]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memory.c
mm: change the interface for __tlb_remove_page()
[mirror_ubuntu-zesty-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
01c8f1c4 53#include <linux/pfn_t.h>
edc79b2a 54#include <linux/writeback.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
3dc14741
HD
57#include <linux/kallsyms.h>
58#include <linux/swapops.h>
59#include <linux/elf.h>
5a0e3ad6 60#include <linux/gfp.h>
4daae3b4 61#include <linux/migrate.h>
2fbc57c5 62#include <linux/string.h>
0abdd7a8 63#include <linux/dma-debug.h>
1592eef0 64#include <linux/debugfs.h>
6b251fc9 65#include <linux/userfaultfd_k.h>
bc2466e4 66#include <linux/dax.h>
1da177e4 67
6952b61d 68#include <asm/io.h>
33a709b2 69#include <asm/mmu_context.h>
1da177e4
LT
70#include <asm/pgalloc.h>
71#include <asm/uaccess.h>
72#include <asm/tlb.h>
73#include <asm/tlbflush.h>
74#include <asm/pgtable.h>
75
42b77728
JB
76#include "internal.h"
77
90572890
PZ
78#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
80#endif
81
d41dee36 82#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
83/* use the per-pgdat data instead for discontigmem - mbligh */
84unsigned long max_mapnr;
85struct page *mem_map;
86
87EXPORT_SYMBOL(max_mapnr);
88EXPORT_SYMBOL(mem_map);
89#endif
90
1da177e4
LT
91/*
92 * A number of key systems in x86 including ioremap() rely on the assumption
93 * that high_memory defines the upper bound on direct map memory, then end
94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 * and ZONE_HIGHMEM.
97 */
98void * high_memory;
1da177e4 99
1da177e4 100EXPORT_SYMBOL(high_memory);
1da177e4 101
32a93233
IM
102/*
103 * Randomize the address space (stacks, mmaps, brk, etc.).
104 *
105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106 * as ancient (libc5 based) binaries can segfault. )
107 */
108int randomize_va_space __read_mostly =
109#ifdef CONFIG_COMPAT_BRK
110 1;
111#else
112 2;
113#endif
a62eaf15
AK
114
115static int __init disable_randmaps(char *s)
116{
117 randomize_va_space = 0;
9b41046c 118 return 1;
a62eaf15
AK
119}
120__setup("norandmaps", disable_randmaps);
121
62eede62 122unsigned long zero_pfn __read_mostly;
03f6462a 123unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 124
0b70068e
AB
125EXPORT_SYMBOL(zero_pfn);
126
a13ea5b7
HD
127/*
128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129 */
130static int __init init_zero_pfn(void)
131{
132 zero_pfn = page_to_pfn(ZERO_PAGE(0));
133 return 0;
134}
135core_initcall(init_zero_pfn);
a62eaf15 136
d559db08 137
34e55232
KH
138#if defined(SPLIT_RSS_COUNTING)
139
ea48cf78 140void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
141{
142 int i;
143
144 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
145 if (current->rss_stat.count[i]) {
146 add_mm_counter(mm, i, current->rss_stat.count[i]);
147 current->rss_stat.count[i] = 0;
34e55232
KH
148 }
149 }
05af2e10 150 current->rss_stat.events = 0;
34e55232
KH
151}
152
153static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154{
155 struct task_struct *task = current;
156
157 if (likely(task->mm == mm))
158 task->rss_stat.count[member] += val;
159 else
160 add_mm_counter(mm, member, val);
161}
162#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164
165/* sync counter once per 64 page faults */
166#define TASK_RSS_EVENTS_THRESH (64)
167static void check_sync_rss_stat(struct task_struct *task)
168{
169 if (unlikely(task != current))
170 return;
171 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 172 sync_mm_rss(task->mm);
34e55232 173}
9547d01b 174#else /* SPLIT_RSS_COUNTING */
34e55232
KH
175
176#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178
179static void check_sync_rss_stat(struct task_struct *task)
180{
181}
182
9547d01b
PZ
183#endif /* SPLIT_RSS_COUNTING */
184
185#ifdef HAVE_GENERIC_MMU_GATHER
186
ca1d6c7d 187static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
188{
189 struct mmu_gather_batch *batch;
190
191 batch = tlb->active;
192 if (batch->next) {
193 tlb->active = batch->next;
ca1d6c7d 194 return true;
9547d01b
PZ
195 }
196
53a59fc6 197 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 198 return false;
53a59fc6 199
9547d01b
PZ
200 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
201 if (!batch)
ca1d6c7d 202 return false;
9547d01b 203
53a59fc6 204 tlb->batch_count++;
9547d01b
PZ
205 batch->next = NULL;
206 batch->nr = 0;
207 batch->max = MAX_GATHER_BATCH;
208
209 tlb->active->next = batch;
210 tlb->active = batch;
211
ca1d6c7d 212 return true;
9547d01b
PZ
213}
214
215/* tlb_gather_mmu
216 * Called to initialize an (on-stack) mmu_gather structure for page-table
217 * tear-down from @mm. The @fullmm argument is used when @mm is without
218 * users and we're going to destroy the full address space (exit/execve).
219 */
2b047252 220void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
221{
222 tlb->mm = mm;
223
2b047252
LT
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
1de14c3c 226 tlb->need_flush_all = 0;
9547d01b
PZ
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
53a59fc6 231 tlb->batch_count = 0;
9547d01b
PZ
232
233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235#endif
fb7332a9
WD
236
237 __tlb_reset_range(tlb);
9547d01b
PZ
238}
239
1cf35d47 240static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 241{
721c21c1
WD
242 if (!tlb->end)
243 return;
244
9547d01b 245 tlb_flush(tlb);
34ee645e 246 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
247#ifdef CONFIG_HAVE_RCU_TABLE_FREE
248 tlb_table_flush(tlb);
34e55232 249#endif
fb7332a9 250 __tlb_reset_range(tlb);
1cf35d47
LT
251}
252
253static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254{
255 struct mmu_gather_batch *batch;
34e55232 256
721c21c1 257 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
258 free_pages_and_swap_cache(batch->pages, batch->nr);
259 batch->nr = 0;
260 }
261 tlb->active = &tlb->local;
262}
263
1cf35d47
LT
264void tlb_flush_mmu(struct mmu_gather *tlb)
265{
1cf35d47
LT
266 tlb_flush_mmu_tlbonly(tlb);
267 tlb_flush_mmu_free(tlb);
268}
269
9547d01b
PZ
270/* tlb_finish_mmu
271 * Called at the end of the shootdown operation to free up any resources
272 * that were required.
273 */
274void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
275{
276 struct mmu_gather_batch *batch, *next;
277
278 tlb_flush_mmu(tlb);
279
280 /* keep the page table cache within bounds */
281 check_pgt_cache();
282
283 for (batch = tlb->local.next; batch; batch = next) {
284 next = batch->next;
285 free_pages((unsigned long)batch, 0);
286 }
287 tlb->local.next = NULL;
288}
289
290/* __tlb_remove_page
291 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
292 * handling the additional races in SMP caused by other CPUs caching valid
293 * mappings in their TLBs. Returns the number of free page slots left.
294 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 295 *returns true if the caller should flush.
9547d01b 296 */
e9d55e15 297bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
9547d01b
PZ
298{
299 struct mmu_gather_batch *batch;
300
fb7332a9 301 VM_BUG_ON(!tlb->end);
9547d01b 302
9547d01b 303 batch = tlb->active;
9547d01b
PZ
304 if (batch->nr == batch->max) {
305 if (!tlb_next_batch(tlb))
e9d55e15 306 return true;
0b43c3aa 307 batch = tlb->active;
9547d01b 308 }
309381fe 309 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 310
e9d55e15
AK
311 batch->pages[batch->nr++] = page;
312 return false;
9547d01b
PZ
313}
314
315#endif /* HAVE_GENERIC_MMU_GATHER */
316
26723911
PZ
317#ifdef CONFIG_HAVE_RCU_TABLE_FREE
318
319/*
320 * See the comment near struct mmu_table_batch.
321 */
322
323static void tlb_remove_table_smp_sync(void *arg)
324{
325 /* Simply deliver the interrupt */
326}
327
328static void tlb_remove_table_one(void *table)
329{
330 /*
331 * This isn't an RCU grace period and hence the page-tables cannot be
332 * assumed to be actually RCU-freed.
333 *
334 * It is however sufficient for software page-table walkers that rely on
335 * IRQ disabling. See the comment near struct mmu_table_batch.
336 */
337 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
338 __tlb_remove_table(table);
339}
340
341static void tlb_remove_table_rcu(struct rcu_head *head)
342{
343 struct mmu_table_batch *batch;
344 int i;
345
346 batch = container_of(head, struct mmu_table_batch, rcu);
347
348 for (i = 0; i < batch->nr; i++)
349 __tlb_remove_table(batch->tables[i]);
350
351 free_page((unsigned long)batch);
352}
353
354void tlb_table_flush(struct mmu_gather *tlb)
355{
356 struct mmu_table_batch **batch = &tlb->batch;
357
358 if (*batch) {
359 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
360 *batch = NULL;
361 }
362}
363
364void tlb_remove_table(struct mmu_gather *tlb, void *table)
365{
366 struct mmu_table_batch **batch = &tlb->batch;
367
26723911
PZ
368 /*
369 * When there's less then two users of this mm there cannot be a
370 * concurrent page-table walk.
371 */
372 if (atomic_read(&tlb->mm->mm_users) < 2) {
373 __tlb_remove_table(table);
374 return;
375 }
376
377 if (*batch == NULL) {
378 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
379 if (*batch == NULL) {
380 tlb_remove_table_one(table);
381 return;
382 }
383 (*batch)->nr = 0;
384 }
385 (*batch)->tables[(*batch)->nr++] = table;
386 if ((*batch)->nr == MAX_TABLE_BATCH)
387 tlb_table_flush(tlb);
388}
389
9547d01b 390#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 391
1da177e4
LT
392/*
393 * Note: this doesn't free the actual pages themselves. That
394 * has been handled earlier when unmapping all the memory regions.
395 */
9e1b32ca
BH
396static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
397 unsigned long addr)
1da177e4 398{
2f569afd 399 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 400 pmd_clear(pmd);
9e1b32ca 401 pte_free_tlb(tlb, token, addr);
e1f56c89 402 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
403}
404
e0da382c
HD
405static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
406 unsigned long addr, unsigned long end,
407 unsigned long floor, unsigned long ceiling)
1da177e4
LT
408{
409 pmd_t *pmd;
410 unsigned long next;
e0da382c 411 unsigned long start;
1da177e4 412
e0da382c 413 start = addr;
1da177e4 414 pmd = pmd_offset(pud, addr);
1da177e4
LT
415 do {
416 next = pmd_addr_end(addr, end);
417 if (pmd_none_or_clear_bad(pmd))
418 continue;
9e1b32ca 419 free_pte_range(tlb, pmd, addr);
1da177e4
LT
420 } while (pmd++, addr = next, addr != end);
421
e0da382c
HD
422 start &= PUD_MASK;
423 if (start < floor)
424 return;
425 if (ceiling) {
426 ceiling &= PUD_MASK;
427 if (!ceiling)
428 return;
1da177e4 429 }
e0da382c
HD
430 if (end - 1 > ceiling - 1)
431 return;
432
433 pmd = pmd_offset(pud, start);
434 pud_clear(pud);
9e1b32ca 435 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 436 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
437}
438
e0da382c
HD
439static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
440 unsigned long addr, unsigned long end,
441 unsigned long floor, unsigned long ceiling)
1da177e4
LT
442{
443 pud_t *pud;
444 unsigned long next;
e0da382c 445 unsigned long start;
1da177e4 446
e0da382c 447 start = addr;
1da177e4 448 pud = pud_offset(pgd, addr);
1da177e4
LT
449 do {
450 next = pud_addr_end(addr, end);
451 if (pud_none_or_clear_bad(pud))
452 continue;
e0da382c 453 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
454 } while (pud++, addr = next, addr != end);
455
e0da382c
HD
456 start &= PGDIR_MASK;
457 if (start < floor)
458 return;
459 if (ceiling) {
460 ceiling &= PGDIR_MASK;
461 if (!ceiling)
462 return;
1da177e4 463 }
e0da382c
HD
464 if (end - 1 > ceiling - 1)
465 return;
466
467 pud = pud_offset(pgd, start);
468 pgd_clear(pgd);
9e1b32ca 469 pud_free_tlb(tlb, pud, start);
1da177e4
LT
470}
471
472/*
e0da382c 473 * This function frees user-level page tables of a process.
1da177e4 474 */
42b77728 475void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
476 unsigned long addr, unsigned long end,
477 unsigned long floor, unsigned long ceiling)
1da177e4
LT
478{
479 pgd_t *pgd;
480 unsigned long next;
e0da382c
HD
481
482 /*
483 * The next few lines have given us lots of grief...
484 *
485 * Why are we testing PMD* at this top level? Because often
486 * there will be no work to do at all, and we'd prefer not to
487 * go all the way down to the bottom just to discover that.
488 *
489 * Why all these "- 1"s? Because 0 represents both the bottom
490 * of the address space and the top of it (using -1 for the
491 * top wouldn't help much: the masks would do the wrong thing).
492 * The rule is that addr 0 and floor 0 refer to the bottom of
493 * the address space, but end 0 and ceiling 0 refer to the top
494 * Comparisons need to use "end - 1" and "ceiling - 1" (though
495 * that end 0 case should be mythical).
496 *
497 * Wherever addr is brought up or ceiling brought down, we must
498 * be careful to reject "the opposite 0" before it confuses the
499 * subsequent tests. But what about where end is brought down
500 * by PMD_SIZE below? no, end can't go down to 0 there.
501 *
502 * Whereas we round start (addr) and ceiling down, by different
503 * masks at different levels, in order to test whether a table
504 * now has no other vmas using it, so can be freed, we don't
505 * bother to round floor or end up - the tests don't need that.
506 */
1da177e4 507
e0da382c
HD
508 addr &= PMD_MASK;
509 if (addr < floor) {
510 addr += PMD_SIZE;
511 if (!addr)
512 return;
513 }
514 if (ceiling) {
515 ceiling &= PMD_MASK;
516 if (!ceiling)
517 return;
518 }
519 if (end - 1 > ceiling - 1)
520 end -= PMD_SIZE;
521 if (addr > end - 1)
522 return;
523
42b77728 524 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
525 do {
526 next = pgd_addr_end(addr, end);
527 if (pgd_none_or_clear_bad(pgd))
528 continue;
42b77728 529 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 530 } while (pgd++, addr = next, addr != end);
e0da382c
HD
531}
532
42b77728 533void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 534 unsigned long floor, unsigned long ceiling)
e0da382c
HD
535{
536 while (vma) {
537 struct vm_area_struct *next = vma->vm_next;
538 unsigned long addr = vma->vm_start;
539
8f4f8c16 540 /*
25d9e2d1 541 * Hide vma from rmap and truncate_pagecache before freeing
542 * pgtables
8f4f8c16 543 */
5beb4930 544 unlink_anon_vmas(vma);
8f4f8c16
HD
545 unlink_file_vma(vma);
546
9da61aef 547 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 548 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 549 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
550 } else {
551 /*
552 * Optimization: gather nearby vmas into one call down
553 */
554 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 555 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
556 vma = next;
557 next = vma->vm_next;
5beb4930 558 unlink_anon_vmas(vma);
8f4f8c16 559 unlink_file_vma(vma);
3bf5ee95
HD
560 }
561 free_pgd_range(tlb, addr, vma->vm_end,
562 floor, next? next->vm_start: ceiling);
563 }
e0da382c
HD
564 vma = next;
565 }
1da177e4
LT
566}
567
3ed3a4f0 568int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 569{
c4088ebd 570 spinlock_t *ptl;
2f569afd 571 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
572 if (!new)
573 return -ENOMEM;
574
362a61ad
NP
575 /*
576 * Ensure all pte setup (eg. pte page lock and page clearing) are
577 * visible before the pte is made visible to other CPUs by being
578 * put into page tables.
579 *
580 * The other side of the story is the pointer chasing in the page
581 * table walking code (when walking the page table without locking;
582 * ie. most of the time). Fortunately, these data accesses consist
583 * of a chain of data-dependent loads, meaning most CPUs (alpha
584 * being the notable exception) will already guarantee loads are
585 * seen in-order. See the alpha page table accessors for the
586 * smp_read_barrier_depends() barriers in page table walking code.
587 */
588 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
589
c4088ebd 590 ptl = pmd_lock(mm, pmd);
8ac1f832 591 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 592 atomic_long_inc(&mm->nr_ptes);
1da177e4 593 pmd_populate(mm, pmd, new);
2f569afd 594 new = NULL;
4b471e88 595 }
c4088ebd 596 spin_unlock(ptl);
2f569afd
MS
597 if (new)
598 pte_free(mm, new);
1bb3630e 599 return 0;
1da177e4
LT
600}
601
1bb3630e 602int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 603{
1bb3630e
HD
604 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
605 if (!new)
606 return -ENOMEM;
607
362a61ad
NP
608 smp_wmb(); /* See comment in __pte_alloc */
609
1bb3630e 610 spin_lock(&init_mm.page_table_lock);
8ac1f832 611 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 612 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 613 new = NULL;
4b471e88 614 }
1bb3630e 615 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
616 if (new)
617 pte_free_kernel(&init_mm, new);
1bb3630e 618 return 0;
1da177e4
LT
619}
620
d559db08
KH
621static inline void init_rss_vec(int *rss)
622{
623 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624}
625
626static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 627{
d559db08
KH
628 int i;
629
34e55232 630 if (current->mm == mm)
05af2e10 631 sync_mm_rss(mm);
d559db08
KH
632 for (i = 0; i < NR_MM_COUNTERS; i++)
633 if (rss[i])
634 add_mm_counter(mm, i, rss[i]);
ae859762
HD
635}
636
b5810039 637/*
6aab341e
LT
638 * This function is called to print an error when a bad pte
639 * is found. For example, we might have a PFN-mapped pte in
640 * a region that doesn't allow it.
b5810039
NP
641 *
642 * The calling function must still handle the error.
643 */
3dc14741
HD
644static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645 pte_t pte, struct page *page)
b5810039 646{
3dc14741
HD
647 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648 pud_t *pud = pud_offset(pgd, addr);
649 pmd_t *pmd = pmd_offset(pud, addr);
650 struct address_space *mapping;
651 pgoff_t index;
d936cf9b
HD
652 static unsigned long resume;
653 static unsigned long nr_shown;
654 static unsigned long nr_unshown;
655
656 /*
657 * Allow a burst of 60 reports, then keep quiet for that minute;
658 * or allow a steady drip of one report per second.
659 */
660 if (nr_shown == 60) {
661 if (time_before(jiffies, resume)) {
662 nr_unshown++;
663 return;
664 }
665 if (nr_unshown) {
1170532b
JP
666 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
667 nr_unshown);
d936cf9b
HD
668 nr_unshown = 0;
669 }
670 nr_shown = 0;
671 }
672 if (nr_shown++ == 0)
673 resume = jiffies + 60 * HZ;
3dc14741
HD
674
675 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
676 index = linear_page_index(vma, addr);
677
1170532b
JP
678 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
679 current->comm,
680 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 681 if (page)
f0b791a3 682 dump_page(page, "bad pte");
1170532b
JP
683 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
684 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
3dc14741
HD
685 /*
686 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
687 */
2682582a
KK
688 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
689 vma->vm_file,
690 vma->vm_ops ? vma->vm_ops->fault : NULL,
691 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
692 mapping ? mapping->a_ops->readpage : NULL);
b5810039 693 dump_stack();
373d4d09 694 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
695}
696
ee498ed7 697/*
7e675137 698 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 699 *
7e675137
NP
700 * "Special" mappings do not wish to be associated with a "struct page" (either
701 * it doesn't exist, or it exists but they don't want to touch it). In this
702 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 703 *
7e675137
NP
704 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
705 * pte bit, in which case this function is trivial. Secondly, an architecture
706 * may not have a spare pte bit, which requires a more complicated scheme,
707 * described below.
708 *
709 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
710 * special mapping (even if there are underlying and valid "struct pages").
711 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 712 *
b379d790
JH
713 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
714 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
715 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
716 * mapping will always honor the rule
6aab341e
LT
717 *
718 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
719 *
7e675137
NP
720 * And for normal mappings this is false.
721 *
722 * This restricts such mappings to be a linear translation from virtual address
723 * to pfn. To get around this restriction, we allow arbitrary mappings so long
724 * as the vma is not a COW mapping; in that case, we know that all ptes are
725 * special (because none can have been COWed).
b379d790 726 *
b379d790 727 *
7e675137 728 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
729 *
730 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
731 * page" backing, however the difference is that _all_ pages with a struct
732 * page (that is, those where pfn_valid is true) are refcounted and considered
733 * normal pages by the VM. The disadvantage is that pages are refcounted
734 * (which can be slower and simply not an option for some PFNMAP users). The
735 * advantage is that we don't have to follow the strict linearity rule of
736 * PFNMAP mappings in order to support COWable mappings.
737 *
ee498ed7 738 */
7e675137
NP
739#ifdef __HAVE_ARCH_PTE_SPECIAL
740# define HAVE_PTE_SPECIAL 1
741#else
742# define HAVE_PTE_SPECIAL 0
743#endif
744struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745 pte_t pte)
ee498ed7 746{
22b31eec 747 unsigned long pfn = pte_pfn(pte);
7e675137
NP
748
749 if (HAVE_PTE_SPECIAL) {
b38af472 750 if (likely(!pte_special(pte)))
22b31eec 751 goto check_pfn;
667a0a06
DV
752 if (vma->vm_ops && vma->vm_ops->find_special_page)
753 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
754 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
755 return NULL;
62eede62 756 if (!is_zero_pfn(pfn))
22b31eec 757 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
758 return NULL;
759 }
760
761 /* !HAVE_PTE_SPECIAL case follows: */
762
b379d790
JH
763 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
764 if (vma->vm_flags & VM_MIXEDMAP) {
765 if (!pfn_valid(pfn))
766 return NULL;
767 goto out;
768 } else {
7e675137
NP
769 unsigned long off;
770 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
771 if (pfn == vma->vm_pgoff + off)
772 return NULL;
773 if (!is_cow_mapping(vma->vm_flags))
774 return NULL;
775 }
6aab341e
LT
776 }
777
b38af472
HD
778 if (is_zero_pfn(pfn))
779 return NULL;
22b31eec
HD
780check_pfn:
781 if (unlikely(pfn > highest_memmap_pfn)) {
782 print_bad_pte(vma, addr, pte, NULL);
783 return NULL;
784 }
6aab341e
LT
785
786 /*
7e675137 787 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 788 * eg. VDSO mappings can cause them to exist.
6aab341e 789 */
b379d790 790out:
6aab341e 791 return pfn_to_page(pfn);
ee498ed7
HD
792}
793
28093f9f
GS
794#ifdef CONFIG_TRANSPARENT_HUGEPAGE
795struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
796 pmd_t pmd)
797{
798 unsigned long pfn = pmd_pfn(pmd);
799
800 /*
801 * There is no pmd_special() but there may be special pmds, e.g.
802 * in a direct-access (dax) mapping, so let's just replicate the
803 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
804 */
805 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
806 if (vma->vm_flags & VM_MIXEDMAP) {
807 if (!pfn_valid(pfn))
808 return NULL;
809 goto out;
810 } else {
811 unsigned long off;
812 off = (addr - vma->vm_start) >> PAGE_SHIFT;
813 if (pfn == vma->vm_pgoff + off)
814 return NULL;
815 if (!is_cow_mapping(vma->vm_flags))
816 return NULL;
817 }
818 }
819
820 if (is_zero_pfn(pfn))
821 return NULL;
822 if (unlikely(pfn > highest_memmap_pfn))
823 return NULL;
824
825 /*
826 * NOTE! We still have PageReserved() pages in the page tables.
827 * eg. VDSO mappings can cause them to exist.
828 */
829out:
830 return pfn_to_page(pfn);
831}
832#endif
833
1da177e4
LT
834/*
835 * copy one vm_area from one task to the other. Assumes the page tables
836 * already present in the new task to be cleared in the whole range
837 * covered by this vma.
1da177e4
LT
838 */
839
570a335b 840static inline unsigned long
1da177e4 841copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 842 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 843 unsigned long addr, int *rss)
1da177e4 844{
b5810039 845 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
846 pte_t pte = *src_pte;
847 struct page *page;
1da177e4
LT
848
849 /* pte contains position in swap or file, so copy. */
850 if (unlikely(!pte_present(pte))) {
0661a336
KS
851 swp_entry_t entry = pte_to_swp_entry(pte);
852
853 if (likely(!non_swap_entry(entry))) {
854 if (swap_duplicate(entry) < 0)
855 return entry.val;
856
857 /* make sure dst_mm is on swapoff's mmlist. */
858 if (unlikely(list_empty(&dst_mm->mmlist))) {
859 spin_lock(&mmlist_lock);
860 if (list_empty(&dst_mm->mmlist))
861 list_add(&dst_mm->mmlist,
862 &src_mm->mmlist);
863 spin_unlock(&mmlist_lock);
864 }
865 rss[MM_SWAPENTS]++;
866 } else if (is_migration_entry(entry)) {
867 page = migration_entry_to_page(entry);
868
eca56ff9 869 rss[mm_counter(page)]++;
0661a336
KS
870
871 if (is_write_migration_entry(entry) &&
872 is_cow_mapping(vm_flags)) {
873 /*
874 * COW mappings require pages in both
875 * parent and child to be set to read.
876 */
877 make_migration_entry_read(&entry);
878 pte = swp_entry_to_pte(entry);
879 if (pte_swp_soft_dirty(*src_pte))
880 pte = pte_swp_mksoft_dirty(pte);
881 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 882 }
1da177e4 883 }
ae859762 884 goto out_set_pte;
1da177e4
LT
885 }
886
1da177e4
LT
887 /*
888 * If it's a COW mapping, write protect it both
889 * in the parent and the child
890 */
67121172 891 if (is_cow_mapping(vm_flags)) {
1da177e4 892 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 893 pte = pte_wrprotect(pte);
1da177e4
LT
894 }
895
896 /*
897 * If it's a shared mapping, mark it clean in
898 * the child
899 */
900 if (vm_flags & VM_SHARED)
901 pte = pte_mkclean(pte);
902 pte = pte_mkold(pte);
6aab341e
LT
903
904 page = vm_normal_page(vma, addr, pte);
905 if (page) {
906 get_page(page);
53f9263b 907 page_dup_rmap(page, false);
eca56ff9 908 rss[mm_counter(page)]++;
6aab341e 909 }
ae859762
HD
910
911out_set_pte:
912 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 913 return 0;
1da177e4
LT
914}
915
21bda264 916static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
917 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
918 unsigned long addr, unsigned long end)
1da177e4 919{
c36987e2 920 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 921 pte_t *src_pte, *dst_pte;
c74df32c 922 spinlock_t *src_ptl, *dst_ptl;
e040f218 923 int progress = 0;
d559db08 924 int rss[NR_MM_COUNTERS];
570a335b 925 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
926
927again:
d559db08
KH
928 init_rss_vec(rss);
929
c74df32c 930 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
931 if (!dst_pte)
932 return -ENOMEM;
ece0e2b6 933 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 934 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 935 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
936 orig_src_pte = src_pte;
937 orig_dst_pte = dst_pte;
6606c3e0 938 arch_enter_lazy_mmu_mode();
1da177e4 939
1da177e4
LT
940 do {
941 /*
942 * We are holding two locks at this point - either of them
943 * could generate latencies in another task on another CPU.
944 */
e040f218
HD
945 if (progress >= 32) {
946 progress = 0;
947 if (need_resched() ||
95c354fe 948 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
949 break;
950 }
1da177e4
LT
951 if (pte_none(*src_pte)) {
952 progress++;
953 continue;
954 }
570a335b
HD
955 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
956 vma, addr, rss);
957 if (entry.val)
958 break;
1da177e4
LT
959 progress += 8;
960 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 961
6606c3e0 962 arch_leave_lazy_mmu_mode();
c74df32c 963 spin_unlock(src_ptl);
ece0e2b6 964 pte_unmap(orig_src_pte);
d559db08 965 add_mm_rss_vec(dst_mm, rss);
c36987e2 966 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 967 cond_resched();
570a335b
HD
968
969 if (entry.val) {
970 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
971 return -ENOMEM;
972 progress = 0;
973 }
1da177e4
LT
974 if (addr != end)
975 goto again;
976 return 0;
977}
978
979static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
980 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
981 unsigned long addr, unsigned long end)
982{
983 pmd_t *src_pmd, *dst_pmd;
984 unsigned long next;
985
986 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
987 if (!dst_pmd)
988 return -ENOMEM;
989 src_pmd = pmd_offset(src_pud, addr);
990 do {
991 next = pmd_addr_end(addr, end);
5c7fb56e 992 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 993 int err;
14d1a55c 994 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
995 err = copy_huge_pmd(dst_mm, src_mm,
996 dst_pmd, src_pmd, addr, vma);
997 if (err == -ENOMEM)
998 return -ENOMEM;
999 if (!err)
1000 continue;
1001 /* fall through */
1002 }
1da177e4
LT
1003 if (pmd_none_or_clear_bad(src_pmd))
1004 continue;
1005 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1006 vma, addr, next))
1007 return -ENOMEM;
1008 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1009 return 0;
1010}
1011
1012static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1013 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1014 unsigned long addr, unsigned long end)
1015{
1016 pud_t *src_pud, *dst_pud;
1017 unsigned long next;
1018
1019 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1020 if (!dst_pud)
1021 return -ENOMEM;
1022 src_pud = pud_offset(src_pgd, addr);
1023 do {
1024 next = pud_addr_end(addr, end);
1025 if (pud_none_or_clear_bad(src_pud))
1026 continue;
1027 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1028 vma, addr, next))
1029 return -ENOMEM;
1030 } while (dst_pud++, src_pud++, addr = next, addr != end);
1031 return 0;
1032}
1033
1034int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1035 struct vm_area_struct *vma)
1036{
1037 pgd_t *src_pgd, *dst_pgd;
1038 unsigned long next;
1039 unsigned long addr = vma->vm_start;
1040 unsigned long end = vma->vm_end;
2ec74c3e
SG
1041 unsigned long mmun_start; /* For mmu_notifiers */
1042 unsigned long mmun_end; /* For mmu_notifiers */
1043 bool is_cow;
cddb8a5c 1044 int ret;
1da177e4 1045
d992895b
NP
1046 /*
1047 * Don't copy ptes where a page fault will fill them correctly.
1048 * Fork becomes much lighter when there are big shared or private
1049 * readonly mappings. The tradeoff is that copy_page_range is more
1050 * efficient than faulting.
1051 */
0661a336
KS
1052 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1053 !vma->anon_vma)
1054 return 0;
d992895b 1055
1da177e4
LT
1056 if (is_vm_hugetlb_page(vma))
1057 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1058
b3b9c293 1059 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1060 /*
1061 * We do not free on error cases below as remove_vma
1062 * gets called on error from higher level routine
1063 */
5180da41 1064 ret = track_pfn_copy(vma);
2ab64037 1065 if (ret)
1066 return ret;
1067 }
1068
cddb8a5c
AA
1069 /*
1070 * We need to invalidate the secondary MMU mappings only when
1071 * there could be a permission downgrade on the ptes of the
1072 * parent mm. And a permission downgrade will only happen if
1073 * is_cow_mapping() returns true.
1074 */
2ec74c3e
SG
1075 is_cow = is_cow_mapping(vma->vm_flags);
1076 mmun_start = addr;
1077 mmun_end = end;
1078 if (is_cow)
1079 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1080 mmun_end);
cddb8a5c
AA
1081
1082 ret = 0;
1da177e4
LT
1083 dst_pgd = pgd_offset(dst_mm, addr);
1084 src_pgd = pgd_offset(src_mm, addr);
1085 do {
1086 next = pgd_addr_end(addr, end);
1087 if (pgd_none_or_clear_bad(src_pgd))
1088 continue;
cddb8a5c
AA
1089 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1090 vma, addr, next))) {
1091 ret = -ENOMEM;
1092 break;
1093 }
1da177e4 1094 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1095
2ec74c3e
SG
1096 if (is_cow)
1097 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1098 return ret;
1da177e4
LT
1099}
1100
51c6f666 1101static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1102 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1103 unsigned long addr, unsigned long end,
97a89413 1104 struct zap_details *details)
1da177e4 1105{
b5810039 1106 struct mm_struct *mm = tlb->mm;
d16dfc55 1107 int force_flush = 0;
d559db08 1108 int rss[NR_MM_COUNTERS];
97a89413 1109 spinlock_t *ptl;
5f1a1907 1110 pte_t *start_pte;
97a89413 1111 pte_t *pte;
8a5f14a2 1112 swp_entry_t entry;
e9d55e15 1113 struct page *pending_page = NULL;
d559db08 1114
d16dfc55 1115again:
e303297e 1116 init_rss_vec(rss);
5f1a1907
SR
1117 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1118 pte = start_pte;
6606c3e0 1119 arch_enter_lazy_mmu_mode();
1da177e4
LT
1120 do {
1121 pte_t ptent = *pte;
51c6f666 1122 if (pte_none(ptent)) {
1da177e4 1123 continue;
51c6f666 1124 }
6f5e6b9e 1125
1da177e4 1126 if (pte_present(ptent)) {
ee498ed7 1127 struct page *page;
51c6f666 1128
6aab341e 1129 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1130 if (unlikely(details) && page) {
1131 /*
1132 * unmap_shared_mapping_pages() wants to
1133 * invalidate cache without truncating:
1134 * unmap shared but keep private pages.
1135 */
1136 if (details->check_mapping &&
1137 details->check_mapping != page->mapping)
1138 continue;
1da177e4 1139 }
b5810039 1140 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1141 tlb->fullmm);
1da177e4
LT
1142 tlb_remove_tlb_entry(tlb, pte, addr);
1143 if (unlikely(!page))
1144 continue;
eca56ff9
JM
1145
1146 if (!PageAnon(page)) {
1cf35d47 1147 if (pte_dirty(ptent)) {
aac45363
MH
1148 /*
1149 * oom_reaper cannot tear down dirty
1150 * pages
1151 */
1152 if (unlikely(details && details->ignore_dirty))
1153 continue;
1cf35d47 1154 force_flush = 1;
6237bcd9 1155 set_page_dirty(page);
1cf35d47 1156 }
4917e5d0 1157 if (pte_young(ptent) &&
64363aad 1158 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1159 mark_page_accessed(page);
6237bcd9 1160 }
eca56ff9 1161 rss[mm_counter(page)]--;
d281ee61 1162 page_remove_rmap(page, false);
3dc14741
HD
1163 if (unlikely(page_mapcount(page) < 0))
1164 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1165 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1166 force_flush = 1;
e9d55e15 1167 pending_page = page;
ce9ec37b 1168 addr += PAGE_SIZE;
d16dfc55 1169 break;
1cf35d47 1170 }
1da177e4
LT
1171 continue;
1172 }
aac45363
MH
1173 /* only check swap_entries if explicitly asked for in details */
1174 if (unlikely(details && !details->check_swap_entries))
1da177e4 1175 continue;
b084d435 1176
8a5f14a2
KS
1177 entry = pte_to_swp_entry(ptent);
1178 if (!non_swap_entry(entry))
1179 rss[MM_SWAPENTS]--;
1180 else if (is_migration_entry(entry)) {
1181 struct page *page;
9f9f1acd 1182
8a5f14a2 1183 page = migration_entry_to_page(entry);
eca56ff9 1184 rss[mm_counter(page)]--;
b084d435 1185 }
8a5f14a2
KS
1186 if (unlikely(!free_swap_and_cache(entry)))
1187 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1188 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1189 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1190
d559db08 1191 add_mm_rss_vec(mm, rss);
6606c3e0 1192 arch_leave_lazy_mmu_mode();
51c6f666 1193
1cf35d47 1194 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1195 if (force_flush)
1cf35d47 1196 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1197 pte_unmap_unlock(start_pte, ptl);
1198
1199 /*
1200 * If we forced a TLB flush (either due to running out of
1201 * batch buffers or because we needed to flush dirty TLB
1202 * entries before releasing the ptl), free the batched
1203 * memory too. Restart if we didn't do everything.
1204 */
1205 if (force_flush) {
1206 force_flush = 0;
1207 tlb_flush_mmu_free(tlb);
e9d55e15
AK
1208 if (pending_page) {
1209 /* remove the page with new size */
1210 __tlb_remove_pte_page(tlb, pending_page);
1211 pending_page = NULL;
1212 }
2b047252 1213 if (addr != end)
d16dfc55
PZ
1214 goto again;
1215 }
1216
51c6f666 1217 return addr;
1da177e4
LT
1218}
1219
51c6f666 1220static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1221 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1222 unsigned long addr, unsigned long end,
97a89413 1223 struct zap_details *details)
1da177e4
LT
1224{
1225 pmd_t *pmd;
1226 unsigned long next;
1227
1228 pmd = pmd_offset(pud, addr);
1229 do {
1230 next = pmd_addr_end(addr, end);
5c7fb56e 1231 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1232 if (next - addr != HPAGE_PMD_SIZE) {
68428398
HD
1233 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1234 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
78ddc534 1235 split_huge_pmd(vma, pmd, addr);
f21760b1 1236 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1237 goto next;
71e3aac0
AA
1238 /* fall through */
1239 }
1a5a9906
AA
1240 /*
1241 * Here there can be other concurrent MADV_DONTNEED or
1242 * trans huge page faults running, and if the pmd is
1243 * none or trans huge it can change under us. This is
1244 * because MADV_DONTNEED holds the mmap_sem in read
1245 * mode.
1246 */
1247 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1248 goto next;
97a89413 1249 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1250next:
97a89413
PZ
1251 cond_resched();
1252 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1253
1254 return addr;
1da177e4
LT
1255}
1256
51c6f666 1257static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1258 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1259 unsigned long addr, unsigned long end,
97a89413 1260 struct zap_details *details)
1da177e4
LT
1261{
1262 pud_t *pud;
1263 unsigned long next;
1264
1265 pud = pud_offset(pgd, addr);
1266 do {
1267 next = pud_addr_end(addr, end);
97a89413 1268 if (pud_none_or_clear_bad(pud))
1da177e4 1269 continue;
97a89413
PZ
1270 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1271 } while (pud++, addr = next, addr != end);
51c6f666
RH
1272
1273 return addr;
1da177e4
LT
1274}
1275
aac45363 1276void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1277 struct vm_area_struct *vma,
1278 unsigned long addr, unsigned long end,
1279 struct zap_details *details)
1da177e4
LT
1280{
1281 pgd_t *pgd;
1282 unsigned long next;
1283
1da177e4
LT
1284 BUG_ON(addr >= end);
1285 tlb_start_vma(tlb, vma);
1286 pgd = pgd_offset(vma->vm_mm, addr);
1287 do {
1288 next = pgd_addr_end(addr, end);
97a89413 1289 if (pgd_none_or_clear_bad(pgd))
1da177e4 1290 continue;
97a89413
PZ
1291 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1292 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1293 tlb_end_vma(tlb, vma);
1294}
51c6f666 1295
f5cc4eef
AV
1296
1297static void unmap_single_vma(struct mmu_gather *tlb,
1298 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1299 unsigned long end_addr,
f5cc4eef
AV
1300 struct zap_details *details)
1301{
1302 unsigned long start = max(vma->vm_start, start_addr);
1303 unsigned long end;
1304
1305 if (start >= vma->vm_end)
1306 return;
1307 end = min(vma->vm_end, end_addr);
1308 if (end <= vma->vm_start)
1309 return;
1310
cbc91f71
SD
1311 if (vma->vm_file)
1312 uprobe_munmap(vma, start, end);
1313
b3b9c293 1314 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1315 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1316
1317 if (start != end) {
1318 if (unlikely(is_vm_hugetlb_page(vma))) {
1319 /*
1320 * It is undesirable to test vma->vm_file as it
1321 * should be non-null for valid hugetlb area.
1322 * However, vm_file will be NULL in the error
7aa6b4ad 1323 * cleanup path of mmap_region. When
f5cc4eef 1324 * hugetlbfs ->mmap method fails,
7aa6b4ad 1325 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1326 * before calling this function to clean up.
1327 * Since no pte has actually been setup, it is
1328 * safe to do nothing in this case.
1329 */
24669e58 1330 if (vma->vm_file) {
83cde9e8 1331 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1332 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1333 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1334 }
f5cc4eef
AV
1335 } else
1336 unmap_page_range(tlb, vma, start, end, details);
1337 }
1da177e4
LT
1338}
1339
1da177e4
LT
1340/**
1341 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1342 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1343 * @vma: the starting vma
1344 * @start_addr: virtual address at which to start unmapping
1345 * @end_addr: virtual address at which to end unmapping
1da177e4 1346 *
508034a3 1347 * Unmap all pages in the vma list.
1da177e4 1348 *
1da177e4
LT
1349 * Only addresses between `start' and `end' will be unmapped.
1350 *
1351 * The VMA list must be sorted in ascending virtual address order.
1352 *
1353 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1354 * range after unmap_vmas() returns. So the only responsibility here is to
1355 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1356 * drops the lock and schedules.
1357 */
6e8bb019 1358void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1359 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1360 unsigned long end_addr)
1da177e4 1361{
cddb8a5c 1362 struct mm_struct *mm = vma->vm_mm;
1da177e4 1363
cddb8a5c 1364 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1365 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1366 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1367 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1368}
1369
1370/**
1371 * zap_page_range - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1373 * @start: starting address of pages to zap
1da177e4 1374 * @size: number of bytes to zap
8a5f14a2 1375 * @details: details of shared cache invalidation
f5cc4eef
AV
1376 *
1377 * Caller must protect the VMA list
1da177e4 1378 */
7e027b14 1379void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1380 unsigned long size, struct zap_details *details)
1381{
1382 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1383 struct mmu_gather tlb;
7e027b14 1384 unsigned long end = start + size;
1da177e4 1385
1da177e4 1386 lru_add_drain();
2b047252 1387 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1388 update_hiwater_rss(mm);
7e027b14
LT
1389 mmu_notifier_invalidate_range_start(mm, start, end);
1390 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1391 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1392 mmu_notifier_invalidate_range_end(mm, start, end);
1393 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1394}
1395
f5cc4eef
AV
1396/**
1397 * zap_page_range_single - remove user pages in a given range
1398 * @vma: vm_area_struct holding the applicable pages
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
8a5f14a2 1401 * @details: details of shared cache invalidation
f5cc4eef
AV
1402 *
1403 * The range must fit into one VMA.
1da177e4 1404 */
f5cc4eef 1405static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1406 unsigned long size, struct zap_details *details)
1407{
1408 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1409 struct mmu_gather tlb;
1da177e4 1410 unsigned long end = address + size;
1da177e4 1411
1da177e4 1412 lru_add_drain();
2b047252 1413 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1414 update_hiwater_rss(mm);
f5cc4eef 1415 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1416 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1417 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1418 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1419}
1420
c627f9cc
JS
1421/**
1422 * zap_vma_ptes - remove ptes mapping the vma
1423 * @vma: vm_area_struct holding ptes to be zapped
1424 * @address: starting address of pages to zap
1425 * @size: number of bytes to zap
1426 *
1427 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1428 *
1429 * The entire address range must be fully contained within the vma.
1430 *
1431 * Returns 0 if successful.
1432 */
1433int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1434 unsigned long size)
1435{
1436 if (address < vma->vm_start || address + size > vma->vm_end ||
1437 !(vma->vm_flags & VM_PFNMAP))
1438 return -1;
f5cc4eef 1439 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1440 return 0;
1441}
1442EXPORT_SYMBOL_GPL(zap_vma_ptes);
1443
25ca1d6c 1444pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1445 spinlock_t **ptl)
c9cfcddf
LT
1446{
1447 pgd_t * pgd = pgd_offset(mm, addr);
1448 pud_t * pud = pud_alloc(mm, pgd, addr);
1449 if (pud) {
49c91fb0 1450 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1451 if (pmd) {
1452 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1453 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1454 }
c9cfcddf
LT
1455 }
1456 return NULL;
1457}
1458
238f58d8
LT
1459/*
1460 * This is the old fallback for page remapping.
1461 *
1462 * For historical reasons, it only allows reserved pages. Only
1463 * old drivers should use this, and they needed to mark their
1464 * pages reserved for the old functions anyway.
1465 */
423bad60
NP
1466static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1467 struct page *page, pgprot_t prot)
238f58d8 1468{
423bad60 1469 struct mm_struct *mm = vma->vm_mm;
238f58d8 1470 int retval;
c9cfcddf 1471 pte_t *pte;
8a9f3ccd
BS
1472 spinlock_t *ptl;
1473
238f58d8 1474 retval = -EINVAL;
a145dd41 1475 if (PageAnon(page))
5b4e655e 1476 goto out;
238f58d8
LT
1477 retval = -ENOMEM;
1478 flush_dcache_page(page);
c9cfcddf 1479 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1480 if (!pte)
5b4e655e 1481 goto out;
238f58d8
LT
1482 retval = -EBUSY;
1483 if (!pte_none(*pte))
1484 goto out_unlock;
1485
1486 /* Ok, finally just insert the thing.. */
1487 get_page(page);
eca56ff9 1488 inc_mm_counter_fast(mm, mm_counter_file(page));
238f58d8
LT
1489 page_add_file_rmap(page);
1490 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1491
1492 retval = 0;
8a9f3ccd
BS
1493 pte_unmap_unlock(pte, ptl);
1494 return retval;
238f58d8
LT
1495out_unlock:
1496 pte_unmap_unlock(pte, ptl);
1497out:
1498 return retval;
1499}
1500
bfa5bf6d
REB
1501/**
1502 * vm_insert_page - insert single page into user vma
1503 * @vma: user vma to map to
1504 * @addr: target user address of this page
1505 * @page: source kernel page
1506 *
a145dd41
LT
1507 * This allows drivers to insert individual pages they've allocated
1508 * into a user vma.
1509 *
1510 * The page has to be a nice clean _individual_ kernel allocation.
1511 * If you allocate a compound page, you need to have marked it as
1512 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1513 * (see split_page()).
a145dd41
LT
1514 *
1515 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1516 * took an arbitrary page protection parameter. This doesn't allow
1517 * that. Your vma protection will have to be set up correctly, which
1518 * means that if you want a shared writable mapping, you'd better
1519 * ask for a shared writable mapping!
1520 *
1521 * The page does not need to be reserved.
4b6e1e37
KK
1522 *
1523 * Usually this function is called from f_op->mmap() handler
1524 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1525 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1526 * function from other places, for example from page-fault handler.
a145dd41 1527 */
423bad60
NP
1528int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1529 struct page *page)
a145dd41
LT
1530{
1531 if (addr < vma->vm_start || addr >= vma->vm_end)
1532 return -EFAULT;
1533 if (!page_count(page))
1534 return -EINVAL;
4b6e1e37
KK
1535 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1536 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1537 BUG_ON(vma->vm_flags & VM_PFNMAP);
1538 vma->vm_flags |= VM_MIXEDMAP;
1539 }
423bad60 1540 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1541}
e3c3374f 1542EXPORT_SYMBOL(vm_insert_page);
a145dd41 1543
423bad60 1544static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1545 pfn_t pfn, pgprot_t prot)
423bad60
NP
1546{
1547 struct mm_struct *mm = vma->vm_mm;
1548 int retval;
1549 pte_t *pte, entry;
1550 spinlock_t *ptl;
1551
1552 retval = -ENOMEM;
1553 pte = get_locked_pte(mm, addr, &ptl);
1554 if (!pte)
1555 goto out;
1556 retval = -EBUSY;
1557 if (!pte_none(*pte))
1558 goto out_unlock;
1559
1560 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1561 if (pfn_t_devmap(pfn))
1562 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1563 else
1564 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
423bad60 1565 set_pte_at(mm, addr, pte, entry);
4b3073e1 1566 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1567
1568 retval = 0;
1569out_unlock:
1570 pte_unmap_unlock(pte, ptl);
1571out:
1572 return retval;
1573}
1574
e0dc0d8f
NP
1575/**
1576 * vm_insert_pfn - insert single pfn into user vma
1577 * @vma: user vma to map to
1578 * @addr: target user address of this page
1579 * @pfn: source kernel pfn
1580 *
c462f179 1581 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1582 * they've allocated into a user vma. Same comments apply.
1583 *
1584 * This function should only be called from a vm_ops->fault handler, and
1585 * in that case the handler should return NULL.
0d71d10a
NP
1586 *
1587 * vma cannot be a COW mapping.
1588 *
1589 * As this is called only for pages that do not currently exist, we
1590 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1591 */
1592int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1593 unsigned long pfn)
1745cbc5
AL
1594{
1595 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1596}
1597EXPORT_SYMBOL(vm_insert_pfn);
1598
1599/**
1600 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1601 * @vma: user vma to map to
1602 * @addr: target user address of this page
1603 * @pfn: source kernel pfn
1604 * @pgprot: pgprot flags for the inserted page
1605 *
1606 * This is exactly like vm_insert_pfn, except that it allows drivers to
1607 * to override pgprot on a per-page basis.
1608 *
1609 * This only makes sense for IO mappings, and it makes no sense for
1610 * cow mappings. In general, using multiple vmas is preferable;
1611 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1612 * impractical.
1613 */
1614int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1615 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1616{
2ab64037 1617 int ret;
7e675137
NP
1618 /*
1619 * Technically, architectures with pte_special can avoid all these
1620 * restrictions (same for remap_pfn_range). However we would like
1621 * consistency in testing and feature parity among all, so we should
1622 * try to keep these invariants in place for everybody.
1623 */
b379d790
JH
1624 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1625 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1626 (VM_PFNMAP|VM_MIXEDMAP));
1627 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1628 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1629
423bad60
NP
1630 if (addr < vma->vm_start || addr >= vma->vm_end)
1631 return -EFAULT;
f25748e3 1632 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
2ab64037 1633 return -EINVAL;
1634
01c8f1c4 1635 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
2ab64037 1636
2ab64037 1637 return ret;
423bad60 1638}
1745cbc5 1639EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1640
423bad60 1641int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1642 pfn_t pfn)
423bad60
NP
1643{
1644 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1645
423bad60
NP
1646 if (addr < vma->vm_start || addr >= vma->vm_end)
1647 return -EFAULT;
e0dc0d8f 1648
423bad60
NP
1649 /*
1650 * If we don't have pte special, then we have to use the pfn_valid()
1651 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1652 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1653 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1654 * without pte special, it would there be refcounted as a normal page.
423bad60 1655 */
03fc2da6 1656 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1657 struct page *page;
1658
03fc2da6
DW
1659 /*
1660 * At this point we are committed to insert_page()
1661 * regardless of whether the caller specified flags that
1662 * result in pfn_t_has_page() == false.
1663 */
1664 page = pfn_to_page(pfn_t_to_pfn(pfn));
423bad60
NP
1665 return insert_page(vma, addr, page, vma->vm_page_prot);
1666 }
1667 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1668}
423bad60 1669EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1670
1da177e4
LT
1671/*
1672 * maps a range of physical memory into the requested pages. the old
1673 * mappings are removed. any references to nonexistent pages results
1674 * in null mappings (currently treated as "copy-on-access")
1675 */
1676static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1677 unsigned long addr, unsigned long end,
1678 unsigned long pfn, pgprot_t prot)
1679{
1680 pte_t *pte;
c74df32c 1681 spinlock_t *ptl;
1da177e4 1682
c74df32c 1683 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1684 if (!pte)
1685 return -ENOMEM;
6606c3e0 1686 arch_enter_lazy_mmu_mode();
1da177e4
LT
1687 do {
1688 BUG_ON(!pte_none(*pte));
7e675137 1689 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1690 pfn++;
1691 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1692 arch_leave_lazy_mmu_mode();
c74df32c 1693 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1694 return 0;
1695}
1696
1697static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1698 unsigned long addr, unsigned long end,
1699 unsigned long pfn, pgprot_t prot)
1700{
1701 pmd_t *pmd;
1702 unsigned long next;
1703
1704 pfn -= addr >> PAGE_SHIFT;
1705 pmd = pmd_alloc(mm, pud, addr);
1706 if (!pmd)
1707 return -ENOMEM;
f66055ab 1708 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1709 do {
1710 next = pmd_addr_end(addr, end);
1711 if (remap_pte_range(mm, pmd, addr, next,
1712 pfn + (addr >> PAGE_SHIFT), prot))
1713 return -ENOMEM;
1714 } while (pmd++, addr = next, addr != end);
1715 return 0;
1716}
1717
1718static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1719 unsigned long addr, unsigned long end,
1720 unsigned long pfn, pgprot_t prot)
1721{
1722 pud_t *pud;
1723 unsigned long next;
1724
1725 pfn -= addr >> PAGE_SHIFT;
1726 pud = pud_alloc(mm, pgd, addr);
1727 if (!pud)
1728 return -ENOMEM;
1729 do {
1730 next = pud_addr_end(addr, end);
1731 if (remap_pmd_range(mm, pud, addr, next,
1732 pfn + (addr >> PAGE_SHIFT), prot))
1733 return -ENOMEM;
1734 } while (pud++, addr = next, addr != end);
1735 return 0;
1736}
1737
bfa5bf6d
REB
1738/**
1739 * remap_pfn_range - remap kernel memory to userspace
1740 * @vma: user vma to map to
1741 * @addr: target user address to start at
1742 * @pfn: physical address of kernel memory
1743 * @size: size of map area
1744 * @prot: page protection flags for this mapping
1745 *
1746 * Note: this is only safe if the mm semaphore is held when called.
1747 */
1da177e4
LT
1748int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1749 unsigned long pfn, unsigned long size, pgprot_t prot)
1750{
1751 pgd_t *pgd;
1752 unsigned long next;
2d15cab8 1753 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1754 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1755 unsigned long remap_pfn = pfn;
1da177e4
LT
1756 int err;
1757
1758 /*
1759 * Physically remapped pages are special. Tell the
1760 * rest of the world about it:
1761 * VM_IO tells people not to look at these pages
1762 * (accesses can have side effects).
6aab341e
LT
1763 * VM_PFNMAP tells the core MM that the base pages are just
1764 * raw PFN mappings, and do not have a "struct page" associated
1765 * with them.
314e51b9
KK
1766 * VM_DONTEXPAND
1767 * Disable vma merging and expanding with mremap().
1768 * VM_DONTDUMP
1769 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1770 *
1771 * There's a horrible special case to handle copy-on-write
1772 * behaviour that some programs depend on. We mark the "original"
1773 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1774 * See vm_normal_page() for details.
1da177e4 1775 */
b3b9c293
KK
1776 if (is_cow_mapping(vma->vm_flags)) {
1777 if (addr != vma->vm_start || end != vma->vm_end)
1778 return -EINVAL;
fb155c16 1779 vma->vm_pgoff = pfn;
b3b9c293
KK
1780 }
1781
d5957d2f 1782 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1783 if (err)
3c8bb73a 1784 return -EINVAL;
fb155c16 1785
314e51b9 1786 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1787
1788 BUG_ON(addr >= end);
1789 pfn -= addr >> PAGE_SHIFT;
1790 pgd = pgd_offset(mm, addr);
1791 flush_cache_range(vma, addr, end);
1da177e4
LT
1792 do {
1793 next = pgd_addr_end(addr, end);
1794 err = remap_pud_range(mm, pgd, addr, next,
1795 pfn + (addr >> PAGE_SHIFT), prot);
1796 if (err)
1797 break;
1798 } while (pgd++, addr = next, addr != end);
2ab64037 1799
1800 if (err)
d5957d2f 1801 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1802
1da177e4
LT
1803 return err;
1804}
1805EXPORT_SYMBOL(remap_pfn_range);
1806
b4cbb197
LT
1807/**
1808 * vm_iomap_memory - remap memory to userspace
1809 * @vma: user vma to map to
1810 * @start: start of area
1811 * @len: size of area
1812 *
1813 * This is a simplified io_remap_pfn_range() for common driver use. The
1814 * driver just needs to give us the physical memory range to be mapped,
1815 * we'll figure out the rest from the vma information.
1816 *
1817 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1818 * whatever write-combining details or similar.
1819 */
1820int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1821{
1822 unsigned long vm_len, pfn, pages;
1823
1824 /* Check that the physical memory area passed in looks valid */
1825 if (start + len < start)
1826 return -EINVAL;
1827 /*
1828 * You *really* shouldn't map things that aren't page-aligned,
1829 * but we've historically allowed it because IO memory might
1830 * just have smaller alignment.
1831 */
1832 len += start & ~PAGE_MASK;
1833 pfn = start >> PAGE_SHIFT;
1834 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1835 if (pfn + pages < pfn)
1836 return -EINVAL;
1837
1838 /* We start the mapping 'vm_pgoff' pages into the area */
1839 if (vma->vm_pgoff > pages)
1840 return -EINVAL;
1841 pfn += vma->vm_pgoff;
1842 pages -= vma->vm_pgoff;
1843
1844 /* Can we fit all of the mapping? */
1845 vm_len = vma->vm_end - vma->vm_start;
1846 if (vm_len >> PAGE_SHIFT > pages)
1847 return -EINVAL;
1848
1849 /* Ok, let it rip */
1850 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1851}
1852EXPORT_SYMBOL(vm_iomap_memory);
1853
aee16b3c
JF
1854static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1855 unsigned long addr, unsigned long end,
1856 pte_fn_t fn, void *data)
1857{
1858 pte_t *pte;
1859 int err;
2f569afd 1860 pgtable_t token;
94909914 1861 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1862
1863 pte = (mm == &init_mm) ?
1864 pte_alloc_kernel(pmd, addr) :
1865 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1866 if (!pte)
1867 return -ENOMEM;
1868
1869 BUG_ON(pmd_huge(*pmd));
1870
38e0edb1
JF
1871 arch_enter_lazy_mmu_mode();
1872
2f569afd 1873 token = pmd_pgtable(*pmd);
aee16b3c
JF
1874
1875 do {
c36987e2 1876 err = fn(pte++, token, addr, data);
aee16b3c
JF
1877 if (err)
1878 break;
c36987e2 1879 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1880
38e0edb1
JF
1881 arch_leave_lazy_mmu_mode();
1882
aee16b3c
JF
1883 if (mm != &init_mm)
1884 pte_unmap_unlock(pte-1, ptl);
1885 return err;
1886}
1887
1888static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1889 unsigned long addr, unsigned long end,
1890 pte_fn_t fn, void *data)
1891{
1892 pmd_t *pmd;
1893 unsigned long next;
1894 int err;
1895
ceb86879
AK
1896 BUG_ON(pud_huge(*pud));
1897
aee16b3c
JF
1898 pmd = pmd_alloc(mm, pud, addr);
1899 if (!pmd)
1900 return -ENOMEM;
1901 do {
1902 next = pmd_addr_end(addr, end);
1903 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1904 if (err)
1905 break;
1906 } while (pmd++, addr = next, addr != end);
1907 return err;
1908}
1909
1910static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1911 unsigned long addr, unsigned long end,
1912 pte_fn_t fn, void *data)
1913{
1914 pud_t *pud;
1915 unsigned long next;
1916 int err;
1917
1918 pud = pud_alloc(mm, pgd, addr);
1919 if (!pud)
1920 return -ENOMEM;
1921 do {
1922 next = pud_addr_end(addr, end);
1923 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1924 if (err)
1925 break;
1926 } while (pud++, addr = next, addr != end);
1927 return err;
1928}
1929
1930/*
1931 * Scan a region of virtual memory, filling in page tables as necessary
1932 * and calling a provided function on each leaf page table.
1933 */
1934int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1935 unsigned long size, pte_fn_t fn, void *data)
1936{
1937 pgd_t *pgd;
1938 unsigned long next;
57250a5b 1939 unsigned long end = addr + size;
aee16b3c
JF
1940 int err;
1941
9cb65bc3
MP
1942 if (WARN_ON(addr >= end))
1943 return -EINVAL;
1944
aee16b3c
JF
1945 pgd = pgd_offset(mm, addr);
1946 do {
1947 next = pgd_addr_end(addr, end);
1948 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1949 if (err)
1950 break;
1951 } while (pgd++, addr = next, addr != end);
57250a5b 1952
aee16b3c
JF
1953 return err;
1954}
1955EXPORT_SYMBOL_GPL(apply_to_page_range);
1956
8f4e2101 1957/*
9b4bdd2f
KS
1958 * handle_pte_fault chooses page fault handler according to an entry which was
1959 * read non-atomically. Before making any commitment, on those architectures
1960 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1961 * parts, do_swap_page must check under lock before unmapping the pte and
1962 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 1963 * and do_anonymous_page can safely check later on).
8f4e2101 1964 */
4c21e2f2 1965static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1966 pte_t *page_table, pte_t orig_pte)
1967{
1968 int same = 1;
1969#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1970 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1971 spinlock_t *ptl = pte_lockptr(mm, pmd);
1972 spin_lock(ptl);
8f4e2101 1973 same = pte_same(*page_table, orig_pte);
4c21e2f2 1974 spin_unlock(ptl);
8f4e2101
HD
1975 }
1976#endif
1977 pte_unmap(page_table);
1978 return same;
1979}
1980
9de455b2 1981static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1982{
0abdd7a8
DW
1983 debug_dma_assert_idle(src);
1984
6aab341e
LT
1985 /*
1986 * If the source page was a PFN mapping, we don't have
1987 * a "struct page" for it. We do a best-effort copy by
1988 * just copying from the original user address. If that
1989 * fails, we just zero-fill it. Live with it.
1990 */
1991 if (unlikely(!src)) {
9b04c5fe 1992 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1993 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1994
1995 /*
1996 * This really shouldn't fail, because the page is there
1997 * in the page tables. But it might just be unreadable,
1998 * in which case we just give up and fill the result with
1999 * zeroes.
2000 */
2001 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2002 clear_page(kaddr);
9b04c5fe 2003 kunmap_atomic(kaddr);
c4ec7b0d 2004 flush_dcache_page(dst);
0ed361de
NP
2005 } else
2006 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2007}
2008
c20cd45e
MH
2009static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2010{
2011 struct file *vm_file = vma->vm_file;
2012
2013 if (vm_file)
2014 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2015
2016 /*
2017 * Special mappings (e.g. VDSO) do not have any file so fake
2018 * a default GFP_KERNEL for them.
2019 */
2020 return GFP_KERNEL;
2021}
2022
fb09a464
KS
2023/*
2024 * Notify the address space that the page is about to become writable so that
2025 * it can prohibit this or wait for the page to get into an appropriate state.
2026 *
2027 * We do this without the lock held, so that it can sleep if it needs to.
2028 */
2029static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2030 unsigned long address)
2031{
2032 struct vm_fault vmf;
2033 int ret;
2034
2035 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2036 vmf.pgoff = page->index;
2037 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c20cd45e 2038 vmf.gfp_mask = __get_fault_gfp_mask(vma);
fb09a464 2039 vmf.page = page;
2e4cdab0 2040 vmf.cow_page = NULL;
fb09a464
KS
2041
2042 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2043 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2044 return ret;
2045 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2046 lock_page(page);
2047 if (!page->mapping) {
2048 unlock_page(page);
2049 return 0; /* retry */
2050 }
2051 ret |= VM_FAULT_LOCKED;
2052 } else
2053 VM_BUG_ON_PAGE(!PageLocked(page), page);
2054 return ret;
2055}
2056
4e047f89
SR
2057/*
2058 * Handle write page faults for pages that can be reused in the current vma
2059 *
2060 * This can happen either due to the mapping being with the VM_SHARED flag,
2061 * or due to us being the last reference standing to the page. In either
2062 * case, all we need to do here is to mark the page as writable and update
2063 * any related book-keeping.
2064 */
2065static inline int wp_page_reuse(struct mm_struct *mm,
2066 struct vm_area_struct *vma, unsigned long address,
2067 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2068 struct page *page, int page_mkwrite,
2069 int dirty_shared)
2070 __releases(ptl)
2071{
2072 pte_t entry;
2073 /*
2074 * Clear the pages cpupid information as the existing
2075 * information potentially belongs to a now completely
2076 * unrelated process.
2077 */
2078 if (page)
2079 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2080
2081 flush_cache_page(vma, address, pte_pfn(orig_pte));
2082 entry = pte_mkyoung(orig_pte);
2083 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2084 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2085 update_mmu_cache(vma, address, page_table);
2086 pte_unmap_unlock(page_table, ptl);
2087
2088 if (dirty_shared) {
2089 struct address_space *mapping;
2090 int dirtied;
2091
2092 if (!page_mkwrite)
2093 lock_page(page);
2094
2095 dirtied = set_page_dirty(page);
2096 VM_BUG_ON_PAGE(PageAnon(page), page);
2097 mapping = page->mapping;
2098 unlock_page(page);
09cbfeaf 2099 put_page(page);
4e047f89
SR
2100
2101 if ((dirtied || page_mkwrite) && mapping) {
2102 /*
2103 * Some device drivers do not set page.mapping
2104 * but still dirty their pages
2105 */
2106 balance_dirty_pages_ratelimited(mapping);
2107 }
2108
2109 if (!page_mkwrite)
2110 file_update_time(vma->vm_file);
2111 }
2112
2113 return VM_FAULT_WRITE;
2114}
2115
2f38ab2c
SR
2116/*
2117 * Handle the case of a page which we actually need to copy to a new page.
2118 *
2119 * Called with mmap_sem locked and the old page referenced, but
2120 * without the ptl held.
2121 *
2122 * High level logic flow:
2123 *
2124 * - Allocate a page, copy the content of the old page to the new one.
2125 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2126 * - Take the PTL. If the pte changed, bail out and release the allocated page
2127 * - If the pte is still the way we remember it, update the page table and all
2128 * relevant references. This includes dropping the reference the page-table
2129 * held to the old page, as well as updating the rmap.
2130 * - In any case, unlock the PTL and drop the reference we took to the old page.
2131 */
2132static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2133 unsigned long address, pte_t *page_table, pmd_t *pmd,
2134 pte_t orig_pte, struct page *old_page)
2135{
2136 struct page *new_page = NULL;
2137 spinlock_t *ptl = NULL;
2138 pte_t entry;
2139 int page_copied = 0;
2140 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2141 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2142 struct mem_cgroup *memcg;
2143
2144 if (unlikely(anon_vma_prepare(vma)))
2145 goto oom;
2146
2147 if (is_zero_pfn(pte_pfn(orig_pte))) {
2148 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2149 if (!new_page)
2150 goto oom;
2151 } else {
2152 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2153 if (!new_page)
2154 goto oom;
2155 cow_user_page(new_page, old_page, address, vma);
2156 }
2f38ab2c 2157
f627c2f5 2158 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2159 goto oom_free_new;
2160
eb3c24f3
MG
2161 __SetPageUptodate(new_page);
2162
2f38ab2c
SR
2163 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2164
2165 /*
2166 * Re-check the pte - we dropped the lock
2167 */
2168 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2169 if (likely(pte_same(*page_table, orig_pte))) {
2170 if (old_page) {
2171 if (!PageAnon(old_page)) {
eca56ff9
JM
2172 dec_mm_counter_fast(mm,
2173 mm_counter_file(old_page));
2f38ab2c
SR
2174 inc_mm_counter_fast(mm, MM_ANONPAGES);
2175 }
2176 } else {
2177 inc_mm_counter_fast(mm, MM_ANONPAGES);
2178 }
2179 flush_cache_page(vma, address, pte_pfn(orig_pte));
2180 entry = mk_pte(new_page, vma->vm_page_prot);
2181 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2182 /*
2183 * Clear the pte entry and flush it first, before updating the
2184 * pte with the new entry. This will avoid a race condition
2185 * seen in the presence of one thread doing SMC and another
2186 * thread doing COW.
2187 */
2188 ptep_clear_flush_notify(vma, address, page_table);
d281ee61 2189 page_add_new_anon_rmap(new_page, vma, address, false);
f627c2f5 2190 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2191 lru_cache_add_active_or_unevictable(new_page, vma);
2192 /*
2193 * We call the notify macro here because, when using secondary
2194 * mmu page tables (such as kvm shadow page tables), we want the
2195 * new page to be mapped directly into the secondary page table.
2196 */
2197 set_pte_at_notify(mm, address, page_table, entry);
2198 update_mmu_cache(vma, address, page_table);
2199 if (old_page) {
2200 /*
2201 * Only after switching the pte to the new page may
2202 * we remove the mapcount here. Otherwise another
2203 * process may come and find the rmap count decremented
2204 * before the pte is switched to the new page, and
2205 * "reuse" the old page writing into it while our pte
2206 * here still points into it and can be read by other
2207 * threads.
2208 *
2209 * The critical issue is to order this
2210 * page_remove_rmap with the ptp_clear_flush above.
2211 * Those stores are ordered by (if nothing else,)
2212 * the barrier present in the atomic_add_negative
2213 * in page_remove_rmap.
2214 *
2215 * Then the TLB flush in ptep_clear_flush ensures that
2216 * no process can access the old page before the
2217 * decremented mapcount is visible. And the old page
2218 * cannot be reused until after the decremented
2219 * mapcount is visible. So transitively, TLBs to
2220 * old page will be flushed before it can be reused.
2221 */
d281ee61 2222 page_remove_rmap(old_page, false);
2f38ab2c
SR
2223 }
2224
2225 /* Free the old page.. */
2226 new_page = old_page;
2227 page_copied = 1;
2228 } else {
f627c2f5 2229 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2230 }
2231
2232 if (new_page)
09cbfeaf 2233 put_page(new_page);
2f38ab2c
SR
2234
2235 pte_unmap_unlock(page_table, ptl);
2236 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2237 if (old_page) {
2238 /*
2239 * Don't let another task, with possibly unlocked vma,
2240 * keep the mlocked page.
2241 */
2242 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2243 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2244 if (PageMlocked(old_page))
2245 munlock_vma_page(old_page);
2f38ab2c
SR
2246 unlock_page(old_page);
2247 }
09cbfeaf 2248 put_page(old_page);
2f38ab2c
SR
2249 }
2250 return page_copied ? VM_FAULT_WRITE : 0;
2251oom_free_new:
09cbfeaf 2252 put_page(new_page);
2f38ab2c
SR
2253oom:
2254 if (old_page)
09cbfeaf 2255 put_page(old_page);
2f38ab2c
SR
2256 return VM_FAULT_OOM;
2257}
2258
dd906184
BH
2259/*
2260 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2261 * mapping
2262 */
2263static int wp_pfn_shared(struct mm_struct *mm,
2264 struct vm_area_struct *vma, unsigned long address,
2265 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2266 pmd_t *pmd)
2267{
2268 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2269 struct vm_fault vmf = {
2270 .page = NULL,
2271 .pgoff = linear_page_index(vma, address),
2272 .virtual_address = (void __user *)(address & PAGE_MASK),
2273 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2274 };
2275 int ret;
2276
2277 pte_unmap_unlock(page_table, ptl);
2278 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2279 if (ret & VM_FAULT_ERROR)
2280 return ret;
2281 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2282 /*
2283 * We might have raced with another page fault while we
2284 * released the pte_offset_map_lock.
2285 */
2286 if (!pte_same(*page_table, orig_pte)) {
2287 pte_unmap_unlock(page_table, ptl);
2288 return 0;
2289 }
2290 }
2291 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2292 NULL, 0, 0);
2293}
2294
93e478d4
SR
2295static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2296 unsigned long address, pte_t *page_table,
2297 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2298 struct page *old_page)
2299 __releases(ptl)
2300{
2301 int page_mkwrite = 0;
2302
09cbfeaf 2303 get_page(old_page);
93e478d4 2304
93e478d4
SR
2305 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2306 int tmp;
2307
2308 pte_unmap_unlock(page_table, ptl);
2309 tmp = do_page_mkwrite(vma, old_page, address);
2310 if (unlikely(!tmp || (tmp &
2311 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
09cbfeaf 2312 put_page(old_page);
93e478d4
SR
2313 return tmp;
2314 }
2315 /*
2316 * Since we dropped the lock we need to revalidate
2317 * the PTE as someone else may have changed it. If
2318 * they did, we just return, as we can count on the
2319 * MMU to tell us if they didn't also make it writable.
2320 */
2321 page_table = pte_offset_map_lock(mm, pmd, address,
2322 &ptl);
2323 if (!pte_same(*page_table, orig_pte)) {
2324 unlock_page(old_page);
2325 pte_unmap_unlock(page_table, ptl);
09cbfeaf 2326 put_page(old_page);
93e478d4
SR
2327 return 0;
2328 }
2329 page_mkwrite = 1;
2330 }
2331
2332 return wp_page_reuse(mm, vma, address, page_table, ptl,
2333 orig_pte, old_page, page_mkwrite, 1);
2334}
2335
1da177e4
LT
2336/*
2337 * This routine handles present pages, when users try to write
2338 * to a shared page. It is done by copying the page to a new address
2339 * and decrementing the shared-page counter for the old page.
2340 *
1da177e4
LT
2341 * Note that this routine assumes that the protection checks have been
2342 * done by the caller (the low-level page fault routine in most cases).
2343 * Thus we can safely just mark it writable once we've done any necessary
2344 * COW.
2345 *
2346 * We also mark the page dirty at this point even though the page will
2347 * change only once the write actually happens. This avoids a few races,
2348 * and potentially makes it more efficient.
2349 *
8f4e2101
HD
2350 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2351 * but allow concurrent faults), with pte both mapped and locked.
2352 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2353 */
65500d23
HD
2354static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2355 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2356 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2357 __releases(ptl)
1da177e4 2358{
2f38ab2c 2359 struct page *old_page;
1da177e4 2360
6aab341e 2361 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2362 if (!old_page) {
2363 /*
64e45507
PF
2364 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2365 * VM_PFNMAP VMA.
251b97f5
PZ
2366 *
2367 * We should not cow pages in a shared writeable mapping.
dd906184 2368 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2369 */
2370 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2371 (VM_WRITE|VM_SHARED))
dd906184
BH
2372 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2373 orig_pte, pmd);
2f38ab2c
SR
2374
2375 pte_unmap_unlock(page_table, ptl);
2376 return wp_page_copy(mm, vma, address, page_table, pmd,
2377 orig_pte, old_page);
251b97f5 2378 }
1da177e4 2379
d08b3851 2380 /*
ee6a6457
PZ
2381 * Take out anonymous pages first, anonymous shared vmas are
2382 * not dirty accountable.
d08b3851 2383 */
9a840895 2384 if (PageAnon(old_page) && !PageKsm(old_page)) {
6d0a07ed 2385 int total_mapcount;
ab967d86 2386 if (!trylock_page(old_page)) {
09cbfeaf 2387 get_page(old_page);
ab967d86
HD
2388 pte_unmap_unlock(page_table, ptl);
2389 lock_page(old_page);
2390 page_table = pte_offset_map_lock(mm, pmd, address,
2391 &ptl);
2392 if (!pte_same(*page_table, orig_pte)) {
2393 unlock_page(old_page);
28766805 2394 pte_unmap_unlock(page_table, ptl);
09cbfeaf 2395 put_page(old_page);
28766805 2396 return 0;
ab967d86 2397 }
09cbfeaf 2398 put_page(old_page);
ee6a6457 2399 }
6d0a07ed
AA
2400 if (reuse_swap_page(old_page, &total_mapcount)) {
2401 if (total_mapcount == 1) {
2402 /*
2403 * The page is all ours. Move it to
2404 * our anon_vma so the rmap code will
2405 * not search our parent or siblings.
2406 * Protected against the rmap code by
2407 * the page lock.
2408 */
5a49973d 2409 page_move_anon_rmap(old_page, vma);
6d0a07ed 2410 }
b009c024 2411 unlock_page(old_page);
4e047f89
SR
2412 return wp_page_reuse(mm, vma, address, page_table, ptl,
2413 orig_pte, old_page, 0, 0);
b009c024 2414 }
ab967d86 2415 unlock_page(old_page);
ee6a6457 2416 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2417 (VM_WRITE|VM_SHARED))) {
93e478d4
SR
2418 return wp_page_shared(mm, vma, address, page_table, pmd,
2419 ptl, orig_pte, old_page);
1da177e4 2420 }
1da177e4
LT
2421
2422 /*
2423 * Ok, we need to copy. Oh, well..
2424 */
09cbfeaf 2425 get_page(old_page);
28766805 2426
8f4e2101 2427 pte_unmap_unlock(page_table, ptl);
2f38ab2c
SR
2428 return wp_page_copy(mm, vma, address, page_table, pmd,
2429 orig_pte, old_page);
1da177e4
LT
2430}
2431
97a89413 2432static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2433 unsigned long start_addr, unsigned long end_addr,
2434 struct zap_details *details)
2435{
f5cc4eef 2436 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2437}
2438
6b2dbba8 2439static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2440 struct zap_details *details)
2441{
2442 struct vm_area_struct *vma;
1da177e4
LT
2443 pgoff_t vba, vea, zba, zea;
2444
6b2dbba8 2445 vma_interval_tree_foreach(vma, root,
1da177e4 2446 details->first_index, details->last_index) {
1da177e4
LT
2447
2448 vba = vma->vm_pgoff;
d6e93217 2449 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2450 zba = details->first_index;
2451 if (zba < vba)
2452 zba = vba;
2453 zea = details->last_index;
2454 if (zea > vea)
2455 zea = vea;
2456
97a89413 2457 unmap_mapping_range_vma(vma,
1da177e4
LT
2458 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2459 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2460 details);
1da177e4
LT
2461 }
2462}
2463
1da177e4 2464/**
8a5f14a2
KS
2465 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2466 * address_space corresponding to the specified page range in the underlying
2467 * file.
2468 *
3d41088f 2469 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2470 * @holebegin: byte in first page to unmap, relative to the start of
2471 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2472 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2473 * must keep the partial page. In contrast, we must get rid of
2474 * partial pages.
2475 * @holelen: size of prospective hole in bytes. This will be rounded
2476 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2477 * end of the file.
2478 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2479 * but 0 when invalidating pagecache, don't throw away private data.
2480 */
2481void unmap_mapping_range(struct address_space *mapping,
2482 loff_t const holebegin, loff_t const holelen, int even_cows)
2483{
aac45363 2484 struct zap_details details = { };
1da177e4
LT
2485 pgoff_t hba = holebegin >> PAGE_SHIFT;
2486 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2487
2488 /* Check for overflow. */
2489 if (sizeof(holelen) > sizeof(hlen)) {
2490 long long holeend =
2491 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2492 if (holeend & ~(long long)ULONG_MAX)
2493 hlen = ULONG_MAX - hba + 1;
2494 }
2495
2496 details.check_mapping = even_cows? NULL: mapping;
1da177e4
LT
2497 details.first_index = hba;
2498 details.last_index = hba + hlen - 1;
2499 if (details.last_index < details.first_index)
2500 details.last_index = ULONG_MAX;
1da177e4 2501
46c043ed 2502 i_mmap_lock_write(mapping);
6b2dbba8 2503 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2504 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2505 i_mmap_unlock_write(mapping);
1da177e4
LT
2506}
2507EXPORT_SYMBOL(unmap_mapping_range);
2508
1da177e4 2509/*
8f4e2101
HD
2510 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2511 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2512 * We return with pte unmapped and unlocked.
2513 *
2514 * We return with the mmap_sem locked or unlocked in the same cases
2515 * as does filemap_fault().
1da177e4 2516 */
65500d23
HD
2517static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2518 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2519 unsigned int flags, pte_t orig_pte)
1da177e4 2520{
8f4e2101 2521 spinlock_t *ptl;
56f31801 2522 struct page *page, *swapcache;
00501b53 2523 struct mem_cgroup *memcg;
65500d23 2524 swp_entry_t entry;
1da177e4 2525 pte_t pte;
d065bd81 2526 int locked;
ad8c2ee8 2527 int exclusive = 0;
83c54070 2528 int ret = 0;
1da177e4 2529
4c21e2f2 2530 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2531 goto out;
65500d23
HD
2532
2533 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2534 if (unlikely(non_swap_entry(entry))) {
2535 if (is_migration_entry(entry)) {
2536 migration_entry_wait(mm, pmd, address);
2537 } else if (is_hwpoison_entry(entry)) {
2538 ret = VM_FAULT_HWPOISON;
2539 } else {
2540 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2541 ret = VM_FAULT_SIGBUS;
d1737fdb 2542 }
0697212a
CL
2543 goto out;
2544 }
0ff92245 2545 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2546 page = lookup_swap_cache(entry);
2547 if (!page) {
02098fea
HD
2548 page = swapin_readahead(entry,
2549 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2550 if (!page) {
2551 /*
8f4e2101
HD
2552 * Back out if somebody else faulted in this pte
2553 * while we released the pte lock.
1da177e4 2554 */
8f4e2101 2555 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2556 if (likely(pte_same(*page_table, orig_pte)))
2557 ret = VM_FAULT_OOM;
0ff92245 2558 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2559 goto unlock;
1da177e4
LT
2560 }
2561
2562 /* Had to read the page from swap area: Major fault */
2563 ret = VM_FAULT_MAJOR;
f8891e5e 2564 count_vm_event(PGMAJFAULT);
456f998e 2565 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2566 } else if (PageHWPoison(page)) {
71f72525
WF
2567 /*
2568 * hwpoisoned dirty swapcache pages are kept for killing
2569 * owner processes (which may be unknown at hwpoison time)
2570 */
d1737fdb
AK
2571 ret = VM_FAULT_HWPOISON;
2572 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2573 swapcache = page;
4779cb31 2574 goto out_release;
1da177e4
LT
2575 }
2576
56f31801 2577 swapcache = page;
d065bd81 2578 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2579
073e587e 2580 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2581 if (!locked) {
2582 ret |= VM_FAULT_RETRY;
2583 goto out_release;
2584 }
073e587e 2585
4969c119 2586 /*
31c4a3d3
HD
2587 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2588 * release the swapcache from under us. The page pin, and pte_same
2589 * test below, are not enough to exclude that. Even if it is still
2590 * swapcache, we need to check that the page's swap has not changed.
4969c119 2591 */
31c4a3d3 2592 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2593 goto out_page;
2594
cbf86cfe
HD
2595 page = ksm_might_need_to_copy(page, vma, address);
2596 if (unlikely(!page)) {
2597 ret = VM_FAULT_OOM;
2598 page = swapcache;
cbf86cfe 2599 goto out_page;
5ad64688
HD
2600 }
2601
f627c2f5 2602 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
8a9f3ccd 2603 ret = VM_FAULT_OOM;
bc43f75c 2604 goto out_page;
8a9f3ccd
BS
2605 }
2606
1da177e4 2607 /*
8f4e2101 2608 * Back out if somebody else already faulted in this pte.
1da177e4 2609 */
8f4e2101 2610 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2611 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2612 goto out_nomap;
b8107480
KK
2613
2614 if (unlikely(!PageUptodate(page))) {
2615 ret = VM_FAULT_SIGBUS;
2616 goto out_nomap;
1da177e4
LT
2617 }
2618
8c7c6e34
KH
2619 /*
2620 * The page isn't present yet, go ahead with the fault.
2621 *
2622 * Be careful about the sequence of operations here.
2623 * To get its accounting right, reuse_swap_page() must be called
2624 * while the page is counted on swap but not yet in mapcount i.e.
2625 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2626 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2627 */
1da177e4 2628
34e55232 2629 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2630 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2631 pte = mk_pte(page, vma->vm_page_prot);
6d0a07ed 2632 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2633 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2634 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2635 ret |= VM_FAULT_WRITE;
d281ee61 2636 exclusive = RMAP_EXCLUSIVE;
1da177e4 2637 }
1da177e4 2638 flush_icache_page(vma, page);
179ef71c
CG
2639 if (pte_swp_soft_dirty(orig_pte))
2640 pte = pte_mksoft_dirty(pte);
1da177e4 2641 set_pte_at(mm, address, page_table, pte);
00501b53 2642 if (page == swapcache) {
af34770e 2643 do_page_add_anon_rmap(page, vma, address, exclusive);
f627c2f5 2644 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 2645 } else { /* ksm created a completely new copy */
d281ee61 2646 page_add_new_anon_rmap(page, vma, address, false);
f627c2f5 2647 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2648 lru_cache_add_active_or_unevictable(page, vma);
2649 }
1da177e4 2650
c475a8ab 2651 swap_free(entry);
5ccc5aba
VD
2652 if (mem_cgroup_swap_full(page) ||
2653 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2654 try_to_free_swap(page);
c475a8ab 2655 unlock_page(page);
56f31801 2656 if (page != swapcache) {
4969c119
AA
2657 /*
2658 * Hold the lock to avoid the swap entry to be reused
2659 * until we take the PT lock for the pte_same() check
2660 * (to avoid false positives from pte_same). For
2661 * further safety release the lock after the swap_free
2662 * so that the swap count won't change under a
2663 * parallel locked swapcache.
2664 */
2665 unlock_page(swapcache);
09cbfeaf 2666 put_page(swapcache);
4969c119 2667 }
c475a8ab 2668
30c9f3a9 2669 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2670 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2671 if (ret & VM_FAULT_ERROR)
2672 ret &= VM_FAULT_ERROR;
1da177e4
LT
2673 goto out;
2674 }
2675
2676 /* No need to invalidate - it was non-present before */
4b3073e1 2677 update_mmu_cache(vma, address, page_table);
65500d23 2678unlock:
8f4e2101 2679 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2680out:
2681 return ret;
b8107480 2682out_nomap:
f627c2f5 2683 mem_cgroup_cancel_charge(page, memcg, false);
8f4e2101 2684 pte_unmap_unlock(page_table, ptl);
bc43f75c 2685out_page:
b8107480 2686 unlock_page(page);
4779cb31 2687out_release:
09cbfeaf 2688 put_page(page);
56f31801 2689 if (page != swapcache) {
4969c119 2690 unlock_page(swapcache);
09cbfeaf 2691 put_page(swapcache);
4969c119 2692 }
65500d23 2693 return ret;
1da177e4
LT
2694}
2695
320b2b8d 2696/*
8ca3eb08
TL
2697 * This is like a special single-page "expand_{down|up}wards()",
2698 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2699 * doesn't hit another vma.
320b2b8d
LT
2700 */
2701static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2702{
2703 address &= PAGE_MASK;
2704 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2705 struct vm_area_struct *prev = vma->vm_prev;
2706
2707 /*
2708 * Is there a mapping abutting this one below?
2709 *
2710 * That's only ok if it's the same stack mapping
2711 * that has gotten split..
2712 */
2713 if (prev && prev->vm_end == address)
2714 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2715
fee7e49d 2716 return expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2717 }
8ca3eb08
TL
2718 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2719 struct vm_area_struct *next = vma->vm_next;
2720
2721 /* As VM_GROWSDOWN but s/below/above/ */
2722 if (next && next->vm_start == address + PAGE_SIZE)
2723 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2724
fee7e49d 2725 return expand_upwards(vma, address + PAGE_SIZE);
8ca3eb08 2726 }
320b2b8d
LT
2727 return 0;
2728}
2729
1da177e4 2730/*
8f4e2101
HD
2731 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2732 * but allow concurrent faults), and pte mapped but not yet locked.
2733 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2734 */
65500d23
HD
2735static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2736 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2737 unsigned int flags)
1da177e4 2738{
00501b53 2739 struct mem_cgroup *memcg;
8f4e2101
HD
2740 struct page *page;
2741 spinlock_t *ptl;
1da177e4 2742 pte_t entry;
1da177e4 2743
11ac5524
LT
2744 pte_unmap(page_table);
2745
6b7339f4
KS
2746 /* File mapping without ->vm_ops ? */
2747 if (vma->vm_flags & VM_SHARED)
2748 return VM_FAULT_SIGBUS;
2749
11ac5524
LT
2750 /* Check if we need to add a guard page to the stack */
2751 if (check_stack_guard_page(vma, address) < 0)
9c145c56 2752 return VM_FAULT_SIGSEGV;
320b2b8d 2753
11ac5524 2754 /* Use the zero-page for reads */
593befa6 2755 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
62eede62
HD
2756 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2757 vma->vm_page_prot));
11ac5524 2758 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2759 if (!pte_none(*page_table))
2760 goto unlock;
6b251fc9
AA
2761 /* Deliver the page fault to userland, check inside PT lock */
2762 if (userfaultfd_missing(vma)) {
2763 pte_unmap_unlock(page_table, ptl);
2764 return handle_userfault(vma, address, flags,
2765 VM_UFFD_MISSING);
2766 }
a13ea5b7
HD
2767 goto setpte;
2768 }
2769
557ed1fa 2770 /* Allocate our own private page. */
557ed1fa
NP
2771 if (unlikely(anon_vma_prepare(vma)))
2772 goto oom;
2773 page = alloc_zeroed_user_highpage_movable(vma, address);
2774 if (!page)
2775 goto oom;
eb3c24f3 2776
f627c2f5 2777 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2778 goto oom_free_page;
2779
52f37629
MK
2780 /*
2781 * The memory barrier inside __SetPageUptodate makes sure that
2782 * preceeding stores to the page contents become visible before
2783 * the set_pte_at() write.
2784 */
0ed361de 2785 __SetPageUptodate(page);
8f4e2101 2786
557ed1fa 2787 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2788 if (vma->vm_flags & VM_WRITE)
2789 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2790
557ed1fa 2791 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2792 if (!pte_none(*page_table))
557ed1fa 2793 goto release;
9ba69294 2794
6b251fc9
AA
2795 /* Deliver the page fault to userland, check inside PT lock */
2796 if (userfaultfd_missing(vma)) {
2797 pte_unmap_unlock(page_table, ptl);
f627c2f5 2798 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2799 put_page(page);
6b251fc9
AA
2800 return handle_userfault(vma, address, flags,
2801 VM_UFFD_MISSING);
2802 }
2803
34e55232 2804 inc_mm_counter_fast(mm, MM_ANONPAGES);
d281ee61 2805 page_add_new_anon_rmap(page, vma, address, false);
f627c2f5 2806 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2807 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2808setpte:
65500d23 2809 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2810
2811 /* No need to invalidate - it was non-present before */
4b3073e1 2812 update_mmu_cache(vma, address, page_table);
65500d23 2813unlock:
8f4e2101 2814 pte_unmap_unlock(page_table, ptl);
83c54070 2815 return 0;
8f4e2101 2816release:
f627c2f5 2817 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2818 put_page(page);
8f4e2101 2819 goto unlock;
8a9f3ccd 2820oom_free_page:
09cbfeaf 2821 put_page(page);
65500d23 2822oom:
1da177e4
LT
2823 return VM_FAULT_OOM;
2824}
2825
9a95f3cf
PC
2826/*
2827 * The mmap_sem must have been held on entry, and may have been
2828 * released depending on flags and vma->vm_ops->fault() return value.
2829 * See filemap_fault() and __lock_page_retry().
2830 */
7eae74af 2831static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2e4cdab0 2832 pgoff_t pgoff, unsigned int flags,
bc2466e4
JK
2833 struct page *cow_page, struct page **page,
2834 void **entry)
7eae74af
KS
2835{
2836 struct vm_fault vmf;
2837 int ret;
2838
2839 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2840 vmf.pgoff = pgoff;
2841 vmf.flags = flags;
2842 vmf.page = NULL;
c20cd45e 2843 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2e4cdab0 2844 vmf.cow_page = cow_page;
7eae74af
KS
2845
2846 ret = vma->vm_ops->fault(vma, &vmf);
2847 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2848 return ret;
bc2466e4
JK
2849 if (ret & VM_FAULT_DAX_LOCKED) {
2850 *entry = vmf.entry;
2851 return ret;
2852 }
7eae74af
KS
2853
2854 if (unlikely(PageHWPoison(vmf.page))) {
2855 if (ret & VM_FAULT_LOCKED)
2856 unlock_page(vmf.page);
09cbfeaf 2857 put_page(vmf.page);
7eae74af
KS
2858 return VM_FAULT_HWPOISON;
2859 }
2860
2861 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2862 lock_page(vmf.page);
2863 else
2864 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2865
2866 *page = vmf.page;
2867 return ret;
2868}
2869
8c6e50b0
KS
2870/**
2871 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2872 *
2873 * @vma: virtual memory area
2874 * @address: user virtual address
2875 * @page: page to map
2876 * @pte: pointer to target page table entry
2877 * @write: true, if new entry is writable
2878 * @anon: true, if it's anonymous page
2879 *
2880 * Caller must hold page table lock relevant for @pte.
2881 *
2882 * Target users are page handler itself and implementations of
2883 * vm_ops->map_pages.
2884 */
2885void do_set_pte(struct vm_area_struct *vma, unsigned long address,
315d09bf 2886 struct page *page, pte_t *pte, bool write, bool anon)
3bb97794
KS
2887{
2888 pte_t entry;
2889
2890 flush_icache_page(vma, page);
2891 entry = mk_pte(page, vma->vm_page_prot);
2892 if (write)
2893 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3bb97794
KS
2894 if (anon) {
2895 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
d281ee61 2896 page_add_new_anon_rmap(page, vma, address, false);
3bb97794 2897 } else {
eca56ff9 2898 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3bb97794
KS
2899 page_add_file_rmap(page);
2900 }
2901 set_pte_at(vma->vm_mm, address, pte, entry);
2902
2903 /* no need to invalidate: a not-present page won't be cached */
2904 update_mmu_cache(vma, address, pte);
2905}
2906
3a91053a
KS
2907static unsigned long fault_around_bytes __read_mostly =
2908 rounddown_pow_of_two(65536);
a9b0f861 2909
a9b0f861
KS
2910#ifdef CONFIG_DEBUG_FS
2911static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2912{
a9b0f861 2913 *val = fault_around_bytes;
1592eef0
KS
2914 return 0;
2915}
2916
b4903d6e
AR
2917/*
2918 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2919 * rounded down to nearest page order. It's what do_fault_around() expects to
2920 * see.
2921 */
a9b0f861 2922static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2923{
a9b0f861 2924 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2925 return -EINVAL;
b4903d6e
AR
2926 if (val > PAGE_SIZE)
2927 fault_around_bytes = rounddown_pow_of_two(val);
2928 else
2929 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2930 return 0;
2931}
a9b0f861
KS
2932DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2933 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2934
2935static int __init fault_around_debugfs(void)
2936{
2937 void *ret;
2938
a9b0f861
KS
2939 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2940 &fault_around_bytes_fops);
1592eef0 2941 if (!ret)
a9b0f861 2942 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2943 return 0;
2944}
2945late_initcall(fault_around_debugfs);
1592eef0 2946#endif
8c6e50b0 2947
1fdb412b
KS
2948/*
2949 * do_fault_around() tries to map few pages around the fault address. The hope
2950 * is that the pages will be needed soon and this will lower the number of
2951 * faults to handle.
2952 *
2953 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2954 * not ready to be mapped: not up-to-date, locked, etc.
2955 *
2956 * This function is called with the page table lock taken. In the split ptlock
2957 * case the page table lock only protects only those entries which belong to
2958 * the page table corresponding to the fault address.
2959 *
2960 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2961 * only once.
2962 *
2963 * fault_around_pages() defines how many pages we'll try to map.
2964 * do_fault_around() expects it to return a power of two less than or equal to
2965 * PTRS_PER_PTE.
2966 *
2967 * The virtual address of the area that we map is naturally aligned to the
2968 * fault_around_pages() value (and therefore to page order). This way it's
2969 * easier to guarantee that we don't cross page table boundaries.
2970 */
8c6e50b0
KS
2971static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2972 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2973{
aecd6f44 2974 unsigned long start_addr, nr_pages, mask;
8c6e50b0
KS
2975 pgoff_t max_pgoff;
2976 struct vm_fault vmf;
2977 int off;
2978
4db0c3c2 2979 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
2980 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2981
2982 start_addr = max(address & mask, vma->vm_start);
8c6e50b0
KS
2983 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2984 pte -= off;
2985 pgoff -= off;
2986
2987 /*
2988 * max_pgoff is either end of page table or end of vma
850e9c69 2989 * or fault_around_pages() from pgoff, depending what is nearest.
8c6e50b0
KS
2990 */
2991 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2992 PTRS_PER_PTE - 1;
2993 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
aecd6f44 2994 pgoff + nr_pages - 1);
8c6e50b0
KS
2995
2996 /* Check if it makes any sense to call ->map_pages */
2997 while (!pte_none(*pte)) {
2998 if (++pgoff > max_pgoff)
2999 return;
3000 start_addr += PAGE_SIZE;
3001 if (start_addr >= vma->vm_end)
3002 return;
3003 pte++;
3004 }
3005
3006 vmf.virtual_address = (void __user *) start_addr;
3007 vmf.pte = pte;
3008 vmf.pgoff = pgoff;
3009 vmf.max_pgoff = max_pgoff;
3010 vmf.flags = flags;
c20cd45e 3011 vmf.gfp_mask = __get_fault_gfp_mask(vma);
8c6e50b0
KS
3012 vma->vm_ops->map_pages(vma, &vmf);
3013}
3014
e655fb29
KS
3015static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3016 unsigned long address, pmd_t *pmd,
3017 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3018{
3019 struct page *fault_page;
3020 spinlock_t *ptl;
3bb97794 3021 pte_t *pte;
8c6e50b0
KS
3022 int ret = 0;
3023
3024 /*
3025 * Let's call ->map_pages() first and use ->fault() as fallback
3026 * if page by the offset is not ready to be mapped (cold cache or
3027 * something).
3028 */
9b4bdd2f 3029 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
8c6e50b0 3030 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
5c0a85fa 3031 do_fault_around(vma, address, pte, pgoff, flags);
315d09bf 3032 if (!pte_same(*pte, orig_pte))
5c0a85fa 3033 goto unlock_out;
8c6e50b0
KS
3034 pte_unmap_unlock(pte, ptl);
3035 }
e655fb29 3036
bc2466e4 3037 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page, NULL);
e655fb29
KS
3038 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3039 return ret;
3040
3041 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3042 if (unlikely(!pte_same(*pte, orig_pte))) {
3043 pte_unmap_unlock(pte, ptl);
3044 unlock_page(fault_page);
09cbfeaf 3045 put_page(fault_page);
e655fb29
KS
3046 return ret;
3047 }
315d09bf 3048 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 3049 unlock_page(fault_page);
8c6e50b0
KS
3050unlock_out:
3051 pte_unmap_unlock(pte, ptl);
e655fb29
KS
3052 return ret;
3053}
3054
ec47c3b9
KS
3055static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3056 unsigned long address, pmd_t *pmd,
3057 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3058{
3059 struct page *fault_page, *new_page;
bc2466e4 3060 void *fault_entry;
00501b53 3061 struct mem_cgroup *memcg;
ec47c3b9 3062 spinlock_t *ptl;
3bb97794 3063 pte_t *pte;
ec47c3b9
KS
3064 int ret;
3065
3066 if (unlikely(anon_vma_prepare(vma)))
3067 return VM_FAULT_OOM;
3068
3069 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3070 if (!new_page)
3071 return VM_FAULT_OOM;
3072
f627c2f5 3073 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
09cbfeaf 3074 put_page(new_page);
ec47c3b9
KS
3075 return VM_FAULT_OOM;
3076 }
3077
bc2466e4
JK
3078 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page,
3079 &fault_entry);
ec47c3b9
KS
3080 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3081 goto uncharge_out;
3082
bc2466e4 3083 if (!(ret & VM_FAULT_DAX_LOCKED))
2e4cdab0 3084 copy_user_highpage(new_page, fault_page, address, vma);
ec47c3b9
KS
3085 __SetPageUptodate(new_page);
3086
3087 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3088 if (unlikely(!pte_same(*pte, orig_pte))) {
3089 pte_unmap_unlock(pte, ptl);
bc2466e4 3090 if (!(ret & VM_FAULT_DAX_LOCKED)) {
2e4cdab0 3091 unlock_page(fault_page);
09cbfeaf 3092 put_page(fault_page);
2e4cdab0 3093 } else {
bc2466e4
JK
3094 dax_unlock_mapping_entry(vma->vm_file->f_mapping,
3095 pgoff);
2e4cdab0 3096 }
ec47c3b9
KS
3097 goto uncharge_out;
3098 }
315d09bf 3099 do_set_pte(vma, address, new_page, pte, true, true);
f627c2f5 3100 mem_cgroup_commit_charge(new_page, memcg, false, false);
00501b53 3101 lru_cache_add_active_or_unevictable(new_page, vma);
ec47c3b9 3102 pte_unmap_unlock(pte, ptl);
bc2466e4 3103 if (!(ret & VM_FAULT_DAX_LOCKED)) {
2e4cdab0 3104 unlock_page(fault_page);
09cbfeaf 3105 put_page(fault_page);
2e4cdab0 3106 } else {
bc2466e4 3107 dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff);
2e4cdab0 3108 }
ec47c3b9
KS
3109 return ret;
3110uncharge_out:
f627c2f5 3111 mem_cgroup_cancel_charge(new_page, memcg, false);
09cbfeaf 3112 put_page(new_page);
ec47c3b9
KS
3113 return ret;
3114}
3115
f0c6d4d2 3116static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3117 unsigned long address, pmd_t *pmd,
54cb8821 3118 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3119{
f0c6d4d2
KS
3120 struct page *fault_page;
3121 struct address_space *mapping;
8f4e2101 3122 spinlock_t *ptl;
3bb97794 3123 pte_t *pte;
f0c6d4d2 3124 int dirtied = 0;
f0c6d4d2 3125 int ret, tmp;
1d65f86d 3126
bc2466e4 3127 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page, NULL);
7eae74af 3128 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3129 return ret;
1da177e4
LT
3130
3131 /*
f0c6d4d2
KS
3132 * Check if the backing address space wants to know that the page is
3133 * about to become writable
1da177e4 3134 */
fb09a464
KS
3135 if (vma->vm_ops->page_mkwrite) {
3136 unlock_page(fault_page);
3137 tmp = do_page_mkwrite(vma, fault_page, address);
3138 if (unlikely(!tmp ||
3139 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
09cbfeaf 3140 put_page(fault_page);
fb09a464 3141 return tmp;
4294621f 3142 }
fb09a464
KS
3143 }
3144
f0c6d4d2
KS
3145 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3146 if (unlikely(!pte_same(*pte, orig_pte))) {
3147 pte_unmap_unlock(pte, ptl);
3148 unlock_page(fault_page);
09cbfeaf 3149 put_page(fault_page);
f0c6d4d2 3150 return ret;
1da177e4 3151 }
315d09bf 3152 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 3153 pte_unmap_unlock(pte, ptl);
b827e496 3154
f0c6d4d2
KS
3155 if (set_page_dirty(fault_page))
3156 dirtied = 1;
d82fa87d
AM
3157 /*
3158 * Take a local copy of the address_space - page.mapping may be zeroed
3159 * by truncate after unlock_page(). The address_space itself remains
3160 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3161 * release semantics to prevent the compiler from undoing this copying.
3162 */
1c290f64 3163 mapping = page_rmapping(fault_page);
f0c6d4d2
KS
3164 unlock_page(fault_page);
3165 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3166 /*
3167 * Some device drivers do not set page.mapping but still
3168 * dirty their pages
3169 */
3170 balance_dirty_pages_ratelimited(mapping);
d08b3851 3171 }
d00806b1 3172
74ec6751 3173 if (!vma->vm_ops->page_mkwrite)
f0c6d4d2 3174 file_update_time(vma->vm_file);
b827e496 3175
1d65f86d 3176 return ret;
54cb8821 3177}
d00806b1 3178
9a95f3cf
PC
3179/*
3180 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3181 * but allow concurrent faults).
3182 * The mmap_sem may have been released depending on flags and our
3183 * return value. See filemap_fault() and __lock_page_or_retry().
3184 */
9b4bdd2f 3185static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
54cb8821 3186 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3187 unsigned int flags, pte_t orig_pte)
54cb8821 3188{
88193f7c 3189 pgoff_t pgoff = linear_page_index(vma, address);
54cb8821 3190
16abfa08 3191 pte_unmap(page_table);
6b7339f4
KS
3192 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3193 if (!vma->vm_ops->fault)
3194 return VM_FAULT_SIGBUS;
e655fb29
KS
3195 if (!(flags & FAULT_FLAG_WRITE))
3196 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3197 orig_pte);
ec47c3b9
KS
3198 if (!(vma->vm_flags & VM_SHARED))
3199 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3200 orig_pte);
f0c6d4d2 3201 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3202}
3203
b19a9939 3204static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3205 unsigned long addr, int page_nid,
3206 int *flags)
9532fec1
MG
3207{
3208 get_page(page);
3209
3210 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3211 if (page_nid == numa_node_id()) {
9532fec1 3212 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3213 *flags |= TNF_FAULT_LOCAL;
3214 }
9532fec1
MG
3215
3216 return mpol_misplaced(page, vma, addr);
3217}
3218
b19a9939 3219static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3220 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3221{
4daae3b4 3222 struct page *page = NULL;
d10e63f2 3223 spinlock_t *ptl;
8191acbd 3224 int page_nid = -1;
90572890 3225 int last_cpupid;
cbee9f88 3226 int target_nid;
b8593bfd 3227 bool migrated = false;
b191f9b1 3228 bool was_writable = pte_write(pte);
6688cc05 3229 int flags = 0;
d10e63f2 3230
c0e7cad9
MG
3231 /* A PROT_NONE fault should not end up here */
3232 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3233
d10e63f2
MG
3234 /*
3235 * The "pte" at this point cannot be used safely without
3236 * validation through pte_unmap_same(). It's of NUMA type but
3237 * the pfn may be screwed if the read is non atomic.
3238 *
4d942466
MG
3239 * We can safely just do a "set_pte_at()", because the old
3240 * page table entry is not accessible, so there would be no
3241 * concurrent hardware modifications to the PTE.
d10e63f2
MG
3242 */
3243 ptl = pte_lockptr(mm, pmd);
3244 spin_lock(ptl);
4daae3b4
MG
3245 if (unlikely(!pte_same(*ptep, pte))) {
3246 pte_unmap_unlock(ptep, ptl);
3247 goto out;
3248 }
3249
4d942466
MG
3250 /* Make it present again */
3251 pte = pte_modify(pte, vma->vm_page_prot);
3252 pte = pte_mkyoung(pte);
b191f9b1
MG
3253 if (was_writable)
3254 pte = pte_mkwrite(pte);
d10e63f2
MG
3255 set_pte_at(mm, addr, ptep, pte);
3256 update_mmu_cache(vma, addr, ptep);
3257
3258 page = vm_normal_page(vma, addr, pte);
3259 if (!page) {
3260 pte_unmap_unlock(ptep, ptl);
3261 return 0;
3262 }
3263
e81c4802
KS
3264 /* TODO: handle PTE-mapped THP */
3265 if (PageCompound(page)) {
3266 pte_unmap_unlock(ptep, ptl);
3267 return 0;
3268 }
3269
6688cc05 3270 /*
bea66fbd
MG
3271 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3272 * much anyway since they can be in shared cache state. This misses
3273 * the case where a mapping is writable but the process never writes
3274 * to it but pte_write gets cleared during protection updates and
3275 * pte_dirty has unpredictable behaviour between PTE scan updates,
3276 * background writeback, dirty balancing and application behaviour.
6688cc05 3277 */
bea66fbd 3278 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
3279 flags |= TNF_NO_GROUP;
3280
dabe1d99
RR
3281 /*
3282 * Flag if the page is shared between multiple address spaces. This
3283 * is later used when determining whether to group tasks together
3284 */
3285 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3286 flags |= TNF_SHARED;
3287
90572890 3288 last_cpupid = page_cpupid_last(page);
8191acbd 3289 page_nid = page_to_nid(page);
04bb2f94 3290 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3291 pte_unmap_unlock(ptep, ptl);
4daae3b4 3292 if (target_nid == -1) {
4daae3b4
MG
3293 put_page(page);
3294 goto out;
3295 }
3296
3297 /* Migrate to the requested node */
1bc115d8 3298 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3299 if (migrated) {
8191acbd 3300 page_nid = target_nid;
6688cc05 3301 flags |= TNF_MIGRATED;
074c2381
MG
3302 } else
3303 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3304
3305out:
8191acbd 3306 if (page_nid != -1)
6688cc05 3307 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3308 return 0;
3309}
3310
b96375f7
MW
3311static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3312 unsigned long address, pmd_t *pmd, unsigned int flags)
3313{
fb6dd5fa 3314 if (vma_is_anonymous(vma))
b96375f7
MW
3315 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3316 if (vma->vm_ops->pmd_fault)
3317 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3318 return VM_FAULT_FALLBACK;
3319}
3320
3321static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3322 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3323 unsigned int flags)
3324{
fb6dd5fa 3325 if (vma_is_anonymous(vma))
b96375f7
MW
3326 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3327 if (vma->vm_ops->pmd_fault)
3328 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3329 return VM_FAULT_FALLBACK;
3330}
3331
1da177e4
LT
3332/*
3333 * These routines also need to handle stuff like marking pages dirty
3334 * and/or accessed for architectures that don't do it in hardware (most
3335 * RISC architectures). The early dirtying is also good on the i386.
3336 *
3337 * There is also a hook called "update_mmu_cache()" that architectures
3338 * with external mmu caches can use to update those (ie the Sparc or
3339 * PowerPC hashed page tables that act as extended TLBs).
3340 *
c74df32c
HD
3341 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3342 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3343 * We return with pte unmapped and unlocked.
3344 *
3345 * The mmap_sem may have been released depending on flags and our
3346 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3347 */
c0292554 3348static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3349 struct vm_area_struct *vma, unsigned long address,
3350 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3351{
3352 pte_t entry;
8f4e2101 3353 spinlock_t *ptl;
1da177e4 3354
e37c6982
CB
3355 /*
3356 * some architectures can have larger ptes than wordsize,
3357 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3358 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3359 * The code below just needs a consistent view for the ifs and
3360 * we later double check anyway with the ptl lock held. So here
3361 * a barrier will do.
3362 */
3363 entry = *pte;
3364 barrier();
1da177e4 3365 if (!pte_present(entry)) {
65500d23 3366 if (pte_none(entry)) {
b5330628
ON
3367 if (vma_is_anonymous(vma))
3368 return do_anonymous_page(mm, vma, address,
3369 pte, pmd, flags);
3370 else
6b7339f4
KS
3371 return do_fault(mm, vma, address, pte, pmd,
3372 flags, entry);
65500d23 3373 }
65500d23 3374 return do_swap_page(mm, vma, address,
30c9f3a9 3375 pte, pmd, flags, entry);
1da177e4
LT
3376 }
3377
8a0516ed 3378 if (pte_protnone(entry))
d10e63f2
MG
3379 return do_numa_page(mm, vma, address, entry, pte, pmd);
3380
4c21e2f2 3381 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3382 spin_lock(ptl);
3383 if (unlikely(!pte_same(*pte, entry)))
3384 goto unlock;
30c9f3a9 3385 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3386 if (!pte_write(entry))
8f4e2101
HD
3387 return do_wp_page(mm, vma, address,
3388 pte, pmd, ptl, entry);
1da177e4
LT
3389 entry = pte_mkdirty(entry);
3390 }
3391 entry = pte_mkyoung(entry);
30c9f3a9 3392 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3393 update_mmu_cache(vma, address, pte);
1a44e149
AA
3394 } else {
3395 /*
3396 * This is needed only for protection faults but the arch code
3397 * is not yet telling us if this is a protection fault or not.
3398 * This still avoids useless tlb flushes for .text page faults
3399 * with threads.
3400 */
30c9f3a9 3401 if (flags & FAULT_FLAG_WRITE)
61c77326 3402 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3403 }
8f4e2101
HD
3404unlock:
3405 pte_unmap_unlock(pte, ptl);
83c54070 3406 return 0;
1da177e4
LT
3407}
3408
3409/*
3410 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3411 *
3412 * The mmap_sem may have been released depending on flags and our
3413 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3414 */
519e5247
JW
3415static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3416 unsigned long address, unsigned int flags)
1da177e4
LT
3417{
3418 pgd_t *pgd;
3419 pud_t *pud;
3420 pmd_t *pmd;
3421 pte_t *pte;
3422
1b2ee126 3423 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
d61172b4 3424 flags & FAULT_FLAG_INSTRUCTION,
1b2ee126 3425 flags & FAULT_FLAG_REMOTE))
33a709b2
DH
3426 return VM_FAULT_SIGSEGV;
3427
ac9b9c66 3428 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3429 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3430
1da177e4 3431 pgd = pgd_offset(mm, address);
1da177e4
LT
3432 pud = pud_alloc(mm, pgd, address);
3433 if (!pud)
c74df32c 3434 return VM_FAULT_OOM;
1da177e4
LT
3435 pmd = pmd_alloc(mm, pud, address);
3436 if (!pmd)
c74df32c 3437 return VM_FAULT_OOM;
71e3aac0 3438 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
b96375f7 3439 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
c0292554
KS
3440 if (!(ret & VM_FAULT_FALLBACK))
3441 return ret;
71e3aac0
AA
3442 } else {
3443 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3444 int ret;
3445
71e3aac0 3446 barrier();
5c7fb56e 3447 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
a1dd450b
WD
3448 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3449
8a0516ed 3450 if (pmd_protnone(orig_pmd))
4daae3b4 3451 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3452 orig_pmd, pmd);
3453
3d59eebc 3454 if (dirty && !pmd_write(orig_pmd)) {
b96375f7
MW
3455 ret = wp_huge_pmd(mm, vma, address, pmd,
3456 orig_pmd, flags);
9845cbbd
KS
3457 if (!(ret & VM_FAULT_FALLBACK))
3458 return ret;
a1dd450b
WD
3459 } else {
3460 huge_pmd_set_accessed(mm, vma, address, pmd,
3461 orig_pmd, dirty);
9845cbbd 3462 return 0;
1f1d06c3 3463 }
71e3aac0
AA
3464 }
3465 }
3466
3467 /*
3ed3a4f0 3468 * Use pte_alloc() instead of pte_alloc_map, because we can't
71e3aac0
AA
3469 * run pte_offset_map on the pmd, if an huge pmd could
3470 * materialize from under us from a different thread.
3471 */
3ed3a4f0 3472 if (unlikely(pte_alloc(mm, pmd, address)))
c74df32c 3473 return VM_FAULT_OOM;
ad33bb04
AA
3474 /*
3475 * If a huge pmd materialized under us just retry later. Use
3476 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3477 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3478 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3479 * in a different thread of this mm, in turn leading to a misleading
3480 * pmd_trans_huge() retval. All we have to ensure is that it is a
3481 * regular pmd that we can walk with pte_offset_map() and we can do that
3482 * through an atomic read in C, which is what pmd_trans_unstable()
3483 * provides.
3484 */
3485 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
71e3aac0
AA
3486 return 0;
3487 /*
3488 * A regular pmd is established and it can't morph into a huge pmd
3489 * from under us anymore at this point because we hold the mmap_sem
3490 * read mode and khugepaged takes it in write mode. So now it's
3491 * safe to run pte_offset_map().
3492 */
3493 pte = pte_offset_map(pmd, address);
1da177e4 3494
30c9f3a9 3495 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3496}
3497
9a95f3cf
PC
3498/*
3499 * By the time we get here, we already hold the mm semaphore
3500 *
3501 * The mmap_sem may have been released depending on flags and our
3502 * return value. See filemap_fault() and __lock_page_or_retry().
3503 */
519e5247
JW
3504int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3505 unsigned long address, unsigned int flags)
3506{
3507 int ret;
3508
3509 __set_current_state(TASK_RUNNING);
3510
3511 count_vm_event(PGFAULT);
3512 mem_cgroup_count_vm_event(mm, PGFAULT);
3513
3514 /* do counter updates before entering really critical section. */
3515 check_sync_rss_stat(current);
3516
3517 /*
3518 * Enable the memcg OOM handling for faults triggered in user
3519 * space. Kernel faults are handled more gracefully.
3520 */
3521 if (flags & FAULT_FLAG_USER)
49426420 3522 mem_cgroup_oom_enable();
519e5247
JW
3523
3524 ret = __handle_mm_fault(mm, vma, address, flags);
3525
49426420
JW
3526 if (flags & FAULT_FLAG_USER) {
3527 mem_cgroup_oom_disable();
3528 /*
3529 * The task may have entered a memcg OOM situation but
3530 * if the allocation error was handled gracefully (no
3531 * VM_FAULT_OOM), there is no need to kill anything.
3532 * Just clean up the OOM state peacefully.
3533 */
3534 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3535 mem_cgroup_oom_synchronize(false);
3536 }
3812c8c8 3537
519e5247
JW
3538 return ret;
3539}
e1d6d01a 3540EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3541
1da177e4
LT
3542#ifndef __PAGETABLE_PUD_FOLDED
3543/*
3544 * Allocate page upper directory.
872fec16 3545 * We've already handled the fast-path in-line.
1da177e4 3546 */
1bb3630e 3547int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3548{
c74df32c
HD
3549 pud_t *new = pud_alloc_one(mm, address);
3550 if (!new)
1bb3630e 3551 return -ENOMEM;
1da177e4 3552
362a61ad
NP
3553 smp_wmb(); /* See comment in __pte_alloc */
3554
872fec16 3555 spin_lock(&mm->page_table_lock);
1bb3630e 3556 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3557 pud_free(mm, new);
1bb3630e
HD
3558 else
3559 pgd_populate(mm, pgd, new);
c74df32c 3560 spin_unlock(&mm->page_table_lock);
1bb3630e 3561 return 0;
1da177e4
LT
3562}
3563#endif /* __PAGETABLE_PUD_FOLDED */
3564
3565#ifndef __PAGETABLE_PMD_FOLDED
3566/*
3567 * Allocate page middle directory.
872fec16 3568 * We've already handled the fast-path in-line.
1da177e4 3569 */
1bb3630e 3570int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3571{
c74df32c
HD
3572 pmd_t *new = pmd_alloc_one(mm, address);
3573 if (!new)
1bb3630e 3574 return -ENOMEM;
1da177e4 3575
362a61ad
NP
3576 smp_wmb(); /* See comment in __pte_alloc */
3577
872fec16 3578 spin_lock(&mm->page_table_lock);
1da177e4 3579#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3580 if (!pud_present(*pud)) {
3581 mm_inc_nr_pmds(mm);
1bb3630e 3582 pud_populate(mm, pud, new);
dc6c9a35 3583 } else /* Another has populated it */
5e541973 3584 pmd_free(mm, new);
dc6c9a35
KS
3585#else
3586 if (!pgd_present(*pud)) {
3587 mm_inc_nr_pmds(mm);
1bb3630e 3588 pgd_populate(mm, pud, new);
dc6c9a35
KS
3589 } else /* Another has populated it */
3590 pmd_free(mm, new);
1da177e4 3591#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3592 spin_unlock(&mm->page_table_lock);
1bb3630e 3593 return 0;
e0f39591 3594}
1da177e4
LT
3595#endif /* __PAGETABLE_PMD_FOLDED */
3596
1b36ba81 3597static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3598 pte_t **ptepp, spinlock_t **ptlp)
3599{
3600 pgd_t *pgd;
3601 pud_t *pud;
3602 pmd_t *pmd;
3603 pte_t *ptep;
3604
3605 pgd = pgd_offset(mm, address);
3606 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3607 goto out;
3608
3609 pud = pud_offset(pgd, address);
3610 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3611 goto out;
3612
3613 pmd = pmd_offset(pud, address);
f66055ab 3614 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3615 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3616 goto out;
3617
3618 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3619 if (pmd_huge(*pmd))
3620 goto out;
3621
3622 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3623 if (!ptep)
3624 goto out;
3625 if (!pte_present(*ptep))
3626 goto unlock;
3627 *ptepp = ptep;
3628 return 0;
3629unlock:
3630 pte_unmap_unlock(ptep, *ptlp);
3631out:
3632 return -EINVAL;
3633}
3634
1b36ba81
NK
3635static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3636 pte_t **ptepp, spinlock_t **ptlp)
3637{
3638 int res;
3639
3640 /* (void) is needed to make gcc happy */
3641 (void) __cond_lock(*ptlp,
3642 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3643 return res;
3644}
3645
3b6748e2
JW
3646/**
3647 * follow_pfn - look up PFN at a user virtual address
3648 * @vma: memory mapping
3649 * @address: user virtual address
3650 * @pfn: location to store found PFN
3651 *
3652 * Only IO mappings and raw PFN mappings are allowed.
3653 *
3654 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3655 */
3656int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3657 unsigned long *pfn)
3658{
3659 int ret = -EINVAL;
3660 spinlock_t *ptl;
3661 pte_t *ptep;
3662
3663 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3664 return ret;
3665
3666 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3667 if (ret)
3668 return ret;
3669 *pfn = pte_pfn(*ptep);
3670 pte_unmap_unlock(ptep, ptl);
3671 return 0;
3672}
3673EXPORT_SYMBOL(follow_pfn);
3674
28b2ee20 3675#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3676int follow_phys(struct vm_area_struct *vma,
3677 unsigned long address, unsigned int flags,
3678 unsigned long *prot, resource_size_t *phys)
28b2ee20 3679{
03668a4d 3680 int ret = -EINVAL;
28b2ee20
RR
3681 pte_t *ptep, pte;
3682 spinlock_t *ptl;
28b2ee20 3683
d87fe660 3684 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3685 goto out;
28b2ee20 3686
03668a4d 3687 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3688 goto out;
28b2ee20 3689 pte = *ptep;
03668a4d 3690
28b2ee20
RR
3691 if ((flags & FOLL_WRITE) && !pte_write(pte))
3692 goto unlock;
28b2ee20
RR
3693
3694 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3695 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3696
03668a4d 3697 ret = 0;
28b2ee20
RR
3698unlock:
3699 pte_unmap_unlock(ptep, ptl);
3700out:
d87fe660 3701 return ret;
28b2ee20
RR
3702}
3703
3704int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3705 void *buf, int len, int write)
3706{
3707 resource_size_t phys_addr;
3708 unsigned long prot = 0;
2bc7273b 3709 void __iomem *maddr;
28b2ee20
RR
3710 int offset = addr & (PAGE_SIZE-1);
3711
d87fe660 3712 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3713 return -EINVAL;
3714
9cb12d7b 3715 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
3716 if (write)
3717 memcpy_toio(maddr + offset, buf, len);
3718 else
3719 memcpy_fromio(buf, maddr + offset, len);
3720 iounmap(maddr);
3721
3722 return len;
3723}
5a73633e 3724EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3725#endif
3726
0ec76a11 3727/*
206cb636
SW
3728 * Access another process' address space as given in mm. If non-NULL, use the
3729 * given task for page fault accounting.
0ec76a11 3730 */
206cb636
SW
3731static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3732 unsigned long addr, void *buf, int len, int write)
0ec76a11 3733{
0ec76a11 3734 struct vm_area_struct *vma;
0ec76a11
DH
3735 void *old_buf = buf;
3736
0ec76a11 3737 down_read(&mm->mmap_sem);
183ff22b 3738 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3739 while (len) {
3740 int bytes, ret, offset;
3741 void *maddr;
28b2ee20 3742 struct page *page = NULL;
0ec76a11 3743
1e987790 3744 ret = get_user_pages_remote(tsk, mm, addr, 1,
0ec76a11 3745 write, 1, &page, &vma);
28b2ee20 3746 if (ret <= 0) {
dbffcd03
RR
3747#ifndef CONFIG_HAVE_IOREMAP_PROT
3748 break;
3749#else
28b2ee20
RR
3750 /*
3751 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3752 * we can access using slightly different code.
3753 */
28b2ee20 3754 vma = find_vma(mm, addr);
fe936dfc 3755 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3756 break;
3757 if (vma->vm_ops && vma->vm_ops->access)
3758 ret = vma->vm_ops->access(vma, addr, buf,
3759 len, write);
3760 if (ret <= 0)
28b2ee20
RR
3761 break;
3762 bytes = ret;
dbffcd03 3763#endif
0ec76a11 3764 } else {
28b2ee20
RR
3765 bytes = len;
3766 offset = addr & (PAGE_SIZE-1);
3767 if (bytes > PAGE_SIZE-offset)
3768 bytes = PAGE_SIZE-offset;
3769
3770 maddr = kmap(page);
3771 if (write) {
3772 copy_to_user_page(vma, page, addr,
3773 maddr + offset, buf, bytes);
3774 set_page_dirty_lock(page);
3775 } else {
3776 copy_from_user_page(vma, page, addr,
3777 buf, maddr + offset, bytes);
3778 }
3779 kunmap(page);
09cbfeaf 3780 put_page(page);
0ec76a11 3781 }
0ec76a11
DH
3782 len -= bytes;
3783 buf += bytes;
3784 addr += bytes;
3785 }
3786 up_read(&mm->mmap_sem);
0ec76a11
DH
3787
3788 return buf - old_buf;
3789}
03252919 3790
5ddd36b9 3791/**
ae91dbfc 3792 * access_remote_vm - access another process' address space
5ddd36b9
SW
3793 * @mm: the mm_struct of the target address space
3794 * @addr: start address to access
3795 * @buf: source or destination buffer
3796 * @len: number of bytes to transfer
3797 * @write: whether the access is a write
3798 *
3799 * The caller must hold a reference on @mm.
3800 */
3801int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3802 void *buf, int len, int write)
3803{
3804 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3805}
3806
206cb636
SW
3807/*
3808 * Access another process' address space.
3809 * Source/target buffer must be kernel space,
3810 * Do not walk the page table directly, use get_user_pages
3811 */
3812int access_process_vm(struct task_struct *tsk, unsigned long addr,
3813 void *buf, int len, int write)
3814{
3815 struct mm_struct *mm;
3816 int ret;
3817
3818 mm = get_task_mm(tsk);
3819 if (!mm)
3820 return 0;
3821
3822 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3823 mmput(mm);
3824
3825 return ret;
3826}
3827
03252919
AK
3828/*
3829 * Print the name of a VMA.
3830 */
3831void print_vma_addr(char *prefix, unsigned long ip)
3832{
3833 struct mm_struct *mm = current->mm;
3834 struct vm_area_struct *vma;
3835
e8bff74a
IM
3836 /*
3837 * Do not print if we are in atomic
3838 * contexts (in exception stacks, etc.):
3839 */
3840 if (preempt_count())
3841 return;
3842
03252919
AK
3843 down_read(&mm->mmap_sem);
3844 vma = find_vma(mm, ip);
3845 if (vma && vma->vm_file) {
3846 struct file *f = vma->vm_file;
3847 char *buf = (char *)__get_free_page(GFP_KERNEL);
3848 if (buf) {
2fbc57c5 3849 char *p;
03252919 3850
9bf39ab2 3851 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
3852 if (IS_ERR(p))
3853 p = "?";
2fbc57c5 3854 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3855 vma->vm_start,
3856 vma->vm_end - vma->vm_start);
3857 free_page((unsigned long)buf);
3858 }
3859 }
51a07e50 3860 up_read(&mm->mmap_sem);
03252919 3861}
3ee1afa3 3862
662bbcb2 3863#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 3864void __might_fault(const char *file, int line)
3ee1afa3 3865{
95156f00
PZ
3866 /*
3867 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3868 * holding the mmap_sem, this is safe because kernel memory doesn't
3869 * get paged out, therefore we'll never actually fault, and the
3870 * below annotations will generate false positives.
3871 */
3872 if (segment_eq(get_fs(), KERNEL_DS))
3873 return;
9ec23531 3874 if (pagefault_disabled())
662bbcb2 3875 return;
9ec23531
DH
3876 __might_sleep(file, line, 0);
3877#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 3878 if (current->mm)
3ee1afa3 3879 might_lock_read(&current->mm->mmap_sem);
9ec23531 3880#endif
3ee1afa3 3881}
9ec23531 3882EXPORT_SYMBOL(__might_fault);
3ee1afa3 3883#endif
47ad8475
AA
3884
3885#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3886static void clear_gigantic_page(struct page *page,
3887 unsigned long addr,
3888 unsigned int pages_per_huge_page)
3889{
3890 int i;
3891 struct page *p = page;
3892
3893 might_sleep();
3894 for (i = 0; i < pages_per_huge_page;
3895 i++, p = mem_map_next(p, page, i)) {
3896 cond_resched();
3897 clear_user_highpage(p, addr + i * PAGE_SIZE);
3898 }
3899}
3900void clear_huge_page(struct page *page,
3901 unsigned long addr, unsigned int pages_per_huge_page)
3902{
3903 int i;
3904
3905 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3906 clear_gigantic_page(page, addr, pages_per_huge_page);
3907 return;
3908 }
3909
3910 might_sleep();
3911 for (i = 0; i < pages_per_huge_page; i++) {
3912 cond_resched();
3913 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3914 }
3915}
3916
3917static void copy_user_gigantic_page(struct page *dst, struct page *src,
3918 unsigned long addr,
3919 struct vm_area_struct *vma,
3920 unsigned int pages_per_huge_page)
3921{
3922 int i;
3923 struct page *dst_base = dst;
3924 struct page *src_base = src;
3925
3926 for (i = 0; i < pages_per_huge_page; ) {
3927 cond_resched();
3928 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3929
3930 i++;
3931 dst = mem_map_next(dst, dst_base, i);
3932 src = mem_map_next(src, src_base, i);
3933 }
3934}
3935
3936void copy_user_huge_page(struct page *dst, struct page *src,
3937 unsigned long addr, struct vm_area_struct *vma,
3938 unsigned int pages_per_huge_page)
3939{
3940 int i;
3941
3942 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3943 copy_user_gigantic_page(dst, src, addr, vma,
3944 pages_per_huge_page);
3945 return;
3946 }
3947
3948 might_sleep();
3949 for (i = 0; i < pages_per_huge_page; i++) {
3950 cond_resched();
3951 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3952 }
3953}
3954#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3955
40b64acd 3956#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3957
3958static struct kmem_cache *page_ptl_cachep;
3959
3960void __init ptlock_cache_init(void)
3961{
3962 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3963 SLAB_PANIC, NULL);
3964}
3965
539edb58 3966bool ptlock_alloc(struct page *page)
49076ec2
KS
3967{
3968 spinlock_t *ptl;
3969
b35f1819 3970 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3971 if (!ptl)
3972 return false;
539edb58 3973 page->ptl = ptl;
49076ec2
KS
3974 return true;
3975}
3976
539edb58 3977void ptlock_free(struct page *page)
49076ec2 3978{
b35f1819 3979 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3980}
3981#endif