]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/memory.c
memremap: lift the devmap_enable manipulation into devm_memremap_pages
[mirror_ubuntu-focal-kernel.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
1da177e4 74
6952b61d 75#include <asm/io.h>
33a709b2 76#include <asm/mmu_context.h>
1da177e4 77#include <asm/pgalloc.h>
7c0f6ba6 78#include <linux/uaccess.h>
1da177e4
LT
79#include <asm/tlb.h>
80#include <asm/tlbflush.h>
81#include <asm/pgtable.h>
82
42b77728
JB
83#include "internal.h"
84
af27d940 85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
87#endif
88
d41dee36 89#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
90/* use the per-pgdat data instead for discontigmem - mbligh */
91unsigned long max_mapnr;
1da177e4 92EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
93
94struct page *mem_map;
1da177e4
LT
95EXPORT_SYMBOL(mem_map);
96#endif
97
1da177e4
LT
98/*
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
104 */
166f61b9 105void *high_memory;
1da177e4 106EXPORT_SYMBOL(high_memory);
1da177e4 107
32a93233
IM
108/*
109 * Randomize the address space (stacks, mmaps, brk, etc.).
110 *
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
113 */
114int randomize_va_space __read_mostly =
115#ifdef CONFIG_COMPAT_BRK
116 1;
117#else
118 2;
119#endif
a62eaf15
AK
120
121static int __init disable_randmaps(char *s)
122{
123 randomize_va_space = 0;
9b41046c 124 return 1;
a62eaf15
AK
125}
126__setup("norandmaps", disable_randmaps);
127
62eede62 128unsigned long zero_pfn __read_mostly;
0b70068e
AB
129EXPORT_SYMBOL(zero_pfn);
130
166f61b9
TH
131unsigned long highest_memmap_pfn __read_mostly;
132
a13ea5b7
HD
133/*
134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135 */
136static int __init init_zero_pfn(void)
137{
138 zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 return 0;
140}
141core_initcall(init_zero_pfn);
a62eaf15 142
d559db08 143
34e55232
KH
144#if defined(SPLIT_RSS_COUNTING)
145
ea48cf78 146void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
147{
148 int i;
149
150 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
151 if (current->rss_stat.count[i]) {
152 add_mm_counter(mm, i, current->rss_stat.count[i]);
153 current->rss_stat.count[i] = 0;
34e55232
KH
154 }
155 }
05af2e10 156 current->rss_stat.events = 0;
34e55232
KH
157}
158
159static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160{
161 struct task_struct *task = current;
162
163 if (likely(task->mm == mm))
164 task->rss_stat.count[member] += val;
165 else
166 add_mm_counter(mm, member, val);
167}
168#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170
171/* sync counter once per 64 page faults */
172#define TASK_RSS_EVENTS_THRESH (64)
173static void check_sync_rss_stat(struct task_struct *task)
174{
175 if (unlikely(task != current))
176 return;
177 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 178 sync_mm_rss(task->mm);
34e55232 179}
9547d01b 180#else /* SPLIT_RSS_COUNTING */
34e55232
KH
181
182#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184
185static void check_sync_rss_stat(struct task_struct *task)
186{
187}
188
9547d01b
PZ
189#endif /* SPLIT_RSS_COUNTING */
190
1da177e4
LT
191/*
192 * Note: this doesn't free the actual pages themselves. That
193 * has been handled earlier when unmapping all the memory regions.
194 */
9e1b32ca
BH
195static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 unsigned long addr)
1da177e4 197{
2f569afd 198 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 199 pmd_clear(pmd);
9e1b32ca 200 pte_free_tlb(tlb, token, addr);
c4812909 201 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
202}
203
e0da382c
HD
204static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
1da177e4
LT
207{
208 pmd_t *pmd;
209 unsigned long next;
e0da382c 210 unsigned long start;
1da177e4 211
e0da382c 212 start = addr;
1da177e4 213 pmd = pmd_offset(pud, addr);
1da177e4
LT
214 do {
215 next = pmd_addr_end(addr, end);
216 if (pmd_none_or_clear_bad(pmd))
217 continue;
9e1b32ca 218 free_pte_range(tlb, pmd, addr);
1da177e4
LT
219 } while (pmd++, addr = next, addr != end);
220
e0da382c
HD
221 start &= PUD_MASK;
222 if (start < floor)
223 return;
224 if (ceiling) {
225 ceiling &= PUD_MASK;
226 if (!ceiling)
227 return;
1da177e4 228 }
e0da382c
HD
229 if (end - 1 > ceiling - 1)
230 return;
231
232 pmd = pmd_offset(pud, start);
233 pud_clear(pud);
9e1b32ca 234 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 235 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
236}
237
c2febafc 238static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
239 unsigned long addr, unsigned long end,
240 unsigned long floor, unsigned long ceiling)
1da177e4
LT
241{
242 pud_t *pud;
243 unsigned long next;
e0da382c 244 unsigned long start;
1da177e4 245
e0da382c 246 start = addr;
c2febafc 247 pud = pud_offset(p4d, addr);
1da177e4
LT
248 do {
249 next = pud_addr_end(addr, end);
250 if (pud_none_or_clear_bad(pud))
251 continue;
e0da382c 252 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
253 } while (pud++, addr = next, addr != end);
254
c2febafc
KS
255 start &= P4D_MASK;
256 if (start < floor)
257 return;
258 if (ceiling) {
259 ceiling &= P4D_MASK;
260 if (!ceiling)
261 return;
262 }
263 if (end - 1 > ceiling - 1)
264 return;
265
266 pud = pud_offset(p4d, start);
267 p4d_clear(p4d);
268 pud_free_tlb(tlb, pud, start);
b4e98d9a 269 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
270}
271
272static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 unsigned long addr, unsigned long end,
274 unsigned long floor, unsigned long ceiling)
275{
276 p4d_t *p4d;
277 unsigned long next;
278 unsigned long start;
279
280 start = addr;
281 p4d = p4d_offset(pgd, addr);
282 do {
283 next = p4d_addr_end(addr, end);
284 if (p4d_none_or_clear_bad(p4d))
285 continue;
286 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 } while (p4d++, addr = next, addr != end);
288
e0da382c
HD
289 start &= PGDIR_MASK;
290 if (start < floor)
291 return;
292 if (ceiling) {
293 ceiling &= PGDIR_MASK;
294 if (!ceiling)
295 return;
1da177e4 296 }
e0da382c
HD
297 if (end - 1 > ceiling - 1)
298 return;
299
c2febafc 300 p4d = p4d_offset(pgd, start);
e0da382c 301 pgd_clear(pgd);
c2febafc 302 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
303}
304
305/*
e0da382c 306 * This function frees user-level page tables of a process.
1da177e4 307 */
42b77728 308void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
309 unsigned long addr, unsigned long end,
310 unsigned long floor, unsigned long ceiling)
1da177e4
LT
311{
312 pgd_t *pgd;
313 unsigned long next;
e0da382c
HD
314
315 /*
316 * The next few lines have given us lots of grief...
317 *
318 * Why are we testing PMD* at this top level? Because often
319 * there will be no work to do at all, and we'd prefer not to
320 * go all the way down to the bottom just to discover that.
321 *
322 * Why all these "- 1"s? Because 0 represents both the bottom
323 * of the address space and the top of it (using -1 for the
324 * top wouldn't help much: the masks would do the wrong thing).
325 * The rule is that addr 0 and floor 0 refer to the bottom of
326 * the address space, but end 0 and ceiling 0 refer to the top
327 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 * that end 0 case should be mythical).
329 *
330 * Wherever addr is brought up or ceiling brought down, we must
331 * be careful to reject "the opposite 0" before it confuses the
332 * subsequent tests. But what about where end is brought down
333 * by PMD_SIZE below? no, end can't go down to 0 there.
334 *
335 * Whereas we round start (addr) and ceiling down, by different
336 * masks at different levels, in order to test whether a table
337 * now has no other vmas using it, so can be freed, we don't
338 * bother to round floor or end up - the tests don't need that.
339 */
1da177e4 340
e0da382c
HD
341 addr &= PMD_MASK;
342 if (addr < floor) {
343 addr += PMD_SIZE;
344 if (!addr)
345 return;
346 }
347 if (ceiling) {
348 ceiling &= PMD_MASK;
349 if (!ceiling)
350 return;
351 }
352 if (end - 1 > ceiling - 1)
353 end -= PMD_SIZE;
354 if (addr > end - 1)
355 return;
07e32661
AK
356 /*
357 * We add page table cache pages with PAGE_SIZE,
358 * (see pte_free_tlb()), flush the tlb if we need
359 */
ed6a7935 360 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 361 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
362 do {
363 next = pgd_addr_end(addr, end);
364 if (pgd_none_or_clear_bad(pgd))
365 continue;
c2febafc 366 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 367 } while (pgd++, addr = next, addr != end);
e0da382c
HD
368}
369
42b77728 370void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 371 unsigned long floor, unsigned long ceiling)
e0da382c
HD
372{
373 while (vma) {
374 struct vm_area_struct *next = vma->vm_next;
375 unsigned long addr = vma->vm_start;
376
8f4f8c16 377 /*
25d9e2d1 378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
8f4f8c16 380 */
5beb4930 381 unlink_anon_vmas(vma);
8f4f8c16
HD
382 unlink_file_vma(vma);
383
9da61aef 384 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 386 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
387 } else {
388 /*
389 * Optimization: gather nearby vmas into one call down
390 */
391 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 392 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
393 vma = next;
394 next = vma->vm_next;
5beb4930 395 unlink_anon_vmas(vma);
8f4f8c16 396 unlink_file_vma(vma);
3bf5ee95
HD
397 }
398 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 399 floor, next ? next->vm_start : ceiling);
3bf5ee95 400 }
e0da382c
HD
401 vma = next;
402 }
1da177e4
LT
403}
404
4cf58924 405int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 406{
c4088ebd 407 spinlock_t *ptl;
4cf58924 408 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
409 if (!new)
410 return -ENOMEM;
411
362a61ad
NP
412 /*
413 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 * visible before the pte is made visible to other CPUs by being
415 * put into page tables.
416 *
417 * The other side of the story is the pointer chasing in the page
418 * table walking code (when walking the page table without locking;
419 * ie. most of the time). Fortunately, these data accesses consist
420 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 * being the notable exception) will already guarantee loads are
422 * seen in-order. See the alpha page table accessors for the
423 * smp_read_barrier_depends() barriers in page table walking code.
424 */
425 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426
c4088ebd 427 ptl = pmd_lock(mm, pmd);
8ac1f832 428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 429 mm_inc_nr_ptes(mm);
1da177e4 430 pmd_populate(mm, pmd, new);
2f569afd 431 new = NULL;
4b471e88 432 }
c4088ebd 433 spin_unlock(ptl);
2f569afd
MS
434 if (new)
435 pte_free(mm, new);
1bb3630e 436 return 0;
1da177e4
LT
437}
438
4cf58924 439int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 440{
4cf58924 441 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
442 if (!new)
443 return -ENOMEM;
444
362a61ad
NP
445 smp_wmb(); /* See comment in __pte_alloc */
446
1bb3630e 447 spin_lock(&init_mm.page_table_lock);
8ac1f832 448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 449 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 450 new = NULL;
4b471e88 451 }
1bb3630e 452 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
453 if (new)
454 pte_free_kernel(&init_mm, new);
1bb3630e 455 return 0;
1da177e4
LT
456}
457
d559db08
KH
458static inline void init_rss_vec(int *rss)
459{
460 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461}
462
463static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 464{
d559db08
KH
465 int i;
466
34e55232 467 if (current->mm == mm)
05af2e10 468 sync_mm_rss(mm);
d559db08
KH
469 for (i = 0; i < NR_MM_COUNTERS; i++)
470 if (rss[i])
471 add_mm_counter(mm, i, rss[i]);
ae859762
HD
472}
473
b5810039 474/*
6aab341e
LT
475 * This function is called to print an error when a bad pte
476 * is found. For example, we might have a PFN-mapped pte in
477 * a region that doesn't allow it.
b5810039
NP
478 *
479 * The calling function must still handle the error.
480 */
3dc14741
HD
481static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 pte_t pte, struct page *page)
b5810039 483{
3dc14741 484 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
485 p4d_t *p4d = p4d_offset(pgd, addr);
486 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
487 pmd_t *pmd = pmd_offset(pud, addr);
488 struct address_space *mapping;
489 pgoff_t index;
d936cf9b
HD
490 static unsigned long resume;
491 static unsigned long nr_shown;
492 static unsigned long nr_unshown;
493
494 /*
495 * Allow a burst of 60 reports, then keep quiet for that minute;
496 * or allow a steady drip of one report per second.
497 */
498 if (nr_shown == 60) {
499 if (time_before(jiffies, resume)) {
500 nr_unshown++;
501 return;
502 }
503 if (nr_unshown) {
1170532b
JP
504 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 nr_unshown);
d936cf9b
HD
506 nr_unshown = 0;
507 }
508 nr_shown = 0;
509 }
510 if (nr_shown++ == 0)
511 resume = jiffies + 60 * HZ;
3dc14741
HD
512
513 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 index = linear_page_index(vma, addr);
515
1170532b
JP
516 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
517 current->comm,
518 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 519 if (page)
f0b791a3 520 dump_page(page, "bad pte");
1170532b
JP
521 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 523 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
524 vma->vm_file,
525 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 mapping ? mapping->a_ops->readpage : NULL);
b5810039 528 dump_stack();
373d4d09 529 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
530}
531
ee498ed7 532/*
7e675137 533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 534 *
7e675137
NP
535 * "Special" mappings do not wish to be associated with a "struct page" (either
536 * it doesn't exist, or it exists but they don't want to touch it). In this
537 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 538 *
7e675137
NP
539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540 * pte bit, in which case this function is trivial. Secondly, an architecture
541 * may not have a spare pte bit, which requires a more complicated scheme,
542 * described below.
543 *
544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545 * special mapping (even if there are underlying and valid "struct pages").
546 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 547 *
b379d790
JH
548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551 * mapping will always honor the rule
6aab341e
LT
552 *
553 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554 *
7e675137
NP
555 * And for normal mappings this is false.
556 *
557 * This restricts such mappings to be a linear translation from virtual address
558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
559 * as the vma is not a COW mapping; in that case, we know that all ptes are
560 * special (because none can have been COWed).
b379d790 561 *
b379d790 562 *
7e675137 563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
564 *
565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566 * page" backing, however the difference is that _all_ pages with a struct
567 * page (that is, those where pfn_valid is true) are refcounted and considered
568 * normal pages by the VM. The disadvantage is that pages are refcounted
569 * (which can be slower and simply not an option for some PFNMAP users). The
570 * advantage is that we don't have to follow the strict linearity rule of
571 * PFNMAP mappings in order to support COWable mappings.
572 *
ee498ed7 573 */
25b2995a
CH
574struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 pte_t pte)
ee498ed7 576{
22b31eec 577 unsigned long pfn = pte_pfn(pte);
7e675137 578
00b3a331 579 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 580 if (likely(!pte_special(pte)))
22b31eec 581 goto check_pfn;
667a0a06
DV
582 if (vma->vm_ops && vma->vm_ops->find_special_page)
583 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
584 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 return NULL;
df6ad698
JG
586 if (is_zero_pfn(pfn))
587 return NULL;
e1fb4a08
DJ
588 if (pte_devmap(pte))
589 return NULL;
590
df6ad698 591 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
592 return NULL;
593 }
594
00b3a331 595 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 596
b379d790
JH
597 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
598 if (vma->vm_flags & VM_MIXEDMAP) {
599 if (!pfn_valid(pfn))
600 return NULL;
601 goto out;
602 } else {
7e675137
NP
603 unsigned long off;
604 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
605 if (pfn == vma->vm_pgoff + off)
606 return NULL;
607 if (!is_cow_mapping(vma->vm_flags))
608 return NULL;
609 }
6aab341e
LT
610 }
611
b38af472
HD
612 if (is_zero_pfn(pfn))
613 return NULL;
00b3a331 614
22b31eec
HD
615check_pfn:
616 if (unlikely(pfn > highest_memmap_pfn)) {
617 print_bad_pte(vma, addr, pte, NULL);
618 return NULL;
619 }
6aab341e
LT
620
621 /*
7e675137 622 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 623 * eg. VDSO mappings can cause them to exist.
6aab341e 624 */
b379d790 625out:
6aab341e 626 return pfn_to_page(pfn);
ee498ed7
HD
627}
628
28093f9f
GS
629#ifdef CONFIG_TRANSPARENT_HUGEPAGE
630struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
631 pmd_t pmd)
632{
633 unsigned long pfn = pmd_pfn(pmd);
634
635 /*
636 * There is no pmd_special() but there may be special pmds, e.g.
637 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 638 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
639 */
640 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
641 if (vma->vm_flags & VM_MIXEDMAP) {
642 if (!pfn_valid(pfn))
643 return NULL;
644 goto out;
645 } else {
646 unsigned long off;
647 off = (addr - vma->vm_start) >> PAGE_SHIFT;
648 if (pfn == vma->vm_pgoff + off)
649 return NULL;
650 if (!is_cow_mapping(vma->vm_flags))
651 return NULL;
652 }
653 }
654
e1fb4a08
DJ
655 if (pmd_devmap(pmd))
656 return NULL;
28093f9f
GS
657 if (is_zero_pfn(pfn))
658 return NULL;
659 if (unlikely(pfn > highest_memmap_pfn))
660 return NULL;
661
662 /*
663 * NOTE! We still have PageReserved() pages in the page tables.
664 * eg. VDSO mappings can cause them to exist.
665 */
666out:
667 return pfn_to_page(pfn);
668}
669#endif
670
1da177e4
LT
671/*
672 * copy one vm_area from one task to the other. Assumes the page tables
673 * already present in the new task to be cleared in the whole range
674 * covered by this vma.
1da177e4
LT
675 */
676
570a335b 677static inline unsigned long
1da177e4 678copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 679 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 680 unsigned long addr, int *rss)
1da177e4 681{
b5810039 682 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
683 pte_t pte = *src_pte;
684 struct page *page;
1da177e4
LT
685
686 /* pte contains position in swap or file, so copy. */
687 if (unlikely(!pte_present(pte))) {
0661a336
KS
688 swp_entry_t entry = pte_to_swp_entry(pte);
689
690 if (likely(!non_swap_entry(entry))) {
691 if (swap_duplicate(entry) < 0)
692 return entry.val;
693
694 /* make sure dst_mm is on swapoff's mmlist. */
695 if (unlikely(list_empty(&dst_mm->mmlist))) {
696 spin_lock(&mmlist_lock);
697 if (list_empty(&dst_mm->mmlist))
698 list_add(&dst_mm->mmlist,
699 &src_mm->mmlist);
700 spin_unlock(&mmlist_lock);
701 }
702 rss[MM_SWAPENTS]++;
703 } else if (is_migration_entry(entry)) {
704 page = migration_entry_to_page(entry);
705
eca56ff9 706 rss[mm_counter(page)]++;
0661a336
KS
707
708 if (is_write_migration_entry(entry) &&
709 is_cow_mapping(vm_flags)) {
710 /*
711 * COW mappings require pages in both
712 * parent and child to be set to read.
713 */
714 make_migration_entry_read(&entry);
715 pte = swp_entry_to_pte(entry);
716 if (pte_swp_soft_dirty(*src_pte))
717 pte = pte_swp_mksoft_dirty(pte);
718 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 719 }
5042db43
JG
720 } else if (is_device_private_entry(entry)) {
721 page = device_private_entry_to_page(entry);
722
723 /*
724 * Update rss count even for unaddressable pages, as
725 * they should treated just like normal pages in this
726 * respect.
727 *
728 * We will likely want to have some new rss counters
729 * for unaddressable pages, at some point. But for now
730 * keep things as they are.
731 */
732 get_page(page);
733 rss[mm_counter(page)]++;
734 page_dup_rmap(page, false);
735
736 /*
737 * We do not preserve soft-dirty information, because so
738 * far, checkpoint/restore is the only feature that
739 * requires that. And checkpoint/restore does not work
740 * when a device driver is involved (you cannot easily
741 * save and restore device driver state).
742 */
743 if (is_write_device_private_entry(entry) &&
744 is_cow_mapping(vm_flags)) {
745 make_device_private_entry_read(&entry);
746 pte = swp_entry_to_pte(entry);
747 set_pte_at(src_mm, addr, src_pte, pte);
748 }
1da177e4 749 }
ae859762 750 goto out_set_pte;
1da177e4
LT
751 }
752
1da177e4
LT
753 /*
754 * If it's a COW mapping, write protect it both
755 * in the parent and the child
756 */
1b2de5d0 757 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 758 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 759 pte = pte_wrprotect(pte);
1da177e4
LT
760 }
761
762 /*
763 * If it's a shared mapping, mark it clean in
764 * the child
765 */
766 if (vm_flags & VM_SHARED)
767 pte = pte_mkclean(pte);
768 pte = pte_mkold(pte);
6aab341e
LT
769
770 page = vm_normal_page(vma, addr, pte);
771 if (page) {
772 get_page(page);
53f9263b 773 page_dup_rmap(page, false);
eca56ff9 774 rss[mm_counter(page)]++;
df6ad698
JG
775 } else if (pte_devmap(pte)) {
776 page = pte_page(pte);
6aab341e 777 }
ae859762
HD
778
779out_set_pte:
780 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 781 return 0;
1da177e4
LT
782}
783
21bda264 784static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
785 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
786 unsigned long addr, unsigned long end)
1da177e4 787{
c36987e2 788 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 789 pte_t *src_pte, *dst_pte;
c74df32c 790 spinlock_t *src_ptl, *dst_ptl;
e040f218 791 int progress = 0;
d559db08 792 int rss[NR_MM_COUNTERS];
570a335b 793 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
794
795again:
d559db08
KH
796 init_rss_vec(rss);
797
c74df32c 798 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
799 if (!dst_pte)
800 return -ENOMEM;
ece0e2b6 801 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 802 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 803 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
804 orig_src_pte = src_pte;
805 orig_dst_pte = dst_pte;
6606c3e0 806 arch_enter_lazy_mmu_mode();
1da177e4 807
1da177e4
LT
808 do {
809 /*
810 * We are holding two locks at this point - either of them
811 * could generate latencies in another task on another CPU.
812 */
e040f218
HD
813 if (progress >= 32) {
814 progress = 0;
815 if (need_resched() ||
95c354fe 816 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
817 break;
818 }
1da177e4
LT
819 if (pte_none(*src_pte)) {
820 progress++;
821 continue;
822 }
570a335b
HD
823 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
824 vma, addr, rss);
825 if (entry.val)
826 break;
1da177e4
LT
827 progress += 8;
828 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 829
6606c3e0 830 arch_leave_lazy_mmu_mode();
c74df32c 831 spin_unlock(src_ptl);
ece0e2b6 832 pte_unmap(orig_src_pte);
d559db08 833 add_mm_rss_vec(dst_mm, rss);
c36987e2 834 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 835 cond_resched();
570a335b
HD
836
837 if (entry.val) {
838 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
839 return -ENOMEM;
840 progress = 0;
841 }
1da177e4
LT
842 if (addr != end)
843 goto again;
844 return 0;
845}
846
847static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
849 unsigned long addr, unsigned long end)
850{
851 pmd_t *src_pmd, *dst_pmd;
852 unsigned long next;
853
854 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
855 if (!dst_pmd)
856 return -ENOMEM;
857 src_pmd = pmd_offset(src_pud, addr);
858 do {
859 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
860 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
861 || pmd_devmap(*src_pmd)) {
71e3aac0 862 int err;
a00cc7d9 863 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
864 err = copy_huge_pmd(dst_mm, src_mm,
865 dst_pmd, src_pmd, addr, vma);
866 if (err == -ENOMEM)
867 return -ENOMEM;
868 if (!err)
869 continue;
870 /* fall through */
871 }
1da177e4
LT
872 if (pmd_none_or_clear_bad(src_pmd))
873 continue;
874 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
875 vma, addr, next))
876 return -ENOMEM;
877 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
878 return 0;
879}
880
881static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 882 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
883 unsigned long addr, unsigned long end)
884{
885 pud_t *src_pud, *dst_pud;
886 unsigned long next;
887
c2febafc 888 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
889 if (!dst_pud)
890 return -ENOMEM;
c2febafc 891 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
892 do {
893 next = pud_addr_end(addr, end);
a00cc7d9
MW
894 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
895 int err;
896
897 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
898 err = copy_huge_pud(dst_mm, src_mm,
899 dst_pud, src_pud, addr, vma);
900 if (err == -ENOMEM)
901 return -ENOMEM;
902 if (!err)
903 continue;
904 /* fall through */
905 }
1da177e4
LT
906 if (pud_none_or_clear_bad(src_pud))
907 continue;
908 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
909 vma, addr, next))
910 return -ENOMEM;
911 } while (dst_pud++, src_pud++, addr = next, addr != end);
912 return 0;
913}
914
c2febafc
KS
915static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
917 unsigned long addr, unsigned long end)
918{
919 p4d_t *src_p4d, *dst_p4d;
920 unsigned long next;
921
922 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
923 if (!dst_p4d)
924 return -ENOMEM;
925 src_p4d = p4d_offset(src_pgd, addr);
926 do {
927 next = p4d_addr_end(addr, end);
928 if (p4d_none_or_clear_bad(src_p4d))
929 continue;
930 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
931 vma, addr, next))
932 return -ENOMEM;
933 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
934 return 0;
935}
936
1da177e4
LT
937int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938 struct vm_area_struct *vma)
939{
940 pgd_t *src_pgd, *dst_pgd;
941 unsigned long next;
942 unsigned long addr = vma->vm_start;
943 unsigned long end = vma->vm_end;
ac46d4f3 944 struct mmu_notifier_range range;
2ec74c3e 945 bool is_cow;
cddb8a5c 946 int ret;
1da177e4 947
d992895b
NP
948 /*
949 * Don't copy ptes where a page fault will fill them correctly.
950 * Fork becomes much lighter when there are big shared or private
951 * readonly mappings. The tradeoff is that copy_page_range is more
952 * efficient than faulting.
953 */
0661a336
KS
954 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
955 !vma->anon_vma)
956 return 0;
d992895b 957
1da177e4
LT
958 if (is_vm_hugetlb_page(vma))
959 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
960
b3b9c293 961 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 962 /*
963 * We do not free on error cases below as remove_vma
964 * gets called on error from higher level routine
965 */
5180da41 966 ret = track_pfn_copy(vma);
2ab64037 967 if (ret)
968 return ret;
969 }
970
cddb8a5c
AA
971 /*
972 * We need to invalidate the secondary MMU mappings only when
973 * there could be a permission downgrade on the ptes of the
974 * parent mm. And a permission downgrade will only happen if
975 * is_cow_mapping() returns true.
976 */
2ec74c3e 977 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
978
979 if (is_cow) {
7269f999
JG
980 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
981 0, vma, src_mm, addr, end);
ac46d4f3
JG
982 mmu_notifier_invalidate_range_start(&range);
983 }
cddb8a5c
AA
984
985 ret = 0;
1da177e4
LT
986 dst_pgd = pgd_offset(dst_mm, addr);
987 src_pgd = pgd_offset(src_mm, addr);
988 do {
989 next = pgd_addr_end(addr, end);
990 if (pgd_none_or_clear_bad(src_pgd))
991 continue;
c2febafc 992 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
993 vma, addr, next))) {
994 ret = -ENOMEM;
995 break;
996 }
1da177e4 997 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 998
2ec74c3e 999 if (is_cow)
ac46d4f3 1000 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1001 return ret;
1da177e4
LT
1002}
1003
51c6f666 1004static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1005 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1006 unsigned long addr, unsigned long end,
97a89413 1007 struct zap_details *details)
1da177e4 1008{
b5810039 1009 struct mm_struct *mm = tlb->mm;
d16dfc55 1010 int force_flush = 0;
d559db08 1011 int rss[NR_MM_COUNTERS];
97a89413 1012 spinlock_t *ptl;
5f1a1907 1013 pte_t *start_pte;
97a89413 1014 pte_t *pte;
8a5f14a2 1015 swp_entry_t entry;
d559db08 1016
ed6a7935 1017 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1018again:
e303297e 1019 init_rss_vec(rss);
5f1a1907
SR
1020 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021 pte = start_pte;
3ea27719 1022 flush_tlb_batched_pending(mm);
6606c3e0 1023 arch_enter_lazy_mmu_mode();
1da177e4
LT
1024 do {
1025 pte_t ptent = *pte;
166f61b9 1026 if (pte_none(ptent))
1da177e4 1027 continue;
6f5e6b9e 1028
1da177e4 1029 if (pte_present(ptent)) {
ee498ed7 1030 struct page *page;
51c6f666 1031
25b2995a 1032 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1033 if (unlikely(details) && page) {
1034 /*
1035 * unmap_shared_mapping_pages() wants to
1036 * invalidate cache without truncating:
1037 * unmap shared but keep private pages.
1038 */
1039 if (details->check_mapping &&
800d8c63 1040 details->check_mapping != page_rmapping(page))
1da177e4 1041 continue;
1da177e4 1042 }
b5810039 1043 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1044 tlb->fullmm);
1da177e4
LT
1045 tlb_remove_tlb_entry(tlb, pte, addr);
1046 if (unlikely(!page))
1047 continue;
eca56ff9
JM
1048
1049 if (!PageAnon(page)) {
1cf35d47
LT
1050 if (pte_dirty(ptent)) {
1051 force_flush = 1;
6237bcd9 1052 set_page_dirty(page);
1cf35d47 1053 }
4917e5d0 1054 if (pte_young(ptent) &&
64363aad 1055 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1056 mark_page_accessed(page);
6237bcd9 1057 }
eca56ff9 1058 rss[mm_counter(page)]--;
d281ee61 1059 page_remove_rmap(page, false);
3dc14741
HD
1060 if (unlikely(page_mapcount(page) < 0))
1061 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1062 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1063 force_flush = 1;
ce9ec37b 1064 addr += PAGE_SIZE;
d16dfc55 1065 break;
1cf35d47 1066 }
1da177e4
LT
1067 continue;
1068 }
5042db43
JG
1069
1070 entry = pte_to_swp_entry(ptent);
1071 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1072 struct page *page = device_private_entry_to_page(entry);
1073
1074 if (unlikely(details && details->check_mapping)) {
1075 /*
1076 * unmap_shared_mapping_pages() wants to
1077 * invalidate cache without truncating:
1078 * unmap shared but keep private pages.
1079 */
1080 if (details->check_mapping !=
1081 page_rmapping(page))
1082 continue;
1083 }
1084
1085 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1086 rss[mm_counter(page)]--;
1087 page_remove_rmap(page, false);
1088 put_page(page);
1089 continue;
1090 }
1091
3e8715fd
KS
1092 /* If details->check_mapping, we leave swap entries. */
1093 if (unlikely(details))
1da177e4 1094 continue;
b084d435 1095
8a5f14a2
KS
1096 entry = pte_to_swp_entry(ptent);
1097 if (!non_swap_entry(entry))
1098 rss[MM_SWAPENTS]--;
1099 else if (is_migration_entry(entry)) {
1100 struct page *page;
9f9f1acd 1101
8a5f14a2 1102 page = migration_entry_to_page(entry);
eca56ff9 1103 rss[mm_counter(page)]--;
b084d435 1104 }
8a5f14a2
KS
1105 if (unlikely(!free_swap_and_cache(entry)))
1106 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1107 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1108 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1109
d559db08 1110 add_mm_rss_vec(mm, rss);
6606c3e0 1111 arch_leave_lazy_mmu_mode();
51c6f666 1112
1cf35d47 1113 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1114 if (force_flush)
1cf35d47 1115 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1116 pte_unmap_unlock(start_pte, ptl);
1117
1118 /*
1119 * If we forced a TLB flush (either due to running out of
1120 * batch buffers or because we needed to flush dirty TLB
1121 * entries before releasing the ptl), free the batched
1122 * memory too. Restart if we didn't do everything.
1123 */
1124 if (force_flush) {
1125 force_flush = 0;
fa0aafb8 1126 tlb_flush_mmu(tlb);
2b047252 1127 if (addr != end)
d16dfc55
PZ
1128 goto again;
1129 }
1130
51c6f666 1131 return addr;
1da177e4
LT
1132}
1133
51c6f666 1134static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1135 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1136 unsigned long addr, unsigned long end,
97a89413 1137 struct zap_details *details)
1da177e4
LT
1138{
1139 pmd_t *pmd;
1140 unsigned long next;
1141
1142 pmd = pmd_offset(pud, addr);
1143 do {
1144 next = pmd_addr_end(addr, end);
84c3fc4e 1145 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1146 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1147 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1148 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1149 goto next;
71e3aac0
AA
1150 /* fall through */
1151 }
1a5a9906
AA
1152 /*
1153 * Here there can be other concurrent MADV_DONTNEED or
1154 * trans huge page faults running, and if the pmd is
1155 * none or trans huge it can change under us. This is
1156 * because MADV_DONTNEED holds the mmap_sem in read
1157 * mode.
1158 */
1159 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1160 goto next;
97a89413 1161 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1162next:
97a89413
PZ
1163 cond_resched();
1164 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1165
1166 return addr;
1da177e4
LT
1167}
1168
51c6f666 1169static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1170 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1171 unsigned long addr, unsigned long end,
97a89413 1172 struct zap_details *details)
1da177e4
LT
1173{
1174 pud_t *pud;
1175 unsigned long next;
1176
c2febafc 1177 pud = pud_offset(p4d, addr);
1da177e4
LT
1178 do {
1179 next = pud_addr_end(addr, end);
a00cc7d9
MW
1180 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1181 if (next - addr != HPAGE_PUD_SIZE) {
1182 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1183 split_huge_pud(vma, pud, addr);
1184 } else if (zap_huge_pud(tlb, vma, pud, addr))
1185 goto next;
1186 /* fall through */
1187 }
97a89413 1188 if (pud_none_or_clear_bad(pud))
1da177e4 1189 continue;
97a89413 1190 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1191next:
1192 cond_resched();
97a89413 1193 } while (pud++, addr = next, addr != end);
51c6f666
RH
1194
1195 return addr;
1da177e4
LT
1196}
1197
c2febafc
KS
1198static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1199 struct vm_area_struct *vma, pgd_t *pgd,
1200 unsigned long addr, unsigned long end,
1201 struct zap_details *details)
1202{
1203 p4d_t *p4d;
1204 unsigned long next;
1205
1206 p4d = p4d_offset(pgd, addr);
1207 do {
1208 next = p4d_addr_end(addr, end);
1209 if (p4d_none_or_clear_bad(p4d))
1210 continue;
1211 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1212 } while (p4d++, addr = next, addr != end);
1213
1214 return addr;
1215}
1216
aac45363 1217void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1218 struct vm_area_struct *vma,
1219 unsigned long addr, unsigned long end,
1220 struct zap_details *details)
1da177e4
LT
1221{
1222 pgd_t *pgd;
1223 unsigned long next;
1224
1da177e4
LT
1225 BUG_ON(addr >= end);
1226 tlb_start_vma(tlb, vma);
1227 pgd = pgd_offset(vma->vm_mm, addr);
1228 do {
1229 next = pgd_addr_end(addr, end);
97a89413 1230 if (pgd_none_or_clear_bad(pgd))
1da177e4 1231 continue;
c2febafc 1232 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1233 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1234 tlb_end_vma(tlb, vma);
1235}
51c6f666 1236
f5cc4eef
AV
1237
1238static void unmap_single_vma(struct mmu_gather *tlb,
1239 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1240 unsigned long end_addr,
f5cc4eef
AV
1241 struct zap_details *details)
1242{
1243 unsigned long start = max(vma->vm_start, start_addr);
1244 unsigned long end;
1245
1246 if (start >= vma->vm_end)
1247 return;
1248 end = min(vma->vm_end, end_addr);
1249 if (end <= vma->vm_start)
1250 return;
1251
cbc91f71
SD
1252 if (vma->vm_file)
1253 uprobe_munmap(vma, start, end);
1254
b3b9c293 1255 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1256 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1257
1258 if (start != end) {
1259 if (unlikely(is_vm_hugetlb_page(vma))) {
1260 /*
1261 * It is undesirable to test vma->vm_file as it
1262 * should be non-null for valid hugetlb area.
1263 * However, vm_file will be NULL in the error
7aa6b4ad 1264 * cleanup path of mmap_region. When
f5cc4eef 1265 * hugetlbfs ->mmap method fails,
7aa6b4ad 1266 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1267 * before calling this function to clean up.
1268 * Since no pte has actually been setup, it is
1269 * safe to do nothing in this case.
1270 */
24669e58 1271 if (vma->vm_file) {
83cde9e8 1272 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1273 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1274 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1275 }
f5cc4eef
AV
1276 } else
1277 unmap_page_range(tlb, vma, start, end, details);
1278 }
1da177e4
LT
1279}
1280
1da177e4
LT
1281/**
1282 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1283 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1284 * @vma: the starting vma
1285 * @start_addr: virtual address at which to start unmapping
1286 * @end_addr: virtual address at which to end unmapping
1da177e4 1287 *
508034a3 1288 * Unmap all pages in the vma list.
1da177e4 1289 *
1da177e4
LT
1290 * Only addresses between `start' and `end' will be unmapped.
1291 *
1292 * The VMA list must be sorted in ascending virtual address order.
1293 *
1294 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1295 * range after unmap_vmas() returns. So the only responsibility here is to
1296 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1297 * drops the lock and schedules.
1298 */
6e8bb019 1299void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1300 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1301 unsigned long end_addr)
1da177e4 1302{
ac46d4f3 1303 struct mmu_notifier_range range;
1da177e4 1304
6f4f13e8
JG
1305 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1306 start_addr, end_addr);
ac46d4f3 1307 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1308 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1309 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1310 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1311}
1312
1313/**
1314 * zap_page_range - remove user pages in a given range
1315 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1316 * @start: starting address of pages to zap
1da177e4 1317 * @size: number of bytes to zap
f5cc4eef
AV
1318 *
1319 * Caller must protect the VMA list
1da177e4 1320 */
7e027b14 1321void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1322 unsigned long size)
1da177e4 1323{
ac46d4f3 1324 struct mmu_notifier_range range;
d16dfc55 1325 struct mmu_gather tlb;
1da177e4 1326
1da177e4 1327 lru_add_drain();
7269f999 1328 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1329 start, start + size);
ac46d4f3
JG
1330 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1331 update_hiwater_rss(vma->vm_mm);
1332 mmu_notifier_invalidate_range_start(&range);
1333 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1334 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1335 mmu_notifier_invalidate_range_end(&range);
1336 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1337}
1338
f5cc4eef
AV
1339/**
1340 * zap_page_range_single - remove user pages in a given range
1341 * @vma: vm_area_struct holding the applicable pages
1342 * @address: starting address of pages to zap
1343 * @size: number of bytes to zap
8a5f14a2 1344 * @details: details of shared cache invalidation
f5cc4eef
AV
1345 *
1346 * The range must fit into one VMA.
1da177e4 1347 */
f5cc4eef 1348static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1349 unsigned long size, struct zap_details *details)
1350{
ac46d4f3 1351 struct mmu_notifier_range range;
d16dfc55 1352 struct mmu_gather tlb;
1da177e4 1353
1da177e4 1354 lru_add_drain();
7269f999 1355 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1356 address, address + size);
ac46d4f3
JG
1357 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1358 update_hiwater_rss(vma->vm_mm);
1359 mmu_notifier_invalidate_range_start(&range);
1360 unmap_single_vma(&tlb, vma, address, range.end, details);
1361 mmu_notifier_invalidate_range_end(&range);
1362 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1363}
1364
c627f9cc
JS
1365/**
1366 * zap_vma_ptes - remove ptes mapping the vma
1367 * @vma: vm_area_struct holding ptes to be zapped
1368 * @address: starting address of pages to zap
1369 * @size: number of bytes to zap
1370 *
1371 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1372 *
1373 * The entire address range must be fully contained within the vma.
1374 *
c627f9cc 1375 */
27d036e3 1376void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1377 unsigned long size)
1378{
1379 if (address < vma->vm_start || address + size > vma->vm_end ||
1380 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1381 return;
1382
f5cc4eef 1383 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1384}
1385EXPORT_SYMBOL_GPL(zap_vma_ptes);
1386
25ca1d6c 1387pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1388 spinlock_t **ptl)
c9cfcddf 1389{
c2febafc
KS
1390 pgd_t *pgd;
1391 p4d_t *p4d;
1392 pud_t *pud;
1393 pmd_t *pmd;
1394
1395 pgd = pgd_offset(mm, addr);
1396 p4d = p4d_alloc(mm, pgd, addr);
1397 if (!p4d)
1398 return NULL;
1399 pud = pud_alloc(mm, p4d, addr);
1400 if (!pud)
1401 return NULL;
1402 pmd = pmd_alloc(mm, pud, addr);
1403 if (!pmd)
1404 return NULL;
1405
1406 VM_BUG_ON(pmd_trans_huge(*pmd));
1407 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1408}
1409
238f58d8
LT
1410/*
1411 * This is the old fallback for page remapping.
1412 *
1413 * For historical reasons, it only allows reserved pages. Only
1414 * old drivers should use this, and they needed to mark their
1415 * pages reserved for the old functions anyway.
1416 */
423bad60
NP
1417static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1418 struct page *page, pgprot_t prot)
238f58d8 1419{
423bad60 1420 struct mm_struct *mm = vma->vm_mm;
238f58d8 1421 int retval;
c9cfcddf 1422 pte_t *pte;
8a9f3ccd
BS
1423 spinlock_t *ptl;
1424
238f58d8 1425 retval = -EINVAL;
0ee930e6 1426 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
5b4e655e 1427 goto out;
238f58d8
LT
1428 retval = -ENOMEM;
1429 flush_dcache_page(page);
c9cfcddf 1430 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1431 if (!pte)
5b4e655e 1432 goto out;
238f58d8
LT
1433 retval = -EBUSY;
1434 if (!pte_none(*pte))
1435 goto out_unlock;
1436
1437 /* Ok, finally just insert the thing.. */
1438 get_page(page);
eca56ff9 1439 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1440 page_add_file_rmap(page, false);
238f58d8
LT
1441 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1442
1443 retval = 0;
8a9f3ccd
BS
1444 pte_unmap_unlock(pte, ptl);
1445 return retval;
238f58d8
LT
1446out_unlock:
1447 pte_unmap_unlock(pte, ptl);
1448out:
1449 return retval;
1450}
1451
bfa5bf6d
REB
1452/**
1453 * vm_insert_page - insert single page into user vma
1454 * @vma: user vma to map to
1455 * @addr: target user address of this page
1456 * @page: source kernel page
1457 *
a145dd41
LT
1458 * This allows drivers to insert individual pages they've allocated
1459 * into a user vma.
1460 *
1461 * The page has to be a nice clean _individual_ kernel allocation.
1462 * If you allocate a compound page, you need to have marked it as
1463 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1464 * (see split_page()).
a145dd41
LT
1465 *
1466 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1467 * took an arbitrary page protection parameter. This doesn't allow
1468 * that. Your vma protection will have to be set up correctly, which
1469 * means that if you want a shared writable mapping, you'd better
1470 * ask for a shared writable mapping!
1471 *
1472 * The page does not need to be reserved.
4b6e1e37
KK
1473 *
1474 * Usually this function is called from f_op->mmap() handler
1475 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1476 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1477 * function from other places, for example from page-fault handler.
a862f68a
MR
1478 *
1479 * Return: %0 on success, negative error code otherwise.
a145dd41 1480 */
423bad60
NP
1481int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1482 struct page *page)
a145dd41
LT
1483{
1484 if (addr < vma->vm_start || addr >= vma->vm_end)
1485 return -EFAULT;
1486 if (!page_count(page))
1487 return -EINVAL;
4b6e1e37
KK
1488 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1489 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1490 BUG_ON(vma->vm_flags & VM_PFNMAP);
1491 vma->vm_flags |= VM_MIXEDMAP;
1492 }
423bad60 1493 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1494}
e3c3374f 1495EXPORT_SYMBOL(vm_insert_page);
a145dd41 1496
a667d745
SJ
1497/*
1498 * __vm_map_pages - maps range of kernel pages into user vma
1499 * @vma: user vma to map to
1500 * @pages: pointer to array of source kernel pages
1501 * @num: number of pages in page array
1502 * @offset: user's requested vm_pgoff
1503 *
1504 * This allows drivers to map range of kernel pages into a user vma.
1505 *
1506 * Return: 0 on success and error code otherwise.
1507 */
1508static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1509 unsigned long num, unsigned long offset)
1510{
1511 unsigned long count = vma_pages(vma);
1512 unsigned long uaddr = vma->vm_start;
1513 int ret, i;
1514
1515 /* Fail if the user requested offset is beyond the end of the object */
1516 if (offset > num)
1517 return -ENXIO;
1518
1519 /* Fail if the user requested size exceeds available object size */
1520 if (count > num - offset)
1521 return -ENXIO;
1522
1523 for (i = 0; i < count; i++) {
1524 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1525 if (ret < 0)
1526 return ret;
1527 uaddr += PAGE_SIZE;
1528 }
1529
1530 return 0;
1531}
1532
1533/**
1534 * vm_map_pages - maps range of kernel pages starts with non zero offset
1535 * @vma: user vma to map to
1536 * @pages: pointer to array of source kernel pages
1537 * @num: number of pages in page array
1538 *
1539 * Maps an object consisting of @num pages, catering for the user's
1540 * requested vm_pgoff
1541 *
1542 * If we fail to insert any page into the vma, the function will return
1543 * immediately leaving any previously inserted pages present. Callers
1544 * from the mmap handler may immediately return the error as their caller
1545 * will destroy the vma, removing any successfully inserted pages. Other
1546 * callers should make their own arrangements for calling unmap_region().
1547 *
1548 * Context: Process context. Called by mmap handlers.
1549 * Return: 0 on success and error code otherwise.
1550 */
1551int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1552 unsigned long num)
1553{
1554 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1555}
1556EXPORT_SYMBOL(vm_map_pages);
1557
1558/**
1559 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1560 * @vma: user vma to map to
1561 * @pages: pointer to array of source kernel pages
1562 * @num: number of pages in page array
1563 *
1564 * Similar to vm_map_pages(), except that it explicitly sets the offset
1565 * to 0. This function is intended for the drivers that did not consider
1566 * vm_pgoff.
1567 *
1568 * Context: Process context. Called by mmap handlers.
1569 * Return: 0 on success and error code otherwise.
1570 */
1571int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1572 unsigned long num)
1573{
1574 return __vm_map_pages(vma, pages, num, 0);
1575}
1576EXPORT_SYMBOL(vm_map_pages_zero);
1577
9b5a8e00 1578static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1579 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1580{
1581 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1582 pte_t *pte, entry;
1583 spinlock_t *ptl;
1584
423bad60
NP
1585 pte = get_locked_pte(mm, addr, &ptl);
1586 if (!pte)
9b5a8e00 1587 return VM_FAULT_OOM;
b2770da6
RZ
1588 if (!pte_none(*pte)) {
1589 if (mkwrite) {
1590 /*
1591 * For read faults on private mappings the PFN passed
1592 * in may not match the PFN we have mapped if the
1593 * mapped PFN is a writeable COW page. In the mkwrite
1594 * case we are creating a writable PTE for a shared
f2c57d91
JK
1595 * mapping and we expect the PFNs to match. If they
1596 * don't match, we are likely racing with block
1597 * allocation and mapping invalidation so just skip the
1598 * update.
b2770da6 1599 */
f2c57d91
JK
1600 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1601 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1602 goto out_unlock;
f2c57d91 1603 }
cae85cb8
JK
1604 entry = pte_mkyoung(*pte);
1605 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1606 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1607 update_mmu_cache(vma, addr, pte);
1608 }
1609 goto out_unlock;
b2770da6 1610 }
423bad60
NP
1611
1612 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1613 if (pfn_t_devmap(pfn))
1614 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1615 else
1616 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1617
b2770da6
RZ
1618 if (mkwrite) {
1619 entry = pte_mkyoung(entry);
1620 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1621 }
1622
423bad60 1623 set_pte_at(mm, addr, pte, entry);
4b3073e1 1624 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1625
423bad60
NP
1626out_unlock:
1627 pte_unmap_unlock(pte, ptl);
9b5a8e00 1628 return VM_FAULT_NOPAGE;
423bad60
NP
1629}
1630
f5e6d1d5
MW
1631/**
1632 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1633 * @vma: user vma to map to
1634 * @addr: target user address of this page
1635 * @pfn: source kernel pfn
1636 * @pgprot: pgprot flags for the inserted page
1637 *
1638 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1639 * to override pgprot on a per-page basis.
1640 *
1641 * This only makes sense for IO mappings, and it makes no sense for
1642 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1643 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1644 * impractical.
1645 *
ae2b01f3 1646 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1647 * Return: vm_fault_t value.
1648 */
1649vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1650 unsigned long pfn, pgprot_t pgprot)
1651{
6d958546
MW
1652 /*
1653 * Technically, architectures with pte_special can avoid all these
1654 * restrictions (same for remap_pfn_range). However we would like
1655 * consistency in testing and feature parity among all, so we should
1656 * try to keep these invariants in place for everybody.
1657 */
1658 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1659 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1660 (VM_PFNMAP|VM_MIXEDMAP));
1661 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1662 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1663
1664 if (addr < vma->vm_start || addr >= vma->vm_end)
1665 return VM_FAULT_SIGBUS;
1666
1667 if (!pfn_modify_allowed(pfn, pgprot))
1668 return VM_FAULT_SIGBUS;
1669
1670 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1671
9b5a8e00 1672 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1673 false);
f5e6d1d5
MW
1674}
1675EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1676
ae2b01f3
MW
1677/**
1678 * vmf_insert_pfn - insert single pfn into user vma
1679 * @vma: user vma to map to
1680 * @addr: target user address of this page
1681 * @pfn: source kernel pfn
1682 *
1683 * Similar to vm_insert_page, this allows drivers to insert individual pages
1684 * they've allocated into a user vma. Same comments apply.
1685 *
1686 * This function should only be called from a vm_ops->fault handler, and
1687 * in that case the handler should return the result of this function.
1688 *
1689 * vma cannot be a COW mapping.
1690 *
1691 * As this is called only for pages that do not currently exist, we
1692 * do not need to flush old virtual caches or the TLB.
1693 *
1694 * Context: Process context. May allocate using %GFP_KERNEL.
1695 * Return: vm_fault_t value.
1696 */
1697vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1698 unsigned long pfn)
1699{
1700 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1701}
1702EXPORT_SYMBOL(vmf_insert_pfn);
1703
785a3fab
DW
1704static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1705{
1706 /* these checks mirror the abort conditions in vm_normal_page */
1707 if (vma->vm_flags & VM_MIXEDMAP)
1708 return true;
1709 if (pfn_t_devmap(pfn))
1710 return true;
1711 if (pfn_t_special(pfn))
1712 return true;
1713 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1714 return true;
1715 return false;
1716}
1717
79f3aa5b
MW
1718static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1719 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 1720{
87744ab3 1721 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 1722 int err;
87744ab3 1723
785a3fab 1724 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1725
423bad60 1726 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1727 return VM_FAULT_SIGBUS;
308a047c
BP
1728
1729 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1730
42e4089c 1731 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1732 return VM_FAULT_SIGBUS;
42e4089c 1733
423bad60
NP
1734 /*
1735 * If we don't have pte special, then we have to use the pfn_valid()
1736 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1737 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1738 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1739 * without pte special, it would there be refcounted as a normal page.
423bad60 1740 */
00b3a331
LD
1741 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1742 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1743 struct page *page;
1744
03fc2da6
DW
1745 /*
1746 * At this point we are committed to insert_page()
1747 * regardless of whether the caller specified flags that
1748 * result in pfn_t_has_page() == false.
1749 */
1750 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1751 err = insert_page(vma, addr, page, pgprot);
1752 } else {
9b5a8e00 1753 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1754 }
b2770da6 1755
5d747637
MW
1756 if (err == -ENOMEM)
1757 return VM_FAULT_OOM;
1758 if (err < 0 && err != -EBUSY)
1759 return VM_FAULT_SIGBUS;
1760
1761 return VM_FAULT_NOPAGE;
e0dc0d8f 1762}
79f3aa5b
MW
1763
1764vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1765 pfn_t pfn)
1766{
1767 return __vm_insert_mixed(vma, addr, pfn, false);
1768}
5d747637 1769EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1770
ab77dab4
SJ
1771/*
1772 * If the insertion of PTE failed because someone else already added a
1773 * different entry in the mean time, we treat that as success as we assume
1774 * the same entry was actually inserted.
1775 */
ab77dab4
SJ
1776vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1777 unsigned long addr, pfn_t pfn)
b2770da6 1778{
79f3aa5b 1779 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 1780}
ab77dab4 1781EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1782
1da177e4
LT
1783/*
1784 * maps a range of physical memory into the requested pages. the old
1785 * mappings are removed. any references to nonexistent pages results
1786 * in null mappings (currently treated as "copy-on-access")
1787 */
1788static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1789 unsigned long addr, unsigned long end,
1790 unsigned long pfn, pgprot_t prot)
1791{
1792 pte_t *pte;
c74df32c 1793 spinlock_t *ptl;
42e4089c 1794 int err = 0;
1da177e4 1795
c74df32c 1796 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1797 if (!pte)
1798 return -ENOMEM;
6606c3e0 1799 arch_enter_lazy_mmu_mode();
1da177e4
LT
1800 do {
1801 BUG_ON(!pte_none(*pte));
42e4089c
AK
1802 if (!pfn_modify_allowed(pfn, prot)) {
1803 err = -EACCES;
1804 break;
1805 }
7e675137 1806 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1807 pfn++;
1808 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1809 arch_leave_lazy_mmu_mode();
c74df32c 1810 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1811 return err;
1da177e4
LT
1812}
1813
1814static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1815 unsigned long addr, unsigned long end,
1816 unsigned long pfn, pgprot_t prot)
1817{
1818 pmd_t *pmd;
1819 unsigned long next;
42e4089c 1820 int err;
1da177e4
LT
1821
1822 pfn -= addr >> PAGE_SHIFT;
1823 pmd = pmd_alloc(mm, pud, addr);
1824 if (!pmd)
1825 return -ENOMEM;
f66055ab 1826 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1827 do {
1828 next = pmd_addr_end(addr, end);
42e4089c
AK
1829 err = remap_pte_range(mm, pmd, addr, next,
1830 pfn + (addr >> PAGE_SHIFT), prot);
1831 if (err)
1832 return err;
1da177e4
LT
1833 } while (pmd++, addr = next, addr != end);
1834 return 0;
1835}
1836
c2febafc 1837static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1838 unsigned long addr, unsigned long end,
1839 unsigned long pfn, pgprot_t prot)
1840{
1841 pud_t *pud;
1842 unsigned long next;
42e4089c 1843 int err;
1da177e4
LT
1844
1845 pfn -= addr >> PAGE_SHIFT;
c2febafc 1846 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1847 if (!pud)
1848 return -ENOMEM;
1849 do {
1850 next = pud_addr_end(addr, end);
42e4089c
AK
1851 err = remap_pmd_range(mm, pud, addr, next,
1852 pfn + (addr >> PAGE_SHIFT), prot);
1853 if (err)
1854 return err;
1da177e4
LT
1855 } while (pud++, addr = next, addr != end);
1856 return 0;
1857}
1858
c2febafc
KS
1859static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1860 unsigned long addr, unsigned long end,
1861 unsigned long pfn, pgprot_t prot)
1862{
1863 p4d_t *p4d;
1864 unsigned long next;
42e4089c 1865 int err;
c2febafc
KS
1866
1867 pfn -= addr >> PAGE_SHIFT;
1868 p4d = p4d_alloc(mm, pgd, addr);
1869 if (!p4d)
1870 return -ENOMEM;
1871 do {
1872 next = p4d_addr_end(addr, end);
42e4089c
AK
1873 err = remap_pud_range(mm, p4d, addr, next,
1874 pfn + (addr >> PAGE_SHIFT), prot);
1875 if (err)
1876 return err;
c2febafc
KS
1877 } while (p4d++, addr = next, addr != end);
1878 return 0;
1879}
1880
bfa5bf6d
REB
1881/**
1882 * remap_pfn_range - remap kernel memory to userspace
1883 * @vma: user vma to map to
1884 * @addr: target user address to start at
1885 * @pfn: physical address of kernel memory
1886 * @size: size of map area
1887 * @prot: page protection flags for this mapping
1888 *
a862f68a
MR
1889 * Note: this is only safe if the mm semaphore is held when called.
1890 *
1891 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 1892 */
1da177e4
LT
1893int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1894 unsigned long pfn, unsigned long size, pgprot_t prot)
1895{
1896 pgd_t *pgd;
1897 unsigned long next;
2d15cab8 1898 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1899 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1900 unsigned long remap_pfn = pfn;
1da177e4
LT
1901 int err;
1902
1903 /*
1904 * Physically remapped pages are special. Tell the
1905 * rest of the world about it:
1906 * VM_IO tells people not to look at these pages
1907 * (accesses can have side effects).
6aab341e
LT
1908 * VM_PFNMAP tells the core MM that the base pages are just
1909 * raw PFN mappings, and do not have a "struct page" associated
1910 * with them.
314e51b9
KK
1911 * VM_DONTEXPAND
1912 * Disable vma merging and expanding with mremap().
1913 * VM_DONTDUMP
1914 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1915 *
1916 * There's a horrible special case to handle copy-on-write
1917 * behaviour that some programs depend on. We mark the "original"
1918 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1919 * See vm_normal_page() for details.
1da177e4 1920 */
b3b9c293
KK
1921 if (is_cow_mapping(vma->vm_flags)) {
1922 if (addr != vma->vm_start || end != vma->vm_end)
1923 return -EINVAL;
fb155c16 1924 vma->vm_pgoff = pfn;
b3b9c293
KK
1925 }
1926
d5957d2f 1927 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1928 if (err)
3c8bb73a 1929 return -EINVAL;
fb155c16 1930
314e51b9 1931 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1932
1933 BUG_ON(addr >= end);
1934 pfn -= addr >> PAGE_SHIFT;
1935 pgd = pgd_offset(mm, addr);
1936 flush_cache_range(vma, addr, end);
1da177e4
LT
1937 do {
1938 next = pgd_addr_end(addr, end);
c2febafc 1939 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1940 pfn + (addr >> PAGE_SHIFT), prot);
1941 if (err)
1942 break;
1943 } while (pgd++, addr = next, addr != end);
2ab64037 1944
1945 if (err)
d5957d2f 1946 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1947
1da177e4
LT
1948 return err;
1949}
1950EXPORT_SYMBOL(remap_pfn_range);
1951
b4cbb197
LT
1952/**
1953 * vm_iomap_memory - remap memory to userspace
1954 * @vma: user vma to map to
1955 * @start: start of area
1956 * @len: size of area
1957 *
1958 * This is a simplified io_remap_pfn_range() for common driver use. The
1959 * driver just needs to give us the physical memory range to be mapped,
1960 * we'll figure out the rest from the vma information.
1961 *
1962 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1963 * whatever write-combining details or similar.
a862f68a
MR
1964 *
1965 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
1966 */
1967int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1968{
1969 unsigned long vm_len, pfn, pages;
1970
1971 /* Check that the physical memory area passed in looks valid */
1972 if (start + len < start)
1973 return -EINVAL;
1974 /*
1975 * You *really* shouldn't map things that aren't page-aligned,
1976 * but we've historically allowed it because IO memory might
1977 * just have smaller alignment.
1978 */
1979 len += start & ~PAGE_MASK;
1980 pfn = start >> PAGE_SHIFT;
1981 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1982 if (pfn + pages < pfn)
1983 return -EINVAL;
1984
1985 /* We start the mapping 'vm_pgoff' pages into the area */
1986 if (vma->vm_pgoff > pages)
1987 return -EINVAL;
1988 pfn += vma->vm_pgoff;
1989 pages -= vma->vm_pgoff;
1990
1991 /* Can we fit all of the mapping? */
1992 vm_len = vma->vm_end - vma->vm_start;
1993 if (vm_len >> PAGE_SHIFT > pages)
1994 return -EINVAL;
1995
1996 /* Ok, let it rip */
1997 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1998}
1999EXPORT_SYMBOL(vm_iomap_memory);
2000
aee16b3c
JF
2001static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2002 unsigned long addr, unsigned long end,
2003 pte_fn_t fn, void *data)
2004{
2005 pte_t *pte;
2006 int err;
2f569afd 2007 pgtable_t token;
94909914 2008 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2009
2010 pte = (mm == &init_mm) ?
2011 pte_alloc_kernel(pmd, addr) :
2012 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2013 if (!pte)
2014 return -ENOMEM;
2015
2016 BUG_ON(pmd_huge(*pmd));
2017
38e0edb1
JF
2018 arch_enter_lazy_mmu_mode();
2019
2f569afd 2020 token = pmd_pgtable(*pmd);
aee16b3c
JF
2021
2022 do {
c36987e2 2023 err = fn(pte++, token, addr, data);
aee16b3c
JF
2024 if (err)
2025 break;
c36987e2 2026 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2027
38e0edb1
JF
2028 arch_leave_lazy_mmu_mode();
2029
aee16b3c
JF
2030 if (mm != &init_mm)
2031 pte_unmap_unlock(pte-1, ptl);
2032 return err;
2033}
2034
2035static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2036 unsigned long addr, unsigned long end,
2037 pte_fn_t fn, void *data)
2038{
2039 pmd_t *pmd;
2040 unsigned long next;
2041 int err;
2042
ceb86879
AK
2043 BUG_ON(pud_huge(*pud));
2044
aee16b3c
JF
2045 pmd = pmd_alloc(mm, pud, addr);
2046 if (!pmd)
2047 return -ENOMEM;
2048 do {
2049 next = pmd_addr_end(addr, end);
2050 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2051 if (err)
2052 break;
2053 } while (pmd++, addr = next, addr != end);
2054 return err;
2055}
2056
c2febafc 2057static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2058 unsigned long addr, unsigned long end,
2059 pte_fn_t fn, void *data)
2060{
2061 pud_t *pud;
2062 unsigned long next;
2063 int err;
2064
c2febafc 2065 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2066 if (!pud)
2067 return -ENOMEM;
2068 do {
2069 next = pud_addr_end(addr, end);
2070 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2071 if (err)
2072 break;
2073 } while (pud++, addr = next, addr != end);
2074 return err;
2075}
2076
c2febafc
KS
2077static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2078 unsigned long addr, unsigned long end,
2079 pte_fn_t fn, void *data)
2080{
2081 p4d_t *p4d;
2082 unsigned long next;
2083 int err;
2084
2085 p4d = p4d_alloc(mm, pgd, addr);
2086 if (!p4d)
2087 return -ENOMEM;
2088 do {
2089 next = p4d_addr_end(addr, end);
2090 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2091 if (err)
2092 break;
2093 } while (p4d++, addr = next, addr != end);
2094 return err;
2095}
2096
aee16b3c
JF
2097/*
2098 * Scan a region of virtual memory, filling in page tables as necessary
2099 * and calling a provided function on each leaf page table.
2100 */
2101int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2102 unsigned long size, pte_fn_t fn, void *data)
2103{
2104 pgd_t *pgd;
2105 unsigned long next;
57250a5b 2106 unsigned long end = addr + size;
aee16b3c
JF
2107 int err;
2108
9cb65bc3
MP
2109 if (WARN_ON(addr >= end))
2110 return -EINVAL;
2111
aee16b3c
JF
2112 pgd = pgd_offset(mm, addr);
2113 do {
2114 next = pgd_addr_end(addr, end);
c2febafc 2115 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2116 if (err)
2117 break;
2118 } while (pgd++, addr = next, addr != end);
57250a5b 2119
aee16b3c
JF
2120 return err;
2121}
2122EXPORT_SYMBOL_GPL(apply_to_page_range);
2123
8f4e2101 2124/*
9b4bdd2f
KS
2125 * handle_pte_fault chooses page fault handler according to an entry which was
2126 * read non-atomically. Before making any commitment, on those architectures
2127 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2128 * parts, do_swap_page must check under lock before unmapping the pte and
2129 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2130 * and do_anonymous_page can safely check later on).
8f4e2101 2131 */
4c21e2f2 2132static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2133 pte_t *page_table, pte_t orig_pte)
2134{
2135 int same = 1;
2136#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2137 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2138 spinlock_t *ptl = pte_lockptr(mm, pmd);
2139 spin_lock(ptl);
8f4e2101 2140 same = pte_same(*page_table, orig_pte);
4c21e2f2 2141 spin_unlock(ptl);
8f4e2101
HD
2142 }
2143#endif
2144 pte_unmap(page_table);
2145 return same;
2146}
2147
9de455b2 2148static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2149{
0abdd7a8
DW
2150 debug_dma_assert_idle(src);
2151
6aab341e
LT
2152 /*
2153 * If the source page was a PFN mapping, we don't have
2154 * a "struct page" for it. We do a best-effort copy by
2155 * just copying from the original user address. If that
2156 * fails, we just zero-fill it. Live with it.
2157 */
2158 if (unlikely(!src)) {
9b04c5fe 2159 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2160 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2161
2162 /*
2163 * This really shouldn't fail, because the page is there
2164 * in the page tables. But it might just be unreadable,
2165 * in which case we just give up and fill the result with
2166 * zeroes.
2167 */
2168 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2169 clear_page(kaddr);
9b04c5fe 2170 kunmap_atomic(kaddr);
c4ec7b0d 2171 flush_dcache_page(dst);
0ed361de
NP
2172 } else
2173 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2174}
2175
c20cd45e
MH
2176static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2177{
2178 struct file *vm_file = vma->vm_file;
2179
2180 if (vm_file)
2181 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2182
2183 /*
2184 * Special mappings (e.g. VDSO) do not have any file so fake
2185 * a default GFP_KERNEL for them.
2186 */
2187 return GFP_KERNEL;
2188}
2189
fb09a464
KS
2190/*
2191 * Notify the address space that the page is about to become writable so that
2192 * it can prohibit this or wait for the page to get into an appropriate state.
2193 *
2194 * We do this without the lock held, so that it can sleep if it needs to.
2195 */
2b740303 2196static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2197{
2b740303 2198 vm_fault_t ret;
38b8cb7f
JK
2199 struct page *page = vmf->page;
2200 unsigned int old_flags = vmf->flags;
fb09a464 2201
38b8cb7f 2202 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2203
11bac800 2204 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2205 /* Restore original flags so that caller is not surprised */
2206 vmf->flags = old_flags;
fb09a464
KS
2207 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2208 return ret;
2209 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2210 lock_page(page);
2211 if (!page->mapping) {
2212 unlock_page(page);
2213 return 0; /* retry */
2214 }
2215 ret |= VM_FAULT_LOCKED;
2216 } else
2217 VM_BUG_ON_PAGE(!PageLocked(page), page);
2218 return ret;
2219}
2220
97ba0c2b
JK
2221/*
2222 * Handle dirtying of a page in shared file mapping on a write fault.
2223 *
2224 * The function expects the page to be locked and unlocks it.
2225 */
2226static void fault_dirty_shared_page(struct vm_area_struct *vma,
2227 struct page *page)
2228{
2229 struct address_space *mapping;
2230 bool dirtied;
2231 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2232
2233 dirtied = set_page_dirty(page);
2234 VM_BUG_ON_PAGE(PageAnon(page), page);
2235 /*
2236 * Take a local copy of the address_space - page.mapping may be zeroed
2237 * by truncate after unlock_page(). The address_space itself remains
2238 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2239 * release semantics to prevent the compiler from undoing this copying.
2240 */
2241 mapping = page_rmapping(page);
2242 unlock_page(page);
2243
2244 if ((dirtied || page_mkwrite) && mapping) {
2245 /*
2246 * Some device drivers do not set page.mapping
2247 * but still dirty their pages
2248 */
2249 balance_dirty_pages_ratelimited(mapping);
2250 }
2251
2252 if (!page_mkwrite)
2253 file_update_time(vma->vm_file);
2254}
2255
4e047f89
SR
2256/*
2257 * Handle write page faults for pages that can be reused in the current vma
2258 *
2259 * This can happen either due to the mapping being with the VM_SHARED flag,
2260 * or due to us being the last reference standing to the page. In either
2261 * case, all we need to do here is to mark the page as writable and update
2262 * any related book-keeping.
2263 */
997dd98d 2264static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2265 __releases(vmf->ptl)
4e047f89 2266{
82b0f8c3 2267 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2268 struct page *page = vmf->page;
4e047f89
SR
2269 pte_t entry;
2270 /*
2271 * Clear the pages cpupid information as the existing
2272 * information potentially belongs to a now completely
2273 * unrelated process.
2274 */
2275 if (page)
2276 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2277
2994302b
JK
2278 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2279 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2280 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2281 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2282 update_mmu_cache(vma, vmf->address, vmf->pte);
2283 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2284}
2285
2f38ab2c
SR
2286/*
2287 * Handle the case of a page which we actually need to copy to a new page.
2288 *
2289 * Called with mmap_sem locked and the old page referenced, but
2290 * without the ptl held.
2291 *
2292 * High level logic flow:
2293 *
2294 * - Allocate a page, copy the content of the old page to the new one.
2295 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2296 * - Take the PTL. If the pte changed, bail out and release the allocated page
2297 * - If the pte is still the way we remember it, update the page table and all
2298 * relevant references. This includes dropping the reference the page-table
2299 * held to the old page, as well as updating the rmap.
2300 * - In any case, unlock the PTL and drop the reference we took to the old page.
2301 */
2b740303 2302static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2303{
82b0f8c3 2304 struct vm_area_struct *vma = vmf->vma;
bae473a4 2305 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2306 struct page *old_page = vmf->page;
2f38ab2c 2307 struct page *new_page = NULL;
2f38ab2c
SR
2308 pte_t entry;
2309 int page_copied = 0;
2f38ab2c 2310 struct mem_cgroup *memcg;
ac46d4f3 2311 struct mmu_notifier_range range;
2f38ab2c
SR
2312
2313 if (unlikely(anon_vma_prepare(vma)))
2314 goto oom;
2315
2994302b 2316 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2317 new_page = alloc_zeroed_user_highpage_movable(vma,
2318 vmf->address);
2f38ab2c
SR
2319 if (!new_page)
2320 goto oom;
2321 } else {
bae473a4 2322 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2323 vmf->address);
2f38ab2c
SR
2324 if (!new_page)
2325 goto oom;
82b0f8c3 2326 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2327 }
2f38ab2c 2328
2cf85583 2329 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2330 goto oom_free_new;
2331
eb3c24f3
MG
2332 __SetPageUptodate(new_page);
2333
7269f999 2334 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2335 vmf->address & PAGE_MASK,
ac46d4f3
JG
2336 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2337 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2338
2339 /*
2340 * Re-check the pte - we dropped the lock
2341 */
82b0f8c3 2342 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2343 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2344 if (old_page) {
2345 if (!PageAnon(old_page)) {
eca56ff9
JM
2346 dec_mm_counter_fast(mm,
2347 mm_counter_file(old_page));
2f38ab2c
SR
2348 inc_mm_counter_fast(mm, MM_ANONPAGES);
2349 }
2350 } else {
2351 inc_mm_counter_fast(mm, MM_ANONPAGES);
2352 }
2994302b 2353 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2354 entry = mk_pte(new_page, vma->vm_page_prot);
2355 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2356 /*
2357 * Clear the pte entry and flush it first, before updating the
2358 * pte with the new entry. This will avoid a race condition
2359 * seen in the presence of one thread doing SMC and another
2360 * thread doing COW.
2361 */
82b0f8c3
JK
2362 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2363 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2364 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2365 lru_cache_add_active_or_unevictable(new_page, vma);
2366 /*
2367 * We call the notify macro here because, when using secondary
2368 * mmu page tables (such as kvm shadow page tables), we want the
2369 * new page to be mapped directly into the secondary page table.
2370 */
82b0f8c3
JK
2371 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2372 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2373 if (old_page) {
2374 /*
2375 * Only after switching the pte to the new page may
2376 * we remove the mapcount here. Otherwise another
2377 * process may come and find the rmap count decremented
2378 * before the pte is switched to the new page, and
2379 * "reuse" the old page writing into it while our pte
2380 * here still points into it and can be read by other
2381 * threads.
2382 *
2383 * The critical issue is to order this
2384 * page_remove_rmap with the ptp_clear_flush above.
2385 * Those stores are ordered by (if nothing else,)
2386 * the barrier present in the atomic_add_negative
2387 * in page_remove_rmap.
2388 *
2389 * Then the TLB flush in ptep_clear_flush ensures that
2390 * no process can access the old page before the
2391 * decremented mapcount is visible. And the old page
2392 * cannot be reused until after the decremented
2393 * mapcount is visible. So transitively, TLBs to
2394 * old page will be flushed before it can be reused.
2395 */
d281ee61 2396 page_remove_rmap(old_page, false);
2f38ab2c
SR
2397 }
2398
2399 /* Free the old page.. */
2400 new_page = old_page;
2401 page_copied = 1;
2402 } else {
f627c2f5 2403 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2404 }
2405
2406 if (new_page)
09cbfeaf 2407 put_page(new_page);
2f38ab2c 2408
82b0f8c3 2409 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2410 /*
2411 * No need to double call mmu_notifier->invalidate_range() callback as
2412 * the above ptep_clear_flush_notify() did already call it.
2413 */
ac46d4f3 2414 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2415 if (old_page) {
2416 /*
2417 * Don't let another task, with possibly unlocked vma,
2418 * keep the mlocked page.
2419 */
2420 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2421 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2422 if (PageMlocked(old_page))
2423 munlock_vma_page(old_page);
2f38ab2c
SR
2424 unlock_page(old_page);
2425 }
09cbfeaf 2426 put_page(old_page);
2f38ab2c
SR
2427 }
2428 return page_copied ? VM_FAULT_WRITE : 0;
2429oom_free_new:
09cbfeaf 2430 put_page(new_page);
2f38ab2c
SR
2431oom:
2432 if (old_page)
09cbfeaf 2433 put_page(old_page);
2f38ab2c
SR
2434 return VM_FAULT_OOM;
2435}
2436
66a6197c
JK
2437/**
2438 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2439 * writeable once the page is prepared
2440 *
2441 * @vmf: structure describing the fault
2442 *
2443 * This function handles all that is needed to finish a write page fault in a
2444 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2445 * It handles locking of PTE and modifying it.
66a6197c
JK
2446 *
2447 * The function expects the page to be locked or other protection against
2448 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2449 *
2450 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2451 * we acquired PTE lock.
66a6197c 2452 */
2b740303 2453vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2454{
2455 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2456 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2457 &vmf->ptl);
2458 /*
2459 * We might have raced with another page fault while we released the
2460 * pte_offset_map_lock.
2461 */
2462 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2463 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2464 return VM_FAULT_NOPAGE;
66a6197c
JK
2465 }
2466 wp_page_reuse(vmf);
a19e2553 2467 return 0;
66a6197c
JK
2468}
2469
dd906184
BH
2470/*
2471 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2472 * mapping
2473 */
2b740303 2474static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2475{
82b0f8c3 2476 struct vm_area_struct *vma = vmf->vma;
bae473a4 2477
dd906184 2478 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2479 vm_fault_t ret;
dd906184 2480
82b0f8c3 2481 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2482 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2483 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2484 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2485 return ret;
66a6197c 2486 return finish_mkwrite_fault(vmf);
dd906184 2487 }
997dd98d
JK
2488 wp_page_reuse(vmf);
2489 return VM_FAULT_WRITE;
dd906184
BH
2490}
2491
2b740303 2492static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2493 __releases(vmf->ptl)
93e478d4 2494{
82b0f8c3 2495 struct vm_area_struct *vma = vmf->vma;
93e478d4 2496
a41b70d6 2497 get_page(vmf->page);
93e478d4 2498
93e478d4 2499 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2500 vm_fault_t tmp;
93e478d4 2501
82b0f8c3 2502 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2503 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2504 if (unlikely(!tmp || (tmp &
2505 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2506 put_page(vmf->page);
93e478d4
SR
2507 return tmp;
2508 }
66a6197c 2509 tmp = finish_mkwrite_fault(vmf);
a19e2553 2510 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2511 unlock_page(vmf->page);
a41b70d6 2512 put_page(vmf->page);
66a6197c 2513 return tmp;
93e478d4 2514 }
66a6197c
JK
2515 } else {
2516 wp_page_reuse(vmf);
997dd98d 2517 lock_page(vmf->page);
93e478d4 2518 }
997dd98d
JK
2519 fault_dirty_shared_page(vma, vmf->page);
2520 put_page(vmf->page);
93e478d4 2521
997dd98d 2522 return VM_FAULT_WRITE;
93e478d4
SR
2523}
2524
1da177e4
LT
2525/*
2526 * This routine handles present pages, when users try to write
2527 * to a shared page. It is done by copying the page to a new address
2528 * and decrementing the shared-page counter for the old page.
2529 *
1da177e4
LT
2530 * Note that this routine assumes that the protection checks have been
2531 * done by the caller (the low-level page fault routine in most cases).
2532 * Thus we can safely just mark it writable once we've done any necessary
2533 * COW.
2534 *
2535 * We also mark the page dirty at this point even though the page will
2536 * change only once the write actually happens. This avoids a few races,
2537 * and potentially makes it more efficient.
2538 *
8f4e2101
HD
2539 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2540 * but allow concurrent faults), with pte both mapped and locked.
2541 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2542 */
2b740303 2543static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2544 __releases(vmf->ptl)
1da177e4 2545{
82b0f8c3 2546 struct vm_area_struct *vma = vmf->vma;
1da177e4 2547
a41b70d6
JK
2548 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2549 if (!vmf->page) {
251b97f5 2550 /*
64e45507
PF
2551 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2552 * VM_PFNMAP VMA.
251b97f5
PZ
2553 *
2554 * We should not cow pages in a shared writeable mapping.
dd906184 2555 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2556 */
2557 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2558 (VM_WRITE|VM_SHARED))
2994302b 2559 return wp_pfn_shared(vmf);
2f38ab2c 2560
82b0f8c3 2561 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2562 return wp_page_copy(vmf);
251b97f5 2563 }
1da177e4 2564
d08b3851 2565 /*
ee6a6457
PZ
2566 * Take out anonymous pages first, anonymous shared vmas are
2567 * not dirty accountable.
d08b3851 2568 */
52d1e606 2569 if (PageAnon(vmf->page)) {
ba3c4ce6 2570 int total_map_swapcount;
52d1e606
KT
2571 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2572 page_count(vmf->page) != 1))
2573 goto copy;
a41b70d6
JK
2574 if (!trylock_page(vmf->page)) {
2575 get_page(vmf->page);
82b0f8c3 2576 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2577 lock_page(vmf->page);
82b0f8c3
JK
2578 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2579 vmf->address, &vmf->ptl);
2994302b 2580 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2581 unlock_page(vmf->page);
82b0f8c3 2582 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2583 put_page(vmf->page);
28766805 2584 return 0;
ab967d86 2585 }
a41b70d6 2586 put_page(vmf->page);
ee6a6457 2587 }
52d1e606
KT
2588 if (PageKsm(vmf->page)) {
2589 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2590 vmf->address);
2591 unlock_page(vmf->page);
2592 if (!reused)
2593 goto copy;
2594 wp_page_reuse(vmf);
2595 return VM_FAULT_WRITE;
2596 }
ba3c4ce6
HY
2597 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2598 if (total_map_swapcount == 1) {
6d0a07ed
AA
2599 /*
2600 * The page is all ours. Move it to
2601 * our anon_vma so the rmap code will
2602 * not search our parent or siblings.
2603 * Protected against the rmap code by
2604 * the page lock.
2605 */
a41b70d6 2606 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2607 }
a41b70d6 2608 unlock_page(vmf->page);
997dd98d
JK
2609 wp_page_reuse(vmf);
2610 return VM_FAULT_WRITE;
b009c024 2611 }
a41b70d6 2612 unlock_page(vmf->page);
ee6a6457 2613 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2614 (VM_WRITE|VM_SHARED))) {
a41b70d6 2615 return wp_page_shared(vmf);
1da177e4 2616 }
52d1e606 2617copy:
1da177e4
LT
2618 /*
2619 * Ok, we need to copy. Oh, well..
2620 */
a41b70d6 2621 get_page(vmf->page);
28766805 2622
82b0f8c3 2623 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2624 return wp_page_copy(vmf);
1da177e4
LT
2625}
2626
97a89413 2627static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2628 unsigned long start_addr, unsigned long end_addr,
2629 struct zap_details *details)
2630{
f5cc4eef 2631 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2632}
2633
f808c13f 2634static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2635 struct zap_details *details)
2636{
2637 struct vm_area_struct *vma;
1da177e4
LT
2638 pgoff_t vba, vea, zba, zea;
2639
6b2dbba8 2640 vma_interval_tree_foreach(vma, root,
1da177e4 2641 details->first_index, details->last_index) {
1da177e4
LT
2642
2643 vba = vma->vm_pgoff;
d6e93217 2644 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2645 zba = details->first_index;
2646 if (zba < vba)
2647 zba = vba;
2648 zea = details->last_index;
2649 if (zea > vea)
2650 zea = vea;
2651
97a89413 2652 unmap_mapping_range_vma(vma,
1da177e4
LT
2653 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2654 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2655 details);
1da177e4
LT
2656 }
2657}
2658
977fbdcd
MW
2659/**
2660 * unmap_mapping_pages() - Unmap pages from processes.
2661 * @mapping: The address space containing pages to be unmapped.
2662 * @start: Index of first page to be unmapped.
2663 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2664 * @even_cows: Whether to unmap even private COWed pages.
2665 *
2666 * Unmap the pages in this address space from any userspace process which
2667 * has them mmaped. Generally, you want to remove COWed pages as well when
2668 * a file is being truncated, but not when invalidating pages from the page
2669 * cache.
2670 */
2671void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2672 pgoff_t nr, bool even_cows)
2673{
2674 struct zap_details details = { };
2675
2676 details.check_mapping = even_cows ? NULL : mapping;
2677 details.first_index = start;
2678 details.last_index = start + nr - 1;
2679 if (details.last_index < details.first_index)
2680 details.last_index = ULONG_MAX;
2681
2682 i_mmap_lock_write(mapping);
2683 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2684 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2685 i_mmap_unlock_write(mapping);
2686}
2687
1da177e4 2688/**
8a5f14a2 2689 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2690 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2691 * file.
2692 *
3d41088f 2693 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2694 * @holebegin: byte in first page to unmap, relative to the start of
2695 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2696 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2697 * must keep the partial page. In contrast, we must get rid of
2698 * partial pages.
2699 * @holelen: size of prospective hole in bytes. This will be rounded
2700 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2701 * end of the file.
2702 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2703 * but 0 when invalidating pagecache, don't throw away private data.
2704 */
2705void unmap_mapping_range(struct address_space *mapping,
2706 loff_t const holebegin, loff_t const holelen, int even_cows)
2707{
1da177e4
LT
2708 pgoff_t hba = holebegin >> PAGE_SHIFT;
2709 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2710
2711 /* Check for overflow. */
2712 if (sizeof(holelen) > sizeof(hlen)) {
2713 long long holeend =
2714 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2715 if (holeend & ~(long long)ULONG_MAX)
2716 hlen = ULONG_MAX - hba + 1;
2717 }
2718
977fbdcd 2719 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2720}
2721EXPORT_SYMBOL(unmap_mapping_range);
2722
1da177e4 2723/*
8f4e2101
HD
2724 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2725 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2726 * We return with pte unmapped and unlocked.
2727 *
2728 * We return with the mmap_sem locked or unlocked in the same cases
2729 * as does filemap_fault().
1da177e4 2730 */
2b740303 2731vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2732{
82b0f8c3 2733 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2734 struct page *page = NULL, *swapcache;
00501b53 2735 struct mem_cgroup *memcg;
65500d23 2736 swp_entry_t entry;
1da177e4 2737 pte_t pte;
d065bd81 2738 int locked;
ad8c2ee8 2739 int exclusive = 0;
2b740303 2740 vm_fault_t ret = 0;
1da177e4 2741
eaf649eb 2742 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2743 goto out;
65500d23 2744
2994302b 2745 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2746 if (unlikely(non_swap_entry(entry))) {
2747 if (is_migration_entry(entry)) {
82b0f8c3
JK
2748 migration_entry_wait(vma->vm_mm, vmf->pmd,
2749 vmf->address);
5042db43
JG
2750 } else if (is_device_private_entry(entry)) {
2751 /*
2752 * For un-addressable device memory we call the pgmap
2753 * fault handler callback. The callback must migrate
2754 * the page back to some CPU accessible page.
2755 */
2756 ret = device_private_entry_fault(vma, vmf->address, entry,
2757 vmf->flags, vmf->pmd);
d1737fdb
AK
2758 } else if (is_hwpoison_entry(entry)) {
2759 ret = VM_FAULT_HWPOISON;
2760 } else {
2994302b 2761 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2762 ret = VM_FAULT_SIGBUS;
d1737fdb 2763 }
0697212a
CL
2764 goto out;
2765 }
0bcac06f
MK
2766
2767
0ff92245 2768 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2769 page = lookup_swap_cache(entry, vma, vmf->address);
2770 swapcache = page;
f8020772 2771
1da177e4 2772 if (!page) {
0bcac06f
MK
2773 struct swap_info_struct *si = swp_swap_info(entry);
2774
aa8d22a1
MK
2775 if (si->flags & SWP_SYNCHRONOUS_IO &&
2776 __swap_count(si, entry) == 1) {
0bcac06f 2777 /* skip swapcache */
e9e9b7ec
MK
2778 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2779 vmf->address);
0bcac06f
MK
2780 if (page) {
2781 __SetPageLocked(page);
2782 __SetPageSwapBacked(page);
2783 set_page_private(page, entry.val);
2784 lru_cache_add_anon(page);
2785 swap_readpage(page, true);
2786 }
aa8d22a1 2787 } else {
e9e9b7ec
MK
2788 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2789 vmf);
aa8d22a1 2790 swapcache = page;
0bcac06f
MK
2791 }
2792
1da177e4
LT
2793 if (!page) {
2794 /*
8f4e2101
HD
2795 * Back out if somebody else faulted in this pte
2796 * while we released the pte lock.
1da177e4 2797 */
82b0f8c3
JK
2798 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2799 vmf->address, &vmf->ptl);
2994302b 2800 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2801 ret = VM_FAULT_OOM;
0ff92245 2802 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2803 goto unlock;
1da177e4
LT
2804 }
2805
2806 /* Had to read the page from swap area: Major fault */
2807 ret = VM_FAULT_MAJOR;
f8891e5e 2808 count_vm_event(PGMAJFAULT);
2262185c 2809 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2810 } else if (PageHWPoison(page)) {
71f72525
WF
2811 /*
2812 * hwpoisoned dirty swapcache pages are kept for killing
2813 * owner processes (which may be unknown at hwpoison time)
2814 */
d1737fdb
AK
2815 ret = VM_FAULT_HWPOISON;
2816 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2817 goto out_release;
1da177e4
LT
2818 }
2819
82b0f8c3 2820 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2821
073e587e 2822 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2823 if (!locked) {
2824 ret |= VM_FAULT_RETRY;
2825 goto out_release;
2826 }
073e587e 2827
4969c119 2828 /*
31c4a3d3
HD
2829 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2830 * release the swapcache from under us. The page pin, and pte_same
2831 * test below, are not enough to exclude that. Even if it is still
2832 * swapcache, we need to check that the page's swap has not changed.
4969c119 2833 */
0bcac06f
MK
2834 if (unlikely((!PageSwapCache(page) ||
2835 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2836 goto out_page;
2837
82b0f8c3 2838 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2839 if (unlikely(!page)) {
2840 ret = VM_FAULT_OOM;
2841 page = swapcache;
cbf86cfe 2842 goto out_page;
5ad64688
HD
2843 }
2844
2cf85583
TH
2845 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2846 &memcg, false)) {
8a9f3ccd 2847 ret = VM_FAULT_OOM;
bc43f75c 2848 goto out_page;
8a9f3ccd
BS
2849 }
2850
1da177e4 2851 /*
8f4e2101 2852 * Back out if somebody else already faulted in this pte.
1da177e4 2853 */
82b0f8c3
JK
2854 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2855 &vmf->ptl);
2994302b 2856 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2857 goto out_nomap;
b8107480
KK
2858
2859 if (unlikely(!PageUptodate(page))) {
2860 ret = VM_FAULT_SIGBUS;
2861 goto out_nomap;
1da177e4
LT
2862 }
2863
8c7c6e34
KH
2864 /*
2865 * The page isn't present yet, go ahead with the fault.
2866 *
2867 * Be careful about the sequence of operations here.
2868 * To get its accounting right, reuse_swap_page() must be called
2869 * while the page is counted on swap but not yet in mapcount i.e.
2870 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2871 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2872 */
1da177e4 2873
bae473a4
KS
2874 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2875 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2876 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2877 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2878 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2879 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2880 ret |= VM_FAULT_WRITE;
d281ee61 2881 exclusive = RMAP_EXCLUSIVE;
1da177e4 2882 }
1da177e4 2883 flush_icache_page(vma, page);
2994302b 2884 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2885 pte = pte_mksoft_dirty(pte);
82b0f8c3 2886 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 2887 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 2888 vmf->orig_pte = pte;
0bcac06f
MK
2889
2890 /* ksm created a completely new copy */
2891 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 2892 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2893 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2894 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
2895 } else {
2896 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2897 mem_cgroup_commit_charge(page, memcg, true, false);
2898 activate_page(page);
00501b53 2899 }
1da177e4 2900
c475a8ab 2901 swap_free(entry);
5ccc5aba
VD
2902 if (mem_cgroup_swap_full(page) ||
2903 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2904 try_to_free_swap(page);
c475a8ab 2905 unlock_page(page);
0bcac06f 2906 if (page != swapcache && swapcache) {
4969c119
AA
2907 /*
2908 * Hold the lock to avoid the swap entry to be reused
2909 * until we take the PT lock for the pte_same() check
2910 * (to avoid false positives from pte_same). For
2911 * further safety release the lock after the swap_free
2912 * so that the swap count won't change under a
2913 * parallel locked swapcache.
2914 */
2915 unlock_page(swapcache);
09cbfeaf 2916 put_page(swapcache);
4969c119 2917 }
c475a8ab 2918
82b0f8c3 2919 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2920 ret |= do_wp_page(vmf);
61469f1d
HD
2921 if (ret & VM_FAULT_ERROR)
2922 ret &= VM_FAULT_ERROR;
1da177e4
LT
2923 goto out;
2924 }
2925
2926 /* No need to invalidate - it was non-present before */
82b0f8c3 2927 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2928unlock:
82b0f8c3 2929 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2930out:
2931 return ret;
b8107480 2932out_nomap:
f627c2f5 2933 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2934 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2935out_page:
b8107480 2936 unlock_page(page);
4779cb31 2937out_release:
09cbfeaf 2938 put_page(page);
0bcac06f 2939 if (page != swapcache && swapcache) {
4969c119 2940 unlock_page(swapcache);
09cbfeaf 2941 put_page(swapcache);
4969c119 2942 }
65500d23 2943 return ret;
1da177e4
LT
2944}
2945
2946/*
8f4e2101
HD
2947 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2948 * but allow concurrent faults), and pte mapped but not yet locked.
2949 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2950 */
2b740303 2951static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 2952{
82b0f8c3 2953 struct vm_area_struct *vma = vmf->vma;
00501b53 2954 struct mem_cgroup *memcg;
8f4e2101 2955 struct page *page;
2b740303 2956 vm_fault_t ret = 0;
1da177e4 2957 pte_t entry;
1da177e4 2958
6b7339f4
KS
2959 /* File mapping without ->vm_ops ? */
2960 if (vma->vm_flags & VM_SHARED)
2961 return VM_FAULT_SIGBUS;
2962
7267ec00
KS
2963 /*
2964 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2965 * pte_offset_map() on pmds where a huge pmd might be created
2966 * from a different thread.
2967 *
2968 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2969 * parallel threads are excluded by other means.
2970 *
2971 * Here we only have down_read(mmap_sem).
2972 */
4cf58924 2973 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
2974 return VM_FAULT_OOM;
2975
2976 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2977 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2978 return 0;
2979
11ac5524 2980 /* Use the zero-page for reads */
82b0f8c3 2981 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2982 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2983 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2984 vma->vm_page_prot));
82b0f8c3
JK
2985 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2986 vmf->address, &vmf->ptl);
2987 if (!pte_none(*vmf->pte))
a13ea5b7 2988 goto unlock;
6b31d595
MH
2989 ret = check_stable_address_space(vma->vm_mm);
2990 if (ret)
2991 goto unlock;
6b251fc9
AA
2992 /* Deliver the page fault to userland, check inside PT lock */
2993 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2994 pte_unmap_unlock(vmf->pte, vmf->ptl);
2995 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2996 }
a13ea5b7
HD
2997 goto setpte;
2998 }
2999
557ed1fa 3000 /* Allocate our own private page. */
557ed1fa
NP
3001 if (unlikely(anon_vma_prepare(vma)))
3002 goto oom;
82b0f8c3 3003 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3004 if (!page)
3005 goto oom;
eb3c24f3 3006
2cf85583
TH
3007 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3008 false))
eb3c24f3
MG
3009 goto oom_free_page;
3010
52f37629
MK
3011 /*
3012 * The memory barrier inside __SetPageUptodate makes sure that
3013 * preceeding stores to the page contents become visible before
3014 * the set_pte_at() write.
3015 */
0ed361de 3016 __SetPageUptodate(page);
8f4e2101 3017
557ed1fa 3018 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3019 if (vma->vm_flags & VM_WRITE)
3020 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3021
82b0f8c3
JK
3022 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3023 &vmf->ptl);
3024 if (!pte_none(*vmf->pte))
557ed1fa 3025 goto release;
9ba69294 3026
6b31d595
MH
3027 ret = check_stable_address_space(vma->vm_mm);
3028 if (ret)
3029 goto release;
3030
6b251fc9
AA
3031 /* Deliver the page fault to userland, check inside PT lock */
3032 if (userfaultfd_missing(vma)) {
82b0f8c3 3033 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3034 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3035 put_page(page);
82b0f8c3 3036 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3037 }
3038
bae473a4 3039 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3040 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3041 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3042 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3043setpte:
82b0f8c3 3044 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3045
3046 /* No need to invalidate - it was non-present before */
82b0f8c3 3047 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3048unlock:
82b0f8c3 3049 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3050 return ret;
8f4e2101 3051release:
f627c2f5 3052 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3053 put_page(page);
8f4e2101 3054 goto unlock;
8a9f3ccd 3055oom_free_page:
09cbfeaf 3056 put_page(page);
65500d23 3057oom:
1da177e4
LT
3058 return VM_FAULT_OOM;
3059}
3060
9a95f3cf
PC
3061/*
3062 * The mmap_sem must have been held on entry, and may have been
3063 * released depending on flags and vma->vm_ops->fault() return value.
3064 * See filemap_fault() and __lock_page_retry().
3065 */
2b740303 3066static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3067{
82b0f8c3 3068 struct vm_area_struct *vma = vmf->vma;
2b740303 3069 vm_fault_t ret;
7eae74af 3070
63f3655f
MH
3071 /*
3072 * Preallocate pte before we take page_lock because this might lead to
3073 * deadlocks for memcg reclaim which waits for pages under writeback:
3074 * lock_page(A)
3075 * SetPageWriteback(A)
3076 * unlock_page(A)
3077 * lock_page(B)
3078 * lock_page(B)
3079 * pte_alloc_pne
3080 * shrink_page_list
3081 * wait_on_page_writeback(A)
3082 * SetPageWriteback(B)
3083 * unlock_page(B)
3084 * # flush A, B to clear the writeback
3085 */
3086 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3087 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3088 if (!vmf->prealloc_pte)
3089 return VM_FAULT_OOM;
3090 smp_wmb(); /* See comment in __pte_alloc() */
3091 }
3092
11bac800 3093 ret = vma->vm_ops->fault(vmf);
3917048d 3094 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3095 VM_FAULT_DONE_COW)))
bc2466e4 3096 return ret;
7eae74af 3097
667240e0 3098 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3099 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3100 unlock_page(vmf->page);
3101 put_page(vmf->page);
936ca80d 3102 vmf->page = NULL;
7eae74af
KS
3103 return VM_FAULT_HWPOISON;
3104 }
3105
3106 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3107 lock_page(vmf->page);
7eae74af 3108 else
667240e0 3109 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3110
7eae74af
KS
3111 return ret;
3112}
3113
d0f0931d
RZ
3114/*
3115 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3116 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3117 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3118 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3119 */
3120static int pmd_devmap_trans_unstable(pmd_t *pmd)
3121{
3122 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3123}
3124
2b740303 3125static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3126{
82b0f8c3 3127 struct vm_area_struct *vma = vmf->vma;
7267ec00 3128
82b0f8c3 3129 if (!pmd_none(*vmf->pmd))
7267ec00 3130 goto map_pte;
82b0f8c3
JK
3131 if (vmf->prealloc_pte) {
3132 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3133 if (unlikely(!pmd_none(*vmf->pmd))) {
3134 spin_unlock(vmf->ptl);
7267ec00
KS
3135 goto map_pte;
3136 }
3137
c4812909 3138 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3139 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3140 spin_unlock(vmf->ptl);
7f2b6ce8 3141 vmf->prealloc_pte = NULL;
4cf58924 3142 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3143 return VM_FAULT_OOM;
3144 }
3145map_pte:
3146 /*
3147 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3148 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3149 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3150 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3151 * running immediately after a huge pmd fault in a different thread of
3152 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3153 * All we have to ensure is that it is a regular pmd that we can walk
3154 * with pte_offset_map() and we can do that through an atomic read in
3155 * C, which is what pmd_trans_unstable() provides.
7267ec00 3156 */
d0f0931d 3157 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3158 return VM_FAULT_NOPAGE;
3159
d0f0931d
RZ
3160 /*
3161 * At this point we know that our vmf->pmd points to a page of ptes
3162 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3163 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3164 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3165 * be valid and we will re-check to make sure the vmf->pte isn't
3166 * pte_none() under vmf->ptl protection when we return to
3167 * alloc_set_pte().
3168 */
82b0f8c3
JK
3169 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3170 &vmf->ptl);
7267ec00
KS
3171 return 0;
3172}
3173
e496cf3d 3174#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3175
3176#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3177static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3178 unsigned long haddr)
3179{
3180 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3181 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3182 return false;
3183 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3184 return false;
3185 return true;
3186}
3187
82b0f8c3 3188static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3189{
82b0f8c3 3190 struct vm_area_struct *vma = vmf->vma;
953c66c2 3191
82b0f8c3 3192 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3193 /*
3194 * We are going to consume the prealloc table,
3195 * count that as nr_ptes.
3196 */
c4812909 3197 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3198 vmf->prealloc_pte = NULL;
953c66c2
AK
3199}
3200
2b740303 3201static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3202{
82b0f8c3
JK
3203 struct vm_area_struct *vma = vmf->vma;
3204 bool write = vmf->flags & FAULT_FLAG_WRITE;
3205 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3206 pmd_t entry;
2b740303
SJ
3207 int i;
3208 vm_fault_t ret;
10102459
KS
3209
3210 if (!transhuge_vma_suitable(vma, haddr))
3211 return VM_FAULT_FALLBACK;
3212
3213 ret = VM_FAULT_FALLBACK;
3214 page = compound_head(page);
3215
953c66c2
AK
3216 /*
3217 * Archs like ppc64 need additonal space to store information
3218 * related to pte entry. Use the preallocated table for that.
3219 */
82b0f8c3 3220 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3221 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3222 if (!vmf->prealloc_pte)
953c66c2
AK
3223 return VM_FAULT_OOM;
3224 smp_wmb(); /* See comment in __pte_alloc() */
3225 }
3226
82b0f8c3
JK
3227 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3228 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3229 goto out;
3230
3231 for (i = 0; i < HPAGE_PMD_NR; i++)
3232 flush_icache_page(vma, page + i);
3233
3234 entry = mk_huge_pmd(page, vma->vm_page_prot);
3235 if (write)
f55e1014 3236 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3237
fadae295 3238 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3239 page_add_file_rmap(page, true);
953c66c2
AK
3240 /*
3241 * deposit and withdraw with pmd lock held
3242 */
3243 if (arch_needs_pgtable_deposit())
82b0f8c3 3244 deposit_prealloc_pte(vmf);
10102459 3245
82b0f8c3 3246 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3247
82b0f8c3 3248 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3249
3250 /* fault is handled */
3251 ret = 0;
95ecedcd 3252 count_vm_event(THP_FILE_MAPPED);
10102459 3253out:
82b0f8c3 3254 spin_unlock(vmf->ptl);
10102459
KS
3255 return ret;
3256}
3257#else
2b740303 3258static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3259{
3260 BUILD_BUG();
3261 return 0;
3262}
3263#endif
3264
8c6e50b0 3265/**
7267ec00
KS
3266 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3267 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3268 *
82b0f8c3 3269 * @vmf: fault environment
7267ec00 3270 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3271 * @page: page to map
8c6e50b0 3272 *
82b0f8c3
JK
3273 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3274 * return.
8c6e50b0
KS
3275 *
3276 * Target users are page handler itself and implementations of
3277 * vm_ops->map_pages.
a862f68a
MR
3278 *
3279 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3280 */
2b740303 3281vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3282 struct page *page)
3bb97794 3283{
82b0f8c3
JK
3284 struct vm_area_struct *vma = vmf->vma;
3285 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3286 pte_t entry;
2b740303 3287 vm_fault_t ret;
10102459 3288
82b0f8c3 3289 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3290 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3291 /* THP on COW? */
3292 VM_BUG_ON_PAGE(memcg, page);
3293
82b0f8c3 3294 ret = do_set_pmd(vmf, page);
10102459 3295 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3296 return ret;
10102459 3297 }
3bb97794 3298
82b0f8c3
JK
3299 if (!vmf->pte) {
3300 ret = pte_alloc_one_map(vmf);
7267ec00 3301 if (ret)
b0b9b3df 3302 return ret;
7267ec00
KS
3303 }
3304
3305 /* Re-check under ptl */
b0b9b3df
HD
3306 if (unlikely(!pte_none(*vmf->pte)))
3307 return VM_FAULT_NOPAGE;
7267ec00 3308
3bb97794
KS
3309 flush_icache_page(vma, page);
3310 entry = mk_pte(page, vma->vm_page_prot);
3311 if (write)
3312 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3313 /* copy-on-write page */
3314 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3315 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3316 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3317 mem_cgroup_commit_charge(page, memcg, false, false);
3318 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3319 } else {
eca56ff9 3320 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3321 page_add_file_rmap(page, false);
3bb97794 3322 }
82b0f8c3 3323 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3324
3325 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3326 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3327
b0b9b3df 3328 return 0;
3bb97794
KS
3329}
3330
9118c0cb
JK
3331
3332/**
3333 * finish_fault - finish page fault once we have prepared the page to fault
3334 *
3335 * @vmf: structure describing the fault
3336 *
3337 * This function handles all that is needed to finish a page fault once the
3338 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3339 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3340 * addition.
9118c0cb
JK
3341 *
3342 * The function expects the page to be locked and on success it consumes a
3343 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3344 *
3345 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3346 */
2b740303 3347vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3348{
3349 struct page *page;
2b740303 3350 vm_fault_t ret = 0;
9118c0cb
JK
3351
3352 /* Did we COW the page? */
3353 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3354 !(vmf->vma->vm_flags & VM_SHARED))
3355 page = vmf->cow_page;
3356 else
3357 page = vmf->page;
6b31d595
MH
3358
3359 /*
3360 * check even for read faults because we might have lost our CoWed
3361 * page
3362 */
3363 if (!(vmf->vma->vm_flags & VM_SHARED))
3364 ret = check_stable_address_space(vmf->vma->vm_mm);
3365 if (!ret)
3366 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3367 if (vmf->pte)
3368 pte_unmap_unlock(vmf->pte, vmf->ptl);
3369 return ret;
3370}
3371
3a91053a
KS
3372static unsigned long fault_around_bytes __read_mostly =
3373 rounddown_pow_of_two(65536);
a9b0f861 3374
a9b0f861
KS
3375#ifdef CONFIG_DEBUG_FS
3376static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3377{
a9b0f861 3378 *val = fault_around_bytes;
1592eef0
KS
3379 return 0;
3380}
3381
b4903d6e 3382/*
da391d64
WK
3383 * fault_around_bytes must be rounded down to the nearest page order as it's
3384 * what do_fault_around() expects to see.
b4903d6e 3385 */
a9b0f861 3386static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3387{
a9b0f861 3388 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3389 return -EINVAL;
b4903d6e
AR
3390 if (val > PAGE_SIZE)
3391 fault_around_bytes = rounddown_pow_of_two(val);
3392 else
3393 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3394 return 0;
3395}
0a1345f8 3396DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3397 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3398
3399static int __init fault_around_debugfs(void)
3400{
d9f7979c
GKH
3401 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3402 &fault_around_bytes_fops);
1592eef0
KS
3403 return 0;
3404}
3405late_initcall(fault_around_debugfs);
1592eef0 3406#endif
8c6e50b0 3407
1fdb412b
KS
3408/*
3409 * do_fault_around() tries to map few pages around the fault address. The hope
3410 * is that the pages will be needed soon and this will lower the number of
3411 * faults to handle.
3412 *
3413 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3414 * not ready to be mapped: not up-to-date, locked, etc.
3415 *
3416 * This function is called with the page table lock taken. In the split ptlock
3417 * case the page table lock only protects only those entries which belong to
3418 * the page table corresponding to the fault address.
3419 *
3420 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3421 * only once.
3422 *
da391d64
WK
3423 * fault_around_bytes defines how many bytes we'll try to map.
3424 * do_fault_around() expects it to be set to a power of two less than or equal
3425 * to PTRS_PER_PTE.
1fdb412b 3426 *
da391d64
WK
3427 * The virtual address of the area that we map is naturally aligned to
3428 * fault_around_bytes rounded down to the machine page size
3429 * (and therefore to page order). This way it's easier to guarantee
3430 * that we don't cross page table boundaries.
1fdb412b 3431 */
2b740303 3432static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3433{
82b0f8c3 3434 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3435 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3436 pgoff_t end_pgoff;
2b740303
SJ
3437 int off;
3438 vm_fault_t ret = 0;
8c6e50b0 3439
4db0c3c2 3440 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3441 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3442
82b0f8c3
JK
3443 vmf->address = max(address & mask, vmf->vma->vm_start);
3444 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3445 start_pgoff -= off;
8c6e50b0
KS
3446
3447 /*
da391d64
WK
3448 * end_pgoff is either the end of the page table, the end of
3449 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3450 */
bae473a4 3451 end_pgoff = start_pgoff -
82b0f8c3 3452 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3453 PTRS_PER_PTE - 1;
82b0f8c3 3454 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3455 start_pgoff + nr_pages - 1);
8c6e50b0 3456
82b0f8c3 3457 if (pmd_none(*vmf->pmd)) {
4cf58924 3458 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3459 if (!vmf->prealloc_pte)
c5f88bd2 3460 goto out;
7267ec00 3461 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3462 }
3463
82b0f8c3 3464 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3465
7267ec00 3466 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3467 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3468 ret = VM_FAULT_NOPAGE;
3469 goto out;
3470 }
3471
3472 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3473 if (!vmf->pte)
7267ec00
KS
3474 goto out;
3475
3476 /* check if the page fault is solved */
82b0f8c3
JK
3477 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3478 if (!pte_none(*vmf->pte))
7267ec00 3479 ret = VM_FAULT_NOPAGE;
82b0f8c3 3480 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3481out:
82b0f8c3
JK
3482 vmf->address = address;
3483 vmf->pte = NULL;
7267ec00 3484 return ret;
8c6e50b0
KS
3485}
3486
2b740303 3487static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3488{
82b0f8c3 3489 struct vm_area_struct *vma = vmf->vma;
2b740303 3490 vm_fault_t ret = 0;
8c6e50b0
KS
3491
3492 /*
3493 * Let's call ->map_pages() first and use ->fault() as fallback
3494 * if page by the offset is not ready to be mapped (cold cache or
3495 * something).
3496 */
9b4bdd2f 3497 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3498 ret = do_fault_around(vmf);
7267ec00
KS
3499 if (ret)
3500 return ret;
8c6e50b0 3501 }
e655fb29 3502
936ca80d 3503 ret = __do_fault(vmf);
e655fb29
KS
3504 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3505 return ret;
3506
9118c0cb 3507 ret |= finish_fault(vmf);
936ca80d 3508 unlock_page(vmf->page);
7267ec00 3509 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3510 put_page(vmf->page);
e655fb29
KS
3511 return ret;
3512}
3513
2b740303 3514static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3515{
82b0f8c3 3516 struct vm_area_struct *vma = vmf->vma;
2b740303 3517 vm_fault_t ret;
ec47c3b9
KS
3518
3519 if (unlikely(anon_vma_prepare(vma)))
3520 return VM_FAULT_OOM;
3521
936ca80d
JK
3522 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3523 if (!vmf->cow_page)
ec47c3b9
KS
3524 return VM_FAULT_OOM;
3525
2cf85583 3526 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3527 &vmf->memcg, false)) {
936ca80d 3528 put_page(vmf->cow_page);
ec47c3b9
KS
3529 return VM_FAULT_OOM;
3530 }
3531
936ca80d 3532 ret = __do_fault(vmf);
ec47c3b9
KS
3533 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3534 goto uncharge_out;
3917048d
JK
3535 if (ret & VM_FAULT_DONE_COW)
3536 return ret;
ec47c3b9 3537
b1aa812b 3538 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3539 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3540
9118c0cb 3541 ret |= finish_fault(vmf);
b1aa812b
JK
3542 unlock_page(vmf->page);
3543 put_page(vmf->page);
7267ec00
KS
3544 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3545 goto uncharge_out;
ec47c3b9
KS
3546 return ret;
3547uncharge_out:
3917048d 3548 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3549 put_page(vmf->cow_page);
ec47c3b9
KS
3550 return ret;
3551}
3552
2b740303 3553static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3554{
82b0f8c3 3555 struct vm_area_struct *vma = vmf->vma;
2b740303 3556 vm_fault_t ret, tmp;
1d65f86d 3557
936ca80d 3558 ret = __do_fault(vmf);
7eae74af 3559 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3560 return ret;
1da177e4
LT
3561
3562 /*
f0c6d4d2
KS
3563 * Check if the backing address space wants to know that the page is
3564 * about to become writable
1da177e4 3565 */
fb09a464 3566 if (vma->vm_ops->page_mkwrite) {
936ca80d 3567 unlock_page(vmf->page);
38b8cb7f 3568 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3569 if (unlikely(!tmp ||
3570 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3571 put_page(vmf->page);
fb09a464 3572 return tmp;
4294621f 3573 }
fb09a464
KS
3574 }
3575
9118c0cb 3576 ret |= finish_fault(vmf);
7267ec00
KS
3577 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3578 VM_FAULT_RETRY))) {
936ca80d
JK
3579 unlock_page(vmf->page);
3580 put_page(vmf->page);
f0c6d4d2 3581 return ret;
1da177e4 3582 }
b827e496 3583
97ba0c2b 3584 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3585 return ret;
54cb8821 3586}
d00806b1 3587
9a95f3cf
PC
3588/*
3589 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3590 * but allow concurrent faults).
3591 * The mmap_sem may have been released depending on flags and our
3592 * return value. See filemap_fault() and __lock_page_or_retry().
fc8efd2d
JS
3593 * If mmap_sem is released, vma may become invalid (for example
3594 * by other thread calling munmap()).
9a95f3cf 3595 */
2b740303 3596static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3597{
82b0f8c3 3598 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3599 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3600 vm_fault_t ret;
54cb8821 3601
ff09d7ec
AK
3602 /*
3603 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3604 */
3605 if (!vma->vm_ops->fault) {
3606 /*
3607 * If we find a migration pmd entry or a none pmd entry, which
3608 * should never happen, return SIGBUS
3609 */
3610 if (unlikely(!pmd_present(*vmf->pmd)))
3611 ret = VM_FAULT_SIGBUS;
3612 else {
3613 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3614 vmf->pmd,
3615 vmf->address,
3616 &vmf->ptl);
3617 /*
3618 * Make sure this is not a temporary clearing of pte
3619 * by holding ptl and checking again. A R/M/W update
3620 * of pte involves: take ptl, clearing the pte so that
3621 * we don't have concurrent modification by hardware
3622 * followed by an update.
3623 */
3624 if (unlikely(pte_none(*vmf->pte)))
3625 ret = VM_FAULT_SIGBUS;
3626 else
3627 ret = VM_FAULT_NOPAGE;
3628
3629 pte_unmap_unlock(vmf->pte, vmf->ptl);
3630 }
3631 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3632 ret = do_read_fault(vmf);
3633 else if (!(vma->vm_flags & VM_SHARED))
3634 ret = do_cow_fault(vmf);
3635 else
3636 ret = do_shared_fault(vmf);
3637
3638 /* preallocated pagetable is unused: free it */
3639 if (vmf->prealloc_pte) {
fc8efd2d 3640 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3641 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3642 }
3643 return ret;
54cb8821
NP
3644}
3645
b19a9939 3646static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3647 unsigned long addr, int page_nid,
3648 int *flags)
9532fec1
MG
3649{
3650 get_page(page);
3651
3652 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3653 if (page_nid == numa_node_id()) {
9532fec1 3654 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3655 *flags |= TNF_FAULT_LOCAL;
3656 }
9532fec1
MG
3657
3658 return mpol_misplaced(page, vma, addr);
3659}
3660
2b740303 3661static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3662{
82b0f8c3 3663 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3664 struct page *page = NULL;
98fa15f3 3665 int page_nid = NUMA_NO_NODE;
90572890 3666 int last_cpupid;
cbee9f88 3667 int target_nid;
b8593bfd 3668 bool migrated = false;
04a86453 3669 pte_t pte, old_pte;
288bc549 3670 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3671 int flags = 0;
d10e63f2
MG
3672
3673 /*
166f61b9
TH
3674 * The "pte" at this point cannot be used safely without
3675 * validation through pte_unmap_same(). It's of NUMA type but
3676 * the pfn may be screwed if the read is non atomic.
166f61b9 3677 */
82b0f8c3
JK
3678 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3679 spin_lock(vmf->ptl);
cee216a6 3680 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3681 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3682 goto out;
3683 }
3684
cee216a6
AK
3685 /*
3686 * Make it present again, Depending on how arch implementes non
3687 * accessible ptes, some can allow access by kernel mode.
3688 */
04a86453
AK
3689 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3690 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 3691 pte = pte_mkyoung(pte);
b191f9b1
MG
3692 if (was_writable)
3693 pte = pte_mkwrite(pte);
04a86453 3694 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 3695 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3696
82b0f8c3 3697 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3698 if (!page) {
82b0f8c3 3699 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3700 return 0;
3701 }
3702
e81c4802
KS
3703 /* TODO: handle PTE-mapped THP */
3704 if (PageCompound(page)) {
82b0f8c3 3705 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3706 return 0;
3707 }
3708
6688cc05 3709 /*
bea66fbd
MG
3710 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3711 * much anyway since they can be in shared cache state. This misses
3712 * the case where a mapping is writable but the process never writes
3713 * to it but pte_write gets cleared during protection updates and
3714 * pte_dirty has unpredictable behaviour between PTE scan updates,
3715 * background writeback, dirty balancing and application behaviour.
6688cc05 3716 */
d59dc7bc 3717 if (!pte_write(pte))
6688cc05
PZ
3718 flags |= TNF_NO_GROUP;
3719
dabe1d99
RR
3720 /*
3721 * Flag if the page is shared between multiple address spaces. This
3722 * is later used when determining whether to group tasks together
3723 */
3724 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3725 flags |= TNF_SHARED;
3726
90572890 3727 last_cpupid = page_cpupid_last(page);
8191acbd 3728 page_nid = page_to_nid(page);
82b0f8c3 3729 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3730 &flags);
82b0f8c3 3731 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 3732 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
3733 put_page(page);
3734 goto out;
3735 }
3736
3737 /* Migrate to the requested node */
1bc115d8 3738 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3739 if (migrated) {
8191acbd 3740 page_nid = target_nid;
6688cc05 3741 flags |= TNF_MIGRATED;
074c2381
MG
3742 } else
3743 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3744
3745out:
98fa15f3 3746 if (page_nid != NUMA_NO_NODE)
6688cc05 3747 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3748 return 0;
3749}
3750
2b740303 3751static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3752{
f4200391 3753 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3754 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3755 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3756 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3757 return VM_FAULT_FALLBACK;
3758}
3759
183f24aa 3760/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3761static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3762{
82b0f8c3
JK
3763 if (vma_is_anonymous(vmf->vma))
3764 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3765 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3766 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3767
3768 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3769 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3770 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3771
b96375f7
MW
3772 return VM_FAULT_FALLBACK;
3773}
3774
38e08854
LS
3775static inline bool vma_is_accessible(struct vm_area_struct *vma)
3776{
3777 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3778}
3779
2b740303 3780static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3781{
3782#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3783 /* No support for anonymous transparent PUD pages yet */
3784 if (vma_is_anonymous(vmf->vma))
3785 return VM_FAULT_FALLBACK;
3786 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3787 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3788#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3789 return VM_FAULT_FALLBACK;
3790}
3791
2b740303 3792static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3793{
3794#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3795 /* No support for anonymous transparent PUD pages yet */
3796 if (vma_is_anonymous(vmf->vma))
3797 return VM_FAULT_FALLBACK;
3798 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3799 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3800#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3801 return VM_FAULT_FALLBACK;
3802}
3803
1da177e4
LT
3804/*
3805 * These routines also need to handle stuff like marking pages dirty
3806 * and/or accessed for architectures that don't do it in hardware (most
3807 * RISC architectures). The early dirtying is also good on the i386.
3808 *
3809 * There is also a hook called "update_mmu_cache()" that architectures
3810 * with external mmu caches can use to update those (ie the Sparc or
3811 * PowerPC hashed page tables that act as extended TLBs).
3812 *
7267ec00
KS
3813 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3814 * concurrent faults).
9a95f3cf 3815 *
7267ec00
KS
3816 * The mmap_sem may have been released depending on flags and our return value.
3817 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3818 */
2b740303 3819static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3820{
3821 pte_t entry;
3822
82b0f8c3 3823 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3824 /*
3825 * Leave __pte_alloc() until later: because vm_ops->fault may
3826 * want to allocate huge page, and if we expose page table
3827 * for an instant, it will be difficult to retract from
3828 * concurrent faults and from rmap lookups.
3829 */
82b0f8c3 3830 vmf->pte = NULL;
7267ec00
KS
3831 } else {
3832 /* See comment in pte_alloc_one_map() */
d0f0931d 3833 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3834 return 0;
3835 /*
3836 * A regular pmd is established and it can't morph into a huge
3837 * pmd from under us anymore at this point because we hold the
3838 * mmap_sem read mode and khugepaged takes it in write mode.
3839 * So now it's safe to run pte_offset_map().
3840 */
82b0f8c3 3841 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3842 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3843
3844 /*
3845 * some architectures can have larger ptes than wordsize,
3846 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3847 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3848 * accesses. The code below just needs a consistent view
3849 * for the ifs and we later double check anyway with the
7267ec00
KS
3850 * ptl lock held. So here a barrier will do.
3851 */
3852 barrier();
2994302b 3853 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3854 pte_unmap(vmf->pte);
3855 vmf->pte = NULL;
65500d23 3856 }
1da177e4
LT
3857 }
3858
82b0f8c3
JK
3859 if (!vmf->pte) {
3860 if (vma_is_anonymous(vmf->vma))
3861 return do_anonymous_page(vmf);
7267ec00 3862 else
82b0f8c3 3863 return do_fault(vmf);
7267ec00
KS
3864 }
3865
2994302b
JK
3866 if (!pte_present(vmf->orig_pte))
3867 return do_swap_page(vmf);
7267ec00 3868
2994302b
JK
3869 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3870 return do_numa_page(vmf);
d10e63f2 3871
82b0f8c3
JK
3872 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3873 spin_lock(vmf->ptl);
2994302b 3874 entry = vmf->orig_pte;
82b0f8c3 3875 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3876 goto unlock;
82b0f8c3 3877 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3878 if (!pte_write(entry))
2994302b 3879 return do_wp_page(vmf);
1da177e4
LT
3880 entry = pte_mkdirty(entry);
3881 }
3882 entry = pte_mkyoung(entry);
82b0f8c3
JK
3883 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3884 vmf->flags & FAULT_FLAG_WRITE)) {
3885 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3886 } else {
3887 /*
3888 * This is needed only for protection faults but the arch code
3889 * is not yet telling us if this is a protection fault or not.
3890 * This still avoids useless tlb flushes for .text page faults
3891 * with threads.
3892 */
82b0f8c3
JK
3893 if (vmf->flags & FAULT_FLAG_WRITE)
3894 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3895 }
8f4e2101 3896unlock:
82b0f8c3 3897 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3898 return 0;
1da177e4
LT
3899}
3900
3901/*
3902 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3903 *
3904 * The mmap_sem may have been released depending on flags and our
3905 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3906 */
2b740303
SJ
3907static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3908 unsigned long address, unsigned int flags)
1da177e4 3909{
82b0f8c3 3910 struct vm_fault vmf = {
bae473a4 3911 .vma = vma,
1a29d85e 3912 .address = address & PAGE_MASK,
bae473a4 3913 .flags = flags,
0721ec8b 3914 .pgoff = linear_page_index(vma, address),
667240e0 3915 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3916 };
fde26bed 3917 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 3918 struct mm_struct *mm = vma->vm_mm;
1da177e4 3919 pgd_t *pgd;
c2febafc 3920 p4d_t *p4d;
2b740303 3921 vm_fault_t ret;
1da177e4 3922
1da177e4 3923 pgd = pgd_offset(mm, address);
c2febafc
KS
3924 p4d = p4d_alloc(mm, pgd, address);
3925 if (!p4d)
3926 return VM_FAULT_OOM;
a00cc7d9 3927
c2febafc 3928 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3929 if (!vmf.pud)
c74df32c 3930 return VM_FAULT_OOM;
7635d9cb 3931 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3932 ret = create_huge_pud(&vmf);
3933 if (!(ret & VM_FAULT_FALLBACK))
3934 return ret;
3935 } else {
3936 pud_t orig_pud = *vmf.pud;
3937
3938 barrier();
3939 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 3940
a00cc7d9
MW
3941 /* NUMA case for anonymous PUDs would go here */
3942
f6f37321 3943 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
3944 ret = wp_huge_pud(&vmf, orig_pud);
3945 if (!(ret & VM_FAULT_FALLBACK))
3946 return ret;
3947 } else {
3948 huge_pud_set_accessed(&vmf, orig_pud);
3949 return 0;
3950 }
3951 }
3952 }
3953
3954 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3955 if (!vmf.pmd)
c74df32c 3956 return VM_FAULT_OOM;
7635d9cb 3957 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 3958 ret = create_huge_pmd(&vmf);
c0292554
KS
3959 if (!(ret & VM_FAULT_FALLBACK))
3960 return ret;
71e3aac0 3961 } else {
82b0f8c3 3962 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3963
71e3aac0 3964 barrier();
84c3fc4e
ZY
3965 if (unlikely(is_swap_pmd(orig_pmd))) {
3966 VM_BUG_ON(thp_migration_supported() &&
3967 !is_pmd_migration_entry(orig_pmd));
3968 if (is_pmd_migration_entry(orig_pmd))
3969 pmd_migration_entry_wait(mm, vmf.pmd);
3970 return 0;
3971 }
5c7fb56e 3972 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3973 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3974 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3975
f6f37321 3976 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 3977 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3978 if (!(ret & VM_FAULT_FALLBACK))
3979 return ret;
a1dd450b 3980 } else {
82b0f8c3 3981 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3982 return 0;
1f1d06c3 3983 }
71e3aac0
AA
3984 }
3985 }
3986
82b0f8c3 3987 return handle_pte_fault(&vmf);
1da177e4
LT
3988}
3989
9a95f3cf
PC
3990/*
3991 * By the time we get here, we already hold the mm semaphore
3992 *
3993 * The mmap_sem may have been released depending on flags and our
3994 * return value. See filemap_fault() and __lock_page_or_retry().
3995 */
2b740303 3996vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 3997 unsigned int flags)
519e5247 3998{
2b740303 3999 vm_fault_t ret;
519e5247
JW
4000
4001 __set_current_state(TASK_RUNNING);
4002
4003 count_vm_event(PGFAULT);
2262185c 4004 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4005
4006 /* do counter updates before entering really critical section. */
4007 check_sync_rss_stat(current);
4008
de0c799b
LD
4009 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4010 flags & FAULT_FLAG_INSTRUCTION,
4011 flags & FAULT_FLAG_REMOTE))
4012 return VM_FAULT_SIGSEGV;
4013
519e5247
JW
4014 /*
4015 * Enable the memcg OOM handling for faults triggered in user
4016 * space. Kernel faults are handled more gracefully.
4017 */
4018 if (flags & FAULT_FLAG_USER)
29ef680a 4019 mem_cgroup_enter_user_fault();
519e5247 4020
bae473a4
KS
4021 if (unlikely(is_vm_hugetlb_page(vma)))
4022 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4023 else
4024 ret = __handle_mm_fault(vma, address, flags);
519e5247 4025
49426420 4026 if (flags & FAULT_FLAG_USER) {
29ef680a 4027 mem_cgroup_exit_user_fault();
166f61b9
TH
4028 /*
4029 * The task may have entered a memcg OOM situation but
4030 * if the allocation error was handled gracefully (no
4031 * VM_FAULT_OOM), there is no need to kill anything.
4032 * Just clean up the OOM state peacefully.
4033 */
4034 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4035 mem_cgroup_oom_synchronize(false);
49426420 4036 }
3812c8c8 4037
519e5247
JW
4038 return ret;
4039}
e1d6d01a 4040EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4041
90eceff1
KS
4042#ifndef __PAGETABLE_P4D_FOLDED
4043/*
4044 * Allocate p4d page table.
4045 * We've already handled the fast-path in-line.
4046 */
4047int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4048{
4049 p4d_t *new = p4d_alloc_one(mm, address);
4050 if (!new)
4051 return -ENOMEM;
4052
4053 smp_wmb(); /* See comment in __pte_alloc */
4054
4055 spin_lock(&mm->page_table_lock);
4056 if (pgd_present(*pgd)) /* Another has populated it */
4057 p4d_free(mm, new);
4058 else
4059 pgd_populate(mm, pgd, new);
4060 spin_unlock(&mm->page_table_lock);
4061 return 0;
4062}
4063#endif /* __PAGETABLE_P4D_FOLDED */
4064
1da177e4
LT
4065#ifndef __PAGETABLE_PUD_FOLDED
4066/*
4067 * Allocate page upper directory.
872fec16 4068 * We've already handled the fast-path in-line.
1da177e4 4069 */
c2febafc 4070int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4071{
c74df32c
HD
4072 pud_t *new = pud_alloc_one(mm, address);
4073 if (!new)
1bb3630e 4074 return -ENOMEM;
1da177e4 4075
362a61ad
NP
4076 smp_wmb(); /* See comment in __pte_alloc */
4077
872fec16 4078 spin_lock(&mm->page_table_lock);
c2febafc 4079#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4080 if (!p4d_present(*p4d)) {
4081 mm_inc_nr_puds(mm);
c2febafc 4082 p4d_populate(mm, p4d, new);
b4e98d9a 4083 } else /* Another has populated it */
5e541973 4084 pud_free(mm, new);
b4e98d9a
KS
4085#else
4086 if (!pgd_present(*p4d)) {
4087 mm_inc_nr_puds(mm);
c2febafc 4088 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4089 } else /* Another has populated it */
4090 pud_free(mm, new);
c2febafc 4091#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4092 spin_unlock(&mm->page_table_lock);
1bb3630e 4093 return 0;
1da177e4
LT
4094}
4095#endif /* __PAGETABLE_PUD_FOLDED */
4096
4097#ifndef __PAGETABLE_PMD_FOLDED
4098/*
4099 * Allocate page middle directory.
872fec16 4100 * We've already handled the fast-path in-line.
1da177e4 4101 */
1bb3630e 4102int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4103{
a00cc7d9 4104 spinlock_t *ptl;
c74df32c
HD
4105 pmd_t *new = pmd_alloc_one(mm, address);
4106 if (!new)
1bb3630e 4107 return -ENOMEM;
1da177e4 4108
362a61ad
NP
4109 smp_wmb(); /* See comment in __pte_alloc */
4110
a00cc7d9 4111 ptl = pud_lock(mm, pud);
1da177e4 4112#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4113 if (!pud_present(*pud)) {
4114 mm_inc_nr_pmds(mm);
1bb3630e 4115 pud_populate(mm, pud, new);
dc6c9a35 4116 } else /* Another has populated it */
5e541973 4117 pmd_free(mm, new);
dc6c9a35
KS
4118#else
4119 if (!pgd_present(*pud)) {
4120 mm_inc_nr_pmds(mm);
1bb3630e 4121 pgd_populate(mm, pud, new);
dc6c9a35
KS
4122 } else /* Another has populated it */
4123 pmd_free(mm, new);
1da177e4 4124#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4125 spin_unlock(ptl);
1bb3630e 4126 return 0;
e0f39591 4127}
1da177e4
LT
4128#endif /* __PAGETABLE_PMD_FOLDED */
4129
09796395 4130static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4131 struct mmu_notifier_range *range,
a4d1a885 4132 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4133{
4134 pgd_t *pgd;
c2febafc 4135 p4d_t *p4d;
f8ad0f49
JW
4136 pud_t *pud;
4137 pmd_t *pmd;
4138 pte_t *ptep;
4139
4140 pgd = pgd_offset(mm, address);
4141 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4142 goto out;
4143
c2febafc
KS
4144 p4d = p4d_offset(pgd, address);
4145 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4146 goto out;
4147
4148 pud = pud_offset(p4d, address);
f8ad0f49
JW
4149 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4150 goto out;
4151
4152 pmd = pmd_offset(pud, address);
f66055ab 4153 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4154
09796395
RZ
4155 if (pmd_huge(*pmd)) {
4156 if (!pmdpp)
4157 goto out;
4158
ac46d4f3 4159 if (range) {
7269f999 4160 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4161 NULL, mm, address & PMD_MASK,
4162 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4163 mmu_notifier_invalidate_range_start(range);
a4d1a885 4164 }
09796395
RZ
4165 *ptlp = pmd_lock(mm, pmd);
4166 if (pmd_huge(*pmd)) {
4167 *pmdpp = pmd;
4168 return 0;
4169 }
4170 spin_unlock(*ptlp);
ac46d4f3
JG
4171 if (range)
4172 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4173 }
4174
4175 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4176 goto out;
4177
ac46d4f3 4178 if (range) {
7269f999 4179 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4180 address & PAGE_MASK,
4181 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4182 mmu_notifier_invalidate_range_start(range);
a4d1a885 4183 }
f8ad0f49 4184 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4185 if (!pte_present(*ptep))
4186 goto unlock;
4187 *ptepp = ptep;
4188 return 0;
4189unlock:
4190 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4191 if (range)
4192 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4193out:
4194 return -EINVAL;
4195}
4196
f729c8c9
RZ
4197static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4198 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4199{
4200 int res;
4201
4202 /* (void) is needed to make gcc happy */
4203 (void) __cond_lock(*ptlp,
ac46d4f3 4204 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4205 ptepp, NULL, ptlp)));
09796395
RZ
4206 return res;
4207}
4208
4209int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4210 struct mmu_notifier_range *range,
4211 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4212{
4213 int res;
4214
4215 /* (void) is needed to make gcc happy */
4216 (void) __cond_lock(*ptlp,
ac46d4f3 4217 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4218 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4219 return res;
4220}
09796395 4221EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4222
3b6748e2
JW
4223/**
4224 * follow_pfn - look up PFN at a user virtual address
4225 * @vma: memory mapping
4226 * @address: user virtual address
4227 * @pfn: location to store found PFN
4228 *
4229 * Only IO mappings and raw PFN mappings are allowed.
4230 *
a862f68a 4231 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4232 */
4233int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4234 unsigned long *pfn)
4235{
4236 int ret = -EINVAL;
4237 spinlock_t *ptl;
4238 pte_t *ptep;
4239
4240 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4241 return ret;
4242
4243 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4244 if (ret)
4245 return ret;
4246 *pfn = pte_pfn(*ptep);
4247 pte_unmap_unlock(ptep, ptl);
4248 return 0;
4249}
4250EXPORT_SYMBOL(follow_pfn);
4251
28b2ee20 4252#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4253int follow_phys(struct vm_area_struct *vma,
4254 unsigned long address, unsigned int flags,
4255 unsigned long *prot, resource_size_t *phys)
28b2ee20 4256{
03668a4d 4257 int ret = -EINVAL;
28b2ee20
RR
4258 pte_t *ptep, pte;
4259 spinlock_t *ptl;
28b2ee20 4260
d87fe660 4261 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4262 goto out;
28b2ee20 4263
03668a4d 4264 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4265 goto out;
28b2ee20 4266 pte = *ptep;
03668a4d 4267
f6f37321 4268 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4269 goto unlock;
28b2ee20
RR
4270
4271 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4272 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4273
03668a4d 4274 ret = 0;
28b2ee20
RR
4275unlock:
4276 pte_unmap_unlock(ptep, ptl);
4277out:
d87fe660 4278 return ret;
28b2ee20
RR
4279}
4280
4281int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4282 void *buf, int len, int write)
4283{
4284 resource_size_t phys_addr;
4285 unsigned long prot = 0;
2bc7273b 4286 void __iomem *maddr;
28b2ee20
RR
4287 int offset = addr & (PAGE_SIZE-1);
4288
d87fe660 4289 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4290 return -EINVAL;
4291
9cb12d7b 4292 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4293 if (!maddr)
4294 return -ENOMEM;
4295
28b2ee20
RR
4296 if (write)
4297 memcpy_toio(maddr + offset, buf, len);
4298 else
4299 memcpy_fromio(buf, maddr + offset, len);
4300 iounmap(maddr);
4301
4302 return len;
4303}
5a73633e 4304EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4305#endif
4306
0ec76a11 4307/*
206cb636
SW
4308 * Access another process' address space as given in mm. If non-NULL, use the
4309 * given task for page fault accounting.
0ec76a11 4310 */
84d77d3f 4311int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4312 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4313{
0ec76a11 4314 struct vm_area_struct *vma;
0ec76a11 4315 void *old_buf = buf;
442486ec 4316 int write = gup_flags & FOLL_WRITE;
0ec76a11 4317
0ec76a11 4318 down_read(&mm->mmap_sem);
183ff22b 4319 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4320 while (len) {
4321 int bytes, ret, offset;
4322 void *maddr;
28b2ee20 4323 struct page *page = NULL;
0ec76a11 4324
1e987790 4325 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4326 gup_flags, &page, &vma, NULL);
28b2ee20 4327 if (ret <= 0) {
dbffcd03
RR
4328#ifndef CONFIG_HAVE_IOREMAP_PROT
4329 break;
4330#else
28b2ee20
RR
4331 /*
4332 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4333 * we can access using slightly different code.
4334 */
28b2ee20 4335 vma = find_vma(mm, addr);
fe936dfc 4336 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4337 break;
4338 if (vma->vm_ops && vma->vm_ops->access)
4339 ret = vma->vm_ops->access(vma, addr, buf,
4340 len, write);
4341 if (ret <= 0)
28b2ee20
RR
4342 break;
4343 bytes = ret;
dbffcd03 4344#endif
0ec76a11 4345 } else {
28b2ee20
RR
4346 bytes = len;
4347 offset = addr & (PAGE_SIZE-1);
4348 if (bytes > PAGE_SIZE-offset)
4349 bytes = PAGE_SIZE-offset;
4350
4351 maddr = kmap(page);
4352 if (write) {
4353 copy_to_user_page(vma, page, addr,
4354 maddr + offset, buf, bytes);
4355 set_page_dirty_lock(page);
4356 } else {
4357 copy_from_user_page(vma, page, addr,
4358 buf, maddr + offset, bytes);
4359 }
4360 kunmap(page);
09cbfeaf 4361 put_page(page);
0ec76a11 4362 }
0ec76a11
DH
4363 len -= bytes;
4364 buf += bytes;
4365 addr += bytes;
4366 }
4367 up_read(&mm->mmap_sem);
0ec76a11
DH
4368
4369 return buf - old_buf;
4370}
03252919 4371
5ddd36b9 4372/**
ae91dbfc 4373 * access_remote_vm - access another process' address space
5ddd36b9
SW
4374 * @mm: the mm_struct of the target address space
4375 * @addr: start address to access
4376 * @buf: source or destination buffer
4377 * @len: number of bytes to transfer
6347e8d5 4378 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4379 *
4380 * The caller must hold a reference on @mm.
a862f68a
MR
4381 *
4382 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4383 */
4384int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4385 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4386{
6347e8d5 4387 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4388}
4389
206cb636
SW
4390/*
4391 * Access another process' address space.
4392 * Source/target buffer must be kernel space,
4393 * Do not walk the page table directly, use get_user_pages
4394 */
4395int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4396 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4397{
4398 struct mm_struct *mm;
4399 int ret;
4400
4401 mm = get_task_mm(tsk);
4402 if (!mm)
4403 return 0;
4404
f307ab6d 4405 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4406
206cb636
SW
4407 mmput(mm);
4408
4409 return ret;
4410}
fcd35857 4411EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4412
03252919
AK
4413/*
4414 * Print the name of a VMA.
4415 */
4416void print_vma_addr(char *prefix, unsigned long ip)
4417{
4418 struct mm_struct *mm = current->mm;
4419 struct vm_area_struct *vma;
4420
e8bff74a 4421 /*
0a7f682d 4422 * we might be running from an atomic context so we cannot sleep
e8bff74a 4423 */
0a7f682d 4424 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4425 return;
4426
03252919
AK
4427 vma = find_vma(mm, ip);
4428 if (vma && vma->vm_file) {
4429 struct file *f = vma->vm_file;
0a7f682d 4430 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4431 if (buf) {
2fbc57c5 4432 char *p;
03252919 4433
9bf39ab2 4434 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4435 if (IS_ERR(p))
4436 p = "?";
2fbc57c5 4437 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4438 vma->vm_start,
4439 vma->vm_end - vma->vm_start);
4440 free_page((unsigned long)buf);
4441 }
4442 }
51a07e50 4443 up_read(&mm->mmap_sem);
03252919 4444}
3ee1afa3 4445
662bbcb2 4446#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4447void __might_fault(const char *file, int line)
3ee1afa3 4448{
95156f00
PZ
4449 /*
4450 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4451 * holding the mmap_sem, this is safe because kernel memory doesn't
4452 * get paged out, therefore we'll never actually fault, and the
4453 * below annotations will generate false positives.
4454 */
db68ce10 4455 if (uaccess_kernel())
95156f00 4456 return;
9ec23531 4457 if (pagefault_disabled())
662bbcb2 4458 return;
9ec23531
DH
4459 __might_sleep(file, line, 0);
4460#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4461 if (current->mm)
3ee1afa3 4462 might_lock_read(&current->mm->mmap_sem);
9ec23531 4463#endif
3ee1afa3 4464}
9ec23531 4465EXPORT_SYMBOL(__might_fault);
3ee1afa3 4466#endif
47ad8475
AA
4467
4468#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4469/*
4470 * Process all subpages of the specified huge page with the specified
4471 * operation. The target subpage will be processed last to keep its
4472 * cache lines hot.
4473 */
4474static inline void process_huge_page(
4475 unsigned long addr_hint, unsigned int pages_per_huge_page,
4476 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4477 void *arg)
47ad8475 4478{
c79b57e4
HY
4479 int i, n, base, l;
4480 unsigned long addr = addr_hint &
4481 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4482
c6ddfb6c 4483 /* Process target subpage last to keep its cache lines hot */
47ad8475 4484 might_sleep();
c79b57e4
HY
4485 n = (addr_hint - addr) / PAGE_SIZE;
4486 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4487 /* If target subpage in first half of huge page */
c79b57e4
HY
4488 base = 0;
4489 l = n;
c6ddfb6c 4490 /* Process subpages at the end of huge page */
c79b57e4
HY
4491 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4492 cond_resched();
c6ddfb6c 4493 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4494 }
4495 } else {
c6ddfb6c 4496 /* If target subpage in second half of huge page */
c79b57e4
HY
4497 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4498 l = pages_per_huge_page - n;
c6ddfb6c 4499 /* Process subpages at the begin of huge page */
c79b57e4
HY
4500 for (i = 0; i < base; i++) {
4501 cond_resched();
c6ddfb6c 4502 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4503 }
4504 }
4505 /*
c6ddfb6c
HY
4506 * Process remaining subpages in left-right-left-right pattern
4507 * towards the target subpage
c79b57e4
HY
4508 */
4509 for (i = 0; i < l; i++) {
4510 int left_idx = base + i;
4511 int right_idx = base + 2 * l - 1 - i;
4512
4513 cond_resched();
c6ddfb6c 4514 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4515 cond_resched();
c6ddfb6c 4516 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4517 }
4518}
4519
c6ddfb6c
HY
4520static void clear_gigantic_page(struct page *page,
4521 unsigned long addr,
4522 unsigned int pages_per_huge_page)
4523{
4524 int i;
4525 struct page *p = page;
4526
4527 might_sleep();
4528 for (i = 0; i < pages_per_huge_page;
4529 i++, p = mem_map_next(p, page, i)) {
4530 cond_resched();
4531 clear_user_highpage(p, addr + i * PAGE_SIZE);
4532 }
4533}
4534
4535static void clear_subpage(unsigned long addr, int idx, void *arg)
4536{
4537 struct page *page = arg;
4538
4539 clear_user_highpage(page + idx, addr);
4540}
4541
4542void clear_huge_page(struct page *page,
4543 unsigned long addr_hint, unsigned int pages_per_huge_page)
4544{
4545 unsigned long addr = addr_hint &
4546 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4547
4548 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4549 clear_gigantic_page(page, addr, pages_per_huge_page);
4550 return;
4551 }
4552
4553 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4554}
4555
47ad8475
AA
4556static void copy_user_gigantic_page(struct page *dst, struct page *src,
4557 unsigned long addr,
4558 struct vm_area_struct *vma,
4559 unsigned int pages_per_huge_page)
4560{
4561 int i;
4562 struct page *dst_base = dst;
4563 struct page *src_base = src;
4564
4565 for (i = 0; i < pages_per_huge_page; ) {
4566 cond_resched();
4567 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4568
4569 i++;
4570 dst = mem_map_next(dst, dst_base, i);
4571 src = mem_map_next(src, src_base, i);
4572 }
4573}
4574
c9f4cd71
HY
4575struct copy_subpage_arg {
4576 struct page *dst;
4577 struct page *src;
4578 struct vm_area_struct *vma;
4579};
4580
4581static void copy_subpage(unsigned long addr, int idx, void *arg)
4582{
4583 struct copy_subpage_arg *copy_arg = arg;
4584
4585 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4586 addr, copy_arg->vma);
4587}
4588
47ad8475 4589void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4590 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4591 unsigned int pages_per_huge_page)
4592{
c9f4cd71
HY
4593 unsigned long addr = addr_hint &
4594 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4595 struct copy_subpage_arg arg = {
4596 .dst = dst,
4597 .src = src,
4598 .vma = vma,
4599 };
47ad8475
AA
4600
4601 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4602 copy_user_gigantic_page(dst, src, addr, vma,
4603 pages_per_huge_page);
4604 return;
4605 }
4606
c9f4cd71 4607 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4608}
fa4d75c1
MK
4609
4610long copy_huge_page_from_user(struct page *dst_page,
4611 const void __user *usr_src,
810a56b9
MK
4612 unsigned int pages_per_huge_page,
4613 bool allow_pagefault)
fa4d75c1
MK
4614{
4615 void *src = (void *)usr_src;
4616 void *page_kaddr;
4617 unsigned long i, rc = 0;
4618 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4619
4620 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4621 if (allow_pagefault)
4622 page_kaddr = kmap(dst_page + i);
4623 else
4624 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4625 rc = copy_from_user(page_kaddr,
4626 (const void __user *)(src + i * PAGE_SIZE),
4627 PAGE_SIZE);
810a56b9
MK
4628 if (allow_pagefault)
4629 kunmap(dst_page + i);
4630 else
4631 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4632
4633 ret_val -= (PAGE_SIZE - rc);
4634 if (rc)
4635 break;
4636
4637 cond_resched();
4638 }
4639 return ret_val;
4640}
47ad8475 4641#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4642
40b64acd 4643#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4644
4645static struct kmem_cache *page_ptl_cachep;
4646
4647void __init ptlock_cache_init(void)
4648{
4649 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4650 SLAB_PANIC, NULL);
4651}
4652
539edb58 4653bool ptlock_alloc(struct page *page)
49076ec2
KS
4654{
4655 spinlock_t *ptl;
4656
b35f1819 4657 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4658 if (!ptl)
4659 return false;
539edb58 4660 page->ptl = ptl;
49076ec2
KS
4661 return true;
4662}
4663
539edb58 4664void ptlock_free(struct page *page)
49076ec2 4665{
b35f1819 4666 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4667}
4668#endif