]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
mmu_gather: move minimal range calculations into generic code
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
0abdd7a8 62#include <linux/dma-debug.h>
1592eef0 63#include <linux/debugfs.h>
1da177e4 64
6952b61d 65#include <asm/io.h>
1da177e4
LT
66#include <asm/pgalloc.h>
67#include <asm/uaccess.h>
68#include <asm/tlb.h>
69#include <asm/tlbflush.h>
70#include <asm/pgtable.h>
71
42b77728
JB
72#include "internal.h"
73
90572890
PZ
74#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
76#endif
77
d41dee36 78#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
79/* use the per-pgdat data instead for discontigmem - mbligh */
80unsigned long max_mapnr;
81struct page *mem_map;
82
83EXPORT_SYMBOL(max_mapnr);
84EXPORT_SYMBOL(mem_map);
85#endif
86
1da177e4
LT
87/*
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
93 */
94void * high_memory;
1da177e4 95
1da177e4 96EXPORT_SYMBOL(high_memory);
1da177e4 97
32a93233
IM
98/*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104int randomize_va_space __read_mostly =
105#ifdef CONFIG_COMPAT_BRK
106 1;
107#else
108 2;
109#endif
a62eaf15
AK
110
111static int __init disable_randmaps(char *s)
112{
113 randomize_va_space = 0;
9b41046c 114 return 1;
a62eaf15
AK
115}
116__setup("norandmaps", disable_randmaps);
117
62eede62 118unsigned long zero_pfn __read_mostly;
03f6462a 119unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 120
0b70068e
AB
121EXPORT_SYMBOL(zero_pfn);
122
a13ea5b7
HD
123/*
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125 */
126static int __init init_zero_pfn(void)
127{
128 zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 return 0;
130}
131core_initcall(init_zero_pfn);
a62eaf15 132
d559db08 133
34e55232
KH
134#if defined(SPLIT_RSS_COUNTING)
135
ea48cf78 136void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
137{
138 int i;
139
140 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
141 if (current->rss_stat.count[i]) {
142 add_mm_counter(mm, i, current->rss_stat.count[i]);
143 current->rss_stat.count[i] = 0;
34e55232
KH
144 }
145 }
05af2e10 146 current->rss_stat.events = 0;
34e55232
KH
147}
148
149static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150{
151 struct task_struct *task = current;
152
153 if (likely(task->mm == mm))
154 task->rss_stat.count[member] += val;
155 else
156 add_mm_counter(mm, member, val);
157}
158#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161/* sync counter once per 64 page faults */
162#define TASK_RSS_EVENTS_THRESH (64)
163static void check_sync_rss_stat(struct task_struct *task)
164{
165 if (unlikely(task != current))
166 return;
167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 168 sync_mm_rss(task->mm);
34e55232 169}
9547d01b 170#else /* SPLIT_RSS_COUNTING */
34e55232
KH
171
172#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175static void check_sync_rss_stat(struct task_struct *task)
176{
177}
178
9547d01b
PZ
179#endif /* SPLIT_RSS_COUNTING */
180
181#ifdef HAVE_GENERIC_MMU_GATHER
182
183static int tlb_next_batch(struct mmu_gather *tlb)
184{
185 struct mmu_gather_batch *batch;
186
187 batch = tlb->active;
188 if (batch->next) {
189 tlb->active = batch->next;
190 return 1;
191 }
192
53a59fc6
MH
193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 return 0;
195
9547d01b
PZ
196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 if (!batch)
198 return 0;
199
53a59fc6 200 tlb->batch_count++;
9547d01b
PZ
201 batch->next = NULL;
202 batch->nr = 0;
203 batch->max = MAX_GATHER_BATCH;
204
205 tlb->active->next = batch;
206 tlb->active = batch;
207
208 return 1;
209}
210
211/* tlb_gather_mmu
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
215 */
2b047252 216void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
217{
218 tlb->mm = mm;
219
2b047252
LT
220 /* Is it from 0 to ~0? */
221 tlb->fullmm = !(start | (end+1));
1de14c3c 222 tlb->need_flush_all = 0;
9547d01b
PZ
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
53a59fc6 227 tlb->batch_count = 0;
9547d01b
PZ
228
229#ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231#endif
fb7332a9
WD
232
233 __tlb_reset_range(tlb);
9547d01b
PZ
234}
235
1cf35d47 236static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 237{
fb7332a9
WD
238 if (!tlb->end)
239 return;
240
9547d01b
PZ
241 tlb_flush(tlb);
242#ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 tlb_table_flush(tlb);
34e55232 244#endif
fb7332a9 245 __tlb_reset_range(tlb);
1cf35d47
LT
246}
247
248static void tlb_flush_mmu_free(struct mmu_gather *tlb)
249{
250 struct mmu_gather_batch *batch;
34e55232 251
9547d01b
PZ
252 for (batch = &tlb->local; batch; batch = batch->next) {
253 free_pages_and_swap_cache(batch->pages, batch->nr);
254 batch->nr = 0;
255 }
256 tlb->active = &tlb->local;
257}
258
1cf35d47
LT
259void tlb_flush_mmu(struct mmu_gather *tlb)
260{
1cf35d47
LT
261 tlb_flush_mmu_tlbonly(tlb);
262 tlb_flush_mmu_free(tlb);
263}
264
9547d01b
PZ
265/* tlb_finish_mmu
266 * Called at the end of the shootdown operation to free up any resources
267 * that were required.
268 */
269void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
270{
271 struct mmu_gather_batch *batch, *next;
272
273 tlb_flush_mmu(tlb);
274
275 /* keep the page table cache within bounds */
276 check_pgt_cache();
277
278 for (batch = tlb->local.next; batch; batch = next) {
279 next = batch->next;
280 free_pages((unsigned long)batch, 0);
281 }
282 tlb->local.next = NULL;
283}
284
285/* __tlb_remove_page
286 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287 * handling the additional races in SMP caused by other CPUs caching valid
288 * mappings in their TLBs. Returns the number of free page slots left.
289 * When out of page slots we must call tlb_flush_mmu().
290 */
291int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
292{
293 struct mmu_gather_batch *batch;
294
fb7332a9 295 VM_BUG_ON(!tlb->end);
9547d01b 296
9547d01b
PZ
297 batch = tlb->active;
298 batch->pages[batch->nr++] = page;
299 if (batch->nr == batch->max) {
300 if (!tlb_next_batch(tlb))
301 return 0;
0b43c3aa 302 batch = tlb->active;
9547d01b 303 }
309381fe 304 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b
PZ
305
306 return batch->max - batch->nr;
307}
308
309#endif /* HAVE_GENERIC_MMU_GATHER */
310
26723911
PZ
311#ifdef CONFIG_HAVE_RCU_TABLE_FREE
312
313/*
314 * See the comment near struct mmu_table_batch.
315 */
316
317static void tlb_remove_table_smp_sync(void *arg)
318{
319 /* Simply deliver the interrupt */
320}
321
322static void tlb_remove_table_one(void *table)
323{
324 /*
325 * This isn't an RCU grace period and hence the page-tables cannot be
326 * assumed to be actually RCU-freed.
327 *
328 * It is however sufficient for software page-table walkers that rely on
329 * IRQ disabling. See the comment near struct mmu_table_batch.
330 */
331 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
332 __tlb_remove_table(table);
333}
334
335static void tlb_remove_table_rcu(struct rcu_head *head)
336{
337 struct mmu_table_batch *batch;
338 int i;
339
340 batch = container_of(head, struct mmu_table_batch, rcu);
341
342 for (i = 0; i < batch->nr; i++)
343 __tlb_remove_table(batch->tables[i]);
344
345 free_page((unsigned long)batch);
346}
347
348void tlb_table_flush(struct mmu_gather *tlb)
349{
350 struct mmu_table_batch **batch = &tlb->batch;
351
352 if (*batch) {
353 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
354 *batch = NULL;
355 }
356}
357
358void tlb_remove_table(struct mmu_gather *tlb, void *table)
359{
360 struct mmu_table_batch **batch = &tlb->batch;
361
26723911
PZ
362 /*
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
365 */
366 if (atomic_read(&tlb->mm->mm_users) < 2) {
367 __tlb_remove_table(table);
368 return;
369 }
370
371 if (*batch == NULL) {
372 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373 if (*batch == NULL) {
374 tlb_remove_table_one(table);
375 return;
376 }
377 (*batch)->nr = 0;
378 }
379 (*batch)->tables[(*batch)->nr++] = table;
380 if ((*batch)->nr == MAX_TABLE_BATCH)
381 tlb_table_flush(tlb);
382}
383
9547d01b 384#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 385
1da177e4
LT
386/*
387 * Note: this doesn't free the actual pages themselves. That
388 * has been handled earlier when unmapping all the memory regions.
389 */
9e1b32ca
BH
390static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
391 unsigned long addr)
1da177e4 392{
2f569afd 393 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 394 pmd_clear(pmd);
9e1b32ca 395 pte_free_tlb(tlb, token, addr);
e1f56c89 396 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
397}
398
e0da382c
HD
399static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
400 unsigned long addr, unsigned long end,
401 unsigned long floor, unsigned long ceiling)
1da177e4
LT
402{
403 pmd_t *pmd;
404 unsigned long next;
e0da382c 405 unsigned long start;
1da177e4 406
e0da382c 407 start = addr;
1da177e4 408 pmd = pmd_offset(pud, addr);
1da177e4
LT
409 do {
410 next = pmd_addr_end(addr, end);
411 if (pmd_none_or_clear_bad(pmd))
412 continue;
9e1b32ca 413 free_pte_range(tlb, pmd, addr);
1da177e4
LT
414 } while (pmd++, addr = next, addr != end);
415
e0da382c
HD
416 start &= PUD_MASK;
417 if (start < floor)
418 return;
419 if (ceiling) {
420 ceiling &= PUD_MASK;
421 if (!ceiling)
422 return;
1da177e4 423 }
e0da382c
HD
424 if (end - 1 > ceiling - 1)
425 return;
426
427 pmd = pmd_offset(pud, start);
428 pud_clear(pud);
9e1b32ca 429 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
430}
431
e0da382c
HD
432static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
433 unsigned long addr, unsigned long end,
434 unsigned long floor, unsigned long ceiling)
1da177e4
LT
435{
436 pud_t *pud;
437 unsigned long next;
e0da382c 438 unsigned long start;
1da177e4 439
e0da382c 440 start = addr;
1da177e4 441 pud = pud_offset(pgd, addr);
1da177e4
LT
442 do {
443 next = pud_addr_end(addr, end);
444 if (pud_none_or_clear_bad(pud))
445 continue;
e0da382c 446 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
447 } while (pud++, addr = next, addr != end);
448
e0da382c
HD
449 start &= PGDIR_MASK;
450 if (start < floor)
451 return;
452 if (ceiling) {
453 ceiling &= PGDIR_MASK;
454 if (!ceiling)
455 return;
1da177e4 456 }
e0da382c
HD
457 if (end - 1 > ceiling - 1)
458 return;
459
460 pud = pud_offset(pgd, start);
461 pgd_clear(pgd);
9e1b32ca 462 pud_free_tlb(tlb, pud, start);
1da177e4
LT
463}
464
465/*
e0da382c 466 * This function frees user-level page tables of a process.
1da177e4 467 */
42b77728 468void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
469 unsigned long addr, unsigned long end,
470 unsigned long floor, unsigned long ceiling)
1da177e4
LT
471{
472 pgd_t *pgd;
473 unsigned long next;
e0da382c
HD
474
475 /*
476 * The next few lines have given us lots of grief...
477 *
478 * Why are we testing PMD* at this top level? Because often
479 * there will be no work to do at all, and we'd prefer not to
480 * go all the way down to the bottom just to discover that.
481 *
482 * Why all these "- 1"s? Because 0 represents both the bottom
483 * of the address space and the top of it (using -1 for the
484 * top wouldn't help much: the masks would do the wrong thing).
485 * The rule is that addr 0 and floor 0 refer to the bottom of
486 * the address space, but end 0 and ceiling 0 refer to the top
487 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 * that end 0 case should be mythical).
489 *
490 * Wherever addr is brought up or ceiling brought down, we must
491 * be careful to reject "the opposite 0" before it confuses the
492 * subsequent tests. But what about where end is brought down
493 * by PMD_SIZE below? no, end can't go down to 0 there.
494 *
495 * Whereas we round start (addr) and ceiling down, by different
496 * masks at different levels, in order to test whether a table
497 * now has no other vmas using it, so can be freed, we don't
498 * bother to round floor or end up - the tests don't need that.
499 */
1da177e4 500
e0da382c
HD
501 addr &= PMD_MASK;
502 if (addr < floor) {
503 addr += PMD_SIZE;
504 if (!addr)
505 return;
506 }
507 if (ceiling) {
508 ceiling &= PMD_MASK;
509 if (!ceiling)
510 return;
511 }
512 if (end - 1 > ceiling - 1)
513 end -= PMD_SIZE;
514 if (addr > end - 1)
515 return;
516
42b77728 517 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
518 do {
519 next = pgd_addr_end(addr, end);
520 if (pgd_none_or_clear_bad(pgd))
521 continue;
42b77728 522 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 523 } while (pgd++, addr = next, addr != end);
e0da382c
HD
524}
525
42b77728 526void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 527 unsigned long floor, unsigned long ceiling)
e0da382c
HD
528{
529 while (vma) {
530 struct vm_area_struct *next = vma->vm_next;
531 unsigned long addr = vma->vm_start;
532
8f4f8c16 533 /*
25d9e2d1
NP
534 * Hide vma from rmap and truncate_pagecache before freeing
535 * pgtables
8f4f8c16 536 */
5beb4930 537 unlink_anon_vmas(vma);
8f4f8c16
HD
538 unlink_file_vma(vma);
539
9da61aef 540 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 541 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 542 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
543 } else {
544 /*
545 * Optimization: gather nearby vmas into one call down
546 */
547 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 548 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
549 vma = next;
550 next = vma->vm_next;
5beb4930 551 unlink_anon_vmas(vma);
8f4f8c16 552 unlink_file_vma(vma);
3bf5ee95
HD
553 }
554 free_pgd_range(tlb, addr, vma->vm_end,
555 floor, next? next->vm_start: ceiling);
556 }
e0da382c
HD
557 vma = next;
558 }
1da177e4
LT
559}
560
8ac1f832
AA
561int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
562 pmd_t *pmd, unsigned long address)
1da177e4 563{
c4088ebd 564 spinlock_t *ptl;
2f569afd 565 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 566 int wait_split_huge_page;
1bb3630e
HD
567 if (!new)
568 return -ENOMEM;
569
362a61ad
NP
570 /*
571 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 * visible before the pte is made visible to other CPUs by being
573 * put into page tables.
574 *
575 * The other side of the story is the pointer chasing in the page
576 * table walking code (when walking the page table without locking;
577 * ie. most of the time). Fortunately, these data accesses consist
578 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 * being the notable exception) will already guarantee loads are
580 * seen in-order. See the alpha page table accessors for the
581 * smp_read_barrier_depends() barriers in page table walking code.
582 */
583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
584
c4088ebd 585 ptl = pmd_lock(mm, pmd);
8ac1f832
AA
586 wait_split_huge_page = 0;
587 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 588 atomic_long_inc(&mm->nr_ptes);
1da177e4 589 pmd_populate(mm, pmd, new);
2f569afd 590 new = NULL;
8ac1f832
AA
591 } else if (unlikely(pmd_trans_splitting(*pmd)))
592 wait_split_huge_page = 1;
c4088ebd 593 spin_unlock(ptl);
2f569afd
MS
594 if (new)
595 pte_free(mm, new);
8ac1f832
AA
596 if (wait_split_huge_page)
597 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 598 return 0;
1da177e4
LT
599}
600
1bb3630e 601int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 602{
1bb3630e
HD
603 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 if (!new)
605 return -ENOMEM;
606
362a61ad
NP
607 smp_wmb(); /* See comment in __pte_alloc */
608
1bb3630e 609 spin_lock(&init_mm.page_table_lock);
8ac1f832 610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 611 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 612 new = NULL;
8ac1f832
AA
613 } else
614 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 615 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
616 if (new)
617 pte_free_kernel(&init_mm, new);
1bb3630e 618 return 0;
1da177e4
LT
619}
620
d559db08
KH
621static inline void init_rss_vec(int *rss)
622{
623 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624}
625
626static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 627{
d559db08
KH
628 int i;
629
34e55232 630 if (current->mm == mm)
05af2e10 631 sync_mm_rss(mm);
d559db08
KH
632 for (i = 0; i < NR_MM_COUNTERS; i++)
633 if (rss[i])
634 add_mm_counter(mm, i, rss[i]);
ae859762
HD
635}
636
b5810039 637/*
6aab341e
LT
638 * This function is called to print an error when a bad pte
639 * is found. For example, we might have a PFN-mapped pte in
640 * a region that doesn't allow it.
b5810039
NP
641 *
642 * The calling function must still handle the error.
643 */
3dc14741
HD
644static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645 pte_t pte, struct page *page)
b5810039 646{
3dc14741
HD
647 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648 pud_t *pud = pud_offset(pgd, addr);
649 pmd_t *pmd = pmd_offset(pud, addr);
650 struct address_space *mapping;
651 pgoff_t index;
d936cf9b
HD
652 static unsigned long resume;
653 static unsigned long nr_shown;
654 static unsigned long nr_unshown;
655
656 /*
657 * Allow a burst of 60 reports, then keep quiet for that minute;
658 * or allow a steady drip of one report per second.
659 */
660 if (nr_shown == 60) {
661 if (time_before(jiffies, resume)) {
662 nr_unshown++;
663 return;
664 }
665 if (nr_unshown) {
1e9e6365
HD
666 printk(KERN_ALERT
667 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
668 nr_unshown);
669 nr_unshown = 0;
670 }
671 nr_shown = 0;
672 }
673 if (nr_shown++ == 0)
674 resume = jiffies + 60 * HZ;
3dc14741
HD
675
676 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
677 index = linear_page_index(vma, addr);
678
1e9e6365
HD
679 printk(KERN_ALERT
680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
681 current->comm,
682 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 683 if (page)
f0b791a3 684 dump_page(page, "bad pte");
1e9e6365 685 printk(KERN_ALERT
3dc14741
HD
686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
688 /*
689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
690 */
691 if (vma->vm_ops)
071361d3
JP
692 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
693 vma->vm_ops->fault);
72c2d531 694 if (vma->vm_file)
071361d3
JP
695 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
696 vma->vm_file->f_op->mmap);
b5810039 697 dump_stack();
373d4d09 698 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
699}
700
ee498ed7 701/*
7e675137 702 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 703 *
7e675137
NP
704 * "Special" mappings do not wish to be associated with a "struct page" (either
705 * it doesn't exist, or it exists but they don't want to touch it). In this
706 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 707 *
7e675137
NP
708 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
709 * pte bit, in which case this function is trivial. Secondly, an architecture
710 * may not have a spare pte bit, which requires a more complicated scheme,
711 * described below.
712 *
713 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
714 * special mapping (even if there are underlying and valid "struct pages").
715 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 716 *
b379d790
JH
717 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
718 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
719 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
720 * mapping will always honor the rule
6aab341e
LT
721 *
722 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
723 *
7e675137
NP
724 * And for normal mappings this is false.
725 *
726 * This restricts such mappings to be a linear translation from virtual address
727 * to pfn. To get around this restriction, we allow arbitrary mappings so long
728 * as the vma is not a COW mapping; in that case, we know that all ptes are
729 * special (because none can have been COWed).
b379d790 730 *
b379d790 731 *
7e675137 732 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
733 *
734 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
735 * page" backing, however the difference is that _all_ pages with a struct
736 * page (that is, those where pfn_valid is true) are refcounted and considered
737 * normal pages by the VM. The disadvantage is that pages are refcounted
738 * (which can be slower and simply not an option for some PFNMAP users). The
739 * advantage is that we don't have to follow the strict linearity rule of
740 * PFNMAP mappings in order to support COWable mappings.
741 *
ee498ed7 742 */
7e675137
NP
743#ifdef __HAVE_ARCH_PTE_SPECIAL
744# define HAVE_PTE_SPECIAL 1
745#else
746# define HAVE_PTE_SPECIAL 0
747#endif
748struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
749 pte_t pte)
ee498ed7 750{
22b31eec 751 unsigned long pfn = pte_pfn(pte);
7e675137
NP
752
753 if (HAVE_PTE_SPECIAL) {
b38af472 754 if (likely(!pte_special(pte)))
22b31eec 755 goto check_pfn;
a13ea5b7
HD
756 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
757 return NULL;
62eede62 758 if (!is_zero_pfn(pfn))
22b31eec 759 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
760 return NULL;
761 }
762
763 /* !HAVE_PTE_SPECIAL case follows: */
764
b379d790
JH
765 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
766 if (vma->vm_flags & VM_MIXEDMAP) {
767 if (!pfn_valid(pfn))
768 return NULL;
769 goto out;
770 } else {
7e675137
NP
771 unsigned long off;
772 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
773 if (pfn == vma->vm_pgoff + off)
774 return NULL;
775 if (!is_cow_mapping(vma->vm_flags))
776 return NULL;
777 }
6aab341e
LT
778 }
779
b38af472
HD
780 if (is_zero_pfn(pfn))
781 return NULL;
22b31eec
HD
782check_pfn:
783 if (unlikely(pfn > highest_memmap_pfn)) {
784 print_bad_pte(vma, addr, pte, NULL);
785 return NULL;
786 }
6aab341e
LT
787
788 /*
7e675137 789 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 790 * eg. VDSO mappings can cause them to exist.
6aab341e 791 */
b379d790 792out:
6aab341e 793 return pfn_to_page(pfn);
ee498ed7
HD
794}
795
1da177e4
LT
796/*
797 * copy one vm_area from one task to the other. Assumes the page tables
798 * already present in the new task to be cleared in the whole range
799 * covered by this vma.
1da177e4
LT
800 */
801
570a335b 802static inline unsigned long
1da177e4 803copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 804 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 805 unsigned long addr, int *rss)
1da177e4 806{
b5810039 807 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
808 pte_t pte = *src_pte;
809 struct page *page;
1da177e4
LT
810
811 /* pte contains position in swap or file, so copy. */
812 if (unlikely(!pte_present(pte))) {
813 if (!pte_file(pte)) {
0697212a
CL
814 swp_entry_t entry = pte_to_swp_entry(pte);
815
570a335b
HD
816 if (swap_duplicate(entry) < 0)
817 return entry.val;
818
1da177e4
LT
819 /* make sure dst_mm is on swapoff's mmlist. */
820 if (unlikely(list_empty(&dst_mm->mmlist))) {
821 spin_lock(&mmlist_lock);
f412ac08
HD
822 if (list_empty(&dst_mm->mmlist))
823 list_add(&dst_mm->mmlist,
824 &src_mm->mmlist);
1da177e4
LT
825 spin_unlock(&mmlist_lock);
826 }
b084d435
KH
827 if (likely(!non_swap_entry(entry)))
828 rss[MM_SWAPENTS]++;
9f9f1acd
KK
829 else if (is_migration_entry(entry)) {
830 page = migration_entry_to_page(entry);
831
832 if (PageAnon(page))
833 rss[MM_ANONPAGES]++;
834 else
835 rss[MM_FILEPAGES]++;
836
837 if (is_write_migration_entry(entry) &&
838 is_cow_mapping(vm_flags)) {
839 /*
840 * COW mappings require pages in both
841 * parent and child to be set to read.
842 */
843 make_migration_entry_read(&entry);
844 pte = swp_entry_to_pte(entry);
c3d16e16
CG
845 if (pte_swp_soft_dirty(*src_pte))
846 pte = pte_swp_mksoft_dirty(pte);
9f9f1acd
KK
847 set_pte_at(src_mm, addr, src_pte, pte);
848 }
0697212a 849 }
1da177e4 850 }
ae859762 851 goto out_set_pte;
1da177e4
LT
852 }
853
1da177e4
LT
854 /*
855 * If it's a COW mapping, write protect it both
856 * in the parent and the child
857 */
67121172 858 if (is_cow_mapping(vm_flags)) {
1da177e4 859 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 860 pte = pte_wrprotect(pte);
1da177e4
LT
861 }
862
863 /*
864 * If it's a shared mapping, mark it clean in
865 * the child
866 */
867 if (vm_flags & VM_SHARED)
868 pte = pte_mkclean(pte);
869 pte = pte_mkold(pte);
6aab341e
LT
870
871 page = vm_normal_page(vma, addr, pte);
872 if (page) {
873 get_page(page);
21333b2b 874 page_dup_rmap(page);
d559db08
KH
875 if (PageAnon(page))
876 rss[MM_ANONPAGES]++;
877 else
878 rss[MM_FILEPAGES]++;
6aab341e 879 }
ae859762
HD
880
881out_set_pte:
882 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 883 return 0;
1da177e4
LT
884}
885
21bda264 886static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
887 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
888 unsigned long addr, unsigned long end)
1da177e4 889{
c36987e2 890 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 891 pte_t *src_pte, *dst_pte;
c74df32c 892 spinlock_t *src_ptl, *dst_ptl;
e040f218 893 int progress = 0;
d559db08 894 int rss[NR_MM_COUNTERS];
570a335b 895 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
896
897again:
d559db08
KH
898 init_rss_vec(rss);
899
c74df32c 900 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
901 if (!dst_pte)
902 return -ENOMEM;
ece0e2b6 903 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 904 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 905 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
906 orig_src_pte = src_pte;
907 orig_dst_pte = dst_pte;
6606c3e0 908 arch_enter_lazy_mmu_mode();
1da177e4 909
1da177e4
LT
910 do {
911 /*
912 * We are holding two locks at this point - either of them
913 * could generate latencies in another task on another CPU.
914 */
e040f218
HD
915 if (progress >= 32) {
916 progress = 0;
917 if (need_resched() ||
95c354fe 918 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
919 break;
920 }
1da177e4
LT
921 if (pte_none(*src_pte)) {
922 progress++;
923 continue;
924 }
570a335b
HD
925 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
926 vma, addr, rss);
927 if (entry.val)
928 break;
1da177e4
LT
929 progress += 8;
930 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 931
6606c3e0 932 arch_leave_lazy_mmu_mode();
c74df32c 933 spin_unlock(src_ptl);
ece0e2b6 934 pte_unmap(orig_src_pte);
d559db08 935 add_mm_rss_vec(dst_mm, rss);
c36987e2 936 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 937 cond_resched();
570a335b
HD
938
939 if (entry.val) {
940 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
941 return -ENOMEM;
942 progress = 0;
943 }
1da177e4
LT
944 if (addr != end)
945 goto again;
946 return 0;
947}
948
949static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
951 unsigned long addr, unsigned long end)
952{
953 pmd_t *src_pmd, *dst_pmd;
954 unsigned long next;
955
956 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
957 if (!dst_pmd)
958 return -ENOMEM;
959 src_pmd = pmd_offset(src_pud, addr);
960 do {
961 next = pmd_addr_end(addr, end);
71e3aac0
AA
962 if (pmd_trans_huge(*src_pmd)) {
963 int err;
14d1a55c 964 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
965 err = copy_huge_pmd(dst_mm, src_mm,
966 dst_pmd, src_pmd, addr, vma);
967 if (err == -ENOMEM)
968 return -ENOMEM;
969 if (!err)
970 continue;
971 /* fall through */
972 }
1da177e4
LT
973 if (pmd_none_or_clear_bad(src_pmd))
974 continue;
975 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
976 vma, addr, next))
977 return -ENOMEM;
978 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
979 return 0;
980}
981
982static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
983 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
984 unsigned long addr, unsigned long end)
985{
986 pud_t *src_pud, *dst_pud;
987 unsigned long next;
988
989 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
990 if (!dst_pud)
991 return -ENOMEM;
992 src_pud = pud_offset(src_pgd, addr);
993 do {
994 next = pud_addr_end(addr, end);
995 if (pud_none_or_clear_bad(src_pud))
996 continue;
997 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
998 vma, addr, next))
999 return -ENOMEM;
1000 } while (dst_pud++, src_pud++, addr = next, addr != end);
1001 return 0;
1002}
1003
1004int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1005 struct vm_area_struct *vma)
1006{
1007 pgd_t *src_pgd, *dst_pgd;
1008 unsigned long next;
1009 unsigned long addr = vma->vm_start;
1010 unsigned long end = vma->vm_end;
2ec74c3e
SG
1011 unsigned long mmun_start; /* For mmu_notifiers */
1012 unsigned long mmun_end; /* For mmu_notifiers */
1013 bool is_cow;
cddb8a5c 1014 int ret;
1da177e4 1015
d992895b
NP
1016 /*
1017 * Don't copy ptes where a page fault will fill them correctly.
1018 * Fork becomes much lighter when there are big shared or private
1019 * readonly mappings. The tradeoff is that copy_page_range is more
1020 * efficient than faulting.
1021 */
4b6e1e37
KK
1022 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1023 VM_PFNMAP | VM_MIXEDMAP))) {
d992895b
NP
1024 if (!vma->anon_vma)
1025 return 0;
1026 }
1027
1da177e4
LT
1028 if (is_vm_hugetlb_page(vma))
1029 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1030
b3b9c293 1031 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1032 /*
1033 * We do not free on error cases below as remove_vma
1034 * gets called on error from higher level routine
1035 */
5180da41 1036 ret = track_pfn_copy(vma);
2ab64037 1037 if (ret)
1038 return ret;
1039 }
1040
cddb8a5c
AA
1041 /*
1042 * We need to invalidate the secondary MMU mappings only when
1043 * there could be a permission downgrade on the ptes of the
1044 * parent mm. And a permission downgrade will only happen if
1045 * is_cow_mapping() returns true.
1046 */
2ec74c3e
SG
1047 is_cow = is_cow_mapping(vma->vm_flags);
1048 mmun_start = addr;
1049 mmun_end = end;
1050 if (is_cow)
1051 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1052 mmun_end);
cddb8a5c
AA
1053
1054 ret = 0;
1da177e4
LT
1055 dst_pgd = pgd_offset(dst_mm, addr);
1056 src_pgd = pgd_offset(src_mm, addr);
1057 do {
1058 next = pgd_addr_end(addr, end);
1059 if (pgd_none_or_clear_bad(src_pgd))
1060 continue;
cddb8a5c
AA
1061 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1062 vma, addr, next))) {
1063 ret = -ENOMEM;
1064 break;
1065 }
1da177e4 1066 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1067
2ec74c3e
SG
1068 if (is_cow)
1069 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1070 return ret;
1da177e4
LT
1071}
1072
51c6f666 1073static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1074 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1075 unsigned long addr, unsigned long end,
97a89413 1076 struct zap_details *details)
1da177e4 1077{
b5810039 1078 struct mm_struct *mm = tlb->mm;
d16dfc55 1079 int force_flush = 0;
d559db08 1080 int rss[NR_MM_COUNTERS];
97a89413 1081 spinlock_t *ptl;
5f1a1907 1082 pte_t *start_pte;
97a89413 1083 pte_t *pte;
d559db08 1084
d16dfc55 1085again:
e303297e 1086 init_rss_vec(rss);
5f1a1907
SR
1087 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1088 pte = start_pte;
6606c3e0 1089 arch_enter_lazy_mmu_mode();
1da177e4
LT
1090 do {
1091 pte_t ptent = *pte;
51c6f666 1092 if (pte_none(ptent)) {
1da177e4 1093 continue;
51c6f666 1094 }
6f5e6b9e 1095
1da177e4 1096 if (pte_present(ptent)) {
ee498ed7 1097 struct page *page;
51c6f666 1098
6aab341e 1099 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1100 if (unlikely(details) && page) {
1101 /*
1102 * unmap_shared_mapping_pages() wants to
1103 * invalidate cache without truncating:
1104 * unmap shared but keep private pages.
1105 */
1106 if (details->check_mapping &&
1107 details->check_mapping != page->mapping)
1108 continue;
1109 /*
1110 * Each page->index must be checked when
1111 * invalidating or truncating nonlinear.
1112 */
1113 if (details->nonlinear_vma &&
1114 (page->index < details->first_index ||
1115 page->index > details->last_index))
1116 continue;
1117 }
b5810039 1118 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1119 tlb->fullmm);
1da177e4
LT
1120 tlb_remove_tlb_entry(tlb, pte, addr);
1121 if (unlikely(!page))
1122 continue;
1123 if (unlikely(details) && details->nonlinear_vma
1124 && linear_page_index(details->nonlinear_vma,
41bb3476
CG
1125 addr) != page->index) {
1126 pte_t ptfile = pgoff_to_pte(page->index);
1127 if (pte_soft_dirty(ptent))
dbab31aa 1128 ptfile = pte_file_mksoft_dirty(ptfile);
41bb3476
CG
1129 set_pte_at(mm, addr, pte, ptfile);
1130 }
1da177e4 1131 if (PageAnon(page))
d559db08 1132 rss[MM_ANONPAGES]--;
6237bcd9 1133 else {
1cf35d47
LT
1134 if (pte_dirty(ptent)) {
1135 force_flush = 1;
6237bcd9 1136 set_page_dirty(page);
1cf35d47 1137 }
4917e5d0 1138 if (pte_young(ptent) &&
64363aad 1139 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1140 mark_page_accessed(page);
d559db08 1141 rss[MM_FILEPAGES]--;
6237bcd9 1142 }
edc315fd 1143 page_remove_rmap(page);
3dc14741
HD
1144 if (unlikely(page_mapcount(page) < 0))
1145 print_bad_pte(vma, addr, ptent, page);
1cf35d47
LT
1146 if (unlikely(!__tlb_remove_page(tlb, page))) {
1147 force_flush = 1;
d16dfc55 1148 break;
1cf35d47 1149 }
1da177e4
LT
1150 continue;
1151 }
1152 /*
1153 * If details->check_mapping, we leave swap entries;
1154 * if details->nonlinear_vma, we leave file entries.
1155 */
1156 if (unlikely(details))
1157 continue;
2509ef26
HD
1158 if (pte_file(ptent)) {
1159 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1160 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1161 } else {
1162 swp_entry_t entry = pte_to_swp_entry(ptent);
1163
1164 if (!non_swap_entry(entry))
1165 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1166 else if (is_migration_entry(entry)) {
1167 struct page *page;
1168
1169 page = migration_entry_to_page(entry);
1170
1171 if (PageAnon(page))
1172 rss[MM_ANONPAGES]--;
1173 else
1174 rss[MM_FILEPAGES]--;
1175 }
b084d435
KH
1176 if (unlikely(!free_swap_and_cache(entry)))
1177 print_bad_pte(vma, addr, ptent, NULL);
1178 }
9888a1ca 1179 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1180 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1181
d559db08 1182 add_mm_rss_vec(mm, rss);
6606c3e0 1183 arch_leave_lazy_mmu_mode();
51c6f666 1184
1cf35d47 1185 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1186 if (force_flush)
1cf35d47 1187 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1188 pte_unmap_unlock(start_pte, ptl);
1189
1190 /*
1191 * If we forced a TLB flush (either due to running out of
1192 * batch buffers or because we needed to flush dirty TLB
1193 * entries before releasing the ptl), free the batched
1194 * memory too. Restart if we didn't do everything.
1195 */
1196 if (force_flush) {
1197 force_flush = 0;
1198 tlb_flush_mmu_free(tlb);
2b047252
LT
1199
1200 if (addr != end)
d16dfc55
PZ
1201 goto again;
1202 }
1203
51c6f666 1204 return addr;
1da177e4
LT
1205}
1206
51c6f666 1207static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1208 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1209 unsigned long addr, unsigned long end,
97a89413 1210 struct zap_details *details)
1da177e4
LT
1211{
1212 pmd_t *pmd;
1213 unsigned long next;
1214
1215 pmd = pmd_offset(pud, addr);
1216 do {
1217 next = pmd_addr_end(addr, end);
71e3aac0 1218 if (pmd_trans_huge(*pmd)) {
1a5a9906 1219 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1220#ifdef CONFIG_DEBUG_VM
1221 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1222 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1223 __func__, addr, end,
1224 vma->vm_start,
1225 vma->vm_end);
1226 BUG();
1227 }
1228#endif
e180377f 1229 split_huge_page_pmd(vma, addr, pmd);
f21760b1 1230 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1231 goto next;
71e3aac0
AA
1232 /* fall through */
1233 }
1a5a9906
AA
1234 /*
1235 * Here there can be other concurrent MADV_DONTNEED or
1236 * trans huge page faults running, and if the pmd is
1237 * none or trans huge it can change under us. This is
1238 * because MADV_DONTNEED holds the mmap_sem in read
1239 * mode.
1240 */
1241 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1242 goto next;
97a89413 1243 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1244next:
97a89413
PZ
1245 cond_resched();
1246 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1247
1248 return addr;
1da177e4
LT
1249}
1250
51c6f666 1251static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1252 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1253 unsigned long addr, unsigned long end,
97a89413 1254 struct zap_details *details)
1da177e4
LT
1255{
1256 pud_t *pud;
1257 unsigned long next;
1258
1259 pud = pud_offset(pgd, addr);
1260 do {
1261 next = pud_addr_end(addr, end);
97a89413 1262 if (pud_none_or_clear_bad(pud))
1da177e4 1263 continue;
97a89413
PZ
1264 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1265 } while (pud++, addr = next, addr != end);
51c6f666
RH
1266
1267 return addr;
1da177e4
LT
1268}
1269
038c7aa1
AV
1270static void unmap_page_range(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma,
1272 unsigned long addr, unsigned long end,
1273 struct zap_details *details)
1da177e4
LT
1274{
1275 pgd_t *pgd;
1276 unsigned long next;
1277
1278 if (details && !details->check_mapping && !details->nonlinear_vma)
1279 details = NULL;
1280
1281 BUG_ON(addr >= end);
1282 tlb_start_vma(tlb, vma);
1283 pgd = pgd_offset(vma->vm_mm, addr);
1284 do {
1285 next = pgd_addr_end(addr, end);
97a89413 1286 if (pgd_none_or_clear_bad(pgd))
1da177e4 1287 continue;
97a89413
PZ
1288 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1289 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1290 tlb_end_vma(tlb, vma);
1291}
51c6f666 1292
f5cc4eef
AV
1293
1294static void unmap_single_vma(struct mmu_gather *tlb,
1295 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1296 unsigned long end_addr,
f5cc4eef
AV
1297 struct zap_details *details)
1298{
1299 unsigned long start = max(vma->vm_start, start_addr);
1300 unsigned long end;
1301
1302 if (start >= vma->vm_end)
1303 return;
1304 end = min(vma->vm_end, end_addr);
1305 if (end <= vma->vm_start)
1306 return;
1307
cbc91f71
SD
1308 if (vma->vm_file)
1309 uprobe_munmap(vma, start, end);
1310
b3b9c293 1311 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1312 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1313
1314 if (start != end) {
1315 if (unlikely(is_vm_hugetlb_page(vma))) {
1316 /*
1317 * It is undesirable to test vma->vm_file as it
1318 * should be non-null for valid hugetlb area.
1319 * However, vm_file will be NULL in the error
7aa6b4ad 1320 * cleanup path of mmap_region. When
f5cc4eef 1321 * hugetlbfs ->mmap method fails,
7aa6b4ad 1322 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1323 * before calling this function to clean up.
1324 * Since no pte has actually been setup, it is
1325 * safe to do nothing in this case.
1326 */
24669e58
AK
1327 if (vma->vm_file) {
1328 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
d833352a 1329 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
24669e58
AK
1330 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1331 }
f5cc4eef
AV
1332 } else
1333 unmap_page_range(tlb, vma, start, end, details);
1334 }
1da177e4
LT
1335}
1336
1da177e4
LT
1337/**
1338 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1339 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1340 * @vma: the starting vma
1341 * @start_addr: virtual address at which to start unmapping
1342 * @end_addr: virtual address at which to end unmapping
1da177e4 1343 *
508034a3 1344 * Unmap all pages in the vma list.
1da177e4 1345 *
1da177e4
LT
1346 * Only addresses between `start' and `end' will be unmapped.
1347 *
1348 * The VMA list must be sorted in ascending virtual address order.
1349 *
1350 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1351 * range after unmap_vmas() returns. So the only responsibility here is to
1352 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1353 * drops the lock and schedules.
1354 */
6e8bb019 1355void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1356 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1357 unsigned long end_addr)
1da177e4 1358{
cddb8a5c 1359 struct mm_struct *mm = vma->vm_mm;
1da177e4 1360
cddb8a5c 1361 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1362 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1363 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1364 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1365}
1366
1367/**
1368 * zap_page_range - remove user pages in a given range
1369 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1370 * @start: starting address of pages to zap
1da177e4
LT
1371 * @size: number of bytes to zap
1372 * @details: details of nonlinear truncation or shared cache invalidation
f5cc4eef
AV
1373 *
1374 * Caller must protect the VMA list
1da177e4 1375 */
7e027b14 1376void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1377 unsigned long size, struct zap_details *details)
1378{
1379 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1380 struct mmu_gather tlb;
7e027b14 1381 unsigned long end = start + size;
1da177e4 1382
1da177e4 1383 lru_add_drain();
2b047252 1384 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1385 update_hiwater_rss(mm);
7e027b14
LT
1386 mmu_notifier_invalidate_range_start(mm, start, end);
1387 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1388 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1389 mmu_notifier_invalidate_range_end(mm, start, end);
1390 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1391}
1392
f5cc4eef
AV
1393/**
1394 * zap_page_range_single - remove user pages in a given range
1395 * @vma: vm_area_struct holding the applicable pages
1396 * @address: starting address of pages to zap
1397 * @size: number of bytes to zap
1398 * @details: details of nonlinear truncation or shared cache invalidation
1399 *
1400 * The range must fit into one VMA.
1da177e4 1401 */
f5cc4eef 1402static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1403 unsigned long size, struct zap_details *details)
1404{
1405 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1406 struct mmu_gather tlb;
1da177e4 1407 unsigned long end = address + size;
1da177e4 1408
1da177e4 1409 lru_add_drain();
2b047252 1410 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1411 update_hiwater_rss(mm);
f5cc4eef 1412 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1413 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1414 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1415 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1416}
1417
c627f9cc
JS
1418/**
1419 * zap_vma_ptes - remove ptes mapping the vma
1420 * @vma: vm_area_struct holding ptes to be zapped
1421 * @address: starting address of pages to zap
1422 * @size: number of bytes to zap
1423 *
1424 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1425 *
1426 * The entire address range must be fully contained within the vma.
1427 *
1428 * Returns 0 if successful.
1429 */
1430int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1431 unsigned long size)
1432{
1433 if (address < vma->vm_start || address + size > vma->vm_end ||
1434 !(vma->vm_flags & VM_PFNMAP))
1435 return -1;
f5cc4eef 1436 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1437 return 0;
1438}
1439EXPORT_SYMBOL_GPL(zap_vma_ptes);
1440
25ca1d6c 1441pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1442 spinlock_t **ptl)
c9cfcddf
LT
1443{
1444 pgd_t * pgd = pgd_offset(mm, addr);
1445 pud_t * pud = pud_alloc(mm, pgd, addr);
1446 if (pud) {
49c91fb0 1447 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1448 if (pmd) {
1449 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1450 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1451 }
c9cfcddf
LT
1452 }
1453 return NULL;
1454}
1455
238f58d8
LT
1456/*
1457 * This is the old fallback for page remapping.
1458 *
1459 * For historical reasons, it only allows reserved pages. Only
1460 * old drivers should use this, and they needed to mark their
1461 * pages reserved for the old functions anyway.
1462 */
423bad60
NP
1463static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1464 struct page *page, pgprot_t prot)
238f58d8 1465{
423bad60 1466 struct mm_struct *mm = vma->vm_mm;
238f58d8 1467 int retval;
c9cfcddf 1468 pte_t *pte;
8a9f3ccd
BS
1469 spinlock_t *ptl;
1470
238f58d8 1471 retval = -EINVAL;
a145dd41 1472 if (PageAnon(page))
5b4e655e 1473 goto out;
238f58d8
LT
1474 retval = -ENOMEM;
1475 flush_dcache_page(page);
c9cfcddf 1476 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1477 if (!pte)
5b4e655e 1478 goto out;
238f58d8
LT
1479 retval = -EBUSY;
1480 if (!pte_none(*pte))
1481 goto out_unlock;
1482
1483 /* Ok, finally just insert the thing.. */
1484 get_page(page);
34e55232 1485 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
1486 page_add_file_rmap(page);
1487 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1488
1489 retval = 0;
8a9f3ccd
BS
1490 pte_unmap_unlock(pte, ptl);
1491 return retval;
238f58d8
LT
1492out_unlock:
1493 pte_unmap_unlock(pte, ptl);
1494out:
1495 return retval;
1496}
1497
bfa5bf6d
REB
1498/**
1499 * vm_insert_page - insert single page into user vma
1500 * @vma: user vma to map to
1501 * @addr: target user address of this page
1502 * @page: source kernel page
1503 *
a145dd41
LT
1504 * This allows drivers to insert individual pages they've allocated
1505 * into a user vma.
1506 *
1507 * The page has to be a nice clean _individual_ kernel allocation.
1508 * If you allocate a compound page, you need to have marked it as
1509 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1510 * (see split_page()).
a145dd41
LT
1511 *
1512 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1513 * took an arbitrary page protection parameter. This doesn't allow
1514 * that. Your vma protection will have to be set up correctly, which
1515 * means that if you want a shared writable mapping, you'd better
1516 * ask for a shared writable mapping!
1517 *
1518 * The page does not need to be reserved.
4b6e1e37
KK
1519 *
1520 * Usually this function is called from f_op->mmap() handler
1521 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1522 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1523 * function from other places, for example from page-fault handler.
a145dd41 1524 */
423bad60
NP
1525int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1526 struct page *page)
a145dd41
LT
1527{
1528 if (addr < vma->vm_start || addr >= vma->vm_end)
1529 return -EFAULT;
1530 if (!page_count(page))
1531 return -EINVAL;
4b6e1e37
KK
1532 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1533 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1534 BUG_ON(vma->vm_flags & VM_PFNMAP);
1535 vma->vm_flags |= VM_MIXEDMAP;
1536 }
423bad60 1537 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1538}
e3c3374f 1539EXPORT_SYMBOL(vm_insert_page);
a145dd41 1540
423bad60
NP
1541static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1542 unsigned long pfn, pgprot_t prot)
1543{
1544 struct mm_struct *mm = vma->vm_mm;
1545 int retval;
1546 pte_t *pte, entry;
1547 spinlock_t *ptl;
1548
1549 retval = -ENOMEM;
1550 pte = get_locked_pte(mm, addr, &ptl);
1551 if (!pte)
1552 goto out;
1553 retval = -EBUSY;
1554 if (!pte_none(*pte))
1555 goto out_unlock;
1556
1557 /* Ok, finally just insert the thing.. */
1558 entry = pte_mkspecial(pfn_pte(pfn, prot));
1559 set_pte_at(mm, addr, pte, entry);
4b3073e1 1560 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1561
1562 retval = 0;
1563out_unlock:
1564 pte_unmap_unlock(pte, ptl);
1565out:
1566 return retval;
1567}
1568
e0dc0d8f
NP
1569/**
1570 * vm_insert_pfn - insert single pfn into user vma
1571 * @vma: user vma to map to
1572 * @addr: target user address of this page
1573 * @pfn: source kernel pfn
1574 *
c462f179 1575 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1576 * they've allocated into a user vma. Same comments apply.
1577 *
1578 * This function should only be called from a vm_ops->fault handler, and
1579 * in that case the handler should return NULL.
0d71d10a
NP
1580 *
1581 * vma cannot be a COW mapping.
1582 *
1583 * As this is called only for pages that do not currently exist, we
1584 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1585 */
1586int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1587 unsigned long pfn)
e0dc0d8f 1588{
2ab64037 1589 int ret;
e4b866ed 1590 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1591 /*
1592 * Technically, architectures with pte_special can avoid all these
1593 * restrictions (same for remap_pfn_range). However we would like
1594 * consistency in testing and feature parity among all, so we should
1595 * try to keep these invariants in place for everybody.
1596 */
b379d790
JH
1597 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1598 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1599 (VM_PFNMAP|VM_MIXEDMAP));
1600 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1601 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1602
423bad60
NP
1603 if (addr < vma->vm_start || addr >= vma->vm_end)
1604 return -EFAULT;
5180da41 1605 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 1606 return -EINVAL;
1607
e4b866ed 1608 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1609
2ab64037 1610 return ret;
423bad60
NP
1611}
1612EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1613
423bad60
NP
1614int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1615 unsigned long pfn)
1616{
1617 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1618
423bad60
NP
1619 if (addr < vma->vm_start || addr >= vma->vm_end)
1620 return -EFAULT;
e0dc0d8f 1621
423bad60
NP
1622 /*
1623 * If we don't have pte special, then we have to use the pfn_valid()
1624 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1625 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1626 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1627 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1628 */
1629 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1630 struct page *page;
1631
1632 page = pfn_to_page(pfn);
1633 return insert_page(vma, addr, page, vma->vm_page_prot);
1634 }
1635 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1636}
423bad60 1637EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1638
1da177e4
LT
1639/*
1640 * maps a range of physical memory into the requested pages. the old
1641 * mappings are removed. any references to nonexistent pages results
1642 * in null mappings (currently treated as "copy-on-access")
1643 */
1644static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1645 unsigned long addr, unsigned long end,
1646 unsigned long pfn, pgprot_t prot)
1647{
1648 pte_t *pte;
c74df32c 1649 spinlock_t *ptl;
1da177e4 1650
c74df32c 1651 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1652 if (!pte)
1653 return -ENOMEM;
6606c3e0 1654 arch_enter_lazy_mmu_mode();
1da177e4
LT
1655 do {
1656 BUG_ON(!pte_none(*pte));
7e675137 1657 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1658 pfn++;
1659 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1660 arch_leave_lazy_mmu_mode();
c74df32c 1661 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1662 return 0;
1663}
1664
1665static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1666 unsigned long addr, unsigned long end,
1667 unsigned long pfn, pgprot_t prot)
1668{
1669 pmd_t *pmd;
1670 unsigned long next;
1671
1672 pfn -= addr >> PAGE_SHIFT;
1673 pmd = pmd_alloc(mm, pud, addr);
1674 if (!pmd)
1675 return -ENOMEM;
f66055ab 1676 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1677 do {
1678 next = pmd_addr_end(addr, end);
1679 if (remap_pte_range(mm, pmd, addr, next,
1680 pfn + (addr >> PAGE_SHIFT), prot))
1681 return -ENOMEM;
1682 } while (pmd++, addr = next, addr != end);
1683 return 0;
1684}
1685
1686static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1687 unsigned long addr, unsigned long end,
1688 unsigned long pfn, pgprot_t prot)
1689{
1690 pud_t *pud;
1691 unsigned long next;
1692
1693 pfn -= addr >> PAGE_SHIFT;
1694 pud = pud_alloc(mm, pgd, addr);
1695 if (!pud)
1696 return -ENOMEM;
1697 do {
1698 next = pud_addr_end(addr, end);
1699 if (remap_pmd_range(mm, pud, addr, next,
1700 pfn + (addr >> PAGE_SHIFT), prot))
1701 return -ENOMEM;
1702 } while (pud++, addr = next, addr != end);
1703 return 0;
1704}
1705
bfa5bf6d
REB
1706/**
1707 * remap_pfn_range - remap kernel memory to userspace
1708 * @vma: user vma to map to
1709 * @addr: target user address to start at
1710 * @pfn: physical address of kernel memory
1711 * @size: size of map area
1712 * @prot: page protection flags for this mapping
1713 *
1714 * Note: this is only safe if the mm semaphore is held when called.
1715 */
1da177e4
LT
1716int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1717 unsigned long pfn, unsigned long size, pgprot_t prot)
1718{
1719 pgd_t *pgd;
1720 unsigned long next;
2d15cab8 1721 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1722 struct mm_struct *mm = vma->vm_mm;
1723 int err;
1724
1725 /*
1726 * Physically remapped pages are special. Tell the
1727 * rest of the world about it:
1728 * VM_IO tells people not to look at these pages
1729 * (accesses can have side effects).
6aab341e
LT
1730 * VM_PFNMAP tells the core MM that the base pages are just
1731 * raw PFN mappings, and do not have a "struct page" associated
1732 * with them.
314e51b9
KK
1733 * VM_DONTEXPAND
1734 * Disable vma merging and expanding with mremap().
1735 * VM_DONTDUMP
1736 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1737 *
1738 * There's a horrible special case to handle copy-on-write
1739 * behaviour that some programs depend on. We mark the "original"
1740 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1741 * See vm_normal_page() for details.
1da177e4 1742 */
b3b9c293
KK
1743 if (is_cow_mapping(vma->vm_flags)) {
1744 if (addr != vma->vm_start || end != vma->vm_end)
1745 return -EINVAL;
fb155c16 1746 vma->vm_pgoff = pfn;
b3b9c293
KK
1747 }
1748
1749 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1750 if (err)
3c8bb73a 1751 return -EINVAL;
fb155c16 1752
314e51b9 1753 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1754
1755 BUG_ON(addr >= end);
1756 pfn -= addr >> PAGE_SHIFT;
1757 pgd = pgd_offset(mm, addr);
1758 flush_cache_range(vma, addr, end);
1da177e4
LT
1759 do {
1760 next = pgd_addr_end(addr, end);
1761 err = remap_pud_range(mm, pgd, addr, next,
1762 pfn + (addr >> PAGE_SHIFT), prot);
1763 if (err)
1764 break;
1765 } while (pgd++, addr = next, addr != end);
2ab64037 1766
1767 if (err)
5180da41 1768 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 1769
1da177e4
LT
1770 return err;
1771}
1772EXPORT_SYMBOL(remap_pfn_range);
1773
b4cbb197
LT
1774/**
1775 * vm_iomap_memory - remap memory to userspace
1776 * @vma: user vma to map to
1777 * @start: start of area
1778 * @len: size of area
1779 *
1780 * This is a simplified io_remap_pfn_range() for common driver use. The
1781 * driver just needs to give us the physical memory range to be mapped,
1782 * we'll figure out the rest from the vma information.
1783 *
1784 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1785 * whatever write-combining details or similar.
1786 */
1787int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1788{
1789 unsigned long vm_len, pfn, pages;
1790
1791 /* Check that the physical memory area passed in looks valid */
1792 if (start + len < start)
1793 return -EINVAL;
1794 /*
1795 * You *really* shouldn't map things that aren't page-aligned,
1796 * but we've historically allowed it because IO memory might
1797 * just have smaller alignment.
1798 */
1799 len += start & ~PAGE_MASK;
1800 pfn = start >> PAGE_SHIFT;
1801 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1802 if (pfn + pages < pfn)
1803 return -EINVAL;
1804
1805 /* We start the mapping 'vm_pgoff' pages into the area */
1806 if (vma->vm_pgoff > pages)
1807 return -EINVAL;
1808 pfn += vma->vm_pgoff;
1809 pages -= vma->vm_pgoff;
1810
1811 /* Can we fit all of the mapping? */
1812 vm_len = vma->vm_end - vma->vm_start;
1813 if (vm_len >> PAGE_SHIFT > pages)
1814 return -EINVAL;
1815
1816 /* Ok, let it rip */
1817 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1818}
1819EXPORT_SYMBOL(vm_iomap_memory);
1820
aee16b3c
JF
1821static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1822 unsigned long addr, unsigned long end,
1823 pte_fn_t fn, void *data)
1824{
1825 pte_t *pte;
1826 int err;
2f569afd 1827 pgtable_t token;
94909914 1828 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1829
1830 pte = (mm == &init_mm) ?
1831 pte_alloc_kernel(pmd, addr) :
1832 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1833 if (!pte)
1834 return -ENOMEM;
1835
1836 BUG_ON(pmd_huge(*pmd));
1837
38e0edb1
JF
1838 arch_enter_lazy_mmu_mode();
1839
2f569afd 1840 token = pmd_pgtable(*pmd);
aee16b3c
JF
1841
1842 do {
c36987e2 1843 err = fn(pte++, token, addr, data);
aee16b3c
JF
1844 if (err)
1845 break;
c36987e2 1846 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1847
38e0edb1
JF
1848 arch_leave_lazy_mmu_mode();
1849
aee16b3c
JF
1850 if (mm != &init_mm)
1851 pte_unmap_unlock(pte-1, ptl);
1852 return err;
1853}
1854
1855static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1856 unsigned long addr, unsigned long end,
1857 pte_fn_t fn, void *data)
1858{
1859 pmd_t *pmd;
1860 unsigned long next;
1861 int err;
1862
ceb86879
AK
1863 BUG_ON(pud_huge(*pud));
1864
aee16b3c
JF
1865 pmd = pmd_alloc(mm, pud, addr);
1866 if (!pmd)
1867 return -ENOMEM;
1868 do {
1869 next = pmd_addr_end(addr, end);
1870 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1871 if (err)
1872 break;
1873 } while (pmd++, addr = next, addr != end);
1874 return err;
1875}
1876
1877static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1878 unsigned long addr, unsigned long end,
1879 pte_fn_t fn, void *data)
1880{
1881 pud_t *pud;
1882 unsigned long next;
1883 int err;
1884
1885 pud = pud_alloc(mm, pgd, addr);
1886 if (!pud)
1887 return -ENOMEM;
1888 do {
1889 next = pud_addr_end(addr, end);
1890 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1891 if (err)
1892 break;
1893 } while (pud++, addr = next, addr != end);
1894 return err;
1895}
1896
1897/*
1898 * Scan a region of virtual memory, filling in page tables as necessary
1899 * and calling a provided function on each leaf page table.
1900 */
1901int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1902 unsigned long size, pte_fn_t fn, void *data)
1903{
1904 pgd_t *pgd;
1905 unsigned long next;
57250a5b 1906 unsigned long end = addr + size;
aee16b3c
JF
1907 int err;
1908
1909 BUG_ON(addr >= end);
1910 pgd = pgd_offset(mm, addr);
1911 do {
1912 next = pgd_addr_end(addr, end);
1913 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1914 if (err)
1915 break;
1916 } while (pgd++, addr = next, addr != end);
57250a5b 1917
aee16b3c
JF
1918 return err;
1919}
1920EXPORT_SYMBOL_GPL(apply_to_page_range);
1921
8f4e2101
HD
1922/*
1923 * handle_pte_fault chooses page fault handler according to an entry
1924 * which was read non-atomically. Before making any commitment, on
1925 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 1926 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
1927 * must check under lock before unmapping the pte and proceeding
1928 * (but do_wp_page is only called after already making such a check;
a335b2e1 1929 * and do_anonymous_page can safely check later on).
8f4e2101 1930 */
4c21e2f2 1931static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1932 pte_t *page_table, pte_t orig_pte)
1933{
1934 int same = 1;
1935#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1936 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1937 spinlock_t *ptl = pte_lockptr(mm, pmd);
1938 spin_lock(ptl);
8f4e2101 1939 same = pte_same(*page_table, orig_pte);
4c21e2f2 1940 spin_unlock(ptl);
8f4e2101
HD
1941 }
1942#endif
1943 pte_unmap(page_table);
1944 return same;
1945}
1946
9de455b2 1947static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1948{
0abdd7a8
DW
1949 debug_dma_assert_idle(src);
1950
6aab341e
LT
1951 /*
1952 * If the source page was a PFN mapping, we don't have
1953 * a "struct page" for it. We do a best-effort copy by
1954 * just copying from the original user address. If that
1955 * fails, we just zero-fill it. Live with it.
1956 */
1957 if (unlikely(!src)) {
9b04c5fe 1958 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1959 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1960
1961 /*
1962 * This really shouldn't fail, because the page is there
1963 * in the page tables. But it might just be unreadable,
1964 * in which case we just give up and fill the result with
1965 * zeroes.
1966 */
1967 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 1968 clear_page(kaddr);
9b04c5fe 1969 kunmap_atomic(kaddr);
c4ec7b0d 1970 flush_dcache_page(dst);
0ed361de
NP
1971 } else
1972 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1973}
1974
fb09a464
KS
1975/*
1976 * Notify the address space that the page is about to become writable so that
1977 * it can prohibit this or wait for the page to get into an appropriate state.
1978 *
1979 * We do this without the lock held, so that it can sleep if it needs to.
1980 */
1981static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1982 unsigned long address)
1983{
1984 struct vm_fault vmf;
1985 int ret;
1986
1987 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1988 vmf.pgoff = page->index;
1989 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1990 vmf.page = page;
1991
1992 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1993 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1994 return ret;
1995 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1996 lock_page(page);
1997 if (!page->mapping) {
1998 unlock_page(page);
1999 return 0; /* retry */
2000 }
2001 ret |= VM_FAULT_LOCKED;
2002 } else
2003 VM_BUG_ON_PAGE(!PageLocked(page), page);
2004 return ret;
2005}
2006
1da177e4
LT
2007/*
2008 * This routine handles present pages, when users try to write
2009 * to a shared page. It is done by copying the page to a new address
2010 * and decrementing the shared-page counter for the old page.
2011 *
1da177e4
LT
2012 * Note that this routine assumes that the protection checks have been
2013 * done by the caller (the low-level page fault routine in most cases).
2014 * Thus we can safely just mark it writable once we've done any necessary
2015 * COW.
2016 *
2017 * We also mark the page dirty at this point even though the page will
2018 * change only once the write actually happens. This avoids a few races,
2019 * and potentially makes it more efficient.
2020 *
8f4e2101
HD
2021 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2022 * but allow concurrent faults), with pte both mapped and locked.
2023 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2024 */
65500d23
HD
2025static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2026 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2027 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2028 __releases(ptl)
1da177e4 2029{
2ec74c3e 2030 struct page *old_page, *new_page = NULL;
1da177e4 2031 pte_t entry;
b009c024 2032 int ret = 0;
a200ee18 2033 int page_mkwrite = 0;
d08b3851 2034 struct page *dirty_page = NULL;
1756954c
DR
2035 unsigned long mmun_start = 0; /* For mmu_notifiers */
2036 unsigned long mmun_end = 0; /* For mmu_notifiers */
00501b53 2037 struct mem_cgroup *memcg;
1da177e4 2038
6aab341e 2039 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2040 if (!old_page) {
2041 /*
64e45507
PF
2042 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2043 * VM_PFNMAP VMA.
251b97f5
PZ
2044 *
2045 * We should not cow pages in a shared writeable mapping.
2046 * Just mark the pages writable as we can't do any dirty
2047 * accounting on raw pfn maps.
2048 */
2049 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2050 (VM_WRITE|VM_SHARED))
2051 goto reuse;
6aab341e 2052 goto gotten;
251b97f5 2053 }
1da177e4 2054
d08b3851 2055 /*
ee6a6457
PZ
2056 * Take out anonymous pages first, anonymous shared vmas are
2057 * not dirty accountable.
d08b3851 2058 */
9a840895 2059 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2060 if (!trylock_page(old_page)) {
2061 page_cache_get(old_page);
2062 pte_unmap_unlock(page_table, ptl);
2063 lock_page(old_page);
2064 page_table = pte_offset_map_lock(mm, pmd, address,
2065 &ptl);
2066 if (!pte_same(*page_table, orig_pte)) {
2067 unlock_page(old_page);
ab967d86
HD
2068 goto unlock;
2069 }
2070 page_cache_release(old_page);
ee6a6457 2071 }
b009c024 2072 if (reuse_swap_page(old_page)) {
c44b6743
RR
2073 /*
2074 * The page is all ours. Move it to our anon_vma so
2075 * the rmap code will not search our parent or siblings.
2076 * Protected against the rmap code by the page lock.
2077 */
2078 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2079 unlock_page(old_page);
2080 goto reuse;
2081 }
ab967d86 2082 unlock_page(old_page);
ee6a6457 2083 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2084 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2085 /*
2086 * Only catch write-faults on shared writable pages,
2087 * read-only shared pages can get COWed by
2088 * get_user_pages(.write=1, .force=1).
2089 */
9637a5ef 2090 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c 2091 int tmp;
9637a5ef
DH
2092 page_cache_get(old_page);
2093 pte_unmap_unlock(page_table, ptl);
fb09a464
KS
2094 tmp = do_page_mkwrite(vma, old_page, address);
2095 if (unlikely(!tmp || (tmp &
2096 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2097 page_cache_release(old_page);
2098 return tmp;
c2ec175c 2099 }
9637a5ef
DH
2100 /*
2101 * Since we dropped the lock we need to revalidate
2102 * the PTE as someone else may have changed it. If
2103 * they did, we just return, as we can count on the
2104 * MMU to tell us if they didn't also make it writable.
2105 */
2106 page_table = pte_offset_map_lock(mm, pmd, address,
2107 &ptl);
b827e496
NP
2108 if (!pte_same(*page_table, orig_pte)) {
2109 unlock_page(old_page);
9637a5ef 2110 goto unlock;
b827e496 2111 }
a200ee18
PZ
2112
2113 page_mkwrite = 1;
1da177e4 2114 }
d08b3851
PZ
2115 dirty_page = old_page;
2116 get_page(dirty_page);
9637a5ef 2117
251b97f5 2118reuse:
8c8a743c
PZ
2119 /*
2120 * Clear the pages cpupid information as the existing
2121 * information potentially belongs to a now completely
2122 * unrelated process.
2123 */
2124 if (old_page)
2125 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2126
9637a5ef
DH
2127 flush_cache_page(vma, address, pte_pfn(orig_pte));
2128 entry = pte_mkyoung(orig_pte);
2129 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2130 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2131 update_mmu_cache(vma, address, page_table);
72ddc8f7 2132 pte_unmap_unlock(page_table, ptl);
9637a5ef 2133 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2134
2135 if (!dirty_page)
2136 return ret;
2137
2138 /*
2139 * Yes, Virginia, this is actually required to prevent a race
2140 * with clear_page_dirty_for_io() from clearing the page dirty
2141 * bit after it clear all dirty ptes, but before a racing
2142 * do_wp_page installs a dirty pte.
2143 *
f0c6d4d2 2144 * do_shared_fault is protected similarly.
72ddc8f7
ML
2145 */
2146 if (!page_mkwrite) {
2147 wait_on_page_locked(dirty_page);
ed6d7c8e 2148 set_page_dirty_balance(dirty_page);
41c4d25f
JK
2149 /* file_update_time outside page_lock */
2150 if (vma->vm_file)
2151 file_update_time(vma->vm_file);
72ddc8f7
ML
2152 }
2153 put_page(dirty_page);
2154 if (page_mkwrite) {
2155 struct address_space *mapping = dirty_page->mapping;
2156
2157 set_page_dirty(dirty_page);
2158 unlock_page(dirty_page);
2159 page_cache_release(dirty_page);
2160 if (mapping) {
2161 /*
2162 * Some device drivers do not set page.mapping
2163 * but still dirty their pages
2164 */
2165 balance_dirty_pages_ratelimited(mapping);
2166 }
2167 }
2168
72ddc8f7 2169 return ret;
1da177e4 2170 }
1da177e4
LT
2171
2172 /*
2173 * Ok, we need to copy. Oh, well..
2174 */
b5810039 2175 page_cache_get(old_page);
920fc356 2176gotten:
8f4e2101 2177 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2178
2179 if (unlikely(anon_vma_prepare(vma)))
65500d23 2180 goto oom;
a13ea5b7 2181
62eede62 2182 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2183 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2184 if (!new_page)
2185 goto oom;
2186 } else {
2187 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2188 if (!new_page)
2189 goto oom;
2190 cow_user_page(new_page, old_page, address, vma);
2191 }
2192 __SetPageUptodate(new_page);
2193
00501b53 2194 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
8a9f3ccd
BS
2195 goto oom_free_new;
2196
6bdb913f 2197 mmun_start = address & PAGE_MASK;
1756954c 2198 mmun_end = mmun_start + PAGE_SIZE;
6bdb913f
HE
2199 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2200
1da177e4
LT
2201 /*
2202 * Re-check the pte - we dropped the lock
2203 */
8f4e2101 2204 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2205 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2206 if (old_page) {
920fc356 2207 if (!PageAnon(old_page)) {
34e55232
KH
2208 dec_mm_counter_fast(mm, MM_FILEPAGES);
2209 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2210 }
2211 } else
34e55232 2212 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2213 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2214 entry = mk_pte(new_page, vma->vm_page_prot);
2215 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2216 /*
2217 * Clear the pte entry and flush it first, before updating the
2218 * pte with the new entry. This will avoid a race condition
2219 * seen in the presence of one thread doing SMC and another
2220 * thread doing COW.
2221 */
828502d3 2222 ptep_clear_flush(vma, address, page_table);
9617d95e 2223 page_add_new_anon_rmap(new_page, vma, address);
00501b53
JW
2224 mem_cgroup_commit_charge(new_page, memcg, false);
2225 lru_cache_add_active_or_unevictable(new_page, vma);
828502d3
IE
2226 /*
2227 * We call the notify macro here because, when using secondary
2228 * mmu page tables (such as kvm shadow page tables), we want the
2229 * new page to be mapped directly into the secondary page table.
2230 */
2231 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2232 update_mmu_cache(vma, address, page_table);
945754a1
NP
2233 if (old_page) {
2234 /*
2235 * Only after switching the pte to the new page may
2236 * we remove the mapcount here. Otherwise another
2237 * process may come and find the rmap count decremented
2238 * before the pte is switched to the new page, and
2239 * "reuse" the old page writing into it while our pte
2240 * here still points into it and can be read by other
2241 * threads.
2242 *
2243 * The critical issue is to order this
2244 * page_remove_rmap with the ptp_clear_flush above.
2245 * Those stores are ordered by (if nothing else,)
2246 * the barrier present in the atomic_add_negative
2247 * in page_remove_rmap.
2248 *
2249 * Then the TLB flush in ptep_clear_flush ensures that
2250 * no process can access the old page before the
2251 * decremented mapcount is visible. And the old page
2252 * cannot be reused until after the decremented
2253 * mapcount is visible. So transitively, TLBs to
2254 * old page will be flushed before it can be reused.
2255 */
edc315fd 2256 page_remove_rmap(old_page);
945754a1
NP
2257 }
2258
1da177e4
LT
2259 /* Free the old page.. */
2260 new_page = old_page;
f33ea7f4 2261 ret |= VM_FAULT_WRITE;
8a9f3ccd 2262 } else
00501b53 2263 mem_cgroup_cancel_charge(new_page, memcg);
8a9f3ccd 2264
6bdb913f
HE
2265 if (new_page)
2266 page_cache_release(new_page);
65500d23 2267unlock:
8f4e2101 2268 pte_unmap_unlock(page_table, ptl);
1756954c 2269 if (mmun_end > mmun_start)
6bdb913f 2270 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
e15f8c01
ML
2271 if (old_page) {
2272 /*
2273 * Don't let another task, with possibly unlocked vma,
2274 * keep the mlocked page.
2275 */
2276 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2277 lock_page(old_page); /* LRU manipulation */
2278 munlock_vma_page(old_page);
2279 unlock_page(old_page);
2280 }
2281 page_cache_release(old_page);
2282 }
f33ea7f4 2283 return ret;
8a9f3ccd 2284oom_free_new:
6dbf6d3b 2285 page_cache_release(new_page);
65500d23 2286oom:
66521d5a 2287 if (old_page)
920fc356 2288 page_cache_release(old_page);
1da177e4
LT
2289 return VM_FAULT_OOM;
2290}
2291
97a89413 2292static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2293 unsigned long start_addr, unsigned long end_addr,
2294 struct zap_details *details)
2295{
f5cc4eef 2296 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2297}
2298
6b2dbba8 2299static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2300 struct zap_details *details)
2301{
2302 struct vm_area_struct *vma;
1da177e4
LT
2303 pgoff_t vba, vea, zba, zea;
2304
6b2dbba8 2305 vma_interval_tree_foreach(vma, root,
1da177e4 2306 details->first_index, details->last_index) {
1da177e4
LT
2307
2308 vba = vma->vm_pgoff;
d6e93217 2309 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2310 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2311 zba = details->first_index;
2312 if (zba < vba)
2313 zba = vba;
2314 zea = details->last_index;
2315 if (zea > vea)
2316 zea = vea;
2317
97a89413 2318 unmap_mapping_range_vma(vma,
1da177e4
LT
2319 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2320 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2321 details);
1da177e4
LT
2322 }
2323}
2324
2325static inline void unmap_mapping_range_list(struct list_head *head,
2326 struct zap_details *details)
2327{
2328 struct vm_area_struct *vma;
2329
2330 /*
2331 * In nonlinear VMAs there is no correspondence between virtual address
2332 * offset and file offset. So we must perform an exhaustive search
2333 * across *all* the pages in each nonlinear VMA, not just the pages
2334 * whose virtual address lies outside the file truncation point.
2335 */
6b2dbba8 2336 list_for_each_entry(vma, head, shared.nonlinear) {
1da177e4 2337 details->nonlinear_vma = vma;
97a89413 2338 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2339 }
2340}
2341
2342/**
72fd4a35 2343 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2344 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2345 * @holebegin: byte in first page to unmap, relative to the start of
2346 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2347 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2348 * must keep the partial page. In contrast, we must get rid of
2349 * partial pages.
2350 * @holelen: size of prospective hole in bytes. This will be rounded
2351 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2352 * end of the file.
2353 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2354 * but 0 when invalidating pagecache, don't throw away private data.
2355 */
2356void unmap_mapping_range(struct address_space *mapping,
2357 loff_t const holebegin, loff_t const holelen, int even_cows)
2358{
2359 struct zap_details details;
2360 pgoff_t hba = holebegin >> PAGE_SHIFT;
2361 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2362
2363 /* Check for overflow. */
2364 if (sizeof(holelen) > sizeof(hlen)) {
2365 long long holeend =
2366 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2367 if (holeend & ~(long long)ULONG_MAX)
2368 hlen = ULONG_MAX - hba + 1;
2369 }
2370
2371 details.check_mapping = even_cows? NULL: mapping;
2372 details.nonlinear_vma = NULL;
2373 details.first_index = hba;
2374 details.last_index = hba + hlen - 1;
2375 if (details.last_index < details.first_index)
2376 details.last_index = ULONG_MAX;
1da177e4 2377
1da177e4 2378
3d48ae45 2379 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2380 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4
LT
2381 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2382 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2383 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2384 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2385}
2386EXPORT_SYMBOL(unmap_mapping_range);
2387
1da177e4 2388/*
8f4e2101
HD
2389 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2390 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2391 * We return with pte unmapped and unlocked.
2392 *
2393 * We return with the mmap_sem locked or unlocked in the same cases
2394 * as does filemap_fault().
1da177e4 2395 */
65500d23
HD
2396static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2397 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2398 unsigned int flags, pte_t orig_pte)
1da177e4 2399{
8f4e2101 2400 spinlock_t *ptl;
56f31801 2401 struct page *page, *swapcache;
00501b53 2402 struct mem_cgroup *memcg;
65500d23 2403 swp_entry_t entry;
1da177e4 2404 pte_t pte;
d065bd81 2405 int locked;
ad8c2ee8 2406 int exclusive = 0;
83c54070 2407 int ret = 0;
1da177e4 2408
4c21e2f2 2409 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2410 goto out;
65500d23
HD
2411
2412 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2413 if (unlikely(non_swap_entry(entry))) {
2414 if (is_migration_entry(entry)) {
2415 migration_entry_wait(mm, pmd, address);
2416 } else if (is_hwpoison_entry(entry)) {
2417 ret = VM_FAULT_HWPOISON;
2418 } else {
2419 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2420 ret = VM_FAULT_SIGBUS;
d1737fdb 2421 }
0697212a
CL
2422 goto out;
2423 }
0ff92245 2424 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2425 page = lookup_swap_cache(entry);
2426 if (!page) {
02098fea
HD
2427 page = swapin_readahead(entry,
2428 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2429 if (!page) {
2430 /*
8f4e2101
HD
2431 * Back out if somebody else faulted in this pte
2432 * while we released the pte lock.
1da177e4 2433 */
8f4e2101 2434 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2435 if (likely(pte_same(*page_table, orig_pte)))
2436 ret = VM_FAULT_OOM;
0ff92245 2437 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2438 goto unlock;
1da177e4
LT
2439 }
2440
2441 /* Had to read the page from swap area: Major fault */
2442 ret = VM_FAULT_MAJOR;
f8891e5e 2443 count_vm_event(PGMAJFAULT);
456f998e 2444 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2445 } else if (PageHWPoison(page)) {
71f72525
WF
2446 /*
2447 * hwpoisoned dirty swapcache pages are kept for killing
2448 * owner processes (which may be unknown at hwpoison time)
2449 */
d1737fdb
AK
2450 ret = VM_FAULT_HWPOISON;
2451 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2452 swapcache = page;
4779cb31 2453 goto out_release;
1da177e4
LT
2454 }
2455
56f31801 2456 swapcache = page;
d065bd81 2457 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2458
073e587e 2459 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2460 if (!locked) {
2461 ret |= VM_FAULT_RETRY;
2462 goto out_release;
2463 }
073e587e 2464
4969c119 2465 /*
31c4a3d3
HD
2466 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2467 * release the swapcache from under us. The page pin, and pte_same
2468 * test below, are not enough to exclude that. Even if it is still
2469 * swapcache, we need to check that the page's swap has not changed.
4969c119 2470 */
31c4a3d3 2471 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2472 goto out_page;
2473
cbf86cfe
HD
2474 page = ksm_might_need_to_copy(page, vma, address);
2475 if (unlikely(!page)) {
2476 ret = VM_FAULT_OOM;
2477 page = swapcache;
cbf86cfe 2478 goto out_page;
5ad64688
HD
2479 }
2480
00501b53 2481 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
8a9f3ccd 2482 ret = VM_FAULT_OOM;
bc43f75c 2483 goto out_page;
8a9f3ccd
BS
2484 }
2485
1da177e4 2486 /*
8f4e2101 2487 * Back out if somebody else already faulted in this pte.
1da177e4 2488 */
8f4e2101 2489 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2490 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2491 goto out_nomap;
b8107480
KK
2492
2493 if (unlikely(!PageUptodate(page))) {
2494 ret = VM_FAULT_SIGBUS;
2495 goto out_nomap;
1da177e4
LT
2496 }
2497
8c7c6e34
KH
2498 /*
2499 * The page isn't present yet, go ahead with the fault.
2500 *
2501 * Be careful about the sequence of operations here.
2502 * To get its accounting right, reuse_swap_page() must be called
2503 * while the page is counted on swap but not yet in mapcount i.e.
2504 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2505 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2506 */
1da177e4 2507
34e55232 2508 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2509 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2510 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2511 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2512 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2513 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2514 ret |= VM_FAULT_WRITE;
ad8c2ee8 2515 exclusive = 1;
1da177e4 2516 }
1da177e4 2517 flush_icache_page(vma, page);
179ef71c
CG
2518 if (pte_swp_soft_dirty(orig_pte))
2519 pte = pte_mksoft_dirty(pte);
1da177e4 2520 set_pte_at(mm, address, page_table, pte);
00501b53 2521 if (page == swapcache) {
af34770e 2522 do_page_add_anon_rmap(page, vma, address, exclusive);
00501b53
JW
2523 mem_cgroup_commit_charge(page, memcg, true);
2524 } else { /* ksm created a completely new copy */
56f31801 2525 page_add_new_anon_rmap(page, vma, address);
00501b53
JW
2526 mem_cgroup_commit_charge(page, memcg, false);
2527 lru_cache_add_active_or_unevictable(page, vma);
2528 }
1da177e4 2529
c475a8ab 2530 swap_free(entry);
b291f000 2531 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2532 try_to_free_swap(page);
c475a8ab 2533 unlock_page(page);
56f31801 2534 if (page != swapcache) {
4969c119
AA
2535 /*
2536 * Hold the lock to avoid the swap entry to be reused
2537 * until we take the PT lock for the pte_same() check
2538 * (to avoid false positives from pte_same). For
2539 * further safety release the lock after the swap_free
2540 * so that the swap count won't change under a
2541 * parallel locked swapcache.
2542 */
2543 unlock_page(swapcache);
2544 page_cache_release(swapcache);
2545 }
c475a8ab 2546
30c9f3a9 2547 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2548 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2549 if (ret & VM_FAULT_ERROR)
2550 ret &= VM_FAULT_ERROR;
1da177e4
LT
2551 goto out;
2552 }
2553
2554 /* No need to invalidate - it was non-present before */
4b3073e1 2555 update_mmu_cache(vma, address, page_table);
65500d23 2556unlock:
8f4e2101 2557 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2558out:
2559 return ret;
b8107480 2560out_nomap:
00501b53 2561 mem_cgroup_cancel_charge(page, memcg);
8f4e2101 2562 pte_unmap_unlock(page_table, ptl);
bc43f75c 2563out_page:
b8107480 2564 unlock_page(page);
4779cb31 2565out_release:
b8107480 2566 page_cache_release(page);
56f31801 2567 if (page != swapcache) {
4969c119
AA
2568 unlock_page(swapcache);
2569 page_cache_release(swapcache);
2570 }
65500d23 2571 return ret;
1da177e4
LT
2572}
2573
320b2b8d 2574/*
8ca3eb08
TL
2575 * This is like a special single-page "expand_{down|up}wards()",
2576 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2577 * doesn't hit another vma.
320b2b8d
LT
2578 */
2579static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2580{
2581 address &= PAGE_MASK;
2582 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2583 struct vm_area_struct *prev = vma->vm_prev;
2584
2585 /*
2586 * Is there a mapping abutting this one below?
2587 *
2588 * That's only ok if it's the same stack mapping
2589 * that has gotten split..
2590 */
2591 if (prev && prev->vm_end == address)
2592 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2593
d05f3169 2594 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2595 }
8ca3eb08
TL
2596 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2597 struct vm_area_struct *next = vma->vm_next;
2598
2599 /* As VM_GROWSDOWN but s/below/above/ */
2600 if (next && next->vm_start == address + PAGE_SIZE)
2601 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2602
2603 expand_upwards(vma, address + PAGE_SIZE);
2604 }
320b2b8d
LT
2605 return 0;
2606}
2607
1da177e4 2608/*
8f4e2101
HD
2609 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2610 * but allow concurrent faults), and pte mapped but not yet locked.
2611 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2612 */
65500d23
HD
2613static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2614 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2615 unsigned int flags)
1da177e4 2616{
00501b53 2617 struct mem_cgroup *memcg;
8f4e2101
HD
2618 struct page *page;
2619 spinlock_t *ptl;
1da177e4 2620 pte_t entry;
1da177e4 2621
11ac5524
LT
2622 pte_unmap(page_table);
2623
2624 /* Check if we need to add a guard page to the stack */
2625 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
2626 return VM_FAULT_SIGBUS;
2627
11ac5524 2628 /* Use the zero-page for reads */
62eede62
HD
2629 if (!(flags & FAULT_FLAG_WRITE)) {
2630 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2631 vma->vm_page_prot));
11ac5524 2632 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2633 if (!pte_none(*page_table))
2634 goto unlock;
2635 goto setpte;
2636 }
2637
557ed1fa 2638 /* Allocate our own private page. */
557ed1fa
NP
2639 if (unlikely(anon_vma_prepare(vma)))
2640 goto oom;
2641 page = alloc_zeroed_user_highpage_movable(vma, address);
2642 if (!page)
2643 goto oom;
52f37629
MK
2644 /*
2645 * The memory barrier inside __SetPageUptodate makes sure that
2646 * preceeding stores to the page contents become visible before
2647 * the set_pte_at() write.
2648 */
0ed361de 2649 __SetPageUptodate(page);
8f4e2101 2650
00501b53 2651 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
8a9f3ccd
BS
2652 goto oom_free_page;
2653
557ed1fa 2654 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2655 if (vma->vm_flags & VM_WRITE)
2656 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2657
557ed1fa 2658 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2659 if (!pte_none(*page_table))
557ed1fa 2660 goto release;
9ba69294 2661
34e55232 2662 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 2663 page_add_new_anon_rmap(page, vma, address);
00501b53
JW
2664 mem_cgroup_commit_charge(page, memcg, false);
2665 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2666setpte:
65500d23 2667 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2668
2669 /* No need to invalidate - it was non-present before */
4b3073e1 2670 update_mmu_cache(vma, address, page_table);
65500d23 2671unlock:
8f4e2101 2672 pte_unmap_unlock(page_table, ptl);
83c54070 2673 return 0;
8f4e2101 2674release:
00501b53 2675 mem_cgroup_cancel_charge(page, memcg);
8f4e2101
HD
2676 page_cache_release(page);
2677 goto unlock;
8a9f3ccd 2678oom_free_page:
6dbf6d3b 2679 page_cache_release(page);
65500d23 2680oom:
1da177e4
LT
2681 return VM_FAULT_OOM;
2682}
2683
9a95f3cf
PC
2684/*
2685 * The mmap_sem must have been held on entry, and may have been
2686 * released depending on flags and vma->vm_ops->fault() return value.
2687 * See filemap_fault() and __lock_page_retry().
2688 */
7eae74af
KS
2689static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2690 pgoff_t pgoff, unsigned int flags, struct page **page)
2691{
2692 struct vm_fault vmf;
2693 int ret;
2694
2695 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2696 vmf.pgoff = pgoff;
2697 vmf.flags = flags;
2698 vmf.page = NULL;
2699
2700 ret = vma->vm_ops->fault(vma, &vmf);
2701 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2702 return ret;
2703
2704 if (unlikely(PageHWPoison(vmf.page))) {
2705 if (ret & VM_FAULT_LOCKED)
2706 unlock_page(vmf.page);
2707 page_cache_release(vmf.page);
2708 return VM_FAULT_HWPOISON;
2709 }
2710
2711 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2712 lock_page(vmf.page);
2713 else
2714 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2715
2716 *page = vmf.page;
2717 return ret;
2718}
2719
8c6e50b0
KS
2720/**
2721 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2722 *
2723 * @vma: virtual memory area
2724 * @address: user virtual address
2725 * @page: page to map
2726 * @pte: pointer to target page table entry
2727 * @write: true, if new entry is writable
2728 * @anon: true, if it's anonymous page
2729 *
2730 * Caller must hold page table lock relevant for @pte.
2731 *
2732 * Target users are page handler itself and implementations of
2733 * vm_ops->map_pages.
2734 */
2735void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3bb97794
KS
2736 struct page *page, pte_t *pte, bool write, bool anon)
2737{
2738 pte_t entry;
2739
2740 flush_icache_page(vma, page);
2741 entry = mk_pte(page, vma->vm_page_prot);
2742 if (write)
2743 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2744 else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
9aed8614 2745 entry = pte_mksoft_dirty(entry);
3bb97794
KS
2746 if (anon) {
2747 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2748 page_add_new_anon_rmap(page, vma, address);
2749 } else {
2750 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2751 page_add_file_rmap(page);
2752 }
2753 set_pte_at(vma->vm_mm, address, pte, entry);
2754
2755 /* no need to invalidate: a not-present page won't be cached */
2756 update_mmu_cache(vma, address, pte);
2757}
2758
3a91053a
KS
2759static unsigned long fault_around_bytes __read_mostly =
2760 rounddown_pow_of_two(65536);
a9b0f861 2761
a9b0f861
KS
2762#ifdef CONFIG_DEBUG_FS
2763static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2764{
a9b0f861 2765 *val = fault_around_bytes;
1592eef0
KS
2766 return 0;
2767}
2768
b4903d6e
AR
2769/*
2770 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2771 * rounded down to nearest page order. It's what do_fault_around() expects to
2772 * see.
2773 */
a9b0f861 2774static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2775{
a9b0f861 2776 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2777 return -EINVAL;
b4903d6e
AR
2778 if (val > PAGE_SIZE)
2779 fault_around_bytes = rounddown_pow_of_two(val);
2780 else
2781 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2782 return 0;
2783}
a9b0f861
KS
2784DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2785 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2786
2787static int __init fault_around_debugfs(void)
2788{
2789 void *ret;
2790
a9b0f861
KS
2791 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2792 &fault_around_bytes_fops);
1592eef0 2793 if (!ret)
a9b0f861 2794 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2795 return 0;
2796}
2797late_initcall(fault_around_debugfs);
1592eef0 2798#endif
8c6e50b0 2799
1fdb412b
KS
2800/*
2801 * do_fault_around() tries to map few pages around the fault address. The hope
2802 * is that the pages will be needed soon and this will lower the number of
2803 * faults to handle.
2804 *
2805 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2806 * not ready to be mapped: not up-to-date, locked, etc.
2807 *
2808 * This function is called with the page table lock taken. In the split ptlock
2809 * case the page table lock only protects only those entries which belong to
2810 * the page table corresponding to the fault address.
2811 *
2812 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2813 * only once.
2814 *
2815 * fault_around_pages() defines how many pages we'll try to map.
2816 * do_fault_around() expects it to return a power of two less than or equal to
2817 * PTRS_PER_PTE.
2818 *
2819 * The virtual address of the area that we map is naturally aligned to the
2820 * fault_around_pages() value (and therefore to page order). This way it's
2821 * easier to guarantee that we don't cross page table boundaries.
2822 */
8c6e50b0
KS
2823static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2824 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2825{
aecd6f44 2826 unsigned long start_addr, nr_pages, mask;
8c6e50b0
KS
2827 pgoff_t max_pgoff;
2828 struct vm_fault vmf;
2829 int off;
2830
aecd6f44
KS
2831 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2832 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2833
2834 start_addr = max(address & mask, vma->vm_start);
8c6e50b0
KS
2835 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2836 pte -= off;
2837 pgoff -= off;
2838
2839 /*
2840 * max_pgoff is either end of page table or end of vma
850e9c69 2841 * or fault_around_pages() from pgoff, depending what is nearest.
8c6e50b0
KS
2842 */
2843 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2844 PTRS_PER_PTE - 1;
2845 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
aecd6f44 2846 pgoff + nr_pages - 1);
8c6e50b0
KS
2847
2848 /* Check if it makes any sense to call ->map_pages */
2849 while (!pte_none(*pte)) {
2850 if (++pgoff > max_pgoff)
2851 return;
2852 start_addr += PAGE_SIZE;
2853 if (start_addr >= vma->vm_end)
2854 return;
2855 pte++;
2856 }
2857
2858 vmf.virtual_address = (void __user *) start_addr;
2859 vmf.pte = pte;
2860 vmf.pgoff = pgoff;
2861 vmf.max_pgoff = max_pgoff;
2862 vmf.flags = flags;
2863 vma->vm_ops->map_pages(vma, &vmf);
2864}
2865
e655fb29
KS
2866static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2867 unsigned long address, pmd_t *pmd,
2868 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2869{
2870 struct page *fault_page;
2871 spinlock_t *ptl;
3bb97794 2872 pte_t *pte;
8c6e50b0
KS
2873 int ret = 0;
2874
2875 /*
2876 * Let's call ->map_pages() first and use ->fault() as fallback
2877 * if page by the offset is not ready to be mapped (cold cache or
2878 * something).
2879 */
c118678b 2880 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
aecd6f44 2881 fault_around_bytes >> PAGE_SHIFT > 1) {
8c6e50b0
KS
2882 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2883 do_fault_around(vma, address, pte, pgoff, flags);
2884 if (!pte_same(*pte, orig_pte))
2885 goto unlock_out;
2886 pte_unmap_unlock(pte, ptl);
2887 }
e655fb29
KS
2888
2889 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2890 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2891 return ret;
2892
2893 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2894 if (unlikely(!pte_same(*pte, orig_pte))) {
2895 pte_unmap_unlock(pte, ptl);
2896 unlock_page(fault_page);
2897 page_cache_release(fault_page);
2898 return ret;
2899 }
3bb97794 2900 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 2901 unlock_page(fault_page);
8c6e50b0
KS
2902unlock_out:
2903 pte_unmap_unlock(pte, ptl);
e655fb29
KS
2904 return ret;
2905}
2906
ec47c3b9
KS
2907static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2908 unsigned long address, pmd_t *pmd,
2909 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2910{
2911 struct page *fault_page, *new_page;
00501b53 2912 struct mem_cgroup *memcg;
ec47c3b9 2913 spinlock_t *ptl;
3bb97794 2914 pte_t *pte;
ec47c3b9
KS
2915 int ret;
2916
2917 if (unlikely(anon_vma_prepare(vma)))
2918 return VM_FAULT_OOM;
2919
2920 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2921 if (!new_page)
2922 return VM_FAULT_OOM;
2923
00501b53 2924 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
ec47c3b9
KS
2925 page_cache_release(new_page);
2926 return VM_FAULT_OOM;
2927 }
2928
2929 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2930 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2931 goto uncharge_out;
2932
2933 copy_user_highpage(new_page, fault_page, address, vma);
2934 __SetPageUptodate(new_page);
2935
2936 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2937 if (unlikely(!pte_same(*pte, orig_pte))) {
2938 pte_unmap_unlock(pte, ptl);
2939 unlock_page(fault_page);
2940 page_cache_release(fault_page);
2941 goto uncharge_out;
2942 }
3bb97794 2943 do_set_pte(vma, address, new_page, pte, true, true);
00501b53
JW
2944 mem_cgroup_commit_charge(new_page, memcg, false);
2945 lru_cache_add_active_or_unevictable(new_page, vma);
ec47c3b9
KS
2946 pte_unmap_unlock(pte, ptl);
2947 unlock_page(fault_page);
2948 page_cache_release(fault_page);
2949 return ret;
2950uncharge_out:
00501b53 2951 mem_cgroup_cancel_charge(new_page, memcg);
ec47c3b9
KS
2952 page_cache_release(new_page);
2953 return ret;
2954}
2955
f0c6d4d2 2956static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2957 unsigned long address, pmd_t *pmd,
54cb8821 2958 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2959{
f0c6d4d2
KS
2960 struct page *fault_page;
2961 struct address_space *mapping;
8f4e2101 2962 spinlock_t *ptl;
3bb97794 2963 pte_t *pte;
f0c6d4d2 2964 int dirtied = 0;
f0c6d4d2 2965 int ret, tmp;
1d65f86d 2966
7eae74af
KS
2967 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2968 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 2969 return ret;
1da177e4
LT
2970
2971 /*
f0c6d4d2
KS
2972 * Check if the backing address space wants to know that the page is
2973 * about to become writable
1da177e4 2974 */
fb09a464
KS
2975 if (vma->vm_ops->page_mkwrite) {
2976 unlock_page(fault_page);
2977 tmp = do_page_mkwrite(vma, fault_page, address);
2978 if (unlikely(!tmp ||
2979 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
f0c6d4d2 2980 page_cache_release(fault_page);
fb09a464 2981 return tmp;
4294621f 2982 }
fb09a464
KS
2983 }
2984
f0c6d4d2
KS
2985 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2986 if (unlikely(!pte_same(*pte, orig_pte))) {
2987 pte_unmap_unlock(pte, ptl);
2988 unlock_page(fault_page);
2989 page_cache_release(fault_page);
2990 return ret;
1da177e4 2991 }
3bb97794 2992 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 2993 pte_unmap_unlock(pte, ptl);
b827e496 2994
f0c6d4d2
KS
2995 if (set_page_dirty(fault_page))
2996 dirtied = 1;
2997 mapping = fault_page->mapping;
2998 unlock_page(fault_page);
2999 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3000 /*
3001 * Some device drivers do not set page.mapping but still
3002 * dirty their pages
3003 */
3004 balance_dirty_pages_ratelimited(mapping);
d08b3851 3005 }
d00806b1 3006
f0c6d4d2
KS
3007 /* file_update_time outside page_lock */
3008 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3009 file_update_time(vma->vm_file);
b827e496 3010
1d65f86d 3011 return ret;
54cb8821 3012}
d00806b1 3013
9a95f3cf
PC
3014/*
3015 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3016 * but allow concurrent faults).
3017 * The mmap_sem may have been released depending on flags and our
3018 * return value. See filemap_fault() and __lock_page_or_retry().
3019 */
54cb8821
NP
3020static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3021 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3022 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3023{
3024 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3025 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3026
16abfa08 3027 pte_unmap(page_table);
e655fb29
KS
3028 if (!(flags & FAULT_FLAG_WRITE))
3029 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3030 orig_pte);
ec47c3b9
KS
3031 if (!(vma->vm_flags & VM_SHARED))
3032 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3033 orig_pte);
f0c6d4d2 3034 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3035}
3036
1da177e4
LT
3037/*
3038 * Fault of a previously existing named mapping. Repopulate the pte
3039 * from the encoded file_pte if possible. This enables swappable
3040 * nonlinear vmas.
8f4e2101
HD
3041 *
3042 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3043 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3044 * We return with pte unmapped and unlocked.
3045 * The mmap_sem may have been released depending on flags and our
3046 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3047 */
d0217ac0 3048static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3049 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3050 unsigned int flags, pte_t orig_pte)
1da177e4 3051{
65500d23 3052 pgoff_t pgoff;
1da177e4 3053
30c9f3a9
LT
3054 flags |= FAULT_FLAG_NONLINEAR;
3055
4c21e2f2 3056 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3057 return 0;
1da177e4 3058
2509ef26 3059 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3060 /*
3061 * Page table corrupted: show pte and kill process.
3062 */
3dc14741 3063 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3064 return VM_FAULT_SIGBUS;
65500d23 3065 }
65500d23
HD
3066
3067 pgoff = pte_to_pgoff(orig_pte);
e655fb29
KS
3068 if (!(flags & FAULT_FLAG_WRITE))
3069 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3070 orig_pte);
ec47c3b9
KS
3071 if (!(vma->vm_flags & VM_SHARED))
3072 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3073 orig_pte);
f0c6d4d2 3074 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3075}
3076
b19a9939 3077static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3078 unsigned long addr, int page_nid,
3079 int *flags)
9532fec1
MG
3080{
3081 get_page(page);
3082
3083 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3084 if (page_nid == numa_node_id()) {
9532fec1 3085 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3086 *flags |= TNF_FAULT_LOCAL;
3087 }
9532fec1
MG
3088
3089 return mpol_misplaced(page, vma, addr);
3090}
3091
b19a9939 3092static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3093 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3094{
4daae3b4 3095 struct page *page = NULL;
d10e63f2 3096 spinlock_t *ptl;
8191acbd 3097 int page_nid = -1;
90572890 3098 int last_cpupid;
cbee9f88 3099 int target_nid;
b8593bfd 3100 bool migrated = false;
6688cc05 3101 int flags = 0;
d10e63f2
MG
3102
3103 /*
3104 * The "pte" at this point cannot be used safely without
3105 * validation through pte_unmap_same(). It's of NUMA type but
3106 * the pfn may be screwed if the read is non atomic.
3107 *
3108 * ptep_modify_prot_start is not called as this is clearing
3109 * the _PAGE_NUMA bit and it is not really expected that there
3110 * would be concurrent hardware modifications to the PTE.
3111 */
3112 ptl = pte_lockptr(mm, pmd);
3113 spin_lock(ptl);
4daae3b4
MG
3114 if (unlikely(!pte_same(*ptep, pte))) {
3115 pte_unmap_unlock(ptep, ptl);
3116 goto out;
3117 }
3118
d10e63f2
MG
3119 pte = pte_mknonnuma(pte);
3120 set_pte_at(mm, addr, ptep, pte);
3121 update_mmu_cache(vma, addr, ptep);
3122
3123 page = vm_normal_page(vma, addr, pte);
3124 if (!page) {
3125 pte_unmap_unlock(ptep, ptl);
3126 return 0;
3127 }
a1a46184 3128 BUG_ON(is_zero_pfn(page_to_pfn(page)));
d10e63f2 3129
6688cc05
PZ
3130 /*
3131 * Avoid grouping on DSO/COW pages in specific and RO pages
3132 * in general, RO pages shouldn't hurt as much anyway since
3133 * they can be in shared cache state.
3134 */
3135 if (!pte_write(pte))
3136 flags |= TNF_NO_GROUP;
3137
dabe1d99
RR
3138 /*
3139 * Flag if the page is shared between multiple address spaces. This
3140 * is later used when determining whether to group tasks together
3141 */
3142 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3143 flags |= TNF_SHARED;
3144
90572890 3145 last_cpupid = page_cpupid_last(page);
8191acbd 3146 page_nid = page_to_nid(page);
04bb2f94 3147 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3148 pte_unmap_unlock(ptep, ptl);
4daae3b4 3149 if (target_nid == -1) {
4daae3b4
MG
3150 put_page(page);
3151 goto out;
3152 }
3153
3154 /* Migrate to the requested node */
1bc115d8 3155 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3156 if (migrated) {
8191acbd 3157 page_nid = target_nid;
6688cc05
PZ
3158 flags |= TNF_MIGRATED;
3159 }
4daae3b4
MG
3160
3161out:
8191acbd 3162 if (page_nid != -1)
6688cc05 3163 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3164 return 0;
3165}
3166
1da177e4
LT
3167/*
3168 * These routines also need to handle stuff like marking pages dirty
3169 * and/or accessed for architectures that don't do it in hardware (most
3170 * RISC architectures). The early dirtying is also good on the i386.
3171 *
3172 * There is also a hook called "update_mmu_cache()" that architectures
3173 * with external mmu caches can use to update those (ie the Sparc or
3174 * PowerPC hashed page tables that act as extended TLBs).
3175 *
c74df32c
HD
3176 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3177 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3178 * We return with pte unmapped and unlocked.
3179 *
3180 * The mmap_sem may have been released depending on flags and our
3181 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3182 */
c0292554 3183static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3184 struct vm_area_struct *vma, unsigned long address,
3185 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3186{
3187 pte_t entry;
8f4e2101 3188 spinlock_t *ptl;
1da177e4 3189
c0d73261 3190 entry = ACCESS_ONCE(*pte);
1da177e4 3191 if (!pte_present(entry)) {
65500d23 3192 if (pte_none(entry)) {
f4b81804 3193 if (vma->vm_ops) {
3c18ddd1 3194 if (likely(vma->vm_ops->fault))
54cb8821 3195 return do_linear_fault(mm, vma, address,
30c9f3a9 3196 pte, pmd, flags, entry);
f4b81804
JS
3197 }
3198 return do_anonymous_page(mm, vma, address,
30c9f3a9 3199 pte, pmd, flags);
65500d23 3200 }
1da177e4 3201 if (pte_file(entry))
d0217ac0 3202 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3203 pte, pmd, flags, entry);
65500d23 3204 return do_swap_page(mm, vma, address,
30c9f3a9 3205 pte, pmd, flags, entry);
1da177e4
LT
3206 }
3207
d10e63f2
MG
3208 if (pte_numa(entry))
3209 return do_numa_page(mm, vma, address, entry, pte, pmd);
3210
4c21e2f2 3211 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3212 spin_lock(ptl);
3213 if (unlikely(!pte_same(*pte, entry)))
3214 goto unlock;
30c9f3a9 3215 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3216 if (!pte_write(entry))
8f4e2101
HD
3217 return do_wp_page(mm, vma, address,
3218 pte, pmd, ptl, entry);
1da177e4
LT
3219 entry = pte_mkdirty(entry);
3220 }
3221 entry = pte_mkyoung(entry);
30c9f3a9 3222 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3223 update_mmu_cache(vma, address, pte);
1a44e149
AA
3224 } else {
3225 /*
3226 * This is needed only for protection faults but the arch code
3227 * is not yet telling us if this is a protection fault or not.
3228 * This still avoids useless tlb flushes for .text page faults
3229 * with threads.
3230 */
30c9f3a9 3231 if (flags & FAULT_FLAG_WRITE)
61c77326 3232 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3233 }
8f4e2101
HD
3234unlock:
3235 pte_unmap_unlock(pte, ptl);
83c54070 3236 return 0;
1da177e4
LT
3237}
3238
3239/*
3240 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3241 *
3242 * The mmap_sem may have been released depending on flags and our
3243 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3244 */
519e5247
JW
3245static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3246 unsigned long address, unsigned int flags)
1da177e4
LT
3247{
3248 pgd_t *pgd;
3249 pud_t *pud;
3250 pmd_t *pmd;
3251 pte_t *pte;
3252
ac9b9c66 3253 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3254 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3255
1da177e4 3256 pgd = pgd_offset(mm, address);
1da177e4
LT
3257 pud = pud_alloc(mm, pgd, address);
3258 if (!pud)
c74df32c 3259 return VM_FAULT_OOM;
1da177e4
LT
3260 pmd = pmd_alloc(mm, pud, address);
3261 if (!pmd)
c74df32c 3262 return VM_FAULT_OOM;
71e3aac0 3263 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
c0292554 3264 int ret = VM_FAULT_FALLBACK;
71e3aac0 3265 if (!vma->vm_ops)
c0292554
KS
3266 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3267 pmd, flags);
3268 if (!(ret & VM_FAULT_FALLBACK))
3269 return ret;
71e3aac0
AA
3270 } else {
3271 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3272 int ret;
3273
71e3aac0
AA
3274 barrier();
3275 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3276 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3277
e53289c0
LT
3278 /*
3279 * If the pmd is splitting, return and retry the
3280 * the fault. Alternative: wait until the split
3281 * is done, and goto retry.
3282 */
3283 if (pmd_trans_splitting(orig_pmd))
3284 return 0;
3285
3d59eebc 3286 if (pmd_numa(orig_pmd))
4daae3b4 3287 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3288 orig_pmd, pmd);
3289
3d59eebc 3290 if (dirty && !pmd_write(orig_pmd)) {
1f1d06c3
DR
3291 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3292 orig_pmd);
9845cbbd
KS
3293 if (!(ret & VM_FAULT_FALLBACK))
3294 return ret;
a1dd450b
WD
3295 } else {
3296 huge_pmd_set_accessed(mm, vma, address, pmd,
3297 orig_pmd, dirty);
9845cbbd 3298 return 0;
1f1d06c3 3299 }
71e3aac0
AA
3300 }
3301 }
3302
3303 /*
3304 * Use __pte_alloc instead of pte_alloc_map, because we can't
3305 * run pte_offset_map on the pmd, if an huge pmd could
3306 * materialize from under us from a different thread.
3307 */
4fd01770
MG
3308 if (unlikely(pmd_none(*pmd)) &&
3309 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3310 return VM_FAULT_OOM;
71e3aac0
AA
3311 /* if an huge pmd materialized from under us just retry later */
3312 if (unlikely(pmd_trans_huge(*pmd)))
3313 return 0;
3314 /*
3315 * A regular pmd is established and it can't morph into a huge pmd
3316 * from under us anymore at this point because we hold the mmap_sem
3317 * read mode and khugepaged takes it in write mode. So now it's
3318 * safe to run pte_offset_map().
3319 */
3320 pte = pte_offset_map(pmd, address);
1da177e4 3321
30c9f3a9 3322 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3323}
3324
9a95f3cf
PC
3325/*
3326 * By the time we get here, we already hold the mm semaphore
3327 *
3328 * The mmap_sem may have been released depending on flags and our
3329 * return value. See filemap_fault() and __lock_page_or_retry().
3330 */
519e5247
JW
3331int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3332 unsigned long address, unsigned int flags)
3333{
3334 int ret;
3335
3336 __set_current_state(TASK_RUNNING);
3337
3338 count_vm_event(PGFAULT);
3339 mem_cgroup_count_vm_event(mm, PGFAULT);
3340
3341 /* do counter updates before entering really critical section. */
3342 check_sync_rss_stat(current);
3343
3344 /*
3345 * Enable the memcg OOM handling for faults triggered in user
3346 * space. Kernel faults are handled more gracefully.
3347 */
3348 if (flags & FAULT_FLAG_USER)
49426420 3349 mem_cgroup_oom_enable();
519e5247
JW
3350
3351 ret = __handle_mm_fault(mm, vma, address, flags);
3352
49426420
JW
3353 if (flags & FAULT_FLAG_USER) {
3354 mem_cgroup_oom_disable();
3355 /*
3356 * The task may have entered a memcg OOM situation but
3357 * if the allocation error was handled gracefully (no
3358 * VM_FAULT_OOM), there is no need to kill anything.
3359 * Just clean up the OOM state peacefully.
3360 */
3361 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3362 mem_cgroup_oom_synchronize(false);
3363 }
3812c8c8 3364
519e5247
JW
3365 return ret;
3366}
3367
1da177e4
LT
3368#ifndef __PAGETABLE_PUD_FOLDED
3369/*
3370 * Allocate page upper directory.
872fec16 3371 * We've already handled the fast-path in-line.
1da177e4 3372 */
1bb3630e 3373int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3374{
c74df32c
HD
3375 pud_t *new = pud_alloc_one(mm, address);
3376 if (!new)
1bb3630e 3377 return -ENOMEM;
1da177e4 3378
362a61ad
NP
3379 smp_wmb(); /* See comment in __pte_alloc */
3380
872fec16 3381 spin_lock(&mm->page_table_lock);
1bb3630e 3382 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3383 pud_free(mm, new);
1bb3630e
HD
3384 else
3385 pgd_populate(mm, pgd, new);
c74df32c 3386 spin_unlock(&mm->page_table_lock);
1bb3630e 3387 return 0;
1da177e4
LT
3388}
3389#endif /* __PAGETABLE_PUD_FOLDED */
3390
3391#ifndef __PAGETABLE_PMD_FOLDED
3392/*
3393 * Allocate page middle directory.
872fec16 3394 * We've already handled the fast-path in-line.
1da177e4 3395 */
1bb3630e 3396int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3397{
c74df32c
HD
3398 pmd_t *new = pmd_alloc_one(mm, address);
3399 if (!new)
1bb3630e 3400 return -ENOMEM;
1da177e4 3401
362a61ad
NP
3402 smp_wmb(); /* See comment in __pte_alloc */
3403
872fec16 3404 spin_lock(&mm->page_table_lock);
1da177e4 3405#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3406 if (pud_present(*pud)) /* Another has populated it */
5e541973 3407 pmd_free(mm, new);
1bb3630e
HD
3408 else
3409 pud_populate(mm, pud, new);
1da177e4 3410#else
1bb3630e 3411 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3412 pmd_free(mm, new);
1bb3630e
HD
3413 else
3414 pgd_populate(mm, pud, new);
1da177e4 3415#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3416 spin_unlock(&mm->page_table_lock);
1bb3630e 3417 return 0;
e0f39591 3418}
1da177e4
LT
3419#endif /* __PAGETABLE_PMD_FOLDED */
3420
1b36ba81 3421static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3422 pte_t **ptepp, spinlock_t **ptlp)
3423{
3424 pgd_t *pgd;
3425 pud_t *pud;
3426 pmd_t *pmd;
3427 pte_t *ptep;
3428
3429 pgd = pgd_offset(mm, address);
3430 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3431 goto out;
3432
3433 pud = pud_offset(pgd, address);
3434 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3435 goto out;
3436
3437 pmd = pmd_offset(pud, address);
f66055ab 3438 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3439 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3440 goto out;
3441
3442 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3443 if (pmd_huge(*pmd))
3444 goto out;
3445
3446 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3447 if (!ptep)
3448 goto out;
3449 if (!pte_present(*ptep))
3450 goto unlock;
3451 *ptepp = ptep;
3452 return 0;
3453unlock:
3454 pte_unmap_unlock(ptep, *ptlp);
3455out:
3456 return -EINVAL;
3457}
3458
1b36ba81
NK
3459static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3460 pte_t **ptepp, spinlock_t **ptlp)
3461{
3462 int res;
3463
3464 /* (void) is needed to make gcc happy */
3465 (void) __cond_lock(*ptlp,
3466 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3467 return res;
3468}
3469
3b6748e2
JW
3470/**
3471 * follow_pfn - look up PFN at a user virtual address
3472 * @vma: memory mapping
3473 * @address: user virtual address
3474 * @pfn: location to store found PFN
3475 *
3476 * Only IO mappings and raw PFN mappings are allowed.
3477 *
3478 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3479 */
3480int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3481 unsigned long *pfn)
3482{
3483 int ret = -EINVAL;
3484 spinlock_t *ptl;
3485 pte_t *ptep;
3486
3487 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3488 return ret;
3489
3490 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3491 if (ret)
3492 return ret;
3493 *pfn = pte_pfn(*ptep);
3494 pte_unmap_unlock(ptep, ptl);
3495 return 0;
3496}
3497EXPORT_SYMBOL(follow_pfn);
3498
28b2ee20 3499#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3500int follow_phys(struct vm_area_struct *vma,
3501 unsigned long address, unsigned int flags,
3502 unsigned long *prot, resource_size_t *phys)
28b2ee20 3503{
03668a4d 3504 int ret = -EINVAL;
28b2ee20
RR
3505 pte_t *ptep, pte;
3506 spinlock_t *ptl;
28b2ee20 3507
d87fe660 3508 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3509 goto out;
28b2ee20 3510
03668a4d 3511 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3512 goto out;
28b2ee20 3513 pte = *ptep;
03668a4d 3514
28b2ee20
RR
3515 if ((flags & FOLL_WRITE) && !pte_write(pte))
3516 goto unlock;
28b2ee20
RR
3517
3518 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3519 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3520
03668a4d 3521 ret = 0;
28b2ee20
RR
3522unlock:
3523 pte_unmap_unlock(ptep, ptl);
3524out:
d87fe660 3525 return ret;
28b2ee20
RR
3526}
3527
3528int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3529 void *buf, int len, int write)
3530{
3531 resource_size_t phys_addr;
3532 unsigned long prot = 0;
2bc7273b 3533 void __iomem *maddr;
28b2ee20
RR
3534 int offset = addr & (PAGE_SIZE-1);
3535
d87fe660 3536 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3537 return -EINVAL;
3538
3539 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3540 if (write)
3541 memcpy_toio(maddr + offset, buf, len);
3542 else
3543 memcpy_fromio(buf, maddr + offset, len);
3544 iounmap(maddr);
3545
3546 return len;
3547}
5a73633e 3548EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3549#endif
3550
0ec76a11 3551/*
206cb636
SW
3552 * Access another process' address space as given in mm. If non-NULL, use the
3553 * given task for page fault accounting.
0ec76a11 3554 */
206cb636
SW
3555static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3556 unsigned long addr, void *buf, int len, int write)
0ec76a11 3557{
0ec76a11 3558 struct vm_area_struct *vma;
0ec76a11
DH
3559 void *old_buf = buf;
3560
0ec76a11 3561 down_read(&mm->mmap_sem);
183ff22b 3562 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3563 while (len) {
3564 int bytes, ret, offset;
3565 void *maddr;
28b2ee20 3566 struct page *page = NULL;
0ec76a11
DH
3567
3568 ret = get_user_pages(tsk, mm, addr, 1,
3569 write, 1, &page, &vma);
28b2ee20 3570 if (ret <= 0) {
dbffcd03
RR
3571#ifndef CONFIG_HAVE_IOREMAP_PROT
3572 break;
3573#else
28b2ee20
RR
3574 /*
3575 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3576 * we can access using slightly different code.
3577 */
28b2ee20 3578 vma = find_vma(mm, addr);
fe936dfc 3579 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3580 break;
3581 if (vma->vm_ops && vma->vm_ops->access)
3582 ret = vma->vm_ops->access(vma, addr, buf,
3583 len, write);
3584 if (ret <= 0)
28b2ee20
RR
3585 break;
3586 bytes = ret;
dbffcd03 3587#endif
0ec76a11 3588 } else {
28b2ee20
RR
3589 bytes = len;
3590 offset = addr & (PAGE_SIZE-1);
3591 if (bytes > PAGE_SIZE-offset)
3592 bytes = PAGE_SIZE-offset;
3593
3594 maddr = kmap(page);
3595 if (write) {
3596 copy_to_user_page(vma, page, addr,
3597 maddr + offset, buf, bytes);
3598 set_page_dirty_lock(page);
3599 } else {
3600 copy_from_user_page(vma, page, addr,
3601 buf, maddr + offset, bytes);
3602 }
3603 kunmap(page);
3604 page_cache_release(page);
0ec76a11 3605 }
0ec76a11
DH
3606 len -= bytes;
3607 buf += bytes;
3608 addr += bytes;
3609 }
3610 up_read(&mm->mmap_sem);
0ec76a11
DH
3611
3612 return buf - old_buf;
3613}
03252919 3614
5ddd36b9 3615/**
ae91dbfc 3616 * access_remote_vm - access another process' address space
5ddd36b9
SW
3617 * @mm: the mm_struct of the target address space
3618 * @addr: start address to access
3619 * @buf: source or destination buffer
3620 * @len: number of bytes to transfer
3621 * @write: whether the access is a write
3622 *
3623 * The caller must hold a reference on @mm.
3624 */
3625int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3626 void *buf, int len, int write)
3627{
3628 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3629}
3630
206cb636
SW
3631/*
3632 * Access another process' address space.
3633 * Source/target buffer must be kernel space,
3634 * Do not walk the page table directly, use get_user_pages
3635 */
3636int access_process_vm(struct task_struct *tsk, unsigned long addr,
3637 void *buf, int len, int write)
3638{
3639 struct mm_struct *mm;
3640 int ret;
3641
3642 mm = get_task_mm(tsk);
3643 if (!mm)
3644 return 0;
3645
3646 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3647 mmput(mm);
3648
3649 return ret;
3650}
3651
03252919
AK
3652/*
3653 * Print the name of a VMA.
3654 */
3655void print_vma_addr(char *prefix, unsigned long ip)
3656{
3657 struct mm_struct *mm = current->mm;
3658 struct vm_area_struct *vma;
3659
e8bff74a
IM
3660 /*
3661 * Do not print if we are in atomic
3662 * contexts (in exception stacks, etc.):
3663 */
3664 if (preempt_count())
3665 return;
3666
03252919
AK
3667 down_read(&mm->mmap_sem);
3668 vma = find_vma(mm, ip);
3669 if (vma && vma->vm_file) {
3670 struct file *f = vma->vm_file;
3671 char *buf = (char *)__get_free_page(GFP_KERNEL);
3672 if (buf) {
2fbc57c5 3673 char *p;
03252919 3674
cf28b486 3675 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3676 if (IS_ERR(p))
3677 p = "?";
2fbc57c5 3678 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3679 vma->vm_start,
3680 vma->vm_end - vma->vm_start);
3681 free_page((unsigned long)buf);
3682 }
3683 }
51a07e50 3684 up_read(&mm->mmap_sem);
03252919 3685}
3ee1afa3 3686
662bbcb2 3687#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3ee1afa3
NP
3688void might_fault(void)
3689{
95156f00
PZ
3690 /*
3691 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3692 * holding the mmap_sem, this is safe because kernel memory doesn't
3693 * get paged out, therefore we'll never actually fault, and the
3694 * below annotations will generate false positives.
3695 */
3696 if (segment_eq(get_fs(), KERNEL_DS))
3697 return;
3698
3ee1afa3
NP
3699 /*
3700 * it would be nicer only to annotate paths which are not under
3701 * pagefault_disable, however that requires a larger audit and
3702 * providing helpers like get_user_atomic.
3703 */
662bbcb2
MT
3704 if (in_atomic())
3705 return;
3706
3707 __might_sleep(__FILE__, __LINE__, 0);
3708
3709 if (current->mm)
3ee1afa3
NP
3710 might_lock_read(&current->mm->mmap_sem);
3711}
3712EXPORT_SYMBOL(might_fault);
3713#endif
47ad8475
AA
3714
3715#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3716static void clear_gigantic_page(struct page *page,
3717 unsigned long addr,
3718 unsigned int pages_per_huge_page)
3719{
3720 int i;
3721 struct page *p = page;
3722
3723 might_sleep();
3724 for (i = 0; i < pages_per_huge_page;
3725 i++, p = mem_map_next(p, page, i)) {
3726 cond_resched();
3727 clear_user_highpage(p, addr + i * PAGE_SIZE);
3728 }
3729}
3730void clear_huge_page(struct page *page,
3731 unsigned long addr, unsigned int pages_per_huge_page)
3732{
3733 int i;
3734
3735 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3736 clear_gigantic_page(page, addr, pages_per_huge_page);
3737 return;
3738 }
3739
3740 might_sleep();
3741 for (i = 0; i < pages_per_huge_page; i++) {
3742 cond_resched();
3743 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3744 }
3745}
3746
3747static void copy_user_gigantic_page(struct page *dst, struct page *src,
3748 unsigned long addr,
3749 struct vm_area_struct *vma,
3750 unsigned int pages_per_huge_page)
3751{
3752 int i;
3753 struct page *dst_base = dst;
3754 struct page *src_base = src;
3755
3756 for (i = 0; i < pages_per_huge_page; ) {
3757 cond_resched();
3758 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3759
3760 i++;
3761 dst = mem_map_next(dst, dst_base, i);
3762 src = mem_map_next(src, src_base, i);
3763 }
3764}
3765
3766void copy_user_huge_page(struct page *dst, struct page *src,
3767 unsigned long addr, struct vm_area_struct *vma,
3768 unsigned int pages_per_huge_page)
3769{
3770 int i;
3771
3772 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3773 copy_user_gigantic_page(dst, src, addr, vma,
3774 pages_per_huge_page);
3775 return;
3776 }
3777
3778 might_sleep();
3779 for (i = 0; i < pages_per_huge_page; i++) {
3780 cond_resched();
3781 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3782 }
3783}
3784#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3785
40b64acd 3786#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3787
3788static struct kmem_cache *page_ptl_cachep;
3789
3790void __init ptlock_cache_init(void)
3791{
3792 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3793 SLAB_PANIC, NULL);
3794}
3795
539edb58 3796bool ptlock_alloc(struct page *page)
49076ec2
KS
3797{
3798 spinlock_t *ptl;
3799
b35f1819 3800 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3801 if (!ptl)
3802 return false;
539edb58 3803 page->ptl = ptl;
49076ec2
KS
3804 return true;
3805}
3806
539edb58 3807void ptlock_free(struct page *page)
49076ec2 3808{
b35f1819 3809 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3810}
3811#endif