]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memory.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
1da177e4
LT
46#include <linux/hugetlb.h>
47#include <linux/mman.h>
48#include <linux/swap.h>
49#include <linux/highmem.h>
50#include <linux/pagemap.h>
9a840895 51#include <linux/ksm.h>
1da177e4 52#include <linux/rmap.h>
b95f1b31 53#include <linux/export.h>
0ff92245 54#include <linux/delayacct.h>
1da177e4 55#include <linux/init.h>
01c8f1c4 56#include <linux/pfn_t.h>
edc79b2a 57#include <linux/writeback.h>
8a9f3ccd 58#include <linux/memcontrol.h>
cddb8a5c 59#include <linux/mmu_notifier.h>
3dc14741
HD
60#include <linux/kallsyms.h>
61#include <linux/swapops.h>
62#include <linux/elf.h>
5a0e3ad6 63#include <linux/gfp.h>
4daae3b4 64#include <linux/migrate.h>
2fbc57c5 65#include <linux/string.h>
0abdd7a8 66#include <linux/dma-debug.h>
1592eef0 67#include <linux/debugfs.h>
6b251fc9 68#include <linux/userfaultfd_k.h>
bc2466e4 69#include <linux/dax.h>
1da177e4 70
6952b61d 71#include <asm/io.h>
33a709b2 72#include <asm/mmu_context.h>
1da177e4 73#include <asm/pgalloc.h>
7c0f6ba6 74#include <linux/uaccess.h>
1da177e4
LT
75#include <asm/tlb.h>
76#include <asm/tlbflush.h>
77#include <asm/pgtable.h>
78
42b77728
JB
79#include "internal.h"
80
90572890
PZ
81#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
82#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
83#endif
84
d41dee36 85#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
86/* use the per-pgdat data instead for discontigmem - mbligh */
87unsigned long max_mapnr;
1da177e4 88EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
89
90struct page *mem_map;
1da177e4
LT
91EXPORT_SYMBOL(mem_map);
92#endif
93
1da177e4
LT
94/*
95 * A number of key systems in x86 including ioremap() rely on the assumption
96 * that high_memory defines the upper bound on direct map memory, then end
97 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
98 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
99 * and ZONE_HIGHMEM.
100 */
166f61b9 101void *high_memory;
1da177e4 102EXPORT_SYMBOL(high_memory);
1da177e4 103
32a93233
IM
104/*
105 * Randomize the address space (stacks, mmaps, brk, etc.).
106 *
107 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
108 * as ancient (libc5 based) binaries can segfault. )
109 */
110int randomize_va_space __read_mostly =
111#ifdef CONFIG_COMPAT_BRK
112 1;
113#else
114 2;
115#endif
a62eaf15
AK
116
117static int __init disable_randmaps(char *s)
118{
119 randomize_va_space = 0;
9b41046c 120 return 1;
a62eaf15
AK
121}
122__setup("norandmaps", disable_randmaps);
123
62eede62 124unsigned long zero_pfn __read_mostly;
0b70068e
AB
125EXPORT_SYMBOL(zero_pfn);
126
166f61b9
TH
127unsigned long highest_memmap_pfn __read_mostly;
128
a13ea5b7
HD
129/*
130 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
131 */
132static int __init init_zero_pfn(void)
133{
134 zero_pfn = page_to_pfn(ZERO_PAGE(0));
135 return 0;
136}
137core_initcall(init_zero_pfn);
a62eaf15 138
d559db08 139
34e55232
KH
140#if defined(SPLIT_RSS_COUNTING)
141
ea48cf78 142void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
143{
144 int i;
145
146 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
147 if (current->rss_stat.count[i]) {
148 add_mm_counter(mm, i, current->rss_stat.count[i]);
149 current->rss_stat.count[i] = 0;
34e55232
KH
150 }
151 }
05af2e10 152 current->rss_stat.events = 0;
34e55232
KH
153}
154
155static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
156{
157 struct task_struct *task = current;
158
159 if (likely(task->mm == mm))
160 task->rss_stat.count[member] += val;
161 else
162 add_mm_counter(mm, member, val);
163}
164#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
165#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
166
167/* sync counter once per 64 page faults */
168#define TASK_RSS_EVENTS_THRESH (64)
169static void check_sync_rss_stat(struct task_struct *task)
170{
171 if (unlikely(task != current))
172 return;
173 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 174 sync_mm_rss(task->mm);
34e55232 175}
9547d01b 176#else /* SPLIT_RSS_COUNTING */
34e55232
KH
177
178#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
179#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
180
181static void check_sync_rss_stat(struct task_struct *task)
182{
183}
184
9547d01b
PZ
185#endif /* SPLIT_RSS_COUNTING */
186
187#ifdef HAVE_GENERIC_MMU_GATHER
188
ca1d6c7d 189static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
190{
191 struct mmu_gather_batch *batch;
192
193 batch = tlb->active;
194 if (batch->next) {
195 tlb->active = batch->next;
ca1d6c7d 196 return true;
9547d01b
PZ
197 }
198
53a59fc6 199 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 200 return false;
53a59fc6 201
9547d01b
PZ
202 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
203 if (!batch)
ca1d6c7d 204 return false;
9547d01b 205
53a59fc6 206 tlb->batch_count++;
9547d01b
PZ
207 batch->next = NULL;
208 batch->nr = 0;
209 batch->max = MAX_GATHER_BATCH;
210
211 tlb->active->next = batch;
212 tlb->active = batch;
213
ca1d6c7d 214 return true;
9547d01b
PZ
215}
216
217/* tlb_gather_mmu
218 * Called to initialize an (on-stack) mmu_gather structure for page-table
219 * tear-down from @mm. The @fullmm argument is used when @mm is without
220 * users and we're going to destroy the full address space (exit/execve).
221 */
2b047252 222void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
223{
224 tlb->mm = mm;
225
2b047252
LT
226 /* Is it from 0 to ~0? */
227 tlb->fullmm = !(start | (end+1));
1de14c3c 228 tlb->need_flush_all = 0;
9547d01b
PZ
229 tlb->local.next = NULL;
230 tlb->local.nr = 0;
231 tlb->local.max = ARRAY_SIZE(tlb->__pages);
232 tlb->active = &tlb->local;
53a59fc6 233 tlb->batch_count = 0;
9547d01b
PZ
234
235#ifdef CONFIG_HAVE_RCU_TABLE_FREE
236 tlb->batch = NULL;
237#endif
e77b0852 238 tlb->page_size = 0;
fb7332a9
WD
239
240 __tlb_reset_range(tlb);
9547d01b
PZ
241}
242
1cf35d47 243static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 244{
721c21c1
WD
245 if (!tlb->end)
246 return;
247
9547d01b 248 tlb_flush(tlb);
34ee645e 249 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
250#ifdef CONFIG_HAVE_RCU_TABLE_FREE
251 tlb_table_flush(tlb);
34e55232 252#endif
fb7332a9 253 __tlb_reset_range(tlb);
1cf35d47
LT
254}
255
256static void tlb_flush_mmu_free(struct mmu_gather *tlb)
257{
258 struct mmu_gather_batch *batch;
34e55232 259
721c21c1 260 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
261 free_pages_and_swap_cache(batch->pages, batch->nr);
262 batch->nr = 0;
263 }
264 tlb->active = &tlb->local;
265}
266
1cf35d47
LT
267void tlb_flush_mmu(struct mmu_gather *tlb)
268{
1cf35d47
LT
269 tlb_flush_mmu_tlbonly(tlb);
270 tlb_flush_mmu_free(tlb);
271}
272
9547d01b
PZ
273/* tlb_finish_mmu
274 * Called at the end of the shootdown operation to free up any resources
275 * that were required.
276 */
277void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
278{
279 struct mmu_gather_batch *batch, *next;
280
281 tlb_flush_mmu(tlb);
282
283 /* keep the page table cache within bounds */
284 check_pgt_cache();
285
286 for (batch = tlb->local.next; batch; batch = next) {
287 next = batch->next;
288 free_pages((unsigned long)batch, 0);
289 }
290 tlb->local.next = NULL;
291}
292
293/* __tlb_remove_page
294 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
295 * handling the additional races in SMP caused by other CPUs caching valid
296 * mappings in their TLBs. Returns the number of free page slots left.
297 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 298 *returns true if the caller should flush.
9547d01b 299 */
e77b0852 300bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
9547d01b
PZ
301{
302 struct mmu_gather_batch *batch;
303
fb7332a9 304 VM_BUG_ON(!tlb->end);
692a68c1 305 VM_WARN_ON(tlb->page_size != page_size);
e77b0852 306
9547d01b 307 batch = tlb->active;
692a68c1
AK
308 /*
309 * Add the page and check if we are full. If so
310 * force a flush.
311 */
312 batch->pages[batch->nr++] = page;
9547d01b
PZ
313 if (batch->nr == batch->max) {
314 if (!tlb_next_batch(tlb))
e9d55e15 315 return true;
0b43c3aa 316 batch = tlb->active;
9547d01b 317 }
309381fe 318 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 319
e9d55e15 320 return false;
9547d01b
PZ
321}
322
323#endif /* HAVE_GENERIC_MMU_GATHER */
324
26723911
PZ
325#ifdef CONFIG_HAVE_RCU_TABLE_FREE
326
327/*
328 * See the comment near struct mmu_table_batch.
329 */
330
331static void tlb_remove_table_smp_sync(void *arg)
332{
333 /* Simply deliver the interrupt */
334}
335
336static void tlb_remove_table_one(void *table)
337{
338 /*
339 * This isn't an RCU grace period and hence the page-tables cannot be
340 * assumed to be actually RCU-freed.
341 *
342 * It is however sufficient for software page-table walkers that rely on
343 * IRQ disabling. See the comment near struct mmu_table_batch.
344 */
345 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
346 __tlb_remove_table(table);
347}
348
349static void tlb_remove_table_rcu(struct rcu_head *head)
350{
351 struct mmu_table_batch *batch;
352 int i;
353
354 batch = container_of(head, struct mmu_table_batch, rcu);
355
356 for (i = 0; i < batch->nr; i++)
357 __tlb_remove_table(batch->tables[i]);
358
359 free_page((unsigned long)batch);
360}
361
362void tlb_table_flush(struct mmu_gather *tlb)
363{
364 struct mmu_table_batch **batch = &tlb->batch;
365
366 if (*batch) {
367 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
368 *batch = NULL;
369 }
370}
371
372void tlb_remove_table(struct mmu_gather *tlb, void *table)
373{
374 struct mmu_table_batch **batch = &tlb->batch;
375
26723911
PZ
376 /*
377 * When there's less then two users of this mm there cannot be a
378 * concurrent page-table walk.
379 */
380 if (atomic_read(&tlb->mm->mm_users) < 2) {
381 __tlb_remove_table(table);
382 return;
383 }
384
385 if (*batch == NULL) {
386 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
387 if (*batch == NULL) {
388 tlb_remove_table_one(table);
389 return;
390 }
391 (*batch)->nr = 0;
392 }
393 (*batch)->tables[(*batch)->nr++] = table;
394 if ((*batch)->nr == MAX_TABLE_BATCH)
395 tlb_table_flush(tlb);
396}
397
9547d01b 398#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 399
1da177e4
LT
400/*
401 * Note: this doesn't free the actual pages themselves. That
402 * has been handled earlier when unmapping all the memory regions.
403 */
9e1b32ca
BH
404static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
405 unsigned long addr)
1da177e4 406{
2f569afd 407 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 408 pmd_clear(pmd);
9e1b32ca 409 pte_free_tlb(tlb, token, addr);
e1f56c89 410 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
411}
412
e0da382c
HD
413static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414 unsigned long addr, unsigned long end,
415 unsigned long floor, unsigned long ceiling)
1da177e4
LT
416{
417 pmd_t *pmd;
418 unsigned long next;
e0da382c 419 unsigned long start;
1da177e4 420
e0da382c 421 start = addr;
1da177e4 422 pmd = pmd_offset(pud, addr);
1da177e4
LT
423 do {
424 next = pmd_addr_end(addr, end);
425 if (pmd_none_or_clear_bad(pmd))
426 continue;
9e1b32ca 427 free_pte_range(tlb, pmd, addr);
1da177e4
LT
428 } while (pmd++, addr = next, addr != end);
429
e0da382c
HD
430 start &= PUD_MASK;
431 if (start < floor)
432 return;
433 if (ceiling) {
434 ceiling &= PUD_MASK;
435 if (!ceiling)
436 return;
1da177e4 437 }
e0da382c
HD
438 if (end - 1 > ceiling - 1)
439 return;
440
441 pmd = pmd_offset(pud, start);
442 pud_clear(pud);
9e1b32ca 443 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 444 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
445}
446
e0da382c
HD
447static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
448 unsigned long addr, unsigned long end,
449 unsigned long floor, unsigned long ceiling)
1da177e4
LT
450{
451 pud_t *pud;
452 unsigned long next;
e0da382c 453 unsigned long start;
1da177e4 454
e0da382c 455 start = addr;
1da177e4 456 pud = pud_offset(pgd, addr);
1da177e4
LT
457 do {
458 next = pud_addr_end(addr, end);
459 if (pud_none_or_clear_bad(pud))
460 continue;
e0da382c 461 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
462 } while (pud++, addr = next, addr != end);
463
e0da382c
HD
464 start &= PGDIR_MASK;
465 if (start < floor)
466 return;
467 if (ceiling) {
468 ceiling &= PGDIR_MASK;
469 if (!ceiling)
470 return;
1da177e4 471 }
e0da382c
HD
472 if (end - 1 > ceiling - 1)
473 return;
474
475 pud = pud_offset(pgd, start);
476 pgd_clear(pgd);
9e1b32ca 477 pud_free_tlb(tlb, pud, start);
1da177e4
LT
478}
479
480/*
e0da382c 481 * This function frees user-level page tables of a process.
1da177e4 482 */
42b77728 483void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
484 unsigned long addr, unsigned long end,
485 unsigned long floor, unsigned long ceiling)
1da177e4
LT
486{
487 pgd_t *pgd;
488 unsigned long next;
e0da382c
HD
489
490 /*
491 * The next few lines have given us lots of grief...
492 *
493 * Why are we testing PMD* at this top level? Because often
494 * there will be no work to do at all, and we'd prefer not to
495 * go all the way down to the bottom just to discover that.
496 *
497 * Why all these "- 1"s? Because 0 represents both the bottom
498 * of the address space and the top of it (using -1 for the
499 * top wouldn't help much: the masks would do the wrong thing).
500 * The rule is that addr 0 and floor 0 refer to the bottom of
501 * the address space, but end 0 and ceiling 0 refer to the top
502 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 * that end 0 case should be mythical).
504 *
505 * Wherever addr is brought up or ceiling brought down, we must
506 * be careful to reject "the opposite 0" before it confuses the
507 * subsequent tests. But what about where end is brought down
508 * by PMD_SIZE below? no, end can't go down to 0 there.
509 *
510 * Whereas we round start (addr) and ceiling down, by different
511 * masks at different levels, in order to test whether a table
512 * now has no other vmas using it, so can be freed, we don't
513 * bother to round floor or end up - the tests don't need that.
514 */
1da177e4 515
e0da382c
HD
516 addr &= PMD_MASK;
517 if (addr < floor) {
518 addr += PMD_SIZE;
519 if (!addr)
520 return;
521 }
522 if (ceiling) {
523 ceiling &= PMD_MASK;
524 if (!ceiling)
525 return;
526 }
527 if (end - 1 > ceiling - 1)
528 end -= PMD_SIZE;
529 if (addr > end - 1)
530 return;
07e32661
AK
531 /*
532 * We add page table cache pages with PAGE_SIZE,
533 * (see pte_free_tlb()), flush the tlb if we need
534 */
535 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 536 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
537 do {
538 next = pgd_addr_end(addr, end);
539 if (pgd_none_or_clear_bad(pgd))
540 continue;
42b77728 541 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 542 } while (pgd++, addr = next, addr != end);
e0da382c
HD
543}
544
42b77728 545void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 546 unsigned long floor, unsigned long ceiling)
e0da382c
HD
547{
548 while (vma) {
549 struct vm_area_struct *next = vma->vm_next;
550 unsigned long addr = vma->vm_start;
551
8f4f8c16 552 /*
25d9e2d1 553 * Hide vma from rmap and truncate_pagecache before freeing
554 * pgtables
8f4f8c16 555 */
5beb4930 556 unlink_anon_vmas(vma);
8f4f8c16
HD
557 unlink_file_vma(vma);
558
9da61aef 559 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 560 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 561 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
562 } else {
563 /*
564 * Optimization: gather nearby vmas into one call down
565 */
566 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 567 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
568 vma = next;
569 next = vma->vm_next;
5beb4930 570 unlink_anon_vmas(vma);
8f4f8c16 571 unlink_file_vma(vma);
3bf5ee95
HD
572 }
573 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 574 floor, next ? next->vm_start : ceiling);
3bf5ee95 575 }
e0da382c
HD
576 vma = next;
577 }
1da177e4
LT
578}
579
3ed3a4f0 580int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 581{
c4088ebd 582 spinlock_t *ptl;
2f569afd 583 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
584 if (!new)
585 return -ENOMEM;
586
362a61ad
NP
587 /*
588 * Ensure all pte setup (eg. pte page lock and page clearing) are
589 * visible before the pte is made visible to other CPUs by being
590 * put into page tables.
591 *
592 * The other side of the story is the pointer chasing in the page
593 * table walking code (when walking the page table without locking;
594 * ie. most of the time). Fortunately, these data accesses consist
595 * of a chain of data-dependent loads, meaning most CPUs (alpha
596 * being the notable exception) will already guarantee loads are
597 * seen in-order. See the alpha page table accessors for the
598 * smp_read_barrier_depends() barriers in page table walking code.
599 */
600 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
601
c4088ebd 602 ptl = pmd_lock(mm, pmd);
8ac1f832 603 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 604 atomic_long_inc(&mm->nr_ptes);
1da177e4 605 pmd_populate(mm, pmd, new);
2f569afd 606 new = NULL;
4b471e88 607 }
c4088ebd 608 spin_unlock(ptl);
2f569afd
MS
609 if (new)
610 pte_free(mm, new);
1bb3630e 611 return 0;
1da177e4
LT
612}
613
1bb3630e 614int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 615{
1bb3630e
HD
616 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
617 if (!new)
618 return -ENOMEM;
619
362a61ad
NP
620 smp_wmb(); /* See comment in __pte_alloc */
621
1bb3630e 622 spin_lock(&init_mm.page_table_lock);
8ac1f832 623 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 624 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 625 new = NULL;
4b471e88 626 }
1bb3630e 627 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
628 if (new)
629 pte_free_kernel(&init_mm, new);
1bb3630e 630 return 0;
1da177e4
LT
631}
632
d559db08
KH
633static inline void init_rss_vec(int *rss)
634{
635 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
636}
637
638static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 639{
d559db08
KH
640 int i;
641
34e55232 642 if (current->mm == mm)
05af2e10 643 sync_mm_rss(mm);
d559db08
KH
644 for (i = 0; i < NR_MM_COUNTERS; i++)
645 if (rss[i])
646 add_mm_counter(mm, i, rss[i]);
ae859762
HD
647}
648
b5810039 649/*
6aab341e
LT
650 * This function is called to print an error when a bad pte
651 * is found. For example, we might have a PFN-mapped pte in
652 * a region that doesn't allow it.
b5810039
NP
653 *
654 * The calling function must still handle the error.
655 */
3dc14741
HD
656static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
657 pte_t pte, struct page *page)
b5810039 658{
3dc14741
HD
659 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
660 pud_t *pud = pud_offset(pgd, addr);
661 pmd_t *pmd = pmd_offset(pud, addr);
662 struct address_space *mapping;
663 pgoff_t index;
d936cf9b
HD
664 static unsigned long resume;
665 static unsigned long nr_shown;
666 static unsigned long nr_unshown;
667
668 /*
669 * Allow a burst of 60 reports, then keep quiet for that minute;
670 * or allow a steady drip of one report per second.
671 */
672 if (nr_shown == 60) {
673 if (time_before(jiffies, resume)) {
674 nr_unshown++;
675 return;
676 }
677 if (nr_unshown) {
1170532b
JP
678 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
679 nr_unshown);
d936cf9b
HD
680 nr_unshown = 0;
681 }
682 nr_shown = 0;
683 }
684 if (nr_shown++ == 0)
685 resume = jiffies + 60 * HZ;
3dc14741
HD
686
687 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
688 index = linear_page_index(vma, addr);
689
1170532b
JP
690 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
691 current->comm,
692 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 693 if (page)
f0b791a3 694 dump_page(page, "bad pte");
1170532b
JP
695 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
696 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
3dc14741
HD
697 /*
698 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
699 */
2682582a
KK
700 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
701 vma->vm_file,
702 vma->vm_ops ? vma->vm_ops->fault : NULL,
703 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
704 mapping ? mapping->a_ops->readpage : NULL);
b5810039 705 dump_stack();
373d4d09 706 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
707}
708
ee498ed7 709/*
7e675137 710 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 711 *
7e675137
NP
712 * "Special" mappings do not wish to be associated with a "struct page" (either
713 * it doesn't exist, or it exists but they don't want to touch it). In this
714 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 715 *
7e675137
NP
716 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
717 * pte bit, in which case this function is trivial. Secondly, an architecture
718 * may not have a spare pte bit, which requires a more complicated scheme,
719 * described below.
720 *
721 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
722 * special mapping (even if there are underlying and valid "struct pages").
723 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 724 *
b379d790
JH
725 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
726 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
727 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
728 * mapping will always honor the rule
6aab341e
LT
729 *
730 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
731 *
7e675137
NP
732 * And for normal mappings this is false.
733 *
734 * This restricts such mappings to be a linear translation from virtual address
735 * to pfn. To get around this restriction, we allow arbitrary mappings so long
736 * as the vma is not a COW mapping; in that case, we know that all ptes are
737 * special (because none can have been COWed).
b379d790 738 *
b379d790 739 *
7e675137 740 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
741 *
742 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
743 * page" backing, however the difference is that _all_ pages with a struct
744 * page (that is, those where pfn_valid is true) are refcounted and considered
745 * normal pages by the VM. The disadvantage is that pages are refcounted
746 * (which can be slower and simply not an option for some PFNMAP users). The
747 * advantage is that we don't have to follow the strict linearity rule of
748 * PFNMAP mappings in order to support COWable mappings.
749 *
ee498ed7 750 */
7e675137
NP
751#ifdef __HAVE_ARCH_PTE_SPECIAL
752# define HAVE_PTE_SPECIAL 1
753#else
754# define HAVE_PTE_SPECIAL 0
755#endif
756struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
757 pte_t pte)
ee498ed7 758{
22b31eec 759 unsigned long pfn = pte_pfn(pte);
7e675137
NP
760
761 if (HAVE_PTE_SPECIAL) {
b38af472 762 if (likely(!pte_special(pte)))
22b31eec 763 goto check_pfn;
667a0a06
DV
764 if (vma->vm_ops && vma->vm_ops->find_special_page)
765 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
766 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
767 return NULL;
62eede62 768 if (!is_zero_pfn(pfn))
22b31eec 769 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
770 return NULL;
771 }
772
773 /* !HAVE_PTE_SPECIAL case follows: */
774
b379d790
JH
775 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
776 if (vma->vm_flags & VM_MIXEDMAP) {
777 if (!pfn_valid(pfn))
778 return NULL;
779 goto out;
780 } else {
7e675137
NP
781 unsigned long off;
782 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
783 if (pfn == vma->vm_pgoff + off)
784 return NULL;
785 if (!is_cow_mapping(vma->vm_flags))
786 return NULL;
787 }
6aab341e
LT
788 }
789
b38af472
HD
790 if (is_zero_pfn(pfn))
791 return NULL;
22b31eec
HD
792check_pfn:
793 if (unlikely(pfn > highest_memmap_pfn)) {
794 print_bad_pte(vma, addr, pte, NULL);
795 return NULL;
796 }
6aab341e
LT
797
798 /*
7e675137 799 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 800 * eg. VDSO mappings can cause them to exist.
6aab341e 801 */
b379d790 802out:
6aab341e 803 return pfn_to_page(pfn);
ee498ed7
HD
804}
805
28093f9f
GS
806#ifdef CONFIG_TRANSPARENT_HUGEPAGE
807struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
808 pmd_t pmd)
809{
810 unsigned long pfn = pmd_pfn(pmd);
811
812 /*
813 * There is no pmd_special() but there may be special pmds, e.g.
814 * in a direct-access (dax) mapping, so let's just replicate the
815 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
816 */
817 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818 if (vma->vm_flags & VM_MIXEDMAP) {
819 if (!pfn_valid(pfn))
820 return NULL;
821 goto out;
822 } else {
823 unsigned long off;
824 off = (addr - vma->vm_start) >> PAGE_SHIFT;
825 if (pfn == vma->vm_pgoff + off)
826 return NULL;
827 if (!is_cow_mapping(vma->vm_flags))
828 return NULL;
829 }
830 }
831
832 if (is_zero_pfn(pfn))
833 return NULL;
834 if (unlikely(pfn > highest_memmap_pfn))
835 return NULL;
836
837 /*
838 * NOTE! We still have PageReserved() pages in the page tables.
839 * eg. VDSO mappings can cause them to exist.
840 */
841out:
842 return pfn_to_page(pfn);
843}
844#endif
845
1da177e4
LT
846/*
847 * copy one vm_area from one task to the other. Assumes the page tables
848 * already present in the new task to be cleared in the whole range
849 * covered by this vma.
1da177e4
LT
850 */
851
570a335b 852static inline unsigned long
1da177e4 853copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 854 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 855 unsigned long addr, int *rss)
1da177e4 856{
b5810039 857 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
858 pte_t pte = *src_pte;
859 struct page *page;
1da177e4
LT
860
861 /* pte contains position in swap or file, so copy. */
862 if (unlikely(!pte_present(pte))) {
0661a336
KS
863 swp_entry_t entry = pte_to_swp_entry(pte);
864
865 if (likely(!non_swap_entry(entry))) {
866 if (swap_duplicate(entry) < 0)
867 return entry.val;
868
869 /* make sure dst_mm is on swapoff's mmlist. */
870 if (unlikely(list_empty(&dst_mm->mmlist))) {
871 spin_lock(&mmlist_lock);
872 if (list_empty(&dst_mm->mmlist))
873 list_add(&dst_mm->mmlist,
874 &src_mm->mmlist);
875 spin_unlock(&mmlist_lock);
876 }
877 rss[MM_SWAPENTS]++;
878 } else if (is_migration_entry(entry)) {
879 page = migration_entry_to_page(entry);
880
eca56ff9 881 rss[mm_counter(page)]++;
0661a336
KS
882
883 if (is_write_migration_entry(entry) &&
884 is_cow_mapping(vm_flags)) {
885 /*
886 * COW mappings require pages in both
887 * parent and child to be set to read.
888 */
889 make_migration_entry_read(&entry);
890 pte = swp_entry_to_pte(entry);
891 if (pte_swp_soft_dirty(*src_pte))
892 pte = pte_swp_mksoft_dirty(pte);
893 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 894 }
1da177e4 895 }
ae859762 896 goto out_set_pte;
1da177e4
LT
897 }
898
1da177e4
LT
899 /*
900 * If it's a COW mapping, write protect it both
901 * in the parent and the child
902 */
67121172 903 if (is_cow_mapping(vm_flags)) {
1da177e4 904 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 905 pte = pte_wrprotect(pte);
1da177e4
LT
906 }
907
908 /*
909 * If it's a shared mapping, mark it clean in
910 * the child
911 */
912 if (vm_flags & VM_SHARED)
913 pte = pte_mkclean(pte);
914 pte = pte_mkold(pte);
6aab341e
LT
915
916 page = vm_normal_page(vma, addr, pte);
917 if (page) {
918 get_page(page);
53f9263b 919 page_dup_rmap(page, false);
eca56ff9 920 rss[mm_counter(page)]++;
6aab341e 921 }
ae859762
HD
922
923out_set_pte:
924 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 925 return 0;
1da177e4
LT
926}
927
21bda264 928static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
929 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
930 unsigned long addr, unsigned long end)
1da177e4 931{
c36987e2 932 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 933 pte_t *src_pte, *dst_pte;
c74df32c 934 spinlock_t *src_ptl, *dst_ptl;
e040f218 935 int progress = 0;
d559db08 936 int rss[NR_MM_COUNTERS];
570a335b 937 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
938
939again:
d559db08
KH
940 init_rss_vec(rss);
941
c74df32c 942 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
943 if (!dst_pte)
944 return -ENOMEM;
ece0e2b6 945 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 946 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 947 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
948 orig_src_pte = src_pte;
949 orig_dst_pte = dst_pte;
6606c3e0 950 arch_enter_lazy_mmu_mode();
1da177e4 951
1da177e4
LT
952 do {
953 /*
954 * We are holding two locks at this point - either of them
955 * could generate latencies in another task on another CPU.
956 */
e040f218
HD
957 if (progress >= 32) {
958 progress = 0;
959 if (need_resched() ||
95c354fe 960 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
961 break;
962 }
1da177e4
LT
963 if (pte_none(*src_pte)) {
964 progress++;
965 continue;
966 }
570a335b
HD
967 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
968 vma, addr, rss);
969 if (entry.val)
970 break;
1da177e4
LT
971 progress += 8;
972 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 973
6606c3e0 974 arch_leave_lazy_mmu_mode();
c74df32c 975 spin_unlock(src_ptl);
ece0e2b6 976 pte_unmap(orig_src_pte);
d559db08 977 add_mm_rss_vec(dst_mm, rss);
c36987e2 978 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 979 cond_resched();
570a335b
HD
980
981 if (entry.val) {
982 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
983 return -ENOMEM;
984 progress = 0;
985 }
1da177e4
LT
986 if (addr != end)
987 goto again;
988 return 0;
989}
990
991static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
992 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
993 unsigned long addr, unsigned long end)
994{
995 pmd_t *src_pmd, *dst_pmd;
996 unsigned long next;
997
998 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
999 if (!dst_pmd)
1000 return -ENOMEM;
1001 src_pmd = pmd_offset(src_pud, addr);
1002 do {
1003 next = pmd_addr_end(addr, end);
5c7fb56e 1004 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 1005 int err;
a00cc7d9 1006 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
1007 err = copy_huge_pmd(dst_mm, src_mm,
1008 dst_pmd, src_pmd, addr, vma);
1009 if (err == -ENOMEM)
1010 return -ENOMEM;
1011 if (!err)
1012 continue;
1013 /* fall through */
1014 }
1da177e4
LT
1015 if (pmd_none_or_clear_bad(src_pmd))
1016 continue;
1017 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1018 vma, addr, next))
1019 return -ENOMEM;
1020 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1021 return 0;
1022}
1023
1024static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1025 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1026 unsigned long addr, unsigned long end)
1027{
1028 pud_t *src_pud, *dst_pud;
1029 unsigned long next;
1030
1031 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1032 if (!dst_pud)
1033 return -ENOMEM;
1034 src_pud = pud_offset(src_pgd, addr);
1035 do {
1036 next = pud_addr_end(addr, end);
a00cc7d9
MW
1037 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1038 int err;
1039
1040 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1041 err = copy_huge_pud(dst_mm, src_mm,
1042 dst_pud, src_pud, addr, vma);
1043 if (err == -ENOMEM)
1044 return -ENOMEM;
1045 if (!err)
1046 continue;
1047 /* fall through */
1048 }
1da177e4
LT
1049 if (pud_none_or_clear_bad(src_pud))
1050 continue;
1051 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1052 vma, addr, next))
1053 return -ENOMEM;
1054 } while (dst_pud++, src_pud++, addr = next, addr != end);
1055 return 0;
1056}
1057
1058int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1059 struct vm_area_struct *vma)
1060{
1061 pgd_t *src_pgd, *dst_pgd;
1062 unsigned long next;
1063 unsigned long addr = vma->vm_start;
1064 unsigned long end = vma->vm_end;
2ec74c3e
SG
1065 unsigned long mmun_start; /* For mmu_notifiers */
1066 unsigned long mmun_end; /* For mmu_notifiers */
1067 bool is_cow;
cddb8a5c 1068 int ret;
1da177e4 1069
d992895b
NP
1070 /*
1071 * Don't copy ptes where a page fault will fill them correctly.
1072 * Fork becomes much lighter when there are big shared or private
1073 * readonly mappings. The tradeoff is that copy_page_range is more
1074 * efficient than faulting.
1075 */
0661a336
KS
1076 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1077 !vma->anon_vma)
1078 return 0;
d992895b 1079
1da177e4
LT
1080 if (is_vm_hugetlb_page(vma))
1081 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1082
b3b9c293 1083 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1084 /*
1085 * We do not free on error cases below as remove_vma
1086 * gets called on error from higher level routine
1087 */
5180da41 1088 ret = track_pfn_copy(vma);
2ab64037 1089 if (ret)
1090 return ret;
1091 }
1092
cddb8a5c
AA
1093 /*
1094 * We need to invalidate the secondary MMU mappings only when
1095 * there could be a permission downgrade on the ptes of the
1096 * parent mm. And a permission downgrade will only happen if
1097 * is_cow_mapping() returns true.
1098 */
2ec74c3e
SG
1099 is_cow = is_cow_mapping(vma->vm_flags);
1100 mmun_start = addr;
1101 mmun_end = end;
1102 if (is_cow)
1103 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1104 mmun_end);
cddb8a5c
AA
1105
1106 ret = 0;
1da177e4
LT
1107 dst_pgd = pgd_offset(dst_mm, addr);
1108 src_pgd = pgd_offset(src_mm, addr);
1109 do {
1110 next = pgd_addr_end(addr, end);
1111 if (pgd_none_or_clear_bad(src_pgd))
1112 continue;
cddb8a5c
AA
1113 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1114 vma, addr, next))) {
1115 ret = -ENOMEM;
1116 break;
1117 }
1da177e4 1118 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1119
2ec74c3e
SG
1120 if (is_cow)
1121 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1122 return ret;
1da177e4
LT
1123}
1124
51c6f666 1125static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1126 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1127 unsigned long addr, unsigned long end,
97a89413 1128 struct zap_details *details)
1da177e4 1129{
b5810039 1130 struct mm_struct *mm = tlb->mm;
d16dfc55 1131 int force_flush = 0;
d559db08 1132 int rss[NR_MM_COUNTERS];
97a89413 1133 spinlock_t *ptl;
5f1a1907 1134 pte_t *start_pte;
97a89413 1135 pte_t *pte;
8a5f14a2 1136 swp_entry_t entry;
d559db08 1137
07e32661 1138 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1139again:
e303297e 1140 init_rss_vec(rss);
5f1a1907
SR
1141 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1142 pte = start_pte;
6606c3e0 1143 arch_enter_lazy_mmu_mode();
1da177e4
LT
1144 do {
1145 pte_t ptent = *pte;
166f61b9 1146 if (pte_none(ptent))
1da177e4 1147 continue;
6f5e6b9e 1148
1da177e4 1149 if (pte_present(ptent)) {
ee498ed7 1150 struct page *page;
51c6f666 1151
6aab341e 1152 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1153 if (unlikely(details) && page) {
1154 /*
1155 * unmap_shared_mapping_pages() wants to
1156 * invalidate cache without truncating:
1157 * unmap shared but keep private pages.
1158 */
1159 if (details->check_mapping &&
800d8c63 1160 details->check_mapping != page_rmapping(page))
1da177e4 1161 continue;
1da177e4 1162 }
b5810039 1163 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1164 tlb->fullmm);
1da177e4
LT
1165 tlb_remove_tlb_entry(tlb, pte, addr);
1166 if (unlikely(!page))
1167 continue;
eca56ff9
JM
1168
1169 if (!PageAnon(page)) {
1cf35d47
LT
1170 if (pte_dirty(ptent)) {
1171 force_flush = 1;
6237bcd9 1172 set_page_dirty(page);
1cf35d47 1173 }
4917e5d0 1174 if (pte_young(ptent) &&
64363aad 1175 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1176 mark_page_accessed(page);
6237bcd9 1177 }
eca56ff9 1178 rss[mm_counter(page)]--;
d281ee61 1179 page_remove_rmap(page, false);
3dc14741
HD
1180 if (unlikely(page_mapcount(page) < 0))
1181 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1182 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1183 force_flush = 1;
ce9ec37b 1184 addr += PAGE_SIZE;
d16dfc55 1185 break;
1cf35d47 1186 }
1da177e4
LT
1187 continue;
1188 }
3e8715fd
KS
1189 /* If details->check_mapping, we leave swap entries. */
1190 if (unlikely(details))
1da177e4 1191 continue;
b084d435 1192
8a5f14a2
KS
1193 entry = pte_to_swp_entry(ptent);
1194 if (!non_swap_entry(entry))
1195 rss[MM_SWAPENTS]--;
1196 else if (is_migration_entry(entry)) {
1197 struct page *page;
9f9f1acd 1198
8a5f14a2 1199 page = migration_entry_to_page(entry);
eca56ff9 1200 rss[mm_counter(page)]--;
b084d435 1201 }
8a5f14a2
KS
1202 if (unlikely(!free_swap_and_cache(entry)))
1203 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1204 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1205 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1206
d559db08 1207 add_mm_rss_vec(mm, rss);
6606c3e0 1208 arch_leave_lazy_mmu_mode();
51c6f666 1209
1cf35d47 1210 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1211 if (force_flush)
1cf35d47 1212 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1213 pte_unmap_unlock(start_pte, ptl);
1214
1215 /*
1216 * If we forced a TLB flush (either due to running out of
1217 * batch buffers or because we needed to flush dirty TLB
1218 * entries before releasing the ptl), free the batched
1219 * memory too. Restart if we didn't do everything.
1220 */
1221 if (force_flush) {
1222 force_flush = 0;
1223 tlb_flush_mmu_free(tlb);
2b047252 1224 if (addr != end)
d16dfc55
PZ
1225 goto again;
1226 }
1227
51c6f666 1228 return addr;
1da177e4
LT
1229}
1230
51c6f666 1231static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1232 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1233 unsigned long addr, unsigned long end,
97a89413 1234 struct zap_details *details)
1da177e4
LT
1235{
1236 pmd_t *pmd;
1237 unsigned long next;
1238
1239 pmd = pmd_offset(pud, addr);
1240 do {
1241 next = pmd_addr_end(addr, end);
5c7fb56e 1242 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1243 if (next - addr != HPAGE_PMD_SIZE) {
68428398
HD
1244 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1245 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
fd60775a 1246 __split_huge_pmd(vma, pmd, addr, false, NULL);
f21760b1 1247 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1248 goto next;
71e3aac0
AA
1249 /* fall through */
1250 }
1a5a9906
AA
1251 /*
1252 * Here there can be other concurrent MADV_DONTNEED or
1253 * trans huge page faults running, and if the pmd is
1254 * none or trans huge it can change under us. This is
1255 * because MADV_DONTNEED holds the mmap_sem in read
1256 * mode.
1257 */
1258 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259 goto next;
97a89413 1260 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1261next:
97a89413
PZ
1262 cond_resched();
1263 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1264
1265 return addr;
1da177e4
LT
1266}
1267
51c6f666 1268static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1269 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1270 unsigned long addr, unsigned long end,
97a89413 1271 struct zap_details *details)
1da177e4
LT
1272{
1273 pud_t *pud;
1274 unsigned long next;
1275
1276 pud = pud_offset(pgd, addr);
1277 do {
1278 next = pud_addr_end(addr, end);
a00cc7d9
MW
1279 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1280 if (next - addr != HPAGE_PUD_SIZE) {
1281 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1282 split_huge_pud(vma, pud, addr);
1283 } else if (zap_huge_pud(tlb, vma, pud, addr))
1284 goto next;
1285 /* fall through */
1286 }
97a89413 1287 if (pud_none_or_clear_bad(pud))
1da177e4 1288 continue;
97a89413 1289 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1290next:
1291 cond_resched();
97a89413 1292 } while (pud++, addr = next, addr != end);
51c6f666
RH
1293
1294 return addr;
1da177e4
LT
1295}
1296
aac45363 1297void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1298 struct vm_area_struct *vma,
1299 unsigned long addr, unsigned long end,
1300 struct zap_details *details)
1da177e4
LT
1301{
1302 pgd_t *pgd;
1303 unsigned long next;
1304
1da177e4
LT
1305 BUG_ON(addr >= end);
1306 tlb_start_vma(tlb, vma);
1307 pgd = pgd_offset(vma->vm_mm, addr);
1308 do {
1309 next = pgd_addr_end(addr, end);
97a89413 1310 if (pgd_none_or_clear_bad(pgd))
1da177e4 1311 continue;
97a89413
PZ
1312 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1313 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1314 tlb_end_vma(tlb, vma);
1315}
51c6f666 1316
f5cc4eef
AV
1317
1318static void unmap_single_vma(struct mmu_gather *tlb,
1319 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1320 unsigned long end_addr,
f5cc4eef
AV
1321 struct zap_details *details)
1322{
1323 unsigned long start = max(vma->vm_start, start_addr);
1324 unsigned long end;
1325
1326 if (start >= vma->vm_end)
1327 return;
1328 end = min(vma->vm_end, end_addr);
1329 if (end <= vma->vm_start)
1330 return;
1331
cbc91f71
SD
1332 if (vma->vm_file)
1333 uprobe_munmap(vma, start, end);
1334
b3b9c293 1335 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1336 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1337
1338 if (start != end) {
1339 if (unlikely(is_vm_hugetlb_page(vma))) {
1340 /*
1341 * It is undesirable to test vma->vm_file as it
1342 * should be non-null for valid hugetlb area.
1343 * However, vm_file will be NULL in the error
7aa6b4ad 1344 * cleanup path of mmap_region. When
f5cc4eef 1345 * hugetlbfs ->mmap method fails,
7aa6b4ad 1346 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1347 * before calling this function to clean up.
1348 * Since no pte has actually been setup, it is
1349 * safe to do nothing in this case.
1350 */
24669e58 1351 if (vma->vm_file) {
83cde9e8 1352 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1353 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1354 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1355 }
f5cc4eef
AV
1356 } else
1357 unmap_page_range(tlb, vma, start, end, details);
1358 }
1da177e4
LT
1359}
1360
1da177e4
LT
1361/**
1362 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1363 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1364 * @vma: the starting vma
1365 * @start_addr: virtual address at which to start unmapping
1366 * @end_addr: virtual address at which to end unmapping
1da177e4 1367 *
508034a3 1368 * Unmap all pages in the vma list.
1da177e4 1369 *
1da177e4
LT
1370 * Only addresses between `start' and `end' will be unmapped.
1371 *
1372 * The VMA list must be sorted in ascending virtual address order.
1373 *
1374 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1375 * range after unmap_vmas() returns. So the only responsibility here is to
1376 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1377 * drops the lock and schedules.
1378 */
6e8bb019 1379void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1380 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1381 unsigned long end_addr)
1da177e4 1382{
cddb8a5c 1383 struct mm_struct *mm = vma->vm_mm;
1da177e4 1384
cddb8a5c 1385 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1386 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1387 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1388 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1389}
1390
1391/**
1392 * zap_page_range - remove user pages in a given range
1393 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1394 * @start: starting address of pages to zap
1da177e4 1395 * @size: number of bytes to zap
f5cc4eef
AV
1396 *
1397 * Caller must protect the VMA list
1da177e4 1398 */
7e027b14 1399void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1400 unsigned long size)
1da177e4
LT
1401{
1402 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1403 struct mmu_gather tlb;
7e027b14 1404 unsigned long end = start + size;
1da177e4 1405
1da177e4 1406 lru_add_drain();
2b047252 1407 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1408 update_hiwater_rss(mm);
7e027b14
LT
1409 mmu_notifier_invalidate_range_start(mm, start, end);
1410 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
ecf1385d 1411 unmap_single_vma(&tlb, vma, start, end, NULL);
7e027b14
LT
1412 mmu_notifier_invalidate_range_end(mm, start, end);
1413 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1414}
1415
f5cc4eef
AV
1416/**
1417 * zap_page_range_single - remove user pages in a given range
1418 * @vma: vm_area_struct holding the applicable pages
1419 * @address: starting address of pages to zap
1420 * @size: number of bytes to zap
8a5f14a2 1421 * @details: details of shared cache invalidation
f5cc4eef
AV
1422 *
1423 * The range must fit into one VMA.
1da177e4 1424 */
f5cc4eef 1425static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1426 unsigned long size, struct zap_details *details)
1427{
1428 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1429 struct mmu_gather tlb;
1da177e4 1430 unsigned long end = address + size;
1da177e4 1431
1da177e4 1432 lru_add_drain();
2b047252 1433 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1434 update_hiwater_rss(mm);
f5cc4eef 1435 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1436 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1437 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1438 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1439}
1440
c627f9cc
JS
1441/**
1442 * zap_vma_ptes - remove ptes mapping the vma
1443 * @vma: vm_area_struct holding ptes to be zapped
1444 * @address: starting address of pages to zap
1445 * @size: number of bytes to zap
1446 *
1447 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1448 *
1449 * The entire address range must be fully contained within the vma.
1450 *
1451 * Returns 0 if successful.
1452 */
1453int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1454 unsigned long size)
1455{
1456 if (address < vma->vm_start || address + size > vma->vm_end ||
1457 !(vma->vm_flags & VM_PFNMAP))
1458 return -1;
f5cc4eef 1459 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1460 return 0;
1461}
1462EXPORT_SYMBOL_GPL(zap_vma_ptes);
1463
25ca1d6c 1464pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1465 spinlock_t **ptl)
c9cfcddf 1466{
166f61b9
TH
1467 pgd_t *pgd = pgd_offset(mm, addr);
1468 pud_t *pud = pud_alloc(mm, pgd, addr);
c9cfcddf 1469 if (pud) {
166f61b9 1470 pmd_t *pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1471 if (pmd) {
1472 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1473 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1474 }
c9cfcddf
LT
1475 }
1476 return NULL;
1477}
1478
238f58d8
LT
1479/*
1480 * This is the old fallback for page remapping.
1481 *
1482 * For historical reasons, it only allows reserved pages. Only
1483 * old drivers should use this, and they needed to mark their
1484 * pages reserved for the old functions anyway.
1485 */
423bad60
NP
1486static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1487 struct page *page, pgprot_t prot)
238f58d8 1488{
423bad60 1489 struct mm_struct *mm = vma->vm_mm;
238f58d8 1490 int retval;
c9cfcddf 1491 pte_t *pte;
8a9f3ccd
BS
1492 spinlock_t *ptl;
1493
238f58d8 1494 retval = -EINVAL;
a145dd41 1495 if (PageAnon(page))
5b4e655e 1496 goto out;
238f58d8
LT
1497 retval = -ENOMEM;
1498 flush_dcache_page(page);
c9cfcddf 1499 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1500 if (!pte)
5b4e655e 1501 goto out;
238f58d8
LT
1502 retval = -EBUSY;
1503 if (!pte_none(*pte))
1504 goto out_unlock;
1505
1506 /* Ok, finally just insert the thing.. */
1507 get_page(page);
eca56ff9 1508 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1509 page_add_file_rmap(page, false);
238f58d8
LT
1510 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1511
1512 retval = 0;
8a9f3ccd
BS
1513 pte_unmap_unlock(pte, ptl);
1514 return retval;
238f58d8
LT
1515out_unlock:
1516 pte_unmap_unlock(pte, ptl);
1517out:
1518 return retval;
1519}
1520
bfa5bf6d
REB
1521/**
1522 * vm_insert_page - insert single page into user vma
1523 * @vma: user vma to map to
1524 * @addr: target user address of this page
1525 * @page: source kernel page
1526 *
a145dd41
LT
1527 * This allows drivers to insert individual pages they've allocated
1528 * into a user vma.
1529 *
1530 * The page has to be a nice clean _individual_ kernel allocation.
1531 * If you allocate a compound page, you need to have marked it as
1532 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1533 * (see split_page()).
a145dd41
LT
1534 *
1535 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1536 * took an arbitrary page protection parameter. This doesn't allow
1537 * that. Your vma protection will have to be set up correctly, which
1538 * means that if you want a shared writable mapping, you'd better
1539 * ask for a shared writable mapping!
1540 *
1541 * The page does not need to be reserved.
4b6e1e37
KK
1542 *
1543 * Usually this function is called from f_op->mmap() handler
1544 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1545 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1546 * function from other places, for example from page-fault handler.
a145dd41 1547 */
423bad60
NP
1548int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1549 struct page *page)
a145dd41
LT
1550{
1551 if (addr < vma->vm_start || addr >= vma->vm_end)
1552 return -EFAULT;
1553 if (!page_count(page))
1554 return -EINVAL;
4b6e1e37
KK
1555 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1556 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1557 BUG_ON(vma->vm_flags & VM_PFNMAP);
1558 vma->vm_flags |= VM_MIXEDMAP;
1559 }
423bad60 1560 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1561}
e3c3374f 1562EXPORT_SYMBOL(vm_insert_page);
a145dd41 1563
423bad60 1564static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1565 pfn_t pfn, pgprot_t prot)
423bad60
NP
1566{
1567 struct mm_struct *mm = vma->vm_mm;
1568 int retval;
1569 pte_t *pte, entry;
1570 spinlock_t *ptl;
1571
1572 retval = -ENOMEM;
1573 pte = get_locked_pte(mm, addr, &ptl);
1574 if (!pte)
1575 goto out;
1576 retval = -EBUSY;
1577 if (!pte_none(*pte))
1578 goto out_unlock;
1579
1580 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1581 if (pfn_t_devmap(pfn))
1582 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1583 else
1584 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
423bad60 1585 set_pte_at(mm, addr, pte, entry);
4b3073e1 1586 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1587
1588 retval = 0;
1589out_unlock:
1590 pte_unmap_unlock(pte, ptl);
1591out:
1592 return retval;
1593}
1594
e0dc0d8f
NP
1595/**
1596 * vm_insert_pfn - insert single pfn into user vma
1597 * @vma: user vma to map to
1598 * @addr: target user address of this page
1599 * @pfn: source kernel pfn
1600 *
c462f179 1601 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1602 * they've allocated into a user vma. Same comments apply.
1603 *
1604 * This function should only be called from a vm_ops->fault handler, and
1605 * in that case the handler should return NULL.
0d71d10a
NP
1606 *
1607 * vma cannot be a COW mapping.
1608 *
1609 * As this is called only for pages that do not currently exist, we
1610 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1611 */
1612int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1613 unsigned long pfn)
1745cbc5
AL
1614{
1615 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1616}
1617EXPORT_SYMBOL(vm_insert_pfn);
1618
1619/**
1620 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1621 * @vma: user vma to map to
1622 * @addr: target user address of this page
1623 * @pfn: source kernel pfn
1624 * @pgprot: pgprot flags for the inserted page
1625 *
1626 * This is exactly like vm_insert_pfn, except that it allows drivers to
1627 * to override pgprot on a per-page basis.
1628 *
1629 * This only makes sense for IO mappings, and it makes no sense for
1630 * cow mappings. In general, using multiple vmas is preferable;
1631 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1632 * impractical.
1633 */
1634int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1635 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1636{
2ab64037 1637 int ret;
7e675137
NP
1638 /*
1639 * Technically, architectures with pte_special can avoid all these
1640 * restrictions (same for remap_pfn_range). However we would like
1641 * consistency in testing and feature parity among all, so we should
1642 * try to keep these invariants in place for everybody.
1643 */
b379d790
JH
1644 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1645 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1646 (VM_PFNMAP|VM_MIXEDMAP));
1647 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1648 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1649
423bad60
NP
1650 if (addr < vma->vm_start || addr >= vma->vm_end)
1651 return -EFAULT;
308a047c
BP
1652
1653 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1654
01c8f1c4 1655 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
2ab64037 1656
2ab64037 1657 return ret;
423bad60 1658}
1745cbc5 1659EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1660
423bad60 1661int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1662 pfn_t pfn)
423bad60 1663{
87744ab3
DW
1664 pgprot_t pgprot = vma->vm_page_prot;
1665
423bad60 1666 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1667
423bad60
NP
1668 if (addr < vma->vm_start || addr >= vma->vm_end)
1669 return -EFAULT;
308a047c
BP
1670
1671 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1672
423bad60
NP
1673 /*
1674 * If we don't have pte special, then we have to use the pfn_valid()
1675 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1676 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1677 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1678 * without pte special, it would there be refcounted as a normal page.
423bad60 1679 */
03fc2da6 1680 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1681 struct page *page;
1682
03fc2da6
DW
1683 /*
1684 * At this point we are committed to insert_page()
1685 * regardless of whether the caller specified flags that
1686 * result in pfn_t_has_page() == false.
1687 */
1688 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1689 return insert_page(vma, addr, page, pgprot);
423bad60 1690 }
87744ab3 1691 return insert_pfn(vma, addr, pfn, pgprot);
e0dc0d8f 1692}
423bad60 1693EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1694
1da177e4
LT
1695/*
1696 * maps a range of physical memory into the requested pages. the old
1697 * mappings are removed. any references to nonexistent pages results
1698 * in null mappings (currently treated as "copy-on-access")
1699 */
1700static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1701 unsigned long addr, unsigned long end,
1702 unsigned long pfn, pgprot_t prot)
1703{
1704 pte_t *pte;
c74df32c 1705 spinlock_t *ptl;
1da177e4 1706
c74df32c 1707 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1708 if (!pte)
1709 return -ENOMEM;
6606c3e0 1710 arch_enter_lazy_mmu_mode();
1da177e4
LT
1711 do {
1712 BUG_ON(!pte_none(*pte));
7e675137 1713 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1714 pfn++;
1715 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1716 arch_leave_lazy_mmu_mode();
c74df32c 1717 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1718 return 0;
1719}
1720
1721static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1722 unsigned long addr, unsigned long end,
1723 unsigned long pfn, pgprot_t prot)
1724{
1725 pmd_t *pmd;
1726 unsigned long next;
1727
1728 pfn -= addr >> PAGE_SHIFT;
1729 pmd = pmd_alloc(mm, pud, addr);
1730 if (!pmd)
1731 return -ENOMEM;
f66055ab 1732 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1733 do {
1734 next = pmd_addr_end(addr, end);
1735 if (remap_pte_range(mm, pmd, addr, next,
1736 pfn + (addr >> PAGE_SHIFT), prot))
1737 return -ENOMEM;
1738 } while (pmd++, addr = next, addr != end);
1739 return 0;
1740}
1741
1742static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1743 unsigned long addr, unsigned long end,
1744 unsigned long pfn, pgprot_t prot)
1745{
1746 pud_t *pud;
1747 unsigned long next;
1748
1749 pfn -= addr >> PAGE_SHIFT;
1750 pud = pud_alloc(mm, pgd, addr);
1751 if (!pud)
1752 return -ENOMEM;
1753 do {
1754 next = pud_addr_end(addr, end);
1755 if (remap_pmd_range(mm, pud, addr, next,
1756 pfn + (addr >> PAGE_SHIFT), prot))
1757 return -ENOMEM;
1758 } while (pud++, addr = next, addr != end);
1759 return 0;
1760}
1761
bfa5bf6d
REB
1762/**
1763 * remap_pfn_range - remap kernel memory to userspace
1764 * @vma: user vma to map to
1765 * @addr: target user address to start at
1766 * @pfn: physical address of kernel memory
1767 * @size: size of map area
1768 * @prot: page protection flags for this mapping
1769 *
1770 * Note: this is only safe if the mm semaphore is held when called.
1771 */
1da177e4
LT
1772int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1773 unsigned long pfn, unsigned long size, pgprot_t prot)
1774{
1775 pgd_t *pgd;
1776 unsigned long next;
2d15cab8 1777 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1778 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1779 unsigned long remap_pfn = pfn;
1da177e4
LT
1780 int err;
1781
1782 /*
1783 * Physically remapped pages are special. Tell the
1784 * rest of the world about it:
1785 * VM_IO tells people not to look at these pages
1786 * (accesses can have side effects).
6aab341e
LT
1787 * VM_PFNMAP tells the core MM that the base pages are just
1788 * raw PFN mappings, and do not have a "struct page" associated
1789 * with them.
314e51b9
KK
1790 * VM_DONTEXPAND
1791 * Disable vma merging and expanding with mremap().
1792 * VM_DONTDUMP
1793 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1794 *
1795 * There's a horrible special case to handle copy-on-write
1796 * behaviour that some programs depend on. We mark the "original"
1797 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1798 * See vm_normal_page() for details.
1da177e4 1799 */
b3b9c293
KK
1800 if (is_cow_mapping(vma->vm_flags)) {
1801 if (addr != vma->vm_start || end != vma->vm_end)
1802 return -EINVAL;
fb155c16 1803 vma->vm_pgoff = pfn;
b3b9c293
KK
1804 }
1805
d5957d2f 1806 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1807 if (err)
3c8bb73a 1808 return -EINVAL;
fb155c16 1809
314e51b9 1810 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1811
1812 BUG_ON(addr >= end);
1813 pfn -= addr >> PAGE_SHIFT;
1814 pgd = pgd_offset(mm, addr);
1815 flush_cache_range(vma, addr, end);
1da177e4
LT
1816 do {
1817 next = pgd_addr_end(addr, end);
1818 err = remap_pud_range(mm, pgd, addr, next,
1819 pfn + (addr >> PAGE_SHIFT), prot);
1820 if (err)
1821 break;
1822 } while (pgd++, addr = next, addr != end);
2ab64037 1823
1824 if (err)
d5957d2f 1825 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1826
1da177e4
LT
1827 return err;
1828}
1829EXPORT_SYMBOL(remap_pfn_range);
1830
b4cbb197
LT
1831/**
1832 * vm_iomap_memory - remap memory to userspace
1833 * @vma: user vma to map to
1834 * @start: start of area
1835 * @len: size of area
1836 *
1837 * This is a simplified io_remap_pfn_range() for common driver use. The
1838 * driver just needs to give us the physical memory range to be mapped,
1839 * we'll figure out the rest from the vma information.
1840 *
1841 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1842 * whatever write-combining details or similar.
1843 */
1844int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1845{
1846 unsigned long vm_len, pfn, pages;
1847
1848 /* Check that the physical memory area passed in looks valid */
1849 if (start + len < start)
1850 return -EINVAL;
1851 /*
1852 * You *really* shouldn't map things that aren't page-aligned,
1853 * but we've historically allowed it because IO memory might
1854 * just have smaller alignment.
1855 */
1856 len += start & ~PAGE_MASK;
1857 pfn = start >> PAGE_SHIFT;
1858 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1859 if (pfn + pages < pfn)
1860 return -EINVAL;
1861
1862 /* We start the mapping 'vm_pgoff' pages into the area */
1863 if (vma->vm_pgoff > pages)
1864 return -EINVAL;
1865 pfn += vma->vm_pgoff;
1866 pages -= vma->vm_pgoff;
1867
1868 /* Can we fit all of the mapping? */
1869 vm_len = vma->vm_end - vma->vm_start;
1870 if (vm_len >> PAGE_SHIFT > pages)
1871 return -EINVAL;
1872
1873 /* Ok, let it rip */
1874 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1875}
1876EXPORT_SYMBOL(vm_iomap_memory);
1877
aee16b3c
JF
1878static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1879 unsigned long addr, unsigned long end,
1880 pte_fn_t fn, void *data)
1881{
1882 pte_t *pte;
1883 int err;
2f569afd 1884 pgtable_t token;
94909914 1885 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1886
1887 pte = (mm == &init_mm) ?
1888 pte_alloc_kernel(pmd, addr) :
1889 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1890 if (!pte)
1891 return -ENOMEM;
1892
1893 BUG_ON(pmd_huge(*pmd));
1894
38e0edb1
JF
1895 arch_enter_lazy_mmu_mode();
1896
2f569afd 1897 token = pmd_pgtable(*pmd);
aee16b3c
JF
1898
1899 do {
c36987e2 1900 err = fn(pte++, token, addr, data);
aee16b3c
JF
1901 if (err)
1902 break;
c36987e2 1903 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1904
38e0edb1
JF
1905 arch_leave_lazy_mmu_mode();
1906
aee16b3c
JF
1907 if (mm != &init_mm)
1908 pte_unmap_unlock(pte-1, ptl);
1909 return err;
1910}
1911
1912static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1913 unsigned long addr, unsigned long end,
1914 pte_fn_t fn, void *data)
1915{
1916 pmd_t *pmd;
1917 unsigned long next;
1918 int err;
1919
ceb86879
AK
1920 BUG_ON(pud_huge(*pud));
1921
aee16b3c
JF
1922 pmd = pmd_alloc(mm, pud, addr);
1923 if (!pmd)
1924 return -ENOMEM;
1925 do {
1926 next = pmd_addr_end(addr, end);
1927 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1928 if (err)
1929 break;
1930 } while (pmd++, addr = next, addr != end);
1931 return err;
1932}
1933
1934static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1935 unsigned long addr, unsigned long end,
1936 pte_fn_t fn, void *data)
1937{
1938 pud_t *pud;
1939 unsigned long next;
1940 int err;
1941
1942 pud = pud_alloc(mm, pgd, addr);
1943 if (!pud)
1944 return -ENOMEM;
1945 do {
1946 next = pud_addr_end(addr, end);
1947 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1948 if (err)
1949 break;
1950 } while (pud++, addr = next, addr != end);
1951 return err;
1952}
1953
1954/*
1955 * Scan a region of virtual memory, filling in page tables as necessary
1956 * and calling a provided function on each leaf page table.
1957 */
1958int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1959 unsigned long size, pte_fn_t fn, void *data)
1960{
1961 pgd_t *pgd;
1962 unsigned long next;
57250a5b 1963 unsigned long end = addr + size;
aee16b3c
JF
1964 int err;
1965
9cb65bc3
MP
1966 if (WARN_ON(addr >= end))
1967 return -EINVAL;
1968
aee16b3c
JF
1969 pgd = pgd_offset(mm, addr);
1970 do {
1971 next = pgd_addr_end(addr, end);
1972 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1973 if (err)
1974 break;
1975 } while (pgd++, addr = next, addr != end);
57250a5b 1976
aee16b3c
JF
1977 return err;
1978}
1979EXPORT_SYMBOL_GPL(apply_to_page_range);
1980
8f4e2101 1981/*
9b4bdd2f
KS
1982 * handle_pte_fault chooses page fault handler according to an entry which was
1983 * read non-atomically. Before making any commitment, on those architectures
1984 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1985 * parts, do_swap_page must check under lock before unmapping the pte and
1986 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 1987 * and do_anonymous_page can safely check later on).
8f4e2101 1988 */
4c21e2f2 1989static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1990 pte_t *page_table, pte_t orig_pte)
1991{
1992 int same = 1;
1993#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1994 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1995 spinlock_t *ptl = pte_lockptr(mm, pmd);
1996 spin_lock(ptl);
8f4e2101 1997 same = pte_same(*page_table, orig_pte);
4c21e2f2 1998 spin_unlock(ptl);
8f4e2101
HD
1999 }
2000#endif
2001 pte_unmap(page_table);
2002 return same;
2003}
2004
9de455b2 2005static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2006{
0abdd7a8
DW
2007 debug_dma_assert_idle(src);
2008
6aab341e
LT
2009 /*
2010 * If the source page was a PFN mapping, we don't have
2011 * a "struct page" for it. We do a best-effort copy by
2012 * just copying from the original user address. If that
2013 * fails, we just zero-fill it. Live with it.
2014 */
2015 if (unlikely(!src)) {
9b04c5fe 2016 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2017 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2018
2019 /*
2020 * This really shouldn't fail, because the page is there
2021 * in the page tables. But it might just be unreadable,
2022 * in which case we just give up and fill the result with
2023 * zeroes.
2024 */
2025 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2026 clear_page(kaddr);
9b04c5fe 2027 kunmap_atomic(kaddr);
c4ec7b0d 2028 flush_dcache_page(dst);
0ed361de
NP
2029 } else
2030 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2031}
2032
c20cd45e
MH
2033static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2034{
2035 struct file *vm_file = vma->vm_file;
2036
2037 if (vm_file)
2038 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2039
2040 /*
2041 * Special mappings (e.g. VDSO) do not have any file so fake
2042 * a default GFP_KERNEL for them.
2043 */
2044 return GFP_KERNEL;
2045}
2046
fb09a464
KS
2047/*
2048 * Notify the address space that the page is about to become writable so that
2049 * it can prohibit this or wait for the page to get into an appropriate state.
2050 *
2051 * We do this without the lock held, so that it can sleep if it needs to.
2052 */
38b8cb7f 2053static int do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2054{
fb09a464 2055 int ret;
38b8cb7f
JK
2056 struct page *page = vmf->page;
2057 unsigned int old_flags = vmf->flags;
fb09a464 2058
38b8cb7f 2059 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2060
11bac800 2061 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2062 /* Restore original flags so that caller is not surprised */
2063 vmf->flags = old_flags;
fb09a464
KS
2064 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2065 return ret;
2066 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2067 lock_page(page);
2068 if (!page->mapping) {
2069 unlock_page(page);
2070 return 0; /* retry */
2071 }
2072 ret |= VM_FAULT_LOCKED;
2073 } else
2074 VM_BUG_ON_PAGE(!PageLocked(page), page);
2075 return ret;
2076}
2077
97ba0c2b
JK
2078/*
2079 * Handle dirtying of a page in shared file mapping on a write fault.
2080 *
2081 * The function expects the page to be locked and unlocks it.
2082 */
2083static void fault_dirty_shared_page(struct vm_area_struct *vma,
2084 struct page *page)
2085{
2086 struct address_space *mapping;
2087 bool dirtied;
2088 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2089
2090 dirtied = set_page_dirty(page);
2091 VM_BUG_ON_PAGE(PageAnon(page), page);
2092 /*
2093 * Take a local copy of the address_space - page.mapping may be zeroed
2094 * by truncate after unlock_page(). The address_space itself remains
2095 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2096 * release semantics to prevent the compiler from undoing this copying.
2097 */
2098 mapping = page_rmapping(page);
2099 unlock_page(page);
2100
2101 if ((dirtied || page_mkwrite) && mapping) {
2102 /*
2103 * Some device drivers do not set page.mapping
2104 * but still dirty their pages
2105 */
2106 balance_dirty_pages_ratelimited(mapping);
2107 }
2108
2109 if (!page_mkwrite)
2110 file_update_time(vma->vm_file);
2111}
2112
4e047f89
SR
2113/*
2114 * Handle write page faults for pages that can be reused in the current vma
2115 *
2116 * This can happen either due to the mapping being with the VM_SHARED flag,
2117 * or due to us being the last reference standing to the page. In either
2118 * case, all we need to do here is to mark the page as writable and update
2119 * any related book-keeping.
2120 */
997dd98d 2121static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2122 __releases(vmf->ptl)
4e047f89 2123{
82b0f8c3 2124 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2125 struct page *page = vmf->page;
4e047f89
SR
2126 pte_t entry;
2127 /*
2128 * Clear the pages cpupid information as the existing
2129 * information potentially belongs to a now completely
2130 * unrelated process.
2131 */
2132 if (page)
2133 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2134
2994302b
JK
2135 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2136 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2137 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2138 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2139 update_mmu_cache(vma, vmf->address, vmf->pte);
2140 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2141}
2142
2f38ab2c
SR
2143/*
2144 * Handle the case of a page which we actually need to copy to a new page.
2145 *
2146 * Called with mmap_sem locked and the old page referenced, but
2147 * without the ptl held.
2148 *
2149 * High level logic flow:
2150 *
2151 * - Allocate a page, copy the content of the old page to the new one.
2152 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2153 * - Take the PTL. If the pte changed, bail out and release the allocated page
2154 * - If the pte is still the way we remember it, update the page table and all
2155 * relevant references. This includes dropping the reference the page-table
2156 * held to the old page, as well as updating the rmap.
2157 * - In any case, unlock the PTL and drop the reference we took to the old page.
2158 */
a41b70d6 2159static int wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2160{
82b0f8c3 2161 struct vm_area_struct *vma = vmf->vma;
bae473a4 2162 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2163 struct page *old_page = vmf->page;
2f38ab2c 2164 struct page *new_page = NULL;
2f38ab2c
SR
2165 pte_t entry;
2166 int page_copied = 0;
82b0f8c3 2167 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2168 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2169 struct mem_cgroup *memcg;
2170
2171 if (unlikely(anon_vma_prepare(vma)))
2172 goto oom;
2173
2994302b 2174 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2175 new_page = alloc_zeroed_user_highpage_movable(vma,
2176 vmf->address);
2f38ab2c
SR
2177 if (!new_page)
2178 goto oom;
2179 } else {
bae473a4 2180 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2181 vmf->address);
2f38ab2c
SR
2182 if (!new_page)
2183 goto oom;
82b0f8c3 2184 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2185 }
2f38ab2c 2186
f627c2f5 2187 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2188 goto oom_free_new;
2189
eb3c24f3
MG
2190 __SetPageUptodate(new_page);
2191
2f38ab2c
SR
2192 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2193
2194 /*
2195 * Re-check the pte - we dropped the lock
2196 */
82b0f8c3 2197 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2198 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2199 if (old_page) {
2200 if (!PageAnon(old_page)) {
eca56ff9
JM
2201 dec_mm_counter_fast(mm,
2202 mm_counter_file(old_page));
2f38ab2c
SR
2203 inc_mm_counter_fast(mm, MM_ANONPAGES);
2204 }
2205 } else {
2206 inc_mm_counter_fast(mm, MM_ANONPAGES);
2207 }
2994302b 2208 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2209 entry = mk_pte(new_page, vma->vm_page_prot);
2210 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2211 /*
2212 * Clear the pte entry and flush it first, before updating the
2213 * pte with the new entry. This will avoid a race condition
2214 * seen in the presence of one thread doing SMC and another
2215 * thread doing COW.
2216 */
82b0f8c3
JK
2217 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2218 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2219 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2220 lru_cache_add_active_or_unevictable(new_page, vma);
2221 /*
2222 * We call the notify macro here because, when using secondary
2223 * mmu page tables (such as kvm shadow page tables), we want the
2224 * new page to be mapped directly into the secondary page table.
2225 */
82b0f8c3
JK
2226 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2227 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2228 if (old_page) {
2229 /*
2230 * Only after switching the pte to the new page may
2231 * we remove the mapcount here. Otherwise another
2232 * process may come and find the rmap count decremented
2233 * before the pte is switched to the new page, and
2234 * "reuse" the old page writing into it while our pte
2235 * here still points into it and can be read by other
2236 * threads.
2237 *
2238 * The critical issue is to order this
2239 * page_remove_rmap with the ptp_clear_flush above.
2240 * Those stores are ordered by (if nothing else,)
2241 * the barrier present in the atomic_add_negative
2242 * in page_remove_rmap.
2243 *
2244 * Then the TLB flush in ptep_clear_flush ensures that
2245 * no process can access the old page before the
2246 * decremented mapcount is visible. And the old page
2247 * cannot be reused until after the decremented
2248 * mapcount is visible. So transitively, TLBs to
2249 * old page will be flushed before it can be reused.
2250 */
d281ee61 2251 page_remove_rmap(old_page, false);
2f38ab2c
SR
2252 }
2253
2254 /* Free the old page.. */
2255 new_page = old_page;
2256 page_copied = 1;
2257 } else {
f627c2f5 2258 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2259 }
2260
2261 if (new_page)
09cbfeaf 2262 put_page(new_page);
2f38ab2c 2263
82b0f8c3 2264 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
2265 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2266 if (old_page) {
2267 /*
2268 * Don't let another task, with possibly unlocked vma,
2269 * keep the mlocked page.
2270 */
2271 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2272 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2273 if (PageMlocked(old_page))
2274 munlock_vma_page(old_page);
2f38ab2c
SR
2275 unlock_page(old_page);
2276 }
09cbfeaf 2277 put_page(old_page);
2f38ab2c
SR
2278 }
2279 return page_copied ? VM_FAULT_WRITE : 0;
2280oom_free_new:
09cbfeaf 2281 put_page(new_page);
2f38ab2c
SR
2282oom:
2283 if (old_page)
09cbfeaf 2284 put_page(old_page);
2f38ab2c
SR
2285 return VM_FAULT_OOM;
2286}
2287
66a6197c
JK
2288/**
2289 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2290 * writeable once the page is prepared
2291 *
2292 * @vmf: structure describing the fault
2293 *
2294 * This function handles all that is needed to finish a write page fault in a
2295 * shared mapping due to PTE being read-only once the mapped page is prepared.
2296 * It handles locking of PTE and modifying it. The function returns
2297 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2298 * lock.
2299 *
2300 * The function expects the page to be locked or other protection against
2301 * concurrent faults / writeback (such as DAX radix tree locks).
2302 */
2303int finish_mkwrite_fault(struct vm_fault *vmf)
2304{
2305 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2306 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2307 &vmf->ptl);
2308 /*
2309 * We might have raced with another page fault while we released the
2310 * pte_offset_map_lock.
2311 */
2312 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2313 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2314 return VM_FAULT_NOPAGE;
66a6197c
JK
2315 }
2316 wp_page_reuse(vmf);
a19e2553 2317 return 0;
66a6197c
JK
2318}
2319
dd906184
BH
2320/*
2321 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2322 * mapping
2323 */
2994302b 2324static int wp_pfn_shared(struct vm_fault *vmf)
dd906184 2325{
82b0f8c3 2326 struct vm_area_struct *vma = vmf->vma;
bae473a4 2327
dd906184 2328 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
dd906184
BH
2329 int ret;
2330
82b0f8c3 2331 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2332 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2333 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2334 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2335 return ret;
66a6197c 2336 return finish_mkwrite_fault(vmf);
dd906184 2337 }
997dd98d
JK
2338 wp_page_reuse(vmf);
2339 return VM_FAULT_WRITE;
dd906184
BH
2340}
2341
a41b70d6 2342static int wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2343 __releases(vmf->ptl)
93e478d4 2344{
82b0f8c3 2345 struct vm_area_struct *vma = vmf->vma;
93e478d4 2346
a41b70d6 2347 get_page(vmf->page);
93e478d4 2348
93e478d4
SR
2349 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2350 int tmp;
2351
82b0f8c3 2352 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2353 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2354 if (unlikely(!tmp || (tmp &
2355 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2356 put_page(vmf->page);
93e478d4
SR
2357 return tmp;
2358 }
66a6197c 2359 tmp = finish_mkwrite_fault(vmf);
a19e2553 2360 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2361 unlock_page(vmf->page);
a41b70d6 2362 put_page(vmf->page);
66a6197c 2363 return tmp;
93e478d4 2364 }
66a6197c
JK
2365 } else {
2366 wp_page_reuse(vmf);
997dd98d 2367 lock_page(vmf->page);
93e478d4 2368 }
997dd98d
JK
2369 fault_dirty_shared_page(vma, vmf->page);
2370 put_page(vmf->page);
93e478d4 2371
997dd98d 2372 return VM_FAULT_WRITE;
93e478d4
SR
2373}
2374
1da177e4
LT
2375/*
2376 * This routine handles present pages, when users try to write
2377 * to a shared page. It is done by copying the page to a new address
2378 * and decrementing the shared-page counter for the old page.
2379 *
1da177e4
LT
2380 * Note that this routine assumes that the protection checks have been
2381 * done by the caller (the low-level page fault routine in most cases).
2382 * Thus we can safely just mark it writable once we've done any necessary
2383 * COW.
2384 *
2385 * We also mark the page dirty at this point even though the page will
2386 * change only once the write actually happens. This avoids a few races,
2387 * and potentially makes it more efficient.
2388 *
8f4e2101
HD
2389 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2390 * but allow concurrent faults), with pte both mapped and locked.
2391 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2392 */
2994302b 2393static int do_wp_page(struct vm_fault *vmf)
82b0f8c3 2394 __releases(vmf->ptl)
1da177e4 2395{
82b0f8c3 2396 struct vm_area_struct *vma = vmf->vma;
1da177e4 2397
a41b70d6
JK
2398 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2399 if (!vmf->page) {
251b97f5 2400 /*
64e45507
PF
2401 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2402 * VM_PFNMAP VMA.
251b97f5
PZ
2403 *
2404 * We should not cow pages in a shared writeable mapping.
dd906184 2405 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2406 */
2407 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2408 (VM_WRITE|VM_SHARED))
2994302b 2409 return wp_pfn_shared(vmf);
2f38ab2c 2410
82b0f8c3 2411 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2412 return wp_page_copy(vmf);
251b97f5 2413 }
1da177e4 2414
d08b3851 2415 /*
ee6a6457
PZ
2416 * Take out anonymous pages first, anonymous shared vmas are
2417 * not dirty accountable.
d08b3851 2418 */
a41b70d6 2419 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
6d0a07ed 2420 int total_mapcount;
a41b70d6
JK
2421 if (!trylock_page(vmf->page)) {
2422 get_page(vmf->page);
82b0f8c3 2423 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2424 lock_page(vmf->page);
82b0f8c3
JK
2425 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2426 vmf->address, &vmf->ptl);
2994302b 2427 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2428 unlock_page(vmf->page);
82b0f8c3 2429 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2430 put_page(vmf->page);
28766805 2431 return 0;
ab967d86 2432 }
a41b70d6 2433 put_page(vmf->page);
ee6a6457 2434 }
a41b70d6 2435 if (reuse_swap_page(vmf->page, &total_mapcount)) {
6d0a07ed
AA
2436 if (total_mapcount == 1) {
2437 /*
2438 * The page is all ours. Move it to
2439 * our anon_vma so the rmap code will
2440 * not search our parent or siblings.
2441 * Protected against the rmap code by
2442 * the page lock.
2443 */
a41b70d6 2444 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2445 }
a41b70d6 2446 unlock_page(vmf->page);
997dd98d
JK
2447 wp_page_reuse(vmf);
2448 return VM_FAULT_WRITE;
b009c024 2449 }
a41b70d6 2450 unlock_page(vmf->page);
ee6a6457 2451 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2452 (VM_WRITE|VM_SHARED))) {
a41b70d6 2453 return wp_page_shared(vmf);
1da177e4 2454 }
1da177e4
LT
2455
2456 /*
2457 * Ok, we need to copy. Oh, well..
2458 */
a41b70d6 2459 get_page(vmf->page);
28766805 2460
82b0f8c3 2461 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2462 return wp_page_copy(vmf);
1da177e4
LT
2463}
2464
97a89413 2465static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2466 unsigned long start_addr, unsigned long end_addr,
2467 struct zap_details *details)
2468{
f5cc4eef 2469 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2470}
2471
6b2dbba8 2472static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2473 struct zap_details *details)
2474{
2475 struct vm_area_struct *vma;
1da177e4
LT
2476 pgoff_t vba, vea, zba, zea;
2477
6b2dbba8 2478 vma_interval_tree_foreach(vma, root,
1da177e4 2479 details->first_index, details->last_index) {
1da177e4
LT
2480
2481 vba = vma->vm_pgoff;
d6e93217 2482 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2483 zba = details->first_index;
2484 if (zba < vba)
2485 zba = vba;
2486 zea = details->last_index;
2487 if (zea > vea)
2488 zea = vea;
2489
97a89413 2490 unmap_mapping_range_vma(vma,
1da177e4
LT
2491 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2492 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2493 details);
1da177e4
LT
2494 }
2495}
2496
1da177e4 2497/**
8a5f14a2
KS
2498 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2499 * address_space corresponding to the specified page range in the underlying
2500 * file.
2501 *
3d41088f 2502 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2503 * @holebegin: byte in first page to unmap, relative to the start of
2504 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2505 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2506 * must keep the partial page. In contrast, we must get rid of
2507 * partial pages.
2508 * @holelen: size of prospective hole in bytes. This will be rounded
2509 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2510 * end of the file.
2511 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2512 * but 0 when invalidating pagecache, don't throw away private data.
2513 */
2514void unmap_mapping_range(struct address_space *mapping,
2515 loff_t const holebegin, loff_t const holelen, int even_cows)
2516{
aac45363 2517 struct zap_details details = { };
1da177e4
LT
2518 pgoff_t hba = holebegin >> PAGE_SHIFT;
2519 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2520
2521 /* Check for overflow. */
2522 if (sizeof(holelen) > sizeof(hlen)) {
2523 long long holeend =
2524 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2525 if (holeend & ~(long long)ULONG_MAX)
2526 hlen = ULONG_MAX - hba + 1;
2527 }
2528
166f61b9 2529 details.check_mapping = even_cows ? NULL : mapping;
1da177e4
LT
2530 details.first_index = hba;
2531 details.last_index = hba + hlen - 1;
2532 if (details.last_index < details.first_index)
2533 details.last_index = ULONG_MAX;
1da177e4 2534
46c043ed 2535 i_mmap_lock_write(mapping);
6b2dbba8 2536 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2537 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2538 i_mmap_unlock_write(mapping);
1da177e4
LT
2539}
2540EXPORT_SYMBOL(unmap_mapping_range);
2541
1da177e4 2542/*
8f4e2101
HD
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2545 * We return with pte unmapped and unlocked.
2546 *
2547 * We return with the mmap_sem locked or unlocked in the same cases
2548 * as does filemap_fault().
1da177e4 2549 */
2994302b 2550int do_swap_page(struct vm_fault *vmf)
1da177e4 2551{
82b0f8c3 2552 struct vm_area_struct *vma = vmf->vma;
56f31801 2553 struct page *page, *swapcache;
00501b53 2554 struct mem_cgroup *memcg;
65500d23 2555 swp_entry_t entry;
1da177e4 2556 pte_t pte;
d065bd81 2557 int locked;
ad8c2ee8 2558 int exclusive = 0;
83c54070 2559 int ret = 0;
1da177e4 2560
2994302b 2561 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2562 goto out;
65500d23 2563
2994302b 2564 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2565 if (unlikely(non_swap_entry(entry))) {
2566 if (is_migration_entry(entry)) {
82b0f8c3
JK
2567 migration_entry_wait(vma->vm_mm, vmf->pmd,
2568 vmf->address);
d1737fdb
AK
2569 } else if (is_hwpoison_entry(entry)) {
2570 ret = VM_FAULT_HWPOISON;
2571 } else {
2994302b 2572 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2573 ret = VM_FAULT_SIGBUS;
d1737fdb 2574 }
0697212a
CL
2575 goto out;
2576 }
0ff92245 2577 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2578 page = lookup_swap_cache(entry);
2579 if (!page) {
82b0f8c3
JK
2580 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2581 vmf->address);
1da177e4
LT
2582 if (!page) {
2583 /*
8f4e2101
HD
2584 * Back out if somebody else faulted in this pte
2585 * while we released the pte lock.
1da177e4 2586 */
82b0f8c3
JK
2587 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2588 vmf->address, &vmf->ptl);
2994302b 2589 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2590 ret = VM_FAULT_OOM;
0ff92245 2591 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2592 goto unlock;
1da177e4
LT
2593 }
2594
2595 /* Had to read the page from swap area: Major fault */
2596 ret = VM_FAULT_MAJOR;
f8891e5e 2597 count_vm_event(PGMAJFAULT);
bae473a4 2598 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
d1737fdb 2599 } else if (PageHWPoison(page)) {
71f72525
WF
2600 /*
2601 * hwpoisoned dirty swapcache pages are kept for killing
2602 * owner processes (which may be unknown at hwpoison time)
2603 */
d1737fdb
AK
2604 ret = VM_FAULT_HWPOISON;
2605 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2606 swapcache = page;
4779cb31 2607 goto out_release;
1da177e4
LT
2608 }
2609
56f31801 2610 swapcache = page;
82b0f8c3 2611 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2612
073e587e 2613 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2614 if (!locked) {
2615 ret |= VM_FAULT_RETRY;
2616 goto out_release;
2617 }
073e587e 2618
4969c119 2619 /*
31c4a3d3
HD
2620 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2621 * release the swapcache from under us. The page pin, and pte_same
2622 * test below, are not enough to exclude that. Even if it is still
2623 * swapcache, we need to check that the page's swap has not changed.
4969c119 2624 */
31c4a3d3 2625 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2626 goto out_page;
2627
82b0f8c3 2628 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2629 if (unlikely(!page)) {
2630 ret = VM_FAULT_OOM;
2631 page = swapcache;
cbf86cfe 2632 goto out_page;
5ad64688
HD
2633 }
2634
bae473a4
KS
2635 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2636 &memcg, false)) {
8a9f3ccd 2637 ret = VM_FAULT_OOM;
bc43f75c 2638 goto out_page;
8a9f3ccd
BS
2639 }
2640
1da177e4 2641 /*
8f4e2101 2642 * Back out if somebody else already faulted in this pte.
1da177e4 2643 */
82b0f8c3
JK
2644 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2645 &vmf->ptl);
2994302b 2646 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2647 goto out_nomap;
b8107480
KK
2648
2649 if (unlikely(!PageUptodate(page))) {
2650 ret = VM_FAULT_SIGBUS;
2651 goto out_nomap;
1da177e4
LT
2652 }
2653
8c7c6e34
KH
2654 /*
2655 * The page isn't present yet, go ahead with the fault.
2656 *
2657 * Be careful about the sequence of operations here.
2658 * To get its accounting right, reuse_swap_page() must be called
2659 * while the page is counted on swap but not yet in mapcount i.e.
2660 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2661 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2662 */
1da177e4 2663
bae473a4
KS
2664 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2665 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2666 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2667 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2668 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2669 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2670 ret |= VM_FAULT_WRITE;
d281ee61 2671 exclusive = RMAP_EXCLUSIVE;
1da177e4 2672 }
1da177e4 2673 flush_icache_page(vma, page);
2994302b 2674 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2675 pte = pte_mksoft_dirty(pte);
82b0f8c3 2676 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2994302b 2677 vmf->orig_pte = pte;
00501b53 2678 if (page == swapcache) {
82b0f8c3 2679 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
f627c2f5 2680 mem_cgroup_commit_charge(page, memcg, true, false);
1a8018fb 2681 activate_page(page);
00501b53 2682 } else { /* ksm created a completely new copy */
82b0f8c3 2683 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2684 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2685 lru_cache_add_active_or_unevictable(page, vma);
2686 }
1da177e4 2687
c475a8ab 2688 swap_free(entry);
5ccc5aba
VD
2689 if (mem_cgroup_swap_full(page) ||
2690 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2691 try_to_free_swap(page);
c475a8ab 2692 unlock_page(page);
56f31801 2693 if (page != swapcache) {
4969c119
AA
2694 /*
2695 * Hold the lock to avoid the swap entry to be reused
2696 * until we take the PT lock for the pte_same() check
2697 * (to avoid false positives from pte_same). For
2698 * further safety release the lock after the swap_free
2699 * so that the swap count won't change under a
2700 * parallel locked swapcache.
2701 */
2702 unlock_page(swapcache);
09cbfeaf 2703 put_page(swapcache);
4969c119 2704 }
c475a8ab 2705
82b0f8c3 2706 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2707 ret |= do_wp_page(vmf);
61469f1d
HD
2708 if (ret & VM_FAULT_ERROR)
2709 ret &= VM_FAULT_ERROR;
1da177e4
LT
2710 goto out;
2711 }
2712
2713 /* No need to invalidate - it was non-present before */
82b0f8c3 2714 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2715unlock:
82b0f8c3 2716 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2717out:
2718 return ret;
b8107480 2719out_nomap:
f627c2f5 2720 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2721 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2722out_page:
b8107480 2723 unlock_page(page);
4779cb31 2724out_release:
09cbfeaf 2725 put_page(page);
56f31801 2726 if (page != swapcache) {
4969c119 2727 unlock_page(swapcache);
09cbfeaf 2728 put_page(swapcache);
4969c119 2729 }
65500d23 2730 return ret;
1da177e4
LT
2731}
2732
320b2b8d 2733/*
8ca3eb08
TL
2734 * This is like a special single-page "expand_{down|up}wards()",
2735 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2736 * doesn't hit another vma.
320b2b8d
LT
2737 */
2738static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2739{
2740 address &= PAGE_MASK;
2741 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2742 struct vm_area_struct *prev = vma->vm_prev;
2743
2744 /*
2745 * Is there a mapping abutting this one below?
2746 *
2747 * That's only ok if it's the same stack mapping
2748 * that has gotten split..
2749 */
2750 if (prev && prev->vm_end == address)
2751 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2752
fee7e49d 2753 return expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2754 }
8ca3eb08
TL
2755 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2756 struct vm_area_struct *next = vma->vm_next;
2757
2758 /* As VM_GROWSDOWN but s/below/above/ */
2759 if (next && next->vm_start == address + PAGE_SIZE)
2760 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2761
fee7e49d 2762 return expand_upwards(vma, address + PAGE_SIZE);
8ca3eb08 2763 }
320b2b8d
LT
2764 return 0;
2765}
2766
1da177e4 2767/*
8f4e2101
HD
2768 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2769 * but allow concurrent faults), and pte mapped but not yet locked.
2770 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2771 */
82b0f8c3 2772static int do_anonymous_page(struct vm_fault *vmf)
1da177e4 2773{
82b0f8c3 2774 struct vm_area_struct *vma = vmf->vma;
00501b53 2775 struct mem_cgroup *memcg;
8f4e2101 2776 struct page *page;
1da177e4 2777 pte_t entry;
1da177e4 2778
6b7339f4
KS
2779 /* File mapping without ->vm_ops ? */
2780 if (vma->vm_flags & VM_SHARED)
2781 return VM_FAULT_SIGBUS;
2782
11ac5524 2783 /* Check if we need to add a guard page to the stack */
82b0f8c3 2784 if (check_stack_guard_page(vma, vmf->address) < 0)
9c145c56 2785 return VM_FAULT_SIGSEGV;
320b2b8d 2786
7267ec00
KS
2787 /*
2788 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2789 * pte_offset_map() on pmds where a huge pmd might be created
2790 * from a different thread.
2791 *
2792 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2793 * parallel threads are excluded by other means.
2794 *
2795 * Here we only have down_read(mmap_sem).
2796 */
82b0f8c3 2797 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
2798 return VM_FAULT_OOM;
2799
2800 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2801 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2802 return 0;
2803
11ac5524 2804 /* Use the zero-page for reads */
82b0f8c3 2805 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2806 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2807 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2808 vma->vm_page_prot));
82b0f8c3
JK
2809 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2810 vmf->address, &vmf->ptl);
2811 if (!pte_none(*vmf->pte))
a13ea5b7 2812 goto unlock;
6b251fc9
AA
2813 /* Deliver the page fault to userland, check inside PT lock */
2814 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2815 pte_unmap_unlock(vmf->pte, vmf->ptl);
2816 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2817 }
a13ea5b7
HD
2818 goto setpte;
2819 }
2820
557ed1fa 2821 /* Allocate our own private page. */
557ed1fa
NP
2822 if (unlikely(anon_vma_prepare(vma)))
2823 goto oom;
82b0f8c3 2824 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2825 if (!page)
2826 goto oom;
eb3c24f3 2827
bae473a4 2828 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2829 goto oom_free_page;
2830
52f37629
MK
2831 /*
2832 * The memory barrier inside __SetPageUptodate makes sure that
2833 * preceeding stores to the page contents become visible before
2834 * the set_pte_at() write.
2835 */
0ed361de 2836 __SetPageUptodate(page);
8f4e2101 2837
557ed1fa 2838 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2839 if (vma->vm_flags & VM_WRITE)
2840 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2841
82b0f8c3
JK
2842 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2843 &vmf->ptl);
2844 if (!pte_none(*vmf->pte))
557ed1fa 2845 goto release;
9ba69294 2846
6b251fc9
AA
2847 /* Deliver the page fault to userland, check inside PT lock */
2848 if (userfaultfd_missing(vma)) {
82b0f8c3 2849 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 2850 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2851 put_page(page);
82b0f8c3 2852 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
2853 }
2854
bae473a4 2855 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 2856 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2857 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2858 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2859setpte:
82b0f8c3 2860 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
2861
2862 /* No need to invalidate - it was non-present before */
82b0f8c3 2863 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2864unlock:
82b0f8c3 2865 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 2866 return 0;
8f4e2101 2867release:
f627c2f5 2868 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2869 put_page(page);
8f4e2101 2870 goto unlock;
8a9f3ccd 2871oom_free_page:
09cbfeaf 2872 put_page(page);
65500d23 2873oom:
1da177e4
LT
2874 return VM_FAULT_OOM;
2875}
2876
9a95f3cf
PC
2877/*
2878 * The mmap_sem must have been held on entry, and may have been
2879 * released depending on flags and vma->vm_ops->fault() return value.
2880 * See filemap_fault() and __lock_page_retry().
2881 */
936ca80d 2882static int __do_fault(struct vm_fault *vmf)
7eae74af 2883{
82b0f8c3 2884 struct vm_area_struct *vma = vmf->vma;
7eae74af
KS
2885 int ret;
2886
11bac800 2887 ret = vma->vm_ops->fault(vmf);
3917048d 2888 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 2889 VM_FAULT_DONE_COW)))
bc2466e4 2890 return ret;
7eae74af 2891
667240e0 2892 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 2893 if (ret & VM_FAULT_LOCKED)
667240e0
JK
2894 unlock_page(vmf->page);
2895 put_page(vmf->page);
936ca80d 2896 vmf->page = NULL;
7eae74af
KS
2897 return VM_FAULT_HWPOISON;
2898 }
2899
2900 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 2901 lock_page(vmf->page);
7eae74af 2902 else
667240e0 2903 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 2904
7eae74af
KS
2905 return ret;
2906}
2907
82b0f8c3 2908static int pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 2909{
82b0f8c3 2910 struct vm_area_struct *vma = vmf->vma;
7267ec00 2911
82b0f8c3 2912 if (!pmd_none(*vmf->pmd))
7267ec00 2913 goto map_pte;
82b0f8c3
JK
2914 if (vmf->prealloc_pte) {
2915 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2916 if (unlikely(!pmd_none(*vmf->pmd))) {
2917 spin_unlock(vmf->ptl);
7267ec00
KS
2918 goto map_pte;
2919 }
2920
2921 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3
JK
2922 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2923 spin_unlock(vmf->ptl);
7f2b6ce8 2924 vmf->prealloc_pte = NULL;
82b0f8c3 2925 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
2926 return VM_FAULT_OOM;
2927 }
2928map_pte:
2929 /*
2930 * If a huge pmd materialized under us just retry later. Use
2931 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2932 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2933 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2934 * in a different thread of this mm, in turn leading to a misleading
2935 * pmd_trans_huge() retval. All we have to ensure is that it is a
2936 * regular pmd that we can walk with pte_offset_map() and we can do that
2937 * through an atomic read in C, which is what pmd_trans_unstable()
2938 * provides.
2939 */
82b0f8c3 2940 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
7267ec00
KS
2941 return VM_FAULT_NOPAGE;
2942
82b0f8c3
JK
2943 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2944 &vmf->ptl);
7267ec00
KS
2945 return 0;
2946}
2947
e496cf3d 2948#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
2949
2950#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2951static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2952 unsigned long haddr)
2953{
2954 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2955 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2956 return false;
2957 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2958 return false;
2959 return true;
2960}
2961
82b0f8c3 2962static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 2963{
82b0f8c3 2964 struct vm_area_struct *vma = vmf->vma;
953c66c2 2965
82b0f8c3 2966 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
2967 /*
2968 * We are going to consume the prealloc table,
2969 * count that as nr_ptes.
2970 */
2971 atomic_long_inc(&vma->vm_mm->nr_ptes);
7f2b6ce8 2972 vmf->prealloc_pte = NULL;
953c66c2
AK
2973}
2974
82b0f8c3 2975static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 2976{
82b0f8c3
JK
2977 struct vm_area_struct *vma = vmf->vma;
2978 bool write = vmf->flags & FAULT_FLAG_WRITE;
2979 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459
KS
2980 pmd_t entry;
2981 int i, ret;
2982
2983 if (!transhuge_vma_suitable(vma, haddr))
2984 return VM_FAULT_FALLBACK;
2985
2986 ret = VM_FAULT_FALLBACK;
2987 page = compound_head(page);
2988
953c66c2
AK
2989 /*
2990 * Archs like ppc64 need additonal space to store information
2991 * related to pte entry. Use the preallocated table for that.
2992 */
82b0f8c3
JK
2993 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2994 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2995 if (!vmf->prealloc_pte)
953c66c2
AK
2996 return VM_FAULT_OOM;
2997 smp_wmb(); /* See comment in __pte_alloc() */
2998 }
2999
82b0f8c3
JK
3000 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3001 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3002 goto out;
3003
3004 for (i = 0; i < HPAGE_PMD_NR; i++)
3005 flush_icache_page(vma, page + i);
3006
3007 entry = mk_huge_pmd(page, vma->vm_page_prot);
3008 if (write)
3009 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3010
3011 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3012 page_add_file_rmap(page, true);
953c66c2
AK
3013 /*
3014 * deposit and withdraw with pmd lock held
3015 */
3016 if (arch_needs_pgtable_deposit())
82b0f8c3 3017 deposit_prealloc_pte(vmf);
10102459 3018
82b0f8c3 3019 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3020
82b0f8c3 3021 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3022
3023 /* fault is handled */
3024 ret = 0;
95ecedcd 3025 count_vm_event(THP_FILE_MAPPED);
10102459 3026out:
82b0f8c3 3027 spin_unlock(vmf->ptl);
10102459
KS
3028 return ret;
3029}
3030#else
82b0f8c3 3031static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3032{
3033 BUILD_BUG();
3034 return 0;
3035}
3036#endif
3037
8c6e50b0 3038/**
7267ec00
KS
3039 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3040 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3041 *
82b0f8c3 3042 * @vmf: fault environment
7267ec00 3043 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3044 * @page: page to map
8c6e50b0 3045 *
82b0f8c3
JK
3046 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3047 * return.
8c6e50b0
KS
3048 *
3049 * Target users are page handler itself and implementations of
3050 * vm_ops->map_pages.
3051 */
82b0f8c3 3052int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3053 struct page *page)
3bb97794 3054{
82b0f8c3
JK
3055 struct vm_area_struct *vma = vmf->vma;
3056 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3057 pte_t entry;
10102459
KS
3058 int ret;
3059
82b0f8c3 3060 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3061 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3062 /* THP on COW? */
3063 VM_BUG_ON_PAGE(memcg, page);
3064
82b0f8c3 3065 ret = do_set_pmd(vmf, page);
10102459 3066 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3067 return ret;
10102459 3068 }
3bb97794 3069
82b0f8c3
JK
3070 if (!vmf->pte) {
3071 ret = pte_alloc_one_map(vmf);
7267ec00 3072 if (ret)
b0b9b3df 3073 return ret;
7267ec00
KS
3074 }
3075
3076 /* Re-check under ptl */
b0b9b3df
HD
3077 if (unlikely(!pte_none(*vmf->pte)))
3078 return VM_FAULT_NOPAGE;
7267ec00 3079
3bb97794
KS
3080 flush_icache_page(vma, page);
3081 entry = mk_pte(page, vma->vm_page_prot);
3082 if (write)
3083 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3084 /* copy-on-write page */
3085 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3086 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3087 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3088 mem_cgroup_commit_charge(page, memcg, false, false);
3089 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3090 } else {
eca56ff9 3091 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3092 page_add_file_rmap(page, false);
3bb97794 3093 }
82b0f8c3 3094 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3095
3096 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3097 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3098
b0b9b3df 3099 return 0;
3bb97794
KS
3100}
3101
9118c0cb
JK
3102
3103/**
3104 * finish_fault - finish page fault once we have prepared the page to fault
3105 *
3106 * @vmf: structure describing the fault
3107 *
3108 * This function handles all that is needed to finish a page fault once the
3109 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3110 * given page, adds reverse page mapping, handles memcg charges and LRU
3111 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3112 * error.
3113 *
3114 * The function expects the page to be locked and on success it consumes a
3115 * reference of a page being mapped (for the PTE which maps it).
3116 */
3117int finish_fault(struct vm_fault *vmf)
3118{
3119 struct page *page;
3120 int ret;
3121
3122 /* Did we COW the page? */
3123 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3124 !(vmf->vma->vm_flags & VM_SHARED))
3125 page = vmf->cow_page;
3126 else
3127 page = vmf->page;
3128 ret = alloc_set_pte(vmf, vmf->memcg, page);
3129 if (vmf->pte)
3130 pte_unmap_unlock(vmf->pte, vmf->ptl);
3131 return ret;
3132}
3133
3a91053a
KS
3134static unsigned long fault_around_bytes __read_mostly =
3135 rounddown_pow_of_two(65536);
a9b0f861 3136
a9b0f861
KS
3137#ifdef CONFIG_DEBUG_FS
3138static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3139{
a9b0f861 3140 *val = fault_around_bytes;
1592eef0
KS
3141 return 0;
3142}
3143
b4903d6e
AR
3144/*
3145 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3146 * rounded down to nearest page order. It's what do_fault_around() expects to
3147 * see.
3148 */
a9b0f861 3149static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3150{
a9b0f861 3151 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3152 return -EINVAL;
b4903d6e
AR
3153 if (val > PAGE_SIZE)
3154 fault_around_bytes = rounddown_pow_of_two(val);
3155 else
3156 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3157 return 0;
3158}
a9b0f861
KS
3159DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3160 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3161
3162static int __init fault_around_debugfs(void)
3163{
3164 void *ret;
3165
a9b0f861
KS
3166 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3167 &fault_around_bytes_fops);
1592eef0 3168 if (!ret)
a9b0f861 3169 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3170 return 0;
3171}
3172late_initcall(fault_around_debugfs);
1592eef0 3173#endif
8c6e50b0 3174
1fdb412b
KS
3175/*
3176 * do_fault_around() tries to map few pages around the fault address. The hope
3177 * is that the pages will be needed soon and this will lower the number of
3178 * faults to handle.
3179 *
3180 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3181 * not ready to be mapped: not up-to-date, locked, etc.
3182 *
3183 * This function is called with the page table lock taken. In the split ptlock
3184 * case the page table lock only protects only those entries which belong to
3185 * the page table corresponding to the fault address.
3186 *
3187 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3188 * only once.
3189 *
3190 * fault_around_pages() defines how many pages we'll try to map.
3191 * do_fault_around() expects it to return a power of two less than or equal to
3192 * PTRS_PER_PTE.
3193 *
3194 * The virtual address of the area that we map is naturally aligned to the
3195 * fault_around_pages() value (and therefore to page order). This way it's
3196 * easier to guarantee that we don't cross page table boundaries.
3197 */
0721ec8b 3198static int do_fault_around(struct vm_fault *vmf)
8c6e50b0 3199{
82b0f8c3 3200 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3201 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3202 pgoff_t end_pgoff;
7267ec00 3203 int off, ret = 0;
8c6e50b0 3204
4db0c3c2 3205 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3206 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3207
82b0f8c3
JK
3208 vmf->address = max(address & mask, vmf->vma->vm_start);
3209 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3210 start_pgoff -= off;
8c6e50b0
KS
3211
3212 /*
bae473a4
KS
3213 * end_pgoff is either end of page table or end of vma
3214 * or fault_around_pages() from start_pgoff, depending what is nearest.
8c6e50b0 3215 */
bae473a4 3216 end_pgoff = start_pgoff -
82b0f8c3 3217 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3218 PTRS_PER_PTE - 1;
82b0f8c3 3219 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3220 start_pgoff + nr_pages - 1);
8c6e50b0 3221
82b0f8c3
JK
3222 if (pmd_none(*vmf->pmd)) {
3223 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3224 vmf->address);
3225 if (!vmf->prealloc_pte)
c5f88bd2 3226 goto out;
7267ec00 3227 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3228 }
3229
82b0f8c3 3230 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3231
7267ec00 3232 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3233 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3234 ret = VM_FAULT_NOPAGE;
3235 goto out;
3236 }
3237
3238 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3239 if (!vmf->pte)
7267ec00
KS
3240 goto out;
3241
3242 /* check if the page fault is solved */
82b0f8c3
JK
3243 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3244 if (!pte_none(*vmf->pte))
7267ec00 3245 ret = VM_FAULT_NOPAGE;
82b0f8c3 3246 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3247out:
82b0f8c3
JK
3248 vmf->address = address;
3249 vmf->pte = NULL;
7267ec00 3250 return ret;
8c6e50b0
KS
3251}
3252
0721ec8b 3253static int do_read_fault(struct vm_fault *vmf)
e655fb29 3254{
82b0f8c3 3255 struct vm_area_struct *vma = vmf->vma;
8c6e50b0
KS
3256 int ret = 0;
3257
3258 /*
3259 * Let's call ->map_pages() first and use ->fault() as fallback
3260 * if page by the offset is not ready to be mapped (cold cache or
3261 * something).
3262 */
9b4bdd2f 3263 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3264 ret = do_fault_around(vmf);
7267ec00
KS
3265 if (ret)
3266 return ret;
8c6e50b0 3267 }
e655fb29 3268
936ca80d 3269 ret = __do_fault(vmf);
e655fb29
KS
3270 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3271 return ret;
3272
9118c0cb 3273 ret |= finish_fault(vmf);
936ca80d 3274 unlock_page(vmf->page);
7267ec00 3275 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3276 put_page(vmf->page);
e655fb29
KS
3277 return ret;
3278}
3279
0721ec8b 3280static int do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3281{
82b0f8c3 3282 struct vm_area_struct *vma = vmf->vma;
ec47c3b9
KS
3283 int ret;
3284
3285 if (unlikely(anon_vma_prepare(vma)))
3286 return VM_FAULT_OOM;
3287
936ca80d
JK
3288 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3289 if (!vmf->cow_page)
ec47c3b9
KS
3290 return VM_FAULT_OOM;
3291
936ca80d 3292 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3293 &vmf->memcg, false)) {
936ca80d 3294 put_page(vmf->cow_page);
ec47c3b9
KS
3295 return VM_FAULT_OOM;
3296 }
3297
936ca80d 3298 ret = __do_fault(vmf);
ec47c3b9
KS
3299 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3300 goto uncharge_out;
3917048d
JK
3301 if (ret & VM_FAULT_DONE_COW)
3302 return ret;
ec47c3b9 3303
b1aa812b 3304 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3305 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3306
9118c0cb 3307 ret |= finish_fault(vmf);
b1aa812b
JK
3308 unlock_page(vmf->page);
3309 put_page(vmf->page);
7267ec00
KS
3310 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3311 goto uncharge_out;
ec47c3b9
KS
3312 return ret;
3313uncharge_out:
3917048d 3314 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3315 put_page(vmf->cow_page);
ec47c3b9
KS
3316 return ret;
3317}
3318
0721ec8b 3319static int do_shared_fault(struct vm_fault *vmf)
1da177e4 3320{
82b0f8c3 3321 struct vm_area_struct *vma = vmf->vma;
f0c6d4d2 3322 int ret, tmp;
1d65f86d 3323
936ca80d 3324 ret = __do_fault(vmf);
7eae74af 3325 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3326 return ret;
1da177e4
LT
3327
3328 /*
f0c6d4d2
KS
3329 * Check if the backing address space wants to know that the page is
3330 * about to become writable
1da177e4 3331 */
fb09a464 3332 if (vma->vm_ops->page_mkwrite) {
936ca80d 3333 unlock_page(vmf->page);
38b8cb7f 3334 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3335 if (unlikely(!tmp ||
3336 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3337 put_page(vmf->page);
fb09a464 3338 return tmp;
4294621f 3339 }
fb09a464
KS
3340 }
3341
9118c0cb 3342 ret |= finish_fault(vmf);
7267ec00
KS
3343 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3344 VM_FAULT_RETRY))) {
936ca80d
JK
3345 unlock_page(vmf->page);
3346 put_page(vmf->page);
f0c6d4d2 3347 return ret;
1da177e4 3348 }
b827e496 3349
97ba0c2b 3350 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3351 return ret;
54cb8821 3352}
d00806b1 3353
9a95f3cf
PC
3354/*
3355 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3356 * but allow concurrent faults).
3357 * The mmap_sem may have been released depending on flags and our
3358 * return value. See filemap_fault() and __lock_page_or_retry().
3359 */
82b0f8c3 3360static int do_fault(struct vm_fault *vmf)
54cb8821 3361{
82b0f8c3 3362 struct vm_area_struct *vma = vmf->vma;
b0b9b3df 3363 int ret;
54cb8821 3364
6b7339f4
KS
3365 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3366 if (!vma->vm_ops->fault)
b0b9b3df
HD
3367 ret = VM_FAULT_SIGBUS;
3368 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3369 ret = do_read_fault(vmf);
3370 else if (!(vma->vm_flags & VM_SHARED))
3371 ret = do_cow_fault(vmf);
3372 else
3373 ret = do_shared_fault(vmf);
3374
3375 /* preallocated pagetable is unused: free it */
3376 if (vmf->prealloc_pte) {
3377 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3378 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3379 }
3380 return ret;
54cb8821
NP
3381}
3382
b19a9939 3383static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3384 unsigned long addr, int page_nid,
3385 int *flags)
9532fec1
MG
3386{
3387 get_page(page);
3388
3389 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3390 if (page_nid == numa_node_id()) {
9532fec1 3391 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3392 *flags |= TNF_FAULT_LOCAL;
3393 }
9532fec1
MG
3394
3395 return mpol_misplaced(page, vma, addr);
3396}
3397
2994302b 3398static int do_numa_page(struct vm_fault *vmf)
d10e63f2 3399{
82b0f8c3 3400 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3401 struct page *page = NULL;
8191acbd 3402 int page_nid = -1;
90572890 3403 int last_cpupid;
cbee9f88 3404 int target_nid;
b8593bfd 3405 bool migrated = false;
cee216a6 3406 pte_t pte;
288bc549 3407 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3408 int flags = 0;
d10e63f2
MG
3409
3410 /*
166f61b9
TH
3411 * The "pte" at this point cannot be used safely without
3412 * validation through pte_unmap_same(). It's of NUMA type but
3413 * the pfn may be screwed if the read is non atomic.
166f61b9 3414 */
82b0f8c3
JK
3415 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3416 spin_lock(vmf->ptl);
cee216a6 3417 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3418 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3419 goto out;
3420 }
3421
cee216a6
AK
3422 /*
3423 * Make it present again, Depending on how arch implementes non
3424 * accessible ptes, some can allow access by kernel mode.
3425 */
3426 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4d942466
MG
3427 pte = pte_modify(pte, vma->vm_page_prot);
3428 pte = pte_mkyoung(pte);
b191f9b1
MG
3429 if (was_writable)
3430 pte = pte_mkwrite(pte);
cee216a6 3431 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
82b0f8c3 3432 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3433
82b0f8c3 3434 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3435 if (!page) {
82b0f8c3 3436 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3437 return 0;
3438 }
3439
e81c4802
KS
3440 /* TODO: handle PTE-mapped THP */
3441 if (PageCompound(page)) {
82b0f8c3 3442 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3443 return 0;
3444 }
3445
6688cc05 3446 /*
bea66fbd
MG
3447 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3448 * much anyway since they can be in shared cache state. This misses
3449 * the case where a mapping is writable but the process never writes
3450 * to it but pte_write gets cleared during protection updates and
3451 * pte_dirty has unpredictable behaviour between PTE scan updates,
3452 * background writeback, dirty balancing and application behaviour.
6688cc05 3453 */
d59dc7bc 3454 if (!pte_write(pte))
6688cc05
PZ
3455 flags |= TNF_NO_GROUP;
3456
dabe1d99
RR
3457 /*
3458 * Flag if the page is shared between multiple address spaces. This
3459 * is later used when determining whether to group tasks together
3460 */
3461 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3462 flags |= TNF_SHARED;
3463
90572890 3464 last_cpupid = page_cpupid_last(page);
8191acbd 3465 page_nid = page_to_nid(page);
82b0f8c3 3466 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3467 &flags);
82b0f8c3 3468 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3469 if (target_nid == -1) {
4daae3b4
MG
3470 put_page(page);
3471 goto out;
3472 }
3473
3474 /* Migrate to the requested node */
1bc115d8 3475 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3476 if (migrated) {
8191acbd 3477 page_nid = target_nid;
6688cc05 3478 flags |= TNF_MIGRATED;
074c2381
MG
3479 } else
3480 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3481
3482out:
8191acbd 3483 if (page_nid != -1)
6688cc05 3484 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3485 return 0;
3486}
3487
82b0f8c3 3488static int create_huge_pmd(struct vm_fault *vmf)
b96375f7 3489{
f4200391 3490 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3491 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3492 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3493 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3494 return VM_FAULT_FALLBACK;
3495}
3496
82b0f8c3 3497static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3498{
82b0f8c3
JK
3499 if (vma_is_anonymous(vmf->vma))
3500 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3501 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3502 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3503
3504 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3505 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3506 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3507
b96375f7
MW
3508 return VM_FAULT_FALLBACK;
3509}
3510
38e08854
LS
3511static inline bool vma_is_accessible(struct vm_area_struct *vma)
3512{
3513 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3514}
3515
a00cc7d9
MW
3516static int create_huge_pud(struct vm_fault *vmf)
3517{
3518#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3519 /* No support for anonymous transparent PUD pages yet */
3520 if (vma_is_anonymous(vmf->vma))
3521 return VM_FAULT_FALLBACK;
3522 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3523 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3524#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3525 return VM_FAULT_FALLBACK;
3526}
3527
3528static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3529{
3530#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3531 /* No support for anonymous transparent PUD pages yet */
3532 if (vma_is_anonymous(vmf->vma))
3533 return VM_FAULT_FALLBACK;
3534 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3535 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3536#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3537 return VM_FAULT_FALLBACK;
3538}
3539
1da177e4
LT
3540/*
3541 * These routines also need to handle stuff like marking pages dirty
3542 * and/or accessed for architectures that don't do it in hardware (most
3543 * RISC architectures). The early dirtying is also good on the i386.
3544 *
3545 * There is also a hook called "update_mmu_cache()" that architectures
3546 * with external mmu caches can use to update those (ie the Sparc or
3547 * PowerPC hashed page tables that act as extended TLBs).
3548 *
7267ec00
KS
3549 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3550 * concurrent faults).
9a95f3cf 3551 *
7267ec00
KS
3552 * The mmap_sem may have been released depending on flags and our return value.
3553 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3554 */
82b0f8c3 3555static int handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3556{
3557 pte_t entry;
3558
82b0f8c3 3559 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3560 /*
3561 * Leave __pte_alloc() until later: because vm_ops->fault may
3562 * want to allocate huge page, and if we expose page table
3563 * for an instant, it will be difficult to retract from
3564 * concurrent faults and from rmap lookups.
3565 */
82b0f8c3 3566 vmf->pte = NULL;
7267ec00
KS
3567 } else {
3568 /* See comment in pte_alloc_one_map() */
82b0f8c3 3569 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
7267ec00
KS
3570 return 0;
3571 /*
3572 * A regular pmd is established and it can't morph into a huge
3573 * pmd from under us anymore at this point because we hold the
3574 * mmap_sem read mode and khugepaged takes it in write mode.
3575 * So now it's safe to run pte_offset_map().
3576 */
82b0f8c3 3577 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3578 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3579
3580 /*
3581 * some architectures can have larger ptes than wordsize,
3582 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3583 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3584 * atomic accesses. The code below just needs a consistent
3585 * view for the ifs and we later double check anyway with the
3586 * ptl lock held. So here a barrier will do.
3587 */
3588 barrier();
2994302b 3589 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3590 pte_unmap(vmf->pte);
3591 vmf->pte = NULL;
65500d23 3592 }
1da177e4
LT
3593 }
3594
82b0f8c3
JK
3595 if (!vmf->pte) {
3596 if (vma_is_anonymous(vmf->vma))
3597 return do_anonymous_page(vmf);
7267ec00 3598 else
82b0f8c3 3599 return do_fault(vmf);
7267ec00
KS
3600 }
3601
2994302b
JK
3602 if (!pte_present(vmf->orig_pte))
3603 return do_swap_page(vmf);
7267ec00 3604
2994302b
JK
3605 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3606 return do_numa_page(vmf);
d10e63f2 3607
82b0f8c3
JK
3608 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3609 spin_lock(vmf->ptl);
2994302b 3610 entry = vmf->orig_pte;
82b0f8c3 3611 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3612 goto unlock;
82b0f8c3 3613 if (vmf->flags & FAULT_FLAG_WRITE) {
1da177e4 3614 if (!pte_write(entry))
2994302b 3615 return do_wp_page(vmf);
1da177e4
LT
3616 entry = pte_mkdirty(entry);
3617 }
3618 entry = pte_mkyoung(entry);
82b0f8c3
JK
3619 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3620 vmf->flags & FAULT_FLAG_WRITE)) {
3621 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3622 } else {
3623 /*
3624 * This is needed only for protection faults but the arch code
3625 * is not yet telling us if this is a protection fault or not.
3626 * This still avoids useless tlb flushes for .text page faults
3627 * with threads.
3628 */
82b0f8c3
JK
3629 if (vmf->flags & FAULT_FLAG_WRITE)
3630 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3631 }
8f4e2101 3632unlock:
82b0f8c3 3633 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3634 return 0;
1da177e4
LT
3635}
3636
3637/*
3638 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3639 *
3640 * The mmap_sem may have been released depending on flags and our
3641 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3642 */
dcddffd4
KS
3643static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3644 unsigned int flags)
1da177e4 3645{
82b0f8c3 3646 struct vm_fault vmf = {
bae473a4 3647 .vma = vma,
1a29d85e 3648 .address = address & PAGE_MASK,
bae473a4 3649 .flags = flags,
0721ec8b 3650 .pgoff = linear_page_index(vma, address),
667240e0 3651 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3652 };
dcddffd4 3653 struct mm_struct *mm = vma->vm_mm;
1da177e4 3654 pgd_t *pgd;
a2d58167 3655 int ret;
1da177e4 3656
1da177e4 3657 pgd = pgd_offset(mm, address);
a00cc7d9
MW
3658
3659 vmf.pud = pud_alloc(mm, pgd, address);
3660 if (!vmf.pud)
c74df32c 3661 return VM_FAULT_OOM;
a00cc7d9 3662 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3663 ret = create_huge_pud(&vmf);
3664 if (!(ret & VM_FAULT_FALLBACK))
3665 return ret;
3666 } else {
3667 pud_t orig_pud = *vmf.pud;
3668
3669 barrier();
3670 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3671 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3672
a00cc7d9
MW
3673 /* NUMA case for anonymous PUDs would go here */
3674
3675 if (dirty && !pud_write(orig_pud)) {
3676 ret = wp_huge_pud(&vmf, orig_pud);
3677 if (!(ret & VM_FAULT_FALLBACK))
3678 return ret;
3679 } else {
3680 huge_pud_set_accessed(&vmf, orig_pud);
3681 return 0;
3682 }
3683 }
3684 }
3685
3686 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3687 if (!vmf.pmd)
c74df32c 3688 return VM_FAULT_OOM;
82b0f8c3 3689 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
a2d58167 3690 ret = create_huge_pmd(&vmf);
c0292554
KS
3691 if (!(ret & VM_FAULT_FALLBACK))
3692 return ret;
71e3aac0 3693 } else {
82b0f8c3 3694 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3695
71e3aac0 3696 barrier();
5c7fb56e 3697 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3698 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3699 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3700
82b0f8c3 3701 if ((vmf.flags & FAULT_FLAG_WRITE) &&
bae473a4 3702 !pmd_write(orig_pmd)) {
82b0f8c3 3703 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3704 if (!(ret & VM_FAULT_FALLBACK))
3705 return ret;
a1dd450b 3706 } else {
82b0f8c3 3707 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3708 return 0;
1f1d06c3 3709 }
71e3aac0
AA
3710 }
3711 }
3712
82b0f8c3 3713 return handle_pte_fault(&vmf);
1da177e4
LT
3714}
3715
9a95f3cf
PC
3716/*
3717 * By the time we get here, we already hold the mm semaphore
3718 *
3719 * The mmap_sem may have been released depending on flags and our
3720 * return value. See filemap_fault() and __lock_page_or_retry().
3721 */
dcddffd4
KS
3722int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3723 unsigned int flags)
519e5247
JW
3724{
3725 int ret;
3726
3727 __set_current_state(TASK_RUNNING);
3728
3729 count_vm_event(PGFAULT);
dcddffd4 3730 mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
519e5247
JW
3731
3732 /* do counter updates before entering really critical section. */
3733 check_sync_rss_stat(current);
3734
3735 /*
3736 * Enable the memcg OOM handling for faults triggered in user
3737 * space. Kernel faults are handled more gracefully.
3738 */
3739 if (flags & FAULT_FLAG_USER)
49426420 3740 mem_cgroup_oom_enable();
519e5247 3741
bae473a4
KS
3742 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3743 flags & FAULT_FLAG_INSTRUCTION,
3744 flags & FAULT_FLAG_REMOTE))
3745 return VM_FAULT_SIGSEGV;
3746
3747 if (unlikely(is_vm_hugetlb_page(vma)))
3748 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3749 else
3750 ret = __handle_mm_fault(vma, address, flags);
519e5247 3751
49426420
JW
3752 if (flags & FAULT_FLAG_USER) {
3753 mem_cgroup_oom_disable();
166f61b9
TH
3754 /*
3755 * The task may have entered a memcg OOM situation but
3756 * if the allocation error was handled gracefully (no
3757 * VM_FAULT_OOM), there is no need to kill anything.
3758 * Just clean up the OOM state peacefully.
3759 */
3760 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3761 mem_cgroup_oom_synchronize(false);
49426420 3762 }
3812c8c8 3763
3f70dc38
MH
3764 /*
3765 * This mm has been already reaped by the oom reaper and so the
3766 * refault cannot be trusted in general. Anonymous refaults would
3767 * lose data and give a zero page instead e.g. This is especially
3768 * problem for use_mm() because regular tasks will just die and
3769 * the corrupted data will not be visible anywhere while kthread
3770 * will outlive the oom victim and potentially propagate the date
3771 * further.
3772 */
3773 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3774 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3775 ret = VM_FAULT_SIGBUS;
3776
519e5247
JW
3777 return ret;
3778}
e1d6d01a 3779EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3780
1da177e4
LT
3781#ifndef __PAGETABLE_PUD_FOLDED
3782/*
3783 * Allocate page upper directory.
872fec16 3784 * We've already handled the fast-path in-line.
1da177e4 3785 */
1bb3630e 3786int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3787{
c74df32c
HD
3788 pud_t *new = pud_alloc_one(mm, address);
3789 if (!new)
1bb3630e 3790 return -ENOMEM;
1da177e4 3791
362a61ad
NP
3792 smp_wmb(); /* See comment in __pte_alloc */
3793
872fec16 3794 spin_lock(&mm->page_table_lock);
1bb3630e 3795 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3796 pud_free(mm, new);
1bb3630e
HD
3797 else
3798 pgd_populate(mm, pgd, new);
c74df32c 3799 spin_unlock(&mm->page_table_lock);
1bb3630e 3800 return 0;
1da177e4
LT
3801}
3802#endif /* __PAGETABLE_PUD_FOLDED */
3803
3804#ifndef __PAGETABLE_PMD_FOLDED
3805/*
3806 * Allocate page middle directory.
872fec16 3807 * We've already handled the fast-path in-line.
1da177e4 3808 */
1bb3630e 3809int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3810{
a00cc7d9 3811 spinlock_t *ptl;
c74df32c
HD
3812 pmd_t *new = pmd_alloc_one(mm, address);
3813 if (!new)
1bb3630e 3814 return -ENOMEM;
1da177e4 3815
362a61ad
NP
3816 smp_wmb(); /* See comment in __pte_alloc */
3817
a00cc7d9 3818 ptl = pud_lock(mm, pud);
1da177e4 3819#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3820 if (!pud_present(*pud)) {
3821 mm_inc_nr_pmds(mm);
1bb3630e 3822 pud_populate(mm, pud, new);
dc6c9a35 3823 } else /* Another has populated it */
5e541973 3824 pmd_free(mm, new);
dc6c9a35
KS
3825#else
3826 if (!pgd_present(*pud)) {
3827 mm_inc_nr_pmds(mm);
1bb3630e 3828 pgd_populate(mm, pud, new);
dc6c9a35
KS
3829 } else /* Another has populated it */
3830 pmd_free(mm, new);
1da177e4 3831#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 3832 spin_unlock(ptl);
1bb3630e 3833 return 0;
e0f39591 3834}
1da177e4
LT
3835#endif /* __PAGETABLE_PMD_FOLDED */
3836
09796395
RZ
3837static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3838 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
3839{
3840 pgd_t *pgd;
3841 pud_t *pud;
3842 pmd_t *pmd;
3843 pte_t *ptep;
3844
3845 pgd = pgd_offset(mm, address);
3846 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3847 goto out;
3848
3849 pud = pud_offset(pgd, address);
3850 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3851 goto out;
3852
3853 pmd = pmd_offset(pud, address);
f66055ab 3854 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 3855
09796395
RZ
3856 if (pmd_huge(*pmd)) {
3857 if (!pmdpp)
3858 goto out;
3859
3860 *ptlp = pmd_lock(mm, pmd);
3861 if (pmd_huge(*pmd)) {
3862 *pmdpp = pmd;
3863 return 0;
3864 }
3865 spin_unlock(*ptlp);
3866 }
3867
3868 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
3869 goto out;
3870
3871 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3872 if (!ptep)
3873 goto out;
3874 if (!pte_present(*ptep))
3875 goto unlock;
3876 *ptepp = ptep;
3877 return 0;
3878unlock:
3879 pte_unmap_unlock(ptep, *ptlp);
3880out:
3881 return -EINVAL;
3882}
3883
f729c8c9
RZ
3884static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3885 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
3886{
3887 int res;
3888
3889 /* (void) is needed to make gcc happy */
3890 (void) __cond_lock(*ptlp,
09796395
RZ
3891 !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
3892 ptlp)));
3893 return res;
3894}
3895
3896int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3897 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3898{
3899 int res;
3900
3901 /* (void) is needed to make gcc happy */
3902 (void) __cond_lock(*ptlp,
3903 !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
3904 ptlp)));
1b36ba81
NK
3905 return res;
3906}
09796395 3907EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 3908
3b6748e2
JW
3909/**
3910 * follow_pfn - look up PFN at a user virtual address
3911 * @vma: memory mapping
3912 * @address: user virtual address
3913 * @pfn: location to store found PFN
3914 *
3915 * Only IO mappings and raw PFN mappings are allowed.
3916 *
3917 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3918 */
3919int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3920 unsigned long *pfn)
3921{
3922 int ret = -EINVAL;
3923 spinlock_t *ptl;
3924 pte_t *ptep;
3925
3926 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3927 return ret;
3928
3929 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3930 if (ret)
3931 return ret;
3932 *pfn = pte_pfn(*ptep);
3933 pte_unmap_unlock(ptep, ptl);
3934 return 0;
3935}
3936EXPORT_SYMBOL(follow_pfn);
3937
28b2ee20 3938#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3939int follow_phys(struct vm_area_struct *vma,
3940 unsigned long address, unsigned int flags,
3941 unsigned long *prot, resource_size_t *phys)
28b2ee20 3942{
03668a4d 3943 int ret = -EINVAL;
28b2ee20
RR
3944 pte_t *ptep, pte;
3945 spinlock_t *ptl;
28b2ee20 3946
d87fe660 3947 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3948 goto out;
28b2ee20 3949
03668a4d 3950 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3951 goto out;
28b2ee20 3952 pte = *ptep;
03668a4d 3953
28b2ee20
RR
3954 if ((flags & FOLL_WRITE) && !pte_write(pte))
3955 goto unlock;
28b2ee20
RR
3956
3957 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3958 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3959
03668a4d 3960 ret = 0;
28b2ee20
RR
3961unlock:
3962 pte_unmap_unlock(ptep, ptl);
3963out:
d87fe660 3964 return ret;
28b2ee20
RR
3965}
3966
3967int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3968 void *buf, int len, int write)
3969{
3970 resource_size_t phys_addr;
3971 unsigned long prot = 0;
2bc7273b 3972 void __iomem *maddr;
28b2ee20
RR
3973 int offset = addr & (PAGE_SIZE-1);
3974
d87fe660 3975 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3976 return -EINVAL;
3977
9cb12d7b 3978 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
3979 if (write)
3980 memcpy_toio(maddr + offset, buf, len);
3981 else
3982 memcpy_fromio(buf, maddr + offset, len);
3983 iounmap(maddr);
3984
3985 return len;
3986}
5a73633e 3987EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3988#endif
3989
0ec76a11 3990/*
206cb636
SW
3991 * Access another process' address space as given in mm. If non-NULL, use the
3992 * given task for page fault accounting.
0ec76a11 3993 */
84d77d3f 3994int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 3995 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 3996{
0ec76a11 3997 struct vm_area_struct *vma;
0ec76a11 3998 void *old_buf = buf;
442486ec 3999 int write = gup_flags & FOLL_WRITE;
0ec76a11 4000
0ec76a11 4001 down_read(&mm->mmap_sem);
183ff22b 4002 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4003 while (len) {
4004 int bytes, ret, offset;
4005 void *maddr;
28b2ee20 4006 struct page *page = NULL;
0ec76a11 4007
1e987790 4008 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4009 gup_flags, &page, &vma, NULL);
28b2ee20 4010 if (ret <= 0) {
dbffcd03
RR
4011#ifndef CONFIG_HAVE_IOREMAP_PROT
4012 break;
4013#else
28b2ee20
RR
4014 /*
4015 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4016 * we can access using slightly different code.
4017 */
28b2ee20 4018 vma = find_vma(mm, addr);
fe936dfc 4019 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4020 break;
4021 if (vma->vm_ops && vma->vm_ops->access)
4022 ret = vma->vm_ops->access(vma, addr, buf,
4023 len, write);
4024 if (ret <= 0)
28b2ee20
RR
4025 break;
4026 bytes = ret;
dbffcd03 4027#endif
0ec76a11 4028 } else {
28b2ee20
RR
4029 bytes = len;
4030 offset = addr & (PAGE_SIZE-1);
4031 if (bytes > PAGE_SIZE-offset)
4032 bytes = PAGE_SIZE-offset;
4033
4034 maddr = kmap(page);
4035 if (write) {
4036 copy_to_user_page(vma, page, addr,
4037 maddr + offset, buf, bytes);
4038 set_page_dirty_lock(page);
4039 } else {
4040 copy_from_user_page(vma, page, addr,
4041 buf, maddr + offset, bytes);
4042 }
4043 kunmap(page);
09cbfeaf 4044 put_page(page);
0ec76a11 4045 }
0ec76a11
DH
4046 len -= bytes;
4047 buf += bytes;
4048 addr += bytes;
4049 }
4050 up_read(&mm->mmap_sem);
0ec76a11
DH
4051
4052 return buf - old_buf;
4053}
03252919 4054
5ddd36b9 4055/**
ae91dbfc 4056 * access_remote_vm - access another process' address space
5ddd36b9
SW
4057 * @mm: the mm_struct of the target address space
4058 * @addr: start address to access
4059 * @buf: source or destination buffer
4060 * @len: number of bytes to transfer
6347e8d5 4061 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4062 *
4063 * The caller must hold a reference on @mm.
4064 */
4065int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4066 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4067{
6347e8d5 4068 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4069}
4070
206cb636
SW
4071/*
4072 * Access another process' address space.
4073 * Source/target buffer must be kernel space,
4074 * Do not walk the page table directly, use get_user_pages
4075 */
4076int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4077 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4078{
4079 struct mm_struct *mm;
4080 int ret;
4081
4082 mm = get_task_mm(tsk);
4083 if (!mm)
4084 return 0;
4085
f307ab6d 4086 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4087
206cb636
SW
4088 mmput(mm);
4089
4090 return ret;
4091}
fcd35857 4092EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4093
03252919
AK
4094/*
4095 * Print the name of a VMA.
4096 */
4097void print_vma_addr(char *prefix, unsigned long ip)
4098{
4099 struct mm_struct *mm = current->mm;
4100 struct vm_area_struct *vma;
4101
e8bff74a
IM
4102 /*
4103 * Do not print if we are in atomic
4104 * contexts (in exception stacks, etc.):
4105 */
4106 if (preempt_count())
4107 return;
4108
03252919
AK
4109 down_read(&mm->mmap_sem);
4110 vma = find_vma(mm, ip);
4111 if (vma && vma->vm_file) {
4112 struct file *f = vma->vm_file;
4113 char *buf = (char *)__get_free_page(GFP_KERNEL);
4114 if (buf) {
2fbc57c5 4115 char *p;
03252919 4116
9bf39ab2 4117 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4118 if (IS_ERR(p))
4119 p = "?";
2fbc57c5 4120 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4121 vma->vm_start,
4122 vma->vm_end - vma->vm_start);
4123 free_page((unsigned long)buf);
4124 }
4125 }
51a07e50 4126 up_read(&mm->mmap_sem);
03252919 4127}
3ee1afa3 4128
662bbcb2 4129#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4130void __might_fault(const char *file, int line)
3ee1afa3 4131{
95156f00
PZ
4132 /*
4133 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4134 * holding the mmap_sem, this is safe because kernel memory doesn't
4135 * get paged out, therefore we'll never actually fault, and the
4136 * below annotations will generate false positives.
4137 */
4138 if (segment_eq(get_fs(), KERNEL_DS))
4139 return;
9ec23531 4140 if (pagefault_disabled())
662bbcb2 4141 return;
9ec23531
DH
4142 __might_sleep(file, line, 0);
4143#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4144 if (current->mm)
3ee1afa3 4145 might_lock_read(&current->mm->mmap_sem);
9ec23531 4146#endif
3ee1afa3 4147}
9ec23531 4148EXPORT_SYMBOL(__might_fault);
3ee1afa3 4149#endif
47ad8475
AA
4150
4151#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4152static void clear_gigantic_page(struct page *page,
4153 unsigned long addr,
4154 unsigned int pages_per_huge_page)
4155{
4156 int i;
4157 struct page *p = page;
4158
4159 might_sleep();
4160 for (i = 0; i < pages_per_huge_page;
4161 i++, p = mem_map_next(p, page, i)) {
4162 cond_resched();
4163 clear_user_highpage(p, addr + i * PAGE_SIZE);
4164 }
4165}
4166void clear_huge_page(struct page *page,
4167 unsigned long addr, unsigned int pages_per_huge_page)
4168{
4169 int i;
4170
4171 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4172 clear_gigantic_page(page, addr, pages_per_huge_page);
4173 return;
4174 }
4175
4176 might_sleep();
4177 for (i = 0; i < pages_per_huge_page; i++) {
4178 cond_resched();
4179 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4180 }
4181}
4182
4183static void copy_user_gigantic_page(struct page *dst, struct page *src,
4184 unsigned long addr,
4185 struct vm_area_struct *vma,
4186 unsigned int pages_per_huge_page)
4187{
4188 int i;
4189 struct page *dst_base = dst;
4190 struct page *src_base = src;
4191
4192 for (i = 0; i < pages_per_huge_page; ) {
4193 cond_resched();
4194 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4195
4196 i++;
4197 dst = mem_map_next(dst, dst_base, i);
4198 src = mem_map_next(src, src_base, i);
4199 }
4200}
4201
4202void copy_user_huge_page(struct page *dst, struct page *src,
4203 unsigned long addr, struct vm_area_struct *vma,
4204 unsigned int pages_per_huge_page)
4205{
4206 int i;
4207
4208 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4209 copy_user_gigantic_page(dst, src, addr, vma,
4210 pages_per_huge_page);
4211 return;
4212 }
4213
4214 might_sleep();
4215 for (i = 0; i < pages_per_huge_page; i++) {
4216 cond_resched();
4217 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4218 }
4219}
fa4d75c1
MK
4220
4221long copy_huge_page_from_user(struct page *dst_page,
4222 const void __user *usr_src,
810a56b9
MK
4223 unsigned int pages_per_huge_page,
4224 bool allow_pagefault)
fa4d75c1
MK
4225{
4226 void *src = (void *)usr_src;
4227 void *page_kaddr;
4228 unsigned long i, rc = 0;
4229 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4230
4231 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4232 if (allow_pagefault)
4233 page_kaddr = kmap(dst_page + i);
4234 else
4235 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4236 rc = copy_from_user(page_kaddr,
4237 (const void __user *)(src + i * PAGE_SIZE),
4238 PAGE_SIZE);
810a56b9
MK
4239 if (allow_pagefault)
4240 kunmap(dst_page + i);
4241 else
4242 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4243
4244 ret_val -= (PAGE_SIZE - rc);
4245 if (rc)
4246 break;
4247
4248 cond_resched();
4249 }
4250 return ret_val;
4251}
47ad8475 4252#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4253
40b64acd 4254#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4255
4256static struct kmem_cache *page_ptl_cachep;
4257
4258void __init ptlock_cache_init(void)
4259{
4260 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4261 SLAB_PANIC, NULL);
4262}
4263
539edb58 4264bool ptlock_alloc(struct page *page)
49076ec2
KS
4265{
4266 spinlock_t *ptl;
4267
b35f1819 4268 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4269 if (!ptl)
4270 return false;
539edb58 4271 page->ptl = ptl;
49076ec2
KS
4272 return true;
4273}
4274
539edb58 4275void ptlock_free(struct page *page)
49076ec2 4276{
b35f1819 4277 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4278}
4279#endif