]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/migrate.c
Merge tag 'nfsd-5.10' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-hirsute-kernel.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
a520110e 41#include <linux/pagewalk.h>
df6ad698 42#include <linux/pfn_t.h>
a5430dda 43#include <linux/memremap.h>
8315ada7 44#include <linux/userfaultfd_k.h>
bf6bddf1 45#include <linux/balloon_compaction.h>
f714f4f2 46#include <linux/mmu_notifier.h>
33c3fc71 47#include <linux/page_idle.h>
d435edca 48#include <linux/page_owner.h>
6e84f315 49#include <linux/sched/mm.h>
197e7e52 50#include <linux/ptrace.h>
34290e2c 51#include <linux/oom.h>
b20a3503 52
0d1836c3
MN
53#include <asm/tlbflush.h>
54
7b2a2d4a
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/migrate.h>
57
b20a3503
CL
58#include "internal.h"
59
b20a3503 60/*
742755a1 61 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
b20a3503
CL
64 */
65int migrate_prep(void)
66{
b20a3503
CL
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
74
75 return 0;
76}
77
748446bb
MG
78/* Do the necessary work of migrate_prep but not if it involves other CPUs */
79int migrate_prep_local(void)
80{
81 lru_add_drain();
82
83 return 0;
84}
85
9e5bcd61 86int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
87{
88 struct address_space *mapping;
89
90 /*
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
93 *
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
98 */
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
101
102 /*
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
8bb4e7a2 105 * so unconditionally grabbing the lock ruins page's owner side.
bda807d4
MK
106 */
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
109 /*
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
113 *
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
119 */
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
122
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
125
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
128
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
131
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
136
9e5bcd61 137 return 0;
bda807d4
MK
138
139out_no_isolated:
140 unlock_page(page);
141out_putpage:
142 put_page(page);
143out:
9e5bcd61 144 return -EBUSY;
bda807d4
MK
145}
146
147/* It should be called on page which is PG_movable */
148void putback_movable_page(struct page *page)
149{
150 struct address_space *mapping;
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
159}
160
5733c7d1
RA
161/*
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
164 *
59c82b70
JK
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
5733c7d1
RA
168 */
169void putback_movable_pages(struct list_head *l)
170{
171 struct page *page;
172 struct page *page2;
173
b20a3503 174 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
178 }
e24f0b8f 179 list_del(&page->lru);
bda807d4
MK
180 /*
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
184 */
b1123ea6 185 if (unlikely(__PageMovable(page))) {
bda807d4
MK
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
e8db67eb 195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 196 page_is_file_lru(page), -thp_nr_pages(page));
fc280fe8 197 putback_lru_page(page);
bda807d4 198 }
b20a3503 199 }
b20a3503
CL
200}
201
0697212a
CL
202/*
203 * Restore a potential migration pte to a working pte entry
204 */
e4b82222 205static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 206 unsigned long addr, void *old)
0697212a 207{
3fe87967
KS
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
213 };
214 struct page *new;
215 pte_t pte;
0697212a 216 swp_entry_t entry;
0697212a 217
3fe87967
KS
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
0697212a 225
616b8371
ZY
226#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
232 }
233#endif
234
3fe87967
KS
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
0697212a 239
3fe87967
KS
240 /*
241 * Recheck VMA as permissions can change since migration started
242 */
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
f45ec5ff
PX
246 else if (pte_swp_uffd_wp(*pvmw.pte))
247 pte = pte_mkuffd_wp(pte);
d3cb8bf6 248
6128763f
RC
249 if (unlikely(is_device_private_page(new))) {
250 entry = make_device_private_entry(new, pte_write(pte));
251 pte = swp_entry_to_pte(entry);
3d321bf8
RC
252 if (pte_swp_soft_dirty(*pvmw.pte))
253 pte = pte_swp_mksoft_dirty(pte);
6128763f
RC
254 if (pte_swp_uffd_wp(*pvmw.pte))
255 pte = pte_swp_mkuffd_wp(pte);
d2b2c6dd 256 }
a5430dda 257
3ef8fd7f 258#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
259 if (PageHuge(new)) {
260 pte = pte_mkhuge(pte);
261 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
263 if (PageAnon(new))
264 hugepage_add_anon_rmap(new, vma, pvmw.address);
265 else
266 page_dup_rmap(new, true);
383321ab
AK
267 } else
268#endif
269 {
270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 271
383321ab
AK
272 if (PageAnon(new))
273 page_add_anon_rmap(new, vma, pvmw.address, false);
274 else
275 page_add_file_rmap(new, false);
276 }
3fe87967
KS
277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 mlock_vma_page(new);
279
e125fe40
KS
280 if (PageTransHuge(page) && PageMlocked(page))
281 clear_page_mlock(page);
282
3fe87967
KS
283 /* No need to invalidate - it was non-present before */
284 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 }
51afb12b 286
e4b82222 287 return true;
0697212a
CL
288}
289
04e62a29
CL
290/*
291 * Get rid of all migration entries and replace them by
292 * references to the indicated page.
293 */
e388466d 294void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 295{
051ac83a
JK
296 struct rmap_walk_control rwc = {
297 .rmap_one = remove_migration_pte,
298 .arg = old,
299 };
300
e388466d
KS
301 if (locked)
302 rmap_walk_locked(new, &rwc);
303 else
304 rmap_walk(new, &rwc);
04e62a29
CL
305}
306
0697212a
CL
307/*
308 * Something used the pte of a page under migration. We need to
309 * get to the page and wait until migration is finished.
310 * When we return from this function the fault will be retried.
0697212a 311 */
e66f17ff 312void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 313 spinlock_t *ptl)
0697212a 314{
30dad309 315 pte_t pte;
0697212a
CL
316 swp_entry_t entry;
317 struct page *page;
318
30dad309 319 spin_lock(ptl);
0697212a
CL
320 pte = *ptep;
321 if (!is_swap_pte(pte))
322 goto out;
323
324 entry = pte_to_swp_entry(pte);
325 if (!is_migration_entry(entry))
326 goto out;
327
328 page = migration_entry_to_page(entry);
329
e286781d 330 /*
89eb946a 331 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
332 * is zero; but we must not call put_and_wait_on_page_locked() without
333 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
334 */
335 if (!get_page_unless_zero(page))
336 goto out;
0697212a 337 pte_unmap_unlock(ptep, ptl);
9a1ea439 338 put_and_wait_on_page_locked(page);
0697212a
CL
339 return;
340out:
341 pte_unmap_unlock(ptep, ptl);
342}
343
30dad309
NH
344void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 unsigned long address)
346{
347 spinlock_t *ptl = pte_lockptr(mm, pmd);
348 pte_t *ptep = pte_offset_map(pmd, address);
349 __migration_entry_wait(mm, ptep, ptl);
350}
351
cb900f41
KS
352void migration_entry_wait_huge(struct vm_area_struct *vma,
353 struct mm_struct *mm, pte_t *pte)
30dad309 354{
cb900f41 355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
356 __migration_entry_wait(mm, pte, ptl);
357}
358
616b8371
ZY
359#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361{
362 spinlock_t *ptl;
363 struct page *page;
364
365 ptl = pmd_lock(mm, pmd);
366 if (!is_pmd_migration_entry(*pmd))
367 goto unlock;
368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 if (!get_page_unless_zero(page))
370 goto unlock;
371 spin_unlock(ptl);
9a1ea439 372 put_and_wait_on_page_locked(page);
616b8371
ZY
373 return;
374unlock:
375 spin_unlock(ptl);
376}
377#endif
378
f900482d 379static int expected_page_refs(struct address_space *mapping, struct page *page)
0b3901b3
JK
380{
381 int expected_count = 1;
382
383 /*
f1f4f3ab 384 * Device private pages have an extra refcount as they are
0b3901b3
JK
385 * ZONE_DEVICE pages.
386 */
387 expected_count += is_device_private_page(page);
f900482d 388 if (mapping)
6c357848 389 expected_count += thp_nr_pages(page) + page_has_private(page);
0b3901b3
JK
390
391 return expected_count;
392}
393
b20a3503 394/*
c3fcf8a5 395 * Replace the page in the mapping.
5b5c7120
CL
396 *
397 * The number of remaining references must be:
398 * 1 for anonymous pages without a mapping
399 * 2 for pages with a mapping
266cf658 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 401 */
36bc08cc 402int migrate_page_move_mapping(struct address_space *mapping,
37109694 403 struct page *newpage, struct page *page, int extra_count)
b20a3503 404{
89eb946a 405 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
406 struct zone *oldzone, *newzone;
407 int dirty;
f900482d 408 int expected_count = expected_page_refs(mapping, page) + extra_count;
8763cb45 409
6c5240ae 410 if (!mapping) {
0e8c7d0f 411 /* Anonymous page without mapping */
8e321fef 412 if (page_count(page) != expected_count)
6c5240ae 413 return -EAGAIN;
cf4b769a
HD
414
415 /* No turning back from here */
cf4b769a
HD
416 newpage->index = page->index;
417 newpage->mapping = page->mapping;
418 if (PageSwapBacked(page))
fa9949da 419 __SetPageSwapBacked(newpage);
cf4b769a 420
78bd5209 421 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
422 }
423
42cb14b1
HD
424 oldzone = page_zone(page);
425 newzone = page_zone(newpage);
426
89eb946a 427 xas_lock_irq(&xas);
89eb946a
MW
428 if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 xas_unlock_irq(&xas);
e23ca00b 430 return -EAGAIN;
b20a3503
CL
431 }
432
fe896d18 433 if (!page_ref_freeze(page, expected_count)) {
89eb946a 434 xas_unlock_irq(&xas);
e286781d
NP
435 return -EAGAIN;
436 }
437
b20a3503 438 /*
cf4b769a
HD
439 * Now we know that no one else is looking at the page:
440 * no turning back from here.
b20a3503 441 */
cf4b769a
HD
442 newpage->index = page->index;
443 newpage->mapping = page->mapping;
6c357848 444 page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
6326fec1
NP
445 if (PageSwapBacked(page)) {
446 __SetPageSwapBacked(newpage);
447 if (PageSwapCache(page)) {
448 SetPageSwapCache(newpage);
449 set_page_private(newpage, page_private(page));
450 }
451 } else {
452 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
453 }
454
42cb14b1
HD
455 /* Move dirty while page refs frozen and newpage not yet exposed */
456 dirty = PageDirty(page);
457 if (dirty) {
458 ClearPageDirty(page);
459 SetPageDirty(newpage);
460 }
461
89eb946a 462 xas_store(&xas, newpage);
e71769ae
NH
463 if (PageTransHuge(page)) {
464 int i;
e71769ae 465
013567be 466 for (i = 1; i < HPAGE_PMD_NR; i++) {
89eb946a 467 xas_next(&xas);
4101196b 468 xas_store(&xas, newpage);
e71769ae 469 }
e71769ae 470 }
7cf9c2c7
NP
471
472 /*
937a94c9
JG
473 * Drop cache reference from old page by unfreezing
474 * to one less reference.
7cf9c2c7
NP
475 * We know this isn't the last reference.
476 */
6c357848 477 page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
7cf9c2c7 478
89eb946a 479 xas_unlock(&xas);
42cb14b1
HD
480 /* Leave irq disabled to prevent preemption while updating stats */
481
0e8c7d0f
CL
482 /*
483 * If moved to a different zone then also account
484 * the page for that zone. Other VM counters will be
485 * taken care of when we establish references to the
486 * new page and drop references to the old page.
487 *
488 * Note that anonymous pages are accounted for
4b9d0fab 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
490 * are mapped to swap space.
491 */
42cb14b1 492 if (newzone != oldzone) {
0d1c2072
JW
493 struct lruvec *old_lruvec, *new_lruvec;
494 struct mem_cgroup *memcg;
495
496 memcg = page_memcg(page);
497 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
498 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
499
500 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
501 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
42cb14b1 502 if (PageSwapBacked(page) && !PageSwapCache(page)) {
0d1c2072
JW
503 __dec_lruvec_state(old_lruvec, NR_SHMEM);
504 __inc_lruvec_state(new_lruvec, NR_SHMEM);
42cb14b1 505 }
f56753ac 506 if (dirty && mapping_can_writeback(mapping)) {
11fb9989 507 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 508 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 509 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 510 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 511 }
4b02108a 512 }
42cb14b1 513 local_irq_enable();
b20a3503 514
78bd5209 515 return MIGRATEPAGE_SUCCESS;
b20a3503 516}
1118dce7 517EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 518
290408d4
NH
519/*
520 * The expected number of remaining references is the same as that
521 * of migrate_page_move_mapping().
522 */
523int migrate_huge_page_move_mapping(struct address_space *mapping,
524 struct page *newpage, struct page *page)
525{
89eb946a 526 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 527 int expected_count;
290408d4 528
89eb946a 529 xas_lock_irq(&xas);
290408d4 530 expected_count = 2 + page_has_private(page);
89eb946a
MW
531 if (page_count(page) != expected_count || xas_load(&xas) != page) {
532 xas_unlock_irq(&xas);
290408d4
NH
533 return -EAGAIN;
534 }
535
fe896d18 536 if (!page_ref_freeze(page, expected_count)) {
89eb946a 537 xas_unlock_irq(&xas);
290408d4
NH
538 return -EAGAIN;
539 }
540
cf4b769a
HD
541 newpage->index = page->index;
542 newpage->mapping = page->mapping;
6a93ca8f 543
290408d4
NH
544 get_page(newpage);
545
89eb946a 546 xas_store(&xas, newpage);
290408d4 547
fe896d18 548 page_ref_unfreeze(page, expected_count - 1);
290408d4 549
89eb946a 550 xas_unlock_irq(&xas);
6a93ca8f 551
78bd5209 552 return MIGRATEPAGE_SUCCESS;
290408d4
NH
553}
554
30b0a105
DH
555/*
556 * Gigantic pages are so large that we do not guarantee that page++ pointer
557 * arithmetic will work across the entire page. We need something more
558 * specialized.
559 */
560static void __copy_gigantic_page(struct page *dst, struct page *src,
561 int nr_pages)
562{
563 int i;
564 struct page *dst_base = dst;
565 struct page *src_base = src;
566
567 for (i = 0; i < nr_pages; ) {
568 cond_resched();
569 copy_highpage(dst, src);
570
571 i++;
572 dst = mem_map_next(dst, dst_base, i);
573 src = mem_map_next(src, src_base, i);
574 }
575}
576
577static void copy_huge_page(struct page *dst, struct page *src)
578{
579 int i;
580 int nr_pages;
581
582 if (PageHuge(src)) {
583 /* hugetlbfs page */
584 struct hstate *h = page_hstate(src);
585 nr_pages = pages_per_huge_page(h);
586
587 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588 __copy_gigantic_page(dst, src, nr_pages);
589 return;
590 }
591 } else {
592 /* thp page */
593 BUG_ON(!PageTransHuge(src));
6c357848 594 nr_pages = thp_nr_pages(src);
30b0a105
DH
595 }
596
597 for (i = 0; i < nr_pages; i++) {
598 cond_resched();
599 copy_highpage(dst + i, src + i);
600 }
601}
602
b20a3503
CL
603/*
604 * Copy the page to its new location
605 */
2916ecc0 606void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 607{
7851a45c
RR
608 int cpupid;
609
b20a3503
CL
610 if (PageError(page))
611 SetPageError(newpage);
612 if (PageReferenced(page))
613 SetPageReferenced(newpage);
614 if (PageUptodate(page))
615 SetPageUptodate(newpage);
894bc310 616 if (TestClearPageActive(page)) {
309381fe 617 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 618 SetPageActive(newpage);
418b27ef
LS
619 } else if (TestClearPageUnevictable(page))
620 SetPageUnevictable(newpage);
1899ad18
JW
621 if (PageWorkingset(page))
622 SetPageWorkingset(newpage);
b20a3503
CL
623 if (PageChecked(page))
624 SetPageChecked(newpage);
625 if (PageMappedToDisk(page))
626 SetPageMappedToDisk(newpage);
627
42cb14b1
HD
628 /* Move dirty on pages not done by migrate_page_move_mapping() */
629 if (PageDirty(page))
630 SetPageDirty(newpage);
b20a3503 631
33c3fc71
VD
632 if (page_is_young(page))
633 set_page_young(newpage);
634 if (page_is_idle(page))
635 set_page_idle(newpage);
636
7851a45c
RR
637 /*
638 * Copy NUMA information to the new page, to prevent over-eager
639 * future migrations of this same page.
640 */
641 cpupid = page_cpupid_xchg_last(page, -1);
642 page_cpupid_xchg_last(newpage, cpupid);
643
e9995ef9 644 ksm_migrate_page(newpage, page);
c8d6553b
HD
645 /*
646 * Please do not reorder this without considering how mm/ksm.c's
647 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
648 */
b3b3a99c
NH
649 if (PageSwapCache(page))
650 ClearPageSwapCache(page);
b20a3503
CL
651 ClearPagePrivate(page);
652 set_page_private(page, 0);
b20a3503
CL
653
654 /*
655 * If any waiters have accumulated on the new page then
656 * wake them up.
657 */
658 if (PageWriteback(newpage))
659 end_page_writeback(newpage);
d435edca 660
6aeff241
YS
661 /*
662 * PG_readahead shares the same bit with PG_reclaim. The above
663 * end_page_writeback() may clear PG_readahead mistakenly, so set the
664 * bit after that.
665 */
666 if (PageReadahead(page))
667 SetPageReadahead(newpage);
668
d435edca 669 copy_page_owner(page, newpage);
74485cf2 670
a333e3e7
HD
671 if (!PageHuge(page))
672 mem_cgroup_migrate(page, newpage);
b20a3503 673}
2916ecc0
JG
674EXPORT_SYMBOL(migrate_page_states);
675
676void migrate_page_copy(struct page *newpage, struct page *page)
677{
678 if (PageHuge(page) || PageTransHuge(page))
679 copy_huge_page(newpage, page);
680 else
681 copy_highpage(newpage, page);
682
683 migrate_page_states(newpage, page);
684}
1118dce7 685EXPORT_SYMBOL(migrate_page_copy);
b20a3503 686
1d8b85cc
CL
687/************************************************************
688 * Migration functions
689 ***********************************************************/
690
b20a3503 691/*
bda807d4 692 * Common logic to directly migrate a single LRU page suitable for
266cf658 693 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
694 *
695 * Pages are locked upon entry and exit.
696 */
2d1db3b1 697int migrate_page(struct address_space *mapping,
a6bc32b8
MG
698 struct page *newpage, struct page *page,
699 enum migrate_mode mode)
b20a3503
CL
700{
701 int rc;
702
703 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
704
37109694 705 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
b20a3503 706
78bd5209 707 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
708 return rc;
709
2916ecc0
JG
710 if (mode != MIGRATE_SYNC_NO_COPY)
711 migrate_page_copy(newpage, page);
712 else
713 migrate_page_states(newpage, page);
78bd5209 714 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
715}
716EXPORT_SYMBOL(migrate_page);
717
9361401e 718#ifdef CONFIG_BLOCK
84ade7c1
JK
719/* Returns true if all buffers are successfully locked */
720static bool buffer_migrate_lock_buffers(struct buffer_head *head,
721 enum migrate_mode mode)
722{
723 struct buffer_head *bh = head;
724
725 /* Simple case, sync compaction */
726 if (mode != MIGRATE_ASYNC) {
727 do {
84ade7c1
JK
728 lock_buffer(bh);
729 bh = bh->b_this_page;
730
731 } while (bh != head);
732
733 return true;
734 }
735
736 /* async case, we cannot block on lock_buffer so use trylock_buffer */
737 do {
84ade7c1
JK
738 if (!trylock_buffer(bh)) {
739 /*
740 * We failed to lock the buffer and cannot stall in
741 * async migration. Release the taken locks
742 */
743 struct buffer_head *failed_bh = bh;
84ade7c1
JK
744 bh = head;
745 while (bh != failed_bh) {
746 unlock_buffer(bh);
84ade7c1
JK
747 bh = bh->b_this_page;
748 }
749 return false;
750 }
751
752 bh = bh->b_this_page;
753 } while (bh != head);
754 return true;
755}
756
89cb0888
JK
757static int __buffer_migrate_page(struct address_space *mapping,
758 struct page *newpage, struct page *page, enum migrate_mode mode,
759 bool check_refs)
1d8b85cc 760{
1d8b85cc
CL
761 struct buffer_head *bh, *head;
762 int rc;
cc4f11e6 763 int expected_count;
1d8b85cc 764
1d8b85cc 765 if (!page_has_buffers(page))
a6bc32b8 766 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 767
cc4f11e6 768 /* Check whether page does not have extra refs before we do more work */
f900482d 769 expected_count = expected_page_refs(mapping, page);
cc4f11e6
JK
770 if (page_count(page) != expected_count)
771 return -EAGAIN;
1d8b85cc 772
cc4f11e6
JK
773 head = page_buffers(page);
774 if (!buffer_migrate_lock_buffers(head, mode))
775 return -EAGAIN;
1d8b85cc 776
89cb0888
JK
777 if (check_refs) {
778 bool busy;
779 bool invalidated = false;
780
781recheck_buffers:
782 busy = false;
783 spin_lock(&mapping->private_lock);
784 bh = head;
785 do {
786 if (atomic_read(&bh->b_count)) {
787 busy = true;
788 break;
789 }
790 bh = bh->b_this_page;
791 } while (bh != head);
89cb0888
JK
792 if (busy) {
793 if (invalidated) {
794 rc = -EAGAIN;
795 goto unlock_buffers;
796 }
ebdf4de5 797 spin_unlock(&mapping->private_lock);
89cb0888
JK
798 invalidate_bh_lrus();
799 invalidated = true;
800 goto recheck_buffers;
801 }
802 }
803
37109694 804 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
78bd5209 805 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 806 goto unlock_buffers;
1d8b85cc 807
cd0f3715 808 attach_page_private(newpage, detach_page_private(page));
1d8b85cc
CL
809
810 bh = head;
811 do {
812 set_bh_page(bh, newpage, bh_offset(bh));
813 bh = bh->b_this_page;
814
815 } while (bh != head);
816
2916ecc0
JG
817 if (mode != MIGRATE_SYNC_NO_COPY)
818 migrate_page_copy(newpage, page);
819 else
820 migrate_page_states(newpage, page);
1d8b85cc 821
cc4f11e6
JK
822 rc = MIGRATEPAGE_SUCCESS;
823unlock_buffers:
ebdf4de5
JK
824 if (check_refs)
825 spin_unlock(&mapping->private_lock);
1d8b85cc
CL
826 bh = head;
827 do {
828 unlock_buffer(bh);
1d8b85cc
CL
829 bh = bh->b_this_page;
830
831 } while (bh != head);
832
cc4f11e6 833 return rc;
1d8b85cc 834}
89cb0888
JK
835
836/*
837 * Migration function for pages with buffers. This function can only be used
838 * if the underlying filesystem guarantees that no other references to "page"
839 * exist. For example attached buffer heads are accessed only under page lock.
840 */
841int buffer_migrate_page(struct address_space *mapping,
842 struct page *newpage, struct page *page, enum migrate_mode mode)
843{
844 return __buffer_migrate_page(mapping, newpage, page, mode, false);
845}
1d8b85cc 846EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
847
848/*
849 * Same as above except that this variant is more careful and checks that there
850 * are also no buffer head references. This function is the right one for
851 * mappings where buffer heads are directly looked up and referenced (such as
852 * block device mappings).
853 */
854int buffer_migrate_page_norefs(struct address_space *mapping,
855 struct page *newpage, struct page *page, enum migrate_mode mode)
856{
857 return __buffer_migrate_page(mapping, newpage, page, mode, true);
858}
9361401e 859#endif
1d8b85cc 860
04e62a29
CL
861/*
862 * Writeback a page to clean the dirty state
863 */
864static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 865{
04e62a29
CL
866 struct writeback_control wbc = {
867 .sync_mode = WB_SYNC_NONE,
868 .nr_to_write = 1,
869 .range_start = 0,
870 .range_end = LLONG_MAX,
04e62a29
CL
871 .for_reclaim = 1
872 };
873 int rc;
874
875 if (!mapping->a_ops->writepage)
876 /* No write method for the address space */
877 return -EINVAL;
878
879 if (!clear_page_dirty_for_io(page))
880 /* Someone else already triggered a write */
881 return -EAGAIN;
882
8351a6e4 883 /*
04e62a29
CL
884 * A dirty page may imply that the underlying filesystem has
885 * the page on some queue. So the page must be clean for
886 * migration. Writeout may mean we loose the lock and the
887 * page state is no longer what we checked for earlier.
888 * At this point we know that the migration attempt cannot
889 * be successful.
8351a6e4 890 */
e388466d 891 remove_migration_ptes(page, page, false);
8351a6e4 892
04e62a29 893 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 894
04e62a29
CL
895 if (rc != AOP_WRITEPAGE_ACTIVATE)
896 /* unlocked. Relock */
897 lock_page(page);
898
bda8550d 899 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
900}
901
902/*
903 * Default handling if a filesystem does not provide a migration function.
904 */
905static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 906 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 907{
b969c4ab 908 if (PageDirty(page)) {
a6bc32b8 909 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
910 switch (mode) {
911 case MIGRATE_SYNC:
912 case MIGRATE_SYNC_NO_COPY:
913 break;
914 default:
b969c4ab 915 return -EBUSY;
2916ecc0 916 }
04e62a29 917 return writeout(mapping, page);
b969c4ab 918 }
8351a6e4
CL
919
920 /*
921 * Buffers may be managed in a filesystem specific way.
922 * We must have no buffers or drop them.
923 */
266cf658 924 if (page_has_private(page) &&
8351a6e4 925 !try_to_release_page(page, GFP_KERNEL))
806031bb 926 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
8351a6e4 927
a6bc32b8 928 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
929}
930
e24f0b8f
CL
931/*
932 * Move a page to a newly allocated page
933 * The page is locked and all ptes have been successfully removed.
934 *
935 * The new page will have replaced the old page if this function
936 * is successful.
894bc310
LS
937 *
938 * Return value:
939 * < 0 - error code
78bd5209 940 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 941 */
3fe2011f 942static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 943 enum migrate_mode mode)
e24f0b8f
CL
944{
945 struct address_space *mapping;
bda807d4
MK
946 int rc = -EAGAIN;
947 bool is_lru = !__PageMovable(page);
e24f0b8f 948
7db7671f
HD
949 VM_BUG_ON_PAGE(!PageLocked(page), page);
950 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 951
e24f0b8f 952 mapping = page_mapping(page);
bda807d4
MK
953
954 if (likely(is_lru)) {
955 if (!mapping)
956 rc = migrate_page(mapping, newpage, page, mode);
957 else if (mapping->a_ops->migratepage)
958 /*
959 * Most pages have a mapping and most filesystems
960 * provide a migratepage callback. Anonymous pages
961 * are part of swap space which also has its own
962 * migratepage callback. This is the most common path
963 * for page migration.
964 */
965 rc = mapping->a_ops->migratepage(mapping, newpage,
966 page, mode);
967 else
968 rc = fallback_migrate_page(mapping, newpage,
969 page, mode);
970 } else {
e24f0b8f 971 /*
bda807d4
MK
972 * In case of non-lru page, it could be released after
973 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 974 */
bda807d4
MK
975 VM_BUG_ON_PAGE(!PageIsolated(page), page);
976 if (!PageMovable(page)) {
977 rc = MIGRATEPAGE_SUCCESS;
978 __ClearPageIsolated(page);
979 goto out;
980 }
981
982 rc = mapping->a_ops->migratepage(mapping, newpage,
983 page, mode);
984 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
985 !PageIsolated(page));
986 }
e24f0b8f 987
5c3f9a67
HD
988 /*
989 * When successful, old pagecache page->mapping must be cleared before
990 * page is freed; but stats require that PageAnon be left as PageAnon.
991 */
992 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
993 if (__PageMovable(page)) {
994 VM_BUG_ON_PAGE(!PageIsolated(page), page);
995
996 /*
997 * We clear PG_movable under page_lock so any compactor
998 * cannot try to migrate this page.
999 */
1000 __ClearPageIsolated(page);
1001 }
1002
1003 /*
c23a0c99 1004 * Anonymous and movable page->mapping will be cleared by
bda807d4
MK
1005 * free_pages_prepare so don't reset it here for keeping
1006 * the type to work PageAnon, for example.
1007 */
1008 if (!PageMappingFlags(page))
5c3f9a67 1009 page->mapping = NULL;
d2b2c6dd 1010
25b2995a 1011 if (likely(!is_zone_device_page(newpage)))
d2b2c6dd
LP
1012 flush_dcache_page(newpage);
1013
3fe2011f 1014 }
bda807d4 1015out:
e24f0b8f
CL
1016 return rc;
1017}
1018
0dabec93 1019static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 1020 int force, enum migrate_mode mode)
e24f0b8f 1021{
0dabec93 1022 int rc = -EAGAIN;
2ebba6b7 1023 int page_was_mapped = 0;
3f6c8272 1024 struct anon_vma *anon_vma = NULL;
bda807d4 1025 bool is_lru = !__PageMovable(page);
95a402c3 1026
529ae9aa 1027 if (!trylock_page(page)) {
a6bc32b8 1028 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1029 goto out;
3e7d3449
MG
1030
1031 /*
1032 * It's not safe for direct compaction to call lock_page.
1033 * For example, during page readahead pages are added locked
1034 * to the LRU. Later, when the IO completes the pages are
1035 * marked uptodate and unlocked. However, the queueing
1036 * could be merging multiple pages for one bio (e.g.
d4388340 1037 * mpage_readahead). If an allocation happens for the
3e7d3449
MG
1038 * second or third page, the process can end up locking
1039 * the same page twice and deadlocking. Rather than
1040 * trying to be clever about what pages can be locked,
1041 * avoid the use of lock_page for direct compaction
1042 * altogether.
1043 */
1044 if (current->flags & PF_MEMALLOC)
0dabec93 1045 goto out;
3e7d3449 1046
e24f0b8f
CL
1047 lock_page(page);
1048 }
1049
1050 if (PageWriteback(page)) {
11bc82d6 1051 /*
fed5b64a 1052 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1053 * necessary to wait for PageWriteback. In the async case,
1054 * the retry loop is too short and in the sync-light case,
1055 * the overhead of stalling is too much
11bc82d6 1056 */
2916ecc0
JG
1057 switch (mode) {
1058 case MIGRATE_SYNC:
1059 case MIGRATE_SYNC_NO_COPY:
1060 break;
1061 default:
11bc82d6 1062 rc = -EBUSY;
0a31bc97 1063 goto out_unlock;
11bc82d6
AA
1064 }
1065 if (!force)
0a31bc97 1066 goto out_unlock;
e24f0b8f
CL
1067 wait_on_page_writeback(page);
1068 }
03f15c86 1069
e24f0b8f 1070 /*
dc386d4d
KH
1071 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1072 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1073 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1074 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1075 * File Caches may use write_page() or lock_page() in migration, then,
1076 * just care Anon page here.
03f15c86
HD
1077 *
1078 * Only page_get_anon_vma() understands the subtleties of
1079 * getting a hold on an anon_vma from outside one of its mms.
1080 * But if we cannot get anon_vma, then we won't need it anyway,
1081 * because that implies that the anon page is no longer mapped
1082 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1083 */
03f15c86 1084 if (PageAnon(page) && !PageKsm(page))
746b18d4 1085 anon_vma = page_get_anon_vma(page);
62e1c553 1086
7db7671f
HD
1087 /*
1088 * Block others from accessing the new page when we get around to
1089 * establishing additional references. We are usually the only one
1090 * holding a reference to newpage at this point. We used to have a BUG
1091 * here if trylock_page(newpage) fails, but would like to allow for
1092 * cases where there might be a race with the previous use of newpage.
1093 * This is much like races on refcount of oldpage: just don't BUG().
1094 */
1095 if (unlikely(!trylock_page(newpage)))
1096 goto out_unlock;
1097
bda807d4
MK
1098 if (unlikely(!is_lru)) {
1099 rc = move_to_new_page(newpage, page, mode);
1100 goto out_unlock_both;
1101 }
1102
dc386d4d 1103 /*
62e1c553
SL
1104 * Corner case handling:
1105 * 1. When a new swap-cache page is read into, it is added to the LRU
1106 * and treated as swapcache but it has no rmap yet.
1107 * Calling try_to_unmap() against a page->mapping==NULL page will
1108 * trigger a BUG. So handle it here.
1109 * 2. An orphaned page (see truncate_complete_page) might have
1110 * fs-private metadata. The page can be picked up due to memory
1111 * offlining. Everywhere else except page reclaim, the page is
1112 * invisible to the vm, so the page can not be migrated. So try to
1113 * free the metadata, so the page can be freed.
e24f0b8f 1114 */
62e1c553 1115 if (!page->mapping) {
309381fe 1116 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1117 if (page_has_private(page)) {
62e1c553 1118 try_to_free_buffers(page);
7db7671f 1119 goto out_unlock_both;
62e1c553 1120 }
7db7671f
HD
1121 } else if (page_mapped(page)) {
1122 /* Establish migration ptes */
03f15c86
HD
1123 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1124 page);
2ebba6b7 1125 try_to_unmap(page,
da1b13cc 1126 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1127 page_was_mapped = 1;
1128 }
dc386d4d 1129
e6a1530d 1130 if (!page_mapped(page))
5c3f9a67 1131 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1132
5c3f9a67
HD
1133 if (page_was_mapped)
1134 remove_migration_ptes(page,
e388466d 1135 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1136
7db7671f
HD
1137out_unlock_both:
1138 unlock_page(newpage);
1139out_unlock:
3f6c8272 1140 /* Drop an anon_vma reference if we took one */
76545066 1141 if (anon_vma)
9e60109f 1142 put_anon_vma(anon_vma);
e24f0b8f 1143 unlock_page(page);
0dabec93 1144out:
c6c919eb
MK
1145 /*
1146 * If migration is successful, decrease refcount of the newpage
1147 * which will not free the page because new page owner increased
1148 * refcounter. As well, if it is LRU page, add the page to LRU
e0a352fa
DH
1149 * list in here. Use the old state of the isolated source page to
1150 * determine if we migrated a LRU page. newpage was already unlocked
1151 * and possibly modified by its owner - don't rely on the page
1152 * state.
c6c919eb
MK
1153 */
1154 if (rc == MIGRATEPAGE_SUCCESS) {
e0a352fa 1155 if (unlikely(!is_lru))
c6c919eb
MK
1156 put_page(newpage);
1157 else
1158 putback_lru_page(newpage);
1159 }
1160
0dabec93
MK
1161 return rc;
1162}
95a402c3 1163
0dabec93
MK
1164/*
1165 * Obtain the lock on page, remove all ptes and migrate the page
1166 * to the newly allocated page in newpage.
1167 */
6ec4476a 1168static int unmap_and_move(new_page_t get_new_page,
ef2a5153
GU
1169 free_page_t put_new_page,
1170 unsigned long private, struct page *page,
add05cec
NH
1171 int force, enum migrate_mode mode,
1172 enum migrate_reason reason)
0dabec93 1173{
2def7424 1174 int rc = MIGRATEPAGE_SUCCESS;
74d4a579 1175 struct page *newpage = NULL;
0dabec93 1176
94723aaf
MH
1177 if (!thp_migration_supported() && PageTransHuge(page))
1178 return -ENOMEM;
1179
0dabec93
MK
1180 if (page_count(page) == 1) {
1181 /* page was freed from under us. So we are done. */
c6c919eb
MK
1182 ClearPageActive(page);
1183 ClearPageUnevictable(page);
bda807d4
MK
1184 if (unlikely(__PageMovable(page))) {
1185 lock_page(page);
1186 if (!PageMovable(page))
1187 __ClearPageIsolated(page);
1188 unlock_page(page);
1189 }
0dabec93
MK
1190 goto out;
1191 }
1192
74d4a579
YS
1193 newpage = get_new_page(page, private);
1194 if (!newpage)
1195 return -ENOMEM;
1196
9c620e2b 1197 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1198 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1199 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1200
0dabec93 1201out:
e24f0b8f 1202 if (rc != -EAGAIN) {
0dabec93
MK
1203 /*
1204 * A page that has been migrated has all references
1205 * removed and will be freed. A page that has not been
c23a0c99 1206 * migrated will have kept its references and be restored.
0dabec93
MK
1207 */
1208 list_del(&page->lru);
6afcf8ef
ML
1209
1210 /*
1211 * Compaction can migrate also non-LRU pages which are
1212 * not accounted to NR_ISOLATED_*. They can be recognized
1213 * as __PageMovable
1214 */
1215 if (likely(!__PageMovable(page)))
e8db67eb 1216 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 1217 page_is_file_lru(page), -thp_nr_pages(page));
c6c919eb
MK
1218 }
1219
1220 /*
1221 * If migration is successful, releases reference grabbed during
1222 * isolation. Otherwise, restore the page to right list unless
1223 * we want to retry.
1224 */
1225 if (rc == MIGRATEPAGE_SUCCESS) {
79f5f8fa 1226 if (reason != MR_MEMORY_FAILURE)
d7e69488 1227 /*
79f5f8fa 1228 * We release the page in page_handle_poison.
d7e69488 1229 */
79f5f8fa 1230 put_page(page);
c6c919eb 1231 } else {
bda807d4
MK
1232 if (rc != -EAGAIN) {
1233 if (likely(!__PageMovable(page))) {
1234 putback_lru_page(page);
1235 goto put_new;
1236 }
1237
1238 lock_page(page);
1239 if (PageMovable(page))
1240 putback_movable_page(page);
1241 else
1242 __ClearPageIsolated(page);
1243 unlock_page(page);
1244 put_page(page);
1245 }
1246put_new:
c6c919eb
MK
1247 if (put_new_page)
1248 put_new_page(newpage, private);
1249 else
1250 put_page(newpage);
e24f0b8f 1251 }
68711a74 1252
e24f0b8f
CL
1253 return rc;
1254}
1255
290408d4
NH
1256/*
1257 * Counterpart of unmap_and_move_page() for hugepage migration.
1258 *
1259 * This function doesn't wait the completion of hugepage I/O
1260 * because there is no race between I/O and migration for hugepage.
1261 * Note that currently hugepage I/O occurs only in direct I/O
1262 * where no lock is held and PG_writeback is irrelevant,
1263 * and writeback status of all subpages are counted in the reference
1264 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1265 * under direct I/O, the reference of the head page is 512 and a bit more.)
1266 * This means that when we try to migrate hugepage whose subpages are
1267 * doing direct I/O, some references remain after try_to_unmap() and
1268 * hugepage migration fails without data corruption.
1269 *
1270 * There is also no race when direct I/O is issued on the page under migration,
1271 * because then pte is replaced with migration swap entry and direct I/O code
1272 * will wait in the page fault for migration to complete.
1273 */
1274static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1275 free_page_t put_new_page, unsigned long private,
1276 struct page *hpage, int force,
7cd12b4a 1277 enum migrate_mode mode, int reason)
290408d4 1278{
2def7424 1279 int rc = -EAGAIN;
2ebba6b7 1280 int page_was_mapped = 0;
32665f2b 1281 struct page *new_hpage;
290408d4 1282 struct anon_vma *anon_vma = NULL;
c0d0381a 1283 struct address_space *mapping = NULL;
290408d4 1284
83467efb 1285 /*
7ed2c31d 1286 * Migratability of hugepages depends on architectures and their size.
83467efb
NH
1287 * This check is necessary because some callers of hugepage migration
1288 * like soft offline and memory hotremove don't walk through page
1289 * tables or check whether the hugepage is pmd-based or not before
1290 * kicking migration.
1291 */
100873d7 1292 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1293 putback_active_hugepage(hpage);
83467efb 1294 return -ENOSYS;
32665f2b 1295 }
83467efb 1296
666feb21 1297 new_hpage = get_new_page(hpage, private);
290408d4
NH
1298 if (!new_hpage)
1299 return -ENOMEM;
1300
290408d4 1301 if (!trylock_page(hpage)) {
2916ecc0 1302 if (!force)
290408d4 1303 goto out;
2916ecc0
JG
1304 switch (mode) {
1305 case MIGRATE_SYNC:
1306 case MIGRATE_SYNC_NO_COPY:
1307 break;
1308 default:
1309 goto out;
1310 }
290408d4
NH
1311 lock_page(hpage);
1312 }
1313
cb6acd01
MK
1314 /*
1315 * Check for pages which are in the process of being freed. Without
1316 * page_mapping() set, hugetlbfs specific move page routine will not
1317 * be called and we could leak usage counts for subpools.
1318 */
1319 if (page_private(hpage) && !page_mapping(hpage)) {
1320 rc = -EBUSY;
1321 goto out_unlock;
1322 }
1323
746b18d4
PZ
1324 if (PageAnon(hpage))
1325 anon_vma = page_get_anon_vma(hpage);
290408d4 1326
7db7671f
HD
1327 if (unlikely(!trylock_page(new_hpage)))
1328 goto put_anon;
1329
2ebba6b7 1330 if (page_mapped(hpage)) {
c0d0381a
MK
1331 /*
1332 * try_to_unmap could potentially call huge_pmd_unshare.
1333 * Because of this, take semaphore in write mode here and
1334 * set TTU_RMAP_LOCKED to let lower levels know we have
1335 * taken the lock.
1336 */
1337 mapping = hugetlb_page_mapping_lock_write(hpage);
1338 if (unlikely(!mapping))
1339 goto unlock_put_anon;
1340
2ebba6b7 1341 try_to_unmap(hpage,
c0d0381a
MK
1342 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1343 TTU_RMAP_LOCKED);
2ebba6b7 1344 page_was_mapped = 1;
c0d0381a
MK
1345 /*
1346 * Leave mapping locked until after subsequent call to
1347 * remove_migration_ptes()
1348 */
2ebba6b7 1349 }
290408d4
NH
1350
1351 if (!page_mapped(hpage))
5c3f9a67 1352 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1353
c0d0381a 1354 if (page_was_mapped) {
5c3f9a67 1355 remove_migration_ptes(hpage,
c0d0381a
MK
1356 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1357 i_mmap_unlock_write(mapping);
1358 }
290408d4 1359
c0d0381a 1360unlock_put_anon:
7db7671f
HD
1361 unlock_page(new_hpage);
1362
1363put_anon:
fd4a4663 1364 if (anon_vma)
9e60109f 1365 put_anon_vma(anon_vma);
8e6ac7fa 1366
2def7424 1367 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1368 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1369 put_new_page = NULL;
1370 }
8e6ac7fa 1371
cb6acd01 1372out_unlock:
290408d4 1373 unlock_page(hpage);
09761333 1374out:
b8ec1cee
NH
1375 if (rc != -EAGAIN)
1376 putback_active_hugepage(hpage);
68711a74
DR
1377
1378 /*
1379 * If migration was not successful and there's a freeing callback, use
1380 * it. Otherwise, put_page() will drop the reference grabbed during
1381 * isolation.
1382 */
2def7424 1383 if (put_new_page)
68711a74
DR
1384 put_new_page(new_hpage, private);
1385 else
3aaa76e1 1386 putback_active_hugepage(new_hpage);
68711a74 1387
290408d4
NH
1388 return rc;
1389}
1390
b20a3503 1391/*
c73e5c9c
SB
1392 * migrate_pages - migrate the pages specified in a list, to the free pages
1393 * supplied as the target for the page migration
b20a3503 1394 *
c73e5c9c
SB
1395 * @from: The list of pages to be migrated.
1396 * @get_new_page: The function used to allocate free pages to be used
1397 * as the target of the page migration.
68711a74
DR
1398 * @put_new_page: The function used to free target pages if migration
1399 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1400 * @private: Private data to be passed on to get_new_page()
1401 * @mode: The migration mode that specifies the constraints for
1402 * page migration, if any.
1403 * @reason: The reason for page migration.
b20a3503 1404 *
c73e5c9c
SB
1405 * The function returns after 10 attempts or if no pages are movable any more
1406 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1407 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1408 * or free list only if ret != 0.
b20a3503 1409 *
c73e5c9c 1410 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1411 */
9c620e2b 1412int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1413 free_page_t put_new_page, unsigned long private,
1414 enum migrate_mode mode, int reason)
b20a3503 1415{
e24f0b8f 1416 int retry = 1;
1a5bae25 1417 int thp_retry = 1;
b20a3503 1418 int nr_failed = 0;
5647bc29 1419 int nr_succeeded = 0;
1a5bae25
AK
1420 int nr_thp_succeeded = 0;
1421 int nr_thp_failed = 0;
1422 int nr_thp_split = 0;
b20a3503 1423 int pass = 0;
1a5bae25 1424 bool is_thp = false;
b20a3503
CL
1425 struct page *page;
1426 struct page *page2;
1427 int swapwrite = current->flags & PF_SWAPWRITE;
1a5bae25 1428 int rc, nr_subpages;
b20a3503
CL
1429
1430 if (!swapwrite)
1431 current->flags |= PF_SWAPWRITE;
1432
1a5bae25 1433 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
e24f0b8f 1434 retry = 0;
1a5bae25 1435 thp_retry = 0;
b20a3503 1436
e24f0b8f 1437 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1438retry:
1a5bae25
AK
1439 /*
1440 * THP statistics is based on the source huge page.
1441 * Capture required information that might get lost
1442 * during migration.
1443 */
6c5c7b9f 1444 is_thp = PageTransHuge(page) && !PageHuge(page);
6c357848 1445 nr_subpages = thp_nr_pages(page);
e24f0b8f 1446 cond_resched();
2d1db3b1 1447
31caf665
NH
1448 if (PageHuge(page))
1449 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1450 put_new_page, private, page,
7cd12b4a 1451 pass > 2, mode, reason);
31caf665 1452 else
68711a74 1453 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1454 private, page, pass > 2, mode,
1455 reason);
2d1db3b1 1456
e24f0b8f 1457 switch(rc) {
95a402c3 1458 case -ENOMEM:
94723aaf
MH
1459 /*
1460 * THP migration might be unsupported or the
1461 * allocation could've failed so we should
1462 * retry on the same page with the THP split
1463 * to base pages.
1464 *
1465 * Head page is retried immediately and tail
1466 * pages are added to the tail of the list so
1467 * we encounter them after the rest of the list
1468 * is processed.
1469 */
6c5c7b9f 1470 if (is_thp) {
94723aaf
MH
1471 lock_page(page);
1472 rc = split_huge_page_to_list(page, from);
1473 unlock_page(page);
1474 if (!rc) {
1475 list_safe_reset_next(page, page2, lru);
1a5bae25 1476 nr_thp_split++;
94723aaf
MH
1477 goto retry;
1478 }
6c5c7b9f 1479
1a5bae25
AK
1480 nr_thp_failed++;
1481 nr_failed += nr_subpages;
1482 goto out;
1483 }
dfef2ef4 1484 nr_failed++;
95a402c3 1485 goto out;
e24f0b8f 1486 case -EAGAIN:
1a5bae25
AK
1487 if (is_thp) {
1488 thp_retry++;
1489 break;
1490 }
2d1db3b1 1491 retry++;
e24f0b8f 1492 break;
78bd5209 1493 case MIGRATEPAGE_SUCCESS:
1a5bae25
AK
1494 if (is_thp) {
1495 nr_thp_succeeded++;
1496 nr_succeeded += nr_subpages;
1497 break;
1498 }
5647bc29 1499 nr_succeeded++;
e24f0b8f
CL
1500 break;
1501 default:
354a3363
NH
1502 /*
1503 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1504 * unlike -EAGAIN case, the failed page is
1505 * removed from migration page list and not
1506 * retried in the next outer loop.
1507 */
1a5bae25
AK
1508 if (is_thp) {
1509 nr_thp_failed++;
1510 nr_failed += nr_subpages;
1511 break;
1512 }
2d1db3b1 1513 nr_failed++;
e24f0b8f 1514 break;
2d1db3b1 1515 }
b20a3503
CL
1516 }
1517 }
1a5bae25
AK
1518 nr_failed += retry + thp_retry;
1519 nr_thp_failed += thp_retry;
f2f81fb2 1520 rc = nr_failed;
95a402c3 1521out:
1a5bae25
AK
1522 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1523 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1524 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1525 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1526 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1527 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1528 nr_thp_failed, nr_thp_split, mode, reason);
7b2a2d4a 1529
b20a3503
CL
1530 if (!swapwrite)
1531 current->flags &= ~PF_SWAPWRITE;
1532
78bd5209 1533 return rc;
b20a3503 1534}
95a402c3 1535
19fc7bed 1536struct page *alloc_migration_target(struct page *page, unsigned long private)
b4b38223 1537{
19fc7bed
JK
1538 struct migration_target_control *mtc;
1539 gfp_t gfp_mask;
b4b38223
JK
1540 unsigned int order = 0;
1541 struct page *new_page = NULL;
19fc7bed
JK
1542 int nid;
1543 int zidx;
1544
1545 mtc = (struct migration_target_control *)private;
1546 gfp_mask = mtc->gfp_mask;
1547 nid = mtc->nid;
1548 if (nid == NUMA_NO_NODE)
1549 nid = page_to_nid(page);
b4b38223 1550
d92bbc27
JK
1551 if (PageHuge(page)) {
1552 struct hstate *h = page_hstate(compound_head(page));
1553
19fc7bed
JK
1554 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1555 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
d92bbc27 1556 }
b4b38223
JK
1557
1558 if (PageTransHuge(page)) {
9933a0c8
JK
1559 /*
1560 * clear __GFP_RECLAIM to make the migration callback
1561 * consistent with regular THP allocations.
1562 */
1563 gfp_mask &= ~__GFP_RECLAIM;
b4b38223
JK
1564 gfp_mask |= GFP_TRANSHUGE;
1565 order = HPAGE_PMD_ORDER;
1566 }
19fc7bed
JK
1567 zidx = zone_idx(page_zone(page));
1568 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
b4b38223
JK
1569 gfp_mask |= __GFP_HIGHMEM;
1570
19fc7bed 1571 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
b4b38223
JK
1572
1573 if (new_page && PageTransHuge(new_page))
1574 prep_transhuge_page(new_page);
1575
1576 return new_page;
1577}
1578
742755a1 1579#ifdef CONFIG_NUMA
742755a1 1580
a49bd4d7 1581static int store_status(int __user *status, int start, int value, int nr)
742755a1 1582{
a49bd4d7
MH
1583 while (nr-- > 0) {
1584 if (put_user(value, status + start))
1585 return -EFAULT;
1586 start++;
1587 }
1588
1589 return 0;
1590}
1591
1592static int do_move_pages_to_node(struct mm_struct *mm,
1593 struct list_head *pagelist, int node)
1594{
1595 int err;
a0976311
JK
1596 struct migration_target_control mtc = {
1597 .nid = node,
1598 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1599 };
a49bd4d7 1600
a0976311
JK
1601 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1602 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
a49bd4d7
MH
1603 if (err)
1604 putback_movable_pages(pagelist);
1605 return err;
742755a1
CL
1606}
1607
1608/*
a49bd4d7
MH
1609 * Resolves the given address to a struct page, isolates it from the LRU and
1610 * puts it to the given pagelist.
e0153fc2
YS
1611 * Returns:
1612 * errno - if the page cannot be found/isolated
1613 * 0 - when it doesn't have to be migrated because it is already on the
1614 * target node
1615 * 1 - when it has been queued
742755a1 1616 */
a49bd4d7
MH
1617static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1618 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1619{
a49bd4d7
MH
1620 struct vm_area_struct *vma;
1621 struct page *page;
1622 unsigned int follflags;
742755a1 1623 int err;
742755a1 1624
d8ed45c5 1625 mmap_read_lock(mm);
a49bd4d7
MH
1626 err = -EFAULT;
1627 vma = find_vma(mm, addr);
1628 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1629 goto out;
742755a1 1630
a49bd4d7
MH
1631 /* FOLL_DUMP to ignore special (like zero) pages */
1632 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1633 page = follow_page(vma, addr, follflags);
89f5b7da 1634
a49bd4d7
MH
1635 err = PTR_ERR(page);
1636 if (IS_ERR(page))
1637 goto out;
89f5b7da 1638
a49bd4d7
MH
1639 err = -ENOENT;
1640 if (!page)
1641 goto out;
742755a1 1642
a49bd4d7
MH
1643 err = 0;
1644 if (page_to_nid(page) == node)
1645 goto out_putpage;
742755a1 1646
a49bd4d7
MH
1647 err = -EACCES;
1648 if (page_mapcount(page) > 1 && !migrate_all)
1649 goto out_putpage;
742755a1 1650
a49bd4d7
MH
1651 if (PageHuge(page)) {
1652 if (PageHead(page)) {
1653 isolate_huge_page(page, pagelist);
e0153fc2 1654 err = 1;
e632a938 1655 }
a49bd4d7
MH
1656 } else {
1657 struct page *head;
e632a938 1658
e8db67eb
NH
1659 head = compound_head(page);
1660 err = isolate_lru_page(head);
cf608ac1 1661 if (err)
a49bd4d7 1662 goto out_putpage;
742755a1 1663
e0153fc2 1664 err = 1;
a49bd4d7
MH
1665 list_add_tail(&head->lru, pagelist);
1666 mod_node_page_state(page_pgdat(head),
9de4f22a 1667 NR_ISOLATED_ANON + page_is_file_lru(head),
6c357848 1668 thp_nr_pages(head));
a49bd4d7
MH
1669 }
1670out_putpage:
1671 /*
1672 * Either remove the duplicate refcount from
1673 * isolate_lru_page() or drop the page ref if it was
1674 * not isolated.
1675 */
1676 put_page(page);
1677out:
d8ed45c5 1678 mmap_read_unlock(mm);
742755a1
CL
1679 return err;
1680}
1681
7ca8783a
WY
1682static int move_pages_and_store_status(struct mm_struct *mm, int node,
1683 struct list_head *pagelist, int __user *status,
1684 int start, int i, unsigned long nr_pages)
1685{
1686 int err;
1687
5d7ae891
WY
1688 if (list_empty(pagelist))
1689 return 0;
1690
7ca8783a
WY
1691 err = do_move_pages_to_node(mm, pagelist, node);
1692 if (err) {
1693 /*
1694 * Positive err means the number of failed
1695 * pages to migrate. Since we are going to
1696 * abort and return the number of non-migrated
1697 * pages, so need to incude the rest of the
1698 * nr_pages that have not been attempted as
1699 * well.
1700 */
1701 if (err > 0)
1702 err += nr_pages - i - 1;
1703 return err;
1704 }
1705 return store_status(status, start, node, i - start);
1706}
1707
5e9a0f02
BG
1708/*
1709 * Migrate an array of page address onto an array of nodes and fill
1710 * the corresponding array of status.
1711 */
3268c63e 1712static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1713 unsigned long nr_pages,
1714 const void __user * __user *pages,
1715 const int __user *nodes,
1716 int __user *status, int flags)
1717{
a49bd4d7
MH
1718 int current_node = NUMA_NO_NODE;
1719 LIST_HEAD(pagelist);
1720 int start, i;
1721 int err = 0, err1;
35282a2d
BG
1722
1723 migrate_prep();
1724
a49bd4d7
MH
1725 for (i = start = 0; i < nr_pages; i++) {
1726 const void __user *p;
1727 unsigned long addr;
1728 int node;
3140a227 1729
a49bd4d7
MH
1730 err = -EFAULT;
1731 if (get_user(p, pages + i))
1732 goto out_flush;
1733 if (get_user(node, nodes + i))
1734 goto out_flush;
057d3389 1735 addr = (unsigned long)untagged_addr(p);
a49bd4d7
MH
1736
1737 err = -ENODEV;
1738 if (node < 0 || node >= MAX_NUMNODES)
1739 goto out_flush;
1740 if (!node_state(node, N_MEMORY))
1741 goto out_flush;
5e9a0f02 1742
a49bd4d7
MH
1743 err = -EACCES;
1744 if (!node_isset(node, task_nodes))
1745 goto out_flush;
1746
1747 if (current_node == NUMA_NO_NODE) {
1748 current_node = node;
1749 start = i;
1750 } else if (node != current_node) {
7ca8783a
WY
1751 err = move_pages_and_store_status(mm, current_node,
1752 &pagelist, status, start, i, nr_pages);
a49bd4d7
MH
1753 if (err)
1754 goto out;
1755 start = i;
1756 current_node = node;
3140a227
BG
1757 }
1758
a49bd4d7
MH
1759 /*
1760 * Errors in the page lookup or isolation are not fatal and we simply
1761 * report them via status
1762 */
1763 err = add_page_for_migration(mm, addr, current_node,
1764 &pagelist, flags & MPOL_MF_MOVE_ALL);
e0153fc2 1765
d08221a0 1766 if (err > 0) {
e0153fc2
YS
1767 /* The page is successfully queued for migration */
1768 continue;
1769 }
3140a227 1770
d08221a0
WY
1771 /*
1772 * If the page is already on the target node (!err), store the
1773 * node, otherwise, store the err.
1774 */
1775 err = store_status(status, i, err ? : current_node, 1);
a49bd4d7
MH
1776 if (err)
1777 goto out_flush;
5e9a0f02 1778
7ca8783a
WY
1779 err = move_pages_and_store_status(mm, current_node, &pagelist,
1780 status, start, i, nr_pages);
4afdacec
WY
1781 if (err)
1782 goto out;
a49bd4d7 1783 current_node = NUMA_NO_NODE;
3140a227 1784 }
a49bd4d7
MH
1785out_flush:
1786 /* Make sure we do not overwrite the existing error */
7ca8783a
WY
1787 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1788 status, start, i, nr_pages);
dfe9aa23 1789 if (err >= 0)
a49bd4d7 1790 err = err1;
5e9a0f02
BG
1791out:
1792 return err;
1793}
1794
742755a1 1795/*
2f007e74 1796 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1797 */
80bba129
BG
1798static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1799 const void __user **pages, int *status)
742755a1 1800{
2f007e74 1801 unsigned long i;
2f007e74 1802
d8ed45c5 1803 mmap_read_lock(mm);
742755a1 1804
2f007e74 1805 for (i = 0; i < nr_pages; i++) {
80bba129 1806 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1807 struct vm_area_struct *vma;
1808 struct page *page;
c095adbc 1809 int err = -EFAULT;
2f007e74
BG
1810
1811 vma = find_vma(mm, addr);
70384dc6 1812 if (!vma || addr < vma->vm_start)
742755a1
CL
1813 goto set_status;
1814
d899844e
KS
1815 /* FOLL_DUMP to ignore special (like zero) pages */
1816 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1817
1818 err = PTR_ERR(page);
1819 if (IS_ERR(page))
1820 goto set_status;
1821
d899844e 1822 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1823set_status:
80bba129
BG
1824 *status = err;
1825
1826 pages++;
1827 status++;
1828 }
1829
d8ed45c5 1830 mmap_read_unlock(mm);
80bba129
BG
1831}
1832
1833/*
1834 * Determine the nodes of a user array of pages and store it in
1835 * a user array of status.
1836 */
1837static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1838 const void __user * __user *pages,
1839 int __user *status)
1840{
1841#define DO_PAGES_STAT_CHUNK_NR 16
1842 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1843 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1844
87b8d1ad
PA
1845 while (nr_pages) {
1846 unsigned long chunk_nr;
80bba129 1847
87b8d1ad
PA
1848 chunk_nr = nr_pages;
1849 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1850 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1851
1852 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1853 break;
80bba129
BG
1854
1855 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1856
87b8d1ad
PA
1857 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1858 break;
742755a1 1859
87b8d1ad
PA
1860 pages += chunk_nr;
1861 status += chunk_nr;
1862 nr_pages -= chunk_nr;
1863 }
1864 return nr_pages ? -EFAULT : 0;
742755a1
CL
1865}
1866
4dc200ce 1867static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
742755a1 1868{
742755a1 1869 struct task_struct *task;
742755a1 1870 struct mm_struct *mm;
742755a1 1871
4dc200ce
ML
1872 /*
1873 * There is no need to check if current process has the right to modify
1874 * the specified process when they are same.
1875 */
1876 if (!pid) {
1877 mmget(current->mm);
1878 *mem_nodes = cpuset_mems_allowed(current);
1879 return current->mm;
1880 }
742755a1
CL
1881
1882 /* Find the mm_struct */
a879bf58 1883 rcu_read_lock();
4dc200ce 1884 task = find_task_by_vpid(pid);
742755a1 1885 if (!task) {
a879bf58 1886 rcu_read_unlock();
4dc200ce 1887 return ERR_PTR(-ESRCH);
742755a1 1888 }
3268c63e 1889 get_task_struct(task);
742755a1
CL
1890
1891 /*
1892 * Check if this process has the right to modify the specified
197e7e52 1893 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1894 */
197e7e52 1895 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1896 rcu_read_unlock();
4dc200ce 1897 mm = ERR_PTR(-EPERM);
5e9a0f02 1898 goto out;
742755a1 1899 }
c69e8d9c 1900 rcu_read_unlock();
742755a1 1901
4dc200ce
ML
1902 mm = ERR_PTR(security_task_movememory(task));
1903 if (IS_ERR(mm))
5e9a0f02 1904 goto out;
4dc200ce 1905 *mem_nodes = cpuset_mems_allowed(task);
3268c63e 1906 mm = get_task_mm(task);
4dc200ce 1907out:
3268c63e 1908 put_task_struct(task);
6e8b09ea 1909 if (!mm)
4dc200ce
ML
1910 mm = ERR_PTR(-EINVAL);
1911 return mm;
1912}
1913
1914/*
1915 * Move a list of pages in the address space of the currently executing
1916 * process.
1917 */
1918static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1919 const void __user * __user *pages,
1920 const int __user *nodes,
1921 int __user *status, int flags)
1922{
1923 struct mm_struct *mm;
1924 int err;
1925 nodemask_t task_nodes;
1926
1927 /* Check flags */
1928 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
6e8b09ea
SL
1929 return -EINVAL;
1930
4dc200ce
ML
1931 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1932 return -EPERM;
1933
1934 mm = find_mm_struct(pid, &task_nodes);
1935 if (IS_ERR(mm))
1936 return PTR_ERR(mm);
1937
6e8b09ea
SL
1938 if (nodes)
1939 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1940 nodes, status, flags);
1941 else
1942 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1943
742755a1
CL
1944 mmput(mm);
1945 return err;
1946}
742755a1 1947
7addf443
DB
1948SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1949 const void __user * __user *, pages,
1950 const int __user *, nodes,
1951 int __user *, status, int, flags)
1952{
1953 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1954}
1955
1956#ifdef CONFIG_COMPAT
1957COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1958 compat_uptr_t __user *, pages32,
1959 const int __user *, nodes,
1960 int __user *, status,
1961 int, flags)
1962{
1963 const void __user * __user *pages;
1964 int i;
1965
1966 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1967 for (i = 0; i < nr_pages; i++) {
1968 compat_uptr_t p;
1969
1970 if (get_user(p, pages32 + i) ||
1971 put_user(compat_ptr(p), pages + i))
1972 return -EFAULT;
1973 }
1974 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1975}
1976#endif /* CONFIG_COMPAT */
1977
7039e1db
PZ
1978#ifdef CONFIG_NUMA_BALANCING
1979/*
1980 * Returns true if this is a safe migration target node for misplaced NUMA
1981 * pages. Currently it only checks the watermarks which crude
1982 */
1983static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1984 unsigned long nr_migrate_pages)
7039e1db
PZ
1985{
1986 int z;
599d0c95 1987
7039e1db
PZ
1988 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1989 struct zone *zone = pgdat->node_zones + z;
1990
1991 if (!populated_zone(zone))
1992 continue;
1993
7039e1db
PZ
1994 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1995 if (!zone_watermark_ok(zone, 0,
1996 high_wmark_pages(zone) +
1997 nr_migrate_pages,
bfe9d006 1998 ZONE_MOVABLE, 0))
7039e1db
PZ
1999 continue;
2000 return true;
2001 }
2002 return false;
2003}
2004
2005static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 2006 unsigned long data)
7039e1db
PZ
2007{
2008 int nid = (int) data;
2009 struct page *newpage;
2010
96db800f 2011 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
2012 (GFP_HIGHUSER_MOVABLE |
2013 __GFP_THISNODE | __GFP_NOMEMALLOC |
2014 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 2015 ~__GFP_RECLAIM, 0);
bac0382c 2016
7039e1db
PZ
2017 return newpage;
2018}
2019
1c30e017 2020static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 2021{
340ef390 2022 int page_lru;
a8f60772 2023
309381fe 2024 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 2025
7039e1db 2026 /* Avoid migrating to a node that is nearly full */
d8c6546b 2027 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
340ef390 2028 return 0;
7039e1db 2029
340ef390
HD
2030 if (isolate_lru_page(page))
2031 return 0;
7039e1db 2032
340ef390
HD
2033 /*
2034 * migrate_misplaced_transhuge_page() skips page migration's usual
2035 * check on page_count(), so we must do it here, now that the page
2036 * has been isolated: a GUP pin, or any other pin, prevents migration.
2037 * The expected page count is 3: 1 for page's mapcount and 1 for the
2038 * caller's pin and 1 for the reference taken by isolate_lru_page().
2039 */
2040 if (PageTransHuge(page) && page_count(page) != 3) {
2041 putback_lru_page(page);
2042 return 0;
7039e1db
PZ
2043 }
2044
9de4f22a 2045 page_lru = page_is_file_lru(page);
599d0c95 2046 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
6c357848 2047 thp_nr_pages(page));
340ef390 2048
149c33e1 2049 /*
340ef390
HD
2050 * Isolating the page has taken another reference, so the
2051 * caller's reference can be safely dropped without the page
2052 * disappearing underneath us during migration.
149c33e1
MG
2053 */
2054 put_page(page);
340ef390 2055 return 1;
b32967ff
MG
2056}
2057
de466bd6
MG
2058bool pmd_trans_migrating(pmd_t pmd)
2059{
2060 struct page *page = pmd_page(pmd);
2061 return PageLocked(page);
2062}
2063
b32967ff
MG
2064/*
2065 * Attempt to migrate a misplaced page to the specified destination
2066 * node. Caller is expected to have an elevated reference count on
2067 * the page that will be dropped by this function before returning.
2068 */
1bc115d8
MG
2069int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2070 int node)
b32967ff
MG
2071{
2072 pg_data_t *pgdat = NODE_DATA(node);
340ef390 2073 int isolated;
b32967ff
MG
2074 int nr_remaining;
2075 LIST_HEAD(migratepages);
2076
2077 /*
1bc115d8
MG
2078 * Don't migrate file pages that are mapped in multiple processes
2079 * with execute permissions as they are probably shared libraries.
b32967ff 2080 */
9de4f22a 2081 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
1bc115d8 2082 (vma->vm_flags & VM_EXEC))
b32967ff 2083 goto out;
b32967ff 2084
09a913a7
MG
2085 /*
2086 * Also do not migrate dirty pages as not all filesystems can move
2087 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2088 */
9de4f22a 2089 if (page_is_file_lru(page) && PageDirty(page))
09a913a7
MG
2090 goto out;
2091
b32967ff
MG
2092 isolated = numamigrate_isolate_page(pgdat, page);
2093 if (!isolated)
2094 goto out;
2095
2096 list_add(&page->lru, &migratepages);
9c620e2b 2097 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
2098 NULL, node, MIGRATE_ASYNC,
2099 MR_NUMA_MISPLACED);
b32967ff 2100 if (nr_remaining) {
59c82b70
JK
2101 if (!list_empty(&migratepages)) {
2102 list_del(&page->lru);
599d0c95 2103 dec_node_page_state(page, NR_ISOLATED_ANON +
9de4f22a 2104 page_is_file_lru(page));
59c82b70
JK
2105 putback_lru_page(page);
2106 }
b32967ff
MG
2107 isolated = 0;
2108 } else
2109 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 2110 BUG_ON(!list_empty(&migratepages));
7039e1db 2111 return isolated;
340ef390
HD
2112
2113out:
2114 put_page(page);
2115 return 0;
7039e1db 2116}
220018d3 2117#endif /* CONFIG_NUMA_BALANCING */
b32967ff 2118
220018d3 2119#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
2120/*
2121 * Migrates a THP to a given target node. page must be locked and is unlocked
2122 * before returning.
2123 */
b32967ff
MG
2124int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2125 struct vm_area_struct *vma,
2126 pmd_t *pmd, pmd_t entry,
2127 unsigned long address,
2128 struct page *page, int node)
2129{
c4088ebd 2130 spinlock_t *ptl;
b32967ff
MG
2131 pg_data_t *pgdat = NODE_DATA(node);
2132 int isolated = 0;
2133 struct page *new_page = NULL;
9de4f22a 2134 int page_lru = page_is_file_lru(page);
7066f0f9 2135 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 2136
b32967ff 2137 new_page = alloc_pages_node(node,
25160354 2138 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2139 HPAGE_PMD_ORDER);
340ef390
HD
2140 if (!new_page)
2141 goto out_fail;
9a982250 2142 prep_transhuge_page(new_page);
340ef390 2143
b32967ff 2144 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2145 if (!isolated) {
b32967ff 2146 put_page(new_page);
340ef390 2147 goto out_fail;
b32967ff 2148 }
b0943d61 2149
b32967ff 2150 /* Prepare a page as a migration target */
48c935ad 2151 __SetPageLocked(new_page);
d44d363f
SL
2152 if (PageSwapBacked(page))
2153 __SetPageSwapBacked(new_page);
b32967ff
MG
2154
2155 /* anon mapping, we can simply copy page->mapping to the new page: */
2156 new_page->mapping = page->mapping;
2157 new_page->index = page->index;
7eef5f97
AA
2158 /* flush the cache before copying using the kernel virtual address */
2159 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2160 migrate_page_copy(new_page, page);
2161 WARN_ON(PageLRU(new_page));
2162
2163 /* Recheck the target PMD */
c4088ebd 2164 ptl = pmd_lock(mm, pmd);
f4e177d1 2165 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2166 spin_unlock(ptl);
b32967ff
MG
2167
2168 /* Reverse changes made by migrate_page_copy() */
2169 if (TestClearPageActive(new_page))
2170 SetPageActive(page);
2171 if (TestClearPageUnevictable(new_page))
2172 SetPageUnevictable(page);
b32967ff
MG
2173
2174 unlock_page(new_page);
2175 put_page(new_page); /* Free it */
2176
a54a407f
MG
2177 /* Retake the callers reference and putback on LRU */
2178 get_page(page);
b32967ff 2179 putback_lru_page(page);
599d0c95 2180 mod_node_page_state(page_pgdat(page),
a54a407f 2181 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2182
2183 goto out_unlock;
b32967ff
MG
2184 }
2185
10102459 2186 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2187 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2188
2b4847e7 2189 /*
d7c33934
AA
2190 * Overwrite the old entry under pagetable lock and establish
2191 * the new PTE. Any parallel GUP will either observe the old
2192 * page blocking on the page lock, block on the page table
2193 * lock or observe the new page. The SetPageUptodate on the
2194 * new page and page_add_new_anon_rmap guarantee the copy is
2195 * visible before the pagetable update.
2b4847e7 2196 */
7066f0f9 2197 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2198 /*
2199 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2200 * has already been flushed globally. So no TLB can be currently
2201 * caching this non present pmd mapping. There's no need to clear the
2202 * pmd before doing set_pmd_at(), nor to flush the TLB after
2203 * set_pmd_at(). Clearing the pmd here would introduce a race
2204 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
c1e8d7c6 2205 * mmap_lock for reading. If the pmd is set to NULL at any given time,
d7c33934
AA
2206 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2207 * pmd.
2208 */
7066f0f9 2209 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2210 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2211
f4e177d1 2212 page_ref_unfreeze(page, 2);
51afb12b 2213 mlock_migrate_page(new_page, page);
d281ee61 2214 page_remove_rmap(page, true);
7cd12b4a 2215 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2216
c4088ebd 2217 spin_unlock(ptl);
b32967ff 2218
11de9927
MG
2219 /* Take an "isolate" reference and put new page on the LRU. */
2220 get_page(new_page);
2221 putback_lru_page(new_page);
2222
b32967ff
MG
2223 unlock_page(new_page);
2224 unlock_page(page);
2225 put_page(page); /* Drop the rmap reference */
2226 put_page(page); /* Drop the LRU isolation reference */
2227
2228 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2229 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2230
599d0c95 2231 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2232 NR_ISOLATED_ANON + page_lru,
2233 -HPAGE_PMD_NR);
2234 return isolated;
2235
340ef390
HD
2236out_fail:
2237 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2238 ptl = pmd_lock(mm, pmd);
2239 if (pmd_same(*pmd, entry)) {
4d942466 2240 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2241 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2242 update_mmu_cache_pmd(vma, address, &entry);
2243 }
2244 spin_unlock(ptl);
a54a407f 2245
eb4489f6 2246out_unlock:
340ef390 2247 unlock_page(page);
b32967ff 2248 put_page(page);
b32967ff
MG
2249 return 0;
2250}
7039e1db
PZ
2251#endif /* CONFIG_NUMA_BALANCING */
2252
2253#endif /* CONFIG_NUMA */
8763cb45 2254
9b2ed9cb 2255#ifdef CONFIG_DEVICE_PRIVATE
8763cb45
JG
2256static int migrate_vma_collect_hole(unsigned long start,
2257 unsigned long end,
b7a16c7a 2258 __always_unused int depth,
8763cb45
JG
2259 struct mm_walk *walk)
2260{
2261 struct migrate_vma *migrate = walk->private;
2262 unsigned long addr;
2263
0744f280
RC
2264 /* Only allow populating anonymous memory. */
2265 if (!vma_is_anonymous(walk->vma)) {
2266 for (addr = start; addr < end; addr += PAGE_SIZE) {
2267 migrate->src[migrate->npages] = 0;
2268 migrate->dst[migrate->npages] = 0;
2269 migrate->npages++;
2270 }
2271 return 0;
2272 }
2273
872ea707 2274 for (addr = start; addr < end; addr += PAGE_SIZE) {
e20d103b 2275 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2276 migrate->dst[migrate->npages] = 0;
e20d103b 2277 migrate->npages++;
8315ada7
JG
2278 migrate->cpages++;
2279 }
2280
2281 return 0;
2282}
2283
2284static int migrate_vma_collect_skip(unsigned long start,
2285 unsigned long end,
2286 struct mm_walk *walk)
2287{
2288 struct migrate_vma *migrate = walk->private;
2289 unsigned long addr;
2290
872ea707 2291 for (addr = start; addr < end; addr += PAGE_SIZE) {
8763cb45
JG
2292 migrate->dst[migrate->npages] = 0;
2293 migrate->src[migrate->npages++] = 0;
2294 }
2295
2296 return 0;
2297}
2298
2299static int migrate_vma_collect_pmd(pmd_t *pmdp,
2300 unsigned long start,
2301 unsigned long end,
2302 struct mm_walk *walk)
2303{
2304 struct migrate_vma *migrate = walk->private;
2305 struct vm_area_struct *vma = walk->vma;
2306 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2307 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2308 spinlock_t *ptl;
2309 pte_t *ptep;
2310
2311again:
2312 if (pmd_none(*pmdp))
b7a16c7a 2313 return migrate_vma_collect_hole(start, end, -1, walk);
8763cb45
JG
2314
2315 if (pmd_trans_huge(*pmdp)) {
2316 struct page *page;
2317
2318 ptl = pmd_lock(mm, pmdp);
2319 if (unlikely(!pmd_trans_huge(*pmdp))) {
2320 spin_unlock(ptl);
2321 goto again;
2322 }
2323
2324 page = pmd_page(*pmdp);
2325 if (is_huge_zero_page(page)) {
2326 spin_unlock(ptl);
2327 split_huge_pmd(vma, pmdp, addr);
2328 if (pmd_trans_unstable(pmdp))
8315ada7 2329 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2330 walk);
2331 } else {
2332 int ret;
2333
2334 get_page(page);
2335 spin_unlock(ptl);
2336 if (unlikely(!trylock_page(page)))
8315ada7 2337 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2338 walk);
2339 ret = split_huge_page(page);
2340 unlock_page(page);
2341 put_page(page);
8315ada7
JG
2342 if (ret)
2343 return migrate_vma_collect_skip(start, end,
2344 walk);
2345 if (pmd_none(*pmdp))
b7a16c7a 2346 return migrate_vma_collect_hole(start, end, -1,
8763cb45
JG
2347 walk);
2348 }
2349 }
2350
2351 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2352 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2353
2354 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2355 arch_enter_lazy_mmu_mode();
2356
8763cb45 2357 for (; addr < end; addr += PAGE_SIZE, ptep++) {
800bb1c8 2358 unsigned long mpfn = 0, pfn;
8763cb45 2359 struct page *page;
8c3328f1 2360 swp_entry_t entry;
8763cb45
JG
2361 pte_t pte;
2362
2363 pte = *ptep;
8763cb45 2364
a5430dda 2365 if (pte_none(pte)) {
0744f280
RC
2366 if (vma_is_anonymous(vma)) {
2367 mpfn = MIGRATE_PFN_MIGRATE;
2368 migrate->cpages++;
2369 }
8763cb45
JG
2370 goto next;
2371 }
2372
a5430dda 2373 if (!pte_present(pte)) {
a5430dda
JG
2374 /*
2375 * Only care about unaddressable device page special
2376 * page table entry. Other special swap entries are not
2377 * migratable, and we ignore regular swapped page.
2378 */
2379 entry = pte_to_swp_entry(pte);
2380 if (!is_device_private_entry(entry))
2381 goto next;
2382
2383 page = device_private_entry_to_page(entry);
5143192c
RC
2384 if (!(migrate->flags &
2385 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2386 page->pgmap->owner != migrate->pgmap_owner)
800bb1c8
CH
2387 goto next;
2388
06d462be
CH
2389 mpfn = migrate_pfn(page_to_pfn(page)) |
2390 MIGRATE_PFN_MIGRATE;
a5430dda
JG
2391 if (is_write_device_private_entry(entry))
2392 mpfn |= MIGRATE_PFN_WRITE;
2393 } else {
5143192c 2394 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
800bb1c8 2395 goto next;
276f756d 2396 pfn = pte_pfn(pte);
8315ada7
JG
2397 if (is_zero_pfn(pfn)) {
2398 mpfn = MIGRATE_PFN_MIGRATE;
2399 migrate->cpages++;
8315ada7
JG
2400 goto next;
2401 }
25b2995a 2402 page = vm_normal_page(migrate->vma, addr, pte);
a5430dda
JG
2403 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2404 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2405 }
2406
8763cb45 2407 /* FIXME support THP */
8763cb45 2408 if (!page || !page->mapping || PageTransCompound(page)) {
276f756d 2409 mpfn = 0;
8763cb45
JG
2410 goto next;
2411 }
2412
2413 /*
2414 * By getting a reference on the page we pin it and that blocks
2415 * any kind of migration. Side effect is that it "freezes" the
2416 * pte.
2417 *
2418 * We drop this reference after isolating the page from the lru
2419 * for non device page (device page are not on the lru and thus
2420 * can't be dropped from it).
2421 */
2422 get_page(page);
2423 migrate->cpages++;
8763cb45 2424
8c3328f1
JG
2425 /*
2426 * Optimize for the common case where page is only mapped once
2427 * in one process. If we can lock the page, then we can safely
2428 * set up a special migration page table entry now.
2429 */
2430 if (trylock_page(page)) {
2431 pte_t swp_pte;
2432
2433 mpfn |= MIGRATE_PFN_LOCKED;
2434 ptep_get_and_clear(mm, addr, ptep);
2435
2436 /* Setup special migration page table entry */
07707125
RC
2437 entry = make_migration_entry(page, mpfn &
2438 MIGRATE_PFN_WRITE);
8c3328f1 2439 swp_pte = swp_entry_to_pte(entry);
ad7df764
AP
2440 if (pte_present(pte)) {
2441 if (pte_soft_dirty(pte))
2442 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2443 if (pte_uffd_wp(pte))
2444 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2445 } else {
2446 if (pte_swp_soft_dirty(pte))
2447 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2448 if (pte_swp_uffd_wp(pte))
2449 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2450 }
8c3328f1
JG
2451 set_pte_at(mm, addr, ptep, swp_pte);
2452
2453 /*
2454 * This is like regular unmap: we remove the rmap and
2455 * drop page refcount. Page won't be freed, as we took
2456 * a reference just above.
2457 */
2458 page_remove_rmap(page, false);
2459 put_page(page);
a5430dda
JG
2460
2461 if (pte_present(pte))
2462 unmapped++;
8c3328f1
JG
2463 }
2464
8763cb45 2465next:
a5430dda 2466 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2467 migrate->src[migrate->npages++] = mpfn;
2468 }
8c3328f1 2469 arch_leave_lazy_mmu_mode();
8763cb45
JG
2470 pte_unmap_unlock(ptep - 1, ptl);
2471
8c3328f1
JG
2472 /* Only flush the TLB if we actually modified any entries */
2473 if (unmapped)
2474 flush_tlb_range(walk->vma, start, end);
2475
8763cb45
JG
2476 return 0;
2477}
2478
7b86ac33
CH
2479static const struct mm_walk_ops migrate_vma_walk_ops = {
2480 .pmd_entry = migrate_vma_collect_pmd,
2481 .pte_hole = migrate_vma_collect_hole,
2482};
2483
8763cb45
JG
2484/*
2485 * migrate_vma_collect() - collect pages over a range of virtual addresses
2486 * @migrate: migrate struct containing all migration information
2487 *
2488 * This will walk the CPU page table. For each virtual address backed by a
2489 * valid page, it updates the src array and takes a reference on the page, in
2490 * order to pin the page until we lock it and unmap it.
2491 */
2492static void migrate_vma_collect(struct migrate_vma *migrate)
2493{
ac46d4f3 2494 struct mmu_notifier_range range;
8763cb45 2495
998427b3
RC
2496 /*
2497 * Note that the pgmap_owner is passed to the mmu notifier callback so
2498 * that the registered device driver can skip invalidating device
2499 * private page mappings that won't be migrated.
2500 */
c1a06df6
RC
2501 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2502 migrate->vma->vm_mm, migrate->start, migrate->end,
2503 migrate->pgmap_owner);
ac46d4f3 2504 mmu_notifier_invalidate_range_start(&range);
8763cb45 2505
7b86ac33
CH
2506 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2507 &migrate_vma_walk_ops, migrate);
2508
2509 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2510 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2511}
2512
2513/*
2514 * migrate_vma_check_page() - check if page is pinned or not
2515 * @page: struct page to check
2516 *
2517 * Pinned pages cannot be migrated. This is the same test as in
2518 * migrate_page_move_mapping(), except that here we allow migration of a
2519 * ZONE_DEVICE page.
2520 */
2521static bool migrate_vma_check_page(struct page *page)
2522{
2523 /*
2524 * One extra ref because caller holds an extra reference, either from
2525 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2526 * a device page.
2527 */
2528 int extra = 1;
2529
2530 /*
2531 * FIXME support THP (transparent huge page), it is bit more complex to
2532 * check them than regular pages, because they can be mapped with a pmd
2533 * or with a pte (split pte mapping).
2534 */
2535 if (PageCompound(page))
2536 return false;
2537
a5430dda
JG
2538 /* Page from ZONE_DEVICE have one extra reference */
2539 if (is_zone_device_page(page)) {
2540 /*
2541 * Private page can never be pin as they have no valid pte and
2542 * GUP will fail for those. Yet if there is a pending migration
2543 * a thread might try to wait on the pte migration entry and
2544 * will bump the page reference count. Sadly there is no way to
2545 * differentiate a regular pin from migration wait. Hence to
2546 * avoid 2 racing thread trying to migrate back to CPU to enter
2547 * infinite loop (one stoping migration because the other is
2548 * waiting on pte migration entry). We always return true here.
2549 *
2550 * FIXME proper solution is to rework migration_entry_wait() so
2551 * it does not need to take a reference on page.
2552 */
25b2995a 2553 return is_device_private_page(page);
a5430dda
JG
2554 }
2555
df6ad698
JG
2556 /* For file back page */
2557 if (page_mapping(page))
2558 extra += 1 + page_has_private(page);
2559
8763cb45
JG
2560 if ((page_count(page) - extra) > page_mapcount(page))
2561 return false;
2562
2563 return true;
2564}
2565
2566/*
2567 * migrate_vma_prepare() - lock pages and isolate them from the lru
2568 * @migrate: migrate struct containing all migration information
2569 *
2570 * This locks pages that have been collected by migrate_vma_collect(). Once each
2571 * page is locked it is isolated from the lru (for non-device pages). Finally,
2572 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2573 * migrated by concurrent kernel threads.
2574 */
2575static void migrate_vma_prepare(struct migrate_vma *migrate)
2576{
2577 const unsigned long npages = migrate->npages;
8c3328f1
JG
2578 const unsigned long start = migrate->start;
2579 unsigned long addr, i, restore = 0;
8763cb45 2580 bool allow_drain = true;
8763cb45
JG
2581
2582 lru_add_drain();
2583
2584 for (i = 0; (i < npages) && migrate->cpages; i++) {
2585 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2586 bool remap = true;
8763cb45
JG
2587
2588 if (!page)
2589 continue;
2590
8c3328f1
JG
2591 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2592 /*
2593 * Because we are migrating several pages there can be
2594 * a deadlock between 2 concurrent migration where each
2595 * are waiting on each other page lock.
2596 *
2597 * Make migrate_vma() a best effort thing and backoff
2598 * for any page we can not lock right away.
2599 */
2600 if (!trylock_page(page)) {
2601 migrate->src[i] = 0;
2602 migrate->cpages--;
2603 put_page(page);
2604 continue;
2605 }
2606 remap = false;
2607 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2608 }
8763cb45 2609
a5430dda
JG
2610 /* ZONE_DEVICE pages are not on LRU */
2611 if (!is_zone_device_page(page)) {
2612 if (!PageLRU(page) && allow_drain) {
2613 /* Drain CPU's pagevec */
2614 lru_add_drain_all();
2615 allow_drain = false;
2616 }
8763cb45 2617
a5430dda
JG
2618 if (isolate_lru_page(page)) {
2619 if (remap) {
2620 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2621 migrate->cpages--;
2622 restore++;
2623 } else {
2624 migrate->src[i] = 0;
2625 unlock_page(page);
2626 migrate->cpages--;
2627 put_page(page);
2628 }
2629 continue;
8c3328f1 2630 }
a5430dda
JG
2631
2632 /* Drop the reference we took in collect */
2633 put_page(page);
8763cb45
JG
2634 }
2635
2636 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2637 if (remap) {
2638 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2639 migrate->cpages--;
2640 restore++;
8763cb45 2641
a5430dda
JG
2642 if (!is_zone_device_page(page)) {
2643 get_page(page);
2644 putback_lru_page(page);
2645 }
8c3328f1
JG
2646 } else {
2647 migrate->src[i] = 0;
2648 unlock_page(page);
2649 migrate->cpages--;
2650
a5430dda
JG
2651 if (!is_zone_device_page(page))
2652 putback_lru_page(page);
2653 else
2654 put_page(page);
8c3328f1 2655 }
8763cb45
JG
2656 }
2657 }
8c3328f1
JG
2658
2659 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2660 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2661
2662 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2663 continue;
2664
2665 remove_migration_pte(page, migrate->vma, addr, page);
2666
2667 migrate->src[i] = 0;
2668 unlock_page(page);
2669 put_page(page);
2670 restore--;
2671 }
8763cb45
JG
2672}
2673
2674/*
2675 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2676 * @migrate: migrate struct containing all migration information
2677 *
2678 * Replace page mapping (CPU page table pte) with a special migration pte entry
2679 * and check again if it has been pinned. Pinned pages are restored because we
2680 * cannot migrate them.
2681 *
2682 * This is the last step before we call the device driver callback to allocate
2683 * destination memory and copy contents of original page over to new page.
2684 */
2685static void migrate_vma_unmap(struct migrate_vma *migrate)
2686{
2687 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2688 const unsigned long npages = migrate->npages;
2689 const unsigned long start = migrate->start;
2690 unsigned long addr, i, restore = 0;
2691
2692 for (i = 0; i < npages; i++) {
2693 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2694
2695 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2696 continue;
2697
8c3328f1
JG
2698 if (page_mapped(page)) {
2699 try_to_unmap(page, flags);
2700 if (page_mapped(page))
2701 goto restore;
8763cb45 2702 }
8c3328f1
JG
2703
2704 if (migrate_vma_check_page(page))
2705 continue;
2706
2707restore:
2708 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2709 migrate->cpages--;
2710 restore++;
8763cb45
JG
2711 }
2712
2713 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2714 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2715
2716 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2717 continue;
2718
2719 remove_migration_ptes(page, page, false);
2720
2721 migrate->src[i] = 0;
2722 unlock_page(page);
2723 restore--;
2724
a5430dda
JG
2725 if (is_zone_device_page(page))
2726 put_page(page);
2727 else
2728 putback_lru_page(page);
8763cb45
JG
2729 }
2730}
2731
a7d1f22b
CH
2732/**
2733 * migrate_vma_setup() - prepare to migrate a range of memory
eaf444de 2734 * @args: contains the vma, start, and pfns arrays for the migration
a7d1f22b
CH
2735 *
2736 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2737 * without an error.
2738 *
2739 * Prepare to migrate a range of memory virtual address range by collecting all
2740 * the pages backing each virtual address in the range, saving them inside the
2741 * src array. Then lock those pages and unmap them. Once the pages are locked
2742 * and unmapped, check whether each page is pinned or not. Pages that aren't
2743 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2744 * corresponding src array entry. Then restores any pages that are pinned, by
2745 * remapping and unlocking those pages.
2746 *
2747 * The caller should then allocate destination memory and copy source memory to
2748 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2749 * flag set). Once these are allocated and copied, the caller must update each
2750 * corresponding entry in the dst array with the pfn value of the destination
2751 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2752 * (destination pages must have their struct pages locked, via lock_page()).
2753 *
2754 * Note that the caller does not have to migrate all the pages that are marked
2755 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2756 * device memory to system memory. If the caller cannot migrate a device page
2757 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2758 * consequences for the userspace process, so it must be avoided if at all
2759 * possible.
2760 *
2761 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2762 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2763 * allowing the caller to allocate device memory for those unback virtual
2764 * address. For this the caller simply has to allocate device memory and
2765 * properly set the destination entry like for regular migration. Note that
2766 * this can still fails and thus inside the device driver must check if the
2767 * migration was successful for those entries after calling migrate_vma_pages()
2768 * just like for regular migration.
2769 *
2770 * After that, the callers must call migrate_vma_pages() to go over each entry
2771 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2772 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2773 * then migrate_vma_pages() to migrate struct page information from the source
2774 * struct page to the destination struct page. If it fails to migrate the
2775 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2776 * src array.
2777 *
2778 * At this point all successfully migrated pages have an entry in the src
2779 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2780 * array entry with MIGRATE_PFN_VALID flag set.
2781 *
2782 * Once migrate_vma_pages() returns the caller may inspect which pages were
2783 * successfully migrated, and which were not. Successfully migrated pages will
2784 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2785 *
2786 * It is safe to update device page table after migrate_vma_pages() because
c1e8d7c6 2787 * both destination and source page are still locked, and the mmap_lock is held
a7d1f22b
CH
2788 * in read mode (hence no one can unmap the range being migrated).
2789 *
2790 * Once the caller is done cleaning up things and updating its page table (if it
2791 * chose to do so, this is not an obligation) it finally calls
2792 * migrate_vma_finalize() to update the CPU page table to point to new pages
2793 * for successfully migrated pages or otherwise restore the CPU page table to
2794 * point to the original source pages.
2795 */
2796int migrate_vma_setup(struct migrate_vma *args)
2797{
2798 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2799
2800 args->start &= PAGE_MASK;
2801 args->end &= PAGE_MASK;
2802 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2803 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2804 return -EINVAL;
2805 if (nr_pages <= 0)
2806 return -EINVAL;
2807 if (args->start < args->vma->vm_start ||
2808 args->start >= args->vma->vm_end)
2809 return -EINVAL;
2810 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2811 return -EINVAL;
2812 if (!args->src || !args->dst)
2813 return -EINVAL;
2814
2815 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2816 args->cpages = 0;
2817 args->npages = 0;
2818
2819 migrate_vma_collect(args);
2820
2821 if (args->cpages)
2822 migrate_vma_prepare(args);
2823 if (args->cpages)
2824 migrate_vma_unmap(args);
2825
2826 /*
2827 * At this point pages are locked and unmapped, and thus they have
2828 * stable content and can safely be copied to destination memory that
2829 * is allocated by the drivers.
2830 */
2831 return 0;
2832
2833}
2834EXPORT_SYMBOL(migrate_vma_setup);
2835
34290e2c
RC
2836/*
2837 * This code closely matches the code in:
2838 * __handle_mm_fault()
2839 * handle_pte_fault()
2840 * do_anonymous_page()
2841 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2842 * private page.
2843 */
8315ada7
JG
2844static void migrate_vma_insert_page(struct migrate_vma *migrate,
2845 unsigned long addr,
2846 struct page *page,
2847 unsigned long *src,
2848 unsigned long *dst)
2849{
2850 struct vm_area_struct *vma = migrate->vma;
2851 struct mm_struct *mm = vma->vm_mm;
8315ada7
JG
2852 bool flush = false;
2853 spinlock_t *ptl;
2854 pte_t entry;
2855 pgd_t *pgdp;
2856 p4d_t *p4dp;
2857 pud_t *pudp;
2858 pmd_t *pmdp;
2859 pte_t *ptep;
2860
2861 /* Only allow populating anonymous memory */
2862 if (!vma_is_anonymous(vma))
2863 goto abort;
2864
2865 pgdp = pgd_offset(mm, addr);
2866 p4dp = p4d_alloc(mm, pgdp, addr);
2867 if (!p4dp)
2868 goto abort;
2869 pudp = pud_alloc(mm, p4dp, addr);
2870 if (!pudp)
2871 goto abort;
2872 pmdp = pmd_alloc(mm, pudp, addr);
2873 if (!pmdp)
2874 goto abort;
2875
2876 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2877 goto abort;
2878
2879 /*
2880 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2881 * pte_offset_map() on pmds where a huge pmd might be created
2882 * from a different thread.
2883 *
3e4e28c5 2884 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
8315ada7
JG
2885 * parallel threads are excluded by other means.
2886 *
3e4e28c5 2887 * Here we only have mmap_read_lock(mm).
8315ada7 2888 */
4cf58924 2889 if (pte_alloc(mm, pmdp))
8315ada7
JG
2890 goto abort;
2891
2892 /* See the comment in pte_alloc_one_map() */
2893 if (unlikely(pmd_trans_unstable(pmdp)))
2894 goto abort;
2895
2896 if (unlikely(anon_vma_prepare(vma)))
2897 goto abort;
d9eb1ea2 2898 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
8315ada7
JG
2899 goto abort;
2900
2901 /*
2902 * The memory barrier inside __SetPageUptodate makes sure that
2903 * preceding stores to the page contents become visible before
2904 * the set_pte_at() write.
2905 */
2906 __SetPageUptodate(page);
2907
df6ad698
JG
2908 if (is_zone_device_page(page)) {
2909 if (is_device_private_page(page)) {
2910 swp_entry_t swp_entry;
2911
2912 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2913 entry = swp_entry_to_pte(swp_entry);
df6ad698 2914 }
8315ada7
JG
2915 } else {
2916 entry = mk_pte(page, vma->vm_page_prot);
2917 if (vma->vm_flags & VM_WRITE)
2918 entry = pte_mkwrite(pte_mkdirty(entry));
2919 }
2920
2921 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2922
34290e2c
RC
2923 if (check_stable_address_space(mm))
2924 goto unlock_abort;
2925
8315ada7
JG
2926 if (pte_present(*ptep)) {
2927 unsigned long pfn = pte_pfn(*ptep);
2928
c23a0c99
RC
2929 if (!is_zero_pfn(pfn))
2930 goto unlock_abort;
8315ada7 2931 flush = true;
c23a0c99
RC
2932 } else if (!pte_none(*ptep))
2933 goto unlock_abort;
8315ada7
JG
2934
2935 /*
c23a0c99 2936 * Check for userfaultfd but do not deliver the fault. Instead,
8315ada7
JG
2937 * just back off.
2938 */
c23a0c99
RC
2939 if (userfaultfd_missing(vma))
2940 goto unlock_abort;
8315ada7
JG
2941
2942 inc_mm_counter(mm, MM_ANONPAGES);
be5d0a74 2943 page_add_new_anon_rmap(page, vma, addr, false);
8315ada7 2944 if (!is_zone_device_page(page))
b518154e 2945 lru_cache_add_inactive_or_unevictable(page, vma);
8315ada7
JG
2946 get_page(page);
2947
2948 if (flush) {
2949 flush_cache_page(vma, addr, pte_pfn(*ptep));
2950 ptep_clear_flush_notify(vma, addr, ptep);
2951 set_pte_at_notify(mm, addr, ptep, entry);
2952 update_mmu_cache(vma, addr, ptep);
2953 } else {
2954 /* No need to invalidate - it was non-present before */
2955 set_pte_at(mm, addr, ptep, entry);
2956 update_mmu_cache(vma, addr, ptep);
2957 }
2958
2959 pte_unmap_unlock(ptep, ptl);
2960 *src = MIGRATE_PFN_MIGRATE;
2961 return;
2962
c23a0c99
RC
2963unlock_abort:
2964 pte_unmap_unlock(ptep, ptl);
8315ada7
JG
2965abort:
2966 *src &= ~MIGRATE_PFN_MIGRATE;
2967}
2968
a7d1f22b 2969/**
8763cb45
JG
2970 * migrate_vma_pages() - migrate meta-data from src page to dst page
2971 * @migrate: migrate struct containing all migration information
2972 *
2973 * This migrates struct page meta-data from source struct page to destination
2974 * struct page. This effectively finishes the migration from source page to the
2975 * destination page.
2976 */
a7d1f22b 2977void migrate_vma_pages(struct migrate_vma *migrate)
8763cb45
JG
2978{
2979 const unsigned long npages = migrate->npages;
2980 const unsigned long start = migrate->start;
ac46d4f3
JG
2981 struct mmu_notifier_range range;
2982 unsigned long addr, i;
8315ada7 2983 bool notified = false;
8763cb45
JG
2984
2985 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2986 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2987 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2988 struct address_space *mapping;
2989 int r;
2990
8315ada7
JG
2991 if (!newpage) {
2992 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2993 continue;
8315ada7
JG
2994 }
2995
2996 if (!page) {
c23a0c99 2997 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
8315ada7 2998 continue;
8315ada7 2999 if (!notified) {
8315ada7 3000 notified = true;
ac46d4f3
JG
3001
3002 mmu_notifier_range_init(&range,
7269f999 3003 MMU_NOTIFY_CLEAR, 0,
6f4f13e8 3004 NULL,
ac46d4f3
JG
3005 migrate->vma->vm_mm,
3006 addr, migrate->end);
3007 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
3008 }
3009 migrate_vma_insert_page(migrate, addr, newpage,
3010 &migrate->src[i],
3011 &migrate->dst[i]);
8763cb45 3012 continue;
8315ada7 3013 }
8763cb45
JG
3014
3015 mapping = page_mapping(page);
3016
a5430dda
JG
3017 if (is_zone_device_page(newpage)) {
3018 if (is_device_private_page(newpage)) {
3019 /*
3020 * For now only support private anonymous when
3021 * migrating to un-addressable device memory.
3022 */
3023 if (mapping) {
3024 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3025 continue;
3026 }
25b2995a 3027 } else {
a5430dda
JG
3028 /*
3029 * Other types of ZONE_DEVICE page are not
3030 * supported.
3031 */
3032 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3033 continue;
3034 }
3035 }
3036
8763cb45
JG
3037 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3038 if (r != MIGRATEPAGE_SUCCESS)
3039 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3040 }
8315ada7 3041
4645b9fe
JG
3042 /*
3043 * No need to double call mmu_notifier->invalidate_range() callback as
3044 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3045 * did already call it.
3046 */
8315ada7 3047 if (notified)
ac46d4f3 3048 mmu_notifier_invalidate_range_only_end(&range);
8763cb45 3049}
a7d1f22b 3050EXPORT_SYMBOL(migrate_vma_pages);
8763cb45 3051
a7d1f22b 3052/**
8763cb45
JG
3053 * migrate_vma_finalize() - restore CPU page table entry
3054 * @migrate: migrate struct containing all migration information
3055 *
3056 * This replaces the special migration pte entry with either a mapping to the
3057 * new page if migration was successful for that page, or to the original page
3058 * otherwise.
3059 *
3060 * This also unlocks the pages and puts them back on the lru, or drops the extra
3061 * refcount, for device pages.
3062 */
a7d1f22b 3063void migrate_vma_finalize(struct migrate_vma *migrate)
8763cb45
JG
3064{
3065 const unsigned long npages = migrate->npages;
3066 unsigned long i;
3067
3068 for (i = 0; i < npages; i++) {
3069 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3070 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3071
8315ada7
JG
3072 if (!page) {
3073 if (newpage) {
3074 unlock_page(newpage);
3075 put_page(newpage);
3076 }
8763cb45 3077 continue;
8315ada7
JG
3078 }
3079
8763cb45
JG
3080 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3081 if (newpage) {
3082 unlock_page(newpage);
3083 put_page(newpage);
3084 }
3085 newpage = page;
3086 }
3087
3088 remove_migration_ptes(page, newpage, false);
3089 unlock_page(page);
8763cb45 3090
a5430dda
JG
3091 if (is_zone_device_page(page))
3092 put_page(page);
3093 else
3094 putback_lru_page(page);
8763cb45
JG
3095
3096 if (newpage != page) {
3097 unlock_page(newpage);
a5430dda
JG
3098 if (is_zone_device_page(newpage))
3099 put_page(newpage);
3100 else
3101 putback_lru_page(newpage);
8763cb45
JG
3102 }
3103 }
3104}
a7d1f22b 3105EXPORT_SYMBOL(migrate_vma_finalize);
9b2ed9cb 3106#endif /* CONFIG_DEVICE_PRIVATE */