]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
mm/compaction: improve comment for compact_memory tunable knob handler
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
0abdd7a8 62#include <linux/dma-debug.h>
1592eef0 63#include <linux/debugfs.h>
6b251fc9 64#include <linux/userfaultfd_k.h>
1da177e4 65
6952b61d 66#include <asm/io.h>
1da177e4
LT
67#include <asm/pgalloc.h>
68#include <asm/uaccess.h>
69#include <asm/tlb.h>
70#include <asm/tlbflush.h>
71#include <asm/pgtable.h>
72
42b77728
JB
73#include "internal.h"
74
90572890
PZ
75#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
76#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
77#endif
78
d41dee36 79#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
80/* use the per-pgdat data instead for discontigmem - mbligh */
81unsigned long max_mapnr;
82struct page *mem_map;
83
84EXPORT_SYMBOL(max_mapnr);
85EXPORT_SYMBOL(mem_map);
86#endif
87
1da177e4
LT
88/*
89 * A number of key systems in x86 including ioremap() rely on the assumption
90 * that high_memory defines the upper bound on direct map memory, then end
91 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
92 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93 * and ZONE_HIGHMEM.
94 */
95void * high_memory;
1da177e4 96
1da177e4 97EXPORT_SYMBOL(high_memory);
1da177e4 98
32a93233
IM
99/*
100 * Randomize the address space (stacks, mmaps, brk, etc.).
101 *
102 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103 * as ancient (libc5 based) binaries can segfault. )
104 */
105int randomize_va_space __read_mostly =
106#ifdef CONFIG_COMPAT_BRK
107 1;
108#else
109 2;
110#endif
a62eaf15
AK
111
112static int __init disable_randmaps(char *s)
113{
114 randomize_va_space = 0;
9b41046c 115 return 1;
a62eaf15
AK
116}
117__setup("norandmaps", disable_randmaps);
118
62eede62 119unsigned long zero_pfn __read_mostly;
03f6462a 120unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 121
0b70068e
AB
122EXPORT_SYMBOL(zero_pfn);
123
a13ea5b7
HD
124/*
125 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126 */
127static int __init init_zero_pfn(void)
128{
129 zero_pfn = page_to_pfn(ZERO_PAGE(0));
130 return 0;
131}
132core_initcall(init_zero_pfn);
a62eaf15 133
d559db08 134
34e55232
KH
135#if defined(SPLIT_RSS_COUNTING)
136
ea48cf78 137void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
138{
139 int i;
140
141 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
142 if (current->rss_stat.count[i]) {
143 add_mm_counter(mm, i, current->rss_stat.count[i]);
144 current->rss_stat.count[i] = 0;
34e55232
KH
145 }
146 }
05af2e10 147 current->rss_stat.events = 0;
34e55232
KH
148}
149
150static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151{
152 struct task_struct *task = current;
153
154 if (likely(task->mm == mm))
155 task->rss_stat.count[member] += val;
156 else
157 add_mm_counter(mm, member, val);
158}
159#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162/* sync counter once per 64 page faults */
163#define TASK_RSS_EVENTS_THRESH (64)
164static void check_sync_rss_stat(struct task_struct *task)
165{
166 if (unlikely(task != current))
167 return;
168 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 169 sync_mm_rss(task->mm);
34e55232 170}
9547d01b 171#else /* SPLIT_RSS_COUNTING */
34e55232
KH
172
173#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176static void check_sync_rss_stat(struct task_struct *task)
177{
178}
179
9547d01b
PZ
180#endif /* SPLIT_RSS_COUNTING */
181
182#ifdef HAVE_GENERIC_MMU_GATHER
183
ca1d6c7d 184static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
185{
186 struct mmu_gather_batch *batch;
187
188 batch = tlb->active;
189 if (batch->next) {
190 tlb->active = batch->next;
ca1d6c7d 191 return true;
9547d01b
PZ
192 }
193
53a59fc6 194 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 195 return false;
53a59fc6 196
9547d01b
PZ
197 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198 if (!batch)
ca1d6c7d 199 return false;
9547d01b 200
53a59fc6 201 tlb->batch_count++;
9547d01b
PZ
202 batch->next = NULL;
203 batch->nr = 0;
204 batch->max = MAX_GATHER_BATCH;
205
206 tlb->active->next = batch;
207 tlb->active = batch;
208
ca1d6c7d 209 return true;
9547d01b
PZ
210}
211
212/* tlb_gather_mmu
213 * Called to initialize an (on-stack) mmu_gather structure for page-table
214 * tear-down from @mm. The @fullmm argument is used when @mm is without
215 * users and we're going to destroy the full address space (exit/execve).
216 */
2b047252 217void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
218{
219 tlb->mm = mm;
220
2b047252
LT
221 /* Is it from 0 to ~0? */
222 tlb->fullmm = !(start | (end+1));
1de14c3c 223 tlb->need_flush_all = 0;
9547d01b
PZ
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
53a59fc6 228 tlb->batch_count = 0;
9547d01b
PZ
229
230#ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232#endif
fb7332a9
WD
233
234 __tlb_reset_range(tlb);
9547d01b
PZ
235}
236
1cf35d47 237static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 238{
721c21c1
WD
239 if (!tlb->end)
240 return;
241
9547d01b 242 tlb_flush(tlb);
34ee645e 243 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
244#ifdef CONFIG_HAVE_RCU_TABLE_FREE
245 tlb_table_flush(tlb);
34e55232 246#endif
fb7332a9 247 __tlb_reset_range(tlb);
1cf35d47
LT
248}
249
250static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251{
252 struct mmu_gather_batch *batch;
34e55232 253
721c21c1 254 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
255 free_pages_and_swap_cache(batch->pages, batch->nr);
256 batch->nr = 0;
257 }
258 tlb->active = &tlb->local;
259}
260
1cf35d47
LT
261void tlb_flush_mmu(struct mmu_gather *tlb)
262{
1cf35d47
LT
263 tlb_flush_mmu_tlbonly(tlb);
264 tlb_flush_mmu_free(tlb);
265}
266
9547d01b
PZ
267/* tlb_finish_mmu
268 * Called at the end of the shootdown operation to free up any resources
269 * that were required.
270 */
271void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272{
273 struct mmu_gather_batch *batch, *next;
274
275 tlb_flush_mmu(tlb);
276
277 /* keep the page table cache within bounds */
278 check_pgt_cache();
279
280 for (batch = tlb->local.next; batch; batch = next) {
281 next = batch->next;
282 free_pages((unsigned long)batch, 0);
283 }
284 tlb->local.next = NULL;
285}
286
287/* __tlb_remove_page
288 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289 * handling the additional races in SMP caused by other CPUs caching valid
290 * mappings in their TLBs. Returns the number of free page slots left.
291 * When out of page slots we must call tlb_flush_mmu().
292 */
293int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294{
295 struct mmu_gather_batch *batch;
296
fb7332a9 297 VM_BUG_ON(!tlb->end);
9547d01b 298
9547d01b
PZ
299 batch = tlb->active;
300 batch->pages[batch->nr++] = page;
301 if (batch->nr == batch->max) {
302 if (!tlb_next_batch(tlb))
303 return 0;
0b43c3aa 304 batch = tlb->active;
9547d01b 305 }
309381fe 306 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b
PZ
307
308 return batch->max - batch->nr;
309}
310
311#endif /* HAVE_GENERIC_MMU_GATHER */
312
26723911
PZ
313#ifdef CONFIG_HAVE_RCU_TABLE_FREE
314
315/*
316 * See the comment near struct mmu_table_batch.
317 */
318
319static void tlb_remove_table_smp_sync(void *arg)
320{
321 /* Simply deliver the interrupt */
322}
323
324static void tlb_remove_table_one(void *table)
325{
326 /*
327 * This isn't an RCU grace period and hence the page-tables cannot be
328 * assumed to be actually RCU-freed.
329 *
330 * It is however sufficient for software page-table walkers that rely on
331 * IRQ disabling. See the comment near struct mmu_table_batch.
332 */
333 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334 __tlb_remove_table(table);
335}
336
337static void tlb_remove_table_rcu(struct rcu_head *head)
338{
339 struct mmu_table_batch *batch;
340 int i;
341
342 batch = container_of(head, struct mmu_table_batch, rcu);
343
344 for (i = 0; i < batch->nr; i++)
345 __tlb_remove_table(batch->tables[i]);
346
347 free_page((unsigned long)batch);
348}
349
350void tlb_table_flush(struct mmu_gather *tlb)
351{
352 struct mmu_table_batch **batch = &tlb->batch;
353
354 if (*batch) {
355 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356 *batch = NULL;
357 }
358}
359
360void tlb_remove_table(struct mmu_gather *tlb, void *table)
361{
362 struct mmu_table_batch **batch = &tlb->batch;
363
26723911
PZ
364 /*
365 * When there's less then two users of this mm there cannot be a
366 * concurrent page-table walk.
367 */
368 if (atomic_read(&tlb->mm->mm_users) < 2) {
369 __tlb_remove_table(table);
370 return;
371 }
372
373 if (*batch == NULL) {
374 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375 if (*batch == NULL) {
376 tlb_remove_table_one(table);
377 return;
378 }
379 (*batch)->nr = 0;
380 }
381 (*batch)->tables[(*batch)->nr++] = table;
382 if ((*batch)->nr == MAX_TABLE_BATCH)
383 tlb_table_flush(tlb);
384}
385
9547d01b 386#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 387
1da177e4
LT
388/*
389 * Note: this doesn't free the actual pages themselves. That
390 * has been handled earlier when unmapping all the memory regions.
391 */
9e1b32ca
BH
392static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393 unsigned long addr)
1da177e4 394{
2f569afd 395 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 396 pmd_clear(pmd);
9e1b32ca 397 pte_free_tlb(tlb, token, addr);
e1f56c89 398 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
399}
400
e0da382c
HD
401static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402 unsigned long addr, unsigned long end,
403 unsigned long floor, unsigned long ceiling)
1da177e4
LT
404{
405 pmd_t *pmd;
406 unsigned long next;
e0da382c 407 unsigned long start;
1da177e4 408
e0da382c 409 start = addr;
1da177e4 410 pmd = pmd_offset(pud, addr);
1da177e4
LT
411 do {
412 next = pmd_addr_end(addr, end);
413 if (pmd_none_or_clear_bad(pmd))
414 continue;
9e1b32ca 415 free_pte_range(tlb, pmd, addr);
1da177e4
LT
416 } while (pmd++, addr = next, addr != end);
417
e0da382c
HD
418 start &= PUD_MASK;
419 if (start < floor)
420 return;
421 if (ceiling) {
422 ceiling &= PUD_MASK;
423 if (!ceiling)
424 return;
1da177e4 425 }
e0da382c
HD
426 if (end - 1 > ceiling - 1)
427 return;
428
429 pmd = pmd_offset(pud, start);
430 pud_clear(pud);
9e1b32ca 431 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 432 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
433}
434
e0da382c
HD
435static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
436 unsigned long addr, unsigned long end,
437 unsigned long floor, unsigned long ceiling)
1da177e4
LT
438{
439 pud_t *pud;
440 unsigned long next;
e0da382c 441 unsigned long start;
1da177e4 442
e0da382c 443 start = addr;
1da177e4 444 pud = pud_offset(pgd, addr);
1da177e4
LT
445 do {
446 next = pud_addr_end(addr, end);
447 if (pud_none_or_clear_bad(pud))
448 continue;
e0da382c 449 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
450 } while (pud++, addr = next, addr != end);
451
e0da382c
HD
452 start &= PGDIR_MASK;
453 if (start < floor)
454 return;
455 if (ceiling) {
456 ceiling &= PGDIR_MASK;
457 if (!ceiling)
458 return;
1da177e4 459 }
e0da382c
HD
460 if (end - 1 > ceiling - 1)
461 return;
462
463 pud = pud_offset(pgd, start);
464 pgd_clear(pgd);
9e1b32ca 465 pud_free_tlb(tlb, pud, start);
1da177e4
LT
466}
467
468/*
e0da382c 469 * This function frees user-level page tables of a process.
1da177e4 470 */
42b77728 471void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
472 unsigned long addr, unsigned long end,
473 unsigned long floor, unsigned long ceiling)
1da177e4
LT
474{
475 pgd_t *pgd;
476 unsigned long next;
e0da382c
HD
477
478 /*
479 * The next few lines have given us lots of grief...
480 *
481 * Why are we testing PMD* at this top level? Because often
482 * there will be no work to do at all, and we'd prefer not to
483 * go all the way down to the bottom just to discover that.
484 *
485 * Why all these "- 1"s? Because 0 represents both the bottom
486 * of the address space and the top of it (using -1 for the
487 * top wouldn't help much: the masks would do the wrong thing).
488 * The rule is that addr 0 and floor 0 refer to the bottom of
489 * the address space, but end 0 and ceiling 0 refer to the top
490 * Comparisons need to use "end - 1" and "ceiling - 1" (though
491 * that end 0 case should be mythical).
492 *
493 * Wherever addr is brought up or ceiling brought down, we must
494 * be careful to reject "the opposite 0" before it confuses the
495 * subsequent tests. But what about where end is brought down
496 * by PMD_SIZE below? no, end can't go down to 0 there.
497 *
498 * Whereas we round start (addr) and ceiling down, by different
499 * masks at different levels, in order to test whether a table
500 * now has no other vmas using it, so can be freed, we don't
501 * bother to round floor or end up - the tests don't need that.
502 */
1da177e4 503
e0da382c
HD
504 addr &= PMD_MASK;
505 if (addr < floor) {
506 addr += PMD_SIZE;
507 if (!addr)
508 return;
509 }
510 if (ceiling) {
511 ceiling &= PMD_MASK;
512 if (!ceiling)
513 return;
514 }
515 if (end - 1 > ceiling - 1)
516 end -= PMD_SIZE;
517 if (addr > end - 1)
518 return;
519
42b77728 520 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
521 do {
522 next = pgd_addr_end(addr, end);
523 if (pgd_none_or_clear_bad(pgd))
524 continue;
42b77728 525 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 526 } while (pgd++, addr = next, addr != end);
e0da382c
HD
527}
528
42b77728 529void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 530 unsigned long floor, unsigned long ceiling)
e0da382c
HD
531{
532 while (vma) {
533 struct vm_area_struct *next = vma->vm_next;
534 unsigned long addr = vma->vm_start;
535
8f4f8c16 536 /*
25d9e2d1
NP
537 * Hide vma from rmap and truncate_pagecache before freeing
538 * pgtables
8f4f8c16 539 */
5beb4930 540 unlink_anon_vmas(vma);
8f4f8c16
HD
541 unlink_file_vma(vma);
542
9da61aef 543 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 544 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 545 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
546 } else {
547 /*
548 * Optimization: gather nearby vmas into one call down
549 */
550 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 551 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
552 vma = next;
553 next = vma->vm_next;
5beb4930 554 unlink_anon_vmas(vma);
8f4f8c16 555 unlink_file_vma(vma);
3bf5ee95
HD
556 }
557 free_pgd_range(tlb, addr, vma->vm_end,
558 floor, next? next->vm_start: ceiling);
559 }
e0da382c
HD
560 vma = next;
561 }
1da177e4
LT
562}
563
8ac1f832
AA
564int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
565 pmd_t *pmd, unsigned long address)
1da177e4 566{
c4088ebd 567 spinlock_t *ptl;
2f569afd 568 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 569 int wait_split_huge_page;
1bb3630e
HD
570 if (!new)
571 return -ENOMEM;
572
362a61ad
NP
573 /*
574 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 * visible before the pte is made visible to other CPUs by being
576 * put into page tables.
577 *
578 * The other side of the story is the pointer chasing in the page
579 * table walking code (when walking the page table without locking;
580 * ie. most of the time). Fortunately, these data accesses consist
581 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 * being the notable exception) will already guarantee loads are
583 * seen in-order. See the alpha page table accessors for the
584 * smp_read_barrier_depends() barriers in page table walking code.
585 */
586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
c4088ebd 588 ptl = pmd_lock(mm, pmd);
8ac1f832
AA
589 wait_split_huge_page = 0;
590 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 591 atomic_long_inc(&mm->nr_ptes);
1da177e4 592 pmd_populate(mm, pmd, new);
2f569afd 593 new = NULL;
8ac1f832
AA
594 } else if (unlikely(pmd_trans_splitting(*pmd)))
595 wait_split_huge_page = 1;
c4088ebd 596 spin_unlock(ptl);
2f569afd
MS
597 if (new)
598 pte_free(mm, new);
8ac1f832
AA
599 if (wait_split_huge_page)
600 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 601 return 0;
1da177e4
LT
602}
603
1bb3630e 604int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 605{
1bb3630e
HD
606 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
607 if (!new)
608 return -ENOMEM;
609
362a61ad
NP
610 smp_wmb(); /* See comment in __pte_alloc */
611
1bb3630e 612 spin_lock(&init_mm.page_table_lock);
8ac1f832 613 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 614 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 615 new = NULL;
8ac1f832
AA
616 } else
617 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 618 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
619 if (new)
620 pte_free_kernel(&init_mm, new);
1bb3630e 621 return 0;
1da177e4
LT
622}
623
d559db08
KH
624static inline void init_rss_vec(int *rss)
625{
626 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
627}
628
629static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 630{
d559db08
KH
631 int i;
632
34e55232 633 if (current->mm == mm)
05af2e10 634 sync_mm_rss(mm);
d559db08
KH
635 for (i = 0; i < NR_MM_COUNTERS; i++)
636 if (rss[i])
637 add_mm_counter(mm, i, rss[i]);
ae859762
HD
638}
639
b5810039 640/*
6aab341e
LT
641 * This function is called to print an error when a bad pte
642 * is found. For example, we might have a PFN-mapped pte in
643 * a region that doesn't allow it.
b5810039
NP
644 *
645 * The calling function must still handle the error.
646 */
3dc14741
HD
647static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
648 pte_t pte, struct page *page)
b5810039 649{
3dc14741
HD
650 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
651 pud_t *pud = pud_offset(pgd, addr);
652 pmd_t *pmd = pmd_offset(pud, addr);
653 struct address_space *mapping;
654 pgoff_t index;
d936cf9b
HD
655 static unsigned long resume;
656 static unsigned long nr_shown;
657 static unsigned long nr_unshown;
658
659 /*
660 * Allow a burst of 60 reports, then keep quiet for that minute;
661 * or allow a steady drip of one report per second.
662 */
663 if (nr_shown == 60) {
664 if (time_before(jiffies, resume)) {
665 nr_unshown++;
666 return;
667 }
668 if (nr_unshown) {
1e9e6365
HD
669 printk(KERN_ALERT
670 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
671 nr_unshown);
672 nr_unshown = 0;
673 }
674 nr_shown = 0;
675 }
676 if (nr_shown++ == 0)
677 resume = jiffies + 60 * HZ;
3dc14741
HD
678
679 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
680 index = linear_page_index(vma, addr);
681
1e9e6365
HD
682 printk(KERN_ALERT
683 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
684 current->comm,
685 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 686 if (page)
f0b791a3 687 dump_page(page, "bad pte");
1e9e6365 688 printk(KERN_ALERT
3dc14741
HD
689 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
690 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
691 /*
692 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
693 */
2682582a
KK
694 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
695 vma->vm_file,
696 vma->vm_ops ? vma->vm_ops->fault : NULL,
697 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
698 mapping ? mapping->a_ops->readpage : NULL);
b5810039 699 dump_stack();
373d4d09 700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
701}
702
ee498ed7 703/*
7e675137 704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 705 *
7e675137
NP
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 709 *
7e675137
NP
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
713 * described below.
714 *
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 718 *
b379d790
JH
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
6aab341e
LT
723 *
724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 *
7e675137
NP
726 * And for normal mappings this is false.
727 *
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
b379d790 732 *
b379d790 733 *
7e675137 734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
735 *
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
743 *
ee498ed7 744 */
7e675137
NP
745#ifdef __HAVE_ARCH_PTE_SPECIAL
746# define HAVE_PTE_SPECIAL 1
747#else
748# define HAVE_PTE_SPECIAL 0
749#endif
750struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 pte_t pte)
ee498ed7 752{
22b31eec 753 unsigned long pfn = pte_pfn(pte);
7e675137
NP
754
755 if (HAVE_PTE_SPECIAL) {
b38af472 756 if (likely(!pte_special(pte)))
22b31eec 757 goto check_pfn;
667a0a06
DV
758 if (vma->vm_ops && vma->vm_ops->find_special_page)
759 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
760 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761 return NULL;
62eede62 762 if (!is_zero_pfn(pfn))
22b31eec 763 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
764 return NULL;
765 }
766
767 /* !HAVE_PTE_SPECIAL case follows: */
768
b379d790
JH
769 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770 if (vma->vm_flags & VM_MIXEDMAP) {
771 if (!pfn_valid(pfn))
772 return NULL;
773 goto out;
774 } else {
7e675137
NP
775 unsigned long off;
776 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
777 if (pfn == vma->vm_pgoff + off)
778 return NULL;
779 if (!is_cow_mapping(vma->vm_flags))
780 return NULL;
781 }
6aab341e
LT
782 }
783
b38af472
HD
784 if (is_zero_pfn(pfn))
785 return NULL;
22b31eec
HD
786check_pfn:
787 if (unlikely(pfn > highest_memmap_pfn)) {
788 print_bad_pte(vma, addr, pte, NULL);
789 return NULL;
790 }
6aab341e
LT
791
792 /*
7e675137 793 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 794 * eg. VDSO mappings can cause them to exist.
6aab341e 795 */
b379d790 796out:
6aab341e 797 return pfn_to_page(pfn);
ee498ed7
HD
798}
799
1da177e4
LT
800/*
801 * copy one vm_area from one task to the other. Assumes the page tables
802 * already present in the new task to be cleared in the whole range
803 * covered by this vma.
1da177e4
LT
804 */
805
570a335b 806static inline unsigned long
1da177e4 807copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 808 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 809 unsigned long addr, int *rss)
1da177e4 810{
b5810039 811 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
812 pte_t pte = *src_pte;
813 struct page *page;
1da177e4
LT
814
815 /* pte contains position in swap or file, so copy. */
816 if (unlikely(!pte_present(pte))) {
0661a336
KS
817 swp_entry_t entry = pte_to_swp_entry(pte);
818
819 if (likely(!non_swap_entry(entry))) {
820 if (swap_duplicate(entry) < 0)
821 return entry.val;
822
823 /* make sure dst_mm is on swapoff's mmlist. */
824 if (unlikely(list_empty(&dst_mm->mmlist))) {
825 spin_lock(&mmlist_lock);
826 if (list_empty(&dst_mm->mmlist))
827 list_add(&dst_mm->mmlist,
828 &src_mm->mmlist);
829 spin_unlock(&mmlist_lock);
830 }
831 rss[MM_SWAPENTS]++;
832 } else if (is_migration_entry(entry)) {
833 page = migration_entry_to_page(entry);
834
eca56ff9 835 rss[mm_counter(page)]++;
0661a336
KS
836
837 if (is_write_migration_entry(entry) &&
838 is_cow_mapping(vm_flags)) {
839 /*
840 * COW mappings require pages in both
841 * parent and child to be set to read.
842 */
843 make_migration_entry_read(&entry);
844 pte = swp_entry_to_pte(entry);
845 if (pte_swp_soft_dirty(*src_pte))
846 pte = pte_swp_mksoft_dirty(pte);
847 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 848 }
1da177e4 849 }
ae859762 850 goto out_set_pte;
1da177e4
LT
851 }
852
1da177e4
LT
853 /*
854 * If it's a COW mapping, write protect it both
855 * in the parent and the child
856 */
67121172 857 if (is_cow_mapping(vm_flags)) {
1da177e4 858 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 859 pte = pte_wrprotect(pte);
1da177e4
LT
860 }
861
862 /*
863 * If it's a shared mapping, mark it clean in
864 * the child
865 */
866 if (vm_flags & VM_SHARED)
867 pte = pte_mkclean(pte);
868 pte = pte_mkold(pte);
6aab341e
LT
869
870 page = vm_normal_page(vma, addr, pte);
871 if (page) {
872 get_page(page);
21333b2b 873 page_dup_rmap(page);
eca56ff9 874 rss[mm_counter(page)]++;
6aab341e 875 }
ae859762
HD
876
877out_set_pte:
878 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 879 return 0;
1da177e4
LT
880}
881
21bda264 882static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
883 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
884 unsigned long addr, unsigned long end)
1da177e4 885{
c36987e2 886 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 887 pte_t *src_pte, *dst_pte;
c74df32c 888 spinlock_t *src_ptl, *dst_ptl;
e040f218 889 int progress = 0;
d559db08 890 int rss[NR_MM_COUNTERS];
570a335b 891 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
892
893again:
d559db08
KH
894 init_rss_vec(rss);
895
c74df32c 896 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
897 if (!dst_pte)
898 return -ENOMEM;
ece0e2b6 899 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 900 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 901 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
902 orig_src_pte = src_pte;
903 orig_dst_pte = dst_pte;
6606c3e0 904 arch_enter_lazy_mmu_mode();
1da177e4 905
1da177e4
LT
906 do {
907 /*
908 * We are holding two locks at this point - either of them
909 * could generate latencies in another task on another CPU.
910 */
e040f218
HD
911 if (progress >= 32) {
912 progress = 0;
913 if (need_resched() ||
95c354fe 914 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
915 break;
916 }
1da177e4
LT
917 if (pte_none(*src_pte)) {
918 progress++;
919 continue;
920 }
570a335b
HD
921 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
922 vma, addr, rss);
923 if (entry.val)
924 break;
1da177e4
LT
925 progress += 8;
926 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 927
6606c3e0 928 arch_leave_lazy_mmu_mode();
c74df32c 929 spin_unlock(src_ptl);
ece0e2b6 930 pte_unmap(orig_src_pte);
d559db08 931 add_mm_rss_vec(dst_mm, rss);
c36987e2 932 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 933 cond_resched();
570a335b
HD
934
935 if (entry.val) {
936 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
937 return -ENOMEM;
938 progress = 0;
939 }
1da177e4
LT
940 if (addr != end)
941 goto again;
942 return 0;
943}
944
945static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
947 unsigned long addr, unsigned long end)
948{
949 pmd_t *src_pmd, *dst_pmd;
950 unsigned long next;
951
952 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
953 if (!dst_pmd)
954 return -ENOMEM;
955 src_pmd = pmd_offset(src_pud, addr);
956 do {
957 next = pmd_addr_end(addr, end);
71e3aac0
AA
958 if (pmd_trans_huge(*src_pmd)) {
959 int err;
14d1a55c 960 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
961 err = copy_huge_pmd(dst_mm, src_mm,
962 dst_pmd, src_pmd, addr, vma);
963 if (err == -ENOMEM)
964 return -ENOMEM;
965 if (!err)
966 continue;
967 /* fall through */
968 }
1da177e4
LT
969 if (pmd_none_or_clear_bad(src_pmd))
970 continue;
971 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
972 vma, addr, next))
973 return -ENOMEM;
974 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
975 return 0;
976}
977
978static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
980 unsigned long addr, unsigned long end)
981{
982 pud_t *src_pud, *dst_pud;
983 unsigned long next;
984
985 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
986 if (!dst_pud)
987 return -ENOMEM;
988 src_pud = pud_offset(src_pgd, addr);
989 do {
990 next = pud_addr_end(addr, end);
991 if (pud_none_or_clear_bad(src_pud))
992 continue;
993 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
994 vma, addr, next))
995 return -ENOMEM;
996 } while (dst_pud++, src_pud++, addr = next, addr != end);
997 return 0;
998}
999
1000int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1001 struct vm_area_struct *vma)
1002{
1003 pgd_t *src_pgd, *dst_pgd;
1004 unsigned long next;
1005 unsigned long addr = vma->vm_start;
1006 unsigned long end = vma->vm_end;
2ec74c3e
SG
1007 unsigned long mmun_start; /* For mmu_notifiers */
1008 unsigned long mmun_end; /* For mmu_notifiers */
1009 bool is_cow;
cddb8a5c 1010 int ret;
1da177e4 1011
d992895b
NP
1012 /*
1013 * Don't copy ptes where a page fault will fill them correctly.
1014 * Fork becomes much lighter when there are big shared or private
1015 * readonly mappings. The tradeoff is that copy_page_range is more
1016 * efficient than faulting.
1017 */
0661a336
KS
1018 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1019 !vma->anon_vma)
1020 return 0;
d992895b 1021
1da177e4
LT
1022 if (is_vm_hugetlb_page(vma))
1023 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1024
b3b9c293 1025 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1026 /*
1027 * We do not free on error cases below as remove_vma
1028 * gets called on error from higher level routine
1029 */
5180da41 1030 ret = track_pfn_copy(vma);
2ab64037 1031 if (ret)
1032 return ret;
1033 }
1034
cddb8a5c
AA
1035 /*
1036 * We need to invalidate the secondary MMU mappings only when
1037 * there could be a permission downgrade on the ptes of the
1038 * parent mm. And a permission downgrade will only happen if
1039 * is_cow_mapping() returns true.
1040 */
2ec74c3e
SG
1041 is_cow = is_cow_mapping(vma->vm_flags);
1042 mmun_start = addr;
1043 mmun_end = end;
1044 if (is_cow)
1045 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1046 mmun_end);
cddb8a5c
AA
1047
1048 ret = 0;
1da177e4
LT
1049 dst_pgd = pgd_offset(dst_mm, addr);
1050 src_pgd = pgd_offset(src_mm, addr);
1051 do {
1052 next = pgd_addr_end(addr, end);
1053 if (pgd_none_or_clear_bad(src_pgd))
1054 continue;
cddb8a5c
AA
1055 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1056 vma, addr, next))) {
1057 ret = -ENOMEM;
1058 break;
1059 }
1da177e4 1060 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1061
2ec74c3e
SG
1062 if (is_cow)
1063 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1064 return ret;
1da177e4
LT
1065}
1066
51c6f666 1067static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1068 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1069 unsigned long addr, unsigned long end,
97a89413 1070 struct zap_details *details)
1da177e4 1071{
b5810039 1072 struct mm_struct *mm = tlb->mm;
d16dfc55 1073 int force_flush = 0;
d559db08 1074 int rss[NR_MM_COUNTERS];
97a89413 1075 spinlock_t *ptl;
5f1a1907 1076 pte_t *start_pte;
97a89413 1077 pte_t *pte;
8a5f14a2 1078 swp_entry_t entry;
d559db08 1079
d16dfc55 1080again:
e303297e 1081 init_rss_vec(rss);
5f1a1907
SR
1082 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1083 pte = start_pte;
6606c3e0 1084 arch_enter_lazy_mmu_mode();
1da177e4
LT
1085 do {
1086 pte_t ptent = *pte;
51c6f666 1087 if (pte_none(ptent)) {
1da177e4 1088 continue;
51c6f666 1089 }
6f5e6b9e 1090
1da177e4 1091 if (pte_present(ptent)) {
ee498ed7 1092 struct page *page;
51c6f666 1093
6aab341e 1094 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1095 if (unlikely(details) && page) {
1096 /*
1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages.
1100 */
1101 if (details->check_mapping &&
1102 details->check_mapping != page->mapping)
1103 continue;
1da177e4 1104 }
b5810039 1105 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1106 tlb->fullmm);
1da177e4
LT
1107 tlb_remove_tlb_entry(tlb, pte, addr);
1108 if (unlikely(!page))
1109 continue;
eca56ff9
JM
1110
1111 if (!PageAnon(page)) {
1cf35d47
LT
1112 if (pte_dirty(ptent)) {
1113 force_flush = 1;
6237bcd9 1114 set_page_dirty(page);
1cf35d47 1115 }
4917e5d0 1116 if (pte_young(ptent) &&
64363aad 1117 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1118 mark_page_accessed(page);
6237bcd9 1119 }
eca56ff9 1120 rss[mm_counter(page)]--;
edc315fd 1121 page_remove_rmap(page);
3dc14741
HD
1122 if (unlikely(page_mapcount(page) < 0))
1123 print_bad_pte(vma, addr, ptent, page);
1cf35d47
LT
1124 if (unlikely(!__tlb_remove_page(tlb, page))) {
1125 force_flush = 1;
ce9ec37b 1126 addr += PAGE_SIZE;
d16dfc55 1127 break;
1cf35d47 1128 }
1da177e4
LT
1129 continue;
1130 }
8a5f14a2 1131 /* If details->check_mapping, we leave swap entries. */
1da177e4
LT
1132 if (unlikely(details))
1133 continue;
b084d435 1134
8a5f14a2
KS
1135 entry = pte_to_swp_entry(ptent);
1136 if (!non_swap_entry(entry))
1137 rss[MM_SWAPENTS]--;
1138 else if (is_migration_entry(entry)) {
1139 struct page *page;
9f9f1acd 1140
8a5f14a2 1141 page = migration_entry_to_page(entry);
eca56ff9 1142 rss[mm_counter(page)]--;
b084d435 1143 }
8a5f14a2
KS
1144 if (unlikely(!free_swap_and_cache(entry)))
1145 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1146 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1147 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1148
d559db08 1149 add_mm_rss_vec(mm, rss);
6606c3e0 1150 arch_leave_lazy_mmu_mode();
51c6f666 1151
1cf35d47 1152 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1153 if (force_flush)
1cf35d47 1154 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1155 pte_unmap_unlock(start_pte, ptl);
1156
1157 /*
1158 * If we forced a TLB flush (either due to running out of
1159 * batch buffers or because we needed to flush dirty TLB
1160 * entries before releasing the ptl), free the batched
1161 * memory too. Restart if we didn't do everything.
1162 */
1163 if (force_flush) {
1164 force_flush = 0;
1165 tlb_flush_mmu_free(tlb);
2b047252
LT
1166
1167 if (addr != end)
d16dfc55
PZ
1168 goto again;
1169 }
1170
51c6f666 1171 return addr;
1da177e4
LT
1172}
1173
51c6f666 1174static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1175 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1176 unsigned long addr, unsigned long end,
97a89413 1177 struct zap_details *details)
1da177e4
LT
1178{
1179 pmd_t *pmd;
1180 unsigned long next;
1181
1182 pmd = pmd_offset(pud, addr);
1183 do {
1184 next = pmd_addr_end(addr, end);
71e3aac0 1185 if (pmd_trans_huge(*pmd)) {
1a5a9906 1186 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1187#ifdef CONFIG_DEBUG_VM
1188 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1189 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1190 __func__, addr, end,
1191 vma->vm_start,
1192 vma->vm_end);
1193 BUG();
1194 }
1195#endif
e180377f 1196 split_huge_page_pmd(vma, addr, pmd);
f21760b1 1197 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1198 goto next;
71e3aac0
AA
1199 /* fall through */
1200 }
1a5a9906
AA
1201 /*
1202 * Here there can be other concurrent MADV_DONTNEED or
1203 * trans huge page faults running, and if the pmd is
1204 * none or trans huge it can change under us. This is
1205 * because MADV_DONTNEED holds the mmap_sem in read
1206 * mode.
1207 */
1208 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1209 goto next;
97a89413 1210 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1211next:
97a89413
PZ
1212 cond_resched();
1213 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1214
1215 return addr;
1da177e4
LT
1216}
1217
51c6f666 1218static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1219 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1220 unsigned long addr, unsigned long end,
97a89413 1221 struct zap_details *details)
1da177e4
LT
1222{
1223 pud_t *pud;
1224 unsigned long next;
1225
1226 pud = pud_offset(pgd, addr);
1227 do {
1228 next = pud_addr_end(addr, end);
97a89413 1229 if (pud_none_or_clear_bad(pud))
1da177e4 1230 continue;
97a89413
PZ
1231 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1232 } while (pud++, addr = next, addr != end);
51c6f666
RH
1233
1234 return addr;
1da177e4
LT
1235}
1236
038c7aa1
AV
1237static void unmap_page_range(struct mmu_gather *tlb,
1238 struct vm_area_struct *vma,
1239 unsigned long addr, unsigned long end,
1240 struct zap_details *details)
1da177e4
LT
1241{
1242 pgd_t *pgd;
1243 unsigned long next;
1244
8a5f14a2 1245 if (details && !details->check_mapping)
1da177e4
LT
1246 details = NULL;
1247
1248 BUG_ON(addr >= end);
1249 tlb_start_vma(tlb, vma);
1250 pgd = pgd_offset(vma->vm_mm, addr);
1251 do {
1252 next = pgd_addr_end(addr, end);
97a89413 1253 if (pgd_none_or_clear_bad(pgd))
1da177e4 1254 continue;
97a89413
PZ
1255 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1256 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1257 tlb_end_vma(tlb, vma);
1258}
51c6f666 1259
f5cc4eef
AV
1260
1261static void unmap_single_vma(struct mmu_gather *tlb,
1262 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1263 unsigned long end_addr,
f5cc4eef
AV
1264 struct zap_details *details)
1265{
1266 unsigned long start = max(vma->vm_start, start_addr);
1267 unsigned long end;
1268
1269 if (start >= vma->vm_end)
1270 return;
1271 end = min(vma->vm_end, end_addr);
1272 if (end <= vma->vm_start)
1273 return;
1274
cbc91f71
SD
1275 if (vma->vm_file)
1276 uprobe_munmap(vma, start, end);
1277
b3b9c293 1278 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1279 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1280
1281 if (start != end) {
1282 if (unlikely(is_vm_hugetlb_page(vma))) {
1283 /*
1284 * It is undesirable to test vma->vm_file as it
1285 * should be non-null for valid hugetlb area.
1286 * However, vm_file will be NULL in the error
7aa6b4ad 1287 * cleanup path of mmap_region. When
f5cc4eef 1288 * hugetlbfs ->mmap method fails,
7aa6b4ad 1289 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1290 * before calling this function to clean up.
1291 * Since no pte has actually been setup, it is
1292 * safe to do nothing in this case.
1293 */
24669e58 1294 if (vma->vm_file) {
83cde9e8 1295 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1296 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1297 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1298 }
f5cc4eef
AV
1299 } else
1300 unmap_page_range(tlb, vma, start, end, details);
1301 }
1da177e4
LT
1302}
1303
1da177e4
LT
1304/**
1305 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1306 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1307 * @vma: the starting vma
1308 * @start_addr: virtual address at which to start unmapping
1309 * @end_addr: virtual address at which to end unmapping
1da177e4 1310 *
508034a3 1311 * Unmap all pages in the vma list.
1da177e4 1312 *
1da177e4
LT
1313 * Only addresses between `start' and `end' will be unmapped.
1314 *
1315 * The VMA list must be sorted in ascending virtual address order.
1316 *
1317 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318 * range after unmap_vmas() returns. So the only responsibility here is to
1319 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320 * drops the lock and schedules.
1321 */
6e8bb019 1322void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1323 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1324 unsigned long end_addr)
1da177e4 1325{
cddb8a5c 1326 struct mm_struct *mm = vma->vm_mm;
1da177e4 1327
cddb8a5c 1328 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1329 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1330 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1331 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1332}
1333
1334/**
1335 * zap_page_range - remove user pages in a given range
1336 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1337 * @start: starting address of pages to zap
1da177e4 1338 * @size: number of bytes to zap
8a5f14a2 1339 * @details: details of shared cache invalidation
f5cc4eef
AV
1340 *
1341 * Caller must protect the VMA list
1da177e4 1342 */
7e027b14 1343void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1344 unsigned long size, struct zap_details *details)
1345{
1346 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1347 struct mmu_gather tlb;
7e027b14 1348 unsigned long end = start + size;
1da177e4 1349
1da177e4 1350 lru_add_drain();
2b047252 1351 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1352 update_hiwater_rss(mm);
7e027b14
LT
1353 mmu_notifier_invalidate_range_start(mm, start, end);
1354 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1355 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1356 mmu_notifier_invalidate_range_end(mm, start, end);
1357 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1358}
1359
f5cc4eef
AV
1360/**
1361 * zap_page_range_single - remove user pages in a given range
1362 * @vma: vm_area_struct holding the applicable pages
1363 * @address: starting address of pages to zap
1364 * @size: number of bytes to zap
8a5f14a2 1365 * @details: details of shared cache invalidation
f5cc4eef
AV
1366 *
1367 * The range must fit into one VMA.
1da177e4 1368 */
f5cc4eef 1369static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1370 unsigned long size, struct zap_details *details)
1371{
1372 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1373 struct mmu_gather tlb;
1da177e4 1374 unsigned long end = address + size;
1da177e4 1375
1da177e4 1376 lru_add_drain();
2b047252 1377 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1378 update_hiwater_rss(mm);
f5cc4eef 1379 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1380 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1381 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1382 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1383}
1384
c627f9cc
JS
1385/**
1386 * zap_vma_ptes - remove ptes mapping the vma
1387 * @vma: vm_area_struct holding ptes to be zapped
1388 * @address: starting address of pages to zap
1389 * @size: number of bytes to zap
1390 *
1391 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1392 *
1393 * The entire address range must be fully contained within the vma.
1394 *
1395 * Returns 0 if successful.
1396 */
1397int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1398 unsigned long size)
1399{
1400 if (address < vma->vm_start || address + size > vma->vm_end ||
1401 !(vma->vm_flags & VM_PFNMAP))
1402 return -1;
f5cc4eef 1403 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1404 return 0;
1405}
1406EXPORT_SYMBOL_GPL(zap_vma_ptes);
1407
25ca1d6c 1408pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1409 spinlock_t **ptl)
c9cfcddf
LT
1410{
1411 pgd_t * pgd = pgd_offset(mm, addr);
1412 pud_t * pud = pud_alloc(mm, pgd, addr);
1413 if (pud) {
49c91fb0 1414 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1415 if (pmd) {
1416 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1417 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1418 }
c9cfcddf
LT
1419 }
1420 return NULL;
1421}
1422
238f58d8
LT
1423/*
1424 * This is the old fallback for page remapping.
1425 *
1426 * For historical reasons, it only allows reserved pages. Only
1427 * old drivers should use this, and they needed to mark their
1428 * pages reserved for the old functions anyway.
1429 */
423bad60
NP
1430static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1431 struct page *page, pgprot_t prot)
238f58d8 1432{
423bad60 1433 struct mm_struct *mm = vma->vm_mm;
238f58d8 1434 int retval;
c9cfcddf 1435 pte_t *pte;
8a9f3ccd
BS
1436 spinlock_t *ptl;
1437
238f58d8 1438 retval = -EINVAL;
a145dd41 1439 if (PageAnon(page))
5b4e655e 1440 goto out;
238f58d8
LT
1441 retval = -ENOMEM;
1442 flush_dcache_page(page);
c9cfcddf 1443 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1444 if (!pte)
5b4e655e 1445 goto out;
238f58d8
LT
1446 retval = -EBUSY;
1447 if (!pte_none(*pte))
1448 goto out_unlock;
1449
1450 /* Ok, finally just insert the thing.. */
1451 get_page(page);
eca56ff9 1452 inc_mm_counter_fast(mm, mm_counter_file(page));
238f58d8
LT
1453 page_add_file_rmap(page);
1454 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1455
1456 retval = 0;
8a9f3ccd
BS
1457 pte_unmap_unlock(pte, ptl);
1458 return retval;
238f58d8
LT
1459out_unlock:
1460 pte_unmap_unlock(pte, ptl);
1461out:
1462 return retval;
1463}
1464
bfa5bf6d
REB
1465/**
1466 * vm_insert_page - insert single page into user vma
1467 * @vma: user vma to map to
1468 * @addr: target user address of this page
1469 * @page: source kernel page
1470 *
a145dd41
LT
1471 * This allows drivers to insert individual pages they've allocated
1472 * into a user vma.
1473 *
1474 * The page has to be a nice clean _individual_ kernel allocation.
1475 * If you allocate a compound page, you need to have marked it as
1476 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1477 * (see split_page()).
a145dd41
LT
1478 *
1479 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1480 * took an arbitrary page protection parameter. This doesn't allow
1481 * that. Your vma protection will have to be set up correctly, which
1482 * means that if you want a shared writable mapping, you'd better
1483 * ask for a shared writable mapping!
1484 *
1485 * The page does not need to be reserved.
4b6e1e37
KK
1486 *
1487 * Usually this function is called from f_op->mmap() handler
1488 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1489 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1490 * function from other places, for example from page-fault handler.
a145dd41 1491 */
423bad60
NP
1492int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1493 struct page *page)
a145dd41
LT
1494{
1495 if (addr < vma->vm_start || addr >= vma->vm_end)
1496 return -EFAULT;
1497 if (!page_count(page))
1498 return -EINVAL;
4b6e1e37
KK
1499 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1500 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1501 BUG_ON(vma->vm_flags & VM_PFNMAP);
1502 vma->vm_flags |= VM_MIXEDMAP;
1503 }
423bad60 1504 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1505}
e3c3374f 1506EXPORT_SYMBOL(vm_insert_page);
a145dd41 1507
423bad60
NP
1508static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1509 unsigned long pfn, pgprot_t prot)
1510{
1511 struct mm_struct *mm = vma->vm_mm;
1512 int retval;
1513 pte_t *pte, entry;
1514 spinlock_t *ptl;
1515
1516 retval = -ENOMEM;
1517 pte = get_locked_pte(mm, addr, &ptl);
1518 if (!pte)
1519 goto out;
1520 retval = -EBUSY;
1521 if (!pte_none(*pte))
1522 goto out_unlock;
1523
1524 /* Ok, finally just insert the thing.. */
1525 entry = pte_mkspecial(pfn_pte(pfn, prot));
1526 set_pte_at(mm, addr, pte, entry);
4b3073e1 1527 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1528
1529 retval = 0;
1530out_unlock:
1531 pte_unmap_unlock(pte, ptl);
1532out:
1533 return retval;
1534}
1535
e0dc0d8f
NP
1536/**
1537 * vm_insert_pfn - insert single pfn into user vma
1538 * @vma: user vma to map to
1539 * @addr: target user address of this page
1540 * @pfn: source kernel pfn
1541 *
c462f179 1542 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1543 * they've allocated into a user vma. Same comments apply.
1544 *
1545 * This function should only be called from a vm_ops->fault handler, and
1546 * in that case the handler should return NULL.
0d71d10a
NP
1547 *
1548 * vma cannot be a COW mapping.
1549 *
1550 * As this is called only for pages that do not currently exist, we
1551 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1552 */
1553int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1554 unsigned long pfn)
e0dc0d8f 1555{
2ab64037 1556 int ret;
e4b866ed 1557 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1558 /*
1559 * Technically, architectures with pte_special can avoid all these
1560 * restrictions (same for remap_pfn_range). However we would like
1561 * consistency in testing and feature parity among all, so we should
1562 * try to keep these invariants in place for everybody.
1563 */
b379d790
JH
1564 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1565 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1566 (VM_PFNMAP|VM_MIXEDMAP));
1567 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1568 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1569
423bad60
NP
1570 if (addr < vma->vm_start || addr >= vma->vm_end)
1571 return -EFAULT;
5180da41 1572 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 1573 return -EINVAL;
1574
e4b866ed 1575 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1576
2ab64037 1577 return ret;
423bad60
NP
1578}
1579EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1580
423bad60
NP
1581int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1582 unsigned long pfn)
1583{
1584 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1585
423bad60
NP
1586 if (addr < vma->vm_start || addr >= vma->vm_end)
1587 return -EFAULT;
e0dc0d8f 1588
423bad60
NP
1589 /*
1590 * If we don't have pte special, then we have to use the pfn_valid()
1591 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1592 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1593 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1594 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1595 */
1596 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1597 struct page *page;
1598
1599 page = pfn_to_page(pfn);
1600 return insert_page(vma, addr, page, vma->vm_page_prot);
1601 }
1602 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1603}
423bad60 1604EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1605
1da177e4
LT
1606/*
1607 * maps a range of physical memory into the requested pages. the old
1608 * mappings are removed. any references to nonexistent pages results
1609 * in null mappings (currently treated as "copy-on-access")
1610 */
1611static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1612 unsigned long addr, unsigned long end,
1613 unsigned long pfn, pgprot_t prot)
1614{
1615 pte_t *pte;
c74df32c 1616 spinlock_t *ptl;
1da177e4 1617
c74df32c 1618 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1619 if (!pte)
1620 return -ENOMEM;
6606c3e0 1621 arch_enter_lazy_mmu_mode();
1da177e4
LT
1622 do {
1623 BUG_ON(!pte_none(*pte));
7e675137 1624 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1625 pfn++;
1626 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1627 arch_leave_lazy_mmu_mode();
c74df32c 1628 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1629 return 0;
1630}
1631
1632static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1633 unsigned long addr, unsigned long end,
1634 unsigned long pfn, pgprot_t prot)
1635{
1636 pmd_t *pmd;
1637 unsigned long next;
1638
1639 pfn -= addr >> PAGE_SHIFT;
1640 pmd = pmd_alloc(mm, pud, addr);
1641 if (!pmd)
1642 return -ENOMEM;
f66055ab 1643 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1644 do {
1645 next = pmd_addr_end(addr, end);
1646 if (remap_pte_range(mm, pmd, addr, next,
1647 pfn + (addr >> PAGE_SHIFT), prot))
1648 return -ENOMEM;
1649 } while (pmd++, addr = next, addr != end);
1650 return 0;
1651}
1652
1653static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1654 unsigned long addr, unsigned long end,
1655 unsigned long pfn, pgprot_t prot)
1656{
1657 pud_t *pud;
1658 unsigned long next;
1659
1660 pfn -= addr >> PAGE_SHIFT;
1661 pud = pud_alloc(mm, pgd, addr);
1662 if (!pud)
1663 return -ENOMEM;
1664 do {
1665 next = pud_addr_end(addr, end);
1666 if (remap_pmd_range(mm, pud, addr, next,
1667 pfn + (addr >> PAGE_SHIFT), prot))
1668 return -ENOMEM;
1669 } while (pud++, addr = next, addr != end);
1670 return 0;
1671}
1672
bfa5bf6d
REB
1673/**
1674 * remap_pfn_range - remap kernel memory to userspace
1675 * @vma: user vma to map to
1676 * @addr: target user address to start at
1677 * @pfn: physical address of kernel memory
1678 * @size: size of map area
1679 * @prot: page protection flags for this mapping
1680 *
1681 * Note: this is only safe if the mm semaphore is held when called.
1682 */
1da177e4
LT
1683int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1684 unsigned long pfn, unsigned long size, pgprot_t prot)
1685{
1686 pgd_t *pgd;
1687 unsigned long next;
2d15cab8 1688 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1689 struct mm_struct *mm = vma->vm_mm;
1690 int err;
1691
1692 /*
1693 * Physically remapped pages are special. Tell the
1694 * rest of the world about it:
1695 * VM_IO tells people not to look at these pages
1696 * (accesses can have side effects).
6aab341e
LT
1697 * VM_PFNMAP tells the core MM that the base pages are just
1698 * raw PFN mappings, and do not have a "struct page" associated
1699 * with them.
314e51b9
KK
1700 * VM_DONTEXPAND
1701 * Disable vma merging and expanding with mremap().
1702 * VM_DONTDUMP
1703 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1704 *
1705 * There's a horrible special case to handle copy-on-write
1706 * behaviour that some programs depend on. We mark the "original"
1707 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1708 * See vm_normal_page() for details.
1da177e4 1709 */
b3b9c293
KK
1710 if (is_cow_mapping(vma->vm_flags)) {
1711 if (addr != vma->vm_start || end != vma->vm_end)
1712 return -EINVAL;
fb155c16 1713 vma->vm_pgoff = pfn;
b3b9c293
KK
1714 }
1715
1716 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1717 if (err)
3c8bb73a 1718 return -EINVAL;
fb155c16 1719
314e51b9 1720 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1721
1722 BUG_ON(addr >= end);
1723 pfn -= addr >> PAGE_SHIFT;
1724 pgd = pgd_offset(mm, addr);
1725 flush_cache_range(vma, addr, end);
1da177e4
LT
1726 do {
1727 next = pgd_addr_end(addr, end);
1728 err = remap_pud_range(mm, pgd, addr, next,
1729 pfn + (addr >> PAGE_SHIFT), prot);
1730 if (err)
1731 break;
1732 } while (pgd++, addr = next, addr != end);
2ab64037 1733
1734 if (err)
5180da41 1735 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 1736
1da177e4
LT
1737 return err;
1738}
1739EXPORT_SYMBOL(remap_pfn_range);
1740
b4cbb197
LT
1741/**
1742 * vm_iomap_memory - remap memory to userspace
1743 * @vma: user vma to map to
1744 * @start: start of area
1745 * @len: size of area
1746 *
1747 * This is a simplified io_remap_pfn_range() for common driver use. The
1748 * driver just needs to give us the physical memory range to be mapped,
1749 * we'll figure out the rest from the vma information.
1750 *
1751 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1752 * whatever write-combining details or similar.
1753 */
1754int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1755{
1756 unsigned long vm_len, pfn, pages;
1757
1758 /* Check that the physical memory area passed in looks valid */
1759 if (start + len < start)
1760 return -EINVAL;
1761 /*
1762 * You *really* shouldn't map things that aren't page-aligned,
1763 * but we've historically allowed it because IO memory might
1764 * just have smaller alignment.
1765 */
1766 len += start & ~PAGE_MASK;
1767 pfn = start >> PAGE_SHIFT;
1768 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1769 if (pfn + pages < pfn)
1770 return -EINVAL;
1771
1772 /* We start the mapping 'vm_pgoff' pages into the area */
1773 if (vma->vm_pgoff > pages)
1774 return -EINVAL;
1775 pfn += vma->vm_pgoff;
1776 pages -= vma->vm_pgoff;
1777
1778 /* Can we fit all of the mapping? */
1779 vm_len = vma->vm_end - vma->vm_start;
1780 if (vm_len >> PAGE_SHIFT > pages)
1781 return -EINVAL;
1782
1783 /* Ok, let it rip */
1784 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1785}
1786EXPORT_SYMBOL(vm_iomap_memory);
1787
aee16b3c
JF
1788static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1789 unsigned long addr, unsigned long end,
1790 pte_fn_t fn, void *data)
1791{
1792 pte_t *pte;
1793 int err;
2f569afd 1794 pgtable_t token;
94909914 1795 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1796
1797 pte = (mm == &init_mm) ?
1798 pte_alloc_kernel(pmd, addr) :
1799 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1800 if (!pte)
1801 return -ENOMEM;
1802
1803 BUG_ON(pmd_huge(*pmd));
1804
38e0edb1
JF
1805 arch_enter_lazy_mmu_mode();
1806
2f569afd 1807 token = pmd_pgtable(*pmd);
aee16b3c
JF
1808
1809 do {
c36987e2 1810 err = fn(pte++, token, addr, data);
aee16b3c
JF
1811 if (err)
1812 break;
c36987e2 1813 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1814
38e0edb1
JF
1815 arch_leave_lazy_mmu_mode();
1816
aee16b3c
JF
1817 if (mm != &init_mm)
1818 pte_unmap_unlock(pte-1, ptl);
1819 return err;
1820}
1821
1822static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1823 unsigned long addr, unsigned long end,
1824 pte_fn_t fn, void *data)
1825{
1826 pmd_t *pmd;
1827 unsigned long next;
1828 int err;
1829
ceb86879
AK
1830 BUG_ON(pud_huge(*pud));
1831
aee16b3c
JF
1832 pmd = pmd_alloc(mm, pud, addr);
1833 if (!pmd)
1834 return -ENOMEM;
1835 do {
1836 next = pmd_addr_end(addr, end);
1837 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1838 if (err)
1839 break;
1840 } while (pmd++, addr = next, addr != end);
1841 return err;
1842}
1843
1844static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1845 unsigned long addr, unsigned long end,
1846 pte_fn_t fn, void *data)
1847{
1848 pud_t *pud;
1849 unsigned long next;
1850 int err;
1851
1852 pud = pud_alloc(mm, pgd, addr);
1853 if (!pud)
1854 return -ENOMEM;
1855 do {
1856 next = pud_addr_end(addr, end);
1857 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1858 if (err)
1859 break;
1860 } while (pud++, addr = next, addr != end);
1861 return err;
1862}
1863
1864/*
1865 * Scan a region of virtual memory, filling in page tables as necessary
1866 * and calling a provided function on each leaf page table.
1867 */
1868int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1869 unsigned long size, pte_fn_t fn, void *data)
1870{
1871 pgd_t *pgd;
1872 unsigned long next;
57250a5b 1873 unsigned long end = addr + size;
aee16b3c
JF
1874 int err;
1875
1876 BUG_ON(addr >= end);
1877 pgd = pgd_offset(mm, addr);
1878 do {
1879 next = pgd_addr_end(addr, end);
1880 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1881 if (err)
1882 break;
1883 } while (pgd++, addr = next, addr != end);
57250a5b 1884
aee16b3c
JF
1885 return err;
1886}
1887EXPORT_SYMBOL_GPL(apply_to_page_range);
1888
8f4e2101 1889/*
9b4bdd2f
KS
1890 * handle_pte_fault chooses page fault handler according to an entry which was
1891 * read non-atomically. Before making any commitment, on those architectures
1892 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1893 * parts, do_swap_page must check under lock before unmapping the pte and
1894 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 1895 * and do_anonymous_page can safely check later on).
8f4e2101 1896 */
4c21e2f2 1897static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1898 pte_t *page_table, pte_t orig_pte)
1899{
1900 int same = 1;
1901#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1902 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1903 spinlock_t *ptl = pte_lockptr(mm, pmd);
1904 spin_lock(ptl);
8f4e2101 1905 same = pte_same(*page_table, orig_pte);
4c21e2f2 1906 spin_unlock(ptl);
8f4e2101
HD
1907 }
1908#endif
1909 pte_unmap(page_table);
1910 return same;
1911}
1912
9de455b2 1913static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1914{
0abdd7a8
DW
1915 debug_dma_assert_idle(src);
1916
6aab341e
LT
1917 /*
1918 * If the source page was a PFN mapping, we don't have
1919 * a "struct page" for it. We do a best-effort copy by
1920 * just copying from the original user address. If that
1921 * fails, we just zero-fill it. Live with it.
1922 */
1923 if (unlikely(!src)) {
9b04c5fe 1924 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1925 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1926
1927 /*
1928 * This really shouldn't fail, because the page is there
1929 * in the page tables. But it might just be unreadable,
1930 * in which case we just give up and fill the result with
1931 * zeroes.
1932 */
1933 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 1934 clear_page(kaddr);
9b04c5fe 1935 kunmap_atomic(kaddr);
c4ec7b0d 1936 flush_dcache_page(dst);
0ed361de
NP
1937 } else
1938 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1939}
1940
fb09a464
KS
1941/*
1942 * Notify the address space that the page is about to become writable so that
1943 * it can prohibit this or wait for the page to get into an appropriate state.
1944 *
1945 * We do this without the lock held, so that it can sleep if it needs to.
1946 */
1947static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1948 unsigned long address)
1949{
1950 struct vm_fault vmf;
1951 int ret;
1952
1953 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1954 vmf.pgoff = page->index;
1955 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1956 vmf.page = page;
2e4cdab0 1957 vmf.cow_page = NULL;
fb09a464
KS
1958
1959 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1960 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1961 return ret;
1962 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1963 lock_page(page);
1964 if (!page->mapping) {
1965 unlock_page(page);
1966 return 0; /* retry */
1967 }
1968 ret |= VM_FAULT_LOCKED;
1969 } else
1970 VM_BUG_ON_PAGE(!PageLocked(page), page);
1971 return ret;
1972}
1973
4e047f89
SR
1974/*
1975 * Handle write page faults for pages that can be reused in the current vma
1976 *
1977 * This can happen either due to the mapping being with the VM_SHARED flag,
1978 * or due to us being the last reference standing to the page. In either
1979 * case, all we need to do here is to mark the page as writable and update
1980 * any related book-keeping.
1981 */
1982static inline int wp_page_reuse(struct mm_struct *mm,
1983 struct vm_area_struct *vma, unsigned long address,
1984 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
1985 struct page *page, int page_mkwrite,
1986 int dirty_shared)
1987 __releases(ptl)
1988{
1989 pte_t entry;
1990 /*
1991 * Clear the pages cpupid information as the existing
1992 * information potentially belongs to a now completely
1993 * unrelated process.
1994 */
1995 if (page)
1996 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
1997
1998 flush_cache_page(vma, address, pte_pfn(orig_pte));
1999 entry = pte_mkyoung(orig_pte);
2000 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2001 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2002 update_mmu_cache(vma, address, page_table);
2003 pte_unmap_unlock(page_table, ptl);
2004
2005 if (dirty_shared) {
2006 struct address_space *mapping;
2007 int dirtied;
2008
2009 if (!page_mkwrite)
2010 lock_page(page);
2011
2012 dirtied = set_page_dirty(page);
2013 VM_BUG_ON_PAGE(PageAnon(page), page);
2014 mapping = page->mapping;
2015 unlock_page(page);
2016 page_cache_release(page);
2017
2018 if ((dirtied || page_mkwrite) && mapping) {
2019 /*
2020 * Some device drivers do not set page.mapping
2021 * but still dirty their pages
2022 */
2023 balance_dirty_pages_ratelimited(mapping);
2024 }
2025
2026 if (!page_mkwrite)
2027 file_update_time(vma->vm_file);
2028 }
2029
2030 return VM_FAULT_WRITE;
2031}
2032
2f38ab2c
SR
2033/*
2034 * Handle the case of a page which we actually need to copy to a new page.
2035 *
2036 * Called with mmap_sem locked and the old page referenced, but
2037 * without the ptl held.
2038 *
2039 * High level logic flow:
2040 *
2041 * - Allocate a page, copy the content of the old page to the new one.
2042 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2043 * - Take the PTL. If the pte changed, bail out and release the allocated page
2044 * - If the pte is still the way we remember it, update the page table and all
2045 * relevant references. This includes dropping the reference the page-table
2046 * held to the old page, as well as updating the rmap.
2047 * - In any case, unlock the PTL and drop the reference we took to the old page.
2048 */
2049static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2050 unsigned long address, pte_t *page_table, pmd_t *pmd,
2051 pte_t orig_pte, struct page *old_page)
2052{
2053 struct page *new_page = NULL;
2054 spinlock_t *ptl = NULL;
2055 pte_t entry;
2056 int page_copied = 0;
2057 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2058 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2059 struct mem_cgroup *memcg;
2060
2061 if (unlikely(anon_vma_prepare(vma)))
2062 goto oom;
2063
2064 if (is_zero_pfn(pte_pfn(orig_pte))) {
2065 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2066 if (!new_page)
2067 goto oom;
2068 } else {
2069 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2070 if (!new_page)
2071 goto oom;
2072 cow_user_page(new_page, old_page, address, vma);
2073 }
2f38ab2c
SR
2074
2075 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2076 goto oom_free_new;
2077
eb3c24f3
MG
2078 __SetPageUptodate(new_page);
2079
2f38ab2c
SR
2080 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2081
2082 /*
2083 * Re-check the pte - we dropped the lock
2084 */
2085 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2086 if (likely(pte_same(*page_table, orig_pte))) {
2087 if (old_page) {
2088 if (!PageAnon(old_page)) {
eca56ff9
JM
2089 dec_mm_counter_fast(mm,
2090 mm_counter_file(old_page));
2f38ab2c
SR
2091 inc_mm_counter_fast(mm, MM_ANONPAGES);
2092 }
2093 } else {
2094 inc_mm_counter_fast(mm, MM_ANONPAGES);
2095 }
2096 flush_cache_page(vma, address, pte_pfn(orig_pte));
2097 entry = mk_pte(new_page, vma->vm_page_prot);
2098 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2099 /*
2100 * Clear the pte entry and flush it first, before updating the
2101 * pte with the new entry. This will avoid a race condition
2102 * seen in the presence of one thread doing SMC and another
2103 * thread doing COW.
2104 */
2105 ptep_clear_flush_notify(vma, address, page_table);
2106 page_add_new_anon_rmap(new_page, vma, address);
2107 mem_cgroup_commit_charge(new_page, memcg, false);
2108 lru_cache_add_active_or_unevictable(new_page, vma);
2109 /*
2110 * We call the notify macro here because, when using secondary
2111 * mmu page tables (such as kvm shadow page tables), we want the
2112 * new page to be mapped directly into the secondary page table.
2113 */
2114 set_pte_at_notify(mm, address, page_table, entry);
2115 update_mmu_cache(vma, address, page_table);
2116 if (old_page) {
2117 /*
2118 * Only after switching the pte to the new page may
2119 * we remove the mapcount here. Otherwise another
2120 * process may come and find the rmap count decremented
2121 * before the pte is switched to the new page, and
2122 * "reuse" the old page writing into it while our pte
2123 * here still points into it and can be read by other
2124 * threads.
2125 *
2126 * The critical issue is to order this
2127 * page_remove_rmap with the ptp_clear_flush above.
2128 * Those stores are ordered by (if nothing else,)
2129 * the barrier present in the atomic_add_negative
2130 * in page_remove_rmap.
2131 *
2132 * Then the TLB flush in ptep_clear_flush ensures that
2133 * no process can access the old page before the
2134 * decremented mapcount is visible. And the old page
2135 * cannot be reused until after the decremented
2136 * mapcount is visible. So transitively, TLBs to
2137 * old page will be flushed before it can be reused.
2138 */
2139 page_remove_rmap(old_page);
2140 }
2141
2142 /* Free the old page.. */
2143 new_page = old_page;
2144 page_copied = 1;
2145 } else {
2146 mem_cgroup_cancel_charge(new_page, memcg);
2147 }
2148
2149 if (new_page)
2150 page_cache_release(new_page);
2151
2152 pte_unmap_unlock(page_table, ptl);
2153 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2154 if (old_page) {
2155 /*
2156 * Don't let another task, with possibly unlocked vma,
2157 * keep the mlocked page.
2158 */
2159 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2160 lock_page(old_page); /* LRU manipulation */
2161 munlock_vma_page(old_page);
2162 unlock_page(old_page);
2163 }
2164 page_cache_release(old_page);
2165 }
2166 return page_copied ? VM_FAULT_WRITE : 0;
2167oom_free_new:
2168 page_cache_release(new_page);
2169oom:
2170 if (old_page)
2171 page_cache_release(old_page);
2172 return VM_FAULT_OOM;
2173}
2174
dd906184
BH
2175/*
2176 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2177 * mapping
2178 */
2179static int wp_pfn_shared(struct mm_struct *mm,
2180 struct vm_area_struct *vma, unsigned long address,
2181 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2182 pmd_t *pmd)
2183{
2184 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2185 struct vm_fault vmf = {
2186 .page = NULL,
2187 .pgoff = linear_page_index(vma, address),
2188 .virtual_address = (void __user *)(address & PAGE_MASK),
2189 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2190 };
2191 int ret;
2192
2193 pte_unmap_unlock(page_table, ptl);
2194 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2195 if (ret & VM_FAULT_ERROR)
2196 return ret;
2197 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2198 /*
2199 * We might have raced with another page fault while we
2200 * released the pte_offset_map_lock.
2201 */
2202 if (!pte_same(*page_table, orig_pte)) {
2203 pte_unmap_unlock(page_table, ptl);
2204 return 0;
2205 }
2206 }
2207 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2208 NULL, 0, 0);
2209}
2210
93e478d4
SR
2211static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2212 unsigned long address, pte_t *page_table,
2213 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2214 struct page *old_page)
2215 __releases(ptl)
2216{
2217 int page_mkwrite = 0;
2218
2219 page_cache_get(old_page);
2220
2221 /*
2222 * Only catch write-faults on shared writable pages,
2223 * read-only shared pages can get COWed by
2224 * get_user_pages(.write=1, .force=1).
2225 */
2226 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2227 int tmp;
2228
2229 pte_unmap_unlock(page_table, ptl);
2230 tmp = do_page_mkwrite(vma, old_page, address);
2231 if (unlikely(!tmp || (tmp &
2232 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2233 page_cache_release(old_page);
2234 return tmp;
2235 }
2236 /*
2237 * Since we dropped the lock we need to revalidate
2238 * the PTE as someone else may have changed it. If
2239 * they did, we just return, as we can count on the
2240 * MMU to tell us if they didn't also make it writable.
2241 */
2242 page_table = pte_offset_map_lock(mm, pmd, address,
2243 &ptl);
2244 if (!pte_same(*page_table, orig_pte)) {
2245 unlock_page(old_page);
2246 pte_unmap_unlock(page_table, ptl);
2247 page_cache_release(old_page);
2248 return 0;
2249 }
2250 page_mkwrite = 1;
2251 }
2252
2253 return wp_page_reuse(mm, vma, address, page_table, ptl,
2254 orig_pte, old_page, page_mkwrite, 1);
2255}
2256
1da177e4
LT
2257/*
2258 * This routine handles present pages, when users try to write
2259 * to a shared page. It is done by copying the page to a new address
2260 * and decrementing the shared-page counter for the old page.
2261 *
1da177e4
LT
2262 * Note that this routine assumes that the protection checks have been
2263 * done by the caller (the low-level page fault routine in most cases).
2264 * Thus we can safely just mark it writable once we've done any necessary
2265 * COW.
2266 *
2267 * We also mark the page dirty at this point even though the page will
2268 * change only once the write actually happens. This avoids a few races,
2269 * and potentially makes it more efficient.
2270 *
8f4e2101
HD
2271 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2272 * but allow concurrent faults), with pte both mapped and locked.
2273 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2274 */
65500d23
HD
2275static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2276 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2277 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2278 __releases(ptl)
1da177e4 2279{
2f38ab2c 2280 struct page *old_page;
1da177e4 2281
6aab341e 2282 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2283 if (!old_page) {
2284 /*
64e45507
PF
2285 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2286 * VM_PFNMAP VMA.
251b97f5
PZ
2287 *
2288 * We should not cow pages in a shared writeable mapping.
dd906184 2289 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2290 */
2291 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2292 (VM_WRITE|VM_SHARED))
dd906184
BH
2293 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2294 orig_pte, pmd);
2f38ab2c
SR
2295
2296 pte_unmap_unlock(page_table, ptl);
2297 return wp_page_copy(mm, vma, address, page_table, pmd,
2298 orig_pte, old_page);
251b97f5 2299 }
1da177e4 2300
d08b3851 2301 /*
ee6a6457
PZ
2302 * Take out anonymous pages first, anonymous shared vmas are
2303 * not dirty accountable.
d08b3851 2304 */
9a840895 2305 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2306 if (!trylock_page(old_page)) {
2307 page_cache_get(old_page);
2308 pte_unmap_unlock(page_table, ptl);
2309 lock_page(old_page);
2310 page_table = pte_offset_map_lock(mm, pmd, address,
2311 &ptl);
2312 if (!pte_same(*page_table, orig_pte)) {
2313 unlock_page(old_page);
28766805
SR
2314 pte_unmap_unlock(page_table, ptl);
2315 page_cache_release(old_page);
2316 return 0;
ab967d86
HD
2317 }
2318 page_cache_release(old_page);
ee6a6457 2319 }
b009c024 2320 if (reuse_swap_page(old_page)) {
c44b6743
RR
2321 /*
2322 * The page is all ours. Move it to our anon_vma so
2323 * the rmap code will not search our parent or siblings.
2324 * Protected against the rmap code by the page lock.
2325 */
2326 page_move_anon_rmap(old_page, vma, address);
b009c024 2327 unlock_page(old_page);
4e047f89
SR
2328 return wp_page_reuse(mm, vma, address, page_table, ptl,
2329 orig_pte, old_page, 0, 0);
b009c024 2330 }
ab967d86 2331 unlock_page(old_page);
ee6a6457 2332 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2333 (VM_WRITE|VM_SHARED))) {
93e478d4
SR
2334 return wp_page_shared(mm, vma, address, page_table, pmd,
2335 ptl, orig_pte, old_page);
1da177e4 2336 }
1da177e4
LT
2337
2338 /*
2339 * Ok, we need to copy. Oh, well..
2340 */
b5810039 2341 page_cache_get(old_page);
28766805 2342
8f4e2101 2343 pte_unmap_unlock(page_table, ptl);
2f38ab2c
SR
2344 return wp_page_copy(mm, vma, address, page_table, pmd,
2345 orig_pte, old_page);
1da177e4
LT
2346}
2347
97a89413 2348static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2349 unsigned long start_addr, unsigned long end_addr,
2350 struct zap_details *details)
2351{
f5cc4eef 2352 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2353}
2354
6b2dbba8 2355static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2356 struct zap_details *details)
2357{
2358 struct vm_area_struct *vma;
1da177e4
LT
2359 pgoff_t vba, vea, zba, zea;
2360
6b2dbba8 2361 vma_interval_tree_foreach(vma, root,
1da177e4 2362 details->first_index, details->last_index) {
1da177e4
LT
2363
2364 vba = vma->vm_pgoff;
d6e93217 2365 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2366 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2367 zba = details->first_index;
2368 if (zba < vba)
2369 zba = vba;
2370 zea = details->last_index;
2371 if (zea > vea)
2372 zea = vea;
2373
97a89413 2374 unmap_mapping_range_vma(vma,
1da177e4
LT
2375 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2376 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2377 details);
1da177e4
LT
2378 }
2379}
2380
1da177e4 2381/**
8a5f14a2
KS
2382 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2383 * address_space corresponding to the specified page range in the underlying
2384 * file.
2385 *
3d41088f 2386 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2387 * @holebegin: byte in first page to unmap, relative to the start of
2388 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2389 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2390 * must keep the partial page. In contrast, we must get rid of
2391 * partial pages.
2392 * @holelen: size of prospective hole in bytes. This will be rounded
2393 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2394 * end of the file.
2395 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2396 * but 0 when invalidating pagecache, don't throw away private data.
2397 */
2398void unmap_mapping_range(struct address_space *mapping,
2399 loff_t const holebegin, loff_t const holelen, int even_cows)
2400{
2401 struct zap_details details;
2402 pgoff_t hba = holebegin >> PAGE_SHIFT;
2403 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2404
2405 /* Check for overflow. */
2406 if (sizeof(holelen) > sizeof(hlen)) {
2407 long long holeend =
2408 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2409 if (holeend & ~(long long)ULONG_MAX)
2410 hlen = ULONG_MAX - hba + 1;
2411 }
2412
2413 details.check_mapping = even_cows? NULL: mapping;
1da177e4
LT
2414 details.first_index = hba;
2415 details.last_index = hba + hlen - 1;
2416 if (details.last_index < details.first_index)
2417 details.last_index = ULONG_MAX;
1da177e4 2418
0f90cc66
RZ
2419
2420 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
46c043ed 2421 i_mmap_lock_write(mapping);
6b2dbba8 2422 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2423 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2424 i_mmap_unlock_write(mapping);
1da177e4
LT
2425}
2426EXPORT_SYMBOL(unmap_mapping_range);
2427
1da177e4 2428/*
8f4e2101
HD
2429 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2430 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2431 * We return with pte unmapped and unlocked.
2432 *
2433 * We return with the mmap_sem locked or unlocked in the same cases
2434 * as does filemap_fault().
1da177e4 2435 */
65500d23
HD
2436static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2437 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2438 unsigned int flags, pte_t orig_pte)
1da177e4 2439{
8f4e2101 2440 spinlock_t *ptl;
56f31801 2441 struct page *page, *swapcache;
00501b53 2442 struct mem_cgroup *memcg;
65500d23 2443 swp_entry_t entry;
1da177e4 2444 pte_t pte;
d065bd81 2445 int locked;
ad8c2ee8 2446 int exclusive = 0;
83c54070 2447 int ret = 0;
1da177e4 2448
4c21e2f2 2449 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2450 goto out;
65500d23
HD
2451
2452 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2453 if (unlikely(non_swap_entry(entry))) {
2454 if (is_migration_entry(entry)) {
2455 migration_entry_wait(mm, pmd, address);
2456 } else if (is_hwpoison_entry(entry)) {
2457 ret = VM_FAULT_HWPOISON;
2458 } else {
2459 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2460 ret = VM_FAULT_SIGBUS;
d1737fdb 2461 }
0697212a
CL
2462 goto out;
2463 }
0ff92245 2464 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2465 page = lookup_swap_cache(entry);
2466 if (!page) {
02098fea
HD
2467 page = swapin_readahead(entry,
2468 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2469 if (!page) {
2470 /*
8f4e2101
HD
2471 * Back out if somebody else faulted in this pte
2472 * while we released the pte lock.
1da177e4 2473 */
8f4e2101 2474 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2475 if (likely(pte_same(*page_table, orig_pte)))
2476 ret = VM_FAULT_OOM;
0ff92245 2477 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2478 goto unlock;
1da177e4
LT
2479 }
2480
2481 /* Had to read the page from swap area: Major fault */
2482 ret = VM_FAULT_MAJOR;
f8891e5e 2483 count_vm_event(PGMAJFAULT);
456f998e 2484 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2485 } else if (PageHWPoison(page)) {
71f72525
WF
2486 /*
2487 * hwpoisoned dirty swapcache pages are kept for killing
2488 * owner processes (which may be unknown at hwpoison time)
2489 */
d1737fdb
AK
2490 ret = VM_FAULT_HWPOISON;
2491 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2492 swapcache = page;
4779cb31 2493 goto out_release;
1da177e4
LT
2494 }
2495
56f31801 2496 swapcache = page;
d065bd81 2497 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2498
073e587e 2499 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2500 if (!locked) {
2501 ret |= VM_FAULT_RETRY;
2502 goto out_release;
2503 }
073e587e 2504
4969c119 2505 /*
31c4a3d3
HD
2506 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2507 * release the swapcache from under us. The page pin, and pte_same
2508 * test below, are not enough to exclude that. Even if it is still
2509 * swapcache, we need to check that the page's swap has not changed.
4969c119 2510 */
31c4a3d3 2511 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2512 goto out_page;
2513
cbf86cfe
HD
2514 page = ksm_might_need_to_copy(page, vma, address);
2515 if (unlikely(!page)) {
2516 ret = VM_FAULT_OOM;
2517 page = swapcache;
cbf86cfe 2518 goto out_page;
5ad64688
HD
2519 }
2520
00501b53 2521 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
8a9f3ccd 2522 ret = VM_FAULT_OOM;
bc43f75c 2523 goto out_page;
8a9f3ccd
BS
2524 }
2525
1da177e4 2526 /*
8f4e2101 2527 * Back out if somebody else already faulted in this pte.
1da177e4 2528 */
8f4e2101 2529 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2530 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2531 goto out_nomap;
b8107480
KK
2532
2533 if (unlikely(!PageUptodate(page))) {
2534 ret = VM_FAULT_SIGBUS;
2535 goto out_nomap;
1da177e4
LT
2536 }
2537
8c7c6e34
KH
2538 /*
2539 * The page isn't present yet, go ahead with the fault.
2540 *
2541 * Be careful about the sequence of operations here.
2542 * To get its accounting right, reuse_swap_page() must be called
2543 * while the page is counted on swap but not yet in mapcount i.e.
2544 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2545 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2546 */
1da177e4 2547
34e55232 2548 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2549 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2550 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2551 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2552 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2553 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2554 ret |= VM_FAULT_WRITE;
ad8c2ee8 2555 exclusive = 1;
1da177e4 2556 }
1da177e4 2557 flush_icache_page(vma, page);
179ef71c
CG
2558 if (pte_swp_soft_dirty(orig_pte))
2559 pte = pte_mksoft_dirty(pte);
1da177e4 2560 set_pte_at(mm, address, page_table, pte);
00501b53 2561 if (page == swapcache) {
af34770e 2562 do_page_add_anon_rmap(page, vma, address, exclusive);
00501b53
JW
2563 mem_cgroup_commit_charge(page, memcg, true);
2564 } else { /* ksm created a completely new copy */
56f31801 2565 page_add_new_anon_rmap(page, vma, address);
00501b53
JW
2566 mem_cgroup_commit_charge(page, memcg, false);
2567 lru_cache_add_active_or_unevictable(page, vma);
2568 }
1da177e4 2569
c475a8ab 2570 swap_free(entry);
b291f000 2571 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2572 try_to_free_swap(page);
c475a8ab 2573 unlock_page(page);
56f31801 2574 if (page != swapcache) {
4969c119
AA
2575 /*
2576 * Hold the lock to avoid the swap entry to be reused
2577 * until we take the PT lock for the pte_same() check
2578 * (to avoid false positives from pte_same). For
2579 * further safety release the lock after the swap_free
2580 * so that the swap count won't change under a
2581 * parallel locked swapcache.
2582 */
2583 unlock_page(swapcache);
2584 page_cache_release(swapcache);
2585 }
c475a8ab 2586
30c9f3a9 2587 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2588 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2589 if (ret & VM_FAULT_ERROR)
2590 ret &= VM_FAULT_ERROR;
1da177e4
LT
2591 goto out;
2592 }
2593
2594 /* No need to invalidate - it was non-present before */
4b3073e1 2595 update_mmu_cache(vma, address, page_table);
65500d23 2596unlock:
8f4e2101 2597 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2598out:
2599 return ret;
b8107480 2600out_nomap:
00501b53 2601 mem_cgroup_cancel_charge(page, memcg);
8f4e2101 2602 pte_unmap_unlock(page_table, ptl);
bc43f75c 2603out_page:
b8107480 2604 unlock_page(page);
4779cb31 2605out_release:
b8107480 2606 page_cache_release(page);
56f31801 2607 if (page != swapcache) {
4969c119
AA
2608 unlock_page(swapcache);
2609 page_cache_release(swapcache);
2610 }
65500d23 2611 return ret;
1da177e4
LT
2612}
2613
320b2b8d 2614/*
8ca3eb08
TL
2615 * This is like a special single-page "expand_{down|up}wards()",
2616 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2617 * doesn't hit another vma.
320b2b8d
LT
2618 */
2619static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2620{
2621 address &= PAGE_MASK;
2622 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2623 struct vm_area_struct *prev = vma->vm_prev;
2624
2625 /*
2626 * Is there a mapping abutting this one below?
2627 *
2628 * That's only ok if it's the same stack mapping
2629 * that has gotten split..
2630 */
2631 if (prev && prev->vm_end == address)
2632 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2633
fee7e49d 2634 return expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2635 }
8ca3eb08
TL
2636 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2637 struct vm_area_struct *next = vma->vm_next;
2638
2639 /* As VM_GROWSDOWN but s/below/above/ */
2640 if (next && next->vm_start == address + PAGE_SIZE)
2641 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2642
fee7e49d 2643 return expand_upwards(vma, address + PAGE_SIZE);
8ca3eb08 2644 }
320b2b8d
LT
2645 return 0;
2646}
2647
1da177e4 2648/*
8f4e2101
HD
2649 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2650 * but allow concurrent faults), and pte mapped but not yet locked.
2651 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2652 */
65500d23
HD
2653static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2654 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2655 unsigned int flags)
1da177e4 2656{
00501b53 2657 struct mem_cgroup *memcg;
8f4e2101
HD
2658 struct page *page;
2659 spinlock_t *ptl;
1da177e4 2660 pte_t entry;
1da177e4 2661
11ac5524
LT
2662 pte_unmap(page_table);
2663
6b7339f4
KS
2664 /* File mapping without ->vm_ops ? */
2665 if (vma->vm_flags & VM_SHARED)
2666 return VM_FAULT_SIGBUS;
2667
11ac5524
LT
2668 /* Check if we need to add a guard page to the stack */
2669 if (check_stack_guard_page(vma, address) < 0)
9c145c56 2670 return VM_FAULT_SIGSEGV;
320b2b8d 2671
11ac5524 2672 /* Use the zero-page for reads */
593befa6 2673 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
62eede62
HD
2674 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2675 vma->vm_page_prot));
11ac5524 2676 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2677 if (!pte_none(*page_table))
2678 goto unlock;
6b251fc9
AA
2679 /* Deliver the page fault to userland, check inside PT lock */
2680 if (userfaultfd_missing(vma)) {
2681 pte_unmap_unlock(page_table, ptl);
2682 return handle_userfault(vma, address, flags,
2683 VM_UFFD_MISSING);
2684 }
a13ea5b7
HD
2685 goto setpte;
2686 }
2687
557ed1fa 2688 /* Allocate our own private page. */
557ed1fa
NP
2689 if (unlikely(anon_vma_prepare(vma)))
2690 goto oom;
2691 page = alloc_zeroed_user_highpage_movable(vma, address);
2692 if (!page)
2693 goto oom;
eb3c24f3
MG
2694
2695 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2696 goto oom_free_page;
2697
52f37629
MK
2698 /*
2699 * The memory barrier inside __SetPageUptodate makes sure that
2700 * preceeding stores to the page contents become visible before
2701 * the set_pte_at() write.
2702 */
0ed361de 2703 __SetPageUptodate(page);
8f4e2101 2704
557ed1fa 2705 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2706 if (vma->vm_flags & VM_WRITE)
2707 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2708
557ed1fa 2709 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2710 if (!pte_none(*page_table))
557ed1fa 2711 goto release;
9ba69294 2712
6b251fc9
AA
2713 /* Deliver the page fault to userland, check inside PT lock */
2714 if (userfaultfd_missing(vma)) {
2715 pte_unmap_unlock(page_table, ptl);
2716 mem_cgroup_cancel_charge(page, memcg);
2717 page_cache_release(page);
2718 return handle_userfault(vma, address, flags,
2719 VM_UFFD_MISSING);
2720 }
2721
34e55232 2722 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 2723 page_add_new_anon_rmap(page, vma, address);
00501b53
JW
2724 mem_cgroup_commit_charge(page, memcg, false);
2725 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2726setpte:
65500d23 2727 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2728
2729 /* No need to invalidate - it was non-present before */
4b3073e1 2730 update_mmu_cache(vma, address, page_table);
65500d23 2731unlock:
8f4e2101 2732 pte_unmap_unlock(page_table, ptl);
83c54070 2733 return 0;
8f4e2101 2734release:
00501b53 2735 mem_cgroup_cancel_charge(page, memcg);
8f4e2101
HD
2736 page_cache_release(page);
2737 goto unlock;
8a9f3ccd 2738oom_free_page:
6dbf6d3b 2739 page_cache_release(page);
65500d23 2740oom:
1da177e4
LT
2741 return VM_FAULT_OOM;
2742}
2743
9a95f3cf
PC
2744/*
2745 * The mmap_sem must have been held on entry, and may have been
2746 * released depending on flags and vma->vm_ops->fault() return value.
2747 * See filemap_fault() and __lock_page_retry().
2748 */
7eae74af 2749static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2e4cdab0
MW
2750 pgoff_t pgoff, unsigned int flags,
2751 struct page *cow_page, struct page **page)
7eae74af
KS
2752{
2753 struct vm_fault vmf;
2754 int ret;
2755
2756 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2757 vmf.pgoff = pgoff;
2758 vmf.flags = flags;
2759 vmf.page = NULL;
2e4cdab0 2760 vmf.cow_page = cow_page;
7eae74af
KS
2761
2762 ret = vma->vm_ops->fault(vma, &vmf);
2763 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2764 return ret;
2e4cdab0
MW
2765 if (!vmf.page)
2766 goto out;
7eae74af
KS
2767
2768 if (unlikely(PageHWPoison(vmf.page))) {
2769 if (ret & VM_FAULT_LOCKED)
2770 unlock_page(vmf.page);
2771 page_cache_release(vmf.page);
2772 return VM_FAULT_HWPOISON;
2773 }
2774
2775 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2776 lock_page(vmf.page);
2777 else
2778 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2779
2e4cdab0 2780 out:
7eae74af
KS
2781 *page = vmf.page;
2782 return ret;
2783}
2784
8c6e50b0
KS
2785/**
2786 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2787 *
2788 * @vma: virtual memory area
2789 * @address: user virtual address
2790 * @page: page to map
2791 * @pte: pointer to target page table entry
2792 * @write: true, if new entry is writable
2793 * @anon: true, if it's anonymous page
2794 *
2795 * Caller must hold page table lock relevant for @pte.
2796 *
2797 * Target users are page handler itself and implementations of
2798 * vm_ops->map_pages.
2799 */
2800void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3bb97794
KS
2801 struct page *page, pte_t *pte, bool write, bool anon)
2802{
2803 pte_t entry;
2804
2805 flush_icache_page(vma, page);
2806 entry = mk_pte(page, vma->vm_page_prot);
2807 if (write)
2808 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3bb97794
KS
2809 if (anon) {
2810 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2811 page_add_new_anon_rmap(page, vma, address);
2812 } else {
eca56ff9 2813 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3bb97794
KS
2814 page_add_file_rmap(page);
2815 }
2816 set_pte_at(vma->vm_mm, address, pte, entry);
2817
2818 /* no need to invalidate: a not-present page won't be cached */
2819 update_mmu_cache(vma, address, pte);
2820}
2821
3a91053a
KS
2822static unsigned long fault_around_bytes __read_mostly =
2823 rounddown_pow_of_two(65536);
a9b0f861 2824
a9b0f861
KS
2825#ifdef CONFIG_DEBUG_FS
2826static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2827{
a9b0f861 2828 *val = fault_around_bytes;
1592eef0
KS
2829 return 0;
2830}
2831
b4903d6e
AR
2832/*
2833 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2834 * rounded down to nearest page order. It's what do_fault_around() expects to
2835 * see.
2836 */
a9b0f861 2837static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2838{
a9b0f861 2839 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2840 return -EINVAL;
b4903d6e
AR
2841 if (val > PAGE_SIZE)
2842 fault_around_bytes = rounddown_pow_of_two(val);
2843 else
2844 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2845 return 0;
2846}
a9b0f861
KS
2847DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2848 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2849
2850static int __init fault_around_debugfs(void)
2851{
2852 void *ret;
2853
a9b0f861
KS
2854 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2855 &fault_around_bytes_fops);
1592eef0 2856 if (!ret)
a9b0f861 2857 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2858 return 0;
2859}
2860late_initcall(fault_around_debugfs);
1592eef0 2861#endif
8c6e50b0 2862
1fdb412b
KS
2863/*
2864 * do_fault_around() tries to map few pages around the fault address. The hope
2865 * is that the pages will be needed soon and this will lower the number of
2866 * faults to handle.
2867 *
2868 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2869 * not ready to be mapped: not up-to-date, locked, etc.
2870 *
2871 * This function is called with the page table lock taken. In the split ptlock
2872 * case the page table lock only protects only those entries which belong to
2873 * the page table corresponding to the fault address.
2874 *
2875 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2876 * only once.
2877 *
2878 * fault_around_pages() defines how many pages we'll try to map.
2879 * do_fault_around() expects it to return a power of two less than or equal to
2880 * PTRS_PER_PTE.
2881 *
2882 * The virtual address of the area that we map is naturally aligned to the
2883 * fault_around_pages() value (and therefore to page order). This way it's
2884 * easier to guarantee that we don't cross page table boundaries.
2885 */
8c6e50b0
KS
2886static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2887 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2888{
aecd6f44 2889 unsigned long start_addr, nr_pages, mask;
8c6e50b0
KS
2890 pgoff_t max_pgoff;
2891 struct vm_fault vmf;
2892 int off;
2893
4db0c3c2 2894 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
2895 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2896
2897 start_addr = max(address & mask, vma->vm_start);
8c6e50b0
KS
2898 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2899 pte -= off;
2900 pgoff -= off;
2901
2902 /*
2903 * max_pgoff is either end of page table or end of vma
850e9c69 2904 * or fault_around_pages() from pgoff, depending what is nearest.
8c6e50b0
KS
2905 */
2906 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2907 PTRS_PER_PTE - 1;
2908 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
aecd6f44 2909 pgoff + nr_pages - 1);
8c6e50b0
KS
2910
2911 /* Check if it makes any sense to call ->map_pages */
2912 while (!pte_none(*pte)) {
2913 if (++pgoff > max_pgoff)
2914 return;
2915 start_addr += PAGE_SIZE;
2916 if (start_addr >= vma->vm_end)
2917 return;
2918 pte++;
2919 }
2920
2921 vmf.virtual_address = (void __user *) start_addr;
2922 vmf.pte = pte;
2923 vmf.pgoff = pgoff;
2924 vmf.max_pgoff = max_pgoff;
2925 vmf.flags = flags;
2926 vma->vm_ops->map_pages(vma, &vmf);
2927}
2928
e655fb29
KS
2929static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2930 unsigned long address, pmd_t *pmd,
2931 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2932{
2933 struct page *fault_page;
2934 spinlock_t *ptl;
3bb97794 2935 pte_t *pte;
8c6e50b0
KS
2936 int ret = 0;
2937
2938 /*
2939 * Let's call ->map_pages() first and use ->fault() as fallback
2940 * if page by the offset is not ready to be mapped (cold cache or
2941 * something).
2942 */
9b4bdd2f 2943 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
8c6e50b0
KS
2944 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2945 do_fault_around(vma, address, pte, pgoff, flags);
2946 if (!pte_same(*pte, orig_pte))
2947 goto unlock_out;
2948 pte_unmap_unlock(pte, ptl);
2949 }
e655fb29 2950
2e4cdab0 2951 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
e655fb29
KS
2952 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2953 return ret;
2954
2955 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2956 if (unlikely(!pte_same(*pte, orig_pte))) {
2957 pte_unmap_unlock(pte, ptl);
2958 unlock_page(fault_page);
2959 page_cache_release(fault_page);
2960 return ret;
2961 }
3bb97794 2962 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 2963 unlock_page(fault_page);
8c6e50b0
KS
2964unlock_out:
2965 pte_unmap_unlock(pte, ptl);
e655fb29
KS
2966 return ret;
2967}
2968
ec47c3b9
KS
2969static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2970 unsigned long address, pmd_t *pmd,
2971 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2972{
2973 struct page *fault_page, *new_page;
00501b53 2974 struct mem_cgroup *memcg;
ec47c3b9 2975 spinlock_t *ptl;
3bb97794 2976 pte_t *pte;
ec47c3b9
KS
2977 int ret;
2978
2979 if (unlikely(anon_vma_prepare(vma)))
2980 return VM_FAULT_OOM;
2981
2982 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2983 if (!new_page)
2984 return VM_FAULT_OOM;
2985
00501b53 2986 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
ec47c3b9
KS
2987 page_cache_release(new_page);
2988 return VM_FAULT_OOM;
2989 }
2990
2e4cdab0 2991 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
ec47c3b9
KS
2992 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2993 goto uncharge_out;
2994
2e4cdab0
MW
2995 if (fault_page)
2996 copy_user_highpage(new_page, fault_page, address, vma);
ec47c3b9
KS
2997 __SetPageUptodate(new_page);
2998
2999 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3000 if (unlikely(!pte_same(*pte, orig_pte))) {
3001 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
3002 if (fault_page) {
3003 unlock_page(fault_page);
3004 page_cache_release(fault_page);
3005 } else {
3006 /*
3007 * The fault handler has no page to lock, so it holds
0df9d41a 3008 * i_mmap_lock for read to protect against truncate.
2e4cdab0 3009 */
0df9d41a 3010 i_mmap_unlock_read(vma->vm_file->f_mapping);
2e4cdab0 3011 }
ec47c3b9
KS
3012 goto uncharge_out;
3013 }
3bb97794 3014 do_set_pte(vma, address, new_page, pte, true, true);
00501b53
JW
3015 mem_cgroup_commit_charge(new_page, memcg, false);
3016 lru_cache_add_active_or_unevictable(new_page, vma);
ec47c3b9 3017 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
3018 if (fault_page) {
3019 unlock_page(fault_page);
3020 page_cache_release(fault_page);
3021 } else {
3022 /*
3023 * The fault handler has no page to lock, so it holds
0df9d41a 3024 * i_mmap_lock for read to protect against truncate.
2e4cdab0 3025 */
0df9d41a 3026 i_mmap_unlock_read(vma->vm_file->f_mapping);
2e4cdab0 3027 }
ec47c3b9
KS
3028 return ret;
3029uncharge_out:
00501b53 3030 mem_cgroup_cancel_charge(new_page, memcg);
ec47c3b9
KS
3031 page_cache_release(new_page);
3032 return ret;
3033}
3034
f0c6d4d2 3035static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3036 unsigned long address, pmd_t *pmd,
54cb8821 3037 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3038{
f0c6d4d2
KS
3039 struct page *fault_page;
3040 struct address_space *mapping;
8f4e2101 3041 spinlock_t *ptl;
3bb97794 3042 pte_t *pte;
f0c6d4d2 3043 int dirtied = 0;
f0c6d4d2 3044 int ret, tmp;
1d65f86d 3045
2e4cdab0 3046 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
7eae74af 3047 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3048 return ret;
1da177e4
LT
3049
3050 /*
f0c6d4d2
KS
3051 * Check if the backing address space wants to know that the page is
3052 * about to become writable
1da177e4 3053 */
fb09a464
KS
3054 if (vma->vm_ops->page_mkwrite) {
3055 unlock_page(fault_page);
3056 tmp = do_page_mkwrite(vma, fault_page, address);
3057 if (unlikely(!tmp ||
3058 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
f0c6d4d2 3059 page_cache_release(fault_page);
fb09a464 3060 return tmp;
4294621f 3061 }
fb09a464
KS
3062 }
3063
f0c6d4d2
KS
3064 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3065 if (unlikely(!pte_same(*pte, orig_pte))) {
3066 pte_unmap_unlock(pte, ptl);
3067 unlock_page(fault_page);
3068 page_cache_release(fault_page);
3069 return ret;
1da177e4 3070 }
3bb97794 3071 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 3072 pte_unmap_unlock(pte, ptl);
b827e496 3073
f0c6d4d2
KS
3074 if (set_page_dirty(fault_page))
3075 dirtied = 1;
d82fa87d
AM
3076 /*
3077 * Take a local copy of the address_space - page.mapping may be zeroed
3078 * by truncate after unlock_page(). The address_space itself remains
3079 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3080 * release semantics to prevent the compiler from undoing this copying.
3081 */
f0c6d4d2
KS
3082 mapping = fault_page->mapping;
3083 unlock_page(fault_page);
3084 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3085 /*
3086 * Some device drivers do not set page.mapping but still
3087 * dirty their pages
3088 */
3089 balance_dirty_pages_ratelimited(mapping);
d08b3851 3090 }
d00806b1 3091
74ec6751 3092 if (!vma->vm_ops->page_mkwrite)
f0c6d4d2 3093 file_update_time(vma->vm_file);
b827e496 3094
1d65f86d 3095 return ret;
54cb8821 3096}
d00806b1 3097
9a95f3cf
PC
3098/*
3099 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3100 * but allow concurrent faults).
3101 * The mmap_sem may have been released depending on flags and our
3102 * return value. See filemap_fault() and __lock_page_or_retry().
3103 */
9b4bdd2f 3104static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
54cb8821 3105 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3106 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3107{
3108 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3109 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3110
16abfa08 3111 pte_unmap(page_table);
6b7339f4
KS
3112 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3113 if (!vma->vm_ops->fault)
3114 return VM_FAULT_SIGBUS;
e655fb29
KS
3115 if (!(flags & FAULT_FLAG_WRITE))
3116 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3117 orig_pte);
ec47c3b9
KS
3118 if (!(vma->vm_flags & VM_SHARED))
3119 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3120 orig_pte);
f0c6d4d2 3121 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3122}
3123
b19a9939 3124static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3125 unsigned long addr, int page_nid,
3126 int *flags)
9532fec1
MG
3127{
3128 get_page(page);
3129
3130 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3131 if (page_nid == numa_node_id()) {
9532fec1 3132 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3133 *flags |= TNF_FAULT_LOCAL;
3134 }
9532fec1
MG
3135
3136 return mpol_misplaced(page, vma, addr);
3137}
3138
b19a9939 3139static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3140 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3141{
4daae3b4 3142 struct page *page = NULL;
d10e63f2 3143 spinlock_t *ptl;
8191acbd 3144 int page_nid = -1;
90572890 3145 int last_cpupid;
cbee9f88 3146 int target_nid;
b8593bfd 3147 bool migrated = false;
b191f9b1 3148 bool was_writable = pte_write(pte);
6688cc05 3149 int flags = 0;
d10e63f2 3150
c0e7cad9
MG
3151 /* A PROT_NONE fault should not end up here */
3152 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3153
d10e63f2
MG
3154 /*
3155 * The "pte" at this point cannot be used safely without
3156 * validation through pte_unmap_same(). It's of NUMA type but
3157 * the pfn may be screwed if the read is non atomic.
3158 *
4d942466
MG
3159 * We can safely just do a "set_pte_at()", because the old
3160 * page table entry is not accessible, so there would be no
3161 * concurrent hardware modifications to the PTE.
d10e63f2
MG
3162 */
3163 ptl = pte_lockptr(mm, pmd);
3164 spin_lock(ptl);
4daae3b4
MG
3165 if (unlikely(!pte_same(*ptep, pte))) {
3166 pte_unmap_unlock(ptep, ptl);
3167 goto out;
3168 }
3169
4d942466
MG
3170 /* Make it present again */
3171 pte = pte_modify(pte, vma->vm_page_prot);
3172 pte = pte_mkyoung(pte);
b191f9b1
MG
3173 if (was_writable)
3174 pte = pte_mkwrite(pte);
d10e63f2
MG
3175 set_pte_at(mm, addr, ptep, pte);
3176 update_mmu_cache(vma, addr, ptep);
3177
3178 page = vm_normal_page(vma, addr, pte);
3179 if (!page) {
3180 pte_unmap_unlock(ptep, ptl);
3181 return 0;
3182 }
3183
6688cc05 3184 /*
bea66fbd
MG
3185 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3186 * much anyway since they can be in shared cache state. This misses
3187 * the case where a mapping is writable but the process never writes
3188 * to it but pte_write gets cleared during protection updates and
3189 * pte_dirty has unpredictable behaviour between PTE scan updates,
3190 * background writeback, dirty balancing and application behaviour.
6688cc05 3191 */
bea66fbd 3192 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
3193 flags |= TNF_NO_GROUP;
3194
dabe1d99
RR
3195 /*
3196 * Flag if the page is shared between multiple address spaces. This
3197 * is later used when determining whether to group tasks together
3198 */
3199 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3200 flags |= TNF_SHARED;
3201
90572890 3202 last_cpupid = page_cpupid_last(page);
8191acbd 3203 page_nid = page_to_nid(page);
04bb2f94 3204 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3205 pte_unmap_unlock(ptep, ptl);
4daae3b4 3206 if (target_nid == -1) {
4daae3b4
MG
3207 put_page(page);
3208 goto out;
3209 }
3210
3211 /* Migrate to the requested node */
1bc115d8 3212 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3213 if (migrated) {
8191acbd 3214 page_nid = target_nid;
6688cc05 3215 flags |= TNF_MIGRATED;
074c2381
MG
3216 } else
3217 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3218
3219out:
8191acbd 3220 if (page_nid != -1)
6688cc05 3221 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3222 return 0;
3223}
3224
b96375f7
MW
3225static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3226 unsigned long address, pmd_t *pmd, unsigned int flags)
3227{
fb6dd5fa 3228 if (vma_is_anonymous(vma))
b96375f7
MW
3229 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3230 if (vma->vm_ops->pmd_fault)
3231 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3232 return VM_FAULT_FALLBACK;
3233}
3234
3235static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3236 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3237 unsigned int flags)
3238{
fb6dd5fa 3239 if (vma_is_anonymous(vma))
b96375f7
MW
3240 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3241 if (vma->vm_ops->pmd_fault)
3242 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3243 return VM_FAULT_FALLBACK;
3244}
3245
1da177e4
LT
3246/*
3247 * These routines also need to handle stuff like marking pages dirty
3248 * and/or accessed for architectures that don't do it in hardware (most
3249 * RISC architectures). The early dirtying is also good on the i386.
3250 *
3251 * There is also a hook called "update_mmu_cache()" that architectures
3252 * with external mmu caches can use to update those (ie the Sparc or
3253 * PowerPC hashed page tables that act as extended TLBs).
3254 *
c74df32c
HD
3255 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3256 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3257 * We return with pte unmapped and unlocked.
3258 *
3259 * The mmap_sem may have been released depending on flags and our
3260 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3261 */
c0292554 3262static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3263 struct vm_area_struct *vma, unsigned long address,
3264 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3265{
3266 pte_t entry;
8f4e2101 3267 spinlock_t *ptl;
1da177e4 3268
e37c6982
CB
3269 /*
3270 * some architectures can have larger ptes than wordsize,
3271 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3272 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3273 * The code below just needs a consistent view for the ifs and
3274 * we later double check anyway with the ptl lock held. So here
3275 * a barrier will do.
3276 */
3277 entry = *pte;
3278 barrier();
1da177e4 3279 if (!pte_present(entry)) {
65500d23 3280 if (pte_none(entry)) {
b5330628
ON
3281 if (vma_is_anonymous(vma))
3282 return do_anonymous_page(mm, vma, address,
3283 pte, pmd, flags);
3284 else
6b7339f4
KS
3285 return do_fault(mm, vma, address, pte, pmd,
3286 flags, entry);
65500d23 3287 }
65500d23 3288 return do_swap_page(mm, vma, address,
30c9f3a9 3289 pte, pmd, flags, entry);
1da177e4
LT
3290 }
3291
8a0516ed 3292 if (pte_protnone(entry))
d10e63f2
MG
3293 return do_numa_page(mm, vma, address, entry, pte, pmd);
3294
4c21e2f2 3295 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3296 spin_lock(ptl);
3297 if (unlikely(!pte_same(*pte, entry)))
3298 goto unlock;
30c9f3a9 3299 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3300 if (!pte_write(entry))
8f4e2101
HD
3301 return do_wp_page(mm, vma, address,
3302 pte, pmd, ptl, entry);
1da177e4
LT
3303 entry = pte_mkdirty(entry);
3304 }
3305 entry = pte_mkyoung(entry);
30c9f3a9 3306 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3307 update_mmu_cache(vma, address, pte);
1a44e149
AA
3308 } else {
3309 /*
3310 * This is needed only for protection faults but the arch code
3311 * is not yet telling us if this is a protection fault or not.
3312 * This still avoids useless tlb flushes for .text page faults
3313 * with threads.
3314 */
30c9f3a9 3315 if (flags & FAULT_FLAG_WRITE)
61c77326 3316 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3317 }
8f4e2101
HD
3318unlock:
3319 pte_unmap_unlock(pte, ptl);
83c54070 3320 return 0;
1da177e4
LT
3321}
3322
3323/*
3324 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3325 *
3326 * The mmap_sem may have been released depending on flags and our
3327 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3328 */
519e5247
JW
3329static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3330 unsigned long address, unsigned int flags)
1da177e4
LT
3331{
3332 pgd_t *pgd;
3333 pud_t *pud;
3334 pmd_t *pmd;
3335 pte_t *pte;
3336
ac9b9c66 3337 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3338 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3339
1da177e4 3340 pgd = pgd_offset(mm, address);
1da177e4
LT
3341 pud = pud_alloc(mm, pgd, address);
3342 if (!pud)
c74df32c 3343 return VM_FAULT_OOM;
1da177e4
LT
3344 pmd = pmd_alloc(mm, pud, address);
3345 if (!pmd)
c74df32c 3346 return VM_FAULT_OOM;
71e3aac0 3347 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
b96375f7 3348 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
c0292554
KS
3349 if (!(ret & VM_FAULT_FALLBACK))
3350 return ret;
71e3aac0
AA
3351 } else {
3352 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3353 int ret;
3354
71e3aac0
AA
3355 barrier();
3356 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3357 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3358
e53289c0
LT
3359 /*
3360 * If the pmd is splitting, return and retry the
3361 * the fault. Alternative: wait until the split
3362 * is done, and goto retry.
3363 */
3364 if (pmd_trans_splitting(orig_pmd))
3365 return 0;
3366
8a0516ed 3367 if (pmd_protnone(orig_pmd))
4daae3b4 3368 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3369 orig_pmd, pmd);
3370
3d59eebc 3371 if (dirty && !pmd_write(orig_pmd)) {
b96375f7
MW
3372 ret = wp_huge_pmd(mm, vma, address, pmd,
3373 orig_pmd, flags);
9845cbbd
KS
3374 if (!(ret & VM_FAULT_FALLBACK))
3375 return ret;
a1dd450b
WD
3376 } else {
3377 huge_pmd_set_accessed(mm, vma, address, pmd,
3378 orig_pmd, dirty);
9845cbbd 3379 return 0;
1f1d06c3 3380 }
71e3aac0
AA
3381 }
3382 }
3383
3384 /*
3385 * Use __pte_alloc instead of pte_alloc_map, because we can't
3386 * run pte_offset_map on the pmd, if an huge pmd could
3387 * materialize from under us from a different thread.
3388 */
4fd01770
MG
3389 if (unlikely(pmd_none(*pmd)) &&
3390 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3391 return VM_FAULT_OOM;
71e3aac0
AA
3392 /* if an huge pmd materialized from under us just retry later */
3393 if (unlikely(pmd_trans_huge(*pmd)))
3394 return 0;
3395 /*
3396 * A regular pmd is established and it can't morph into a huge pmd
3397 * from under us anymore at this point because we hold the mmap_sem
3398 * read mode and khugepaged takes it in write mode. So now it's
3399 * safe to run pte_offset_map().
3400 */
3401 pte = pte_offset_map(pmd, address);
1da177e4 3402
30c9f3a9 3403 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3404}
3405
9a95f3cf
PC
3406/*
3407 * By the time we get here, we already hold the mm semaphore
3408 *
3409 * The mmap_sem may have been released depending on flags and our
3410 * return value. See filemap_fault() and __lock_page_or_retry().
3411 */
519e5247
JW
3412int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3413 unsigned long address, unsigned int flags)
3414{
3415 int ret;
3416
3417 __set_current_state(TASK_RUNNING);
3418
3419 count_vm_event(PGFAULT);
3420 mem_cgroup_count_vm_event(mm, PGFAULT);
3421
3422 /* do counter updates before entering really critical section. */
3423 check_sync_rss_stat(current);
3424
3425 /*
3426 * Enable the memcg OOM handling for faults triggered in user
3427 * space. Kernel faults are handled more gracefully.
3428 */
3429 if (flags & FAULT_FLAG_USER)
49426420 3430 mem_cgroup_oom_enable();
519e5247
JW
3431
3432 ret = __handle_mm_fault(mm, vma, address, flags);
3433
49426420
JW
3434 if (flags & FAULT_FLAG_USER) {
3435 mem_cgroup_oom_disable();
3436 /*
3437 * The task may have entered a memcg OOM situation but
3438 * if the allocation error was handled gracefully (no
3439 * VM_FAULT_OOM), there is no need to kill anything.
3440 * Just clean up the OOM state peacefully.
3441 */
3442 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3443 mem_cgroup_oom_synchronize(false);
3444 }
3812c8c8 3445
519e5247
JW
3446 return ret;
3447}
e1d6d01a 3448EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3449
1da177e4
LT
3450#ifndef __PAGETABLE_PUD_FOLDED
3451/*
3452 * Allocate page upper directory.
872fec16 3453 * We've already handled the fast-path in-line.
1da177e4 3454 */
1bb3630e 3455int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3456{
c74df32c
HD
3457 pud_t *new = pud_alloc_one(mm, address);
3458 if (!new)
1bb3630e 3459 return -ENOMEM;
1da177e4 3460
362a61ad
NP
3461 smp_wmb(); /* See comment in __pte_alloc */
3462
872fec16 3463 spin_lock(&mm->page_table_lock);
1bb3630e 3464 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3465 pud_free(mm, new);
1bb3630e
HD
3466 else
3467 pgd_populate(mm, pgd, new);
c74df32c 3468 spin_unlock(&mm->page_table_lock);
1bb3630e 3469 return 0;
1da177e4
LT
3470}
3471#endif /* __PAGETABLE_PUD_FOLDED */
3472
3473#ifndef __PAGETABLE_PMD_FOLDED
3474/*
3475 * Allocate page middle directory.
872fec16 3476 * We've already handled the fast-path in-line.
1da177e4 3477 */
1bb3630e 3478int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3479{
c74df32c
HD
3480 pmd_t *new = pmd_alloc_one(mm, address);
3481 if (!new)
1bb3630e 3482 return -ENOMEM;
1da177e4 3483
362a61ad
NP
3484 smp_wmb(); /* See comment in __pte_alloc */
3485
872fec16 3486 spin_lock(&mm->page_table_lock);
1da177e4 3487#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3488 if (!pud_present(*pud)) {
3489 mm_inc_nr_pmds(mm);
1bb3630e 3490 pud_populate(mm, pud, new);
dc6c9a35 3491 } else /* Another has populated it */
5e541973 3492 pmd_free(mm, new);
dc6c9a35
KS
3493#else
3494 if (!pgd_present(*pud)) {
3495 mm_inc_nr_pmds(mm);
1bb3630e 3496 pgd_populate(mm, pud, new);
dc6c9a35
KS
3497 } else /* Another has populated it */
3498 pmd_free(mm, new);
1da177e4 3499#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3500 spin_unlock(&mm->page_table_lock);
1bb3630e 3501 return 0;
e0f39591 3502}
1da177e4
LT
3503#endif /* __PAGETABLE_PMD_FOLDED */
3504
1b36ba81 3505static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3506 pte_t **ptepp, spinlock_t **ptlp)
3507{
3508 pgd_t *pgd;
3509 pud_t *pud;
3510 pmd_t *pmd;
3511 pte_t *ptep;
3512
3513 pgd = pgd_offset(mm, address);
3514 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3515 goto out;
3516
3517 pud = pud_offset(pgd, address);
3518 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3519 goto out;
3520
3521 pmd = pmd_offset(pud, address);
f66055ab 3522 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3523 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3524 goto out;
3525
3526 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3527 if (pmd_huge(*pmd))
3528 goto out;
3529
3530 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3531 if (!ptep)
3532 goto out;
3533 if (!pte_present(*ptep))
3534 goto unlock;
3535 *ptepp = ptep;
3536 return 0;
3537unlock:
3538 pte_unmap_unlock(ptep, *ptlp);
3539out:
3540 return -EINVAL;
3541}
3542
1b36ba81
NK
3543static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3544 pte_t **ptepp, spinlock_t **ptlp)
3545{
3546 int res;
3547
3548 /* (void) is needed to make gcc happy */
3549 (void) __cond_lock(*ptlp,
3550 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3551 return res;
3552}
3553
3b6748e2
JW
3554/**
3555 * follow_pfn - look up PFN at a user virtual address
3556 * @vma: memory mapping
3557 * @address: user virtual address
3558 * @pfn: location to store found PFN
3559 *
3560 * Only IO mappings and raw PFN mappings are allowed.
3561 *
3562 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3563 */
3564int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3565 unsigned long *pfn)
3566{
3567 int ret = -EINVAL;
3568 spinlock_t *ptl;
3569 pte_t *ptep;
3570
3571 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3572 return ret;
3573
3574 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3575 if (ret)
3576 return ret;
3577 *pfn = pte_pfn(*ptep);
3578 pte_unmap_unlock(ptep, ptl);
3579 return 0;
3580}
3581EXPORT_SYMBOL(follow_pfn);
3582
28b2ee20 3583#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3584int follow_phys(struct vm_area_struct *vma,
3585 unsigned long address, unsigned int flags,
3586 unsigned long *prot, resource_size_t *phys)
28b2ee20 3587{
03668a4d 3588 int ret = -EINVAL;
28b2ee20
RR
3589 pte_t *ptep, pte;
3590 spinlock_t *ptl;
28b2ee20 3591
d87fe660 3592 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3593 goto out;
28b2ee20 3594
03668a4d 3595 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3596 goto out;
28b2ee20 3597 pte = *ptep;
03668a4d 3598
28b2ee20
RR
3599 if ((flags & FOLL_WRITE) && !pte_write(pte))
3600 goto unlock;
28b2ee20
RR
3601
3602 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3603 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3604
03668a4d 3605 ret = 0;
28b2ee20
RR
3606unlock:
3607 pte_unmap_unlock(ptep, ptl);
3608out:
d87fe660 3609 return ret;
28b2ee20
RR
3610}
3611
3612int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3613 void *buf, int len, int write)
3614{
3615 resource_size_t phys_addr;
3616 unsigned long prot = 0;
2bc7273b 3617 void __iomem *maddr;
28b2ee20
RR
3618 int offset = addr & (PAGE_SIZE-1);
3619
d87fe660 3620 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3621 return -EINVAL;
3622
9cb12d7b 3623 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
3624 if (write)
3625 memcpy_toio(maddr + offset, buf, len);
3626 else
3627 memcpy_fromio(buf, maddr + offset, len);
3628 iounmap(maddr);
3629
3630 return len;
3631}
5a73633e 3632EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3633#endif
3634
0ec76a11 3635/*
206cb636
SW
3636 * Access another process' address space as given in mm. If non-NULL, use the
3637 * given task for page fault accounting.
0ec76a11 3638 */
206cb636
SW
3639static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3640 unsigned long addr, void *buf, int len, int write)
0ec76a11 3641{
0ec76a11 3642 struct vm_area_struct *vma;
0ec76a11
DH
3643 void *old_buf = buf;
3644
0ec76a11 3645 down_read(&mm->mmap_sem);
183ff22b 3646 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3647 while (len) {
3648 int bytes, ret, offset;
3649 void *maddr;
28b2ee20 3650 struct page *page = NULL;
0ec76a11
DH
3651
3652 ret = get_user_pages(tsk, mm, addr, 1,
3653 write, 1, &page, &vma);
28b2ee20 3654 if (ret <= 0) {
dbffcd03
RR
3655#ifndef CONFIG_HAVE_IOREMAP_PROT
3656 break;
3657#else
28b2ee20
RR
3658 /*
3659 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3660 * we can access using slightly different code.
3661 */
28b2ee20 3662 vma = find_vma(mm, addr);
fe936dfc 3663 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3664 break;
3665 if (vma->vm_ops && vma->vm_ops->access)
3666 ret = vma->vm_ops->access(vma, addr, buf,
3667 len, write);
3668 if (ret <= 0)
28b2ee20
RR
3669 break;
3670 bytes = ret;
dbffcd03 3671#endif
0ec76a11 3672 } else {
28b2ee20
RR
3673 bytes = len;
3674 offset = addr & (PAGE_SIZE-1);
3675 if (bytes > PAGE_SIZE-offset)
3676 bytes = PAGE_SIZE-offset;
3677
3678 maddr = kmap(page);
3679 if (write) {
3680 copy_to_user_page(vma, page, addr,
3681 maddr + offset, buf, bytes);
3682 set_page_dirty_lock(page);
3683 } else {
3684 copy_from_user_page(vma, page, addr,
3685 buf, maddr + offset, bytes);
3686 }
3687 kunmap(page);
3688 page_cache_release(page);
0ec76a11 3689 }
0ec76a11
DH
3690 len -= bytes;
3691 buf += bytes;
3692 addr += bytes;
3693 }
3694 up_read(&mm->mmap_sem);
0ec76a11
DH
3695
3696 return buf - old_buf;
3697}
03252919 3698
5ddd36b9 3699/**
ae91dbfc 3700 * access_remote_vm - access another process' address space
5ddd36b9
SW
3701 * @mm: the mm_struct of the target address space
3702 * @addr: start address to access
3703 * @buf: source or destination buffer
3704 * @len: number of bytes to transfer
3705 * @write: whether the access is a write
3706 *
3707 * The caller must hold a reference on @mm.
3708 */
3709int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3710 void *buf, int len, int write)
3711{
3712 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3713}
3714
206cb636
SW
3715/*
3716 * Access another process' address space.
3717 * Source/target buffer must be kernel space,
3718 * Do not walk the page table directly, use get_user_pages
3719 */
3720int access_process_vm(struct task_struct *tsk, unsigned long addr,
3721 void *buf, int len, int write)
3722{
3723 struct mm_struct *mm;
3724 int ret;
3725
3726 mm = get_task_mm(tsk);
3727 if (!mm)
3728 return 0;
3729
3730 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3731 mmput(mm);
3732
3733 return ret;
3734}
3735
03252919
AK
3736/*
3737 * Print the name of a VMA.
3738 */
3739void print_vma_addr(char *prefix, unsigned long ip)
3740{
3741 struct mm_struct *mm = current->mm;
3742 struct vm_area_struct *vma;
3743
e8bff74a
IM
3744 /*
3745 * Do not print if we are in atomic
3746 * contexts (in exception stacks, etc.):
3747 */
3748 if (preempt_count())
3749 return;
3750
03252919
AK
3751 down_read(&mm->mmap_sem);
3752 vma = find_vma(mm, ip);
3753 if (vma && vma->vm_file) {
3754 struct file *f = vma->vm_file;
3755 char *buf = (char *)__get_free_page(GFP_KERNEL);
3756 if (buf) {
2fbc57c5 3757 char *p;
03252919 3758
9bf39ab2 3759 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
3760 if (IS_ERR(p))
3761 p = "?";
2fbc57c5 3762 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3763 vma->vm_start,
3764 vma->vm_end - vma->vm_start);
3765 free_page((unsigned long)buf);
3766 }
3767 }
51a07e50 3768 up_read(&mm->mmap_sem);
03252919 3769}
3ee1afa3 3770
662bbcb2 3771#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 3772void __might_fault(const char *file, int line)
3ee1afa3 3773{
95156f00
PZ
3774 /*
3775 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3776 * holding the mmap_sem, this is safe because kernel memory doesn't
3777 * get paged out, therefore we'll never actually fault, and the
3778 * below annotations will generate false positives.
3779 */
3780 if (segment_eq(get_fs(), KERNEL_DS))
3781 return;
9ec23531 3782 if (pagefault_disabled())
662bbcb2 3783 return;
9ec23531
DH
3784 __might_sleep(file, line, 0);
3785#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 3786 if (current->mm)
3ee1afa3 3787 might_lock_read(&current->mm->mmap_sem);
9ec23531 3788#endif
3ee1afa3 3789}
9ec23531 3790EXPORT_SYMBOL(__might_fault);
3ee1afa3 3791#endif
47ad8475
AA
3792
3793#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3794static void clear_gigantic_page(struct page *page,
3795 unsigned long addr,
3796 unsigned int pages_per_huge_page)
3797{
3798 int i;
3799 struct page *p = page;
3800
3801 might_sleep();
3802 for (i = 0; i < pages_per_huge_page;
3803 i++, p = mem_map_next(p, page, i)) {
3804 cond_resched();
3805 clear_user_highpage(p, addr + i * PAGE_SIZE);
3806 }
3807}
3808void clear_huge_page(struct page *page,
3809 unsigned long addr, unsigned int pages_per_huge_page)
3810{
3811 int i;
3812
3813 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3814 clear_gigantic_page(page, addr, pages_per_huge_page);
3815 return;
3816 }
3817
3818 might_sleep();
3819 for (i = 0; i < pages_per_huge_page; i++) {
3820 cond_resched();
3821 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3822 }
3823}
3824
3825static void copy_user_gigantic_page(struct page *dst, struct page *src,
3826 unsigned long addr,
3827 struct vm_area_struct *vma,
3828 unsigned int pages_per_huge_page)
3829{
3830 int i;
3831 struct page *dst_base = dst;
3832 struct page *src_base = src;
3833
3834 for (i = 0; i < pages_per_huge_page; ) {
3835 cond_resched();
3836 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3837
3838 i++;
3839 dst = mem_map_next(dst, dst_base, i);
3840 src = mem_map_next(src, src_base, i);
3841 }
3842}
3843
3844void copy_user_huge_page(struct page *dst, struct page *src,
3845 unsigned long addr, struct vm_area_struct *vma,
3846 unsigned int pages_per_huge_page)
3847{
3848 int i;
3849
3850 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3851 copy_user_gigantic_page(dst, src, addr, vma,
3852 pages_per_huge_page);
3853 return;
3854 }
3855
3856 might_sleep();
3857 for (i = 0; i < pages_per_huge_page; i++) {
3858 cond_resched();
3859 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3860 }
3861}
3862#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3863
40b64acd 3864#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3865
3866static struct kmem_cache *page_ptl_cachep;
3867
3868void __init ptlock_cache_init(void)
3869{
3870 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3871 SLAB_PANIC, NULL);
3872}
3873
539edb58 3874bool ptlock_alloc(struct page *page)
49076ec2
KS
3875{
3876 spinlock_t *ptl;
3877
b35f1819 3878 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3879 if (!ptl)
3880 return false;
539edb58 3881 page->ptl = ptl;
49076ec2
KS
3882 return true;
3883}
3884
539edb58 3885void ptlock_free(struct page *page)
49076ec2 3886{
b35f1819 3887 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3888}
3889#endif