]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
mm: add get_dump_page
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4
LT
49#include <linux/rmap.h>
50#include <linux/module.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
1da177e4 59
6952b61d 60#include <asm/io.h>
1da177e4
LT
61#include <asm/pgalloc.h>
62#include <asm/uaccess.h>
63#include <asm/tlb.h>
64#include <asm/tlbflush.h>
65#include <asm/pgtable.h>
66
42b77728
JB
67#include "internal.h"
68
d41dee36 69#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
70/* use the per-pgdat data instead for discontigmem - mbligh */
71unsigned long max_mapnr;
72struct page *mem_map;
73
74EXPORT_SYMBOL(max_mapnr);
75EXPORT_SYMBOL(mem_map);
76#endif
77
78unsigned long num_physpages;
79/*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86void * high_memory;
1da177e4
LT
87
88EXPORT_SYMBOL(num_physpages);
89EXPORT_SYMBOL(high_memory);
1da177e4 90
32a93233
IM
91/*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
96 */
97int randomize_va_space __read_mostly =
98#ifdef CONFIG_COMPAT_BRK
99 1;
100#else
101 2;
102#endif
a62eaf15
AK
103
104static int __init disable_randmaps(char *s)
105{
106 randomize_va_space = 0;
9b41046c 107 return 1;
a62eaf15
AK
108}
109__setup("norandmaps", disable_randmaps);
110
111
1da177e4
LT
112/*
113 * If a p?d_bad entry is found while walking page tables, report
114 * the error, before resetting entry to p?d_none. Usually (but
115 * very seldom) called out from the p?d_none_or_clear_bad macros.
116 */
117
118void pgd_clear_bad(pgd_t *pgd)
119{
120 pgd_ERROR(*pgd);
121 pgd_clear(pgd);
122}
123
124void pud_clear_bad(pud_t *pud)
125{
126 pud_ERROR(*pud);
127 pud_clear(pud);
128}
129
130void pmd_clear_bad(pmd_t *pmd)
131{
132 pmd_ERROR(*pmd);
133 pmd_clear(pmd);
134}
135
136/*
137 * Note: this doesn't free the actual pages themselves. That
138 * has been handled earlier when unmapping all the memory regions.
139 */
9e1b32ca
BH
140static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
141 unsigned long addr)
1da177e4 142{
2f569afd 143 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 144 pmd_clear(pmd);
9e1b32ca 145 pte_free_tlb(tlb, token, addr);
e0da382c 146 tlb->mm->nr_ptes--;
1da177e4
LT
147}
148
e0da382c
HD
149static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
150 unsigned long addr, unsigned long end,
151 unsigned long floor, unsigned long ceiling)
1da177e4
LT
152{
153 pmd_t *pmd;
154 unsigned long next;
e0da382c 155 unsigned long start;
1da177e4 156
e0da382c 157 start = addr;
1da177e4 158 pmd = pmd_offset(pud, addr);
1da177e4
LT
159 do {
160 next = pmd_addr_end(addr, end);
161 if (pmd_none_or_clear_bad(pmd))
162 continue;
9e1b32ca 163 free_pte_range(tlb, pmd, addr);
1da177e4
LT
164 } while (pmd++, addr = next, addr != end);
165
e0da382c
HD
166 start &= PUD_MASK;
167 if (start < floor)
168 return;
169 if (ceiling) {
170 ceiling &= PUD_MASK;
171 if (!ceiling)
172 return;
1da177e4 173 }
e0da382c
HD
174 if (end - 1 > ceiling - 1)
175 return;
176
177 pmd = pmd_offset(pud, start);
178 pud_clear(pud);
9e1b32ca 179 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
180}
181
e0da382c
HD
182static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
183 unsigned long addr, unsigned long end,
184 unsigned long floor, unsigned long ceiling)
1da177e4
LT
185{
186 pud_t *pud;
187 unsigned long next;
e0da382c 188 unsigned long start;
1da177e4 189
e0da382c 190 start = addr;
1da177e4 191 pud = pud_offset(pgd, addr);
1da177e4
LT
192 do {
193 next = pud_addr_end(addr, end);
194 if (pud_none_or_clear_bad(pud))
195 continue;
e0da382c 196 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
197 } while (pud++, addr = next, addr != end);
198
e0da382c
HD
199 start &= PGDIR_MASK;
200 if (start < floor)
201 return;
202 if (ceiling) {
203 ceiling &= PGDIR_MASK;
204 if (!ceiling)
205 return;
1da177e4 206 }
e0da382c
HD
207 if (end - 1 > ceiling - 1)
208 return;
209
210 pud = pud_offset(pgd, start);
211 pgd_clear(pgd);
9e1b32ca 212 pud_free_tlb(tlb, pud, start);
1da177e4
LT
213}
214
215/*
e0da382c
HD
216 * This function frees user-level page tables of a process.
217 *
1da177e4
LT
218 * Must be called with pagetable lock held.
219 */
42b77728 220void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
221 unsigned long addr, unsigned long end,
222 unsigned long floor, unsigned long ceiling)
1da177e4
LT
223{
224 pgd_t *pgd;
225 unsigned long next;
e0da382c
HD
226 unsigned long start;
227
228 /*
229 * The next few lines have given us lots of grief...
230 *
231 * Why are we testing PMD* at this top level? Because often
232 * there will be no work to do at all, and we'd prefer not to
233 * go all the way down to the bottom just to discover that.
234 *
235 * Why all these "- 1"s? Because 0 represents both the bottom
236 * of the address space and the top of it (using -1 for the
237 * top wouldn't help much: the masks would do the wrong thing).
238 * The rule is that addr 0 and floor 0 refer to the bottom of
239 * the address space, but end 0 and ceiling 0 refer to the top
240 * Comparisons need to use "end - 1" and "ceiling - 1" (though
241 * that end 0 case should be mythical).
242 *
243 * Wherever addr is brought up or ceiling brought down, we must
244 * be careful to reject "the opposite 0" before it confuses the
245 * subsequent tests. But what about where end is brought down
246 * by PMD_SIZE below? no, end can't go down to 0 there.
247 *
248 * Whereas we round start (addr) and ceiling down, by different
249 * masks at different levels, in order to test whether a table
250 * now has no other vmas using it, so can be freed, we don't
251 * bother to round floor or end up - the tests don't need that.
252 */
1da177e4 253
e0da382c
HD
254 addr &= PMD_MASK;
255 if (addr < floor) {
256 addr += PMD_SIZE;
257 if (!addr)
258 return;
259 }
260 if (ceiling) {
261 ceiling &= PMD_MASK;
262 if (!ceiling)
263 return;
264 }
265 if (end - 1 > ceiling - 1)
266 end -= PMD_SIZE;
267 if (addr > end - 1)
268 return;
269
270 start = addr;
42b77728 271 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
272 do {
273 next = pgd_addr_end(addr, end);
274 if (pgd_none_or_clear_bad(pgd))
275 continue;
42b77728 276 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 277 } while (pgd++, addr = next, addr != end);
e0da382c
HD
278}
279
42b77728 280void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 281 unsigned long floor, unsigned long ceiling)
e0da382c
HD
282{
283 while (vma) {
284 struct vm_area_struct *next = vma->vm_next;
285 unsigned long addr = vma->vm_start;
286
8f4f8c16
HD
287 /*
288 * Hide vma from rmap and vmtruncate before freeing pgtables
289 */
290 anon_vma_unlink(vma);
291 unlink_file_vma(vma);
292
9da61aef 293 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 294 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 295 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
296 } else {
297 /*
298 * Optimization: gather nearby vmas into one call down
299 */
300 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 301 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
302 vma = next;
303 next = vma->vm_next;
8f4f8c16
HD
304 anon_vma_unlink(vma);
305 unlink_file_vma(vma);
3bf5ee95
HD
306 }
307 free_pgd_range(tlb, addr, vma->vm_end,
308 floor, next? next->vm_start: ceiling);
309 }
e0da382c
HD
310 vma = next;
311 }
1da177e4
LT
312}
313
1bb3630e 314int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 315{
2f569afd 316 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
317 if (!new)
318 return -ENOMEM;
319
362a61ad
NP
320 /*
321 * Ensure all pte setup (eg. pte page lock and page clearing) are
322 * visible before the pte is made visible to other CPUs by being
323 * put into page tables.
324 *
325 * The other side of the story is the pointer chasing in the page
326 * table walking code (when walking the page table without locking;
327 * ie. most of the time). Fortunately, these data accesses consist
328 * of a chain of data-dependent loads, meaning most CPUs (alpha
329 * being the notable exception) will already guarantee loads are
330 * seen in-order. See the alpha page table accessors for the
331 * smp_read_barrier_depends() barriers in page table walking code.
332 */
333 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
334
c74df32c 335 spin_lock(&mm->page_table_lock);
2f569afd 336 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 337 mm->nr_ptes++;
1da177e4 338 pmd_populate(mm, pmd, new);
2f569afd 339 new = NULL;
1da177e4 340 }
c74df32c 341 spin_unlock(&mm->page_table_lock);
2f569afd
MS
342 if (new)
343 pte_free(mm, new);
1bb3630e 344 return 0;
1da177e4
LT
345}
346
1bb3630e 347int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 348{
1bb3630e
HD
349 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
350 if (!new)
351 return -ENOMEM;
352
362a61ad
NP
353 smp_wmb(); /* See comment in __pte_alloc */
354
1bb3630e 355 spin_lock(&init_mm.page_table_lock);
2f569afd 356 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 357 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
358 new = NULL;
359 }
1bb3630e 360 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
361 if (new)
362 pte_free_kernel(&init_mm, new);
1bb3630e 363 return 0;
1da177e4
LT
364}
365
ae859762
HD
366static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
367{
368 if (file_rss)
369 add_mm_counter(mm, file_rss, file_rss);
370 if (anon_rss)
371 add_mm_counter(mm, anon_rss, anon_rss);
372}
373
b5810039 374/*
6aab341e
LT
375 * This function is called to print an error when a bad pte
376 * is found. For example, we might have a PFN-mapped pte in
377 * a region that doesn't allow it.
b5810039
NP
378 *
379 * The calling function must still handle the error.
380 */
3dc14741
HD
381static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
382 pte_t pte, struct page *page)
b5810039 383{
3dc14741
HD
384 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
385 pud_t *pud = pud_offset(pgd, addr);
386 pmd_t *pmd = pmd_offset(pud, addr);
387 struct address_space *mapping;
388 pgoff_t index;
d936cf9b
HD
389 static unsigned long resume;
390 static unsigned long nr_shown;
391 static unsigned long nr_unshown;
392
393 /*
394 * Allow a burst of 60 reports, then keep quiet for that minute;
395 * or allow a steady drip of one report per second.
396 */
397 if (nr_shown == 60) {
398 if (time_before(jiffies, resume)) {
399 nr_unshown++;
400 return;
401 }
402 if (nr_unshown) {
1e9e6365
HD
403 printk(KERN_ALERT
404 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
405 nr_unshown);
406 nr_unshown = 0;
407 }
408 nr_shown = 0;
409 }
410 if (nr_shown++ == 0)
411 resume = jiffies + 60 * HZ;
3dc14741
HD
412
413 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
414 index = linear_page_index(vma, addr);
415
1e9e6365
HD
416 printk(KERN_ALERT
417 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
418 current->comm,
419 (long long)pte_val(pte), (long long)pmd_val(*pmd));
420 if (page) {
1e9e6365 421 printk(KERN_ALERT
3dc14741
HD
422 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
423 page, (void *)page->flags, page_count(page),
424 page_mapcount(page), page->mapping, page->index);
425 }
1e9e6365 426 printk(KERN_ALERT
3dc14741
HD
427 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
428 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
429 /*
430 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
431 */
432 if (vma->vm_ops)
1e9e6365 433 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
434 (unsigned long)vma->vm_ops->fault);
435 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 436 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 437 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 438 dump_stack();
3dc14741 439 add_taint(TAINT_BAD_PAGE);
b5810039
NP
440}
441
67121172
LT
442static inline int is_cow_mapping(unsigned int flags)
443{
444 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
445}
446
ee498ed7 447/*
7e675137 448 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 449 *
7e675137
NP
450 * "Special" mappings do not wish to be associated with a "struct page" (either
451 * it doesn't exist, or it exists but they don't want to touch it). In this
452 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 453 *
7e675137
NP
454 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
455 * pte bit, in which case this function is trivial. Secondly, an architecture
456 * may not have a spare pte bit, which requires a more complicated scheme,
457 * described below.
458 *
459 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
460 * special mapping (even if there are underlying and valid "struct pages").
461 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 462 *
b379d790
JH
463 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
464 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
465 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
466 * mapping will always honor the rule
6aab341e
LT
467 *
468 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
469 *
7e675137
NP
470 * And for normal mappings this is false.
471 *
472 * This restricts such mappings to be a linear translation from virtual address
473 * to pfn. To get around this restriction, we allow arbitrary mappings so long
474 * as the vma is not a COW mapping; in that case, we know that all ptes are
475 * special (because none can have been COWed).
b379d790 476 *
b379d790 477 *
7e675137 478 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
479 *
480 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
481 * page" backing, however the difference is that _all_ pages with a struct
482 * page (that is, those where pfn_valid is true) are refcounted and considered
483 * normal pages by the VM. The disadvantage is that pages are refcounted
484 * (which can be slower and simply not an option for some PFNMAP users). The
485 * advantage is that we don't have to follow the strict linearity rule of
486 * PFNMAP mappings in order to support COWable mappings.
487 *
ee498ed7 488 */
7e675137
NP
489#ifdef __HAVE_ARCH_PTE_SPECIAL
490# define HAVE_PTE_SPECIAL 1
491#else
492# define HAVE_PTE_SPECIAL 0
493#endif
494struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
495 pte_t pte)
ee498ed7 496{
22b31eec 497 unsigned long pfn = pte_pfn(pte);
7e675137
NP
498
499 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
500 if (likely(!pte_special(pte)))
501 goto check_pfn;
502 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
503 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
504 return NULL;
505 }
506
507 /* !HAVE_PTE_SPECIAL case follows: */
508
b379d790
JH
509 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
510 if (vma->vm_flags & VM_MIXEDMAP) {
511 if (!pfn_valid(pfn))
512 return NULL;
513 goto out;
514 } else {
7e675137
NP
515 unsigned long off;
516 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
517 if (pfn == vma->vm_pgoff + off)
518 return NULL;
519 if (!is_cow_mapping(vma->vm_flags))
520 return NULL;
521 }
6aab341e
LT
522 }
523
22b31eec
HD
524check_pfn:
525 if (unlikely(pfn > highest_memmap_pfn)) {
526 print_bad_pte(vma, addr, pte, NULL);
527 return NULL;
528 }
6aab341e
LT
529
530 /*
7e675137 531 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 532 * eg. VDSO mappings can cause them to exist.
6aab341e 533 */
b379d790 534out:
6aab341e 535 return pfn_to_page(pfn);
ee498ed7
HD
536}
537
1da177e4
LT
538/*
539 * copy one vm_area from one task to the other. Assumes the page tables
540 * already present in the new task to be cleared in the whole range
541 * covered by this vma.
1da177e4
LT
542 */
543
8c103762 544static inline void
1da177e4 545copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 546 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 547 unsigned long addr, int *rss)
1da177e4 548{
b5810039 549 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
550 pte_t pte = *src_pte;
551 struct page *page;
1da177e4
LT
552
553 /* pte contains position in swap or file, so copy. */
554 if (unlikely(!pte_present(pte))) {
555 if (!pte_file(pte)) {
0697212a
CL
556 swp_entry_t entry = pte_to_swp_entry(pte);
557
558 swap_duplicate(entry);
1da177e4
LT
559 /* make sure dst_mm is on swapoff's mmlist. */
560 if (unlikely(list_empty(&dst_mm->mmlist))) {
561 spin_lock(&mmlist_lock);
f412ac08
HD
562 if (list_empty(&dst_mm->mmlist))
563 list_add(&dst_mm->mmlist,
564 &src_mm->mmlist);
1da177e4
LT
565 spin_unlock(&mmlist_lock);
566 }
0697212a
CL
567 if (is_write_migration_entry(entry) &&
568 is_cow_mapping(vm_flags)) {
569 /*
570 * COW mappings require pages in both parent
571 * and child to be set to read.
572 */
573 make_migration_entry_read(&entry);
574 pte = swp_entry_to_pte(entry);
575 set_pte_at(src_mm, addr, src_pte, pte);
576 }
1da177e4 577 }
ae859762 578 goto out_set_pte;
1da177e4
LT
579 }
580
1da177e4
LT
581 /*
582 * If it's a COW mapping, write protect it both
583 * in the parent and the child
584 */
67121172 585 if (is_cow_mapping(vm_flags)) {
1da177e4 586 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 587 pte = pte_wrprotect(pte);
1da177e4
LT
588 }
589
590 /*
591 * If it's a shared mapping, mark it clean in
592 * the child
593 */
594 if (vm_flags & VM_SHARED)
595 pte = pte_mkclean(pte);
596 pte = pte_mkold(pte);
6aab341e
LT
597
598 page = vm_normal_page(vma, addr, pte);
599 if (page) {
600 get_page(page);
21333b2b 601 page_dup_rmap(page);
b7c46d15 602 rss[PageAnon(page)]++;
6aab341e 603 }
ae859762
HD
604
605out_set_pte:
606 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
607}
608
609static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
610 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
611 unsigned long addr, unsigned long end)
612{
613 pte_t *src_pte, *dst_pte;
c74df32c 614 spinlock_t *src_ptl, *dst_ptl;
e040f218 615 int progress = 0;
8c103762 616 int rss[2];
1da177e4
LT
617
618again:
ae859762 619 rss[1] = rss[0] = 0;
c74df32c 620 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
621 if (!dst_pte)
622 return -ENOMEM;
623 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 624 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 625 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 626 arch_enter_lazy_mmu_mode();
1da177e4 627
1da177e4
LT
628 do {
629 /*
630 * We are holding two locks at this point - either of them
631 * could generate latencies in another task on another CPU.
632 */
e040f218
HD
633 if (progress >= 32) {
634 progress = 0;
635 if (need_resched() ||
95c354fe 636 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
637 break;
638 }
1da177e4
LT
639 if (pte_none(*src_pte)) {
640 progress++;
641 continue;
642 }
8c103762 643 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
644 progress += 8;
645 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 646
6606c3e0 647 arch_leave_lazy_mmu_mode();
c74df32c 648 spin_unlock(src_ptl);
1da177e4 649 pte_unmap_nested(src_pte - 1);
ae859762 650 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
651 pte_unmap_unlock(dst_pte - 1, dst_ptl);
652 cond_resched();
1da177e4
LT
653 if (addr != end)
654 goto again;
655 return 0;
656}
657
658static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
659 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
660 unsigned long addr, unsigned long end)
661{
662 pmd_t *src_pmd, *dst_pmd;
663 unsigned long next;
664
665 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
666 if (!dst_pmd)
667 return -ENOMEM;
668 src_pmd = pmd_offset(src_pud, addr);
669 do {
670 next = pmd_addr_end(addr, end);
671 if (pmd_none_or_clear_bad(src_pmd))
672 continue;
673 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
674 vma, addr, next))
675 return -ENOMEM;
676 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
677 return 0;
678}
679
680static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
681 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
682 unsigned long addr, unsigned long end)
683{
684 pud_t *src_pud, *dst_pud;
685 unsigned long next;
686
687 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
688 if (!dst_pud)
689 return -ENOMEM;
690 src_pud = pud_offset(src_pgd, addr);
691 do {
692 next = pud_addr_end(addr, end);
693 if (pud_none_or_clear_bad(src_pud))
694 continue;
695 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
696 vma, addr, next))
697 return -ENOMEM;
698 } while (dst_pud++, src_pud++, addr = next, addr != end);
699 return 0;
700}
701
702int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
703 struct vm_area_struct *vma)
704{
705 pgd_t *src_pgd, *dst_pgd;
706 unsigned long next;
707 unsigned long addr = vma->vm_start;
708 unsigned long end = vma->vm_end;
cddb8a5c 709 int ret;
1da177e4 710
d992895b
NP
711 /*
712 * Don't copy ptes where a page fault will fill them correctly.
713 * Fork becomes much lighter when there are big shared or private
714 * readonly mappings. The tradeoff is that copy_page_range is more
715 * efficient than faulting.
716 */
4d7672b4 717 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
718 if (!vma->anon_vma)
719 return 0;
720 }
721
1da177e4
LT
722 if (is_vm_hugetlb_page(vma))
723 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
724
34801ba9 725 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 726 /*
727 * We do not free on error cases below as remove_vma
728 * gets called on error from higher level routine
729 */
730 ret = track_pfn_vma_copy(vma);
731 if (ret)
732 return ret;
733 }
734
cddb8a5c
AA
735 /*
736 * We need to invalidate the secondary MMU mappings only when
737 * there could be a permission downgrade on the ptes of the
738 * parent mm. And a permission downgrade will only happen if
739 * is_cow_mapping() returns true.
740 */
741 if (is_cow_mapping(vma->vm_flags))
742 mmu_notifier_invalidate_range_start(src_mm, addr, end);
743
744 ret = 0;
1da177e4
LT
745 dst_pgd = pgd_offset(dst_mm, addr);
746 src_pgd = pgd_offset(src_mm, addr);
747 do {
748 next = pgd_addr_end(addr, end);
749 if (pgd_none_or_clear_bad(src_pgd))
750 continue;
cddb8a5c
AA
751 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
752 vma, addr, next))) {
753 ret = -ENOMEM;
754 break;
755 }
1da177e4 756 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
757
758 if (is_cow_mapping(vma->vm_flags))
759 mmu_notifier_invalidate_range_end(src_mm,
760 vma->vm_start, end);
761 return ret;
1da177e4
LT
762}
763
51c6f666 764static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 765 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 766 unsigned long addr, unsigned long end,
51c6f666 767 long *zap_work, struct zap_details *details)
1da177e4 768{
b5810039 769 struct mm_struct *mm = tlb->mm;
1da177e4 770 pte_t *pte;
508034a3 771 spinlock_t *ptl;
ae859762
HD
772 int file_rss = 0;
773 int anon_rss = 0;
1da177e4 774
508034a3 775 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 776 arch_enter_lazy_mmu_mode();
1da177e4
LT
777 do {
778 pte_t ptent = *pte;
51c6f666
RH
779 if (pte_none(ptent)) {
780 (*zap_work)--;
1da177e4 781 continue;
51c6f666 782 }
6f5e6b9e
HD
783
784 (*zap_work) -= PAGE_SIZE;
785
1da177e4 786 if (pte_present(ptent)) {
ee498ed7 787 struct page *page;
51c6f666 788
6aab341e 789 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
790 if (unlikely(details) && page) {
791 /*
792 * unmap_shared_mapping_pages() wants to
793 * invalidate cache without truncating:
794 * unmap shared but keep private pages.
795 */
796 if (details->check_mapping &&
797 details->check_mapping != page->mapping)
798 continue;
799 /*
800 * Each page->index must be checked when
801 * invalidating or truncating nonlinear.
802 */
803 if (details->nonlinear_vma &&
804 (page->index < details->first_index ||
805 page->index > details->last_index))
806 continue;
807 }
b5810039 808 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 809 tlb->fullmm);
1da177e4
LT
810 tlb_remove_tlb_entry(tlb, pte, addr);
811 if (unlikely(!page))
812 continue;
813 if (unlikely(details) && details->nonlinear_vma
814 && linear_page_index(details->nonlinear_vma,
815 addr) != page->index)
b5810039 816 set_pte_at(mm, addr, pte,
1da177e4 817 pgoff_to_pte(page->index));
1da177e4 818 if (PageAnon(page))
86d912f4 819 anon_rss--;
6237bcd9
HD
820 else {
821 if (pte_dirty(ptent))
822 set_page_dirty(page);
4917e5d0
JW
823 if (pte_young(ptent) &&
824 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 825 mark_page_accessed(page);
86d912f4 826 file_rss--;
6237bcd9 827 }
edc315fd 828 page_remove_rmap(page);
3dc14741
HD
829 if (unlikely(page_mapcount(page) < 0))
830 print_bad_pte(vma, addr, ptent, page);
1da177e4
LT
831 tlb_remove_page(tlb, page);
832 continue;
833 }
834 /*
835 * If details->check_mapping, we leave swap entries;
836 * if details->nonlinear_vma, we leave file entries.
837 */
838 if (unlikely(details))
839 continue;
2509ef26
HD
840 if (pte_file(ptent)) {
841 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
842 print_bad_pte(vma, addr, ptent, NULL);
843 } else if
844 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
845 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 846 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 847 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 848
86d912f4 849 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 850 arch_leave_lazy_mmu_mode();
508034a3 851 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
852
853 return addr;
1da177e4
LT
854}
855
51c6f666 856static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 857 struct vm_area_struct *vma, pud_t *pud,
1da177e4 858 unsigned long addr, unsigned long end,
51c6f666 859 long *zap_work, struct zap_details *details)
1da177e4
LT
860{
861 pmd_t *pmd;
862 unsigned long next;
863
864 pmd = pmd_offset(pud, addr);
865 do {
866 next = pmd_addr_end(addr, end);
51c6f666
RH
867 if (pmd_none_or_clear_bad(pmd)) {
868 (*zap_work)--;
1da177e4 869 continue;
51c6f666
RH
870 }
871 next = zap_pte_range(tlb, vma, pmd, addr, next,
872 zap_work, details);
873 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
874
875 return addr;
1da177e4
LT
876}
877
51c6f666 878static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 879 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 880 unsigned long addr, unsigned long end,
51c6f666 881 long *zap_work, struct zap_details *details)
1da177e4
LT
882{
883 pud_t *pud;
884 unsigned long next;
885
886 pud = pud_offset(pgd, addr);
887 do {
888 next = pud_addr_end(addr, end);
51c6f666
RH
889 if (pud_none_or_clear_bad(pud)) {
890 (*zap_work)--;
1da177e4 891 continue;
51c6f666
RH
892 }
893 next = zap_pmd_range(tlb, vma, pud, addr, next,
894 zap_work, details);
895 } while (pud++, addr = next, (addr != end && *zap_work > 0));
896
897 return addr;
1da177e4
LT
898}
899
51c6f666
RH
900static unsigned long unmap_page_range(struct mmu_gather *tlb,
901 struct vm_area_struct *vma,
1da177e4 902 unsigned long addr, unsigned long end,
51c6f666 903 long *zap_work, struct zap_details *details)
1da177e4
LT
904{
905 pgd_t *pgd;
906 unsigned long next;
907
908 if (details && !details->check_mapping && !details->nonlinear_vma)
909 details = NULL;
910
911 BUG_ON(addr >= end);
912 tlb_start_vma(tlb, vma);
913 pgd = pgd_offset(vma->vm_mm, addr);
914 do {
915 next = pgd_addr_end(addr, end);
51c6f666
RH
916 if (pgd_none_or_clear_bad(pgd)) {
917 (*zap_work)--;
1da177e4 918 continue;
51c6f666
RH
919 }
920 next = zap_pud_range(tlb, vma, pgd, addr, next,
921 zap_work, details);
922 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 923 tlb_end_vma(tlb, vma);
51c6f666
RH
924
925 return addr;
1da177e4
LT
926}
927
928#ifdef CONFIG_PREEMPT
929# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
930#else
931/* No preempt: go for improved straight-line efficiency */
932# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
933#endif
934
935/**
936 * unmap_vmas - unmap a range of memory covered by a list of vma's
937 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
938 * @vma: the starting vma
939 * @start_addr: virtual address at which to start unmapping
940 * @end_addr: virtual address at which to end unmapping
941 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
942 * @details: details of nonlinear truncation or shared cache invalidation
943 *
ee39b37b 944 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 945 *
508034a3 946 * Unmap all pages in the vma list.
1da177e4 947 *
508034a3
HD
948 * We aim to not hold locks for too long (for scheduling latency reasons).
949 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
950 * return the ending mmu_gather to the caller.
951 *
952 * Only addresses between `start' and `end' will be unmapped.
953 *
954 * The VMA list must be sorted in ascending virtual address order.
955 *
956 * unmap_vmas() assumes that the caller will flush the whole unmapped address
957 * range after unmap_vmas() returns. So the only responsibility here is to
958 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
959 * drops the lock and schedules.
960 */
508034a3 961unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
962 struct vm_area_struct *vma, unsigned long start_addr,
963 unsigned long end_addr, unsigned long *nr_accounted,
964 struct zap_details *details)
965{
51c6f666 966 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
967 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
968 int tlb_start_valid = 0;
ee39b37b 969 unsigned long start = start_addr;
1da177e4 970 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 971 int fullmm = (*tlbp)->fullmm;
cddb8a5c 972 struct mm_struct *mm = vma->vm_mm;
1da177e4 973
cddb8a5c 974 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 975 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
976 unsigned long end;
977
978 start = max(vma->vm_start, start_addr);
979 if (start >= vma->vm_end)
980 continue;
981 end = min(vma->vm_end, end_addr);
982 if (end <= vma->vm_start)
983 continue;
984
985 if (vma->vm_flags & VM_ACCOUNT)
986 *nr_accounted += (end - start) >> PAGE_SHIFT;
987
34801ba9 988 if (unlikely(is_pfn_mapping(vma)))
2ab64037 989 untrack_pfn_vma(vma, 0, 0);
990
1da177e4 991 while (start != end) {
1da177e4
LT
992 if (!tlb_start_valid) {
993 tlb_start = start;
994 tlb_start_valid = 1;
995 }
996
51c6f666 997 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
998 /*
999 * It is undesirable to test vma->vm_file as it
1000 * should be non-null for valid hugetlb area.
1001 * However, vm_file will be NULL in the error
1002 * cleanup path of do_mmap_pgoff. When
1003 * hugetlbfs ->mmap method fails,
1004 * do_mmap_pgoff() nullifies vma->vm_file
1005 * before calling this function to clean up.
1006 * Since no pte has actually been setup, it is
1007 * safe to do nothing in this case.
1008 */
1009 if (vma->vm_file) {
1010 unmap_hugepage_range(vma, start, end, NULL);
1011 zap_work -= (end - start) /
a5516438 1012 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
1013 }
1014
51c6f666
RH
1015 start = end;
1016 } else
1017 start = unmap_page_range(*tlbp, vma,
1018 start, end, &zap_work, details);
1019
1020 if (zap_work > 0) {
1021 BUG_ON(start != end);
1022 break;
1da177e4
LT
1023 }
1024
1da177e4
LT
1025 tlb_finish_mmu(*tlbp, tlb_start, start);
1026
1027 if (need_resched() ||
95c354fe 1028 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1029 if (i_mmap_lock) {
508034a3 1030 *tlbp = NULL;
1da177e4
LT
1031 goto out;
1032 }
1da177e4 1033 cond_resched();
1da177e4
LT
1034 }
1035
508034a3 1036 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1037 tlb_start_valid = 0;
51c6f666 1038 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1039 }
1040 }
1041out:
cddb8a5c 1042 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1043 return start; /* which is now the end (or restart) address */
1da177e4
LT
1044}
1045
1046/**
1047 * zap_page_range - remove user pages in a given range
1048 * @vma: vm_area_struct holding the applicable pages
1049 * @address: starting address of pages to zap
1050 * @size: number of bytes to zap
1051 * @details: details of nonlinear truncation or shared cache invalidation
1052 */
ee39b37b 1053unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1054 unsigned long size, struct zap_details *details)
1055{
1056 struct mm_struct *mm = vma->vm_mm;
1057 struct mmu_gather *tlb;
1058 unsigned long end = address + size;
1059 unsigned long nr_accounted = 0;
1060
1da177e4 1061 lru_add_drain();
1da177e4 1062 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1063 update_hiwater_rss(mm);
508034a3
HD
1064 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1065 if (tlb)
1066 tlb_finish_mmu(tlb, address, end);
ee39b37b 1067 return end;
1da177e4
LT
1068}
1069
c627f9cc
JS
1070/**
1071 * zap_vma_ptes - remove ptes mapping the vma
1072 * @vma: vm_area_struct holding ptes to be zapped
1073 * @address: starting address of pages to zap
1074 * @size: number of bytes to zap
1075 *
1076 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1077 *
1078 * The entire address range must be fully contained within the vma.
1079 *
1080 * Returns 0 if successful.
1081 */
1082int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1083 unsigned long size)
1084{
1085 if (address < vma->vm_start || address + size > vma->vm_end ||
1086 !(vma->vm_flags & VM_PFNMAP))
1087 return -1;
1088 zap_page_range(vma, address, size, NULL);
1089 return 0;
1090}
1091EXPORT_SYMBOL_GPL(zap_vma_ptes);
1092
1da177e4
LT
1093/*
1094 * Do a quick page-table lookup for a single page.
1da177e4 1095 */
6aab341e 1096struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1097 unsigned int flags)
1da177e4
LT
1098{
1099 pgd_t *pgd;
1100 pud_t *pud;
1101 pmd_t *pmd;
1102 pte_t *ptep, pte;
deceb6cd 1103 spinlock_t *ptl;
1da177e4 1104 struct page *page;
6aab341e 1105 struct mm_struct *mm = vma->vm_mm;
1da177e4 1106
deceb6cd
HD
1107 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1108 if (!IS_ERR(page)) {
1109 BUG_ON(flags & FOLL_GET);
1110 goto out;
1111 }
1da177e4 1112
deceb6cd 1113 page = NULL;
1da177e4
LT
1114 pgd = pgd_offset(mm, address);
1115 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1116 goto no_page_table;
1da177e4
LT
1117
1118 pud = pud_offset(pgd, address);
ceb86879 1119 if (pud_none(*pud))
deceb6cd 1120 goto no_page_table;
ceb86879
AK
1121 if (pud_huge(*pud)) {
1122 BUG_ON(flags & FOLL_GET);
1123 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1124 goto out;
1125 }
1126 if (unlikely(pud_bad(*pud)))
1127 goto no_page_table;
1128
1da177e4 1129 pmd = pmd_offset(pud, address);
aeed5fce 1130 if (pmd_none(*pmd))
deceb6cd 1131 goto no_page_table;
deceb6cd
HD
1132 if (pmd_huge(*pmd)) {
1133 BUG_ON(flags & FOLL_GET);
1134 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1135 goto out;
deceb6cd 1136 }
aeed5fce
HD
1137 if (unlikely(pmd_bad(*pmd)))
1138 goto no_page_table;
1139
deceb6cd 1140 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1141
1142 pte = *ptep;
deceb6cd 1143 if (!pte_present(pte))
89f5b7da 1144 goto no_page;
deceb6cd
HD
1145 if ((flags & FOLL_WRITE) && !pte_write(pte))
1146 goto unlock;
6aab341e
LT
1147 page = vm_normal_page(vma, address, pte);
1148 if (unlikely(!page))
89f5b7da 1149 goto bad_page;
1da177e4 1150
deceb6cd
HD
1151 if (flags & FOLL_GET)
1152 get_page(page);
1153 if (flags & FOLL_TOUCH) {
1154 if ((flags & FOLL_WRITE) &&
1155 !pte_dirty(pte) && !PageDirty(page))
1156 set_page_dirty(page);
bd775c42
KM
1157 /*
1158 * pte_mkyoung() would be more correct here, but atomic care
1159 * is needed to avoid losing the dirty bit: it is easier to use
1160 * mark_page_accessed().
1161 */
deceb6cd
HD
1162 mark_page_accessed(page);
1163 }
1164unlock:
1165 pte_unmap_unlock(ptep, ptl);
1da177e4 1166out:
deceb6cd 1167 return page;
1da177e4 1168
89f5b7da
LT
1169bad_page:
1170 pte_unmap_unlock(ptep, ptl);
1171 return ERR_PTR(-EFAULT);
1172
1173no_page:
1174 pte_unmap_unlock(ptep, ptl);
1175 if (!pte_none(pte))
1176 return page;
1177 /* Fall through to ZERO_PAGE handling */
deceb6cd
HD
1178no_page_table:
1179 /*
1180 * When core dumping an enormous anonymous area that nobody
1181 * has touched so far, we don't want to allocate page tables.
1182 */
1183 if (flags & FOLL_ANON) {
557ed1fa 1184 page = ZERO_PAGE(0);
deceb6cd
HD
1185 if (flags & FOLL_GET)
1186 get_page(page);
1187 BUG_ON(flags & FOLL_WRITE);
1188 }
1189 return page;
1da177e4
LT
1190}
1191
672ca28e
LT
1192/* Can we do the FOLL_ANON optimization? */
1193static inline int use_zero_page(struct vm_area_struct *vma)
1194{
1195 /*
1196 * We don't want to optimize FOLL_ANON for make_pages_present()
1197 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1198 * we want to get the page from the page tables to make sure
1199 * that we serialize and update with any other user of that
1200 * mapping.
1201 */
1202 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1203 return 0;
1204 /*
0d71d10a 1205 * And if we have a fault routine, it's not an anonymous region.
672ca28e 1206 */
0d71d10a 1207 return !vma->vm_ops || !vma->vm_ops->fault;
672ca28e
LT
1208}
1209
b291f000
NP
1210
1211
1212int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e
PZ
1213 unsigned long start, int nr_pages, int flags,
1214 struct page **pages, struct vm_area_struct **vmas)
1da177e4
LT
1215{
1216 int i;
b291f000
NP
1217 unsigned int vm_flags = 0;
1218 int write = !!(flags & GUP_FLAGS_WRITE);
1219 int force = !!(flags & GUP_FLAGS_FORCE);
1da177e4 1220
9d73777e 1221 if (nr_pages <= 0)
900cf086 1222 return 0;
1da177e4
LT
1223 /*
1224 * Require read or write permissions.
1225 * If 'force' is set, we only require the "MAY" flags.
1226 */
deceb6cd
HD
1227 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1228 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1229 i = 0;
1230
1231 do {
deceb6cd
HD
1232 struct vm_area_struct *vma;
1233 unsigned int foll_flags;
1da177e4
LT
1234
1235 vma = find_extend_vma(mm, start);
1236 if (!vma && in_gate_area(tsk, start)) {
1237 unsigned long pg = start & PAGE_MASK;
1238 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1239 pgd_t *pgd;
1240 pud_t *pud;
1241 pmd_t *pmd;
1242 pte_t *pte;
b291f000
NP
1243
1244 /* user gate pages are read-only */
1c3aff1c 1245 if (write)
1da177e4
LT
1246 return i ? : -EFAULT;
1247 if (pg > TASK_SIZE)
1248 pgd = pgd_offset_k(pg);
1249 else
1250 pgd = pgd_offset_gate(mm, pg);
1251 BUG_ON(pgd_none(*pgd));
1252 pud = pud_offset(pgd, pg);
1253 BUG_ON(pud_none(*pud));
1254 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1255 if (pmd_none(*pmd))
1256 return i ? : -EFAULT;
1da177e4 1257 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1258 if (pte_none(*pte)) {
1259 pte_unmap(pte);
1260 return i ? : -EFAULT;
1261 }
1da177e4 1262 if (pages) {
fa2a455b 1263 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1264 pages[i] = page;
1265 if (page)
1266 get_page(page);
1da177e4
LT
1267 }
1268 pte_unmap(pte);
1269 if (vmas)
1270 vmas[i] = gate_vma;
1271 i++;
1272 start += PAGE_SIZE;
9d73777e 1273 nr_pages--;
1da177e4
LT
1274 continue;
1275 }
1276
b291f000
NP
1277 if (!vma ||
1278 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1279 !(vm_flags & vma->vm_flags))
1da177e4
LT
1280 return i ? : -EFAULT;
1281
1282 if (is_vm_hugetlb_page(vma)) {
1283 i = follow_hugetlb_page(mm, vma, pages, vmas,
9d73777e 1284 &start, &nr_pages, i, write);
1da177e4
LT
1285 continue;
1286 }
deceb6cd
HD
1287
1288 foll_flags = FOLL_TOUCH;
1289 if (pages)
1290 foll_flags |= FOLL_GET;
672ca28e 1291 if (!write && use_zero_page(vma))
deceb6cd
HD
1292 foll_flags |= FOLL_ANON;
1293
1da177e4 1294 do {
08ef4729 1295 struct page *page;
1da177e4 1296
462e00cc 1297 /*
4779280d 1298 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1299 * pages and potentially allocating memory.
462e00cc 1300 */
1c3aff1c 1301 if (unlikely(fatal_signal_pending(current)))
4779280d 1302 return i ? i : -ERESTARTSYS;
462e00cc 1303
deceb6cd
HD
1304 if (write)
1305 foll_flags |= FOLL_WRITE;
a68d2ebc 1306
deceb6cd 1307 cond_resched();
6aab341e 1308 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1309 int ret;
d06063cc 1310
d26ed650
HD
1311 ret = handle_mm_fault(mm, vma, start,
1312 (foll_flags & FOLL_WRITE) ?
1313 FAULT_FLAG_WRITE : 0);
1314
83c54070
NP
1315 if (ret & VM_FAULT_ERROR) {
1316 if (ret & VM_FAULT_OOM)
1317 return i ? i : -ENOMEM;
1318 else if (ret & VM_FAULT_SIGBUS)
1319 return i ? i : -EFAULT;
1320 BUG();
1321 }
1322 if (ret & VM_FAULT_MAJOR)
1323 tsk->maj_flt++;
1324 else
1325 tsk->min_flt++;
1326
a68d2ebc 1327 /*
83c54070
NP
1328 * The VM_FAULT_WRITE bit tells us that
1329 * do_wp_page has broken COW when necessary,
1330 * even if maybe_mkwrite decided not to set
1331 * pte_write. We can thus safely do subsequent
878b63ac
HD
1332 * page lookups as if they were reads. But only
1333 * do so when looping for pte_write is futile:
1334 * in some cases userspace may also be wanting
1335 * to write to the gotten user page, which a
1336 * read fault here might prevent (a readonly
1337 * page might get reCOWed by userspace write).
a68d2ebc 1338 */
878b63ac
HD
1339 if ((ret & VM_FAULT_WRITE) &&
1340 !(vma->vm_flags & VM_WRITE))
deceb6cd 1341 foll_flags &= ~FOLL_WRITE;
83c54070 1342
7f7bbbe5 1343 cond_resched();
1da177e4 1344 }
89f5b7da
LT
1345 if (IS_ERR(page))
1346 return i ? i : PTR_ERR(page);
1da177e4 1347 if (pages) {
08ef4729 1348 pages[i] = page;
03beb076 1349
a6f36be3 1350 flush_anon_page(vma, page, start);
08ef4729 1351 flush_dcache_page(page);
1da177e4
LT
1352 }
1353 if (vmas)
1354 vmas[i] = vma;
1355 i++;
1356 start += PAGE_SIZE;
9d73777e
PZ
1357 nr_pages--;
1358 } while (nr_pages && start < vma->vm_end);
1359 } while (nr_pages);
1da177e4
LT
1360 return i;
1361}
b291f000 1362
d2bf6be8
NP
1363/**
1364 * get_user_pages() - pin user pages in memory
1365 * @tsk: task_struct of target task
1366 * @mm: mm_struct of target mm
1367 * @start: starting user address
9d73777e 1368 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1369 * @write: whether pages will be written to by the caller
1370 * @force: whether to force write access even if user mapping is
1371 * readonly. This will result in the page being COWed even
1372 * in MAP_SHARED mappings. You do not want this.
1373 * @pages: array that receives pointers to the pages pinned.
1374 * Should be at least nr_pages long. Or NULL, if caller
1375 * only intends to ensure the pages are faulted in.
1376 * @vmas: array of pointers to vmas corresponding to each page.
1377 * Or NULL if the caller does not require them.
1378 *
1379 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1380 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1381 * were pinned, returns -errno. Each page returned must be released
1382 * with a put_page() call when it is finished with. vmas will only
1383 * remain valid while mmap_sem is held.
1384 *
1385 * Must be called with mmap_sem held for read or write.
1386 *
1387 * get_user_pages walks a process's page tables and takes a reference to
1388 * each struct page that each user address corresponds to at a given
1389 * instant. That is, it takes the page that would be accessed if a user
1390 * thread accesses the given user virtual address at that instant.
1391 *
1392 * This does not guarantee that the page exists in the user mappings when
1393 * get_user_pages returns, and there may even be a completely different
1394 * page there in some cases (eg. if mmapped pagecache has been invalidated
1395 * and subsequently re faulted). However it does guarantee that the page
1396 * won't be freed completely. And mostly callers simply care that the page
1397 * contains data that was valid *at some point in time*. Typically, an IO
1398 * or similar operation cannot guarantee anything stronger anyway because
1399 * locks can't be held over the syscall boundary.
1400 *
1401 * If write=0, the page must not be written to. If the page is written to,
1402 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1403 * after the page is finished with, and before put_page is called.
1404 *
1405 * get_user_pages is typically used for fewer-copy IO operations, to get a
1406 * handle on the memory by some means other than accesses via the user virtual
1407 * addresses. The pages may be submitted for DMA to devices or accessed via
1408 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1409 * use the correct cache flushing APIs.
1410 *
1411 * See also get_user_pages_fast, for performance critical applications.
1412 */
b291f000 1413int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1414 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1415 struct page **pages, struct vm_area_struct **vmas)
1416{
1417 int flags = 0;
1418
1419 if (write)
1420 flags |= GUP_FLAGS_WRITE;
1421 if (force)
1422 flags |= GUP_FLAGS_FORCE;
1423
9d73777e 1424 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
b291f000 1425}
1da177e4
LT
1426EXPORT_SYMBOL(get_user_pages);
1427
f3e8fccd
HD
1428/**
1429 * get_dump_page() - pin user page in memory while writing it to core dump
1430 * @addr: user address
1431 *
1432 * Returns struct page pointer of user page pinned for dump,
1433 * to be freed afterwards by page_cache_release() or put_page().
1434 *
1435 * Returns NULL on any kind of failure - a hole must then be inserted into
1436 * the corefile, to preserve alignment with its headers; and also returns
1437 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1438 * allowing a hole to be left in the corefile to save diskspace.
1439 *
1440 * Called without mmap_sem, but after all other threads have been killed.
1441 */
1442#ifdef CONFIG_ELF_CORE
1443struct page *get_dump_page(unsigned long addr)
1444{
1445 struct vm_area_struct *vma;
1446 struct page *page;
1447
1448 if (__get_user_pages(current, current->mm, addr, 1,
1449 GUP_FLAGS_FORCE, &page, &vma) < 1)
1450 return NULL;
1451 if (page == ZERO_PAGE(0)) {
1452 page_cache_release(page);
1453 return NULL;
1454 }
1455 flush_cache_page(vma, addr, page_to_pfn(page));
1456 return page;
1457}
1458#endif /* CONFIG_ELF_CORE */
1459
920c7a5d
HH
1460pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1461 spinlock_t **ptl)
c9cfcddf
LT
1462{
1463 pgd_t * pgd = pgd_offset(mm, addr);
1464 pud_t * pud = pud_alloc(mm, pgd, addr);
1465 if (pud) {
49c91fb0 1466 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1467 if (pmd)
1468 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1469 }
1470 return NULL;
1471}
1472
238f58d8
LT
1473/*
1474 * This is the old fallback for page remapping.
1475 *
1476 * For historical reasons, it only allows reserved pages. Only
1477 * old drivers should use this, and they needed to mark their
1478 * pages reserved for the old functions anyway.
1479 */
423bad60
NP
1480static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1481 struct page *page, pgprot_t prot)
238f58d8 1482{
423bad60 1483 struct mm_struct *mm = vma->vm_mm;
238f58d8 1484 int retval;
c9cfcddf 1485 pte_t *pte;
8a9f3ccd
BS
1486 spinlock_t *ptl;
1487
238f58d8 1488 retval = -EINVAL;
a145dd41 1489 if (PageAnon(page))
5b4e655e 1490 goto out;
238f58d8
LT
1491 retval = -ENOMEM;
1492 flush_dcache_page(page);
c9cfcddf 1493 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1494 if (!pte)
5b4e655e 1495 goto out;
238f58d8
LT
1496 retval = -EBUSY;
1497 if (!pte_none(*pte))
1498 goto out_unlock;
1499
1500 /* Ok, finally just insert the thing.. */
1501 get_page(page);
1502 inc_mm_counter(mm, file_rss);
1503 page_add_file_rmap(page);
1504 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1505
1506 retval = 0;
8a9f3ccd
BS
1507 pte_unmap_unlock(pte, ptl);
1508 return retval;
238f58d8
LT
1509out_unlock:
1510 pte_unmap_unlock(pte, ptl);
1511out:
1512 return retval;
1513}
1514
bfa5bf6d
REB
1515/**
1516 * vm_insert_page - insert single page into user vma
1517 * @vma: user vma to map to
1518 * @addr: target user address of this page
1519 * @page: source kernel page
1520 *
a145dd41
LT
1521 * This allows drivers to insert individual pages they've allocated
1522 * into a user vma.
1523 *
1524 * The page has to be a nice clean _individual_ kernel allocation.
1525 * If you allocate a compound page, you need to have marked it as
1526 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1527 * (see split_page()).
a145dd41
LT
1528 *
1529 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1530 * took an arbitrary page protection parameter. This doesn't allow
1531 * that. Your vma protection will have to be set up correctly, which
1532 * means that if you want a shared writable mapping, you'd better
1533 * ask for a shared writable mapping!
1534 *
1535 * The page does not need to be reserved.
1536 */
423bad60
NP
1537int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1538 struct page *page)
a145dd41
LT
1539{
1540 if (addr < vma->vm_start || addr >= vma->vm_end)
1541 return -EFAULT;
1542 if (!page_count(page))
1543 return -EINVAL;
4d7672b4 1544 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1545 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1546}
e3c3374f 1547EXPORT_SYMBOL(vm_insert_page);
a145dd41 1548
423bad60
NP
1549static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1550 unsigned long pfn, pgprot_t prot)
1551{
1552 struct mm_struct *mm = vma->vm_mm;
1553 int retval;
1554 pte_t *pte, entry;
1555 spinlock_t *ptl;
1556
1557 retval = -ENOMEM;
1558 pte = get_locked_pte(mm, addr, &ptl);
1559 if (!pte)
1560 goto out;
1561 retval = -EBUSY;
1562 if (!pte_none(*pte))
1563 goto out_unlock;
1564
1565 /* Ok, finally just insert the thing.. */
1566 entry = pte_mkspecial(pfn_pte(pfn, prot));
1567 set_pte_at(mm, addr, pte, entry);
1568 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1569
1570 retval = 0;
1571out_unlock:
1572 pte_unmap_unlock(pte, ptl);
1573out:
1574 return retval;
1575}
1576
e0dc0d8f
NP
1577/**
1578 * vm_insert_pfn - insert single pfn into user vma
1579 * @vma: user vma to map to
1580 * @addr: target user address of this page
1581 * @pfn: source kernel pfn
1582 *
1583 * Similar to vm_inert_page, this allows drivers to insert individual pages
1584 * they've allocated into a user vma. Same comments apply.
1585 *
1586 * This function should only be called from a vm_ops->fault handler, and
1587 * in that case the handler should return NULL.
0d71d10a
NP
1588 *
1589 * vma cannot be a COW mapping.
1590 *
1591 * As this is called only for pages that do not currently exist, we
1592 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1593 */
1594int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1595 unsigned long pfn)
e0dc0d8f 1596{
2ab64037 1597 int ret;
e4b866ed 1598 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1599 /*
1600 * Technically, architectures with pte_special can avoid all these
1601 * restrictions (same for remap_pfn_range). However we would like
1602 * consistency in testing and feature parity among all, so we should
1603 * try to keep these invariants in place for everybody.
1604 */
b379d790
JH
1605 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1606 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1607 (VM_PFNMAP|VM_MIXEDMAP));
1608 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1609 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1610
423bad60
NP
1611 if (addr < vma->vm_start || addr >= vma->vm_end)
1612 return -EFAULT;
e4b866ed 1613 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 1614 return -EINVAL;
1615
e4b866ed 1616 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1617
1618 if (ret)
1619 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1620
1621 return ret;
423bad60
NP
1622}
1623EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1624
423bad60
NP
1625int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1626 unsigned long pfn)
1627{
1628 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1629
423bad60
NP
1630 if (addr < vma->vm_start || addr >= vma->vm_end)
1631 return -EFAULT;
e0dc0d8f 1632
423bad60
NP
1633 /*
1634 * If we don't have pte special, then we have to use the pfn_valid()
1635 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1636 * refcount the page if pfn_valid is true (hence insert_page rather
1637 * than insert_pfn).
1638 */
1639 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1640 struct page *page;
1641
1642 page = pfn_to_page(pfn);
1643 return insert_page(vma, addr, page, vma->vm_page_prot);
1644 }
1645 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1646}
423bad60 1647EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1648
1da177e4
LT
1649/*
1650 * maps a range of physical memory into the requested pages. the old
1651 * mappings are removed. any references to nonexistent pages results
1652 * in null mappings (currently treated as "copy-on-access")
1653 */
1654static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1655 unsigned long addr, unsigned long end,
1656 unsigned long pfn, pgprot_t prot)
1657{
1658 pte_t *pte;
c74df32c 1659 spinlock_t *ptl;
1da177e4 1660
c74df32c 1661 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1662 if (!pte)
1663 return -ENOMEM;
6606c3e0 1664 arch_enter_lazy_mmu_mode();
1da177e4
LT
1665 do {
1666 BUG_ON(!pte_none(*pte));
7e675137 1667 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1668 pfn++;
1669 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1670 arch_leave_lazy_mmu_mode();
c74df32c 1671 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1672 return 0;
1673}
1674
1675static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1676 unsigned long addr, unsigned long end,
1677 unsigned long pfn, pgprot_t prot)
1678{
1679 pmd_t *pmd;
1680 unsigned long next;
1681
1682 pfn -= addr >> PAGE_SHIFT;
1683 pmd = pmd_alloc(mm, pud, addr);
1684 if (!pmd)
1685 return -ENOMEM;
1686 do {
1687 next = pmd_addr_end(addr, end);
1688 if (remap_pte_range(mm, pmd, addr, next,
1689 pfn + (addr >> PAGE_SHIFT), prot))
1690 return -ENOMEM;
1691 } while (pmd++, addr = next, addr != end);
1692 return 0;
1693}
1694
1695static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1696 unsigned long addr, unsigned long end,
1697 unsigned long pfn, pgprot_t prot)
1698{
1699 pud_t *pud;
1700 unsigned long next;
1701
1702 pfn -= addr >> PAGE_SHIFT;
1703 pud = pud_alloc(mm, pgd, addr);
1704 if (!pud)
1705 return -ENOMEM;
1706 do {
1707 next = pud_addr_end(addr, end);
1708 if (remap_pmd_range(mm, pud, addr, next,
1709 pfn + (addr >> PAGE_SHIFT), prot))
1710 return -ENOMEM;
1711 } while (pud++, addr = next, addr != end);
1712 return 0;
1713}
1714
bfa5bf6d
REB
1715/**
1716 * remap_pfn_range - remap kernel memory to userspace
1717 * @vma: user vma to map to
1718 * @addr: target user address to start at
1719 * @pfn: physical address of kernel memory
1720 * @size: size of map area
1721 * @prot: page protection flags for this mapping
1722 *
1723 * Note: this is only safe if the mm semaphore is held when called.
1724 */
1da177e4
LT
1725int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1726 unsigned long pfn, unsigned long size, pgprot_t prot)
1727{
1728 pgd_t *pgd;
1729 unsigned long next;
2d15cab8 1730 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1731 struct mm_struct *mm = vma->vm_mm;
1732 int err;
1733
1734 /*
1735 * Physically remapped pages are special. Tell the
1736 * rest of the world about it:
1737 * VM_IO tells people not to look at these pages
1738 * (accesses can have side effects).
0b14c179
HD
1739 * VM_RESERVED is specified all over the place, because
1740 * in 2.4 it kept swapout's vma scan off this vma; but
1741 * in 2.6 the LRU scan won't even find its pages, so this
1742 * flag means no more than count its pages in reserved_vm,
1743 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1744 * VM_PFNMAP tells the core MM that the base pages are just
1745 * raw PFN mappings, and do not have a "struct page" associated
1746 * with them.
fb155c16
LT
1747 *
1748 * There's a horrible special case to handle copy-on-write
1749 * behaviour that some programs depend on. We mark the "original"
1750 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1751 */
4bb9c5c0 1752 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 1753 vma->vm_pgoff = pfn;
895791da 1754 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 1755 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 1756 return -EINVAL;
fb155c16 1757
6aab341e 1758 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1759
e4b866ed 1760 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 1761 if (err) {
1762 /*
1763 * To indicate that track_pfn related cleanup is not
1764 * needed from higher level routine calling unmap_vmas
1765 */
1766 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 1767 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 1768 return -EINVAL;
a3670613 1769 }
2ab64037 1770
1da177e4
LT
1771 BUG_ON(addr >= end);
1772 pfn -= addr >> PAGE_SHIFT;
1773 pgd = pgd_offset(mm, addr);
1774 flush_cache_range(vma, addr, end);
1da177e4
LT
1775 do {
1776 next = pgd_addr_end(addr, end);
1777 err = remap_pud_range(mm, pgd, addr, next,
1778 pfn + (addr >> PAGE_SHIFT), prot);
1779 if (err)
1780 break;
1781 } while (pgd++, addr = next, addr != end);
2ab64037 1782
1783 if (err)
1784 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1785
1da177e4
LT
1786 return err;
1787}
1788EXPORT_SYMBOL(remap_pfn_range);
1789
aee16b3c
JF
1790static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1791 unsigned long addr, unsigned long end,
1792 pte_fn_t fn, void *data)
1793{
1794 pte_t *pte;
1795 int err;
2f569afd 1796 pgtable_t token;
94909914 1797 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1798
1799 pte = (mm == &init_mm) ?
1800 pte_alloc_kernel(pmd, addr) :
1801 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1802 if (!pte)
1803 return -ENOMEM;
1804
1805 BUG_ON(pmd_huge(*pmd));
1806
38e0edb1
JF
1807 arch_enter_lazy_mmu_mode();
1808
2f569afd 1809 token = pmd_pgtable(*pmd);
aee16b3c
JF
1810
1811 do {
2f569afd 1812 err = fn(pte, token, addr, data);
aee16b3c
JF
1813 if (err)
1814 break;
1815 } while (pte++, addr += PAGE_SIZE, addr != end);
1816
38e0edb1
JF
1817 arch_leave_lazy_mmu_mode();
1818
aee16b3c
JF
1819 if (mm != &init_mm)
1820 pte_unmap_unlock(pte-1, ptl);
1821 return err;
1822}
1823
1824static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1825 unsigned long addr, unsigned long end,
1826 pte_fn_t fn, void *data)
1827{
1828 pmd_t *pmd;
1829 unsigned long next;
1830 int err;
1831
ceb86879
AK
1832 BUG_ON(pud_huge(*pud));
1833
aee16b3c
JF
1834 pmd = pmd_alloc(mm, pud, addr);
1835 if (!pmd)
1836 return -ENOMEM;
1837 do {
1838 next = pmd_addr_end(addr, end);
1839 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1840 if (err)
1841 break;
1842 } while (pmd++, addr = next, addr != end);
1843 return err;
1844}
1845
1846static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1847 unsigned long addr, unsigned long end,
1848 pte_fn_t fn, void *data)
1849{
1850 pud_t *pud;
1851 unsigned long next;
1852 int err;
1853
1854 pud = pud_alloc(mm, pgd, addr);
1855 if (!pud)
1856 return -ENOMEM;
1857 do {
1858 next = pud_addr_end(addr, end);
1859 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1860 if (err)
1861 break;
1862 } while (pud++, addr = next, addr != end);
1863 return err;
1864}
1865
1866/*
1867 * Scan a region of virtual memory, filling in page tables as necessary
1868 * and calling a provided function on each leaf page table.
1869 */
1870int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1871 unsigned long size, pte_fn_t fn, void *data)
1872{
1873 pgd_t *pgd;
1874 unsigned long next;
cddb8a5c 1875 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1876 int err;
1877
1878 BUG_ON(addr >= end);
cddb8a5c 1879 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1880 pgd = pgd_offset(mm, addr);
1881 do {
1882 next = pgd_addr_end(addr, end);
1883 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1884 if (err)
1885 break;
1886 } while (pgd++, addr = next, addr != end);
cddb8a5c 1887 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1888 return err;
1889}
1890EXPORT_SYMBOL_GPL(apply_to_page_range);
1891
8f4e2101
HD
1892/*
1893 * handle_pte_fault chooses page fault handler according to an entry
1894 * which was read non-atomically. Before making any commitment, on
1895 * those architectures or configurations (e.g. i386 with PAE) which
1896 * might give a mix of unmatched parts, do_swap_page and do_file_page
1897 * must check under lock before unmapping the pte and proceeding
1898 * (but do_wp_page is only called after already making such a check;
1899 * and do_anonymous_page and do_no_page can safely check later on).
1900 */
4c21e2f2 1901static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1902 pte_t *page_table, pte_t orig_pte)
1903{
1904 int same = 1;
1905#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1906 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1907 spinlock_t *ptl = pte_lockptr(mm, pmd);
1908 spin_lock(ptl);
8f4e2101 1909 same = pte_same(*page_table, orig_pte);
4c21e2f2 1910 spin_unlock(ptl);
8f4e2101
HD
1911 }
1912#endif
1913 pte_unmap(page_table);
1914 return same;
1915}
1916
1da177e4
LT
1917/*
1918 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1919 * servicing faults for write access. In the normal case, do always want
1920 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1921 * that do not have writing enabled, when used by access_process_vm.
1922 */
1923static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1924{
1925 if (likely(vma->vm_flags & VM_WRITE))
1926 pte = pte_mkwrite(pte);
1927 return pte;
1928}
1929
9de455b2 1930static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1931{
1932 /*
1933 * If the source page was a PFN mapping, we don't have
1934 * a "struct page" for it. We do a best-effort copy by
1935 * just copying from the original user address. If that
1936 * fails, we just zero-fill it. Live with it.
1937 */
1938 if (unlikely(!src)) {
1939 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1940 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1941
1942 /*
1943 * This really shouldn't fail, because the page is there
1944 * in the page tables. But it might just be unreadable,
1945 * in which case we just give up and fill the result with
1946 * zeroes.
1947 */
1948 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1949 memset(kaddr, 0, PAGE_SIZE);
1950 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1951 flush_dcache_page(dst);
0ed361de
NP
1952 } else
1953 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1954}
1955
1da177e4
LT
1956/*
1957 * This routine handles present pages, when users try to write
1958 * to a shared page. It is done by copying the page to a new address
1959 * and decrementing the shared-page counter for the old page.
1960 *
1da177e4
LT
1961 * Note that this routine assumes that the protection checks have been
1962 * done by the caller (the low-level page fault routine in most cases).
1963 * Thus we can safely just mark it writable once we've done any necessary
1964 * COW.
1965 *
1966 * We also mark the page dirty at this point even though the page will
1967 * change only once the write actually happens. This avoids a few races,
1968 * and potentially makes it more efficient.
1969 *
8f4e2101
HD
1970 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1971 * but allow concurrent faults), with pte both mapped and locked.
1972 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1973 */
65500d23
HD
1974static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1975 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1976 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1977{
e5bbe4df 1978 struct page *old_page, *new_page;
1da177e4 1979 pte_t entry;
83c54070 1980 int reuse = 0, ret = 0;
a200ee18 1981 int page_mkwrite = 0;
d08b3851 1982 struct page *dirty_page = NULL;
1da177e4 1983
6aab341e 1984 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1985 if (!old_page) {
1986 /*
1987 * VM_MIXEDMAP !pfn_valid() case
1988 *
1989 * We should not cow pages in a shared writeable mapping.
1990 * Just mark the pages writable as we can't do any dirty
1991 * accounting on raw pfn maps.
1992 */
1993 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1994 (VM_WRITE|VM_SHARED))
1995 goto reuse;
6aab341e 1996 goto gotten;
251b97f5 1997 }
1da177e4 1998
d08b3851 1999 /*
ee6a6457
PZ
2000 * Take out anonymous pages first, anonymous shared vmas are
2001 * not dirty accountable.
d08b3851 2002 */
9a840895 2003 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2004 if (!trylock_page(old_page)) {
2005 page_cache_get(old_page);
2006 pte_unmap_unlock(page_table, ptl);
2007 lock_page(old_page);
2008 page_table = pte_offset_map_lock(mm, pmd, address,
2009 &ptl);
2010 if (!pte_same(*page_table, orig_pte)) {
2011 unlock_page(old_page);
2012 page_cache_release(old_page);
2013 goto unlock;
2014 }
2015 page_cache_release(old_page);
ee6a6457 2016 }
7b1fe597 2017 reuse = reuse_swap_page(old_page);
ab967d86 2018 unlock_page(old_page);
ee6a6457 2019 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2020 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2021 /*
2022 * Only catch write-faults on shared writable pages,
2023 * read-only shared pages can get COWed by
2024 * get_user_pages(.write=1, .force=1).
2025 */
9637a5ef 2026 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2027 struct vm_fault vmf;
2028 int tmp;
2029
2030 vmf.virtual_address = (void __user *)(address &
2031 PAGE_MASK);
2032 vmf.pgoff = old_page->index;
2033 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2034 vmf.page = old_page;
2035
9637a5ef
DH
2036 /*
2037 * Notify the address space that the page is about to
2038 * become writable so that it can prohibit this or wait
2039 * for the page to get into an appropriate state.
2040 *
2041 * We do this without the lock held, so that it can
2042 * sleep if it needs to.
2043 */
2044 page_cache_get(old_page);
2045 pte_unmap_unlock(page_table, ptl);
2046
c2ec175c
NP
2047 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2048 if (unlikely(tmp &
2049 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2050 ret = tmp;
9637a5ef 2051 goto unwritable_page;
c2ec175c 2052 }
b827e496
NP
2053 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2054 lock_page(old_page);
2055 if (!old_page->mapping) {
2056 ret = 0; /* retry the fault */
2057 unlock_page(old_page);
2058 goto unwritable_page;
2059 }
2060 } else
2061 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2062
9637a5ef
DH
2063 /*
2064 * Since we dropped the lock we need to revalidate
2065 * the PTE as someone else may have changed it. If
2066 * they did, we just return, as we can count on the
2067 * MMU to tell us if they didn't also make it writable.
2068 */
2069 page_table = pte_offset_map_lock(mm, pmd, address,
2070 &ptl);
b827e496
NP
2071 if (!pte_same(*page_table, orig_pte)) {
2072 unlock_page(old_page);
2073 page_cache_release(old_page);
9637a5ef 2074 goto unlock;
b827e496 2075 }
a200ee18
PZ
2076
2077 page_mkwrite = 1;
1da177e4 2078 }
d08b3851
PZ
2079 dirty_page = old_page;
2080 get_page(dirty_page);
9637a5ef 2081 reuse = 1;
9637a5ef
DH
2082 }
2083
2084 if (reuse) {
251b97f5 2085reuse:
9637a5ef
DH
2086 flush_cache_page(vma, address, pte_pfn(orig_pte));
2087 entry = pte_mkyoung(orig_pte);
2088 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2089 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 2090 update_mmu_cache(vma, address, entry);
9637a5ef
DH
2091 ret |= VM_FAULT_WRITE;
2092 goto unlock;
1da177e4 2093 }
1da177e4
LT
2094
2095 /*
2096 * Ok, we need to copy. Oh, well..
2097 */
b5810039 2098 page_cache_get(old_page);
920fc356 2099gotten:
8f4e2101 2100 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2101
2102 if (unlikely(anon_vma_prepare(vma)))
65500d23 2103 goto oom;
557ed1fa
NP
2104 VM_BUG_ON(old_page == ZERO_PAGE(0));
2105 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2106 if (!new_page)
2107 goto oom;
b291f000
NP
2108 /*
2109 * Don't let another task, with possibly unlocked vma,
2110 * keep the mlocked page.
2111 */
ab92661d 2112 if ((vma->vm_flags & VM_LOCKED) && old_page) {
b291f000
NP
2113 lock_page(old_page); /* for LRU manipulation */
2114 clear_page_mlock(old_page);
2115 unlock_page(old_page);
2116 }
557ed1fa 2117 cow_user_page(new_page, old_page, address, vma);
0ed361de 2118 __SetPageUptodate(new_page);
65500d23 2119
2c26fdd7 2120 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2121 goto oom_free_new;
2122
1da177e4
LT
2123 /*
2124 * Re-check the pte - we dropped the lock
2125 */
8f4e2101 2126 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2127 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2128 if (old_page) {
920fc356
HD
2129 if (!PageAnon(old_page)) {
2130 dec_mm_counter(mm, file_rss);
2131 inc_mm_counter(mm, anon_rss);
2132 }
2133 } else
4294621f 2134 inc_mm_counter(mm, anon_rss);
eca35133 2135 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2136 entry = mk_pte(new_page, vma->vm_page_prot);
2137 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2138 /*
2139 * Clear the pte entry and flush it first, before updating the
2140 * pte with the new entry. This will avoid a race condition
2141 * seen in the presence of one thread doing SMC and another
2142 * thread doing COW.
2143 */
828502d3 2144 ptep_clear_flush(vma, address, page_table);
9617d95e 2145 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2146 /*
2147 * We call the notify macro here because, when using secondary
2148 * mmu page tables (such as kvm shadow page tables), we want the
2149 * new page to be mapped directly into the secondary page table.
2150 */
2151 set_pte_at_notify(mm, address, page_table, entry);
64d6519d 2152 update_mmu_cache(vma, address, entry);
945754a1
NP
2153 if (old_page) {
2154 /*
2155 * Only after switching the pte to the new page may
2156 * we remove the mapcount here. Otherwise another
2157 * process may come and find the rmap count decremented
2158 * before the pte is switched to the new page, and
2159 * "reuse" the old page writing into it while our pte
2160 * here still points into it and can be read by other
2161 * threads.
2162 *
2163 * The critical issue is to order this
2164 * page_remove_rmap with the ptp_clear_flush above.
2165 * Those stores are ordered by (if nothing else,)
2166 * the barrier present in the atomic_add_negative
2167 * in page_remove_rmap.
2168 *
2169 * Then the TLB flush in ptep_clear_flush ensures that
2170 * no process can access the old page before the
2171 * decremented mapcount is visible. And the old page
2172 * cannot be reused until after the decremented
2173 * mapcount is visible. So transitively, TLBs to
2174 * old page will be flushed before it can be reused.
2175 */
edc315fd 2176 page_remove_rmap(old_page);
945754a1
NP
2177 }
2178
1da177e4
LT
2179 /* Free the old page.. */
2180 new_page = old_page;
f33ea7f4 2181 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2182 } else
2183 mem_cgroup_uncharge_page(new_page);
2184
920fc356
HD
2185 if (new_page)
2186 page_cache_release(new_page);
2187 if (old_page)
2188 page_cache_release(old_page);
65500d23 2189unlock:
8f4e2101 2190 pte_unmap_unlock(page_table, ptl);
d08b3851 2191 if (dirty_page) {
79352894
NP
2192 /*
2193 * Yes, Virginia, this is actually required to prevent a race
2194 * with clear_page_dirty_for_io() from clearing the page dirty
2195 * bit after it clear all dirty ptes, but before a racing
2196 * do_wp_page installs a dirty pte.
2197 *
2198 * do_no_page is protected similarly.
2199 */
b827e496
NP
2200 if (!page_mkwrite) {
2201 wait_on_page_locked(dirty_page);
2202 set_page_dirty_balance(dirty_page, page_mkwrite);
2203 }
d08b3851 2204 put_page(dirty_page);
b827e496
NP
2205 if (page_mkwrite) {
2206 struct address_space *mapping = dirty_page->mapping;
2207
2208 set_page_dirty(dirty_page);
2209 unlock_page(dirty_page);
2210 page_cache_release(dirty_page);
2211 if (mapping) {
2212 /*
2213 * Some device drivers do not set page.mapping
2214 * but still dirty their pages
2215 */
2216 balance_dirty_pages_ratelimited(mapping);
2217 }
2218 }
2219
2220 /* file_update_time outside page_lock */
2221 if (vma->vm_file)
2222 file_update_time(vma->vm_file);
d08b3851 2223 }
f33ea7f4 2224 return ret;
8a9f3ccd 2225oom_free_new:
6dbf6d3b 2226 page_cache_release(new_page);
65500d23 2227oom:
b827e496
NP
2228 if (old_page) {
2229 if (page_mkwrite) {
2230 unlock_page(old_page);
2231 page_cache_release(old_page);
2232 }
920fc356 2233 page_cache_release(old_page);
b827e496 2234 }
1da177e4 2235 return VM_FAULT_OOM;
9637a5ef
DH
2236
2237unwritable_page:
2238 page_cache_release(old_page);
c2ec175c 2239 return ret;
1da177e4
LT
2240}
2241
2242/*
2243 * Helper functions for unmap_mapping_range().
2244 *
2245 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2246 *
2247 * We have to restart searching the prio_tree whenever we drop the lock,
2248 * since the iterator is only valid while the lock is held, and anyway
2249 * a later vma might be split and reinserted earlier while lock dropped.
2250 *
2251 * The list of nonlinear vmas could be handled more efficiently, using
2252 * a placeholder, but handle it in the same way until a need is shown.
2253 * It is important to search the prio_tree before nonlinear list: a vma
2254 * may become nonlinear and be shifted from prio_tree to nonlinear list
2255 * while the lock is dropped; but never shifted from list to prio_tree.
2256 *
2257 * In order to make forward progress despite restarting the search,
2258 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2259 * quickly skip it next time around. Since the prio_tree search only
2260 * shows us those vmas affected by unmapping the range in question, we
2261 * can't efficiently keep all vmas in step with mapping->truncate_count:
2262 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2263 * mapping->truncate_count and vma->vm_truncate_count are protected by
2264 * i_mmap_lock.
2265 *
2266 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2267 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2268 * and restart from that address when we reach that vma again. It might
2269 * have been split or merged, shrunk or extended, but never shifted: so
2270 * restart_addr remains valid so long as it remains in the vma's range.
2271 * unmap_mapping_range forces truncate_count to leap over page-aligned
2272 * values so we can save vma's restart_addr in its truncate_count field.
2273 */
2274#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2275
2276static void reset_vma_truncate_counts(struct address_space *mapping)
2277{
2278 struct vm_area_struct *vma;
2279 struct prio_tree_iter iter;
2280
2281 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2282 vma->vm_truncate_count = 0;
2283 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2284 vma->vm_truncate_count = 0;
2285}
2286
2287static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2288 unsigned long start_addr, unsigned long end_addr,
2289 struct zap_details *details)
2290{
2291 unsigned long restart_addr;
2292 int need_break;
2293
d00806b1
NP
2294 /*
2295 * files that support invalidating or truncating portions of the
d0217ac0 2296 * file from under mmaped areas must have their ->fault function
83c54070
NP
2297 * return a locked page (and set VM_FAULT_LOCKED in the return).
2298 * This provides synchronisation against concurrent unmapping here.
d00806b1 2299 */
d00806b1 2300
1da177e4
LT
2301again:
2302 restart_addr = vma->vm_truncate_count;
2303 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2304 start_addr = restart_addr;
2305 if (start_addr >= end_addr) {
2306 /* Top of vma has been split off since last time */
2307 vma->vm_truncate_count = details->truncate_count;
2308 return 0;
2309 }
2310 }
2311
ee39b37b
HD
2312 restart_addr = zap_page_range(vma, start_addr,
2313 end_addr - start_addr, details);
95c354fe 2314 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2315
ee39b37b 2316 if (restart_addr >= end_addr) {
1da177e4
LT
2317 /* We have now completed this vma: mark it so */
2318 vma->vm_truncate_count = details->truncate_count;
2319 if (!need_break)
2320 return 0;
2321 } else {
2322 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2323 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2324 if (!need_break)
2325 goto again;
2326 }
2327
2328 spin_unlock(details->i_mmap_lock);
2329 cond_resched();
2330 spin_lock(details->i_mmap_lock);
2331 return -EINTR;
2332}
2333
2334static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2335 struct zap_details *details)
2336{
2337 struct vm_area_struct *vma;
2338 struct prio_tree_iter iter;
2339 pgoff_t vba, vea, zba, zea;
2340
2341restart:
2342 vma_prio_tree_foreach(vma, &iter, root,
2343 details->first_index, details->last_index) {
2344 /* Skip quickly over those we have already dealt with */
2345 if (vma->vm_truncate_count == details->truncate_count)
2346 continue;
2347
2348 vba = vma->vm_pgoff;
2349 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2350 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2351 zba = details->first_index;
2352 if (zba < vba)
2353 zba = vba;
2354 zea = details->last_index;
2355 if (zea > vea)
2356 zea = vea;
2357
2358 if (unmap_mapping_range_vma(vma,
2359 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2360 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2361 details) < 0)
2362 goto restart;
2363 }
2364}
2365
2366static inline void unmap_mapping_range_list(struct list_head *head,
2367 struct zap_details *details)
2368{
2369 struct vm_area_struct *vma;
2370
2371 /*
2372 * In nonlinear VMAs there is no correspondence between virtual address
2373 * offset and file offset. So we must perform an exhaustive search
2374 * across *all* the pages in each nonlinear VMA, not just the pages
2375 * whose virtual address lies outside the file truncation point.
2376 */
2377restart:
2378 list_for_each_entry(vma, head, shared.vm_set.list) {
2379 /* Skip quickly over those we have already dealt with */
2380 if (vma->vm_truncate_count == details->truncate_count)
2381 continue;
2382 details->nonlinear_vma = vma;
2383 if (unmap_mapping_range_vma(vma, vma->vm_start,
2384 vma->vm_end, details) < 0)
2385 goto restart;
2386 }
2387}
2388
2389/**
72fd4a35 2390 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2391 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2392 * @holebegin: byte in first page to unmap, relative to the start of
2393 * the underlying file. This will be rounded down to a PAGE_SIZE
2394 * boundary. Note that this is different from vmtruncate(), which
2395 * must keep the partial page. In contrast, we must get rid of
2396 * partial pages.
2397 * @holelen: size of prospective hole in bytes. This will be rounded
2398 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2399 * end of the file.
2400 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2401 * but 0 when invalidating pagecache, don't throw away private data.
2402 */
2403void unmap_mapping_range(struct address_space *mapping,
2404 loff_t const holebegin, loff_t const holelen, int even_cows)
2405{
2406 struct zap_details details;
2407 pgoff_t hba = holebegin >> PAGE_SHIFT;
2408 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2409
2410 /* Check for overflow. */
2411 if (sizeof(holelen) > sizeof(hlen)) {
2412 long long holeend =
2413 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2414 if (holeend & ~(long long)ULONG_MAX)
2415 hlen = ULONG_MAX - hba + 1;
2416 }
2417
2418 details.check_mapping = even_cows? NULL: mapping;
2419 details.nonlinear_vma = NULL;
2420 details.first_index = hba;
2421 details.last_index = hba + hlen - 1;
2422 if (details.last_index < details.first_index)
2423 details.last_index = ULONG_MAX;
2424 details.i_mmap_lock = &mapping->i_mmap_lock;
2425
2426 spin_lock(&mapping->i_mmap_lock);
2427
d00806b1 2428 /* Protect against endless unmapping loops */
1da177e4 2429 mapping->truncate_count++;
1da177e4
LT
2430 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2431 if (mapping->truncate_count == 0)
2432 reset_vma_truncate_counts(mapping);
2433 mapping->truncate_count++;
2434 }
2435 details.truncate_count = mapping->truncate_count;
2436
2437 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2438 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2439 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2440 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2441 spin_unlock(&mapping->i_mmap_lock);
2442}
2443EXPORT_SYMBOL(unmap_mapping_range);
2444
bfa5bf6d
REB
2445/**
2446 * vmtruncate - unmap mappings "freed" by truncate() syscall
2447 * @inode: inode of the file used
2448 * @offset: file offset to start truncating
1da177e4
LT
2449 *
2450 * NOTE! We have to be ready to update the memory sharing
2451 * between the file and the memory map for a potential last
2452 * incomplete page. Ugly, but necessary.
2453 */
2454int vmtruncate(struct inode * inode, loff_t offset)
2455{
61d5048f
CH
2456 if (inode->i_size < offset) {
2457 unsigned long limit;
2458
2459 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2460 if (limit != RLIM_INFINITY && offset > limit)
2461 goto out_sig;
2462 if (offset > inode->i_sb->s_maxbytes)
2463 goto out_big;
2464 i_size_write(inode, offset);
2465 } else {
2466 struct address_space *mapping = inode->i_mapping;
1da177e4 2467
61d5048f
CH
2468 /*
2469 * truncation of in-use swapfiles is disallowed - it would
2470 * cause subsequent swapout to scribble on the now-freed
2471 * blocks.
2472 */
2473 if (IS_SWAPFILE(inode))
2474 return -ETXTBSY;
2475 i_size_write(inode, offset);
2476
2477 /*
2478 * unmap_mapping_range is called twice, first simply for
2479 * efficiency so that truncate_inode_pages does fewer
2480 * single-page unmaps. However after this first call, and
2481 * before truncate_inode_pages finishes, it is possible for
2482 * private pages to be COWed, which remain after
2483 * truncate_inode_pages finishes, hence the second
2484 * unmap_mapping_range call must be made for correctness.
2485 */
2486 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2487 truncate_inode_pages(mapping, offset);
2488 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2489 }
d00806b1 2490
acfa4380 2491 if (inode->i_op->truncate)
1da177e4
LT
2492 inode->i_op->truncate(inode);
2493 return 0;
61d5048f 2494
1da177e4
LT
2495out_sig:
2496 send_sig(SIGXFSZ, current, 0);
2497out_big:
2498 return -EFBIG;
1da177e4 2499}
1da177e4
LT
2500EXPORT_SYMBOL(vmtruncate);
2501
f6b3ec23
BP
2502int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2503{
2504 struct address_space *mapping = inode->i_mapping;
2505
2506 /*
2507 * If the underlying filesystem is not going to provide
2508 * a way to truncate a range of blocks (punch a hole) -
2509 * we should return failure right now.
2510 */
acfa4380 2511 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2512 return -ENOSYS;
2513
1b1dcc1b 2514 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2515 down_write(&inode->i_alloc_sem);
2516 unmap_mapping_range(mapping, offset, (end - offset), 1);
2517 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2518 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2519 inode->i_op->truncate_range(inode, offset, end);
2520 up_write(&inode->i_alloc_sem);
1b1dcc1b 2521 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2522
2523 return 0;
2524}
f6b3ec23 2525
1da177e4 2526/*
8f4e2101
HD
2527 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2528 * but allow concurrent faults), and pte mapped but not yet locked.
2529 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2530 */
65500d23
HD
2531static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2532 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2533 unsigned int flags, pte_t orig_pte)
1da177e4 2534{
8f4e2101 2535 spinlock_t *ptl;
1da177e4 2536 struct page *page;
65500d23 2537 swp_entry_t entry;
1da177e4 2538 pte_t pte;
7a81b88c 2539 struct mem_cgroup *ptr = NULL;
83c54070 2540 int ret = 0;
1da177e4 2541
4c21e2f2 2542 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2543 goto out;
65500d23
HD
2544
2545 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2546 if (is_migration_entry(entry)) {
2547 migration_entry_wait(mm, pmd, address);
2548 goto out;
2549 }
0ff92245 2550 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2551 page = lookup_swap_cache(entry);
2552 if (!page) {
a5c9b696 2553 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2554 page = swapin_readahead(entry,
2555 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2556 if (!page) {
2557 /*
8f4e2101
HD
2558 * Back out if somebody else faulted in this pte
2559 * while we released the pte lock.
1da177e4 2560 */
8f4e2101 2561 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2562 if (likely(pte_same(*page_table, orig_pte)))
2563 ret = VM_FAULT_OOM;
0ff92245 2564 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2565 goto unlock;
1da177e4
LT
2566 }
2567
2568 /* Had to read the page from swap area: Major fault */
2569 ret = VM_FAULT_MAJOR;
f8891e5e 2570 count_vm_event(PGMAJFAULT);
1da177e4
LT
2571 }
2572
073e587e
KH
2573 lock_page(page);
2574 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2575
2c26fdd7 2576 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2577 ret = VM_FAULT_OOM;
bc43f75c 2578 goto out_page;
8a9f3ccd
BS
2579 }
2580
1da177e4 2581 /*
8f4e2101 2582 * Back out if somebody else already faulted in this pte.
1da177e4 2583 */
8f4e2101 2584 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2585 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2586 goto out_nomap;
b8107480
KK
2587
2588 if (unlikely(!PageUptodate(page))) {
2589 ret = VM_FAULT_SIGBUS;
2590 goto out_nomap;
1da177e4
LT
2591 }
2592
8c7c6e34
KH
2593 /*
2594 * The page isn't present yet, go ahead with the fault.
2595 *
2596 * Be careful about the sequence of operations here.
2597 * To get its accounting right, reuse_swap_page() must be called
2598 * while the page is counted on swap but not yet in mapcount i.e.
2599 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2600 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2601 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2602 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2603 * in page->private. In this case, a record in swap_cgroup is silently
2604 * discarded at swap_free().
8c7c6e34 2605 */
1da177e4 2606
4294621f 2607 inc_mm_counter(mm, anon_rss);
1da177e4 2608 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2609 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2610 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2611 flags &= ~FAULT_FLAG_WRITE;
1da177e4 2612 }
1da177e4
LT
2613 flush_icache_page(vma, page);
2614 set_pte_at(mm, address, page_table, pte);
2615 page_add_anon_rmap(page, vma, address);
03f3c433
KH
2616 /* It's better to call commit-charge after rmap is established */
2617 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2618
c475a8ab 2619 swap_free(entry);
b291f000 2620 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2621 try_to_free_swap(page);
c475a8ab
HD
2622 unlock_page(page);
2623
30c9f3a9 2624 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2625 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2626 if (ret & VM_FAULT_ERROR)
2627 ret &= VM_FAULT_ERROR;
1da177e4
LT
2628 goto out;
2629 }
2630
2631 /* No need to invalidate - it was non-present before */
2632 update_mmu_cache(vma, address, pte);
65500d23 2633unlock:
8f4e2101 2634 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2635out:
2636 return ret;
b8107480 2637out_nomap:
7a81b88c 2638 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 2639 pte_unmap_unlock(page_table, ptl);
bc43f75c 2640out_page:
b8107480
KK
2641 unlock_page(page);
2642 page_cache_release(page);
65500d23 2643 return ret;
1da177e4
LT
2644}
2645
2646/*
8f4e2101
HD
2647 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2648 * but allow concurrent faults), and pte mapped but not yet locked.
2649 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2650 */
65500d23
HD
2651static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2652 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2653 unsigned int flags)
1da177e4 2654{
8f4e2101
HD
2655 struct page *page;
2656 spinlock_t *ptl;
1da177e4 2657 pte_t entry;
1da177e4 2658
557ed1fa
NP
2659 /* Allocate our own private page. */
2660 pte_unmap(page_table);
8f4e2101 2661
557ed1fa
NP
2662 if (unlikely(anon_vma_prepare(vma)))
2663 goto oom;
2664 page = alloc_zeroed_user_highpage_movable(vma, address);
2665 if (!page)
2666 goto oom;
0ed361de 2667 __SetPageUptodate(page);
8f4e2101 2668
2c26fdd7 2669 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2670 goto oom_free_page;
2671
557ed1fa
NP
2672 entry = mk_pte(page, vma->vm_page_prot);
2673 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2674
557ed1fa 2675 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2676 if (!pte_none(*page_table))
557ed1fa 2677 goto release;
9ba69294 2678
557ed1fa 2679 inc_mm_counter(mm, anon_rss);
557ed1fa 2680 page_add_new_anon_rmap(page, vma, address);
65500d23 2681 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2682
2683 /* No need to invalidate - it was non-present before */
65500d23 2684 update_mmu_cache(vma, address, entry);
65500d23 2685unlock:
8f4e2101 2686 pte_unmap_unlock(page_table, ptl);
83c54070 2687 return 0;
8f4e2101 2688release:
8a9f3ccd 2689 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2690 page_cache_release(page);
2691 goto unlock;
8a9f3ccd 2692oom_free_page:
6dbf6d3b 2693 page_cache_release(page);
65500d23 2694oom:
1da177e4
LT
2695 return VM_FAULT_OOM;
2696}
2697
2698/*
54cb8821 2699 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2700 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2701 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2702 * the next page fault.
1da177e4
LT
2703 *
2704 * As this is called only for pages that do not currently exist, we
2705 * do not need to flush old virtual caches or the TLB.
2706 *
8f4e2101 2707 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2708 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2709 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2710 */
54cb8821 2711static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2712 unsigned long address, pmd_t *pmd,
54cb8821 2713 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2714{
16abfa08 2715 pte_t *page_table;
8f4e2101 2716 spinlock_t *ptl;
d0217ac0 2717 struct page *page;
1da177e4 2718 pte_t entry;
1da177e4 2719 int anon = 0;
5b4e655e 2720 int charged = 0;
d08b3851 2721 struct page *dirty_page = NULL;
d0217ac0
NP
2722 struct vm_fault vmf;
2723 int ret;
a200ee18 2724 int page_mkwrite = 0;
54cb8821 2725
d0217ac0
NP
2726 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2727 vmf.pgoff = pgoff;
2728 vmf.flags = flags;
2729 vmf.page = NULL;
1da177e4 2730
3c18ddd1
NP
2731 ret = vma->vm_ops->fault(vma, &vmf);
2732 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2733 return ret;
1da177e4 2734
d00806b1 2735 /*
d0217ac0 2736 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2737 * locked.
2738 */
83c54070 2739 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2740 lock_page(vmf.page);
54cb8821 2741 else
d0217ac0 2742 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2743
1da177e4
LT
2744 /*
2745 * Should we do an early C-O-W break?
2746 */
d0217ac0 2747 page = vmf.page;
54cb8821 2748 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2749 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2750 anon = 1;
d00806b1 2751 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2752 ret = VM_FAULT_OOM;
54cb8821 2753 goto out;
d00806b1 2754 }
83c54070
NP
2755 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2756 vma, address);
d00806b1 2757 if (!page) {
d0217ac0 2758 ret = VM_FAULT_OOM;
54cb8821 2759 goto out;
d00806b1 2760 }
2c26fdd7 2761 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
5b4e655e
KH
2762 ret = VM_FAULT_OOM;
2763 page_cache_release(page);
2764 goto out;
2765 }
2766 charged = 1;
b291f000
NP
2767 /*
2768 * Don't let another task, with possibly unlocked vma,
2769 * keep the mlocked page.
2770 */
2771 if (vma->vm_flags & VM_LOCKED)
2772 clear_page_mlock(vmf.page);
d0217ac0 2773 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2774 __SetPageUptodate(page);
9637a5ef 2775 } else {
54cb8821
NP
2776 /*
2777 * If the page will be shareable, see if the backing
9637a5ef 2778 * address space wants to know that the page is about
54cb8821
NP
2779 * to become writable
2780 */
69676147 2781 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2782 int tmp;
2783
69676147 2784 unlock_page(page);
b827e496 2785 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
2786 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2787 if (unlikely(tmp &
2788 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2789 ret = tmp;
b827e496 2790 goto unwritable_page;
d0217ac0 2791 }
b827e496
NP
2792 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2793 lock_page(page);
2794 if (!page->mapping) {
2795 ret = 0; /* retry the fault */
2796 unlock_page(page);
2797 goto unwritable_page;
2798 }
2799 } else
2800 VM_BUG_ON(!PageLocked(page));
a200ee18 2801 page_mkwrite = 1;
9637a5ef
DH
2802 }
2803 }
54cb8821 2804
1da177e4
LT
2805 }
2806
8f4e2101 2807 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2808
2809 /*
2810 * This silly early PAGE_DIRTY setting removes a race
2811 * due to the bad i386 page protection. But it's valid
2812 * for other architectures too.
2813 *
30c9f3a9 2814 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
2815 * an exclusive copy of the page, or this is a shared mapping,
2816 * so we can make it writable and dirty to avoid having to
2817 * handle that later.
2818 */
2819 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 2820 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2821 flush_icache_page(vma, page);
2822 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2823 if (flags & FAULT_FLAG_WRITE)
1da177e4 2824 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2825 if (anon) {
64d6519d 2826 inc_mm_counter(mm, anon_rss);
64d6519d 2827 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2828 } else {
4294621f 2829 inc_mm_counter(mm, file_rss);
d00806b1 2830 page_add_file_rmap(page);
54cb8821 2831 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2832 dirty_page = page;
d08b3851
PZ
2833 get_page(dirty_page);
2834 }
4294621f 2835 }
64d6519d 2836 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2837
2838 /* no need to invalidate: a not-present page won't be cached */
2839 update_mmu_cache(vma, address, entry);
1da177e4 2840 } else {
5b4e655e
KH
2841 if (charged)
2842 mem_cgroup_uncharge_page(page);
d00806b1
NP
2843 if (anon)
2844 page_cache_release(page);
2845 else
54cb8821 2846 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2847 }
2848
8f4e2101 2849 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2850
2851out:
b827e496
NP
2852 if (dirty_page) {
2853 struct address_space *mapping = page->mapping;
8f7b3d15 2854
b827e496
NP
2855 if (set_page_dirty(dirty_page))
2856 page_mkwrite = 1;
2857 unlock_page(dirty_page);
d08b3851 2858 put_page(dirty_page);
b827e496
NP
2859 if (page_mkwrite && mapping) {
2860 /*
2861 * Some device drivers do not set page.mapping but still
2862 * dirty their pages
2863 */
2864 balance_dirty_pages_ratelimited(mapping);
2865 }
2866
2867 /* file_update_time outside page_lock */
2868 if (vma->vm_file)
2869 file_update_time(vma->vm_file);
2870 } else {
2871 unlock_page(vmf.page);
2872 if (anon)
2873 page_cache_release(vmf.page);
d08b3851 2874 }
d00806b1 2875
83c54070 2876 return ret;
b827e496
NP
2877
2878unwritable_page:
2879 page_cache_release(page);
2880 return ret;
54cb8821 2881}
d00806b1 2882
54cb8821
NP
2883static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2884 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2885 unsigned int flags, pte_t orig_pte)
54cb8821
NP
2886{
2887 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2888 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 2889
16abfa08
HD
2890 pte_unmap(page_table);
2891 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2892}
2893
1da177e4
LT
2894/*
2895 * Fault of a previously existing named mapping. Repopulate the pte
2896 * from the encoded file_pte if possible. This enables swappable
2897 * nonlinear vmas.
8f4e2101
HD
2898 *
2899 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2900 * but allow concurrent faults), and pte mapped but not yet locked.
2901 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2902 */
d0217ac0 2903static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 2904 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2905 unsigned int flags, pte_t orig_pte)
1da177e4 2906{
65500d23 2907 pgoff_t pgoff;
1da177e4 2908
30c9f3a9
LT
2909 flags |= FAULT_FLAG_NONLINEAR;
2910
4c21e2f2 2911 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2912 return 0;
1da177e4 2913
2509ef26 2914 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
2915 /*
2916 * Page table corrupted: show pte and kill process.
2917 */
3dc14741 2918 print_bad_pte(vma, address, orig_pte, NULL);
65500d23
HD
2919 return VM_FAULT_OOM;
2920 }
65500d23
HD
2921
2922 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2923 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2924}
2925
2926/*
2927 * These routines also need to handle stuff like marking pages dirty
2928 * and/or accessed for architectures that don't do it in hardware (most
2929 * RISC architectures). The early dirtying is also good on the i386.
2930 *
2931 * There is also a hook called "update_mmu_cache()" that architectures
2932 * with external mmu caches can use to update those (ie the Sparc or
2933 * PowerPC hashed page tables that act as extended TLBs).
2934 *
c74df32c
HD
2935 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2936 * but allow concurrent faults), and pte mapped but not yet locked.
2937 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2938 */
2939static inline int handle_pte_fault(struct mm_struct *mm,
65500d23 2940 struct vm_area_struct *vma, unsigned long address,
30c9f3a9 2941 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
2942{
2943 pte_t entry;
8f4e2101 2944 spinlock_t *ptl;
1da177e4 2945
8dab5241 2946 entry = *pte;
1da177e4 2947 if (!pte_present(entry)) {
65500d23 2948 if (pte_none(entry)) {
f4b81804 2949 if (vma->vm_ops) {
3c18ddd1 2950 if (likely(vma->vm_ops->fault))
54cb8821 2951 return do_linear_fault(mm, vma, address,
30c9f3a9 2952 pte, pmd, flags, entry);
f4b81804
JS
2953 }
2954 return do_anonymous_page(mm, vma, address,
30c9f3a9 2955 pte, pmd, flags);
65500d23 2956 }
1da177e4 2957 if (pte_file(entry))
d0217ac0 2958 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 2959 pte, pmd, flags, entry);
65500d23 2960 return do_swap_page(mm, vma, address,
30c9f3a9 2961 pte, pmd, flags, entry);
1da177e4
LT
2962 }
2963
4c21e2f2 2964 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2965 spin_lock(ptl);
2966 if (unlikely(!pte_same(*pte, entry)))
2967 goto unlock;
30c9f3a9 2968 if (flags & FAULT_FLAG_WRITE) {
1da177e4 2969 if (!pte_write(entry))
8f4e2101
HD
2970 return do_wp_page(mm, vma, address,
2971 pte, pmd, ptl, entry);
1da177e4
LT
2972 entry = pte_mkdirty(entry);
2973 }
2974 entry = pte_mkyoung(entry);
30c9f3a9 2975 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
1a44e149 2976 update_mmu_cache(vma, address, entry);
1a44e149
AA
2977 } else {
2978 /*
2979 * This is needed only for protection faults but the arch code
2980 * is not yet telling us if this is a protection fault or not.
2981 * This still avoids useless tlb flushes for .text page faults
2982 * with threads.
2983 */
30c9f3a9 2984 if (flags & FAULT_FLAG_WRITE)
1a44e149
AA
2985 flush_tlb_page(vma, address);
2986 }
8f4e2101
HD
2987unlock:
2988 pte_unmap_unlock(pte, ptl);
83c54070 2989 return 0;
1da177e4
LT
2990}
2991
2992/*
2993 * By the time we get here, we already hold the mm semaphore
2994 */
83c54070 2995int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 2996 unsigned long address, unsigned int flags)
1da177e4
LT
2997{
2998 pgd_t *pgd;
2999 pud_t *pud;
3000 pmd_t *pmd;
3001 pte_t *pte;
3002
3003 __set_current_state(TASK_RUNNING);
3004
f8891e5e 3005 count_vm_event(PGFAULT);
1da177e4 3006
ac9b9c66 3007 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3008 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3009
1da177e4 3010 pgd = pgd_offset(mm, address);
1da177e4
LT
3011 pud = pud_alloc(mm, pgd, address);
3012 if (!pud)
c74df32c 3013 return VM_FAULT_OOM;
1da177e4
LT
3014 pmd = pmd_alloc(mm, pud, address);
3015 if (!pmd)
c74df32c 3016 return VM_FAULT_OOM;
1da177e4
LT
3017 pte = pte_alloc_map(mm, pmd, address);
3018 if (!pte)
c74df32c 3019 return VM_FAULT_OOM;
1da177e4 3020
30c9f3a9 3021 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3022}
3023
3024#ifndef __PAGETABLE_PUD_FOLDED
3025/*
3026 * Allocate page upper directory.
872fec16 3027 * We've already handled the fast-path in-line.
1da177e4 3028 */
1bb3630e 3029int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3030{
c74df32c
HD
3031 pud_t *new = pud_alloc_one(mm, address);
3032 if (!new)
1bb3630e 3033 return -ENOMEM;
1da177e4 3034
362a61ad
NP
3035 smp_wmb(); /* See comment in __pte_alloc */
3036
872fec16 3037 spin_lock(&mm->page_table_lock);
1bb3630e 3038 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3039 pud_free(mm, new);
1bb3630e
HD
3040 else
3041 pgd_populate(mm, pgd, new);
c74df32c 3042 spin_unlock(&mm->page_table_lock);
1bb3630e 3043 return 0;
1da177e4
LT
3044}
3045#endif /* __PAGETABLE_PUD_FOLDED */
3046
3047#ifndef __PAGETABLE_PMD_FOLDED
3048/*
3049 * Allocate page middle directory.
872fec16 3050 * We've already handled the fast-path in-line.
1da177e4 3051 */
1bb3630e 3052int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3053{
c74df32c
HD
3054 pmd_t *new = pmd_alloc_one(mm, address);
3055 if (!new)
1bb3630e 3056 return -ENOMEM;
1da177e4 3057
362a61ad
NP
3058 smp_wmb(); /* See comment in __pte_alloc */
3059
872fec16 3060 spin_lock(&mm->page_table_lock);
1da177e4 3061#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3062 if (pud_present(*pud)) /* Another has populated it */
5e541973 3063 pmd_free(mm, new);
1bb3630e
HD
3064 else
3065 pud_populate(mm, pud, new);
1da177e4 3066#else
1bb3630e 3067 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3068 pmd_free(mm, new);
1bb3630e
HD
3069 else
3070 pgd_populate(mm, pud, new);
1da177e4 3071#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3072 spin_unlock(&mm->page_table_lock);
1bb3630e 3073 return 0;
e0f39591 3074}
1da177e4
LT
3075#endif /* __PAGETABLE_PMD_FOLDED */
3076
3077int make_pages_present(unsigned long addr, unsigned long end)
3078{
3079 int ret, len, write;
3080 struct vm_area_struct * vma;
3081
3082 vma = find_vma(current->mm, addr);
3083 if (!vma)
a477097d 3084 return -ENOMEM;
1da177e4 3085 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
3086 BUG_ON(addr >= end);
3087 BUG_ON(end > vma->vm_end);
68e116a3 3088 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3089 ret = get_user_pages(current, current->mm, addr,
3090 len, write, 0, NULL, NULL);
c11d69d8 3091 if (ret < 0)
1da177e4 3092 return ret;
9978ad58 3093 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3094}
3095
1da177e4
LT
3096#if !defined(__HAVE_ARCH_GATE_AREA)
3097
3098#if defined(AT_SYSINFO_EHDR)
5ce7852c 3099static struct vm_area_struct gate_vma;
1da177e4
LT
3100
3101static int __init gate_vma_init(void)
3102{
3103 gate_vma.vm_mm = NULL;
3104 gate_vma.vm_start = FIXADDR_USER_START;
3105 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3106 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3107 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3108 /*
3109 * Make sure the vDSO gets into every core dump.
3110 * Dumping its contents makes post-mortem fully interpretable later
3111 * without matching up the same kernel and hardware config to see
3112 * what PC values meant.
3113 */
3114 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3115 return 0;
3116}
3117__initcall(gate_vma_init);
3118#endif
3119
3120struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3121{
3122#ifdef AT_SYSINFO_EHDR
3123 return &gate_vma;
3124#else
3125 return NULL;
3126#endif
3127}
3128
3129int in_gate_area_no_task(unsigned long addr)
3130{
3131#ifdef AT_SYSINFO_EHDR
3132 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3133 return 1;
3134#endif
3135 return 0;
3136}
3137
3138#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3139
f8ad0f49
JW
3140static int follow_pte(struct mm_struct *mm, unsigned long address,
3141 pte_t **ptepp, spinlock_t **ptlp)
3142{
3143 pgd_t *pgd;
3144 pud_t *pud;
3145 pmd_t *pmd;
3146 pte_t *ptep;
3147
3148 pgd = pgd_offset(mm, address);
3149 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3150 goto out;
3151
3152 pud = pud_offset(pgd, address);
3153 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3154 goto out;
3155
3156 pmd = pmd_offset(pud, address);
3157 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3158 goto out;
3159
3160 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3161 if (pmd_huge(*pmd))
3162 goto out;
3163
3164 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3165 if (!ptep)
3166 goto out;
3167 if (!pte_present(*ptep))
3168 goto unlock;
3169 *ptepp = ptep;
3170 return 0;
3171unlock:
3172 pte_unmap_unlock(ptep, *ptlp);
3173out:
3174 return -EINVAL;
3175}
3176
3b6748e2
JW
3177/**
3178 * follow_pfn - look up PFN at a user virtual address
3179 * @vma: memory mapping
3180 * @address: user virtual address
3181 * @pfn: location to store found PFN
3182 *
3183 * Only IO mappings and raw PFN mappings are allowed.
3184 *
3185 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3186 */
3187int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3188 unsigned long *pfn)
3189{
3190 int ret = -EINVAL;
3191 spinlock_t *ptl;
3192 pte_t *ptep;
3193
3194 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3195 return ret;
3196
3197 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3198 if (ret)
3199 return ret;
3200 *pfn = pte_pfn(*ptep);
3201 pte_unmap_unlock(ptep, ptl);
3202 return 0;
3203}
3204EXPORT_SYMBOL(follow_pfn);
3205
28b2ee20 3206#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3207int follow_phys(struct vm_area_struct *vma,
3208 unsigned long address, unsigned int flags,
3209 unsigned long *prot, resource_size_t *phys)
28b2ee20 3210{
03668a4d 3211 int ret = -EINVAL;
28b2ee20
RR
3212 pte_t *ptep, pte;
3213 spinlock_t *ptl;
28b2ee20 3214
d87fe660 3215 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3216 goto out;
28b2ee20 3217
03668a4d 3218 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3219 goto out;
28b2ee20 3220 pte = *ptep;
03668a4d 3221
28b2ee20
RR
3222 if ((flags & FOLL_WRITE) && !pte_write(pte))
3223 goto unlock;
28b2ee20
RR
3224
3225 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3226 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3227
03668a4d 3228 ret = 0;
28b2ee20
RR
3229unlock:
3230 pte_unmap_unlock(ptep, ptl);
3231out:
d87fe660 3232 return ret;
28b2ee20
RR
3233}
3234
3235int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3236 void *buf, int len, int write)
3237{
3238 resource_size_t phys_addr;
3239 unsigned long prot = 0;
2bc7273b 3240 void __iomem *maddr;
28b2ee20
RR
3241 int offset = addr & (PAGE_SIZE-1);
3242
d87fe660 3243 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3244 return -EINVAL;
3245
3246 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3247 if (write)
3248 memcpy_toio(maddr + offset, buf, len);
3249 else
3250 memcpy_fromio(buf, maddr + offset, len);
3251 iounmap(maddr);
3252
3253 return len;
3254}
3255#endif
3256
0ec76a11
DH
3257/*
3258 * Access another process' address space.
3259 * Source/target buffer must be kernel space,
3260 * Do not walk the page table directly, use get_user_pages
3261 */
3262int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3263{
3264 struct mm_struct *mm;
3265 struct vm_area_struct *vma;
0ec76a11
DH
3266 void *old_buf = buf;
3267
3268 mm = get_task_mm(tsk);
3269 if (!mm)
3270 return 0;
3271
3272 down_read(&mm->mmap_sem);
183ff22b 3273 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3274 while (len) {
3275 int bytes, ret, offset;
3276 void *maddr;
28b2ee20 3277 struct page *page = NULL;
0ec76a11
DH
3278
3279 ret = get_user_pages(tsk, mm, addr, 1,
3280 write, 1, &page, &vma);
28b2ee20
RR
3281 if (ret <= 0) {
3282 /*
3283 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3284 * we can access using slightly different code.
3285 */
3286#ifdef CONFIG_HAVE_IOREMAP_PROT
3287 vma = find_vma(mm, addr);
3288 if (!vma)
3289 break;
3290 if (vma->vm_ops && vma->vm_ops->access)
3291 ret = vma->vm_ops->access(vma, addr, buf,
3292 len, write);
3293 if (ret <= 0)
3294#endif
3295 break;
3296 bytes = ret;
0ec76a11 3297 } else {
28b2ee20
RR
3298 bytes = len;
3299 offset = addr & (PAGE_SIZE-1);
3300 if (bytes > PAGE_SIZE-offset)
3301 bytes = PAGE_SIZE-offset;
3302
3303 maddr = kmap(page);
3304 if (write) {
3305 copy_to_user_page(vma, page, addr,
3306 maddr + offset, buf, bytes);
3307 set_page_dirty_lock(page);
3308 } else {
3309 copy_from_user_page(vma, page, addr,
3310 buf, maddr + offset, bytes);
3311 }
3312 kunmap(page);
3313 page_cache_release(page);
0ec76a11 3314 }
0ec76a11
DH
3315 len -= bytes;
3316 buf += bytes;
3317 addr += bytes;
3318 }
3319 up_read(&mm->mmap_sem);
3320 mmput(mm);
3321
3322 return buf - old_buf;
3323}
03252919
AK
3324
3325/*
3326 * Print the name of a VMA.
3327 */
3328void print_vma_addr(char *prefix, unsigned long ip)
3329{
3330 struct mm_struct *mm = current->mm;
3331 struct vm_area_struct *vma;
3332
e8bff74a
IM
3333 /*
3334 * Do not print if we are in atomic
3335 * contexts (in exception stacks, etc.):
3336 */
3337 if (preempt_count())
3338 return;
3339
03252919
AK
3340 down_read(&mm->mmap_sem);
3341 vma = find_vma(mm, ip);
3342 if (vma && vma->vm_file) {
3343 struct file *f = vma->vm_file;
3344 char *buf = (char *)__get_free_page(GFP_KERNEL);
3345 if (buf) {
3346 char *p, *s;
3347
cf28b486 3348 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3349 if (IS_ERR(p))
3350 p = "?";
3351 s = strrchr(p, '/');
3352 if (s)
3353 p = s+1;
3354 printk("%s%s[%lx+%lx]", prefix, p,
3355 vma->vm_start,
3356 vma->vm_end - vma->vm_start);
3357 free_page((unsigned long)buf);
3358 }
3359 }
3360 up_read(&current->mm->mmap_sem);
3361}
3ee1afa3
NP
3362
3363#ifdef CONFIG_PROVE_LOCKING
3364void might_fault(void)
3365{
95156f00
PZ
3366 /*
3367 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3368 * holding the mmap_sem, this is safe because kernel memory doesn't
3369 * get paged out, therefore we'll never actually fault, and the
3370 * below annotations will generate false positives.
3371 */
3372 if (segment_eq(get_fs(), KERNEL_DS))
3373 return;
3374
3ee1afa3
NP
3375 might_sleep();
3376 /*
3377 * it would be nicer only to annotate paths which are not under
3378 * pagefault_disable, however that requires a larger audit and
3379 * providing helpers like get_user_atomic.
3380 */
3381 if (!in_atomic() && current->mm)
3382 might_lock_read(&current->mm->mmap_sem);
3383}
3384EXPORT_SYMBOL(might_fault);
3385#endif