 reuse = 1;
9637a5ef
DH
1896 }
1897
1898 if (reuse) {
251b97f5 1899reuse:
9637a5ef
DH
1900 flush_cache_page(vma, address, pte_pfn(orig_pte));
1901 entry = pte_mkyoung(orig_pte);
1902 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 1903 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 1904 update_mmu_cache(vma, address, entry);
9637a5ef
DH
1905 ret |= VM_FAULT_WRITE;
1906 goto unlock;
1da177e4 1907 }
1da177e4
LT
1908
1909 /*
1910 * Ok, we need to copy. Oh, well..
1911 */
b5810039 1912 page_cache_get(old_page);
920fc356 1913gotten:
8f4e2101 1914 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1915
1916 if (unlikely(anon_vma_prepare(vma)))
65500d23 1917 goto oom;
557ed1fa
NP
1918 VM_BUG_ON(old_page == ZERO_PAGE(0));
1919 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1920 if (!new_page)
1921 goto oom;
b291f000
NP
1922 /*
1923 * Don't let another task, with possibly unlocked vma,
1924 * keep the mlocked page.
1925 */
1926 if (vma->vm_flags & VM_LOCKED) {
1927 lock_page(old_page); /* for LRU manipulation */
1928 clear_page_mlock(old_page);
1929 unlock_page(old_page);
1930 }
557ed1fa 1931 cow_user_page(new_page, old_page, address, vma);
0ed361de 1932 __SetPageUptodate(new_page);
65500d23 1933
e1a1cd59 1934 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
1935 goto oom_free_new;
1936
1da177e4
LT
1937 /*
1938 * Re-check the pte - we dropped the lock
1939 */
8f4e2101 1940 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1941 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 1942 if (old_page) {
920fc356
HD
1943 if (!PageAnon(old_page)) {
1944 dec_mm_counter(mm, file_rss);
1945 inc_mm_counter(mm, anon_rss);
1946 }
1947 } else
4294621f 1948 inc_mm_counter(mm, anon_rss);
eca35133 1949 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1950 entry = mk_pte(new_page, vma->vm_page_prot);
1951 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
1952 /*
1953 * Clear the pte entry and flush it first, before updating the
1954 * pte with the new entry. This will avoid a race condition
1955 * seen in the presence of one thread doing SMC and another
1956 * thread doing COW.
1957 */
cddb8a5c 1958 ptep_clear_flush_notify(vma, address, page_table);
b2e18538 1959 SetPageSwapBacked(new_page);
64d6519d 1960 lru_cache_add_active_or_unevictable(new_page, vma);
9617d95e 1961 page_add_new_anon_rmap(new_page, vma, address);
1da177e4 1962
64d6519d
LS
1963//TODO: is this safe? do_anonymous_page() does it this way.
1964 set_pte_at(mm, address, page_table, entry);
1965 update_mmu_cache(vma, address, entry);
945754a1
NP
1966 if (old_page) {
1967 /*
1968 * Only after switching the pte to the new page may
1969 * we remove the mapcount here. Otherwise another
1970 * process may come and find the rmap count decremented
1971 * before the pte is switched to the new page, and
1972 * "reuse" the old page writing into it while our pte
1973 * here still points into it and can be read by other
1974 * threads.
1975 *
1976 * The critical issue is to order this
1977 * page_remove_rmap with the ptp_clear_flush above.
1978 * Those stores are ordered by (if nothing else,)
1979 * the barrier present in the atomic_add_negative
1980 * in page_remove_rmap.
1981 *
1982 * Then the TLB flush in ptep_clear_flush ensures that
1983 * no process can access the old page before the
1984 * decremented mapcount is visible. And the old page
1985 * cannot be reused until after the decremented
1986 * mapcount is visible. So transitively, TLBs to
1987 * old page will be flushed before it can be reused.
1988 */
1989 page_remove_rmap(old_page, vma);
1990 }
1991
1da177e4
LT
1992 /* Free the old page.. */
1993 new_page = old_page;
f33ea7f4 1994 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
1995 } else
1996 mem_cgroup_uncharge_page(new_page);
1997
920fc356
HD
1998 if (new_page)
1999 page_cache_release(new_page);
2000 if (old_page)
2001 page_cache_release(old_page);
65500d23 2002unlock:
8f4e2101 2003 pte_unmap_unlock(page_table, ptl);
d08b3851 2004 if (dirty_page) {
8f7b3d15
AS
2005 if (vma->vm_file)
2006 file_update_time(vma->vm_file);
2007
79352894
NP
2008 /*
2009 * Yes, Virginia, this is actually required to prevent a race
2010 * with clear_page_dirty_for_io() from clearing the page dirty
2011 * bit after it clear all dirty ptes, but before a racing
2012 * do_wp_page installs a dirty pte.
2013 *
2014 * do_no_page is protected similarly.
2015 */
2016 wait_on_page_locked(dirty_page);
a200ee18 2017 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2018 put_page(dirty_page);
2019 }
f33ea7f4 2020 return ret;
8a9f3ccd 2021oom_free_new:
6dbf6d3b 2022 page_cache_release(new_page);
65500d23 2023oom:
920fc356
HD
2024 if (old_page)
2025 page_cache_release(old_page);
1da177e4 2026 return VM_FAULT_OOM;
9637a5ef
DH
2027
2028unwritable_page:
2029 page_cache_release(old_page);
2030 return VM_FAULT_SIGBUS;
1da177e4
LT
2031}
2032
2033/*
2034 * Helper functions for unmap_mapping_range().
2035 *
2036 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2037 *
2038 * We have to restart searching the prio_tree whenever we drop the lock,
2039 * since the iterator is only valid while the lock is held, and anyway
2040 * a later vma might be split and reinserted earlier while lock dropped.
2041 *
2042 * The list of nonlinear vmas could be handled more efficiently, using
2043 * a placeholder, but handle it in the same way until a need is shown.
2044 * It is important to search the prio_tree before nonlinear list: a vma
2045 * may become nonlinear and be shifted from prio_tree to nonlinear list
2046 * while the lock is dropped; but never shifted from list to prio_tree.
2047 *
2048 * In order to make forward progress despite restarting the search,
2049 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2050 * quickly skip it next time around. Since the prio_tree search only
2051 * shows us those vmas affected by unmapping the range in question, we
2052 * can't efficiently keep all vmas in step with mapping->truncate_count:
2053 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2054 * mapping->truncate_count and vma->vm_truncate_count are protected by
2055 * i_mmap_lock.
2056 *
2057 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2058 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2059 * and restart from that address when we reach that vma again. It might
2060 * have been split or merged, shrunk or extended, but never shifted: so
2061 * restart_addr remains valid so long as it remains in the vma's range.
2062 * unmap_mapping_range forces truncate_count to leap over page-aligned
2063 * values so we can save vma's restart_addr in its truncate_count field.
2064 */
2065#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2066
2067static void reset_vma_truncate_counts(struct address_space *mapping)
2068{
2069 struct vm_area_struct *vma;
2070 struct prio_tree_iter iter;
2071
2072 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2073 vma->vm_truncate_count = 0;
2074 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2075 vma->vm_truncate_count = 0;
2076}
2077
2078static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2079 unsigned long start_addr, unsigned long end_addr,
2080 struct zap_details *details)
2081{
2082 unsigned long restart_addr;
2083 int need_break;
2084
d00806b1
NP
2085 /*
2086 * files that support invalidating or truncating portions of the
d0217ac0 2087 * file from under mmaped areas must have their ->fault function
83c54070
NP
2088 * return a locked page (and set VM_FAULT_LOCKED in the return).
2089 * This provides synchronisation against concurrent unmapping here.
d00806b1 2090 */
d00806b1 2091
1da177e4
LT
2092again:
2093 restart_addr = vma->vm_truncate_count;
2094 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2095 start_addr = restart_addr;
2096 if (start_addr >= end_addr) {
2097 /* Top of vma has been split off since last time */
2098 vma->vm_truncate_count = details->truncate_count;
2099 return 0;
2100 }
2101 }
2102
ee39b37b
HD
2103 restart_addr = zap_page_range(vma, start_addr,
2104 end_addr - start_addr, details);
95c354fe 2105 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2106
ee39b37b 2107 if (restart_addr >= end_addr) {
1da177e4
LT
2108 /* We have now completed this vma: mark it so */
2109 vma->vm_truncate_count = details->truncate_count;
2110 if (!need_break)
2111 return 0;
2112 } else {
2113 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2114 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2115 if (!need_break)
2116 goto again;
2117 }
2118
2119 spin_unlock(details->i_mmap_lock);
2120 cond_resched();
2121 spin_lock(details->i_mmap_lock);
2122 return -EINTR;
2123}
2124
2125static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2126 struct zap_details *details)
2127{
2128 struct vm_area_struct *vma;
2129 struct prio_tree_iter iter;
2130 pgoff_t vba, vea, zba, zea;
2131
2132restart:
2133 vma_prio_tree_foreach(vma, &iter, root,
2134 details->first_index, details->last_index) {
2135 /* Skip quickly over those we have already dealt with */
2136 if (vma->vm_truncate_count == details->truncate_count)
2137 continue;
2138
2139 vba = vma->vm_pgoff;
2140 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2141 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2142 zba = details->first_index;
2143 if (zba < vba)
2144 zba = vba;
2145 zea = details->last_index;
2146 if (zea > vea)
2147 zea = vea;
2148
2149 if (unmap_mapping_range_vma(vma,
2150 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2151 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2152 details) < 0)
2153 goto restart;
2154 }
2155}
2156
2157static inline void unmap_mapping_range_list(struct list_head *head,
2158 struct zap_details *details)
2159{
2160 struct vm_area_struct *vma;
2161
2162 /*
2163 * In nonlinear VMAs there is no correspondence between virtual address
2164 * offset and file offset. So we must perform an exhaustive search
2165 * across *all* the pages in each nonlinear VMA, not just the pages
2166 * whose virtual address lies outside the file truncation point.
2167 */
2168restart:
2169 list_for_each_entry(vma, head, shared.vm_set.list) {
2170 /* Skip quickly over those we have already dealt with */
2171 if (vma->vm_truncate_count == details->truncate_count)
2172 continue;
2173 details->nonlinear_vma = vma;
2174 if (unmap_mapping_range_vma(vma, vma->vm_start,
2175 vma->vm_end, details) < 0)
2176 goto restart;
2177 }
2178}
2179
2180/**
72fd4a35 2181 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2182 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2183 * @holebegin: byte in first page to unmap, relative to the start of
2184 * the underlying file. This will be rounded down to a PAGE_SIZE
2185 * boundary. Note that this is different from vmtruncate(), which
2186 * must keep the partial page. In contrast, we must get rid of
2187 * partial pages.
2188 * @holelen: size of prospective hole in bytes. This will be rounded
2189 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2190 * end of the file.
2191 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2192 * but 0 when invalidating pagecache, don't throw away private data.
2193 */
2194void unmap_mapping_range(struct address_space *mapping,
2195 loff_t const holebegin, loff_t const holelen, int even_cows)
2196{
2197 struct zap_details details;
2198 pgoff_t hba = holebegin >> PAGE_SHIFT;
2199 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2200
2201 /* Check for overflow. */
2202 if (sizeof(holelen) > sizeof(hlen)) {
2203 long long holeend =
2204 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2205 if (holeend & ~(long long)ULONG_MAX)
2206 hlen = ULONG_MAX - hba + 1;
2207 }
2208
2209 details.check_mapping = even_cows? NULL: mapping;
2210 details.nonlinear_vma = NULL;
2211 details.first_index = hba;
2212 details.last_index = hba + hlen - 1;
2213 if (details.last_index < details.first_index)
2214 details.last_index = ULONG_MAX;
2215 details.i_mmap_lock = &mapping->i_mmap_lock;
2216
2217 spin_lock(&mapping->i_mmap_lock);
2218
d00806b1 2219 /* Protect against endless unmapping loops */
1da177e4 2220 mapping->truncate_count++;
1da177e4
LT
2221 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2222 if (mapping->truncate_count == 0)
2223 reset_vma_truncate_counts(mapping);
2224 mapping->truncate_count++;
2225 }
2226 details.truncate_count = mapping->truncate_count;
2227
2228 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2229 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2230 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2231 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2232 spin_unlock(&mapping->i_mmap_lock);
2233}
2234EXPORT_SYMBOL(unmap_mapping_range);
2235
bfa5bf6d
REB
2236/**
2237 * vmtruncate - unmap mappings "freed" by truncate() syscall
2238 * @inode: inode of the file used
2239 * @offset: file offset to start truncating
1da177e4
LT
2240 *
2241 * NOTE! We have to be ready to update the memory sharing
2242 * between the file and the memory map for a potential last
2243 * incomplete page. Ugly, but necessary.
2244 */
2245int vmtruncate(struct inode * inode, loff_t offset)
2246{
61d5048f
CH
2247 if (inode->i_size < offset) {
2248 unsigned long limit;
2249
2250 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2251 if (limit != RLIM_INFINITY && offset > limit)
2252 goto out_sig;
2253 if (offset > inode->i_sb->s_maxbytes)
2254 goto out_big;
2255 i_size_write(inode, offset);
2256 } else {
2257 struct address_space *mapping = inode->i_mapping;
1da177e4 2258
61d5048f
CH
2259 /*
2260 * truncation of in-use swapfiles is disallowed - it would
2261 * cause subsequent swapout to scribble on the now-freed
2262 * blocks.
2263 */
2264 if (IS_SWAPFILE(inode))
2265 return -ETXTBSY;
2266 i_size_write(inode, offset);
2267
2268 /*
2269 * unmap_mapping_range is called twice, first simply for
2270 * efficiency so that truncate_inode_pages does fewer
2271 * single-page unmaps. However after this first call, and
2272 * before truncate_inode_pages finishes, it is possible for
2273 * private pages to be COWed, which remain after
2274 * truncate_inode_pages finishes, hence the second
2275 * unmap_mapping_range call must be made for correctness.
2276 */
2277 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2278 truncate_inode_pages(mapping, offset);
2279 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2280 }
d00806b1 2281
1da177e4
LT
2282 if (inode->i_op && inode->i_op->truncate)
2283 inode->i_op->truncate(inode);
2284 return 0;
61d5048f 2285
1da177e4
LT
2286out_sig:
2287 send_sig(SIGXFSZ, current, 0);
2288out_big:
2289 return -EFBIG;
1da177e4 2290}
1da177e4
LT
2291EXPORT_SYMBOL(vmtruncate);
2292
f6b3ec23
BP
2293int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2294{
2295 struct address_space *mapping = inode->i_mapping;
2296
2297 /*
2298 * If the underlying filesystem is not going to provide
2299 * a way to truncate a range of blocks (punch a hole) -
2300 * we should return failure right now.
2301 */
2302 if (!inode->i_op || !inode->i_op->truncate_range)
2303 return -ENOSYS;
2304
1b1dcc1b 2305 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2306 down_write(&inode->i_alloc_sem);
2307 unmap_mapping_range(mapping, offset, (end - offset), 1);
2308 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2309 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2310 inode->i_op->truncate_range(inode, offset, end);
2311 up_write(&inode->i_alloc_sem);
1b1dcc1b 2312 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2313
2314 return 0;
2315}
f6b3ec23 2316
1da177e4 2317/*
8f4e2101
HD
2318 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2319 * but allow concurrent faults), and pte mapped but not yet locked.
2320 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2321 */
65500d23
HD
2322static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2323 unsigned long address, pte_t *page_table, pmd_t *pmd,
2324 int write_access, pte_t orig_pte)
1da177e4 2325{
8f4e2101 2326 spinlock_t *ptl;
1da177e4 2327 struct page *page;
65500d23 2328 swp_entry_t entry;
1da177e4 2329 pte_t pte;
83c54070 2330 int ret = 0;
1da177e4 2331
4c21e2f2 2332 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2333 goto out;
65500d23
HD
2334
2335 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2336 if (is_migration_entry(entry)) {
2337 migration_entry_wait(mm, pmd, address);
2338 goto out;
2339 }
0ff92245 2340 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2341 page = lookup_swap_cache(entry);
2342 if (!page) {
098fe651 2343 grab_swap_token(); /* Contend for token _before_ read-in */
02098fea
HD
2344 page = swapin_readahead(entry,
2345 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2346 if (!page) {
2347 /*
8f4e2101
HD
2348 * Back out if somebody else faulted in this pte
2349 * while we released the pte lock.
1da177e4 2350 */
8f4e2101 2351 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2352 if (likely(pte_same(*page_table, orig_pte)))
2353 ret = VM_FAULT_OOM;
0ff92245 2354 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2355 goto unlock;
1da177e4
LT
2356 }
2357
2358 /* Had to read the page from swap area: Major fault */
2359 ret = VM_FAULT_MAJOR;
f8891e5e 2360 count_vm_event(PGMAJFAULT);
1da177e4
LT
2361 }
2362
073e587e
KH
2363 mark_page_accessed(page);
2364
2365 lock_page(page);
2366 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2367
e1a1cd59 2368 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd 2369 ret = VM_FAULT_OOM;
073e587e 2370 unlock_page(page);
8a9f3ccd
BS
2371 goto out;
2372 }
2373
1da177e4 2374 /*
8f4e2101 2375 * Back out if somebody else already faulted in this pte.
1da177e4 2376 */
8f4e2101 2377 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2378 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2379 goto out_nomap;
b8107480
KK
2380
2381 if (unlikely(!PageUptodate(page))) {
2382 ret = VM_FAULT_SIGBUS;
2383 goto out_nomap;
1da177e4
LT
2384 }
2385
2386 /* The page isn't present yet, go ahead with the fault. */
1da177e4 2387
4294621f 2388 inc_mm_counter(mm, anon_rss);
1da177e4
LT
2389 pte = mk_pte(page, vma->vm_page_prot);
2390 if (write_access && can_share_swap_page(page)) {
2391 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2392 write_access = 0;
2393 }
1da177e4
LT
2394
2395 flush_icache_page(vma, page);
2396 set_pte_at(mm, address, page_table, pte);
2397 page_add_anon_rmap(page, vma, address);
2398
c475a8ab 2399 swap_free(entry);
b291f000 2400 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
c475a8ab
HD
2401 remove_exclusive_swap_page(page);
2402 unlock_page(page);
2403
1da177e4 2404 if (write_access) {
61469f1d
HD
2405 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2406 if (ret & VM_FAULT_ERROR)
2407 ret &= VM_FAULT_ERROR;
1da177e4
LT
2408 goto out;
2409 }
2410
2411 /* No need to invalidate - it was non-present before */
2412 update_mmu_cache(vma, address, pte);
65500d23 2413unlock:
8f4e2101 2414 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2415out:
2416 return ret;
b8107480 2417out_nomap:
8a9f3ccd 2418 mem_cgroup_uncharge_page(page);
8f4e2101 2419 pte_unmap_unlock(page_table, ptl);
b8107480
KK
2420 unlock_page(page);
2421 page_cache_release(page);
65500d23 2422 return ret;
1da177e4
LT
2423}
2424
2425/*
8f4e2101
HD
2426 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2427 * but allow concurrent faults), and pte mapped but not yet locked.
2428 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2429 */
65500d23
HD
2430static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2431 unsigned long address, pte_t *page_table, pmd_t *pmd,
2432 int write_access)
1da177e4 2433{
8f4e2101
HD
2434 struct page *page;
2435 spinlock_t *ptl;
1da177e4 2436 pte_t entry;
1da177e4 2437
557ed1fa
NP
2438 /* Allocate our own private page. */
2439 pte_unmap(page_table);
8f4e2101 2440
557ed1fa
NP
2441 if (unlikely(anon_vma_prepare(vma)))
2442 goto oom;
2443 page = alloc_zeroed_user_highpage_movable(vma, address);
2444 if (!page)
2445 goto oom;
0ed361de 2446 __SetPageUptodate(page);
8f4e2101 2447
e1a1cd59 2448 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2449 goto oom_free_page;
2450
557ed1fa
NP
2451 entry = mk_pte(page, vma->vm_page_prot);
2452 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2453
557ed1fa
NP
2454 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2455 if (!pte_none(*page_table))
2456 goto release;
2457 inc_mm_counter(mm, anon_rss);
b2e18538 2458 SetPageSwapBacked(page);
64d6519d 2459 lru_cache_add_active_or_unevictable(page, vma);
557ed1fa 2460 page_add_new_anon_rmap(page, vma, address);
65500d23 2461 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2462
2463 /* No need to invalidate - it was non-present before */
65500d23 2464 update_mmu_cache(vma, address, entry);
65500d23 2465unlock:
8f4e2101 2466 pte_unmap_unlock(page_table, ptl);
83c54070 2467 return 0;
8f4e2101 2468release:
8a9f3ccd 2469 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2470 page_cache_release(page);
2471 goto unlock;
8a9f3ccd 2472oom_free_page:
6dbf6d3b 2473 page_cache_release(page);
65500d23 2474oom:
1da177e4
LT
2475 return VM_FAULT_OOM;
2476}
2477
2478/*
54cb8821 2479 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2480 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2481 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2482 * the next page fault.
1da177e4
LT
2483 *
2484 * As this is called only for pages that do not currently exist, we
2485 * do not need to flush old virtual caches or the TLB.
2486 *
8f4e2101 2487 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2488 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2489 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2490 */
54cb8821 2491static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2492 unsigned long address, pmd_t *pmd,
54cb8821 2493 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2494{
16abfa08 2495 pte_t *page_table;
8f4e2101 2496 spinlock_t *ptl;
d0217ac0 2497 struct page *page;
1da177e4 2498 pte_t entry;
1da177e4 2499 int anon = 0;
5b4e655e 2500 int charged = 0;
d08b3851 2501 struct page *dirty_page = NULL;
d0217ac0
NP
2502 struct vm_fault vmf;
2503 int ret;
a200ee18 2504 int page_mkwrite = 0;
54cb8821 2505
d0217ac0
NP
2506 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2507 vmf.pgoff = pgoff;
2508 vmf.flags = flags;
2509 vmf.page = NULL;
1da177e4 2510
3c18ddd1
NP
2511 ret = vma->vm_ops->fault(vma, &vmf);
2512 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2513 return ret;
1da177e4 2514
d00806b1 2515 /*
d0217ac0 2516 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2517 * locked.
2518 */
83c54070 2519 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2520 lock_page(vmf.page);
54cb8821 2521 else
d0217ac0 2522 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2523
1da177e4
LT
2524 /*
2525 * Should we do an early C-O-W break?
2526 */
d0217ac0 2527 page = vmf.page;
54cb8821 2528 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2529 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2530 anon = 1;
d00806b1 2531 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2532 ret = VM_FAULT_OOM;
54cb8821 2533 goto out;
d00806b1 2534 }
83c54070
NP
2535 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2536 vma, address);
d00806b1 2537 if (!page) {
d0217ac0 2538 ret = VM_FAULT_OOM;
54cb8821 2539 goto out;
d00806b1 2540 }
5b4e655e
KH
2541 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2542 ret = VM_FAULT_OOM;
2543 page_cache_release(page);
2544 goto out;
2545 }
2546 charged = 1;
b291f000
NP
2547 /*
2548 * Don't let another task, with possibly unlocked vma,
2549 * keep the mlocked page.
2550 */
2551 if (vma->vm_flags & VM_LOCKED)
2552 clear_page_mlock(vmf.page);
d0217ac0 2553 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2554 __SetPageUptodate(page);
9637a5ef 2555 } else {
54cb8821
NP
2556 /*
2557 * If the page will be shareable, see if the backing
9637a5ef 2558 * address space wants to know that the page is about
54cb8821
NP
2559 * to become writable
2560 */
69676147
MF
2561 if (vma->vm_ops->page_mkwrite) {
2562 unlock_page(page);
2563 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
d0217ac0
NP
2564 ret = VM_FAULT_SIGBUS;
2565 anon = 1; /* no anon but release vmf.page */
69676147
MF
2566 goto out_unlocked;
2567 }
2568 lock_page(page);
d0217ac0
NP
2569 /*
2570 * XXX: this is not quite right (racy vs
2571 * invalidate) to unlock and relock the page
2572 * like this, however a better fix requires
2573 * reworking page_mkwrite locking API, which
2574 * is better done later.
2575 */
2576 if (!page->mapping) {
83c54070 2577 ret = 0;
d0217ac0
NP
2578 anon = 1; /* no anon but release vmf.page */
2579 goto out;
2580 }
a200ee18 2581 page_mkwrite = 1;
9637a5ef
DH
2582 }
2583 }
54cb8821 2584
1da177e4
LT
2585 }
2586
8f4e2101 2587 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2588
2589 /*
2590 * This silly early PAGE_DIRTY setting removes a race
2591 * due to the bad i386 page protection. But it's valid
2592 * for other architectures too.
2593 *
2594 * Note that if write_access is true, we either now have
2595 * an exclusive copy of the page, or this is a shared mapping,
2596 * so we can make it writable and dirty to avoid having to
2597 * handle that later.
2598 */
2599 /* Only go through if we didn't race with anybody else... */
54cb8821 2600 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2601 flush_icache_page(vma, page);
2602 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2603 if (flags & FAULT_FLAG_WRITE)
1da177e4 2604 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2605 if (anon) {
64d6519d 2606 inc_mm_counter(mm, anon_rss);
b2e18538 2607 SetPageSwapBacked(page);
64d6519d
LS
2608 lru_cache_add_active_or_unevictable(page, vma);
2609 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2610 } else {
4294621f 2611 inc_mm_counter(mm, file_rss);
d00806b1 2612 page_add_file_rmap(page);
54cb8821 2613 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2614 dirty_page = page;
d08b3851
PZ
2615 get_page(dirty_page);
2616 }
4294621f 2617 }
64d6519d
LS
2618//TODO: is this safe? do_anonymous_page() does it this way.
2619 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2620
2621 /* no need to invalidate: a not-present page won't be cached */
2622 update_mmu_cache(vma, address, entry);
1da177e4 2623 } else {
5b4e655e
KH
2624 if (charged)
2625 mem_cgroup_uncharge_page(page);
d00806b1
NP
2626 if (anon)
2627 page_cache_release(page);
2628 else
54cb8821 2629 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2630 }
2631
8f4e2101 2632 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2633
2634out:
d0217ac0 2635 unlock_page(vmf.page);
69676147 2636out_unlocked:
d00806b1 2637 if (anon)
d0217ac0 2638 page_cache_release(vmf.page);
d00806b1 2639 else if (dirty_page) {
8f7b3d15
AS
2640 if (vma->vm_file)
2641 file_update_time(vma->vm_file);
2642
a200ee18 2643 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2644 put_page(dirty_page);
2645 }
d00806b1 2646
83c54070 2647 return ret;
54cb8821 2648}
d00806b1 2649
54cb8821
NP
2650static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2651 unsigned long address, pte_t *page_table, pmd_t *pmd,
2652 int write_access, pte_t orig_pte)
2653{
2654 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2655 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821
NP
2656 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2657
16abfa08
HD
2658 pte_unmap(page_table);
2659 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2660}
2661
1da177e4
LT
2662/*
2663 * Fault of a previously existing named mapping. Repopulate the pte
2664 * from the encoded file_pte if possible. This enables swappable
2665 * nonlinear vmas.
8f4e2101
HD
2666 *
2667 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2668 * but allow concurrent faults), and pte mapped but not yet locked.
2669 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2670 */
d0217ac0 2671static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23
HD
2672 unsigned long address, pte_t *page_table, pmd_t *pmd,
2673 int write_access, pte_t orig_pte)
1da177e4 2674{
d0217ac0
NP
2675 unsigned int flags = FAULT_FLAG_NONLINEAR |
2676 (write_access ? FAULT_FLAG_WRITE : 0);
65500d23 2677 pgoff_t pgoff;
1da177e4 2678
4c21e2f2 2679 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2680 return 0;
1da177e4 2681
d0217ac0
NP
2682 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2683 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
65500d23
HD
2684 /*
2685 * Page table corrupted: show pte and kill process.
2686 */
b5810039 2687 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2688 return VM_FAULT_OOM;
2689 }
65500d23
HD
2690
2691 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2692 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2693}
2694
2695/*
2696 * These routines also need to handle stuff like marking pages dirty
2697 * and/or accessed for architectures that don't do it in hardware (most
2698 * RISC architectures). The early dirtying is also good on the i386.
2699 *
2700 * There is also a hook called "update_mmu_cache()" that architectures
2701 * with external mmu caches can use to update those (ie the Sparc or
2702 * PowerPC hashed page tables that act as extended TLBs).
2703 *
c74df32c
HD
2704 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2705 * but allow concurrent faults), and pte mapped but not yet locked.
2706 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2707 */
2708static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2709 struct vm_area_struct *vma, unsigned long address,
2710 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2711{
2712 pte_t entry;
8f4e2101 2713 spinlock_t *ptl;
1da177e4 2714
8dab5241 2715 entry = *pte;
1da177e4 2716 if (!pte_present(entry)) {
65500d23 2717 if (pte_none(entry)) {
f4b81804 2718 if (vma->vm_ops) {
3c18ddd1 2719 if (likely(vma->vm_ops->fault))
54cb8821
NP
2720 return do_linear_fault(mm, vma, address,
2721 pte, pmd, write_access, entry);
f4b81804
JS
2722 }
2723 return do_anonymous_page(mm, vma, address,
2724 pte, pmd, write_access);
65500d23 2725 }
1da177e4 2726 if (pte_file(entry))
d0217ac0 2727 return do_nonlinear_fault(mm, vma, address,
65500d23
HD
2728 pte, pmd, write_access, entry);
2729 return do_swap_page(mm, vma, address,
2730 pte, pmd, write_access, entry);
1da177e4
LT
2731 }
2732
4c21e2f2 2733 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2734 spin_lock(ptl);
2735 if (unlikely(!pte_same(*pte, entry)))
2736 goto unlock;
1da177e4
LT
2737 if (write_access) {
2738 if (!pte_write(entry))
8f4e2101
HD
2739 return do_wp_page(mm, vma, address,
2740 pte, pmd, ptl, entry);
1da177e4
LT
2741 entry = pte_mkdirty(entry);
2742 }
2743 entry = pte_mkyoung(entry);
8dab5241 2744 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
1a44e149 2745 update_mmu_cache(vma, address, entry);
1a44e149
AA
2746 } else {
2747 /*
2748 * This is needed only for protection faults but the arch code
2749 * is not yet telling us if this is a protection fault or not.
2750 * This still avoids useless tlb flushes for .text page faults
2751 * with threads.
2752 */
2753 if (write_access)
2754 flush_tlb_page(vma, address);
2755 }
8f4e2101
HD
2756unlock:
2757 pte_unmap_unlock(pte, ptl);
83c54070 2758 return 0;
1da177e4
LT
2759}
2760
2761/*
2762 * By the time we get here, we already hold the mm semaphore
2763 */
83c54070 2764int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2765 unsigned long address, int write_access)
2766{
2767 pgd_t *pgd;
2768 pud_t *pud;
2769 pmd_t *pmd;
2770 pte_t *pte;
2771
2772 __set_current_state(TASK_RUNNING);
2773
f8891e5e 2774 count_vm_event(PGFAULT);
1da177e4 2775
ac9b9c66
HD
2776 if (unlikely(is_vm_hugetlb_page(vma)))
2777 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2778
1da177e4 2779 pgd = pgd_offset(mm, address);
1da177e4
LT
2780 pud = pud_alloc(mm, pgd, address);
2781 if (!pud)
c74df32c 2782 return VM_FAULT_OOM;
1da177e4
LT
2783 pmd = pmd_alloc(mm, pud, address);
2784 if (!pmd)
c74df32c 2785 return VM_FAULT_OOM;
1da177e4
LT
2786 pte = pte_alloc_map(mm, pmd, address);
2787 if (!pte)
c74df32c 2788 return VM_FAULT_OOM;
1da177e4 2789
c74df32c 2790 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2791}
2792
2793#ifndef __PAGETABLE_PUD_FOLDED
2794/*
2795 * Allocate page upper directory.
872fec16 2796 * We've already handled the fast-path in-line.
1da177e4 2797 */
1bb3630e 2798int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2799{
c74df32c
HD
2800 pud_t *new = pud_alloc_one(mm, address);
2801 if (!new)
1bb3630e 2802 return -ENOMEM;
1da177e4 2803
362a61ad
NP
2804 smp_wmb(); /* See comment in __pte_alloc */
2805
872fec16 2806 spin_lock(&mm->page_table_lock);
1bb3630e 2807 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 2808 pud_free(mm, new);
1bb3630e
HD
2809 else
2810 pgd_populate(mm, pgd, new);
c74df32c 2811 spin_unlock(&mm->page_table_lock);
1bb3630e 2812 return 0;
1da177e4
LT
2813}
2814#endif /* __PAGETABLE_PUD_FOLDED */
2815
2816#ifndef __PAGETABLE_PMD_FOLDED
2817/*
2818 * Allocate page middle directory.
872fec16 2819 * We've already handled the fast-path in-line.
1da177e4 2820 */
1bb3630e 2821int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2822{
c74df32c
HD
2823 pmd_t *new = pmd_alloc_one(mm, address);
2824 if (!new)
1bb3630e 2825 return -ENOMEM;
1da177e4 2826
362a61ad
NP
2827 smp_wmb(); /* See comment in __pte_alloc */
2828
872fec16 2829 spin_lock(&mm->page_table_lock);
1da177e4 2830#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2831 if (pud_present(*pud)) /* Another has populated it */
5e541973 2832 pmd_free(mm, new);
1bb3630e
HD
2833 else
2834 pud_populate(mm, pud, new);
1da177e4 2835#else
1bb3630e 2836 if (pgd_present(*pud)) /* Another has populated it */
5e541973 2837 pmd_free(mm, new);
1bb3630e
HD
2838 else
2839 pgd_populate(mm, pud, new);
1da177e4 2840#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2841 spin_unlock(&mm->page_table_lock);
1bb3630e 2842 return 0;
e0f39591 2843}
1da177e4
LT
2844#endif /* __PAGETABLE_PMD_FOLDED */
2845
2846int make_pages_present(unsigned long addr, unsigned long end)
2847{
2848 int ret, len, write;
2849 struct vm_area_struct * vma;
2850
2851 vma = find_vma(current->mm, addr);
2852 if (!vma)
a477097d 2853 return -ENOMEM;
1da177e4 2854 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
2855 BUG_ON(addr >= end);
2856 BUG_ON(end > vma->vm_end);
68e116a3 2857 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
2858 ret = get_user_pages(current, current->mm, addr,
2859 len, write, 0, NULL, NULL);
c11d69d8 2860 if (ret < 0)
1da177e4 2861 return ret;
9978ad58 2862 return ret == len ? 0 : -EFAULT;
1da177e4
LT
2863}
2864
1da177e4
LT
2865#if !defined(__HAVE_ARCH_GATE_AREA)
2866
2867#if defined(AT_SYSINFO_EHDR)
5ce7852c 2868static struct vm_area_struct gate_vma;
1da177e4
LT
2869
2870static int __init gate_vma_init(void)
2871{
2872 gate_vma.vm_mm = NULL;
2873 gate_vma.vm_start = FIXADDR_USER_START;
2874 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
2875 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2876 gate_vma.vm_page_prot = __P101;
f47aef55
RM
2877 /*
2878 * Make sure the vDSO gets into every core dump.
2879 * Dumping its contents makes post-mortem fully interpretable later
2880 * without matching up the same kernel and hardware config to see
2881 * what PC values meant.
2882 */
2883 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
2884 return 0;
2885}
2886__initcall(gate_vma_init);
2887#endif
2888
2889struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2890{
2891#ifdef AT_SYSINFO_EHDR
2892 return &gate_vma;
2893#else
2894 return NULL;
2895#endif
2896}
2897
2898int in_gate_area_no_task(unsigned long addr)
2899{
2900#ifdef AT_SYSINFO_EHDR
2901 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2902 return 1;
2903#endif
2904 return 0;
2905}
2906
2907#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 2908
28b2ee20
RR
2909#ifdef CONFIG_HAVE_IOREMAP_PROT
2910static resource_size_t follow_phys(struct vm_area_struct *vma,
2911 unsigned long address, unsigned int flags,
2912 unsigned long *prot)
2913{
2914 pgd_t *pgd;
2915 pud_t *pud;
2916 pmd_t *pmd;
2917 pte_t *ptep, pte;
2918 spinlock_t *ptl;
2919 resource_size_t phys_addr = 0;
2920 struct mm_struct *mm = vma->vm_mm;
2921
2922 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2923
2924 pgd = pgd_offset(mm, address);
2925 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2926 goto no_page_table;
2927
2928 pud = pud_offset(pgd, address);
2929 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2930 goto no_page_table;
2931
2932 pmd = pmd_offset(pud, address);
2933 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2934 goto no_page_table;
2935
2936 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2937 if (pmd_huge(*pmd))
2938 goto no_page_table;
2939
2940 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2941 if (!ptep)
2942 goto out;
2943
2944 pte = *ptep;
2945 if (!pte_present(pte))
2946 goto unlock;
2947 if ((flags & FOLL_WRITE) && !pte_write(pte))
2948 goto unlock;
2949 phys_addr = pte_pfn(pte);
2950 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2951
2952 *prot = pgprot_val(pte_pgprot(pte));
2953
2954unlock:
2955 pte_unmap_unlock(ptep, ptl);
2956out:
2957 return phys_addr;
2958no_page_table:
2959 return 0;
2960}
2961
2962int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2963 void *buf, int len, int write)
2964{
2965 resource_size_t phys_addr;
2966 unsigned long prot = 0;
2967 void *maddr;
2968 int offset = addr & (PAGE_SIZE-1);
2969
2970 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2971 return -EINVAL;
2972
2973 phys_addr = follow_phys(vma, addr, write, &prot);
2974
2975 if (!phys_addr)
2976 return -EINVAL;
2977
2978 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2979 if (write)
2980 memcpy_toio(maddr + offset, buf, len);
2981 else
2982 memcpy_fromio(buf, maddr + offset, len);
2983 iounmap(maddr);
2984
2985 return len;
2986}
2987#endif
2988
0ec76a11
DH
2989/*
2990 * Access another process' address space.
2991 * Source/target buffer must be kernel space,
2992 * Do not walk the page table directly, use get_user_pages
2993 */
2994int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2995{
2996 struct mm_struct *mm;
2997 struct vm_area_struct *vma;
0ec76a11
DH
2998 void *old_buf = buf;
2999
3000 mm = get_task_mm(tsk);
3001 if (!mm)
3002 return 0;
3003
3004 down_read(&mm->mmap_sem);
183ff22b 3005 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3006 while (len) {
3007 int bytes, ret, offset;
3008 void *maddr;
28b2ee20 3009 struct page *page = NULL;
0ec76a11
DH
3010
3011 ret = get_user_pages(tsk, mm, addr, 1,
3012 write, 1, &page, &vma);
28b2ee20
RR
3013 if (ret <= 0) {
3014 /*
3015 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3016 * we can access using slightly different code.
3017 */
3018#ifdef CONFIG_HAVE_IOREMAP_PROT
3019 vma = find_vma(mm, addr);
3020 if (!vma)
3021 break;
3022 if (vma->vm_ops && vma->vm_ops->access)
3023 ret = vma->vm_ops->access(vma, addr, buf,
3024 len, write);
3025 if (ret <= 0)
3026#endif
3027 break;
3028 bytes = ret;
0ec76a11 3029 } else {
28b2ee20
RR
3030 bytes = len;
3031 offset = addr & (PAGE_SIZE-1);
3032 if (bytes > PAGE_SIZE-offset)
3033 bytes = PAGE_SIZE-offset;
3034
3035 maddr = kmap(page);
3036 if (write) {
3037 copy_to_user_page(vma, page, addr,
3038 maddr + offset, buf, bytes);
3039 set_page_dirty_lock(page);
3040 } else {
3041 copy_from_user_page(vma, page, addr,
3042 buf, maddr + offset, bytes);
3043 }
3044 kunmap(page);
3045 page_cache_release(page);
0ec76a11 3046 }
0ec76a11
DH
3047 len -= bytes;
3048 buf += bytes;
3049 addr += bytes;
3050 }
3051 up_read(&mm->mmap_sem);
3052 mmput(mm);
3053
3054 return buf - old_buf;
3055}
03252919
AK
3056
3057/*
3058 * Print the name of a VMA.
3059 */
3060void print_vma_addr(char *prefix, unsigned long ip)
3061{
3062 struct mm_struct *mm = current->mm;
3063 struct vm_area_struct *vma;
3064
e8bff74a
IM
3065 /*
3066 * Do not print if we are in atomic
3067 * contexts (in exception stacks, etc.):
3068 */
3069 if (preempt_count())
3070 return;
3071
03252919
AK
3072 down_read(&mm->mmap_sem);
3073 vma = find_vma(mm, ip);
3074 if (vma && vma->vm_file) {
3075 struct file *f = vma->vm_file;
3076 char *buf = (char *)__get_free_page(GFP_KERNEL);
3077 if (buf) {
3078 char *p, *s;
3079
cf28b486 3080 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3081 if (IS_ERR(p))
3082 p = "?";
3083 s = strrchr(p, '/');
3084 if (s)
3085 p = s+1;
3086 printk("%s%s[%lx+%lx]", prefix, p,
3087 vma->vm_start,
3088 vma->vm_end - vma->vm_start);
3089 free_page((unsigned long)buf);
3090 }
3091 }
3092 up_read(&current->mm->mmap_sem);
3093}