]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/mempool.c | |
3 | * | |
4 | * memory buffer pool support. Such pools are mostly used | |
5 | * for guaranteed, deadlock-free memory allocations during | |
6 | * extreme VM load. | |
7 | * | |
8 | * started by Ingo Molnar, Copyright (C) 2001 | |
bdfedb76 | 9 | * debugging by David Rientjes, Copyright (C) 2015 |
1da177e4 LT |
10 | */ |
11 | ||
12 | #include <linux/mm.h> | |
13 | #include <linux/slab.h> | |
bdfedb76 | 14 | #include <linux/highmem.h> |
92393615 | 15 | #include <linux/kasan.h> |
17411962 | 16 | #include <linux/kmemleak.h> |
b95f1b31 | 17 | #include <linux/export.h> |
1da177e4 LT |
18 | #include <linux/mempool.h> |
19 | #include <linux/blkdev.h> | |
20 | #include <linux/writeback.h> | |
e244c9e6 | 21 | #include "slab.h" |
1da177e4 | 22 | |
bdfedb76 DR |
23 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) |
24 | static void poison_error(mempool_t *pool, void *element, size_t size, | |
25 | size_t byte) | |
26 | { | |
27 | const int nr = pool->curr_nr; | |
28 | const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0); | |
29 | const int end = min_t(int, byte + (BITS_PER_LONG / 8), size); | |
30 | int i; | |
31 | ||
32 | pr_err("BUG: mempool element poison mismatch\n"); | |
33 | pr_err("Mempool %p size %zu\n", pool, size); | |
34 | pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : ""); | |
35 | for (i = start; i < end; i++) | |
36 | pr_cont("%x ", *(u8 *)(element + i)); | |
37 | pr_cont("%s\n", end < size ? "..." : ""); | |
38 | dump_stack(); | |
39 | } | |
40 | ||
41 | static void __check_element(mempool_t *pool, void *element, size_t size) | |
42 | { | |
43 | u8 *obj = element; | |
44 | size_t i; | |
45 | ||
46 | for (i = 0; i < size; i++) { | |
47 | u8 exp = (i < size - 1) ? POISON_FREE : POISON_END; | |
48 | ||
49 | if (obj[i] != exp) { | |
50 | poison_error(pool, element, size, i); | |
51 | return; | |
52 | } | |
53 | } | |
54 | memset(obj, POISON_INUSE, size); | |
55 | } | |
56 | ||
57 | static void check_element(mempool_t *pool, void *element) | |
58 | { | |
59 | /* Mempools backed by slab allocator */ | |
60 | if (pool->free == mempool_free_slab || pool->free == mempool_kfree) | |
61 | __check_element(pool, element, ksize(element)); | |
62 | ||
63 | /* Mempools backed by page allocator */ | |
64 | if (pool->free == mempool_free_pages) { | |
65 | int order = (int)(long)pool->pool_data; | |
66 | void *addr = kmap_atomic((struct page *)element); | |
67 | ||
68 | __check_element(pool, addr, 1UL << (PAGE_SHIFT + order)); | |
69 | kunmap_atomic(addr); | |
70 | } | |
71 | } | |
72 | ||
73 | static void __poison_element(void *element, size_t size) | |
74 | { | |
75 | u8 *obj = element; | |
76 | ||
77 | memset(obj, POISON_FREE, size - 1); | |
78 | obj[size - 1] = POISON_END; | |
79 | } | |
80 | ||
81 | static void poison_element(mempool_t *pool, void *element) | |
82 | { | |
83 | /* Mempools backed by slab allocator */ | |
84 | if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) | |
85 | __poison_element(element, ksize(element)); | |
86 | ||
87 | /* Mempools backed by page allocator */ | |
88 | if (pool->alloc == mempool_alloc_pages) { | |
89 | int order = (int)(long)pool->pool_data; | |
90 | void *addr = kmap_atomic((struct page *)element); | |
91 | ||
92 | __poison_element(addr, 1UL << (PAGE_SHIFT + order)); | |
93 | kunmap_atomic(addr); | |
94 | } | |
95 | } | |
96 | #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ | |
97 | static inline void check_element(mempool_t *pool, void *element) | |
98 | { | |
99 | } | |
100 | static inline void poison_element(mempool_t *pool, void *element) | |
101 | { | |
102 | } | |
103 | #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ | |
104 | ||
92393615 AR |
105 | static void kasan_poison_element(mempool_t *pool, void *element) |
106 | { | |
107 | if (pool->alloc == mempool_alloc_slab) | |
108 | kasan_slab_free(pool->pool_data, element); | |
109 | if (pool->alloc == mempool_kmalloc) | |
110 | kasan_kfree(element); | |
111 | if (pool->alloc == mempool_alloc_pages) | |
112 | kasan_free_pages(element, (unsigned long)pool->pool_data); | |
113 | } | |
114 | ||
505f5dcb | 115 | static void kasan_unpoison_element(mempool_t *pool, void *element, gfp_t flags) |
92393615 AR |
116 | { |
117 | if (pool->alloc == mempool_alloc_slab) | |
505f5dcb | 118 | kasan_slab_alloc(pool->pool_data, element, flags); |
92393615 | 119 | if (pool->alloc == mempool_kmalloc) |
505f5dcb | 120 | kasan_krealloc(element, (size_t)pool->pool_data, flags); |
92393615 AR |
121 | if (pool->alloc == mempool_alloc_pages) |
122 | kasan_alloc_pages(element, (unsigned long)pool->pool_data); | |
123 | } | |
124 | ||
1da177e4 LT |
125 | static void add_element(mempool_t *pool, void *element) |
126 | { | |
127 | BUG_ON(pool->curr_nr >= pool->min_nr); | |
bdfedb76 | 128 | poison_element(pool, element); |
92393615 | 129 | kasan_poison_element(pool, element); |
1da177e4 LT |
130 | pool->elements[pool->curr_nr++] = element; |
131 | } | |
132 | ||
505f5dcb | 133 | static void *remove_element(mempool_t *pool, gfp_t flags) |
1da177e4 | 134 | { |
bdfedb76 DR |
135 | void *element = pool->elements[--pool->curr_nr]; |
136 | ||
137 | BUG_ON(pool->curr_nr < 0); | |
505f5dcb | 138 | kasan_unpoison_element(pool, element, flags); |
76401310 | 139 | check_element(pool, element); |
bdfedb76 | 140 | return element; |
1da177e4 LT |
141 | } |
142 | ||
0565d317 TH |
143 | /** |
144 | * mempool_destroy - deallocate a memory pool | |
145 | * @pool: pointer to the memory pool which was allocated via | |
146 | * mempool_create(). | |
147 | * | |
148 | * Free all reserved elements in @pool and @pool itself. This function | |
149 | * only sleeps if the free_fn() function sleeps. | |
150 | */ | |
151 | void mempool_destroy(mempool_t *pool) | |
1da177e4 | 152 | { |
4e3ca3e0 SS |
153 | if (unlikely(!pool)) |
154 | return; | |
155 | ||
1da177e4 | 156 | while (pool->curr_nr) { |
505f5dcb | 157 | void *element = remove_element(pool, GFP_KERNEL); |
1da177e4 LT |
158 | pool->free(element, pool->pool_data); |
159 | } | |
160 | kfree(pool->elements); | |
161 | kfree(pool); | |
162 | } | |
0565d317 | 163 | EXPORT_SYMBOL(mempool_destroy); |
1da177e4 LT |
164 | |
165 | /** | |
166 | * mempool_create - create a memory pool | |
167 | * @min_nr: the minimum number of elements guaranteed to be | |
168 | * allocated for this pool. | |
169 | * @alloc_fn: user-defined element-allocation function. | |
170 | * @free_fn: user-defined element-freeing function. | |
171 | * @pool_data: optional private data available to the user-defined functions. | |
172 | * | |
173 | * this function creates and allocates a guaranteed size, preallocated | |
72fd4a35 | 174 | * memory pool. The pool can be used from the mempool_alloc() and mempool_free() |
1da177e4 | 175 | * functions. This function might sleep. Both the alloc_fn() and the free_fn() |
72fd4a35 | 176 | * functions might sleep - as long as the mempool_alloc() function is not called |
1da177e4 LT |
177 | * from IRQ contexts. |
178 | */ | |
1946089a | 179 | mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, |
1da177e4 LT |
180 | mempool_free_t *free_fn, void *pool_data) |
181 | { | |
a91a5ac6 TH |
182 | return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data, |
183 | GFP_KERNEL, NUMA_NO_NODE); | |
1946089a CL |
184 | } |
185 | EXPORT_SYMBOL(mempool_create); | |
1da177e4 | 186 | |
1946089a | 187 | mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, |
a91a5ac6 TH |
188 | mempool_free_t *free_fn, void *pool_data, |
189 | gfp_t gfp_mask, int node_id) | |
1946089a CL |
190 | { |
191 | mempool_t *pool; | |
7b5219db | 192 | pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id); |
1da177e4 LT |
193 | if (!pool) |
194 | return NULL; | |
1946089a | 195 | pool->elements = kmalloc_node(min_nr * sizeof(void *), |
a91a5ac6 | 196 | gfp_mask, node_id); |
1da177e4 LT |
197 | if (!pool->elements) { |
198 | kfree(pool); | |
199 | return NULL; | |
200 | } | |
201 | spin_lock_init(&pool->lock); | |
202 | pool->min_nr = min_nr; | |
203 | pool->pool_data = pool_data; | |
204 | init_waitqueue_head(&pool->wait); | |
205 | pool->alloc = alloc_fn; | |
206 | pool->free = free_fn; | |
207 | ||
208 | /* | |
209 | * First pre-allocate the guaranteed number of buffers. | |
210 | */ | |
211 | while (pool->curr_nr < pool->min_nr) { | |
212 | void *element; | |
213 | ||
a91a5ac6 | 214 | element = pool->alloc(gfp_mask, pool->pool_data); |
1da177e4 | 215 | if (unlikely(!element)) { |
0565d317 | 216 | mempool_destroy(pool); |
1da177e4 LT |
217 | return NULL; |
218 | } | |
219 | add_element(pool, element); | |
220 | } | |
221 | return pool; | |
222 | } | |
1946089a | 223 | EXPORT_SYMBOL(mempool_create_node); |
1da177e4 LT |
224 | |
225 | /** | |
226 | * mempool_resize - resize an existing memory pool | |
227 | * @pool: pointer to the memory pool which was allocated via | |
228 | * mempool_create(). | |
229 | * @new_min_nr: the new minimum number of elements guaranteed to be | |
230 | * allocated for this pool. | |
1da177e4 LT |
231 | * |
232 | * This function shrinks/grows the pool. In the case of growing, | |
233 | * it cannot be guaranteed that the pool will be grown to the new | |
234 | * size immediately, but new mempool_free() calls will refill it. | |
11d83360 | 235 | * This function may sleep. |
1da177e4 LT |
236 | * |
237 | * Note, the caller must guarantee that no mempool_destroy is called | |
238 | * while this function is running. mempool_alloc() & mempool_free() | |
239 | * might be called (eg. from IRQ contexts) while this function executes. | |
240 | */ | |
11d83360 | 241 | int mempool_resize(mempool_t *pool, int new_min_nr) |
1da177e4 LT |
242 | { |
243 | void *element; | |
244 | void **new_elements; | |
245 | unsigned long flags; | |
246 | ||
247 | BUG_ON(new_min_nr <= 0); | |
11d83360 | 248 | might_sleep(); |
1da177e4 LT |
249 | |
250 | spin_lock_irqsave(&pool->lock, flags); | |
251 | if (new_min_nr <= pool->min_nr) { | |
252 | while (new_min_nr < pool->curr_nr) { | |
505f5dcb | 253 | element = remove_element(pool, GFP_KERNEL); |
1da177e4 LT |
254 | spin_unlock_irqrestore(&pool->lock, flags); |
255 | pool->free(element, pool->pool_data); | |
256 | spin_lock_irqsave(&pool->lock, flags); | |
257 | } | |
258 | pool->min_nr = new_min_nr; | |
259 | goto out_unlock; | |
260 | } | |
261 | spin_unlock_irqrestore(&pool->lock, flags); | |
262 | ||
263 | /* Grow the pool */ | |
11d83360 DR |
264 | new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements), |
265 | GFP_KERNEL); | |
1da177e4 LT |
266 | if (!new_elements) |
267 | return -ENOMEM; | |
268 | ||
269 | spin_lock_irqsave(&pool->lock, flags); | |
270 | if (unlikely(new_min_nr <= pool->min_nr)) { | |
271 | /* Raced, other resize will do our work */ | |
272 | spin_unlock_irqrestore(&pool->lock, flags); | |
273 | kfree(new_elements); | |
274 | goto out; | |
275 | } | |
276 | memcpy(new_elements, pool->elements, | |
277 | pool->curr_nr * sizeof(*new_elements)); | |
278 | kfree(pool->elements); | |
279 | pool->elements = new_elements; | |
280 | pool->min_nr = new_min_nr; | |
281 | ||
282 | while (pool->curr_nr < pool->min_nr) { | |
283 | spin_unlock_irqrestore(&pool->lock, flags); | |
11d83360 | 284 | element = pool->alloc(GFP_KERNEL, pool->pool_data); |
1da177e4 LT |
285 | if (!element) |
286 | goto out; | |
287 | spin_lock_irqsave(&pool->lock, flags); | |
288 | if (pool->curr_nr < pool->min_nr) { | |
289 | add_element(pool, element); | |
290 | } else { | |
291 | spin_unlock_irqrestore(&pool->lock, flags); | |
292 | pool->free(element, pool->pool_data); /* Raced */ | |
293 | goto out; | |
294 | } | |
295 | } | |
296 | out_unlock: | |
297 | spin_unlock_irqrestore(&pool->lock, flags); | |
298 | out: | |
299 | return 0; | |
300 | } | |
301 | EXPORT_SYMBOL(mempool_resize); | |
302 | ||
1da177e4 LT |
303 | /** |
304 | * mempool_alloc - allocate an element from a specific memory pool | |
305 | * @pool: pointer to the memory pool which was allocated via | |
306 | * mempool_create(). | |
307 | * @gfp_mask: the usual allocation bitmask. | |
308 | * | |
72fd4a35 | 309 | * this function only sleeps if the alloc_fn() function sleeps or |
1da177e4 LT |
310 | * returns NULL. Note that due to preallocation, this function |
311 | * *never* fails when called from process contexts. (it might | |
312 | * fail if called from an IRQ context.) | |
f9054c70 | 313 | * Note: neither __GFP_NOMEMALLOC nor __GFP_ZERO are supported. |
1da177e4 | 314 | */ |
f9054c70 | 315 | void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask) |
1da177e4 LT |
316 | { |
317 | void *element; | |
318 | unsigned long flags; | |
01890a4c | 319 | wait_queue_t wait; |
6daa0e28 | 320 | gfp_t gfp_temp; |
20a77776 | 321 | |
f9054c70 DR |
322 | /* If oom killed, memory reserves are essential to prevent livelock */ |
323 | VM_WARN_ON_ONCE(gfp_mask & __GFP_NOMEMALLOC); | |
324 | /* No element size to zero on allocation */ | |
8bf8fcb0 | 325 | VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO); |
f9054c70 | 326 | |
d0164adc | 327 | might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); |
b84a35be | 328 | |
b84a35be NP |
329 | gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */ |
330 | gfp_mask |= __GFP_NOWARN; /* failures are OK */ | |
1da177e4 | 331 | |
d0164adc | 332 | gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO); |
20a77776 | 333 | |
1da177e4 | 334 | repeat_alloc: |
f9054c70 DR |
335 | if (likely(pool->curr_nr)) { |
336 | /* | |
337 | * Don't allocate from emergency reserves if there are | |
338 | * elements available. This check is racy, but it will | |
339 | * be rechecked each loop. | |
340 | */ | |
341 | gfp_temp |= __GFP_NOMEMALLOC; | |
342 | } | |
20a77776 NP |
343 | |
344 | element = pool->alloc(gfp_temp, pool->pool_data); | |
1da177e4 LT |
345 | if (likely(element != NULL)) |
346 | return element; | |
347 | ||
1da177e4 LT |
348 | spin_lock_irqsave(&pool->lock, flags); |
349 | if (likely(pool->curr_nr)) { | |
505f5dcb | 350 | element = remove_element(pool, gfp_temp); |
1da177e4 | 351 | spin_unlock_irqrestore(&pool->lock, flags); |
5b990546 TH |
352 | /* paired with rmb in mempool_free(), read comment there */ |
353 | smp_wmb(); | |
17411962 CM |
354 | /* |
355 | * Update the allocation stack trace as this is more useful | |
356 | * for debugging. | |
357 | */ | |
358 | kmemleak_update_trace(element); | |
1da177e4 LT |
359 | return element; |
360 | } | |
1da177e4 | 361 | |
1ebb7044 | 362 | /* |
d0164adc | 363 | * We use gfp mask w/o direct reclaim or IO for the first round. If |
1ebb7044 TH |
364 | * alloc failed with that and @pool was empty, retry immediately. |
365 | */ | |
f9054c70 | 366 | if ((gfp_temp & ~__GFP_NOMEMALLOC) != gfp_mask) { |
1ebb7044 TH |
367 | spin_unlock_irqrestore(&pool->lock, flags); |
368 | gfp_temp = gfp_mask; | |
369 | goto repeat_alloc; | |
370 | } | |
f9054c70 | 371 | gfp_temp = gfp_mask; |
1ebb7044 | 372 | |
d0164adc MG |
373 | /* We must not sleep if !__GFP_DIRECT_RECLAIM */ |
374 | if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { | |
5b990546 | 375 | spin_unlock_irqrestore(&pool->lock, flags); |
1da177e4 | 376 | return NULL; |
5b990546 | 377 | } |
1da177e4 | 378 | |
5b990546 | 379 | /* Let's wait for someone else to return an element to @pool */ |
01890a4c | 380 | init_wait(&wait); |
1da177e4 | 381 | prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE); |
1da177e4 | 382 | |
5b990546 TH |
383 | spin_unlock_irqrestore(&pool->lock, flags); |
384 | ||
385 | /* | |
386 | * FIXME: this should be io_schedule(). The timeout is there as a | |
387 | * workaround for some DM problems in 2.6.18. | |
388 | */ | |
389 | io_schedule_timeout(5*HZ); | |
390 | ||
391 | finish_wait(&pool->wait, &wait); | |
1da177e4 LT |
392 | goto repeat_alloc; |
393 | } | |
394 | EXPORT_SYMBOL(mempool_alloc); | |
395 | ||
396 | /** | |
397 | * mempool_free - return an element to the pool. | |
398 | * @element: pool element pointer. | |
399 | * @pool: pointer to the memory pool which was allocated via | |
400 | * mempool_create(). | |
401 | * | |
402 | * this function only sleeps if the free_fn() function sleeps. | |
403 | */ | |
404 | void mempool_free(void *element, mempool_t *pool) | |
405 | { | |
406 | unsigned long flags; | |
407 | ||
c80e7a82 RR |
408 | if (unlikely(element == NULL)) |
409 | return; | |
410 | ||
5b990546 TH |
411 | /* |
412 | * Paired with the wmb in mempool_alloc(). The preceding read is | |
413 | * for @element and the following @pool->curr_nr. This ensures | |
414 | * that the visible value of @pool->curr_nr is from after the | |
415 | * allocation of @element. This is necessary for fringe cases | |
416 | * where @element was passed to this task without going through | |
417 | * barriers. | |
418 | * | |
419 | * For example, assume @p is %NULL at the beginning and one task | |
420 | * performs "p = mempool_alloc(...);" while another task is doing | |
421 | * "while (!p) cpu_relax(); mempool_free(p, ...);". This function | |
422 | * may end up using curr_nr value which is from before allocation | |
423 | * of @p without the following rmb. | |
424 | */ | |
425 | smp_rmb(); | |
426 | ||
427 | /* | |
428 | * For correctness, we need a test which is guaranteed to trigger | |
429 | * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr | |
430 | * without locking achieves that and refilling as soon as possible | |
431 | * is desirable. | |
432 | * | |
433 | * Because curr_nr visible here is always a value after the | |
434 | * allocation of @element, any task which decremented curr_nr below | |
435 | * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets | |
436 | * incremented to min_nr afterwards. If curr_nr gets incremented | |
437 | * to min_nr after the allocation of @element, the elements | |
438 | * allocated after that are subject to the same guarantee. | |
439 | * | |
440 | * Waiters happen iff curr_nr is 0 and the above guarantee also | |
441 | * ensures that there will be frees which return elements to the | |
442 | * pool waking up the waiters. | |
443 | */ | |
eb9a3c62 | 444 | if (unlikely(pool->curr_nr < pool->min_nr)) { |
1da177e4 | 445 | spin_lock_irqsave(&pool->lock, flags); |
eb9a3c62 | 446 | if (likely(pool->curr_nr < pool->min_nr)) { |
1da177e4 LT |
447 | add_element(pool, element); |
448 | spin_unlock_irqrestore(&pool->lock, flags); | |
449 | wake_up(&pool->wait); | |
450 | return; | |
451 | } | |
452 | spin_unlock_irqrestore(&pool->lock, flags); | |
453 | } | |
454 | pool->free(element, pool->pool_data); | |
455 | } | |
456 | EXPORT_SYMBOL(mempool_free); | |
457 | ||
458 | /* | |
459 | * A commonly used alloc and free fn. | |
460 | */ | |
dd0fc66f | 461 | void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data) |
1da177e4 | 462 | { |
fcc234f8 | 463 | struct kmem_cache *mem = pool_data; |
e244c9e6 | 464 | VM_BUG_ON(mem->ctor); |
1da177e4 LT |
465 | return kmem_cache_alloc(mem, gfp_mask); |
466 | } | |
467 | EXPORT_SYMBOL(mempool_alloc_slab); | |
468 | ||
469 | void mempool_free_slab(void *element, void *pool_data) | |
470 | { | |
fcc234f8 | 471 | struct kmem_cache *mem = pool_data; |
1da177e4 LT |
472 | kmem_cache_free(mem, element); |
473 | } | |
474 | EXPORT_SYMBOL(mempool_free_slab); | |
6e0678f3 | 475 | |
53184082 MD |
476 | /* |
477 | * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory | |
183ff22b | 478 | * specified by pool_data |
53184082 MD |
479 | */ |
480 | void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data) | |
481 | { | |
5e2f89b5 | 482 | size_t size = (size_t)pool_data; |
53184082 MD |
483 | return kmalloc(size, gfp_mask); |
484 | } | |
485 | EXPORT_SYMBOL(mempool_kmalloc); | |
486 | ||
487 | void mempool_kfree(void *element, void *pool_data) | |
488 | { | |
489 | kfree(element); | |
490 | } | |
491 | EXPORT_SYMBOL(mempool_kfree); | |
492 | ||
6e0678f3 MD |
493 | /* |
494 | * A simple mempool-backed page allocator that allocates pages | |
495 | * of the order specified by pool_data. | |
496 | */ | |
497 | void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data) | |
498 | { | |
499 | int order = (int)(long)pool_data; | |
500 | return alloc_pages(gfp_mask, order); | |
501 | } | |
502 | EXPORT_SYMBOL(mempool_alloc_pages); | |
503 | ||
504 | void mempool_free_pages(void *element, void *pool_data) | |
505 | { | |
506 | int order = (int)(long)pool_data; | |
507 | __free_pages(element, order); | |
508 | } | |
509 | EXPORT_SYMBOL(mempool_free_pages); |