]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blame - mm/migrate.c
UBUNTU: [Config] enable signing for ppc64el
[mirror_ubuntu-impish-kernel.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
a520110e 41#include <linux/pagewalk.h>
df6ad698 42#include <linux/pfn_t.h>
a5430dda 43#include <linux/memremap.h>
8315ada7 44#include <linux/userfaultfd_k.h>
bf6bddf1 45#include <linux/balloon_compaction.h>
f714f4f2 46#include <linux/mmu_notifier.h>
33c3fc71 47#include <linux/page_idle.h>
d435edca 48#include <linux/page_owner.h>
6e84f315 49#include <linux/sched/mm.h>
197e7e52 50#include <linux/ptrace.h>
34290e2c 51#include <linux/oom.h>
b20a3503 52
0d1836c3
MN
53#include <asm/tlbflush.h>
54
7b2a2d4a
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/migrate.h>
57
b20a3503
CL
58#include "internal.h"
59
9e5bcd61 60int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
61{
62 struct address_space *mapping;
63
64 /*
65 * Avoid burning cycles with pages that are yet under __free_pages(),
66 * or just got freed under us.
67 *
68 * In case we 'win' a race for a movable page being freed under us and
69 * raise its refcount preventing __free_pages() from doing its job
70 * the put_page() at the end of this block will take care of
71 * release this page, thus avoiding a nasty leakage.
72 */
73 if (unlikely(!get_page_unless_zero(page)))
74 goto out;
75
76 /*
77 * Check PageMovable before holding a PG_lock because page's owner
78 * assumes anybody doesn't touch PG_lock of newly allocated page
8bb4e7a2 79 * so unconditionally grabbing the lock ruins page's owner side.
bda807d4
MK
80 */
81 if (unlikely(!__PageMovable(page)))
82 goto out_putpage;
83 /*
84 * As movable pages are not isolated from LRU lists, concurrent
85 * compaction threads can race against page migration functions
86 * as well as race against the releasing a page.
87 *
88 * In order to avoid having an already isolated movable page
89 * being (wrongly) re-isolated while it is under migration,
90 * or to avoid attempting to isolate pages being released,
91 * lets be sure we have the page lock
92 * before proceeding with the movable page isolation steps.
93 */
94 if (unlikely(!trylock_page(page)))
95 goto out_putpage;
96
97 if (!PageMovable(page) || PageIsolated(page))
98 goto out_no_isolated;
99
100 mapping = page_mapping(page);
101 VM_BUG_ON_PAGE(!mapping, page);
102
103 if (!mapping->a_ops->isolate_page(page, mode))
104 goto out_no_isolated;
105
106 /* Driver shouldn't use PG_isolated bit of page->flags */
107 WARN_ON_ONCE(PageIsolated(page));
108 __SetPageIsolated(page);
109 unlock_page(page);
110
9e5bcd61 111 return 0;
bda807d4
MK
112
113out_no_isolated:
114 unlock_page(page);
115out_putpage:
116 put_page(page);
117out:
9e5bcd61 118 return -EBUSY;
bda807d4
MK
119}
120
606a6f71 121static void putback_movable_page(struct page *page)
bda807d4
MK
122{
123 struct address_space *mapping;
124
bda807d4
MK
125 mapping = page_mapping(page);
126 mapping->a_ops->putback_page(page);
127 __ClearPageIsolated(page);
128}
129
5733c7d1
RA
130/*
131 * Put previously isolated pages back onto the appropriate lists
132 * from where they were once taken off for compaction/migration.
133 *
59c82b70
JK
134 * This function shall be used whenever the isolated pageset has been
135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136 * and isolate_huge_page().
5733c7d1
RA
137 */
138void putback_movable_pages(struct list_head *l)
139{
140 struct page *page;
141 struct page *page2;
142
b20a3503 143 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
144 if (unlikely(PageHuge(page))) {
145 putback_active_hugepage(page);
146 continue;
147 }
e24f0b8f 148 list_del(&page->lru);
bda807d4
MK
149 /*
150 * We isolated non-lru movable page so here we can use
151 * __PageMovable because LRU page's mapping cannot have
152 * PAGE_MAPPING_MOVABLE.
153 */
b1123ea6 154 if (unlikely(__PageMovable(page))) {
bda807d4
MK
155 VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 lock_page(page);
157 if (PageMovable(page))
158 putback_movable_page(page);
159 else
160 __ClearPageIsolated(page);
161 unlock_page(page);
162 put_page(page);
163 } else {
e8db67eb 164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 165 page_is_file_lru(page), -thp_nr_pages(page));
fc280fe8 166 putback_lru_page(page);
bda807d4 167 }
b20a3503 168 }
b20a3503
CL
169}
170
0697212a
CL
171/*
172 * Restore a potential migration pte to a working pte entry
173 */
e4b82222 174static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 175 unsigned long addr, void *old)
0697212a 176{
3fe87967
KS
177 struct page_vma_mapped_walk pvmw = {
178 .page = old,
179 .vma = vma,
180 .address = addr,
181 .flags = PVMW_SYNC | PVMW_MIGRATION,
182 };
183 struct page *new;
184 pte_t pte;
0697212a 185 swp_entry_t entry;
0697212a 186
3fe87967
KS
187 VM_BUG_ON_PAGE(PageTail(page), page);
188 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
189 if (PageKsm(page))
190 new = page;
191 else
192 new = page - pvmw.page->index +
193 linear_page_index(vma, pvmw.address);
0697212a 194
616b8371
ZY
195#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 /* PMD-mapped THP migration entry */
197 if (!pvmw.pte) {
198 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 remove_migration_pmd(&pvmw, new);
200 continue;
201 }
202#endif
203
3fe87967
KS
204 get_page(new);
205 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 if (pte_swp_soft_dirty(*pvmw.pte))
207 pte = pte_mksoft_dirty(pte);
0697212a 208
3fe87967
KS
209 /*
210 * Recheck VMA as permissions can change since migration started
211 */
212 entry = pte_to_swp_entry(*pvmw.pte);
213 if (is_write_migration_entry(entry))
214 pte = maybe_mkwrite(pte, vma);
f45ec5ff
PX
215 else if (pte_swp_uffd_wp(*pvmw.pte))
216 pte = pte_mkuffd_wp(pte);
d3cb8bf6 217
6128763f
RC
218 if (unlikely(is_device_private_page(new))) {
219 entry = make_device_private_entry(new, pte_write(pte));
220 pte = swp_entry_to_pte(entry);
3d321bf8
RC
221 if (pte_swp_soft_dirty(*pvmw.pte))
222 pte = pte_swp_mksoft_dirty(pte);
6128763f
RC
223 if (pte_swp_uffd_wp(*pvmw.pte))
224 pte = pte_swp_mkuffd_wp(pte);
d2b2c6dd 225 }
a5430dda 226
3ef8fd7f 227#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
228 if (PageHuge(new)) {
229 pte = pte_mkhuge(pte);
230 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 231 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
232 if (PageAnon(new))
233 hugepage_add_anon_rmap(new, vma, pvmw.address);
234 else
235 page_dup_rmap(new, true);
383321ab
AK
236 } else
237#endif
238 {
239 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 240
383321ab
AK
241 if (PageAnon(new))
242 page_add_anon_rmap(new, vma, pvmw.address, false);
243 else
244 page_add_file_rmap(new, false);
245 }
3fe87967
KS
246 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
247 mlock_vma_page(new);
248
e125fe40
KS
249 if (PageTransHuge(page) && PageMlocked(page))
250 clear_page_mlock(page);
251
3fe87967
KS
252 /* No need to invalidate - it was non-present before */
253 update_mmu_cache(vma, pvmw.address, pvmw.pte);
254 }
51afb12b 255
e4b82222 256 return true;
0697212a
CL
257}
258
04e62a29
CL
259/*
260 * Get rid of all migration entries and replace them by
261 * references to the indicated page.
262 */
e388466d 263void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 264{
051ac83a
JK
265 struct rmap_walk_control rwc = {
266 .rmap_one = remove_migration_pte,
267 .arg = old,
268 };
269
e388466d
KS
270 if (locked)
271 rmap_walk_locked(new, &rwc);
272 else
273 rmap_walk(new, &rwc);
04e62a29
CL
274}
275
0697212a
CL
276/*
277 * Something used the pte of a page under migration. We need to
278 * get to the page and wait until migration is finished.
279 * When we return from this function the fault will be retried.
0697212a 280 */
e66f17ff 281void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 282 spinlock_t *ptl)
0697212a 283{
30dad309 284 pte_t pte;
0697212a
CL
285 swp_entry_t entry;
286 struct page *page;
287
30dad309 288 spin_lock(ptl);
0697212a
CL
289 pte = *ptep;
290 if (!is_swap_pte(pte))
291 goto out;
292
293 entry = pte_to_swp_entry(pte);
294 if (!is_migration_entry(entry))
295 goto out;
296
297 page = migration_entry_to_page(entry);
ffc90cbb 298 page = compound_head(page);
0697212a 299
e286781d 300 /*
89eb946a 301 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
302 * is zero; but we must not call put_and_wait_on_page_locked() without
303 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
304 */
305 if (!get_page_unless_zero(page))
306 goto out;
0697212a 307 pte_unmap_unlock(ptep, ptl);
48054625 308 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
0697212a
CL
309 return;
310out:
311 pte_unmap_unlock(ptep, ptl);
312}
313
30dad309
NH
314void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
315 unsigned long address)
316{
317 spinlock_t *ptl = pte_lockptr(mm, pmd);
318 pte_t *ptep = pte_offset_map(pmd, address);
319 __migration_entry_wait(mm, ptep, ptl);
320}
321
cb900f41
KS
322void migration_entry_wait_huge(struct vm_area_struct *vma,
323 struct mm_struct *mm, pte_t *pte)
30dad309 324{
cb900f41 325 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
326 __migration_entry_wait(mm, pte, ptl);
327}
328
616b8371
ZY
329#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
330void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
331{
332 spinlock_t *ptl;
333 struct page *page;
334
335 ptl = pmd_lock(mm, pmd);
336 if (!is_pmd_migration_entry(*pmd))
337 goto unlock;
338 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
339 if (!get_page_unless_zero(page))
340 goto unlock;
341 spin_unlock(ptl);
48054625 342 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
616b8371
ZY
343 return;
344unlock:
345 spin_unlock(ptl);
346}
347#endif
348
f900482d 349static int expected_page_refs(struct address_space *mapping, struct page *page)
0b3901b3
JK
350{
351 int expected_count = 1;
352
353 /*
f1f4f3ab 354 * Device private pages have an extra refcount as they are
0b3901b3
JK
355 * ZONE_DEVICE pages.
356 */
357 expected_count += is_device_private_page(page);
f900482d 358 if (mapping)
6c357848 359 expected_count += thp_nr_pages(page) + page_has_private(page);
0b3901b3
JK
360
361 return expected_count;
362}
363
b20a3503 364/*
c3fcf8a5 365 * Replace the page in the mapping.
5b5c7120
CL
366 *
367 * The number of remaining references must be:
368 * 1 for anonymous pages without a mapping
369 * 2 for pages with a mapping
266cf658 370 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 371 */
36bc08cc 372int migrate_page_move_mapping(struct address_space *mapping,
37109694 373 struct page *newpage, struct page *page, int extra_count)
b20a3503 374{
89eb946a 375 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
376 struct zone *oldzone, *newzone;
377 int dirty;
f900482d 378 int expected_count = expected_page_refs(mapping, page) + extra_count;
5c447d27 379 int nr = thp_nr_pages(page);
8763cb45 380
6c5240ae 381 if (!mapping) {
0e8c7d0f 382 /* Anonymous page without mapping */
8e321fef 383 if (page_count(page) != expected_count)
6c5240ae 384 return -EAGAIN;
cf4b769a
HD
385
386 /* No turning back from here */
cf4b769a
HD
387 newpage->index = page->index;
388 newpage->mapping = page->mapping;
389 if (PageSwapBacked(page))
fa9949da 390 __SetPageSwapBacked(newpage);
cf4b769a 391
78bd5209 392 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
393 }
394
42cb14b1
HD
395 oldzone = page_zone(page);
396 newzone = page_zone(newpage);
397
89eb946a 398 xas_lock_irq(&xas);
89eb946a
MW
399 if (page_count(page) != expected_count || xas_load(&xas) != page) {
400 xas_unlock_irq(&xas);
e23ca00b 401 return -EAGAIN;
b20a3503
CL
402 }
403
fe896d18 404 if (!page_ref_freeze(page, expected_count)) {
89eb946a 405 xas_unlock_irq(&xas);
e286781d
NP
406 return -EAGAIN;
407 }
408
b20a3503 409 /*
cf4b769a
HD
410 * Now we know that no one else is looking at the page:
411 * no turning back from here.
b20a3503 412 */
cf4b769a
HD
413 newpage->index = page->index;
414 newpage->mapping = page->mapping;
5c447d27 415 page_ref_add(newpage, nr); /* add cache reference */
6326fec1
NP
416 if (PageSwapBacked(page)) {
417 __SetPageSwapBacked(newpage);
418 if (PageSwapCache(page)) {
419 SetPageSwapCache(newpage);
420 set_page_private(newpage, page_private(page));
421 }
422 } else {
423 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
424 }
425
42cb14b1
HD
426 /* Move dirty while page refs frozen and newpage not yet exposed */
427 dirty = PageDirty(page);
428 if (dirty) {
429 ClearPageDirty(page);
430 SetPageDirty(newpage);
431 }
432
89eb946a 433 xas_store(&xas, newpage);
e71769ae
NH
434 if (PageTransHuge(page)) {
435 int i;
e71769ae 436
5c447d27 437 for (i = 1; i < nr; i++) {
89eb946a 438 xas_next(&xas);
4101196b 439 xas_store(&xas, newpage);
e71769ae 440 }
e71769ae 441 }
7cf9c2c7
NP
442
443 /*
937a94c9
JG
444 * Drop cache reference from old page by unfreezing
445 * to one less reference.
7cf9c2c7
NP
446 * We know this isn't the last reference.
447 */
5c447d27 448 page_ref_unfreeze(page, expected_count - nr);
7cf9c2c7 449
89eb946a 450 xas_unlock(&xas);
42cb14b1
HD
451 /* Leave irq disabled to prevent preemption while updating stats */
452
0e8c7d0f
CL
453 /*
454 * If moved to a different zone then also account
455 * the page for that zone. Other VM counters will be
456 * taken care of when we establish references to the
457 * new page and drop references to the old page.
458 *
459 * Note that anonymous pages are accounted for
4b9d0fab 460 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
461 * are mapped to swap space.
462 */
42cb14b1 463 if (newzone != oldzone) {
0d1c2072
JW
464 struct lruvec *old_lruvec, *new_lruvec;
465 struct mem_cgroup *memcg;
466
467 memcg = page_memcg(page);
468 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
469 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
470
5c447d27
SB
471 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
472 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
42cb14b1 473 if (PageSwapBacked(page) && !PageSwapCache(page)) {
5c447d27
SB
474 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
475 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
42cb14b1 476 }
b6038942
SB
477#ifdef CONFIG_SWAP
478 if (PageSwapCache(page)) {
479 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
480 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
481 }
482#endif
f56753ac 483 if (dirty && mapping_can_writeback(mapping)) {
5c447d27
SB
484 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
485 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
486 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
487 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
42cb14b1 488 }
4b02108a 489 }
42cb14b1 490 local_irq_enable();
b20a3503 491
78bd5209 492 return MIGRATEPAGE_SUCCESS;
b20a3503 493}
1118dce7 494EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 495
290408d4
NH
496/*
497 * The expected number of remaining references is the same as that
498 * of migrate_page_move_mapping().
499 */
500int migrate_huge_page_move_mapping(struct address_space *mapping,
501 struct page *newpage, struct page *page)
502{
89eb946a 503 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 504 int expected_count;
290408d4 505
89eb946a 506 xas_lock_irq(&xas);
290408d4 507 expected_count = 2 + page_has_private(page);
89eb946a
MW
508 if (page_count(page) != expected_count || xas_load(&xas) != page) {
509 xas_unlock_irq(&xas);
290408d4
NH
510 return -EAGAIN;
511 }
512
fe896d18 513 if (!page_ref_freeze(page, expected_count)) {
89eb946a 514 xas_unlock_irq(&xas);
290408d4
NH
515 return -EAGAIN;
516 }
517
cf4b769a
HD
518 newpage->index = page->index;
519 newpage->mapping = page->mapping;
6a93ca8f 520
290408d4
NH
521 get_page(newpage);
522
89eb946a 523 xas_store(&xas, newpage);
290408d4 524
fe896d18 525 page_ref_unfreeze(page, expected_count - 1);
290408d4 526
89eb946a 527 xas_unlock_irq(&xas);
6a93ca8f 528
78bd5209 529 return MIGRATEPAGE_SUCCESS;
290408d4
NH
530}
531
30b0a105
DH
532/*
533 * Gigantic pages are so large that we do not guarantee that page++ pointer
534 * arithmetic will work across the entire page. We need something more
535 * specialized.
536 */
537static void __copy_gigantic_page(struct page *dst, struct page *src,
538 int nr_pages)
539{
540 int i;
541 struct page *dst_base = dst;
542 struct page *src_base = src;
543
544 for (i = 0; i < nr_pages; ) {
545 cond_resched();
546 copy_highpage(dst, src);
547
548 i++;
549 dst = mem_map_next(dst, dst_base, i);
550 src = mem_map_next(src, src_base, i);
551 }
552}
553
554static void copy_huge_page(struct page *dst, struct page *src)
555{
556 int i;
557 int nr_pages;
558
559 if (PageHuge(src)) {
560 /* hugetlbfs page */
561 struct hstate *h = page_hstate(src);
562 nr_pages = pages_per_huge_page(h);
563
564 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
565 __copy_gigantic_page(dst, src, nr_pages);
566 return;
567 }
568 } else {
569 /* thp page */
570 BUG_ON(!PageTransHuge(src));
6c357848 571 nr_pages = thp_nr_pages(src);
30b0a105
DH
572 }
573
574 for (i = 0; i < nr_pages; i++) {
575 cond_resched();
576 copy_highpage(dst + i, src + i);
577 }
578}
579
b20a3503
CL
580/*
581 * Copy the page to its new location
582 */
2916ecc0 583void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 584{
7851a45c
RR
585 int cpupid;
586
b20a3503
CL
587 if (PageError(page))
588 SetPageError(newpage);
589 if (PageReferenced(page))
590 SetPageReferenced(newpage);
591 if (PageUptodate(page))
592 SetPageUptodate(newpage);
894bc310 593 if (TestClearPageActive(page)) {
309381fe 594 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 595 SetPageActive(newpage);
418b27ef
LS
596 } else if (TestClearPageUnevictable(page))
597 SetPageUnevictable(newpage);
1899ad18
JW
598 if (PageWorkingset(page))
599 SetPageWorkingset(newpage);
b20a3503
CL
600 if (PageChecked(page))
601 SetPageChecked(newpage);
602 if (PageMappedToDisk(page))
603 SetPageMappedToDisk(newpage);
604
42cb14b1
HD
605 /* Move dirty on pages not done by migrate_page_move_mapping() */
606 if (PageDirty(page))
607 SetPageDirty(newpage);
b20a3503 608
33c3fc71
VD
609 if (page_is_young(page))
610 set_page_young(newpage);
611 if (page_is_idle(page))
612 set_page_idle(newpage);
613
7851a45c
RR
614 /*
615 * Copy NUMA information to the new page, to prevent over-eager
616 * future migrations of this same page.
617 */
618 cpupid = page_cpupid_xchg_last(page, -1);
619 page_cpupid_xchg_last(newpage, cpupid);
620
e9995ef9 621 ksm_migrate_page(newpage, page);
c8d6553b
HD
622 /*
623 * Please do not reorder this without considering how mm/ksm.c's
624 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
625 */
b3b3a99c
NH
626 if (PageSwapCache(page))
627 ClearPageSwapCache(page);
b20a3503
CL
628 ClearPagePrivate(page);
629 set_page_private(page, 0);
b20a3503
CL
630
631 /*
632 * If any waiters have accumulated on the new page then
633 * wake them up.
634 */
635 if (PageWriteback(newpage))
636 end_page_writeback(newpage);
d435edca 637
6aeff241
YS
638 /*
639 * PG_readahead shares the same bit with PG_reclaim. The above
640 * end_page_writeback() may clear PG_readahead mistakenly, so set the
641 * bit after that.
642 */
643 if (PageReadahead(page))
644 SetPageReadahead(newpage);
645
d435edca 646 copy_page_owner(page, newpage);
74485cf2 647
a333e3e7
HD
648 if (!PageHuge(page))
649 mem_cgroup_migrate(page, newpage);
b20a3503 650}
2916ecc0
JG
651EXPORT_SYMBOL(migrate_page_states);
652
653void migrate_page_copy(struct page *newpage, struct page *page)
654{
655 if (PageHuge(page) || PageTransHuge(page))
656 copy_huge_page(newpage, page);
657 else
658 copy_highpage(newpage, page);
659
660 migrate_page_states(newpage, page);
661}
1118dce7 662EXPORT_SYMBOL(migrate_page_copy);
b20a3503 663
1d8b85cc
CL
664/************************************************************
665 * Migration functions
666 ***********************************************************/
667
b20a3503 668/*
bda807d4 669 * Common logic to directly migrate a single LRU page suitable for
266cf658 670 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
671 *
672 * Pages are locked upon entry and exit.
673 */
2d1db3b1 674int migrate_page(struct address_space *mapping,
a6bc32b8
MG
675 struct page *newpage, struct page *page,
676 enum migrate_mode mode)
b20a3503
CL
677{
678 int rc;
679
680 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
681
37109694 682 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
b20a3503 683
78bd5209 684 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
685 return rc;
686
2916ecc0
JG
687 if (mode != MIGRATE_SYNC_NO_COPY)
688 migrate_page_copy(newpage, page);
689 else
690 migrate_page_states(newpage, page);
78bd5209 691 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
692}
693EXPORT_SYMBOL(migrate_page);
694
9361401e 695#ifdef CONFIG_BLOCK
84ade7c1
JK
696/* Returns true if all buffers are successfully locked */
697static bool buffer_migrate_lock_buffers(struct buffer_head *head,
698 enum migrate_mode mode)
699{
700 struct buffer_head *bh = head;
701
702 /* Simple case, sync compaction */
703 if (mode != MIGRATE_ASYNC) {
704 do {
84ade7c1
JK
705 lock_buffer(bh);
706 bh = bh->b_this_page;
707
708 } while (bh != head);
709
710 return true;
711 }
712
713 /* async case, we cannot block on lock_buffer so use trylock_buffer */
714 do {
84ade7c1
JK
715 if (!trylock_buffer(bh)) {
716 /*
717 * We failed to lock the buffer and cannot stall in
718 * async migration. Release the taken locks
719 */
720 struct buffer_head *failed_bh = bh;
84ade7c1
JK
721 bh = head;
722 while (bh != failed_bh) {
723 unlock_buffer(bh);
84ade7c1
JK
724 bh = bh->b_this_page;
725 }
726 return false;
727 }
728
729 bh = bh->b_this_page;
730 } while (bh != head);
731 return true;
732}
733
89cb0888
JK
734static int __buffer_migrate_page(struct address_space *mapping,
735 struct page *newpage, struct page *page, enum migrate_mode mode,
736 bool check_refs)
1d8b85cc 737{
1d8b85cc
CL
738 struct buffer_head *bh, *head;
739 int rc;
cc4f11e6 740 int expected_count;
1d8b85cc 741
1d8b85cc 742 if (!page_has_buffers(page))
a6bc32b8 743 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 744
cc4f11e6 745 /* Check whether page does not have extra refs before we do more work */
f900482d 746 expected_count = expected_page_refs(mapping, page);
cc4f11e6
JK
747 if (page_count(page) != expected_count)
748 return -EAGAIN;
1d8b85cc 749
cc4f11e6
JK
750 head = page_buffers(page);
751 if (!buffer_migrate_lock_buffers(head, mode))
752 return -EAGAIN;
1d8b85cc 753
89cb0888
JK
754 if (check_refs) {
755 bool busy;
756 bool invalidated = false;
757
758recheck_buffers:
759 busy = false;
760 spin_lock(&mapping->private_lock);
761 bh = head;
762 do {
763 if (atomic_read(&bh->b_count)) {
764 busy = true;
765 break;
766 }
767 bh = bh->b_this_page;
768 } while (bh != head);
89cb0888
JK
769 if (busy) {
770 if (invalidated) {
771 rc = -EAGAIN;
772 goto unlock_buffers;
773 }
ebdf4de5 774 spin_unlock(&mapping->private_lock);
89cb0888
JK
775 invalidate_bh_lrus();
776 invalidated = true;
777 goto recheck_buffers;
778 }
779 }
780
37109694 781 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
78bd5209 782 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 783 goto unlock_buffers;
1d8b85cc 784
cd0f3715 785 attach_page_private(newpage, detach_page_private(page));
1d8b85cc
CL
786
787 bh = head;
788 do {
789 set_bh_page(bh, newpage, bh_offset(bh));
790 bh = bh->b_this_page;
791
792 } while (bh != head);
793
2916ecc0
JG
794 if (mode != MIGRATE_SYNC_NO_COPY)
795 migrate_page_copy(newpage, page);
796 else
797 migrate_page_states(newpage, page);
1d8b85cc 798
cc4f11e6
JK
799 rc = MIGRATEPAGE_SUCCESS;
800unlock_buffers:
ebdf4de5
JK
801 if (check_refs)
802 spin_unlock(&mapping->private_lock);
1d8b85cc
CL
803 bh = head;
804 do {
805 unlock_buffer(bh);
1d8b85cc
CL
806 bh = bh->b_this_page;
807
808 } while (bh != head);
809
cc4f11e6 810 return rc;
1d8b85cc 811}
89cb0888
JK
812
813/*
814 * Migration function for pages with buffers. This function can only be used
815 * if the underlying filesystem guarantees that no other references to "page"
816 * exist. For example attached buffer heads are accessed only under page lock.
817 */
818int buffer_migrate_page(struct address_space *mapping,
819 struct page *newpage, struct page *page, enum migrate_mode mode)
820{
821 return __buffer_migrate_page(mapping, newpage, page, mode, false);
822}
1d8b85cc 823EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
824
825/*
826 * Same as above except that this variant is more careful and checks that there
827 * are also no buffer head references. This function is the right one for
828 * mappings where buffer heads are directly looked up and referenced (such as
829 * block device mappings).
830 */
831int buffer_migrate_page_norefs(struct address_space *mapping,
832 struct page *newpage, struct page *page, enum migrate_mode mode)
833{
834 return __buffer_migrate_page(mapping, newpage, page, mode, true);
835}
9361401e 836#endif
1d8b85cc 837
04e62a29
CL
838/*
839 * Writeback a page to clean the dirty state
840 */
841static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 842{
04e62a29
CL
843 struct writeback_control wbc = {
844 .sync_mode = WB_SYNC_NONE,
845 .nr_to_write = 1,
846 .range_start = 0,
847 .range_end = LLONG_MAX,
04e62a29
CL
848 .for_reclaim = 1
849 };
850 int rc;
851
852 if (!mapping->a_ops->writepage)
853 /* No write method for the address space */
854 return -EINVAL;
855
856 if (!clear_page_dirty_for_io(page))
857 /* Someone else already triggered a write */
858 return -EAGAIN;
859
8351a6e4 860 /*
04e62a29
CL
861 * A dirty page may imply that the underlying filesystem has
862 * the page on some queue. So the page must be clean for
863 * migration. Writeout may mean we loose the lock and the
864 * page state is no longer what we checked for earlier.
865 * At this point we know that the migration attempt cannot
866 * be successful.
8351a6e4 867 */
e388466d 868 remove_migration_ptes(page, page, false);
8351a6e4 869
04e62a29 870 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 871
04e62a29
CL
872 if (rc != AOP_WRITEPAGE_ACTIVATE)
873 /* unlocked. Relock */
874 lock_page(page);
875
bda8550d 876 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
877}
878
879/*
880 * Default handling if a filesystem does not provide a migration function.
881 */
882static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 883 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 884{
b969c4ab 885 if (PageDirty(page)) {
a6bc32b8 886 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
887 switch (mode) {
888 case MIGRATE_SYNC:
889 case MIGRATE_SYNC_NO_COPY:
890 break;
891 default:
b969c4ab 892 return -EBUSY;
2916ecc0 893 }
04e62a29 894 return writeout(mapping, page);
b969c4ab 895 }
8351a6e4
CL
896
897 /*
898 * Buffers may be managed in a filesystem specific way.
899 * We must have no buffers or drop them.
900 */
266cf658 901 if (page_has_private(page) &&
8351a6e4 902 !try_to_release_page(page, GFP_KERNEL))
806031bb 903 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
8351a6e4 904
a6bc32b8 905 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
906}
907
e24f0b8f
CL
908/*
909 * Move a page to a newly allocated page
910 * The page is locked and all ptes have been successfully removed.
911 *
912 * The new page will have replaced the old page if this function
913 * is successful.
894bc310
LS
914 *
915 * Return value:
916 * < 0 - error code
78bd5209 917 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 918 */
3fe2011f 919static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 920 enum migrate_mode mode)
e24f0b8f
CL
921{
922 struct address_space *mapping;
bda807d4
MK
923 int rc = -EAGAIN;
924 bool is_lru = !__PageMovable(page);
e24f0b8f 925
7db7671f
HD
926 VM_BUG_ON_PAGE(!PageLocked(page), page);
927 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 928
e24f0b8f 929 mapping = page_mapping(page);
bda807d4
MK
930
931 if (likely(is_lru)) {
932 if (!mapping)
933 rc = migrate_page(mapping, newpage, page, mode);
934 else if (mapping->a_ops->migratepage)
935 /*
936 * Most pages have a mapping and most filesystems
937 * provide a migratepage callback. Anonymous pages
938 * are part of swap space which also has its own
939 * migratepage callback. This is the most common path
940 * for page migration.
941 */
942 rc = mapping->a_ops->migratepage(mapping, newpage,
943 page, mode);
944 else
945 rc = fallback_migrate_page(mapping, newpage,
946 page, mode);
947 } else {
e24f0b8f 948 /*
bda807d4
MK
949 * In case of non-lru page, it could be released after
950 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 951 */
bda807d4
MK
952 VM_BUG_ON_PAGE(!PageIsolated(page), page);
953 if (!PageMovable(page)) {
954 rc = MIGRATEPAGE_SUCCESS;
955 __ClearPageIsolated(page);
956 goto out;
957 }
958
959 rc = mapping->a_ops->migratepage(mapping, newpage,
960 page, mode);
961 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
962 !PageIsolated(page));
963 }
e24f0b8f 964
5c3f9a67
HD
965 /*
966 * When successful, old pagecache page->mapping must be cleared before
967 * page is freed; but stats require that PageAnon be left as PageAnon.
968 */
969 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
970 if (__PageMovable(page)) {
971 VM_BUG_ON_PAGE(!PageIsolated(page), page);
972
973 /*
974 * We clear PG_movable under page_lock so any compactor
975 * cannot try to migrate this page.
976 */
977 __ClearPageIsolated(page);
978 }
979
980 /*
c23a0c99 981 * Anonymous and movable page->mapping will be cleared by
bda807d4
MK
982 * free_pages_prepare so don't reset it here for keeping
983 * the type to work PageAnon, for example.
984 */
985 if (!PageMappingFlags(page))
5c3f9a67 986 page->mapping = NULL;
d2b2c6dd 987
25b2995a 988 if (likely(!is_zone_device_page(newpage)))
d2b2c6dd
LP
989 flush_dcache_page(newpage);
990
3fe2011f 991 }
bda807d4 992out:
e24f0b8f
CL
993 return rc;
994}
995
0dabec93 996static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 997 int force, enum migrate_mode mode)
e24f0b8f 998{
0dabec93 999 int rc = -EAGAIN;
2ebba6b7 1000 int page_was_mapped = 0;
3f6c8272 1001 struct anon_vma *anon_vma = NULL;
bda807d4 1002 bool is_lru = !__PageMovable(page);
95a402c3 1003
529ae9aa 1004 if (!trylock_page(page)) {
a6bc32b8 1005 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1006 goto out;
3e7d3449
MG
1007
1008 /*
1009 * It's not safe for direct compaction to call lock_page.
1010 * For example, during page readahead pages are added locked
1011 * to the LRU. Later, when the IO completes the pages are
1012 * marked uptodate and unlocked. However, the queueing
1013 * could be merging multiple pages for one bio (e.g.
d4388340 1014 * mpage_readahead). If an allocation happens for the
3e7d3449
MG
1015 * second or third page, the process can end up locking
1016 * the same page twice and deadlocking. Rather than
1017 * trying to be clever about what pages can be locked,
1018 * avoid the use of lock_page for direct compaction
1019 * altogether.
1020 */
1021 if (current->flags & PF_MEMALLOC)
0dabec93 1022 goto out;
3e7d3449 1023
e24f0b8f
CL
1024 lock_page(page);
1025 }
1026
1027 if (PageWriteback(page)) {
11bc82d6 1028 /*
fed5b64a 1029 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1030 * necessary to wait for PageWriteback. In the async case,
1031 * the retry loop is too short and in the sync-light case,
1032 * the overhead of stalling is too much
11bc82d6 1033 */
2916ecc0
JG
1034 switch (mode) {
1035 case MIGRATE_SYNC:
1036 case MIGRATE_SYNC_NO_COPY:
1037 break;
1038 default:
11bc82d6 1039 rc = -EBUSY;
0a31bc97 1040 goto out_unlock;
11bc82d6
AA
1041 }
1042 if (!force)
0a31bc97 1043 goto out_unlock;
e24f0b8f
CL
1044 wait_on_page_writeback(page);
1045 }
03f15c86 1046
e24f0b8f 1047 /*
dc386d4d
KH
1048 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1049 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1050 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1051 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1052 * File Caches may use write_page() or lock_page() in migration, then,
1053 * just care Anon page here.
03f15c86
HD
1054 *
1055 * Only page_get_anon_vma() understands the subtleties of
1056 * getting a hold on an anon_vma from outside one of its mms.
1057 * But if we cannot get anon_vma, then we won't need it anyway,
1058 * because that implies that the anon page is no longer mapped
1059 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1060 */
03f15c86 1061 if (PageAnon(page) && !PageKsm(page))
746b18d4 1062 anon_vma = page_get_anon_vma(page);
62e1c553 1063
7db7671f
HD
1064 /*
1065 * Block others from accessing the new page when we get around to
1066 * establishing additional references. We are usually the only one
1067 * holding a reference to newpage at this point. We used to have a BUG
1068 * here if trylock_page(newpage) fails, but would like to allow for
1069 * cases where there might be a race with the previous use of newpage.
1070 * This is much like races on refcount of oldpage: just don't BUG().
1071 */
1072 if (unlikely(!trylock_page(newpage)))
1073 goto out_unlock;
1074
bda807d4
MK
1075 if (unlikely(!is_lru)) {
1076 rc = move_to_new_page(newpage, page, mode);
1077 goto out_unlock_both;
1078 }
1079
dc386d4d 1080 /*
62e1c553
SL
1081 * Corner case handling:
1082 * 1. When a new swap-cache page is read into, it is added to the LRU
1083 * and treated as swapcache but it has no rmap yet.
1084 * Calling try_to_unmap() against a page->mapping==NULL page will
1085 * trigger a BUG. So handle it here.
d12b8951 1086 * 2. An orphaned page (see truncate_cleanup_page) might have
62e1c553
SL
1087 * fs-private metadata. The page can be picked up due to memory
1088 * offlining. Everywhere else except page reclaim, the page is
1089 * invisible to the vm, so the page can not be migrated. So try to
1090 * free the metadata, so the page can be freed.
e24f0b8f 1091 */
62e1c553 1092 if (!page->mapping) {
309381fe 1093 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1094 if (page_has_private(page)) {
62e1c553 1095 try_to_free_buffers(page);
7db7671f 1096 goto out_unlock_both;
62e1c553 1097 }
7db7671f
HD
1098 } else if (page_mapped(page)) {
1099 /* Establish migration ptes */
03f15c86
HD
1100 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1101 page);
013339df 1102 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
2ebba6b7
HD
1103 page_was_mapped = 1;
1104 }
dc386d4d 1105
e6a1530d 1106 if (!page_mapped(page))
5c3f9a67 1107 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1108
5c3f9a67
HD
1109 if (page_was_mapped)
1110 remove_migration_ptes(page,
e388466d 1111 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1112
7db7671f
HD
1113out_unlock_both:
1114 unlock_page(newpage);
1115out_unlock:
3f6c8272 1116 /* Drop an anon_vma reference if we took one */
76545066 1117 if (anon_vma)
9e60109f 1118 put_anon_vma(anon_vma);
e24f0b8f 1119 unlock_page(page);
0dabec93 1120out:
c6c919eb
MK
1121 /*
1122 * If migration is successful, decrease refcount of the newpage
1123 * which will not free the page because new page owner increased
1124 * refcounter. As well, if it is LRU page, add the page to LRU
e0a352fa
DH
1125 * list in here. Use the old state of the isolated source page to
1126 * determine if we migrated a LRU page. newpage was already unlocked
1127 * and possibly modified by its owner - don't rely on the page
1128 * state.
c6c919eb
MK
1129 */
1130 if (rc == MIGRATEPAGE_SUCCESS) {
e0a352fa 1131 if (unlikely(!is_lru))
c6c919eb
MK
1132 put_page(newpage);
1133 else
1134 putback_lru_page(newpage);
1135 }
1136
0dabec93
MK
1137 return rc;
1138}
95a402c3 1139
0dabec93
MK
1140/*
1141 * Obtain the lock on page, remove all ptes and migrate the page
1142 * to the newly allocated page in newpage.
1143 */
6ec4476a 1144static int unmap_and_move(new_page_t get_new_page,
ef2a5153
GU
1145 free_page_t put_new_page,
1146 unsigned long private, struct page *page,
add05cec 1147 int force, enum migrate_mode mode,
dd4ae78a
YS
1148 enum migrate_reason reason,
1149 struct list_head *ret)
0dabec93 1150{
2def7424 1151 int rc = MIGRATEPAGE_SUCCESS;
74d4a579 1152 struct page *newpage = NULL;
0dabec93 1153
94723aaf 1154 if (!thp_migration_supported() && PageTransHuge(page))
d532e2e5 1155 return -ENOSYS;
94723aaf 1156
0dabec93
MK
1157 if (page_count(page) == 1) {
1158 /* page was freed from under us. So we are done. */
c6c919eb
MK
1159 ClearPageActive(page);
1160 ClearPageUnevictable(page);
bda807d4
MK
1161 if (unlikely(__PageMovable(page))) {
1162 lock_page(page);
1163 if (!PageMovable(page))
1164 __ClearPageIsolated(page);
1165 unlock_page(page);
1166 }
0dabec93
MK
1167 goto out;
1168 }
1169
74d4a579
YS
1170 newpage = get_new_page(page, private);
1171 if (!newpage)
1172 return -ENOMEM;
1173
9c620e2b 1174 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1175 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1176 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1177
0dabec93 1178out:
e24f0b8f 1179 if (rc != -EAGAIN) {
0dabec93
MK
1180 /*
1181 * A page that has been migrated has all references
1182 * removed and will be freed. A page that has not been
c23a0c99 1183 * migrated will have kept its references and be restored.
0dabec93
MK
1184 */
1185 list_del(&page->lru);
dd4ae78a 1186 }
6afcf8ef 1187
dd4ae78a
YS
1188 /*
1189 * If migration is successful, releases reference grabbed during
1190 * isolation. Otherwise, restore the page to right list unless
1191 * we want to retry.
1192 */
1193 if (rc == MIGRATEPAGE_SUCCESS) {
6afcf8ef
ML
1194 /*
1195 * Compaction can migrate also non-LRU pages which are
1196 * not accounted to NR_ISOLATED_*. They can be recognized
1197 * as __PageMovable
1198 */
1199 if (likely(!__PageMovable(page)))
e8db67eb 1200 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 1201 page_is_file_lru(page), -thp_nr_pages(page));
c6c919eb 1202
79f5f8fa 1203 if (reason != MR_MEMORY_FAILURE)
d7e69488 1204 /*
79f5f8fa 1205 * We release the page in page_handle_poison.
d7e69488 1206 */
79f5f8fa 1207 put_page(page);
c6c919eb 1208 } else {
dd4ae78a
YS
1209 if (rc != -EAGAIN)
1210 list_add_tail(&page->lru, ret);
bda807d4 1211
c6c919eb
MK
1212 if (put_new_page)
1213 put_new_page(newpage, private);
1214 else
1215 put_page(newpage);
e24f0b8f 1216 }
68711a74 1217
e24f0b8f
CL
1218 return rc;
1219}
1220
290408d4
NH
1221/*
1222 * Counterpart of unmap_and_move_page() for hugepage migration.
1223 *
1224 * This function doesn't wait the completion of hugepage I/O
1225 * because there is no race between I/O and migration for hugepage.
1226 * Note that currently hugepage I/O occurs only in direct I/O
1227 * where no lock is held and PG_writeback is irrelevant,
1228 * and writeback status of all subpages are counted in the reference
1229 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1230 * under direct I/O, the reference of the head page is 512 and a bit more.)
1231 * This means that when we try to migrate hugepage whose subpages are
1232 * doing direct I/O, some references remain after try_to_unmap() and
1233 * hugepage migration fails without data corruption.
1234 *
1235 * There is also no race when direct I/O is issued on the page under migration,
1236 * because then pte is replaced with migration swap entry and direct I/O code
1237 * will wait in the page fault for migration to complete.
1238 */
1239static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1240 free_page_t put_new_page, unsigned long private,
1241 struct page *hpage, int force,
dd4ae78a
YS
1242 enum migrate_mode mode, int reason,
1243 struct list_head *ret)
290408d4 1244{
2def7424 1245 int rc = -EAGAIN;
2ebba6b7 1246 int page_was_mapped = 0;
32665f2b 1247 struct page *new_hpage;
290408d4 1248 struct anon_vma *anon_vma = NULL;
c0d0381a 1249 struct address_space *mapping = NULL;
290408d4 1250
83467efb 1251 /*
7ed2c31d 1252 * Migratability of hugepages depends on architectures and their size.
83467efb
NH
1253 * This check is necessary because some callers of hugepage migration
1254 * like soft offline and memory hotremove don't walk through page
1255 * tables or check whether the hugepage is pmd-based or not before
1256 * kicking migration.
1257 */
100873d7 1258 if (!hugepage_migration_supported(page_hstate(hpage))) {
dd4ae78a 1259 list_move_tail(&hpage->lru, ret);
83467efb 1260 return -ENOSYS;
32665f2b 1261 }
83467efb 1262
71a64f61
MS
1263 if (page_count(hpage) == 1) {
1264 /* page was freed from under us. So we are done. */
1265 putback_active_hugepage(hpage);
1266 return MIGRATEPAGE_SUCCESS;
1267 }
1268
666feb21 1269 new_hpage = get_new_page(hpage, private);
290408d4
NH
1270 if (!new_hpage)
1271 return -ENOMEM;
1272
290408d4 1273 if (!trylock_page(hpage)) {
2916ecc0 1274 if (!force)
290408d4 1275 goto out;
2916ecc0
JG
1276 switch (mode) {
1277 case MIGRATE_SYNC:
1278 case MIGRATE_SYNC_NO_COPY:
1279 break;
1280 default:
1281 goto out;
1282 }
290408d4
NH
1283 lock_page(hpage);
1284 }
1285
cb6acd01
MK
1286 /*
1287 * Check for pages which are in the process of being freed. Without
1288 * page_mapping() set, hugetlbfs specific move page routine will not
1289 * be called and we could leak usage counts for subpools.
1290 */
1291 if (page_private(hpage) && !page_mapping(hpage)) {
1292 rc = -EBUSY;
1293 goto out_unlock;
1294 }
1295
746b18d4
PZ
1296 if (PageAnon(hpage))
1297 anon_vma = page_get_anon_vma(hpage);
290408d4 1298
7db7671f
HD
1299 if (unlikely(!trylock_page(new_hpage)))
1300 goto put_anon;
1301
2ebba6b7 1302 if (page_mapped(hpage)) {
336bf30e 1303 bool mapping_locked = false;
013339df 1304 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
336bf30e
MK
1305
1306 if (!PageAnon(hpage)) {
1307 /*
1308 * In shared mappings, try_to_unmap could potentially
1309 * call huge_pmd_unshare. Because of this, take
1310 * semaphore in write mode here and set TTU_RMAP_LOCKED
1311 * to let lower levels know we have taken the lock.
1312 */
1313 mapping = hugetlb_page_mapping_lock_write(hpage);
1314 if (unlikely(!mapping))
1315 goto unlock_put_anon;
1316
1317 mapping_locked = true;
1318 ttu |= TTU_RMAP_LOCKED;
1319 }
c0d0381a 1320
336bf30e 1321 try_to_unmap(hpage, ttu);
2ebba6b7 1322 page_was_mapped = 1;
336bf30e
MK
1323
1324 if (mapping_locked)
1325 i_mmap_unlock_write(mapping);
2ebba6b7 1326 }
290408d4
NH
1327
1328 if (!page_mapped(hpage))
5c3f9a67 1329 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1330
336bf30e 1331 if (page_was_mapped)
5c3f9a67 1332 remove_migration_ptes(hpage,
336bf30e 1333 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1334
c0d0381a 1335unlock_put_anon:
7db7671f
HD
1336 unlock_page(new_hpage);
1337
1338put_anon:
fd4a4663 1339 if (anon_vma)
9e60109f 1340 put_anon_vma(anon_vma);
8e6ac7fa 1341
2def7424 1342 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1343 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1344 put_new_page = NULL;
1345 }
8e6ac7fa 1346
cb6acd01 1347out_unlock:
290408d4 1348 unlock_page(hpage);
09761333 1349out:
dd4ae78a 1350 if (rc == MIGRATEPAGE_SUCCESS)
b8ec1cee 1351 putback_active_hugepage(hpage);
a04840c6 1352 else if (rc != -EAGAIN)
dd4ae78a 1353 list_move_tail(&hpage->lru, ret);
68711a74
DR
1354
1355 /*
1356 * If migration was not successful and there's a freeing callback, use
1357 * it. Otherwise, put_page() will drop the reference grabbed during
1358 * isolation.
1359 */
2def7424 1360 if (put_new_page)
68711a74
DR
1361 put_new_page(new_hpage, private);
1362 else
3aaa76e1 1363 putback_active_hugepage(new_hpage);
68711a74 1364
290408d4
NH
1365 return rc;
1366}
1367
d532e2e5
YS
1368static inline int try_split_thp(struct page *page, struct page **page2,
1369 struct list_head *from)
1370{
1371 int rc = 0;
1372
1373 lock_page(page);
1374 rc = split_huge_page_to_list(page, from);
1375 unlock_page(page);
1376 if (!rc)
1377 list_safe_reset_next(page, *page2, lru);
1378
1379 return rc;
1380}
1381
b20a3503 1382/*
c73e5c9c
SB
1383 * migrate_pages - migrate the pages specified in a list, to the free pages
1384 * supplied as the target for the page migration
b20a3503 1385 *
c73e5c9c
SB
1386 * @from: The list of pages to be migrated.
1387 * @get_new_page: The function used to allocate free pages to be used
1388 * as the target of the page migration.
68711a74
DR
1389 * @put_new_page: The function used to free target pages if migration
1390 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1391 * @private: Private data to be passed on to get_new_page()
1392 * @mode: The migration mode that specifies the constraints for
1393 * page migration, if any.
1394 * @reason: The reason for page migration.
b20a3503 1395 *
c73e5c9c
SB
1396 * The function returns after 10 attempts or if no pages are movable any more
1397 * because the list has become empty or no retryable pages exist any more.
dd4ae78a
YS
1398 * It is caller's responsibility to call putback_movable_pages() to return pages
1399 * to the LRU or free list only if ret != 0.
b20a3503 1400 *
c73e5c9c 1401 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1402 */
9c620e2b 1403int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1404 free_page_t put_new_page, unsigned long private,
1405 enum migrate_mode mode, int reason)
b20a3503 1406{
e24f0b8f 1407 int retry = 1;
1a5bae25 1408 int thp_retry = 1;
b20a3503 1409 int nr_failed = 0;
5647bc29 1410 int nr_succeeded = 0;
1a5bae25
AK
1411 int nr_thp_succeeded = 0;
1412 int nr_thp_failed = 0;
1413 int nr_thp_split = 0;
b20a3503 1414 int pass = 0;
1a5bae25 1415 bool is_thp = false;
b20a3503
CL
1416 struct page *page;
1417 struct page *page2;
1418 int swapwrite = current->flags & PF_SWAPWRITE;
1a5bae25 1419 int rc, nr_subpages;
dd4ae78a 1420 LIST_HEAD(ret_pages);
b20a3503 1421
7bc1aec5
LM
1422 trace_mm_migrate_pages_start(mode, reason);
1423
b20a3503
CL
1424 if (!swapwrite)
1425 current->flags |= PF_SWAPWRITE;
1426
1a5bae25 1427 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
e24f0b8f 1428 retry = 0;
1a5bae25 1429 thp_retry = 0;
b20a3503 1430
e24f0b8f 1431 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1432retry:
1a5bae25
AK
1433 /*
1434 * THP statistics is based on the source huge page.
1435 * Capture required information that might get lost
1436 * during migration.
1437 */
6c5c7b9f 1438 is_thp = PageTransHuge(page) && !PageHuge(page);
6c357848 1439 nr_subpages = thp_nr_pages(page);
e24f0b8f 1440 cond_resched();
2d1db3b1 1441
31caf665
NH
1442 if (PageHuge(page))
1443 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1444 put_new_page, private, page,
dd4ae78a
YS
1445 pass > 2, mode, reason,
1446 &ret_pages);
31caf665 1447 else
68711a74 1448 rc = unmap_and_move(get_new_page, put_new_page,
add05cec 1449 private, page, pass > 2, mode,
dd4ae78a
YS
1450 reason, &ret_pages);
1451 /*
1452 * The rules are:
1453 * Success: non hugetlb page will be freed, hugetlb
1454 * page will be put back
1455 * -EAGAIN: stay on the from list
1456 * -ENOMEM: stay on the from list
1457 * Other errno: put on ret_pages list then splice to
1458 * from list
1459 */
e24f0b8f 1460 switch(rc) {
d532e2e5
YS
1461 /*
1462 * THP migration might be unsupported or the
1463 * allocation could've failed so we should
1464 * retry on the same page with the THP split
1465 * to base pages.
1466 *
1467 * Head page is retried immediately and tail
1468 * pages are added to the tail of the list so
1469 * we encounter them after the rest of the list
1470 * is processed.
1471 */
1472 case -ENOSYS:
1473 /* THP migration is unsupported */
1474 if (is_thp) {
1475 if (!try_split_thp(page, &page2, from)) {
1476 nr_thp_split++;
1477 goto retry;
1478 }
1479
1480 nr_thp_failed++;
1481 nr_failed += nr_subpages;
1482 break;
1483 }
1484
1485 /* Hugetlb migration is unsupported */
1486 nr_failed++;
1487 break;
95a402c3 1488 case -ENOMEM:
94723aaf 1489 /*
d532e2e5
YS
1490 * When memory is low, don't bother to try to migrate
1491 * other pages, just exit.
94723aaf 1492 */
6c5c7b9f 1493 if (is_thp) {
d532e2e5 1494 if (!try_split_thp(page, &page2, from)) {
1a5bae25 1495 nr_thp_split++;
94723aaf
MH
1496 goto retry;
1497 }
6c5c7b9f 1498
1a5bae25
AK
1499 nr_thp_failed++;
1500 nr_failed += nr_subpages;
1501 goto out;
1502 }
dfef2ef4 1503 nr_failed++;
95a402c3 1504 goto out;
e24f0b8f 1505 case -EAGAIN:
1a5bae25
AK
1506 if (is_thp) {
1507 thp_retry++;
1508 break;
1509 }
2d1db3b1 1510 retry++;
e24f0b8f 1511 break;
78bd5209 1512 case MIGRATEPAGE_SUCCESS:
1a5bae25
AK
1513 if (is_thp) {
1514 nr_thp_succeeded++;
1515 nr_succeeded += nr_subpages;
1516 break;
1517 }
5647bc29 1518 nr_succeeded++;
e24f0b8f
CL
1519 break;
1520 default:
354a3363 1521 /*
d532e2e5 1522 * Permanent failure (-EBUSY, etc.):
354a3363
NH
1523 * unlike -EAGAIN case, the failed page is
1524 * removed from migration page list and not
1525 * retried in the next outer loop.
1526 */
1a5bae25
AK
1527 if (is_thp) {
1528 nr_thp_failed++;
1529 nr_failed += nr_subpages;
1530 break;
1531 }
2d1db3b1 1532 nr_failed++;
e24f0b8f 1533 break;
2d1db3b1 1534 }
b20a3503
CL
1535 }
1536 }
1a5bae25
AK
1537 nr_failed += retry + thp_retry;
1538 nr_thp_failed += thp_retry;
f2f81fb2 1539 rc = nr_failed;
95a402c3 1540out:
dd4ae78a
YS
1541 /*
1542 * Put the permanent failure page back to migration list, they
1543 * will be put back to the right list by the caller.
1544 */
1545 list_splice(&ret_pages, from);
1546
1a5bae25
AK
1547 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1548 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1549 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1550 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1551 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1552 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1553 nr_thp_failed, nr_thp_split, mode, reason);
7b2a2d4a 1554
b20a3503
CL
1555 if (!swapwrite)
1556 current->flags &= ~PF_SWAPWRITE;
1557
78bd5209 1558 return rc;
b20a3503 1559}
95a402c3 1560
19fc7bed 1561struct page *alloc_migration_target(struct page *page, unsigned long private)
b4b38223 1562{
19fc7bed
JK
1563 struct migration_target_control *mtc;
1564 gfp_t gfp_mask;
b4b38223
JK
1565 unsigned int order = 0;
1566 struct page *new_page = NULL;
19fc7bed
JK
1567 int nid;
1568 int zidx;
1569
1570 mtc = (struct migration_target_control *)private;
1571 gfp_mask = mtc->gfp_mask;
1572 nid = mtc->nid;
1573 if (nid == NUMA_NO_NODE)
1574 nid = page_to_nid(page);
b4b38223 1575
d92bbc27
JK
1576 if (PageHuge(page)) {
1577 struct hstate *h = page_hstate(compound_head(page));
1578
19fc7bed
JK
1579 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1580 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
d92bbc27 1581 }
b4b38223
JK
1582
1583 if (PageTransHuge(page)) {
9933a0c8
JK
1584 /*
1585 * clear __GFP_RECLAIM to make the migration callback
1586 * consistent with regular THP allocations.
1587 */
1588 gfp_mask &= ~__GFP_RECLAIM;
b4b38223
JK
1589 gfp_mask |= GFP_TRANSHUGE;
1590 order = HPAGE_PMD_ORDER;
1591 }
19fc7bed
JK
1592 zidx = zone_idx(page_zone(page));
1593 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
b4b38223
JK
1594 gfp_mask |= __GFP_HIGHMEM;
1595
84172f4b 1596 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
b4b38223
JK
1597
1598 if (new_page && PageTransHuge(new_page))
1599 prep_transhuge_page(new_page);
1600
1601 return new_page;
1602}
1603
742755a1 1604#ifdef CONFIG_NUMA
742755a1 1605
a49bd4d7 1606static int store_status(int __user *status, int start, int value, int nr)
742755a1 1607{
a49bd4d7
MH
1608 while (nr-- > 0) {
1609 if (put_user(value, status + start))
1610 return -EFAULT;
1611 start++;
1612 }
1613
1614 return 0;
1615}
1616
1617static int do_move_pages_to_node(struct mm_struct *mm,
1618 struct list_head *pagelist, int node)
1619{
1620 int err;
a0976311
JK
1621 struct migration_target_control mtc = {
1622 .nid = node,
1623 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1624 };
a49bd4d7 1625
a0976311
JK
1626 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1627 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
a49bd4d7
MH
1628 if (err)
1629 putback_movable_pages(pagelist);
1630 return err;
742755a1
CL
1631}
1632
1633/*
a49bd4d7
MH
1634 * Resolves the given address to a struct page, isolates it from the LRU and
1635 * puts it to the given pagelist.
e0153fc2
YS
1636 * Returns:
1637 * errno - if the page cannot be found/isolated
1638 * 0 - when it doesn't have to be migrated because it is already on the
1639 * target node
1640 * 1 - when it has been queued
742755a1 1641 */
a49bd4d7
MH
1642static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1643 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1644{
a49bd4d7
MH
1645 struct vm_area_struct *vma;
1646 struct page *page;
1647 unsigned int follflags;
742755a1 1648 int err;
742755a1 1649
d8ed45c5 1650 mmap_read_lock(mm);
a49bd4d7
MH
1651 err = -EFAULT;
1652 vma = find_vma(mm, addr);
1653 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1654 goto out;
742755a1 1655
a49bd4d7
MH
1656 /* FOLL_DUMP to ignore special (like zero) pages */
1657 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1658 page = follow_page(vma, addr, follflags);
89f5b7da 1659
a49bd4d7
MH
1660 err = PTR_ERR(page);
1661 if (IS_ERR(page))
1662 goto out;
89f5b7da 1663
a49bd4d7
MH
1664 err = -ENOENT;
1665 if (!page)
1666 goto out;
742755a1 1667
a49bd4d7
MH
1668 err = 0;
1669 if (page_to_nid(page) == node)
1670 goto out_putpage;
742755a1 1671
a49bd4d7
MH
1672 err = -EACCES;
1673 if (page_mapcount(page) > 1 && !migrate_all)
1674 goto out_putpage;
742755a1 1675
a49bd4d7
MH
1676 if (PageHuge(page)) {
1677 if (PageHead(page)) {
1678 isolate_huge_page(page, pagelist);
e0153fc2 1679 err = 1;
e632a938 1680 }
a49bd4d7
MH
1681 } else {
1682 struct page *head;
e632a938 1683
e8db67eb
NH
1684 head = compound_head(page);
1685 err = isolate_lru_page(head);
cf608ac1 1686 if (err)
a49bd4d7 1687 goto out_putpage;
742755a1 1688
e0153fc2 1689 err = 1;
a49bd4d7
MH
1690 list_add_tail(&head->lru, pagelist);
1691 mod_node_page_state(page_pgdat(head),
9de4f22a 1692 NR_ISOLATED_ANON + page_is_file_lru(head),
6c357848 1693 thp_nr_pages(head));
a49bd4d7
MH
1694 }
1695out_putpage:
1696 /*
1697 * Either remove the duplicate refcount from
1698 * isolate_lru_page() or drop the page ref if it was
1699 * not isolated.
1700 */
1701 put_page(page);
1702out:
d8ed45c5 1703 mmap_read_unlock(mm);
742755a1
CL
1704 return err;
1705}
1706
7ca8783a
WY
1707static int move_pages_and_store_status(struct mm_struct *mm, int node,
1708 struct list_head *pagelist, int __user *status,
1709 int start, int i, unsigned long nr_pages)
1710{
1711 int err;
1712
5d7ae891
WY
1713 if (list_empty(pagelist))
1714 return 0;
1715
7ca8783a
WY
1716 err = do_move_pages_to_node(mm, pagelist, node);
1717 if (err) {
1718 /*
1719 * Positive err means the number of failed
1720 * pages to migrate. Since we are going to
1721 * abort and return the number of non-migrated
ab9dd4f8 1722 * pages, so need to include the rest of the
7ca8783a
WY
1723 * nr_pages that have not been attempted as
1724 * well.
1725 */
1726 if (err > 0)
1727 err += nr_pages - i - 1;
1728 return err;
1729 }
1730 return store_status(status, start, node, i - start);
1731}
1732
5e9a0f02
BG
1733/*
1734 * Migrate an array of page address onto an array of nodes and fill
1735 * the corresponding array of status.
1736 */
3268c63e 1737static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1738 unsigned long nr_pages,
1739 const void __user * __user *pages,
1740 const int __user *nodes,
1741 int __user *status, int flags)
1742{
a49bd4d7
MH
1743 int current_node = NUMA_NO_NODE;
1744 LIST_HEAD(pagelist);
1745 int start, i;
1746 int err = 0, err1;
35282a2d 1747
361a2a22 1748 lru_cache_disable();
35282a2d 1749
a49bd4d7
MH
1750 for (i = start = 0; i < nr_pages; i++) {
1751 const void __user *p;
1752 unsigned long addr;
1753 int node;
3140a227 1754
a49bd4d7
MH
1755 err = -EFAULT;
1756 if (get_user(p, pages + i))
1757 goto out_flush;
1758 if (get_user(node, nodes + i))
1759 goto out_flush;
057d3389 1760 addr = (unsigned long)untagged_addr(p);
a49bd4d7
MH
1761
1762 err = -ENODEV;
1763 if (node < 0 || node >= MAX_NUMNODES)
1764 goto out_flush;
1765 if (!node_state(node, N_MEMORY))
1766 goto out_flush;
5e9a0f02 1767
a49bd4d7
MH
1768 err = -EACCES;
1769 if (!node_isset(node, task_nodes))
1770 goto out_flush;
1771
1772 if (current_node == NUMA_NO_NODE) {
1773 current_node = node;
1774 start = i;
1775 } else if (node != current_node) {
7ca8783a
WY
1776 err = move_pages_and_store_status(mm, current_node,
1777 &pagelist, status, start, i, nr_pages);
a49bd4d7
MH
1778 if (err)
1779 goto out;
1780 start = i;
1781 current_node = node;
3140a227
BG
1782 }
1783
a49bd4d7
MH
1784 /*
1785 * Errors in the page lookup or isolation are not fatal and we simply
1786 * report them via status
1787 */
1788 err = add_page_for_migration(mm, addr, current_node,
1789 &pagelist, flags & MPOL_MF_MOVE_ALL);
e0153fc2 1790
d08221a0 1791 if (err > 0) {
e0153fc2
YS
1792 /* The page is successfully queued for migration */
1793 continue;
1794 }
3140a227 1795
d08221a0
WY
1796 /*
1797 * If the page is already on the target node (!err), store the
1798 * node, otherwise, store the err.
1799 */
1800 err = store_status(status, i, err ? : current_node, 1);
a49bd4d7
MH
1801 if (err)
1802 goto out_flush;
5e9a0f02 1803
7ca8783a
WY
1804 err = move_pages_and_store_status(mm, current_node, &pagelist,
1805 status, start, i, nr_pages);
4afdacec
WY
1806 if (err)
1807 goto out;
a49bd4d7 1808 current_node = NUMA_NO_NODE;
3140a227 1809 }
a49bd4d7
MH
1810out_flush:
1811 /* Make sure we do not overwrite the existing error */
7ca8783a
WY
1812 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1813 status, start, i, nr_pages);
dfe9aa23 1814 if (err >= 0)
a49bd4d7 1815 err = err1;
5e9a0f02 1816out:
361a2a22 1817 lru_cache_enable();
5e9a0f02
BG
1818 return err;
1819}
1820
742755a1 1821/*
2f007e74 1822 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1823 */
80bba129
BG
1824static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1825 const void __user **pages, int *status)
742755a1 1826{
2f007e74 1827 unsigned long i;
2f007e74 1828
d8ed45c5 1829 mmap_read_lock(mm);
742755a1 1830
2f007e74 1831 for (i = 0; i < nr_pages; i++) {
80bba129 1832 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1833 struct vm_area_struct *vma;
1834 struct page *page;
c095adbc 1835 int err = -EFAULT;
2f007e74
BG
1836
1837 vma = find_vma(mm, addr);
70384dc6 1838 if (!vma || addr < vma->vm_start)
742755a1
CL
1839 goto set_status;
1840
d899844e
KS
1841 /* FOLL_DUMP to ignore special (like zero) pages */
1842 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1843
1844 err = PTR_ERR(page);
1845 if (IS_ERR(page))
1846 goto set_status;
1847
d899844e 1848 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1849set_status:
80bba129
BG
1850 *status = err;
1851
1852 pages++;
1853 status++;
1854 }
1855
d8ed45c5 1856 mmap_read_unlock(mm);
80bba129
BG
1857}
1858
1859/*
1860 * Determine the nodes of a user array of pages and store it in
1861 * a user array of status.
1862 */
1863static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1864 const void __user * __user *pages,
1865 int __user *status)
1866{
1867#define DO_PAGES_STAT_CHUNK_NR 16
1868 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1869 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1870
87b8d1ad
PA
1871 while (nr_pages) {
1872 unsigned long chunk_nr;
80bba129 1873
87b8d1ad
PA
1874 chunk_nr = nr_pages;
1875 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1876 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1877
1878 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1879 break;
80bba129
BG
1880
1881 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1882
87b8d1ad
PA
1883 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1884 break;
742755a1 1885
87b8d1ad
PA
1886 pages += chunk_nr;
1887 status += chunk_nr;
1888 nr_pages -= chunk_nr;
1889 }
1890 return nr_pages ? -EFAULT : 0;
742755a1
CL
1891}
1892
4dc200ce 1893static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
742755a1 1894{
742755a1 1895 struct task_struct *task;
742755a1 1896 struct mm_struct *mm;
742755a1 1897
4dc200ce
ML
1898 /*
1899 * There is no need to check if current process has the right to modify
1900 * the specified process when they are same.
1901 */
1902 if (!pid) {
1903 mmget(current->mm);
1904 *mem_nodes = cpuset_mems_allowed(current);
1905 return current->mm;
1906 }
742755a1
CL
1907
1908 /* Find the mm_struct */
a879bf58 1909 rcu_read_lock();
4dc200ce 1910 task = find_task_by_vpid(pid);
742755a1 1911 if (!task) {
a879bf58 1912 rcu_read_unlock();
4dc200ce 1913 return ERR_PTR(-ESRCH);
742755a1 1914 }
3268c63e 1915 get_task_struct(task);
742755a1
CL
1916
1917 /*
1918 * Check if this process has the right to modify the specified
197e7e52 1919 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1920 */
197e7e52 1921 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1922 rcu_read_unlock();
4dc200ce 1923 mm = ERR_PTR(-EPERM);
5e9a0f02 1924 goto out;
742755a1 1925 }
c69e8d9c 1926 rcu_read_unlock();
742755a1 1927
4dc200ce
ML
1928 mm = ERR_PTR(security_task_movememory(task));
1929 if (IS_ERR(mm))
5e9a0f02 1930 goto out;
4dc200ce 1931 *mem_nodes = cpuset_mems_allowed(task);
3268c63e 1932 mm = get_task_mm(task);
4dc200ce 1933out:
3268c63e 1934 put_task_struct(task);
6e8b09ea 1935 if (!mm)
4dc200ce
ML
1936 mm = ERR_PTR(-EINVAL);
1937 return mm;
1938}
1939
1940/*
1941 * Move a list of pages in the address space of the currently executing
1942 * process.
1943 */
1944static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1945 const void __user * __user *pages,
1946 const int __user *nodes,
1947 int __user *status, int flags)
1948{
1949 struct mm_struct *mm;
1950 int err;
1951 nodemask_t task_nodes;
1952
1953 /* Check flags */
1954 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
6e8b09ea
SL
1955 return -EINVAL;
1956
4dc200ce
ML
1957 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1958 return -EPERM;
1959
1960 mm = find_mm_struct(pid, &task_nodes);
1961 if (IS_ERR(mm))
1962 return PTR_ERR(mm);
1963
6e8b09ea
SL
1964 if (nodes)
1965 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1966 nodes, status, flags);
1967 else
1968 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1969
742755a1
CL
1970 mmput(mm);
1971 return err;
1972}
742755a1 1973
7addf443
DB
1974SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1975 const void __user * __user *, pages,
1976 const int __user *, nodes,
1977 int __user *, status, int, flags)
1978{
1979 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1980}
1981
1982#ifdef CONFIG_COMPAT
1983COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1984 compat_uptr_t __user *, pages32,
1985 const int __user *, nodes,
1986 int __user *, status,
1987 int, flags)
1988{
1989 const void __user * __user *pages;
1990 int i;
1991
1992 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1993 for (i = 0; i < nr_pages; i++) {
1994 compat_uptr_t p;
1995
1996 if (get_user(p, pages32 + i) ||
1997 put_user(compat_ptr(p), pages + i))
1998 return -EFAULT;
1999 }
2000 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2001}
2002#endif /* CONFIG_COMPAT */
2003
7039e1db
PZ
2004#ifdef CONFIG_NUMA_BALANCING
2005/*
2006 * Returns true if this is a safe migration target node for misplaced NUMA
2007 * pages. Currently it only checks the watermarks which crude
2008 */
2009static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 2010 unsigned long nr_migrate_pages)
7039e1db
PZ
2011{
2012 int z;
599d0c95 2013
7039e1db
PZ
2014 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2015 struct zone *zone = pgdat->node_zones + z;
2016
2017 if (!populated_zone(zone))
2018 continue;
2019
7039e1db
PZ
2020 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2021 if (!zone_watermark_ok(zone, 0,
2022 high_wmark_pages(zone) +
2023 nr_migrate_pages,
bfe9d006 2024 ZONE_MOVABLE, 0))
7039e1db
PZ
2025 continue;
2026 return true;
2027 }
2028 return false;
2029}
2030
2031static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 2032 unsigned long data)
7039e1db
PZ
2033{
2034 int nid = (int) data;
2035 struct page *newpage;
2036
96db800f 2037 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
2038 (GFP_HIGHUSER_MOVABLE |
2039 __GFP_THISNODE | __GFP_NOMEMALLOC |
2040 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 2041 ~__GFP_RECLAIM, 0);
bac0382c 2042
7039e1db
PZ
2043 return newpage;
2044}
2045
1c30e017 2046static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 2047{
340ef390 2048 int page_lru;
a8f60772 2049
309381fe 2050 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 2051
7039e1db 2052 /* Avoid migrating to a node that is nearly full */
d8c6546b 2053 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
340ef390 2054 return 0;
7039e1db 2055
340ef390
HD
2056 if (isolate_lru_page(page))
2057 return 0;
7039e1db 2058
340ef390
HD
2059 /*
2060 * migrate_misplaced_transhuge_page() skips page migration's usual
2061 * check on page_count(), so we must do it here, now that the page
2062 * has been isolated: a GUP pin, or any other pin, prevents migration.
2063 * The expected page count is 3: 1 for page's mapcount and 1 for the
2064 * caller's pin and 1 for the reference taken by isolate_lru_page().
2065 */
2066 if (PageTransHuge(page) && page_count(page) != 3) {
2067 putback_lru_page(page);
2068 return 0;
7039e1db
PZ
2069 }
2070
9de4f22a 2071 page_lru = page_is_file_lru(page);
599d0c95 2072 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
6c357848 2073 thp_nr_pages(page));
340ef390 2074
149c33e1 2075 /*
340ef390
HD
2076 * Isolating the page has taken another reference, so the
2077 * caller's reference can be safely dropped without the page
2078 * disappearing underneath us during migration.
149c33e1
MG
2079 */
2080 put_page(page);
340ef390 2081 return 1;
b32967ff
MG
2082}
2083
de466bd6
MG
2084bool pmd_trans_migrating(pmd_t pmd)
2085{
2086 struct page *page = pmd_page(pmd);
2087 return PageLocked(page);
2088}
2089
b32967ff
MG
2090/*
2091 * Attempt to migrate a misplaced page to the specified destination
2092 * node. Caller is expected to have an elevated reference count on
2093 * the page that will be dropped by this function before returning.
2094 */
1bc115d8
MG
2095int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2096 int node)
b32967ff
MG
2097{
2098 pg_data_t *pgdat = NODE_DATA(node);
340ef390 2099 int isolated;
b32967ff
MG
2100 int nr_remaining;
2101 LIST_HEAD(migratepages);
2102
2103 /*
1bc115d8
MG
2104 * Don't migrate file pages that are mapped in multiple processes
2105 * with execute permissions as they are probably shared libraries.
b32967ff 2106 */
7ee820ee
ML
2107 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2108 (vma->vm_flags & VM_EXEC))
b32967ff 2109 goto out;
b32967ff 2110
09a913a7
MG
2111 /*
2112 * Also do not migrate dirty pages as not all filesystems can move
2113 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2114 */
9de4f22a 2115 if (page_is_file_lru(page) && PageDirty(page))
09a913a7
MG
2116 goto out;
2117
b32967ff
MG
2118 isolated = numamigrate_isolate_page(pgdat, page);
2119 if (!isolated)
2120 goto out;
2121
2122 list_add(&page->lru, &migratepages);
9c620e2b 2123 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
2124 NULL, node, MIGRATE_ASYNC,
2125 MR_NUMA_MISPLACED);
b32967ff 2126 if (nr_remaining) {
59c82b70
JK
2127 if (!list_empty(&migratepages)) {
2128 list_del(&page->lru);
599d0c95 2129 dec_node_page_state(page, NR_ISOLATED_ANON +
9de4f22a 2130 page_is_file_lru(page));
59c82b70
JK
2131 putback_lru_page(page);
2132 }
b32967ff
MG
2133 isolated = 0;
2134 } else
2135 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 2136 BUG_ON(!list_empty(&migratepages));
7039e1db 2137 return isolated;
340ef390
HD
2138
2139out:
2140 put_page(page);
2141 return 0;
7039e1db 2142}
220018d3 2143#endif /* CONFIG_NUMA_BALANCING */
b32967ff 2144
220018d3 2145#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
2146/*
2147 * Migrates a THP to a given target node. page must be locked and is unlocked
2148 * before returning.
2149 */
b32967ff
MG
2150int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2151 struct vm_area_struct *vma,
2152 pmd_t *pmd, pmd_t entry,
2153 unsigned long address,
2154 struct page *page, int node)
2155{
c4088ebd 2156 spinlock_t *ptl;
b32967ff
MG
2157 pg_data_t *pgdat = NODE_DATA(node);
2158 int isolated = 0;
2159 struct page *new_page = NULL;
9de4f22a 2160 int page_lru = page_is_file_lru(page);
7066f0f9 2161 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 2162
b32967ff 2163 new_page = alloc_pages_node(node,
25160354 2164 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2165 HPAGE_PMD_ORDER);
340ef390
HD
2166 if (!new_page)
2167 goto out_fail;
9a982250 2168 prep_transhuge_page(new_page);
340ef390 2169
b32967ff 2170 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2171 if (!isolated) {
b32967ff 2172 put_page(new_page);
340ef390 2173 goto out_fail;
b32967ff 2174 }
b0943d61 2175
b32967ff 2176 /* Prepare a page as a migration target */
48c935ad 2177 __SetPageLocked(new_page);
d44d363f
SL
2178 if (PageSwapBacked(page))
2179 __SetPageSwapBacked(new_page);
b32967ff
MG
2180
2181 /* anon mapping, we can simply copy page->mapping to the new page: */
2182 new_page->mapping = page->mapping;
2183 new_page->index = page->index;
7eef5f97
AA
2184 /* flush the cache before copying using the kernel virtual address */
2185 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2186 migrate_page_copy(new_page, page);
2187 WARN_ON(PageLRU(new_page));
2188
2189 /* Recheck the target PMD */
c4088ebd 2190 ptl = pmd_lock(mm, pmd);
f4e177d1 2191 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2192 spin_unlock(ptl);
b32967ff
MG
2193
2194 /* Reverse changes made by migrate_page_copy() */
2195 if (TestClearPageActive(new_page))
2196 SetPageActive(page);
2197 if (TestClearPageUnevictable(new_page))
2198 SetPageUnevictable(page);
b32967ff
MG
2199
2200 unlock_page(new_page);
2201 put_page(new_page); /* Free it */
2202
a54a407f
MG
2203 /* Retake the callers reference and putback on LRU */
2204 get_page(page);
b32967ff 2205 putback_lru_page(page);
599d0c95 2206 mod_node_page_state(page_pgdat(page),
a54a407f 2207 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2208
2209 goto out_unlock;
b32967ff
MG
2210 }
2211
10102459 2212 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2213 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2214
2b4847e7 2215 /*
d7c33934
AA
2216 * Overwrite the old entry under pagetable lock and establish
2217 * the new PTE. Any parallel GUP will either observe the old
2218 * page blocking on the page lock, block on the page table
2219 * lock or observe the new page. The SetPageUptodate on the
2220 * new page and page_add_new_anon_rmap guarantee the copy is
2221 * visible before the pagetable update.
2b4847e7 2222 */
7066f0f9 2223 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2224 /*
2225 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2226 * has already been flushed globally. So no TLB can be currently
2227 * caching this non present pmd mapping. There's no need to clear the
2228 * pmd before doing set_pmd_at(), nor to flush the TLB after
2229 * set_pmd_at(). Clearing the pmd here would introduce a race
2230 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
c1e8d7c6 2231 * mmap_lock for reading. If the pmd is set to NULL at any given time,
d7c33934
AA
2232 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2233 * pmd.
2234 */
7066f0f9 2235 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2236 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2237
f4e177d1 2238 page_ref_unfreeze(page, 2);
51afb12b 2239 mlock_migrate_page(new_page, page);
d281ee61 2240 page_remove_rmap(page, true);
7cd12b4a 2241 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2242
c4088ebd 2243 spin_unlock(ptl);
b32967ff 2244
11de9927
MG
2245 /* Take an "isolate" reference and put new page on the LRU. */
2246 get_page(new_page);
2247 putback_lru_page(new_page);
2248
b32967ff
MG
2249 unlock_page(new_page);
2250 unlock_page(page);
2251 put_page(page); /* Drop the rmap reference */
2252 put_page(page); /* Drop the LRU isolation reference */
2253
2254 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2255 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2256
599d0c95 2257 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2258 NR_ISOLATED_ANON + page_lru,
2259 -HPAGE_PMD_NR);
2260 return isolated;
2261
340ef390
HD
2262out_fail:
2263 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2264 ptl = pmd_lock(mm, pmd);
2265 if (pmd_same(*pmd, entry)) {
4d942466 2266 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2267 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2268 update_mmu_cache_pmd(vma, address, &entry);
2269 }
2270 spin_unlock(ptl);
a54a407f 2271
eb4489f6 2272out_unlock:
340ef390 2273 unlock_page(page);
b32967ff 2274 put_page(page);
b32967ff
MG
2275 return 0;
2276}
7039e1db
PZ
2277#endif /* CONFIG_NUMA_BALANCING */
2278
2279#endif /* CONFIG_NUMA */
8763cb45 2280
9b2ed9cb 2281#ifdef CONFIG_DEVICE_PRIVATE
843e1be1 2282static int migrate_vma_collect_skip(unsigned long start,
8763cb45
JG
2283 unsigned long end,
2284 struct mm_walk *walk)
2285{
2286 struct migrate_vma *migrate = walk->private;
2287 unsigned long addr;
2288
872ea707 2289 for (addr = start; addr < end; addr += PAGE_SIZE) {
8315ada7 2290 migrate->dst[migrate->npages] = 0;
843e1be1 2291 migrate->src[migrate->npages++] = 0;
8315ada7
JG
2292 }
2293
2294 return 0;
2295}
2296
843e1be1 2297static int migrate_vma_collect_hole(unsigned long start,
8315ada7 2298 unsigned long end,
843e1be1 2299 __always_unused int depth,
8315ada7
JG
2300 struct mm_walk *walk)
2301{
2302 struct migrate_vma *migrate = walk->private;
2303 unsigned long addr;
2304
843e1be1
ML
2305 /* Only allow populating anonymous memory. */
2306 if (!vma_is_anonymous(walk->vma))
2307 return migrate_vma_collect_skip(start, end, walk);
2308
872ea707 2309 for (addr = start; addr < end; addr += PAGE_SIZE) {
843e1be1 2310 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8763cb45 2311 migrate->dst[migrate->npages] = 0;
843e1be1
ML
2312 migrate->npages++;
2313 migrate->cpages++;
8763cb45
JG
2314 }
2315
2316 return 0;
2317}
2318
2319static int migrate_vma_collect_pmd(pmd_t *pmdp,
2320 unsigned long start,
2321 unsigned long end,
2322 struct mm_walk *walk)
2323{
2324 struct migrate_vma *migrate = walk->private;
2325 struct vm_area_struct *vma = walk->vma;
2326 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2327 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2328 spinlock_t *ptl;
2329 pte_t *ptep;
2330
2331again:
2332 if (pmd_none(*pmdp))
b7a16c7a 2333 return migrate_vma_collect_hole(start, end, -1, walk);
8763cb45
JG
2334
2335 if (pmd_trans_huge(*pmdp)) {
2336 struct page *page;
2337
2338 ptl = pmd_lock(mm, pmdp);
2339 if (unlikely(!pmd_trans_huge(*pmdp))) {
2340 spin_unlock(ptl);
2341 goto again;
2342 }
2343
2344 page = pmd_page(*pmdp);
2345 if (is_huge_zero_page(page)) {
2346 spin_unlock(ptl);
2347 split_huge_pmd(vma, pmdp, addr);
2348 if (pmd_trans_unstable(pmdp))
8315ada7 2349 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2350 walk);
2351 } else {
2352 int ret;
2353
2354 get_page(page);
2355 spin_unlock(ptl);
2356 if (unlikely(!trylock_page(page)))
8315ada7 2357 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2358 walk);
2359 ret = split_huge_page(page);
2360 unlock_page(page);
2361 put_page(page);
8315ada7
JG
2362 if (ret)
2363 return migrate_vma_collect_skip(start, end,
2364 walk);
2365 if (pmd_none(*pmdp))
b7a16c7a 2366 return migrate_vma_collect_hole(start, end, -1,
8763cb45
JG
2367 walk);
2368 }
2369 }
2370
2371 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2372 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2373
2374 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2375 arch_enter_lazy_mmu_mode();
2376
8763cb45 2377 for (; addr < end; addr += PAGE_SIZE, ptep++) {
800bb1c8 2378 unsigned long mpfn = 0, pfn;
8763cb45 2379 struct page *page;
8c3328f1 2380 swp_entry_t entry;
8763cb45
JG
2381 pte_t pte;
2382
2383 pte = *ptep;
8763cb45 2384
a5430dda 2385 if (pte_none(pte)) {
0744f280
RC
2386 if (vma_is_anonymous(vma)) {
2387 mpfn = MIGRATE_PFN_MIGRATE;
2388 migrate->cpages++;
2389 }
8763cb45
JG
2390 goto next;
2391 }
2392
a5430dda 2393 if (!pte_present(pte)) {
a5430dda
JG
2394 /*
2395 * Only care about unaddressable device page special
2396 * page table entry. Other special swap entries are not
2397 * migratable, and we ignore regular swapped page.
2398 */
2399 entry = pte_to_swp_entry(pte);
2400 if (!is_device_private_entry(entry))
2401 goto next;
2402
2403 page = device_private_entry_to_page(entry);
5143192c
RC
2404 if (!(migrate->flags &
2405 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2406 page->pgmap->owner != migrate->pgmap_owner)
800bb1c8
CH
2407 goto next;
2408
06d462be
CH
2409 mpfn = migrate_pfn(page_to_pfn(page)) |
2410 MIGRATE_PFN_MIGRATE;
a5430dda
JG
2411 if (is_write_device_private_entry(entry))
2412 mpfn |= MIGRATE_PFN_WRITE;
2413 } else {
5143192c 2414 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
800bb1c8 2415 goto next;
276f756d 2416 pfn = pte_pfn(pte);
8315ada7
JG
2417 if (is_zero_pfn(pfn)) {
2418 mpfn = MIGRATE_PFN_MIGRATE;
2419 migrate->cpages++;
8315ada7
JG
2420 goto next;
2421 }
25b2995a 2422 page = vm_normal_page(migrate->vma, addr, pte);
a5430dda
JG
2423 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2424 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2425 }
2426
8763cb45 2427 /* FIXME support THP */
8763cb45 2428 if (!page || !page->mapping || PageTransCompound(page)) {
276f756d 2429 mpfn = 0;
8763cb45
JG
2430 goto next;
2431 }
2432
2433 /*
2434 * By getting a reference on the page we pin it and that blocks
2435 * any kind of migration. Side effect is that it "freezes" the
2436 * pte.
2437 *
2438 * We drop this reference after isolating the page from the lru
2439 * for non device page (device page are not on the lru and thus
2440 * can't be dropped from it).
2441 */
2442 get_page(page);
2443 migrate->cpages++;
8763cb45 2444
8c3328f1
JG
2445 /*
2446 * Optimize for the common case where page is only mapped once
2447 * in one process. If we can lock the page, then we can safely
2448 * set up a special migration page table entry now.
2449 */
2450 if (trylock_page(page)) {
2451 pte_t swp_pte;
2452
2453 mpfn |= MIGRATE_PFN_LOCKED;
2454 ptep_get_and_clear(mm, addr, ptep);
2455
2456 /* Setup special migration page table entry */
07707125
RC
2457 entry = make_migration_entry(page, mpfn &
2458 MIGRATE_PFN_WRITE);
8c3328f1 2459 swp_pte = swp_entry_to_pte(entry);
ad7df764
AP
2460 if (pte_present(pte)) {
2461 if (pte_soft_dirty(pte))
2462 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2463 if (pte_uffd_wp(pte))
2464 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2465 } else {
2466 if (pte_swp_soft_dirty(pte))
2467 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2468 if (pte_swp_uffd_wp(pte))
2469 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2470 }
8c3328f1
JG
2471 set_pte_at(mm, addr, ptep, swp_pte);
2472
2473 /*
2474 * This is like regular unmap: we remove the rmap and
2475 * drop page refcount. Page won't be freed, as we took
2476 * a reference just above.
2477 */
2478 page_remove_rmap(page, false);
2479 put_page(page);
a5430dda
JG
2480
2481 if (pte_present(pte))
2482 unmapped++;
8c3328f1
JG
2483 }
2484
8763cb45 2485next:
a5430dda 2486 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2487 migrate->src[migrate->npages++] = mpfn;
2488 }
8c3328f1 2489 arch_leave_lazy_mmu_mode();
8763cb45
JG
2490 pte_unmap_unlock(ptep - 1, ptl);
2491
8c3328f1
JG
2492 /* Only flush the TLB if we actually modified any entries */
2493 if (unmapped)
2494 flush_tlb_range(walk->vma, start, end);
2495
8763cb45
JG
2496 return 0;
2497}
2498
7b86ac33
CH
2499static const struct mm_walk_ops migrate_vma_walk_ops = {
2500 .pmd_entry = migrate_vma_collect_pmd,
2501 .pte_hole = migrate_vma_collect_hole,
2502};
2503
8763cb45
JG
2504/*
2505 * migrate_vma_collect() - collect pages over a range of virtual addresses
2506 * @migrate: migrate struct containing all migration information
2507 *
2508 * This will walk the CPU page table. For each virtual address backed by a
2509 * valid page, it updates the src array and takes a reference on the page, in
2510 * order to pin the page until we lock it and unmap it.
2511 */
2512static void migrate_vma_collect(struct migrate_vma *migrate)
2513{
ac46d4f3 2514 struct mmu_notifier_range range;
8763cb45 2515
998427b3
RC
2516 /*
2517 * Note that the pgmap_owner is passed to the mmu notifier callback so
2518 * that the registered device driver can skip invalidating device
2519 * private page mappings that won't be migrated.
2520 */
c1a06df6
RC
2521 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2522 migrate->vma->vm_mm, migrate->start, migrate->end,
2523 migrate->pgmap_owner);
ac46d4f3 2524 mmu_notifier_invalidate_range_start(&range);
8763cb45 2525
7b86ac33
CH
2526 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2527 &migrate_vma_walk_ops, migrate);
2528
2529 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2530 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2531}
2532
2533/*
2534 * migrate_vma_check_page() - check if page is pinned or not
2535 * @page: struct page to check
2536 *
2537 * Pinned pages cannot be migrated. This is the same test as in
2538 * migrate_page_move_mapping(), except that here we allow migration of a
2539 * ZONE_DEVICE page.
2540 */
2541static bool migrate_vma_check_page(struct page *page)
2542{
2543 /*
2544 * One extra ref because caller holds an extra reference, either from
2545 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2546 * a device page.
2547 */
2548 int extra = 1;
2549
2550 /*
2551 * FIXME support THP (transparent huge page), it is bit more complex to
2552 * check them than regular pages, because they can be mapped with a pmd
2553 * or with a pte (split pte mapping).
2554 */
2555 if (PageCompound(page))
2556 return false;
2557
a5430dda
JG
2558 /* Page from ZONE_DEVICE have one extra reference */
2559 if (is_zone_device_page(page)) {
2560 /*
2561 * Private page can never be pin as they have no valid pte and
2562 * GUP will fail for those. Yet if there is a pending migration
2563 * a thread might try to wait on the pte migration entry and
2564 * will bump the page reference count. Sadly there is no way to
2565 * differentiate a regular pin from migration wait. Hence to
2566 * avoid 2 racing thread trying to migrate back to CPU to enter
8958b249 2567 * infinite loop (one stopping migration because the other is
a5430dda
JG
2568 * waiting on pte migration entry). We always return true here.
2569 *
2570 * FIXME proper solution is to rework migration_entry_wait() so
2571 * it does not need to take a reference on page.
2572 */
25b2995a 2573 return is_device_private_page(page);
a5430dda
JG
2574 }
2575
df6ad698
JG
2576 /* For file back page */
2577 if (page_mapping(page))
2578 extra += 1 + page_has_private(page);
2579
8763cb45
JG
2580 if ((page_count(page) - extra) > page_mapcount(page))
2581 return false;
2582
2583 return true;
2584}
2585
2586/*
2587 * migrate_vma_prepare() - lock pages and isolate them from the lru
2588 * @migrate: migrate struct containing all migration information
2589 *
2590 * This locks pages that have been collected by migrate_vma_collect(). Once each
2591 * page is locked it is isolated from the lru (for non-device pages). Finally,
2592 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2593 * migrated by concurrent kernel threads.
2594 */
2595static void migrate_vma_prepare(struct migrate_vma *migrate)
2596{
2597 const unsigned long npages = migrate->npages;
8c3328f1
JG
2598 const unsigned long start = migrate->start;
2599 unsigned long addr, i, restore = 0;
8763cb45 2600 bool allow_drain = true;
8763cb45
JG
2601
2602 lru_add_drain();
2603
2604 for (i = 0; (i < npages) && migrate->cpages; i++) {
2605 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2606 bool remap = true;
8763cb45
JG
2607
2608 if (!page)
2609 continue;
2610
8c3328f1
JG
2611 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2612 /*
2613 * Because we are migrating several pages there can be
2614 * a deadlock between 2 concurrent migration where each
2615 * are waiting on each other page lock.
2616 *
2617 * Make migrate_vma() a best effort thing and backoff
2618 * for any page we can not lock right away.
2619 */
2620 if (!trylock_page(page)) {
2621 migrate->src[i] = 0;
2622 migrate->cpages--;
2623 put_page(page);
2624 continue;
2625 }
2626 remap = false;
2627 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2628 }
8763cb45 2629
a5430dda
JG
2630 /* ZONE_DEVICE pages are not on LRU */
2631 if (!is_zone_device_page(page)) {
2632 if (!PageLRU(page) && allow_drain) {
2633 /* Drain CPU's pagevec */
2634 lru_add_drain_all();
2635 allow_drain = false;
2636 }
8763cb45 2637
a5430dda
JG
2638 if (isolate_lru_page(page)) {
2639 if (remap) {
2640 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2641 migrate->cpages--;
2642 restore++;
2643 } else {
2644 migrate->src[i] = 0;
2645 unlock_page(page);
2646 migrate->cpages--;
2647 put_page(page);
2648 }
2649 continue;
8c3328f1 2650 }
a5430dda
JG
2651
2652 /* Drop the reference we took in collect */
2653 put_page(page);
8763cb45
JG
2654 }
2655
2656 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2657 if (remap) {
2658 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2659 migrate->cpages--;
2660 restore++;
8763cb45 2661
a5430dda
JG
2662 if (!is_zone_device_page(page)) {
2663 get_page(page);
2664 putback_lru_page(page);
2665 }
8c3328f1
JG
2666 } else {
2667 migrate->src[i] = 0;
2668 unlock_page(page);
2669 migrate->cpages--;
2670
a5430dda
JG
2671 if (!is_zone_device_page(page))
2672 putback_lru_page(page);
2673 else
2674 put_page(page);
8c3328f1 2675 }
8763cb45
JG
2676 }
2677 }
8c3328f1
JG
2678
2679 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2680 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2681
2682 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2683 continue;
2684
2685 remove_migration_pte(page, migrate->vma, addr, page);
2686
2687 migrate->src[i] = 0;
2688 unlock_page(page);
2689 put_page(page);
2690 restore--;
2691 }
8763cb45
JG
2692}
2693
2694/*
2695 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2696 * @migrate: migrate struct containing all migration information
2697 *
2698 * Replace page mapping (CPU page table pte) with a special migration pte entry
2699 * and check again if it has been pinned. Pinned pages are restored because we
2700 * cannot migrate them.
2701 *
2702 * This is the last step before we call the device driver callback to allocate
2703 * destination memory and copy contents of original page over to new page.
2704 */
2705static void migrate_vma_unmap(struct migrate_vma *migrate)
2706{
013339df 2707 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
8763cb45
JG
2708 const unsigned long npages = migrate->npages;
2709 const unsigned long start = migrate->start;
2710 unsigned long addr, i, restore = 0;
2711
2712 for (i = 0; i < npages; i++) {
2713 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2714
2715 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2716 continue;
2717
8c3328f1
JG
2718 if (page_mapped(page)) {
2719 try_to_unmap(page, flags);
2720 if (page_mapped(page))
2721 goto restore;
8763cb45 2722 }
8c3328f1
JG
2723
2724 if (migrate_vma_check_page(page))
2725 continue;
2726
2727restore:
2728 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2729 migrate->cpages--;
2730 restore++;
8763cb45
JG
2731 }
2732
2733 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2734 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2735
2736 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2737 continue;
2738
2739 remove_migration_ptes(page, page, false);
2740
2741 migrate->src[i] = 0;
2742 unlock_page(page);
2743 restore--;
2744
a5430dda
JG
2745 if (is_zone_device_page(page))
2746 put_page(page);
2747 else
2748 putback_lru_page(page);
8763cb45
JG
2749 }
2750}
2751
a7d1f22b
CH
2752/**
2753 * migrate_vma_setup() - prepare to migrate a range of memory
eaf444de 2754 * @args: contains the vma, start, and pfns arrays for the migration
a7d1f22b
CH
2755 *
2756 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2757 * without an error.
2758 *
2759 * Prepare to migrate a range of memory virtual address range by collecting all
2760 * the pages backing each virtual address in the range, saving them inside the
2761 * src array. Then lock those pages and unmap them. Once the pages are locked
2762 * and unmapped, check whether each page is pinned or not. Pages that aren't
2763 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2764 * corresponding src array entry. Then restores any pages that are pinned, by
2765 * remapping and unlocking those pages.
2766 *
2767 * The caller should then allocate destination memory and copy source memory to
2768 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2769 * flag set). Once these are allocated and copied, the caller must update each
2770 * corresponding entry in the dst array with the pfn value of the destination
2771 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2772 * (destination pages must have their struct pages locked, via lock_page()).
2773 *
2774 * Note that the caller does not have to migrate all the pages that are marked
2775 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2776 * device memory to system memory. If the caller cannot migrate a device page
2777 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2778 * consequences for the userspace process, so it must be avoided if at all
2779 * possible.
2780 *
2781 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2782 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
f0953a1b
IM
2783 * allowing the caller to allocate device memory for those unbacked virtual
2784 * addresses. For this the caller simply has to allocate device memory and
a7d1f22b 2785 * properly set the destination entry like for regular migration. Note that
f0953a1b
IM
2786 * this can still fail, and thus inside the device driver you must check if the
2787 * migration was successful for those entries after calling migrate_vma_pages(),
a7d1f22b
CH
2788 * just like for regular migration.
2789 *
2790 * After that, the callers must call migrate_vma_pages() to go over each entry
2791 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2792 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2793 * then migrate_vma_pages() to migrate struct page information from the source
2794 * struct page to the destination struct page. If it fails to migrate the
2795 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2796 * src array.
2797 *
2798 * At this point all successfully migrated pages have an entry in the src
2799 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2800 * array entry with MIGRATE_PFN_VALID flag set.
2801 *
2802 * Once migrate_vma_pages() returns the caller may inspect which pages were
2803 * successfully migrated, and which were not. Successfully migrated pages will
2804 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2805 *
2806 * It is safe to update device page table after migrate_vma_pages() because
c1e8d7c6 2807 * both destination and source page are still locked, and the mmap_lock is held
a7d1f22b
CH
2808 * in read mode (hence no one can unmap the range being migrated).
2809 *
2810 * Once the caller is done cleaning up things and updating its page table (if it
2811 * chose to do so, this is not an obligation) it finally calls
2812 * migrate_vma_finalize() to update the CPU page table to point to new pages
2813 * for successfully migrated pages or otherwise restore the CPU page table to
2814 * point to the original source pages.
2815 */
2816int migrate_vma_setup(struct migrate_vma *args)
2817{
2818 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2819
2820 args->start &= PAGE_MASK;
2821 args->end &= PAGE_MASK;
2822 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2823 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2824 return -EINVAL;
2825 if (nr_pages <= 0)
2826 return -EINVAL;
2827 if (args->start < args->vma->vm_start ||
2828 args->start >= args->vma->vm_end)
2829 return -EINVAL;
2830 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2831 return -EINVAL;
2832 if (!args->src || !args->dst)
2833 return -EINVAL;
2834
2835 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2836 args->cpages = 0;
2837 args->npages = 0;
2838
2839 migrate_vma_collect(args);
2840
2841 if (args->cpages)
2842 migrate_vma_prepare(args);
2843 if (args->cpages)
2844 migrate_vma_unmap(args);
2845
2846 /*
2847 * At this point pages are locked and unmapped, and thus they have
2848 * stable content and can safely be copied to destination memory that
2849 * is allocated by the drivers.
2850 */
2851 return 0;
2852
2853}
2854EXPORT_SYMBOL(migrate_vma_setup);
2855
34290e2c
RC
2856/*
2857 * This code closely matches the code in:
2858 * __handle_mm_fault()
2859 * handle_pte_fault()
2860 * do_anonymous_page()
2861 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2862 * private page.
2863 */
8315ada7
JG
2864static void migrate_vma_insert_page(struct migrate_vma *migrate,
2865 unsigned long addr,
2866 struct page *page,
d85c6db4 2867 unsigned long *src)
8315ada7
JG
2868{
2869 struct vm_area_struct *vma = migrate->vma;
2870 struct mm_struct *mm = vma->vm_mm;
8315ada7
JG
2871 bool flush = false;
2872 spinlock_t *ptl;
2873 pte_t entry;
2874 pgd_t *pgdp;
2875 p4d_t *p4dp;
2876 pud_t *pudp;
2877 pmd_t *pmdp;
2878 pte_t *ptep;
2879
2880 /* Only allow populating anonymous memory */
2881 if (!vma_is_anonymous(vma))
2882 goto abort;
2883
2884 pgdp = pgd_offset(mm, addr);
2885 p4dp = p4d_alloc(mm, pgdp, addr);
2886 if (!p4dp)
2887 goto abort;
2888 pudp = pud_alloc(mm, p4dp, addr);
2889 if (!pudp)
2890 goto abort;
2891 pmdp = pmd_alloc(mm, pudp, addr);
2892 if (!pmdp)
2893 goto abort;
2894
2895 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2896 goto abort;
2897
2898 /*
2899 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2900 * pte_offset_map() on pmds where a huge pmd might be created
2901 * from a different thread.
2902 *
3e4e28c5 2903 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
8315ada7
JG
2904 * parallel threads are excluded by other means.
2905 *
3e4e28c5 2906 * Here we only have mmap_read_lock(mm).
8315ada7 2907 */
4cf58924 2908 if (pte_alloc(mm, pmdp))
8315ada7
JG
2909 goto abort;
2910
2911 /* See the comment in pte_alloc_one_map() */
2912 if (unlikely(pmd_trans_unstable(pmdp)))
2913 goto abort;
2914
2915 if (unlikely(anon_vma_prepare(vma)))
2916 goto abort;
d9eb1ea2 2917 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
8315ada7
JG
2918 goto abort;
2919
2920 /*
2921 * The memory barrier inside __SetPageUptodate makes sure that
2922 * preceding stores to the page contents become visible before
2923 * the set_pte_at() write.
2924 */
2925 __SetPageUptodate(page);
2926
df6ad698
JG
2927 if (is_zone_device_page(page)) {
2928 if (is_device_private_page(page)) {
2929 swp_entry_t swp_entry;
2930
2931 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2932 entry = swp_entry_to_pte(swp_entry);
34f5e9b9
ML
2933 } else {
2934 /*
2935 * For now we only support migrating to un-addressable
2936 * device memory.
2937 */
2938 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2939 goto abort;
df6ad698 2940 }
8315ada7
JG
2941 } else {
2942 entry = mk_pte(page, vma->vm_page_prot);
2943 if (vma->vm_flags & VM_WRITE)
2944 entry = pte_mkwrite(pte_mkdirty(entry));
2945 }
2946
2947 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2948
34290e2c
RC
2949 if (check_stable_address_space(mm))
2950 goto unlock_abort;
2951
8315ada7
JG
2952 if (pte_present(*ptep)) {
2953 unsigned long pfn = pte_pfn(*ptep);
2954
c23a0c99
RC
2955 if (!is_zero_pfn(pfn))
2956 goto unlock_abort;
8315ada7 2957 flush = true;
c23a0c99
RC
2958 } else if (!pte_none(*ptep))
2959 goto unlock_abort;
8315ada7
JG
2960
2961 /*
c23a0c99 2962 * Check for userfaultfd but do not deliver the fault. Instead,
8315ada7
JG
2963 * just back off.
2964 */
c23a0c99
RC
2965 if (userfaultfd_missing(vma))
2966 goto unlock_abort;
8315ada7
JG
2967
2968 inc_mm_counter(mm, MM_ANONPAGES);
be5d0a74 2969 page_add_new_anon_rmap(page, vma, addr, false);
8315ada7 2970 if (!is_zone_device_page(page))
b518154e 2971 lru_cache_add_inactive_or_unevictable(page, vma);
8315ada7
JG
2972 get_page(page);
2973
2974 if (flush) {
2975 flush_cache_page(vma, addr, pte_pfn(*ptep));
2976 ptep_clear_flush_notify(vma, addr, ptep);
2977 set_pte_at_notify(mm, addr, ptep, entry);
2978 update_mmu_cache(vma, addr, ptep);
2979 } else {
2980 /* No need to invalidate - it was non-present before */
2981 set_pte_at(mm, addr, ptep, entry);
2982 update_mmu_cache(vma, addr, ptep);
2983 }
2984
2985 pte_unmap_unlock(ptep, ptl);
2986 *src = MIGRATE_PFN_MIGRATE;
2987 return;
2988
c23a0c99
RC
2989unlock_abort:
2990 pte_unmap_unlock(ptep, ptl);
8315ada7
JG
2991abort:
2992 *src &= ~MIGRATE_PFN_MIGRATE;
2993}
2994
a7d1f22b 2995/**
8763cb45
JG
2996 * migrate_vma_pages() - migrate meta-data from src page to dst page
2997 * @migrate: migrate struct containing all migration information
2998 *
2999 * This migrates struct page meta-data from source struct page to destination
3000 * struct page. This effectively finishes the migration from source page to the
3001 * destination page.
3002 */
a7d1f22b 3003void migrate_vma_pages(struct migrate_vma *migrate)
8763cb45
JG
3004{
3005 const unsigned long npages = migrate->npages;
3006 const unsigned long start = migrate->start;
ac46d4f3
JG
3007 struct mmu_notifier_range range;
3008 unsigned long addr, i;
8315ada7 3009 bool notified = false;
8763cb45
JG
3010
3011 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3012 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3013 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3014 struct address_space *mapping;
3015 int r;
3016
8315ada7
JG
3017 if (!newpage) {
3018 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 3019 continue;
8315ada7
JG
3020 }
3021
3022 if (!page) {
c23a0c99 3023 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
8315ada7 3024 continue;
8315ada7 3025 if (!notified) {
8315ada7 3026 notified = true;
ac46d4f3 3027
5e5dda81
RC
3028 mmu_notifier_range_init_migrate(&range, 0,
3029 migrate->vma, migrate->vma->vm_mm,
3030 addr, migrate->end,
3031 migrate->pgmap_owner);
ac46d4f3 3032 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
3033 }
3034 migrate_vma_insert_page(migrate, addr, newpage,
d85c6db4 3035 &migrate->src[i]);
8763cb45 3036 continue;
8315ada7 3037 }
8763cb45
JG
3038
3039 mapping = page_mapping(page);
3040
a5430dda
JG
3041 if (is_zone_device_page(newpage)) {
3042 if (is_device_private_page(newpage)) {
3043 /*
3044 * For now only support private anonymous when
3045 * migrating to un-addressable device memory.
3046 */
3047 if (mapping) {
3048 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3049 continue;
3050 }
25b2995a 3051 } else {
a5430dda
JG
3052 /*
3053 * Other types of ZONE_DEVICE page are not
3054 * supported.
3055 */
3056 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3057 continue;
3058 }
3059 }
3060
8763cb45
JG
3061 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3062 if (r != MIGRATEPAGE_SUCCESS)
3063 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3064 }
8315ada7 3065
4645b9fe
JG
3066 /*
3067 * No need to double call mmu_notifier->invalidate_range() callback as
3068 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3069 * did already call it.
3070 */
8315ada7 3071 if (notified)
ac46d4f3 3072 mmu_notifier_invalidate_range_only_end(&range);
8763cb45 3073}
a7d1f22b 3074EXPORT_SYMBOL(migrate_vma_pages);
8763cb45 3075
a7d1f22b 3076/**
8763cb45
JG
3077 * migrate_vma_finalize() - restore CPU page table entry
3078 * @migrate: migrate struct containing all migration information
3079 *
3080 * This replaces the special migration pte entry with either a mapping to the
3081 * new page if migration was successful for that page, or to the original page
3082 * otherwise.
3083 *
3084 * This also unlocks the pages and puts them back on the lru, or drops the extra
3085 * refcount, for device pages.
3086 */
a7d1f22b 3087void migrate_vma_finalize(struct migrate_vma *migrate)
8763cb45
JG
3088{
3089 const unsigned long npages = migrate->npages;
3090 unsigned long i;
3091
3092 for (i = 0; i < npages; i++) {
3093 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3094 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3095
8315ada7
JG
3096 if (!page) {
3097 if (newpage) {
3098 unlock_page(newpage);
3099 put_page(newpage);
3100 }
8763cb45 3101 continue;
8315ada7
JG
3102 }
3103
8763cb45
JG
3104 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3105 if (newpage) {
3106 unlock_page(newpage);
3107 put_page(newpage);
3108 }
3109 newpage = page;
3110 }
3111
3112 remove_migration_ptes(page, newpage, false);
3113 unlock_page(page);
8763cb45 3114
a5430dda
JG
3115 if (is_zone_device_page(page))
3116 put_page(page);
3117 else
3118 putback_lru_page(page);
8763cb45
JG
3119
3120 if (newpage != page) {
3121 unlock_page(newpage);
a5430dda
JG
3122 if (is_zone_device_page(newpage))
3123 put_page(newpage);
3124 else
3125 putback_lru_page(newpage);
8763cb45
JG
3126 }
3127 }
3128}
a7d1f22b 3129EXPORT_SYMBOL(migrate_vma_finalize);
9b2ed9cb 3130#endif /* CONFIG_DEVICE_PRIVATE */