]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/migrate.c
Merge tag 'net-5.11-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-jammy-kernel.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
a520110e 41#include <linux/pagewalk.h>
df6ad698 42#include <linux/pfn_t.h>
a5430dda 43#include <linux/memremap.h>
8315ada7 44#include <linux/userfaultfd_k.h>
bf6bddf1 45#include <linux/balloon_compaction.h>
f714f4f2 46#include <linux/mmu_notifier.h>
33c3fc71 47#include <linux/page_idle.h>
d435edca 48#include <linux/page_owner.h>
6e84f315 49#include <linux/sched/mm.h>
197e7e52 50#include <linux/ptrace.h>
34290e2c 51#include <linux/oom.h>
b20a3503 52
0d1836c3
MN
53#include <asm/tlbflush.h>
54
7b2a2d4a
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/migrate.h>
57
b20a3503
CL
58#include "internal.h"
59
b20a3503 60/*
742755a1 61 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
b20a3503 64 */
236c32eb 65void migrate_prep(void)
b20a3503 66{
b20a3503
CL
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
b20a3503
CL
74}
75
748446bb 76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
236c32eb 77void migrate_prep_local(void)
748446bb
MG
78{
79 lru_add_drain();
748446bb
MG
80}
81
9e5bcd61 82int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
83{
84 struct address_space *mapping;
85
86 /*
87 * Avoid burning cycles with pages that are yet under __free_pages(),
88 * or just got freed under us.
89 *
90 * In case we 'win' a race for a movable page being freed under us and
91 * raise its refcount preventing __free_pages() from doing its job
92 * the put_page() at the end of this block will take care of
93 * release this page, thus avoiding a nasty leakage.
94 */
95 if (unlikely(!get_page_unless_zero(page)))
96 goto out;
97
98 /*
99 * Check PageMovable before holding a PG_lock because page's owner
100 * assumes anybody doesn't touch PG_lock of newly allocated page
8bb4e7a2 101 * so unconditionally grabbing the lock ruins page's owner side.
bda807d4
MK
102 */
103 if (unlikely(!__PageMovable(page)))
104 goto out_putpage;
105 /*
106 * As movable pages are not isolated from LRU lists, concurrent
107 * compaction threads can race against page migration functions
108 * as well as race against the releasing a page.
109 *
110 * In order to avoid having an already isolated movable page
111 * being (wrongly) re-isolated while it is under migration,
112 * or to avoid attempting to isolate pages being released,
113 * lets be sure we have the page lock
114 * before proceeding with the movable page isolation steps.
115 */
116 if (unlikely(!trylock_page(page)))
117 goto out_putpage;
118
119 if (!PageMovable(page) || PageIsolated(page))
120 goto out_no_isolated;
121
122 mapping = page_mapping(page);
123 VM_BUG_ON_PAGE(!mapping, page);
124
125 if (!mapping->a_ops->isolate_page(page, mode))
126 goto out_no_isolated;
127
128 /* Driver shouldn't use PG_isolated bit of page->flags */
129 WARN_ON_ONCE(PageIsolated(page));
130 __SetPageIsolated(page);
131 unlock_page(page);
132
9e5bcd61 133 return 0;
bda807d4
MK
134
135out_no_isolated:
136 unlock_page(page);
137out_putpage:
138 put_page(page);
139out:
9e5bcd61 140 return -EBUSY;
bda807d4
MK
141}
142
143/* It should be called on page which is PG_movable */
144void putback_movable_page(struct page *page)
145{
146 struct address_space *mapping;
147
148 VM_BUG_ON_PAGE(!PageLocked(page), page);
149 VM_BUG_ON_PAGE(!PageMovable(page), page);
150 VM_BUG_ON_PAGE(!PageIsolated(page), page);
151
152 mapping = page_mapping(page);
153 mapping->a_ops->putback_page(page);
154 __ClearPageIsolated(page);
155}
156
5733c7d1
RA
157/*
158 * Put previously isolated pages back onto the appropriate lists
159 * from where they were once taken off for compaction/migration.
160 *
59c82b70
JK
161 * This function shall be used whenever the isolated pageset has been
162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163 * and isolate_huge_page().
5733c7d1
RA
164 */
165void putback_movable_pages(struct list_head *l)
166{
167 struct page *page;
168 struct page *page2;
169
b20a3503 170 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
171 if (unlikely(PageHuge(page))) {
172 putback_active_hugepage(page);
173 continue;
174 }
e24f0b8f 175 list_del(&page->lru);
bda807d4
MK
176 /*
177 * We isolated non-lru movable page so here we can use
178 * __PageMovable because LRU page's mapping cannot have
179 * PAGE_MAPPING_MOVABLE.
180 */
b1123ea6 181 if (unlikely(__PageMovable(page))) {
bda807d4
MK
182 VM_BUG_ON_PAGE(!PageIsolated(page), page);
183 lock_page(page);
184 if (PageMovable(page))
185 putback_movable_page(page);
186 else
187 __ClearPageIsolated(page);
188 unlock_page(page);
189 put_page(page);
190 } else {
e8db67eb 191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 192 page_is_file_lru(page), -thp_nr_pages(page));
fc280fe8 193 putback_lru_page(page);
bda807d4 194 }
b20a3503 195 }
b20a3503
CL
196}
197
0697212a
CL
198/*
199 * Restore a potential migration pte to a working pte entry
200 */
e4b82222 201static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 202 unsigned long addr, void *old)
0697212a 203{
3fe87967
KS
204 struct page_vma_mapped_walk pvmw = {
205 .page = old,
206 .vma = vma,
207 .address = addr,
208 .flags = PVMW_SYNC | PVMW_MIGRATION,
209 };
210 struct page *new;
211 pte_t pte;
0697212a 212 swp_entry_t entry;
0697212a 213
3fe87967
KS
214 VM_BUG_ON_PAGE(PageTail(page), page);
215 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
216 if (PageKsm(page))
217 new = page;
218 else
219 new = page - pvmw.page->index +
220 linear_page_index(vma, pvmw.address);
0697212a 221
616b8371
ZY
222#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223 /* PMD-mapped THP migration entry */
224 if (!pvmw.pte) {
225 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
226 remove_migration_pmd(&pvmw, new);
227 continue;
228 }
229#endif
230
3fe87967
KS
231 get_page(new);
232 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
233 if (pte_swp_soft_dirty(*pvmw.pte))
234 pte = pte_mksoft_dirty(pte);
0697212a 235
3fe87967
KS
236 /*
237 * Recheck VMA as permissions can change since migration started
238 */
239 entry = pte_to_swp_entry(*pvmw.pte);
240 if (is_write_migration_entry(entry))
241 pte = maybe_mkwrite(pte, vma);
f45ec5ff
PX
242 else if (pte_swp_uffd_wp(*pvmw.pte))
243 pte = pte_mkuffd_wp(pte);
d3cb8bf6 244
6128763f
RC
245 if (unlikely(is_device_private_page(new))) {
246 entry = make_device_private_entry(new, pte_write(pte));
247 pte = swp_entry_to_pte(entry);
3d321bf8
RC
248 if (pte_swp_soft_dirty(*pvmw.pte))
249 pte = pte_swp_mksoft_dirty(pte);
6128763f
RC
250 if (pte_swp_uffd_wp(*pvmw.pte))
251 pte = pte_swp_mkuffd_wp(pte);
d2b2c6dd 252 }
a5430dda 253
3ef8fd7f 254#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
255 if (PageHuge(new)) {
256 pte = pte_mkhuge(pte);
257 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
259 if (PageAnon(new))
260 hugepage_add_anon_rmap(new, vma, pvmw.address);
261 else
262 page_dup_rmap(new, true);
383321ab
AK
263 } else
264#endif
265 {
266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 267
383321ab
AK
268 if (PageAnon(new))
269 page_add_anon_rmap(new, vma, pvmw.address, false);
270 else
271 page_add_file_rmap(new, false);
272 }
3fe87967
KS
273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 mlock_vma_page(new);
275
e125fe40
KS
276 if (PageTransHuge(page) && PageMlocked(page))
277 clear_page_mlock(page);
278
3fe87967
KS
279 /* No need to invalidate - it was non-present before */
280 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281 }
51afb12b 282
e4b82222 283 return true;
0697212a
CL
284}
285
04e62a29
CL
286/*
287 * Get rid of all migration entries and replace them by
288 * references to the indicated page.
289 */
e388466d 290void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 291{
051ac83a
JK
292 struct rmap_walk_control rwc = {
293 .rmap_one = remove_migration_pte,
294 .arg = old,
295 };
296
e388466d
KS
297 if (locked)
298 rmap_walk_locked(new, &rwc);
299 else
300 rmap_walk(new, &rwc);
04e62a29
CL
301}
302
0697212a
CL
303/*
304 * Something used the pte of a page under migration. We need to
305 * get to the page and wait until migration is finished.
306 * When we return from this function the fault will be retried.
0697212a 307 */
e66f17ff 308void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 309 spinlock_t *ptl)
0697212a 310{
30dad309 311 pte_t pte;
0697212a
CL
312 swp_entry_t entry;
313 struct page *page;
314
30dad309 315 spin_lock(ptl);
0697212a
CL
316 pte = *ptep;
317 if (!is_swap_pte(pte))
318 goto out;
319
320 entry = pte_to_swp_entry(pte);
321 if (!is_migration_entry(entry))
322 goto out;
323
324 page = migration_entry_to_page(entry);
325
e286781d 326 /*
89eb946a 327 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
330 */
331 if (!get_page_unless_zero(page))
332 goto out;
0697212a 333 pte_unmap_unlock(ptep, ptl);
9a1ea439 334 put_and_wait_on_page_locked(page);
0697212a
CL
335 return;
336out:
337 pte_unmap_unlock(ptep, ptl);
338}
339
30dad309
NH
340void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 unsigned long address)
342{
343 spinlock_t *ptl = pte_lockptr(mm, pmd);
344 pte_t *ptep = pte_offset_map(pmd, address);
345 __migration_entry_wait(mm, ptep, ptl);
346}
347
cb900f41
KS
348void migration_entry_wait_huge(struct vm_area_struct *vma,
349 struct mm_struct *mm, pte_t *pte)
30dad309 350{
cb900f41 351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
352 __migration_entry_wait(mm, pte, ptl);
353}
354
616b8371
ZY
355#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357{
358 spinlock_t *ptl;
359 struct page *page;
360
361 ptl = pmd_lock(mm, pmd);
362 if (!is_pmd_migration_entry(*pmd))
363 goto unlock;
364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 if (!get_page_unless_zero(page))
366 goto unlock;
367 spin_unlock(ptl);
9a1ea439 368 put_and_wait_on_page_locked(page);
616b8371
ZY
369 return;
370unlock:
371 spin_unlock(ptl);
372}
373#endif
374
f900482d 375static int expected_page_refs(struct address_space *mapping, struct page *page)
0b3901b3
JK
376{
377 int expected_count = 1;
378
379 /*
f1f4f3ab 380 * Device private pages have an extra refcount as they are
0b3901b3
JK
381 * ZONE_DEVICE pages.
382 */
383 expected_count += is_device_private_page(page);
f900482d 384 if (mapping)
6c357848 385 expected_count += thp_nr_pages(page) + page_has_private(page);
0b3901b3
JK
386
387 return expected_count;
388}
389
b20a3503 390/*
c3fcf8a5 391 * Replace the page in the mapping.
5b5c7120
CL
392 *
393 * The number of remaining references must be:
394 * 1 for anonymous pages without a mapping
395 * 2 for pages with a mapping
266cf658 396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 397 */
36bc08cc 398int migrate_page_move_mapping(struct address_space *mapping,
37109694 399 struct page *newpage, struct page *page, int extra_count)
b20a3503 400{
89eb946a 401 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
402 struct zone *oldzone, *newzone;
403 int dirty;
f900482d 404 int expected_count = expected_page_refs(mapping, page) + extra_count;
5c447d27 405 int nr = thp_nr_pages(page);
8763cb45 406
6c5240ae 407 if (!mapping) {
0e8c7d0f 408 /* Anonymous page without mapping */
8e321fef 409 if (page_count(page) != expected_count)
6c5240ae 410 return -EAGAIN;
cf4b769a
HD
411
412 /* No turning back from here */
cf4b769a
HD
413 newpage->index = page->index;
414 newpage->mapping = page->mapping;
415 if (PageSwapBacked(page))
fa9949da 416 __SetPageSwapBacked(newpage);
cf4b769a 417
78bd5209 418 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
419 }
420
42cb14b1
HD
421 oldzone = page_zone(page);
422 newzone = page_zone(newpage);
423
89eb946a 424 xas_lock_irq(&xas);
89eb946a
MW
425 if (page_count(page) != expected_count || xas_load(&xas) != page) {
426 xas_unlock_irq(&xas);
e23ca00b 427 return -EAGAIN;
b20a3503
CL
428 }
429
fe896d18 430 if (!page_ref_freeze(page, expected_count)) {
89eb946a 431 xas_unlock_irq(&xas);
e286781d
NP
432 return -EAGAIN;
433 }
434
b20a3503 435 /*
cf4b769a
HD
436 * Now we know that no one else is looking at the page:
437 * no turning back from here.
b20a3503 438 */
cf4b769a
HD
439 newpage->index = page->index;
440 newpage->mapping = page->mapping;
5c447d27 441 page_ref_add(newpage, nr); /* add cache reference */
6326fec1
NP
442 if (PageSwapBacked(page)) {
443 __SetPageSwapBacked(newpage);
444 if (PageSwapCache(page)) {
445 SetPageSwapCache(newpage);
446 set_page_private(newpage, page_private(page));
447 }
448 } else {
449 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
450 }
451
42cb14b1
HD
452 /* Move dirty while page refs frozen and newpage not yet exposed */
453 dirty = PageDirty(page);
454 if (dirty) {
455 ClearPageDirty(page);
456 SetPageDirty(newpage);
457 }
458
89eb946a 459 xas_store(&xas, newpage);
e71769ae
NH
460 if (PageTransHuge(page)) {
461 int i;
e71769ae 462
5c447d27 463 for (i = 1; i < nr; i++) {
89eb946a 464 xas_next(&xas);
4101196b 465 xas_store(&xas, newpage);
e71769ae 466 }
e71769ae 467 }
7cf9c2c7
NP
468
469 /*
937a94c9
JG
470 * Drop cache reference from old page by unfreezing
471 * to one less reference.
7cf9c2c7
NP
472 * We know this isn't the last reference.
473 */
5c447d27 474 page_ref_unfreeze(page, expected_count - nr);
7cf9c2c7 475
89eb946a 476 xas_unlock(&xas);
42cb14b1
HD
477 /* Leave irq disabled to prevent preemption while updating stats */
478
0e8c7d0f
CL
479 /*
480 * If moved to a different zone then also account
481 * the page for that zone. Other VM counters will be
482 * taken care of when we establish references to the
483 * new page and drop references to the old page.
484 *
485 * Note that anonymous pages are accounted for
4b9d0fab 486 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
487 * are mapped to swap space.
488 */
42cb14b1 489 if (newzone != oldzone) {
0d1c2072
JW
490 struct lruvec *old_lruvec, *new_lruvec;
491 struct mem_cgroup *memcg;
492
493 memcg = page_memcg(page);
494 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
495 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
496
5c447d27
SB
497 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
498 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
42cb14b1 499 if (PageSwapBacked(page) && !PageSwapCache(page)) {
5c447d27
SB
500 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
501 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
42cb14b1 502 }
f56753ac 503 if (dirty && mapping_can_writeback(mapping)) {
5c447d27
SB
504 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
505 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
506 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
507 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
42cb14b1 508 }
4b02108a 509 }
42cb14b1 510 local_irq_enable();
b20a3503 511
78bd5209 512 return MIGRATEPAGE_SUCCESS;
b20a3503 513}
1118dce7 514EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 515
290408d4
NH
516/*
517 * The expected number of remaining references is the same as that
518 * of migrate_page_move_mapping().
519 */
520int migrate_huge_page_move_mapping(struct address_space *mapping,
521 struct page *newpage, struct page *page)
522{
89eb946a 523 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 524 int expected_count;
290408d4 525
89eb946a 526 xas_lock_irq(&xas);
290408d4 527 expected_count = 2 + page_has_private(page);
89eb946a
MW
528 if (page_count(page) != expected_count || xas_load(&xas) != page) {
529 xas_unlock_irq(&xas);
290408d4
NH
530 return -EAGAIN;
531 }
532
fe896d18 533 if (!page_ref_freeze(page, expected_count)) {
89eb946a 534 xas_unlock_irq(&xas);
290408d4
NH
535 return -EAGAIN;
536 }
537
cf4b769a
HD
538 newpage->index = page->index;
539 newpage->mapping = page->mapping;
6a93ca8f 540
290408d4
NH
541 get_page(newpage);
542
89eb946a 543 xas_store(&xas, newpage);
290408d4 544
fe896d18 545 page_ref_unfreeze(page, expected_count - 1);
290408d4 546
89eb946a 547 xas_unlock_irq(&xas);
6a93ca8f 548
78bd5209 549 return MIGRATEPAGE_SUCCESS;
290408d4
NH
550}
551
30b0a105
DH
552/*
553 * Gigantic pages are so large that we do not guarantee that page++ pointer
554 * arithmetic will work across the entire page. We need something more
555 * specialized.
556 */
557static void __copy_gigantic_page(struct page *dst, struct page *src,
558 int nr_pages)
559{
560 int i;
561 struct page *dst_base = dst;
562 struct page *src_base = src;
563
564 for (i = 0; i < nr_pages; ) {
565 cond_resched();
566 copy_highpage(dst, src);
567
568 i++;
569 dst = mem_map_next(dst, dst_base, i);
570 src = mem_map_next(src, src_base, i);
571 }
572}
573
574static void copy_huge_page(struct page *dst, struct page *src)
575{
576 int i;
577 int nr_pages;
578
579 if (PageHuge(src)) {
580 /* hugetlbfs page */
581 struct hstate *h = page_hstate(src);
582 nr_pages = pages_per_huge_page(h);
583
584 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
585 __copy_gigantic_page(dst, src, nr_pages);
586 return;
587 }
588 } else {
589 /* thp page */
590 BUG_ON(!PageTransHuge(src));
6c357848 591 nr_pages = thp_nr_pages(src);
30b0a105
DH
592 }
593
594 for (i = 0; i < nr_pages; i++) {
595 cond_resched();
596 copy_highpage(dst + i, src + i);
597 }
598}
599
b20a3503
CL
600/*
601 * Copy the page to its new location
602 */
2916ecc0 603void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 604{
7851a45c
RR
605 int cpupid;
606
b20a3503
CL
607 if (PageError(page))
608 SetPageError(newpage);
609 if (PageReferenced(page))
610 SetPageReferenced(newpage);
611 if (PageUptodate(page))
612 SetPageUptodate(newpage);
894bc310 613 if (TestClearPageActive(page)) {
309381fe 614 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 615 SetPageActive(newpage);
418b27ef
LS
616 } else if (TestClearPageUnevictable(page))
617 SetPageUnevictable(newpage);
1899ad18
JW
618 if (PageWorkingset(page))
619 SetPageWorkingset(newpage);
b20a3503
CL
620 if (PageChecked(page))
621 SetPageChecked(newpage);
622 if (PageMappedToDisk(page))
623 SetPageMappedToDisk(newpage);
624
42cb14b1
HD
625 /* Move dirty on pages not done by migrate_page_move_mapping() */
626 if (PageDirty(page))
627 SetPageDirty(newpage);
b20a3503 628
33c3fc71
VD
629 if (page_is_young(page))
630 set_page_young(newpage);
631 if (page_is_idle(page))
632 set_page_idle(newpage);
633
7851a45c
RR
634 /*
635 * Copy NUMA information to the new page, to prevent over-eager
636 * future migrations of this same page.
637 */
638 cpupid = page_cpupid_xchg_last(page, -1);
639 page_cpupid_xchg_last(newpage, cpupid);
640
e9995ef9 641 ksm_migrate_page(newpage, page);
c8d6553b
HD
642 /*
643 * Please do not reorder this without considering how mm/ksm.c's
644 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
645 */
b3b3a99c
NH
646 if (PageSwapCache(page))
647 ClearPageSwapCache(page);
b20a3503
CL
648 ClearPagePrivate(page);
649 set_page_private(page, 0);
b20a3503
CL
650
651 /*
652 * If any waiters have accumulated on the new page then
653 * wake them up.
654 */
655 if (PageWriteback(newpage))
656 end_page_writeback(newpage);
d435edca 657
6aeff241
YS
658 /*
659 * PG_readahead shares the same bit with PG_reclaim. The above
660 * end_page_writeback() may clear PG_readahead mistakenly, so set the
661 * bit after that.
662 */
663 if (PageReadahead(page))
664 SetPageReadahead(newpage);
665
d435edca 666 copy_page_owner(page, newpage);
74485cf2 667
a333e3e7
HD
668 if (!PageHuge(page))
669 mem_cgroup_migrate(page, newpage);
b20a3503 670}
2916ecc0
JG
671EXPORT_SYMBOL(migrate_page_states);
672
673void migrate_page_copy(struct page *newpage, struct page *page)
674{
675 if (PageHuge(page) || PageTransHuge(page))
676 copy_huge_page(newpage, page);
677 else
678 copy_highpage(newpage, page);
679
680 migrate_page_states(newpage, page);
681}
1118dce7 682EXPORT_SYMBOL(migrate_page_copy);
b20a3503 683
1d8b85cc
CL
684/************************************************************
685 * Migration functions
686 ***********************************************************/
687
b20a3503 688/*
bda807d4 689 * Common logic to directly migrate a single LRU page suitable for
266cf658 690 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
691 *
692 * Pages are locked upon entry and exit.
693 */
2d1db3b1 694int migrate_page(struct address_space *mapping,
a6bc32b8
MG
695 struct page *newpage, struct page *page,
696 enum migrate_mode mode)
b20a3503
CL
697{
698 int rc;
699
700 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
701
37109694 702 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
b20a3503 703
78bd5209 704 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
705 return rc;
706
2916ecc0
JG
707 if (mode != MIGRATE_SYNC_NO_COPY)
708 migrate_page_copy(newpage, page);
709 else
710 migrate_page_states(newpage, page);
78bd5209 711 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
712}
713EXPORT_SYMBOL(migrate_page);
714
9361401e 715#ifdef CONFIG_BLOCK
84ade7c1
JK
716/* Returns true if all buffers are successfully locked */
717static bool buffer_migrate_lock_buffers(struct buffer_head *head,
718 enum migrate_mode mode)
719{
720 struct buffer_head *bh = head;
721
722 /* Simple case, sync compaction */
723 if (mode != MIGRATE_ASYNC) {
724 do {
84ade7c1
JK
725 lock_buffer(bh);
726 bh = bh->b_this_page;
727
728 } while (bh != head);
729
730 return true;
731 }
732
733 /* async case, we cannot block on lock_buffer so use trylock_buffer */
734 do {
84ade7c1
JK
735 if (!trylock_buffer(bh)) {
736 /*
737 * We failed to lock the buffer and cannot stall in
738 * async migration. Release the taken locks
739 */
740 struct buffer_head *failed_bh = bh;
84ade7c1
JK
741 bh = head;
742 while (bh != failed_bh) {
743 unlock_buffer(bh);
84ade7c1
JK
744 bh = bh->b_this_page;
745 }
746 return false;
747 }
748
749 bh = bh->b_this_page;
750 } while (bh != head);
751 return true;
752}
753
89cb0888
JK
754static int __buffer_migrate_page(struct address_space *mapping,
755 struct page *newpage, struct page *page, enum migrate_mode mode,
756 bool check_refs)
1d8b85cc 757{
1d8b85cc
CL
758 struct buffer_head *bh, *head;
759 int rc;
cc4f11e6 760 int expected_count;
1d8b85cc 761
1d8b85cc 762 if (!page_has_buffers(page))
a6bc32b8 763 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 764
cc4f11e6 765 /* Check whether page does not have extra refs before we do more work */
f900482d 766 expected_count = expected_page_refs(mapping, page);
cc4f11e6
JK
767 if (page_count(page) != expected_count)
768 return -EAGAIN;
1d8b85cc 769
cc4f11e6
JK
770 head = page_buffers(page);
771 if (!buffer_migrate_lock_buffers(head, mode))
772 return -EAGAIN;
1d8b85cc 773
89cb0888
JK
774 if (check_refs) {
775 bool busy;
776 bool invalidated = false;
777
778recheck_buffers:
779 busy = false;
780 spin_lock(&mapping->private_lock);
781 bh = head;
782 do {
783 if (atomic_read(&bh->b_count)) {
784 busy = true;
785 break;
786 }
787 bh = bh->b_this_page;
788 } while (bh != head);
89cb0888
JK
789 if (busy) {
790 if (invalidated) {
791 rc = -EAGAIN;
792 goto unlock_buffers;
793 }
ebdf4de5 794 spin_unlock(&mapping->private_lock);
89cb0888
JK
795 invalidate_bh_lrus();
796 invalidated = true;
797 goto recheck_buffers;
798 }
799 }
800
37109694 801 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
78bd5209 802 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 803 goto unlock_buffers;
1d8b85cc 804
cd0f3715 805 attach_page_private(newpage, detach_page_private(page));
1d8b85cc
CL
806
807 bh = head;
808 do {
809 set_bh_page(bh, newpage, bh_offset(bh));
810 bh = bh->b_this_page;
811
812 } while (bh != head);
813
2916ecc0
JG
814 if (mode != MIGRATE_SYNC_NO_COPY)
815 migrate_page_copy(newpage, page);
816 else
817 migrate_page_states(newpage, page);
1d8b85cc 818
cc4f11e6
JK
819 rc = MIGRATEPAGE_SUCCESS;
820unlock_buffers:
ebdf4de5
JK
821 if (check_refs)
822 spin_unlock(&mapping->private_lock);
1d8b85cc
CL
823 bh = head;
824 do {
825 unlock_buffer(bh);
1d8b85cc
CL
826 bh = bh->b_this_page;
827
828 } while (bh != head);
829
cc4f11e6 830 return rc;
1d8b85cc 831}
89cb0888
JK
832
833/*
834 * Migration function for pages with buffers. This function can only be used
835 * if the underlying filesystem guarantees that no other references to "page"
836 * exist. For example attached buffer heads are accessed only under page lock.
837 */
838int buffer_migrate_page(struct address_space *mapping,
839 struct page *newpage, struct page *page, enum migrate_mode mode)
840{
841 return __buffer_migrate_page(mapping, newpage, page, mode, false);
842}
1d8b85cc 843EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
844
845/*
846 * Same as above except that this variant is more careful and checks that there
847 * are also no buffer head references. This function is the right one for
848 * mappings where buffer heads are directly looked up and referenced (such as
849 * block device mappings).
850 */
851int buffer_migrate_page_norefs(struct address_space *mapping,
852 struct page *newpage, struct page *page, enum migrate_mode mode)
853{
854 return __buffer_migrate_page(mapping, newpage, page, mode, true);
855}
9361401e 856#endif
1d8b85cc 857
04e62a29
CL
858/*
859 * Writeback a page to clean the dirty state
860 */
861static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 862{
04e62a29
CL
863 struct writeback_control wbc = {
864 .sync_mode = WB_SYNC_NONE,
865 .nr_to_write = 1,
866 .range_start = 0,
867 .range_end = LLONG_MAX,
04e62a29
CL
868 .for_reclaim = 1
869 };
870 int rc;
871
872 if (!mapping->a_ops->writepage)
873 /* No write method for the address space */
874 return -EINVAL;
875
876 if (!clear_page_dirty_for_io(page))
877 /* Someone else already triggered a write */
878 return -EAGAIN;
879
8351a6e4 880 /*
04e62a29
CL
881 * A dirty page may imply that the underlying filesystem has
882 * the page on some queue. So the page must be clean for
883 * migration. Writeout may mean we loose the lock and the
884 * page state is no longer what we checked for earlier.
885 * At this point we know that the migration attempt cannot
886 * be successful.
8351a6e4 887 */
e388466d 888 remove_migration_ptes(page, page, false);
8351a6e4 889
04e62a29 890 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 891
04e62a29
CL
892 if (rc != AOP_WRITEPAGE_ACTIVATE)
893 /* unlocked. Relock */
894 lock_page(page);
895
bda8550d 896 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
897}
898
899/*
900 * Default handling if a filesystem does not provide a migration function.
901 */
902static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 903 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 904{
b969c4ab 905 if (PageDirty(page)) {
a6bc32b8 906 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
907 switch (mode) {
908 case MIGRATE_SYNC:
909 case MIGRATE_SYNC_NO_COPY:
910 break;
911 default:
b969c4ab 912 return -EBUSY;
2916ecc0 913 }
04e62a29 914 return writeout(mapping, page);
b969c4ab 915 }
8351a6e4
CL
916
917 /*
918 * Buffers may be managed in a filesystem specific way.
919 * We must have no buffers or drop them.
920 */
266cf658 921 if (page_has_private(page) &&
8351a6e4 922 !try_to_release_page(page, GFP_KERNEL))
806031bb 923 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
8351a6e4 924
a6bc32b8 925 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
926}
927
e24f0b8f
CL
928/*
929 * Move a page to a newly allocated page
930 * The page is locked and all ptes have been successfully removed.
931 *
932 * The new page will have replaced the old page if this function
933 * is successful.
894bc310
LS
934 *
935 * Return value:
936 * < 0 - error code
78bd5209 937 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 938 */
3fe2011f 939static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 940 enum migrate_mode mode)
e24f0b8f
CL
941{
942 struct address_space *mapping;
bda807d4
MK
943 int rc = -EAGAIN;
944 bool is_lru = !__PageMovable(page);
e24f0b8f 945
7db7671f
HD
946 VM_BUG_ON_PAGE(!PageLocked(page), page);
947 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 948
e24f0b8f 949 mapping = page_mapping(page);
bda807d4
MK
950
951 if (likely(is_lru)) {
952 if (!mapping)
953 rc = migrate_page(mapping, newpage, page, mode);
954 else if (mapping->a_ops->migratepage)
955 /*
956 * Most pages have a mapping and most filesystems
957 * provide a migratepage callback. Anonymous pages
958 * are part of swap space which also has its own
959 * migratepage callback. This is the most common path
960 * for page migration.
961 */
962 rc = mapping->a_ops->migratepage(mapping, newpage,
963 page, mode);
964 else
965 rc = fallback_migrate_page(mapping, newpage,
966 page, mode);
967 } else {
e24f0b8f 968 /*
bda807d4
MK
969 * In case of non-lru page, it could be released after
970 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 971 */
bda807d4
MK
972 VM_BUG_ON_PAGE(!PageIsolated(page), page);
973 if (!PageMovable(page)) {
974 rc = MIGRATEPAGE_SUCCESS;
975 __ClearPageIsolated(page);
976 goto out;
977 }
978
979 rc = mapping->a_ops->migratepage(mapping, newpage,
980 page, mode);
981 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
982 !PageIsolated(page));
983 }
e24f0b8f 984
5c3f9a67
HD
985 /*
986 * When successful, old pagecache page->mapping must be cleared before
987 * page is freed; but stats require that PageAnon be left as PageAnon.
988 */
989 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
990 if (__PageMovable(page)) {
991 VM_BUG_ON_PAGE(!PageIsolated(page), page);
992
993 /*
994 * We clear PG_movable under page_lock so any compactor
995 * cannot try to migrate this page.
996 */
997 __ClearPageIsolated(page);
998 }
999
1000 /*
c23a0c99 1001 * Anonymous and movable page->mapping will be cleared by
bda807d4
MK
1002 * free_pages_prepare so don't reset it here for keeping
1003 * the type to work PageAnon, for example.
1004 */
1005 if (!PageMappingFlags(page))
5c3f9a67 1006 page->mapping = NULL;
d2b2c6dd 1007
25b2995a 1008 if (likely(!is_zone_device_page(newpage)))
d2b2c6dd
LP
1009 flush_dcache_page(newpage);
1010
3fe2011f 1011 }
bda807d4 1012out:
e24f0b8f
CL
1013 return rc;
1014}
1015
0dabec93 1016static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 1017 int force, enum migrate_mode mode)
e24f0b8f 1018{
0dabec93 1019 int rc = -EAGAIN;
2ebba6b7 1020 int page_was_mapped = 0;
3f6c8272 1021 struct anon_vma *anon_vma = NULL;
bda807d4 1022 bool is_lru = !__PageMovable(page);
95a402c3 1023
529ae9aa 1024 if (!trylock_page(page)) {
a6bc32b8 1025 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1026 goto out;
3e7d3449
MG
1027
1028 /*
1029 * It's not safe for direct compaction to call lock_page.
1030 * For example, during page readahead pages are added locked
1031 * to the LRU. Later, when the IO completes the pages are
1032 * marked uptodate and unlocked. However, the queueing
1033 * could be merging multiple pages for one bio (e.g.
d4388340 1034 * mpage_readahead). If an allocation happens for the
3e7d3449
MG
1035 * second or third page, the process can end up locking
1036 * the same page twice and deadlocking. Rather than
1037 * trying to be clever about what pages can be locked,
1038 * avoid the use of lock_page for direct compaction
1039 * altogether.
1040 */
1041 if (current->flags & PF_MEMALLOC)
0dabec93 1042 goto out;
3e7d3449 1043
e24f0b8f
CL
1044 lock_page(page);
1045 }
1046
1047 if (PageWriteback(page)) {
11bc82d6 1048 /*
fed5b64a 1049 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1050 * necessary to wait for PageWriteback. In the async case,
1051 * the retry loop is too short and in the sync-light case,
1052 * the overhead of stalling is too much
11bc82d6 1053 */
2916ecc0
JG
1054 switch (mode) {
1055 case MIGRATE_SYNC:
1056 case MIGRATE_SYNC_NO_COPY:
1057 break;
1058 default:
11bc82d6 1059 rc = -EBUSY;
0a31bc97 1060 goto out_unlock;
11bc82d6
AA
1061 }
1062 if (!force)
0a31bc97 1063 goto out_unlock;
e24f0b8f
CL
1064 wait_on_page_writeback(page);
1065 }
03f15c86 1066
e24f0b8f 1067 /*
dc386d4d
KH
1068 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1069 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1070 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1071 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1072 * File Caches may use write_page() or lock_page() in migration, then,
1073 * just care Anon page here.
03f15c86
HD
1074 *
1075 * Only page_get_anon_vma() understands the subtleties of
1076 * getting a hold on an anon_vma from outside one of its mms.
1077 * But if we cannot get anon_vma, then we won't need it anyway,
1078 * because that implies that the anon page is no longer mapped
1079 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1080 */
03f15c86 1081 if (PageAnon(page) && !PageKsm(page))
746b18d4 1082 anon_vma = page_get_anon_vma(page);
62e1c553 1083
7db7671f
HD
1084 /*
1085 * Block others from accessing the new page when we get around to
1086 * establishing additional references. We are usually the only one
1087 * holding a reference to newpage at this point. We used to have a BUG
1088 * here if trylock_page(newpage) fails, but would like to allow for
1089 * cases where there might be a race with the previous use of newpage.
1090 * This is much like races on refcount of oldpage: just don't BUG().
1091 */
1092 if (unlikely(!trylock_page(newpage)))
1093 goto out_unlock;
1094
bda807d4
MK
1095 if (unlikely(!is_lru)) {
1096 rc = move_to_new_page(newpage, page, mode);
1097 goto out_unlock_both;
1098 }
1099
dc386d4d 1100 /*
62e1c553
SL
1101 * Corner case handling:
1102 * 1. When a new swap-cache page is read into, it is added to the LRU
1103 * and treated as swapcache but it has no rmap yet.
1104 * Calling try_to_unmap() against a page->mapping==NULL page will
1105 * trigger a BUG. So handle it here.
d12b8951 1106 * 2. An orphaned page (see truncate_cleanup_page) might have
62e1c553
SL
1107 * fs-private metadata. The page can be picked up due to memory
1108 * offlining. Everywhere else except page reclaim, the page is
1109 * invisible to the vm, so the page can not be migrated. So try to
1110 * free the metadata, so the page can be freed.
e24f0b8f 1111 */
62e1c553 1112 if (!page->mapping) {
309381fe 1113 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1114 if (page_has_private(page)) {
62e1c553 1115 try_to_free_buffers(page);
7db7671f 1116 goto out_unlock_both;
62e1c553 1117 }
7db7671f
HD
1118 } else if (page_mapped(page)) {
1119 /* Establish migration ptes */
03f15c86
HD
1120 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1121 page);
013339df 1122 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
2ebba6b7
HD
1123 page_was_mapped = 1;
1124 }
dc386d4d 1125
e6a1530d 1126 if (!page_mapped(page))
5c3f9a67 1127 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1128
5c3f9a67
HD
1129 if (page_was_mapped)
1130 remove_migration_ptes(page,
e388466d 1131 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1132
7db7671f
HD
1133out_unlock_both:
1134 unlock_page(newpage);
1135out_unlock:
3f6c8272 1136 /* Drop an anon_vma reference if we took one */
76545066 1137 if (anon_vma)
9e60109f 1138 put_anon_vma(anon_vma);
e24f0b8f 1139 unlock_page(page);
0dabec93 1140out:
c6c919eb
MK
1141 /*
1142 * If migration is successful, decrease refcount of the newpage
1143 * which will not free the page because new page owner increased
1144 * refcounter. As well, if it is LRU page, add the page to LRU
e0a352fa
DH
1145 * list in here. Use the old state of the isolated source page to
1146 * determine if we migrated a LRU page. newpage was already unlocked
1147 * and possibly modified by its owner - don't rely on the page
1148 * state.
c6c919eb
MK
1149 */
1150 if (rc == MIGRATEPAGE_SUCCESS) {
e0a352fa 1151 if (unlikely(!is_lru))
c6c919eb
MK
1152 put_page(newpage);
1153 else
1154 putback_lru_page(newpage);
1155 }
1156
0dabec93
MK
1157 return rc;
1158}
95a402c3 1159
0dabec93
MK
1160/*
1161 * Obtain the lock on page, remove all ptes and migrate the page
1162 * to the newly allocated page in newpage.
1163 */
6ec4476a 1164static int unmap_and_move(new_page_t get_new_page,
ef2a5153
GU
1165 free_page_t put_new_page,
1166 unsigned long private, struct page *page,
add05cec 1167 int force, enum migrate_mode mode,
dd4ae78a
YS
1168 enum migrate_reason reason,
1169 struct list_head *ret)
0dabec93 1170{
2def7424 1171 int rc = MIGRATEPAGE_SUCCESS;
74d4a579 1172 struct page *newpage = NULL;
0dabec93 1173
94723aaf 1174 if (!thp_migration_supported() && PageTransHuge(page))
d532e2e5 1175 return -ENOSYS;
94723aaf 1176
0dabec93
MK
1177 if (page_count(page) == 1) {
1178 /* page was freed from under us. So we are done. */
c6c919eb
MK
1179 ClearPageActive(page);
1180 ClearPageUnevictable(page);
bda807d4
MK
1181 if (unlikely(__PageMovable(page))) {
1182 lock_page(page);
1183 if (!PageMovable(page))
1184 __ClearPageIsolated(page);
1185 unlock_page(page);
1186 }
0dabec93
MK
1187 goto out;
1188 }
1189
74d4a579
YS
1190 newpage = get_new_page(page, private);
1191 if (!newpage)
1192 return -ENOMEM;
1193
9c620e2b 1194 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1195 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1196 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1197
0dabec93 1198out:
e24f0b8f 1199 if (rc != -EAGAIN) {
0dabec93
MK
1200 /*
1201 * A page that has been migrated has all references
1202 * removed and will be freed. A page that has not been
c23a0c99 1203 * migrated will have kept its references and be restored.
0dabec93
MK
1204 */
1205 list_del(&page->lru);
dd4ae78a 1206 }
6afcf8ef 1207
dd4ae78a
YS
1208 /*
1209 * If migration is successful, releases reference grabbed during
1210 * isolation. Otherwise, restore the page to right list unless
1211 * we want to retry.
1212 */
1213 if (rc == MIGRATEPAGE_SUCCESS) {
6afcf8ef
ML
1214 /*
1215 * Compaction can migrate also non-LRU pages which are
1216 * not accounted to NR_ISOLATED_*. They can be recognized
1217 * as __PageMovable
1218 */
1219 if (likely(!__PageMovable(page)))
e8db67eb 1220 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 1221 page_is_file_lru(page), -thp_nr_pages(page));
c6c919eb 1222
79f5f8fa 1223 if (reason != MR_MEMORY_FAILURE)
d7e69488 1224 /*
79f5f8fa 1225 * We release the page in page_handle_poison.
d7e69488 1226 */
79f5f8fa 1227 put_page(page);
c6c919eb 1228 } else {
dd4ae78a
YS
1229 if (rc != -EAGAIN)
1230 list_add_tail(&page->lru, ret);
bda807d4 1231
c6c919eb
MK
1232 if (put_new_page)
1233 put_new_page(newpage, private);
1234 else
1235 put_page(newpage);
e24f0b8f 1236 }
68711a74 1237
e24f0b8f
CL
1238 return rc;
1239}
1240
290408d4
NH
1241/*
1242 * Counterpart of unmap_and_move_page() for hugepage migration.
1243 *
1244 * This function doesn't wait the completion of hugepage I/O
1245 * because there is no race between I/O and migration for hugepage.
1246 * Note that currently hugepage I/O occurs only in direct I/O
1247 * where no lock is held and PG_writeback is irrelevant,
1248 * and writeback status of all subpages are counted in the reference
1249 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1250 * under direct I/O, the reference of the head page is 512 and a bit more.)
1251 * This means that when we try to migrate hugepage whose subpages are
1252 * doing direct I/O, some references remain after try_to_unmap() and
1253 * hugepage migration fails without data corruption.
1254 *
1255 * There is also no race when direct I/O is issued on the page under migration,
1256 * because then pte is replaced with migration swap entry and direct I/O code
1257 * will wait in the page fault for migration to complete.
1258 */
1259static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1260 free_page_t put_new_page, unsigned long private,
1261 struct page *hpage, int force,
dd4ae78a
YS
1262 enum migrate_mode mode, int reason,
1263 struct list_head *ret)
290408d4 1264{
2def7424 1265 int rc = -EAGAIN;
2ebba6b7 1266 int page_was_mapped = 0;
32665f2b 1267 struct page *new_hpage;
290408d4 1268 struct anon_vma *anon_vma = NULL;
c0d0381a 1269 struct address_space *mapping = NULL;
290408d4 1270
83467efb 1271 /*
7ed2c31d 1272 * Migratability of hugepages depends on architectures and their size.
83467efb
NH
1273 * This check is necessary because some callers of hugepage migration
1274 * like soft offline and memory hotremove don't walk through page
1275 * tables or check whether the hugepage is pmd-based or not before
1276 * kicking migration.
1277 */
100873d7 1278 if (!hugepage_migration_supported(page_hstate(hpage))) {
dd4ae78a 1279 list_move_tail(&hpage->lru, ret);
83467efb 1280 return -ENOSYS;
32665f2b 1281 }
83467efb 1282
666feb21 1283 new_hpage = get_new_page(hpage, private);
290408d4
NH
1284 if (!new_hpage)
1285 return -ENOMEM;
1286
290408d4 1287 if (!trylock_page(hpage)) {
2916ecc0 1288 if (!force)
290408d4 1289 goto out;
2916ecc0
JG
1290 switch (mode) {
1291 case MIGRATE_SYNC:
1292 case MIGRATE_SYNC_NO_COPY:
1293 break;
1294 default:
1295 goto out;
1296 }
290408d4
NH
1297 lock_page(hpage);
1298 }
1299
cb6acd01
MK
1300 /*
1301 * Check for pages which are in the process of being freed. Without
1302 * page_mapping() set, hugetlbfs specific move page routine will not
1303 * be called and we could leak usage counts for subpools.
1304 */
1305 if (page_private(hpage) && !page_mapping(hpage)) {
1306 rc = -EBUSY;
1307 goto out_unlock;
1308 }
1309
746b18d4
PZ
1310 if (PageAnon(hpage))
1311 anon_vma = page_get_anon_vma(hpage);
290408d4 1312
7db7671f
HD
1313 if (unlikely(!trylock_page(new_hpage)))
1314 goto put_anon;
1315
2ebba6b7 1316 if (page_mapped(hpage)) {
336bf30e 1317 bool mapping_locked = false;
013339df 1318 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
336bf30e
MK
1319
1320 if (!PageAnon(hpage)) {
1321 /*
1322 * In shared mappings, try_to_unmap could potentially
1323 * call huge_pmd_unshare. Because of this, take
1324 * semaphore in write mode here and set TTU_RMAP_LOCKED
1325 * to let lower levels know we have taken the lock.
1326 */
1327 mapping = hugetlb_page_mapping_lock_write(hpage);
1328 if (unlikely(!mapping))
1329 goto unlock_put_anon;
1330
1331 mapping_locked = true;
1332 ttu |= TTU_RMAP_LOCKED;
1333 }
c0d0381a 1334
336bf30e 1335 try_to_unmap(hpage, ttu);
2ebba6b7 1336 page_was_mapped = 1;
336bf30e
MK
1337
1338 if (mapping_locked)
1339 i_mmap_unlock_write(mapping);
2ebba6b7 1340 }
290408d4
NH
1341
1342 if (!page_mapped(hpage))
5c3f9a67 1343 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1344
336bf30e 1345 if (page_was_mapped)
5c3f9a67 1346 remove_migration_ptes(hpage,
336bf30e 1347 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1348
c0d0381a 1349unlock_put_anon:
7db7671f
HD
1350 unlock_page(new_hpage);
1351
1352put_anon:
fd4a4663 1353 if (anon_vma)
9e60109f 1354 put_anon_vma(anon_vma);
8e6ac7fa 1355
2def7424 1356 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1357 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1358 put_new_page = NULL;
1359 }
8e6ac7fa 1360
cb6acd01 1361out_unlock:
290408d4 1362 unlock_page(hpage);
09761333 1363out:
dd4ae78a 1364 if (rc == MIGRATEPAGE_SUCCESS)
b8ec1cee 1365 putback_active_hugepage(hpage);
dd4ae78a
YS
1366 else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1367 list_move_tail(&hpage->lru, ret);
68711a74
DR
1368
1369 /*
1370 * If migration was not successful and there's a freeing callback, use
1371 * it. Otherwise, put_page() will drop the reference grabbed during
1372 * isolation.
1373 */
2def7424 1374 if (put_new_page)
68711a74
DR
1375 put_new_page(new_hpage, private);
1376 else
3aaa76e1 1377 putback_active_hugepage(new_hpage);
68711a74 1378
290408d4
NH
1379 return rc;
1380}
1381
d532e2e5
YS
1382static inline int try_split_thp(struct page *page, struct page **page2,
1383 struct list_head *from)
1384{
1385 int rc = 0;
1386
1387 lock_page(page);
1388 rc = split_huge_page_to_list(page, from);
1389 unlock_page(page);
1390 if (!rc)
1391 list_safe_reset_next(page, *page2, lru);
1392
1393 return rc;
1394}
1395
b20a3503 1396/*
c73e5c9c
SB
1397 * migrate_pages - migrate the pages specified in a list, to the free pages
1398 * supplied as the target for the page migration
b20a3503 1399 *
c73e5c9c
SB
1400 * @from: The list of pages to be migrated.
1401 * @get_new_page: The function used to allocate free pages to be used
1402 * as the target of the page migration.
68711a74
DR
1403 * @put_new_page: The function used to free target pages if migration
1404 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1405 * @private: Private data to be passed on to get_new_page()
1406 * @mode: The migration mode that specifies the constraints for
1407 * page migration, if any.
1408 * @reason: The reason for page migration.
b20a3503 1409 *
c73e5c9c
SB
1410 * The function returns after 10 attempts or if no pages are movable any more
1411 * because the list has become empty or no retryable pages exist any more.
dd4ae78a
YS
1412 * It is caller's responsibility to call putback_movable_pages() to return pages
1413 * to the LRU or free list only if ret != 0.
b20a3503 1414 *
c73e5c9c 1415 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1416 */
9c620e2b 1417int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1418 free_page_t put_new_page, unsigned long private,
1419 enum migrate_mode mode, int reason)
b20a3503 1420{
e24f0b8f 1421 int retry = 1;
1a5bae25 1422 int thp_retry = 1;
b20a3503 1423 int nr_failed = 0;
5647bc29 1424 int nr_succeeded = 0;
1a5bae25
AK
1425 int nr_thp_succeeded = 0;
1426 int nr_thp_failed = 0;
1427 int nr_thp_split = 0;
b20a3503 1428 int pass = 0;
1a5bae25 1429 bool is_thp = false;
b20a3503
CL
1430 struct page *page;
1431 struct page *page2;
1432 int swapwrite = current->flags & PF_SWAPWRITE;
1a5bae25 1433 int rc, nr_subpages;
dd4ae78a 1434 LIST_HEAD(ret_pages);
b20a3503
CL
1435
1436 if (!swapwrite)
1437 current->flags |= PF_SWAPWRITE;
1438
1a5bae25 1439 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
e24f0b8f 1440 retry = 0;
1a5bae25 1441 thp_retry = 0;
b20a3503 1442
e24f0b8f 1443 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1444retry:
1a5bae25
AK
1445 /*
1446 * THP statistics is based on the source huge page.
1447 * Capture required information that might get lost
1448 * during migration.
1449 */
6c5c7b9f 1450 is_thp = PageTransHuge(page) && !PageHuge(page);
6c357848 1451 nr_subpages = thp_nr_pages(page);
e24f0b8f 1452 cond_resched();
2d1db3b1 1453
31caf665
NH
1454 if (PageHuge(page))
1455 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1456 put_new_page, private, page,
dd4ae78a
YS
1457 pass > 2, mode, reason,
1458 &ret_pages);
31caf665 1459 else
68711a74 1460 rc = unmap_and_move(get_new_page, put_new_page,
add05cec 1461 private, page, pass > 2, mode,
dd4ae78a
YS
1462 reason, &ret_pages);
1463 /*
1464 * The rules are:
1465 * Success: non hugetlb page will be freed, hugetlb
1466 * page will be put back
1467 * -EAGAIN: stay on the from list
1468 * -ENOMEM: stay on the from list
1469 * Other errno: put on ret_pages list then splice to
1470 * from list
1471 */
e24f0b8f 1472 switch(rc) {
d532e2e5
YS
1473 /*
1474 * THP migration might be unsupported or the
1475 * allocation could've failed so we should
1476 * retry on the same page with the THP split
1477 * to base pages.
1478 *
1479 * Head page is retried immediately and tail
1480 * pages are added to the tail of the list so
1481 * we encounter them after the rest of the list
1482 * is processed.
1483 */
1484 case -ENOSYS:
1485 /* THP migration is unsupported */
1486 if (is_thp) {
1487 if (!try_split_thp(page, &page2, from)) {
1488 nr_thp_split++;
1489 goto retry;
1490 }
1491
1492 nr_thp_failed++;
1493 nr_failed += nr_subpages;
1494 break;
1495 }
1496
1497 /* Hugetlb migration is unsupported */
1498 nr_failed++;
1499 break;
95a402c3 1500 case -ENOMEM:
94723aaf 1501 /*
d532e2e5
YS
1502 * When memory is low, don't bother to try to migrate
1503 * other pages, just exit.
94723aaf 1504 */
6c5c7b9f 1505 if (is_thp) {
d532e2e5 1506 if (!try_split_thp(page, &page2, from)) {
1a5bae25 1507 nr_thp_split++;
94723aaf
MH
1508 goto retry;
1509 }
6c5c7b9f 1510
1a5bae25
AK
1511 nr_thp_failed++;
1512 nr_failed += nr_subpages;
1513 goto out;
1514 }
dfef2ef4 1515 nr_failed++;
95a402c3 1516 goto out;
e24f0b8f 1517 case -EAGAIN:
1a5bae25
AK
1518 if (is_thp) {
1519 thp_retry++;
1520 break;
1521 }
2d1db3b1 1522 retry++;
e24f0b8f 1523 break;
78bd5209 1524 case MIGRATEPAGE_SUCCESS:
1a5bae25
AK
1525 if (is_thp) {
1526 nr_thp_succeeded++;
1527 nr_succeeded += nr_subpages;
1528 break;
1529 }
5647bc29 1530 nr_succeeded++;
e24f0b8f
CL
1531 break;
1532 default:
354a3363 1533 /*
d532e2e5 1534 * Permanent failure (-EBUSY, etc.):
354a3363
NH
1535 * unlike -EAGAIN case, the failed page is
1536 * removed from migration page list and not
1537 * retried in the next outer loop.
1538 */
1a5bae25
AK
1539 if (is_thp) {
1540 nr_thp_failed++;
1541 nr_failed += nr_subpages;
1542 break;
1543 }
2d1db3b1 1544 nr_failed++;
e24f0b8f 1545 break;
2d1db3b1 1546 }
b20a3503
CL
1547 }
1548 }
1a5bae25
AK
1549 nr_failed += retry + thp_retry;
1550 nr_thp_failed += thp_retry;
f2f81fb2 1551 rc = nr_failed;
95a402c3 1552out:
dd4ae78a
YS
1553 /*
1554 * Put the permanent failure page back to migration list, they
1555 * will be put back to the right list by the caller.
1556 */
1557 list_splice(&ret_pages, from);
1558
1a5bae25
AK
1559 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1560 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1561 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1562 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1563 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1564 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1565 nr_thp_failed, nr_thp_split, mode, reason);
7b2a2d4a 1566
b20a3503
CL
1567 if (!swapwrite)
1568 current->flags &= ~PF_SWAPWRITE;
1569
78bd5209 1570 return rc;
b20a3503 1571}
95a402c3 1572
19fc7bed 1573struct page *alloc_migration_target(struct page *page, unsigned long private)
b4b38223 1574{
19fc7bed
JK
1575 struct migration_target_control *mtc;
1576 gfp_t gfp_mask;
b4b38223
JK
1577 unsigned int order = 0;
1578 struct page *new_page = NULL;
19fc7bed
JK
1579 int nid;
1580 int zidx;
1581
1582 mtc = (struct migration_target_control *)private;
1583 gfp_mask = mtc->gfp_mask;
1584 nid = mtc->nid;
1585 if (nid == NUMA_NO_NODE)
1586 nid = page_to_nid(page);
b4b38223 1587
d92bbc27
JK
1588 if (PageHuge(page)) {
1589 struct hstate *h = page_hstate(compound_head(page));
1590
19fc7bed
JK
1591 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1592 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
d92bbc27 1593 }
b4b38223
JK
1594
1595 if (PageTransHuge(page)) {
9933a0c8
JK
1596 /*
1597 * clear __GFP_RECLAIM to make the migration callback
1598 * consistent with regular THP allocations.
1599 */
1600 gfp_mask &= ~__GFP_RECLAIM;
b4b38223
JK
1601 gfp_mask |= GFP_TRANSHUGE;
1602 order = HPAGE_PMD_ORDER;
1603 }
19fc7bed
JK
1604 zidx = zone_idx(page_zone(page));
1605 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
b4b38223
JK
1606 gfp_mask |= __GFP_HIGHMEM;
1607
19fc7bed 1608 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
b4b38223
JK
1609
1610 if (new_page && PageTransHuge(new_page))
1611 prep_transhuge_page(new_page);
1612
1613 return new_page;
1614}
1615
742755a1 1616#ifdef CONFIG_NUMA
742755a1 1617
a49bd4d7 1618static int store_status(int __user *status, int start, int value, int nr)
742755a1 1619{
a49bd4d7
MH
1620 while (nr-- > 0) {
1621 if (put_user(value, status + start))
1622 return -EFAULT;
1623 start++;
1624 }
1625
1626 return 0;
1627}
1628
1629static int do_move_pages_to_node(struct mm_struct *mm,
1630 struct list_head *pagelist, int node)
1631{
1632 int err;
a0976311
JK
1633 struct migration_target_control mtc = {
1634 .nid = node,
1635 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1636 };
a49bd4d7 1637
a0976311
JK
1638 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1639 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
a49bd4d7
MH
1640 if (err)
1641 putback_movable_pages(pagelist);
1642 return err;
742755a1
CL
1643}
1644
1645/*
a49bd4d7
MH
1646 * Resolves the given address to a struct page, isolates it from the LRU and
1647 * puts it to the given pagelist.
e0153fc2
YS
1648 * Returns:
1649 * errno - if the page cannot be found/isolated
1650 * 0 - when it doesn't have to be migrated because it is already on the
1651 * target node
1652 * 1 - when it has been queued
742755a1 1653 */
a49bd4d7
MH
1654static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1655 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1656{
a49bd4d7
MH
1657 struct vm_area_struct *vma;
1658 struct page *page;
1659 unsigned int follflags;
742755a1 1660 int err;
742755a1 1661
d8ed45c5 1662 mmap_read_lock(mm);
a49bd4d7
MH
1663 err = -EFAULT;
1664 vma = find_vma(mm, addr);
1665 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1666 goto out;
742755a1 1667
a49bd4d7
MH
1668 /* FOLL_DUMP to ignore special (like zero) pages */
1669 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1670 page = follow_page(vma, addr, follflags);
89f5b7da 1671
a49bd4d7
MH
1672 err = PTR_ERR(page);
1673 if (IS_ERR(page))
1674 goto out;
89f5b7da 1675
a49bd4d7
MH
1676 err = -ENOENT;
1677 if (!page)
1678 goto out;
742755a1 1679
a49bd4d7
MH
1680 err = 0;
1681 if (page_to_nid(page) == node)
1682 goto out_putpage;
742755a1 1683
a49bd4d7
MH
1684 err = -EACCES;
1685 if (page_mapcount(page) > 1 && !migrate_all)
1686 goto out_putpage;
742755a1 1687
a49bd4d7
MH
1688 if (PageHuge(page)) {
1689 if (PageHead(page)) {
1690 isolate_huge_page(page, pagelist);
e0153fc2 1691 err = 1;
e632a938 1692 }
a49bd4d7
MH
1693 } else {
1694 struct page *head;
e632a938 1695
e8db67eb
NH
1696 head = compound_head(page);
1697 err = isolate_lru_page(head);
cf608ac1 1698 if (err)
a49bd4d7 1699 goto out_putpage;
742755a1 1700
e0153fc2 1701 err = 1;
a49bd4d7
MH
1702 list_add_tail(&head->lru, pagelist);
1703 mod_node_page_state(page_pgdat(head),
9de4f22a 1704 NR_ISOLATED_ANON + page_is_file_lru(head),
6c357848 1705 thp_nr_pages(head));
a49bd4d7
MH
1706 }
1707out_putpage:
1708 /*
1709 * Either remove the duplicate refcount from
1710 * isolate_lru_page() or drop the page ref if it was
1711 * not isolated.
1712 */
1713 put_page(page);
1714out:
d8ed45c5 1715 mmap_read_unlock(mm);
742755a1
CL
1716 return err;
1717}
1718
7ca8783a
WY
1719static int move_pages_and_store_status(struct mm_struct *mm, int node,
1720 struct list_head *pagelist, int __user *status,
1721 int start, int i, unsigned long nr_pages)
1722{
1723 int err;
1724
5d7ae891
WY
1725 if (list_empty(pagelist))
1726 return 0;
1727
7ca8783a
WY
1728 err = do_move_pages_to_node(mm, pagelist, node);
1729 if (err) {
1730 /*
1731 * Positive err means the number of failed
1732 * pages to migrate. Since we are going to
1733 * abort and return the number of non-migrated
ab9dd4f8 1734 * pages, so need to include the rest of the
7ca8783a
WY
1735 * nr_pages that have not been attempted as
1736 * well.
1737 */
1738 if (err > 0)
1739 err += nr_pages - i - 1;
1740 return err;
1741 }
1742 return store_status(status, start, node, i - start);
1743}
1744
5e9a0f02
BG
1745/*
1746 * Migrate an array of page address onto an array of nodes and fill
1747 * the corresponding array of status.
1748 */
3268c63e 1749static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1750 unsigned long nr_pages,
1751 const void __user * __user *pages,
1752 const int __user *nodes,
1753 int __user *status, int flags)
1754{
a49bd4d7
MH
1755 int current_node = NUMA_NO_NODE;
1756 LIST_HEAD(pagelist);
1757 int start, i;
1758 int err = 0, err1;
35282a2d
BG
1759
1760 migrate_prep();
1761
a49bd4d7
MH
1762 for (i = start = 0; i < nr_pages; i++) {
1763 const void __user *p;
1764 unsigned long addr;
1765 int node;
3140a227 1766
a49bd4d7
MH
1767 err = -EFAULT;
1768 if (get_user(p, pages + i))
1769 goto out_flush;
1770 if (get_user(node, nodes + i))
1771 goto out_flush;
057d3389 1772 addr = (unsigned long)untagged_addr(p);
a49bd4d7
MH
1773
1774 err = -ENODEV;
1775 if (node < 0 || node >= MAX_NUMNODES)
1776 goto out_flush;
1777 if (!node_state(node, N_MEMORY))
1778 goto out_flush;
5e9a0f02 1779
a49bd4d7
MH
1780 err = -EACCES;
1781 if (!node_isset(node, task_nodes))
1782 goto out_flush;
1783
1784 if (current_node == NUMA_NO_NODE) {
1785 current_node = node;
1786 start = i;
1787 } else if (node != current_node) {
7ca8783a
WY
1788 err = move_pages_and_store_status(mm, current_node,
1789 &pagelist, status, start, i, nr_pages);
a49bd4d7
MH
1790 if (err)
1791 goto out;
1792 start = i;
1793 current_node = node;
3140a227
BG
1794 }
1795
a49bd4d7
MH
1796 /*
1797 * Errors in the page lookup or isolation are not fatal and we simply
1798 * report them via status
1799 */
1800 err = add_page_for_migration(mm, addr, current_node,
1801 &pagelist, flags & MPOL_MF_MOVE_ALL);
e0153fc2 1802
d08221a0 1803 if (err > 0) {
e0153fc2
YS
1804 /* The page is successfully queued for migration */
1805 continue;
1806 }
3140a227 1807
d08221a0
WY
1808 /*
1809 * If the page is already on the target node (!err), store the
1810 * node, otherwise, store the err.
1811 */
1812 err = store_status(status, i, err ? : current_node, 1);
a49bd4d7
MH
1813 if (err)
1814 goto out_flush;
5e9a0f02 1815
7ca8783a
WY
1816 err = move_pages_and_store_status(mm, current_node, &pagelist,
1817 status, start, i, nr_pages);
4afdacec
WY
1818 if (err)
1819 goto out;
a49bd4d7 1820 current_node = NUMA_NO_NODE;
3140a227 1821 }
a49bd4d7
MH
1822out_flush:
1823 /* Make sure we do not overwrite the existing error */
7ca8783a
WY
1824 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1825 status, start, i, nr_pages);
dfe9aa23 1826 if (err >= 0)
a49bd4d7 1827 err = err1;
5e9a0f02
BG
1828out:
1829 return err;
1830}
1831
742755a1 1832/*
2f007e74 1833 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1834 */
80bba129
BG
1835static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1836 const void __user **pages, int *status)
742755a1 1837{
2f007e74 1838 unsigned long i;
2f007e74 1839
d8ed45c5 1840 mmap_read_lock(mm);
742755a1 1841
2f007e74 1842 for (i = 0; i < nr_pages; i++) {
80bba129 1843 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1844 struct vm_area_struct *vma;
1845 struct page *page;
c095adbc 1846 int err = -EFAULT;
2f007e74
BG
1847
1848 vma = find_vma(mm, addr);
70384dc6 1849 if (!vma || addr < vma->vm_start)
742755a1
CL
1850 goto set_status;
1851
d899844e
KS
1852 /* FOLL_DUMP to ignore special (like zero) pages */
1853 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1854
1855 err = PTR_ERR(page);
1856 if (IS_ERR(page))
1857 goto set_status;
1858
d899844e 1859 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1860set_status:
80bba129
BG
1861 *status = err;
1862
1863 pages++;
1864 status++;
1865 }
1866
d8ed45c5 1867 mmap_read_unlock(mm);
80bba129
BG
1868}
1869
1870/*
1871 * Determine the nodes of a user array of pages and store it in
1872 * a user array of status.
1873 */
1874static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1875 const void __user * __user *pages,
1876 int __user *status)
1877{
1878#define DO_PAGES_STAT_CHUNK_NR 16
1879 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1880 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1881
87b8d1ad
PA
1882 while (nr_pages) {
1883 unsigned long chunk_nr;
80bba129 1884
87b8d1ad
PA
1885 chunk_nr = nr_pages;
1886 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1887 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1888
1889 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1890 break;
80bba129
BG
1891
1892 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1893
87b8d1ad
PA
1894 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1895 break;
742755a1 1896
87b8d1ad
PA
1897 pages += chunk_nr;
1898 status += chunk_nr;
1899 nr_pages -= chunk_nr;
1900 }
1901 return nr_pages ? -EFAULT : 0;
742755a1
CL
1902}
1903
4dc200ce 1904static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
742755a1 1905{
742755a1 1906 struct task_struct *task;
742755a1 1907 struct mm_struct *mm;
742755a1 1908
4dc200ce
ML
1909 /*
1910 * There is no need to check if current process has the right to modify
1911 * the specified process when they are same.
1912 */
1913 if (!pid) {
1914 mmget(current->mm);
1915 *mem_nodes = cpuset_mems_allowed(current);
1916 return current->mm;
1917 }
742755a1
CL
1918
1919 /* Find the mm_struct */
a879bf58 1920 rcu_read_lock();
4dc200ce 1921 task = find_task_by_vpid(pid);
742755a1 1922 if (!task) {
a879bf58 1923 rcu_read_unlock();
4dc200ce 1924 return ERR_PTR(-ESRCH);
742755a1 1925 }
3268c63e 1926 get_task_struct(task);
742755a1
CL
1927
1928 /*
1929 * Check if this process has the right to modify the specified
197e7e52 1930 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1931 */
197e7e52 1932 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1933 rcu_read_unlock();
4dc200ce 1934 mm = ERR_PTR(-EPERM);
5e9a0f02 1935 goto out;
742755a1 1936 }
c69e8d9c 1937 rcu_read_unlock();
742755a1 1938
4dc200ce
ML
1939 mm = ERR_PTR(security_task_movememory(task));
1940 if (IS_ERR(mm))
5e9a0f02 1941 goto out;
4dc200ce 1942 *mem_nodes = cpuset_mems_allowed(task);
3268c63e 1943 mm = get_task_mm(task);
4dc200ce 1944out:
3268c63e 1945 put_task_struct(task);
6e8b09ea 1946 if (!mm)
4dc200ce
ML
1947 mm = ERR_PTR(-EINVAL);
1948 return mm;
1949}
1950
1951/*
1952 * Move a list of pages in the address space of the currently executing
1953 * process.
1954 */
1955static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1956 const void __user * __user *pages,
1957 const int __user *nodes,
1958 int __user *status, int flags)
1959{
1960 struct mm_struct *mm;
1961 int err;
1962 nodemask_t task_nodes;
1963
1964 /* Check flags */
1965 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
6e8b09ea
SL
1966 return -EINVAL;
1967
4dc200ce
ML
1968 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1969 return -EPERM;
1970
1971 mm = find_mm_struct(pid, &task_nodes);
1972 if (IS_ERR(mm))
1973 return PTR_ERR(mm);
1974
6e8b09ea
SL
1975 if (nodes)
1976 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1977 nodes, status, flags);
1978 else
1979 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1980
742755a1
CL
1981 mmput(mm);
1982 return err;
1983}
742755a1 1984
7addf443
DB
1985SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1986 const void __user * __user *, pages,
1987 const int __user *, nodes,
1988 int __user *, status, int, flags)
1989{
1990 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1991}
1992
1993#ifdef CONFIG_COMPAT
1994COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1995 compat_uptr_t __user *, pages32,
1996 const int __user *, nodes,
1997 int __user *, status,
1998 int, flags)
1999{
2000 const void __user * __user *pages;
2001 int i;
2002
2003 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2004 for (i = 0; i < nr_pages; i++) {
2005 compat_uptr_t p;
2006
2007 if (get_user(p, pages32 + i) ||
2008 put_user(compat_ptr(p), pages + i))
2009 return -EFAULT;
2010 }
2011 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2012}
2013#endif /* CONFIG_COMPAT */
2014
7039e1db
PZ
2015#ifdef CONFIG_NUMA_BALANCING
2016/*
2017 * Returns true if this is a safe migration target node for misplaced NUMA
2018 * pages. Currently it only checks the watermarks which crude
2019 */
2020static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 2021 unsigned long nr_migrate_pages)
7039e1db
PZ
2022{
2023 int z;
599d0c95 2024
7039e1db
PZ
2025 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2026 struct zone *zone = pgdat->node_zones + z;
2027
2028 if (!populated_zone(zone))
2029 continue;
2030
7039e1db
PZ
2031 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2032 if (!zone_watermark_ok(zone, 0,
2033 high_wmark_pages(zone) +
2034 nr_migrate_pages,
bfe9d006 2035 ZONE_MOVABLE, 0))
7039e1db
PZ
2036 continue;
2037 return true;
2038 }
2039 return false;
2040}
2041
2042static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 2043 unsigned long data)
7039e1db
PZ
2044{
2045 int nid = (int) data;
2046 struct page *newpage;
2047
96db800f 2048 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
2049 (GFP_HIGHUSER_MOVABLE |
2050 __GFP_THISNODE | __GFP_NOMEMALLOC |
2051 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 2052 ~__GFP_RECLAIM, 0);
bac0382c 2053
7039e1db
PZ
2054 return newpage;
2055}
2056
1c30e017 2057static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 2058{
340ef390 2059 int page_lru;
a8f60772 2060
309381fe 2061 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 2062
7039e1db 2063 /* Avoid migrating to a node that is nearly full */
d8c6546b 2064 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
340ef390 2065 return 0;
7039e1db 2066
340ef390
HD
2067 if (isolate_lru_page(page))
2068 return 0;
7039e1db 2069
340ef390
HD
2070 /*
2071 * migrate_misplaced_transhuge_page() skips page migration's usual
2072 * check on page_count(), so we must do it here, now that the page
2073 * has been isolated: a GUP pin, or any other pin, prevents migration.
2074 * The expected page count is 3: 1 for page's mapcount and 1 for the
2075 * caller's pin and 1 for the reference taken by isolate_lru_page().
2076 */
2077 if (PageTransHuge(page) && page_count(page) != 3) {
2078 putback_lru_page(page);
2079 return 0;
7039e1db
PZ
2080 }
2081
9de4f22a 2082 page_lru = page_is_file_lru(page);
599d0c95 2083 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
6c357848 2084 thp_nr_pages(page));
340ef390 2085
149c33e1 2086 /*
340ef390
HD
2087 * Isolating the page has taken another reference, so the
2088 * caller's reference can be safely dropped without the page
2089 * disappearing underneath us during migration.
149c33e1
MG
2090 */
2091 put_page(page);
340ef390 2092 return 1;
b32967ff
MG
2093}
2094
de466bd6
MG
2095bool pmd_trans_migrating(pmd_t pmd)
2096{
2097 struct page *page = pmd_page(pmd);
2098 return PageLocked(page);
2099}
2100
c77c5cba
YS
2101static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2102 struct page *page)
2103{
2104 if (page_mapcount(page) != 1 &&
2105 (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2106 (vma->vm_flags & VM_EXEC))
2107 return true;
2108
2109 return false;
2110}
2111
b32967ff
MG
2112/*
2113 * Attempt to migrate a misplaced page to the specified destination
2114 * node. Caller is expected to have an elevated reference count on
2115 * the page that will be dropped by this function before returning.
2116 */
1bc115d8
MG
2117int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2118 int node)
b32967ff
MG
2119{
2120 pg_data_t *pgdat = NODE_DATA(node);
340ef390 2121 int isolated;
b32967ff
MG
2122 int nr_remaining;
2123 LIST_HEAD(migratepages);
2124
2125 /*
1bc115d8
MG
2126 * Don't migrate file pages that are mapped in multiple processes
2127 * with execute permissions as they are probably shared libraries.
b32967ff 2128 */
c77c5cba 2129 if (is_shared_exec_page(vma, page))
b32967ff 2130 goto out;
b32967ff 2131
09a913a7
MG
2132 /*
2133 * Also do not migrate dirty pages as not all filesystems can move
2134 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2135 */
9de4f22a 2136 if (page_is_file_lru(page) && PageDirty(page))
09a913a7
MG
2137 goto out;
2138
b32967ff
MG
2139 isolated = numamigrate_isolate_page(pgdat, page);
2140 if (!isolated)
2141 goto out;
2142
2143 list_add(&page->lru, &migratepages);
9c620e2b 2144 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
2145 NULL, node, MIGRATE_ASYNC,
2146 MR_NUMA_MISPLACED);
b32967ff 2147 if (nr_remaining) {
59c82b70
JK
2148 if (!list_empty(&migratepages)) {
2149 list_del(&page->lru);
599d0c95 2150 dec_node_page_state(page, NR_ISOLATED_ANON +
9de4f22a 2151 page_is_file_lru(page));
59c82b70
JK
2152 putback_lru_page(page);
2153 }
b32967ff
MG
2154 isolated = 0;
2155 } else
2156 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 2157 BUG_ON(!list_empty(&migratepages));
7039e1db 2158 return isolated;
340ef390
HD
2159
2160out:
2161 put_page(page);
2162 return 0;
7039e1db 2163}
220018d3 2164#endif /* CONFIG_NUMA_BALANCING */
b32967ff 2165
220018d3 2166#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
2167/*
2168 * Migrates a THP to a given target node. page must be locked and is unlocked
2169 * before returning.
2170 */
b32967ff
MG
2171int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2172 struct vm_area_struct *vma,
2173 pmd_t *pmd, pmd_t entry,
2174 unsigned long address,
2175 struct page *page, int node)
2176{
c4088ebd 2177 spinlock_t *ptl;
b32967ff
MG
2178 pg_data_t *pgdat = NODE_DATA(node);
2179 int isolated = 0;
2180 struct page *new_page = NULL;
9de4f22a 2181 int page_lru = page_is_file_lru(page);
7066f0f9 2182 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 2183
c77c5cba
YS
2184 if (is_shared_exec_page(vma, page))
2185 goto out;
2186
b32967ff 2187 new_page = alloc_pages_node(node,
25160354 2188 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2189 HPAGE_PMD_ORDER);
340ef390
HD
2190 if (!new_page)
2191 goto out_fail;
9a982250 2192 prep_transhuge_page(new_page);
340ef390 2193
b32967ff 2194 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2195 if (!isolated) {
b32967ff 2196 put_page(new_page);
340ef390 2197 goto out_fail;
b32967ff 2198 }
b0943d61 2199
b32967ff 2200 /* Prepare a page as a migration target */
48c935ad 2201 __SetPageLocked(new_page);
d44d363f
SL
2202 if (PageSwapBacked(page))
2203 __SetPageSwapBacked(new_page);
b32967ff
MG
2204
2205 /* anon mapping, we can simply copy page->mapping to the new page: */
2206 new_page->mapping = page->mapping;
2207 new_page->index = page->index;
7eef5f97
AA
2208 /* flush the cache before copying using the kernel virtual address */
2209 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2210 migrate_page_copy(new_page, page);
2211 WARN_ON(PageLRU(new_page));
2212
2213 /* Recheck the target PMD */
c4088ebd 2214 ptl = pmd_lock(mm, pmd);
f4e177d1 2215 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2216 spin_unlock(ptl);
b32967ff
MG
2217
2218 /* Reverse changes made by migrate_page_copy() */
2219 if (TestClearPageActive(new_page))
2220 SetPageActive(page);
2221 if (TestClearPageUnevictable(new_page))
2222 SetPageUnevictable(page);
b32967ff
MG
2223
2224 unlock_page(new_page);
2225 put_page(new_page); /* Free it */
2226
a54a407f
MG
2227 /* Retake the callers reference and putback on LRU */
2228 get_page(page);
b32967ff 2229 putback_lru_page(page);
599d0c95 2230 mod_node_page_state(page_pgdat(page),
a54a407f 2231 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2232
2233 goto out_unlock;
b32967ff
MG
2234 }
2235
10102459 2236 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2237 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2238
2b4847e7 2239 /*
d7c33934
AA
2240 * Overwrite the old entry under pagetable lock and establish
2241 * the new PTE. Any parallel GUP will either observe the old
2242 * page blocking on the page lock, block on the page table
2243 * lock or observe the new page. The SetPageUptodate on the
2244 * new page and page_add_new_anon_rmap guarantee the copy is
2245 * visible before the pagetable update.
2b4847e7 2246 */
7066f0f9 2247 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2248 /*
2249 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2250 * has already been flushed globally. So no TLB can be currently
2251 * caching this non present pmd mapping. There's no need to clear the
2252 * pmd before doing set_pmd_at(), nor to flush the TLB after
2253 * set_pmd_at(). Clearing the pmd here would introduce a race
2254 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
c1e8d7c6 2255 * mmap_lock for reading. If the pmd is set to NULL at any given time,
d7c33934
AA
2256 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2257 * pmd.
2258 */
7066f0f9 2259 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2260 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2261
f4e177d1 2262 page_ref_unfreeze(page, 2);
51afb12b 2263 mlock_migrate_page(new_page, page);
d281ee61 2264 page_remove_rmap(page, true);
7cd12b4a 2265 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2266
c4088ebd 2267 spin_unlock(ptl);
b32967ff 2268
11de9927
MG
2269 /* Take an "isolate" reference and put new page on the LRU. */
2270 get_page(new_page);
2271 putback_lru_page(new_page);
2272
b32967ff
MG
2273 unlock_page(new_page);
2274 unlock_page(page);
2275 put_page(page); /* Drop the rmap reference */
2276 put_page(page); /* Drop the LRU isolation reference */
2277
2278 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2279 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2280
599d0c95 2281 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2282 NR_ISOLATED_ANON + page_lru,
2283 -HPAGE_PMD_NR);
2284 return isolated;
2285
340ef390
HD
2286out_fail:
2287 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2288 ptl = pmd_lock(mm, pmd);
2289 if (pmd_same(*pmd, entry)) {
4d942466 2290 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2291 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2292 update_mmu_cache_pmd(vma, address, &entry);
2293 }
2294 spin_unlock(ptl);
a54a407f 2295
eb4489f6 2296out_unlock:
340ef390 2297 unlock_page(page);
c77c5cba 2298out:
b32967ff 2299 put_page(page);
b32967ff
MG
2300 return 0;
2301}
7039e1db
PZ
2302#endif /* CONFIG_NUMA_BALANCING */
2303
2304#endif /* CONFIG_NUMA */
8763cb45 2305
9b2ed9cb 2306#ifdef CONFIG_DEVICE_PRIVATE
8763cb45
JG
2307static int migrate_vma_collect_hole(unsigned long start,
2308 unsigned long end,
b7a16c7a 2309 __always_unused int depth,
8763cb45
JG
2310 struct mm_walk *walk)
2311{
2312 struct migrate_vma *migrate = walk->private;
2313 unsigned long addr;
2314
0744f280
RC
2315 /* Only allow populating anonymous memory. */
2316 if (!vma_is_anonymous(walk->vma)) {
2317 for (addr = start; addr < end; addr += PAGE_SIZE) {
2318 migrate->src[migrate->npages] = 0;
2319 migrate->dst[migrate->npages] = 0;
2320 migrate->npages++;
2321 }
2322 return 0;
2323 }
2324
872ea707 2325 for (addr = start; addr < end; addr += PAGE_SIZE) {
e20d103b 2326 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2327 migrate->dst[migrate->npages] = 0;
e20d103b 2328 migrate->npages++;
8315ada7
JG
2329 migrate->cpages++;
2330 }
2331
2332 return 0;
2333}
2334
2335static int migrate_vma_collect_skip(unsigned long start,
2336 unsigned long end,
2337 struct mm_walk *walk)
2338{
2339 struct migrate_vma *migrate = walk->private;
2340 unsigned long addr;
2341
872ea707 2342 for (addr = start; addr < end; addr += PAGE_SIZE) {
8763cb45
JG
2343 migrate->dst[migrate->npages] = 0;
2344 migrate->src[migrate->npages++] = 0;
2345 }
2346
2347 return 0;
2348}
2349
2350static int migrate_vma_collect_pmd(pmd_t *pmdp,
2351 unsigned long start,
2352 unsigned long end,
2353 struct mm_walk *walk)
2354{
2355 struct migrate_vma *migrate = walk->private;
2356 struct vm_area_struct *vma = walk->vma;
2357 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2358 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2359 spinlock_t *ptl;
2360 pte_t *ptep;
2361
2362again:
2363 if (pmd_none(*pmdp))
b7a16c7a 2364 return migrate_vma_collect_hole(start, end, -1, walk);
8763cb45
JG
2365
2366 if (pmd_trans_huge(*pmdp)) {
2367 struct page *page;
2368
2369 ptl = pmd_lock(mm, pmdp);
2370 if (unlikely(!pmd_trans_huge(*pmdp))) {
2371 spin_unlock(ptl);
2372 goto again;
2373 }
2374
2375 page = pmd_page(*pmdp);
2376 if (is_huge_zero_page(page)) {
2377 spin_unlock(ptl);
2378 split_huge_pmd(vma, pmdp, addr);
2379 if (pmd_trans_unstable(pmdp))
8315ada7 2380 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2381 walk);
2382 } else {
2383 int ret;
2384
2385 get_page(page);
2386 spin_unlock(ptl);
2387 if (unlikely(!trylock_page(page)))
8315ada7 2388 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2389 walk);
2390 ret = split_huge_page(page);
2391 unlock_page(page);
2392 put_page(page);
8315ada7
JG
2393 if (ret)
2394 return migrate_vma_collect_skip(start, end,
2395 walk);
2396 if (pmd_none(*pmdp))
b7a16c7a 2397 return migrate_vma_collect_hole(start, end, -1,
8763cb45
JG
2398 walk);
2399 }
2400 }
2401
2402 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2403 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2404
2405 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2406 arch_enter_lazy_mmu_mode();
2407
8763cb45 2408 for (; addr < end; addr += PAGE_SIZE, ptep++) {
800bb1c8 2409 unsigned long mpfn = 0, pfn;
8763cb45 2410 struct page *page;
8c3328f1 2411 swp_entry_t entry;
8763cb45
JG
2412 pte_t pte;
2413
2414 pte = *ptep;
8763cb45 2415
a5430dda 2416 if (pte_none(pte)) {
0744f280
RC
2417 if (vma_is_anonymous(vma)) {
2418 mpfn = MIGRATE_PFN_MIGRATE;
2419 migrate->cpages++;
2420 }
8763cb45
JG
2421 goto next;
2422 }
2423
a5430dda 2424 if (!pte_present(pte)) {
a5430dda
JG
2425 /*
2426 * Only care about unaddressable device page special
2427 * page table entry. Other special swap entries are not
2428 * migratable, and we ignore regular swapped page.
2429 */
2430 entry = pte_to_swp_entry(pte);
2431 if (!is_device_private_entry(entry))
2432 goto next;
2433
2434 page = device_private_entry_to_page(entry);
5143192c
RC
2435 if (!(migrate->flags &
2436 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2437 page->pgmap->owner != migrate->pgmap_owner)
800bb1c8
CH
2438 goto next;
2439
06d462be
CH
2440 mpfn = migrate_pfn(page_to_pfn(page)) |
2441 MIGRATE_PFN_MIGRATE;
a5430dda
JG
2442 if (is_write_device_private_entry(entry))
2443 mpfn |= MIGRATE_PFN_WRITE;
2444 } else {
5143192c 2445 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
800bb1c8 2446 goto next;
276f756d 2447 pfn = pte_pfn(pte);
8315ada7
JG
2448 if (is_zero_pfn(pfn)) {
2449 mpfn = MIGRATE_PFN_MIGRATE;
2450 migrate->cpages++;
8315ada7
JG
2451 goto next;
2452 }
25b2995a 2453 page = vm_normal_page(migrate->vma, addr, pte);
a5430dda
JG
2454 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2455 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2456 }
2457
8763cb45 2458 /* FIXME support THP */
8763cb45 2459 if (!page || !page->mapping || PageTransCompound(page)) {
276f756d 2460 mpfn = 0;
8763cb45
JG
2461 goto next;
2462 }
2463
2464 /*
2465 * By getting a reference on the page we pin it and that blocks
2466 * any kind of migration. Side effect is that it "freezes" the
2467 * pte.
2468 *
2469 * We drop this reference after isolating the page from the lru
2470 * for non device page (device page are not on the lru and thus
2471 * can't be dropped from it).
2472 */
2473 get_page(page);
2474 migrate->cpages++;
8763cb45 2475
8c3328f1
JG
2476 /*
2477 * Optimize for the common case where page is only mapped once
2478 * in one process. If we can lock the page, then we can safely
2479 * set up a special migration page table entry now.
2480 */
2481 if (trylock_page(page)) {
2482 pte_t swp_pte;
2483
2484 mpfn |= MIGRATE_PFN_LOCKED;
2485 ptep_get_and_clear(mm, addr, ptep);
2486
2487 /* Setup special migration page table entry */
07707125
RC
2488 entry = make_migration_entry(page, mpfn &
2489 MIGRATE_PFN_WRITE);
8c3328f1 2490 swp_pte = swp_entry_to_pte(entry);
ad7df764
AP
2491 if (pte_present(pte)) {
2492 if (pte_soft_dirty(pte))
2493 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2494 if (pte_uffd_wp(pte))
2495 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2496 } else {
2497 if (pte_swp_soft_dirty(pte))
2498 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2499 if (pte_swp_uffd_wp(pte))
2500 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2501 }
8c3328f1
JG
2502 set_pte_at(mm, addr, ptep, swp_pte);
2503
2504 /*
2505 * This is like regular unmap: we remove the rmap and
2506 * drop page refcount. Page won't be freed, as we took
2507 * a reference just above.
2508 */
2509 page_remove_rmap(page, false);
2510 put_page(page);
a5430dda
JG
2511
2512 if (pte_present(pte))
2513 unmapped++;
8c3328f1
JG
2514 }
2515
8763cb45 2516next:
a5430dda 2517 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2518 migrate->src[migrate->npages++] = mpfn;
2519 }
8c3328f1 2520 arch_leave_lazy_mmu_mode();
8763cb45
JG
2521 pte_unmap_unlock(ptep - 1, ptl);
2522
8c3328f1
JG
2523 /* Only flush the TLB if we actually modified any entries */
2524 if (unmapped)
2525 flush_tlb_range(walk->vma, start, end);
2526
8763cb45
JG
2527 return 0;
2528}
2529
7b86ac33
CH
2530static const struct mm_walk_ops migrate_vma_walk_ops = {
2531 .pmd_entry = migrate_vma_collect_pmd,
2532 .pte_hole = migrate_vma_collect_hole,
2533};
2534
8763cb45
JG
2535/*
2536 * migrate_vma_collect() - collect pages over a range of virtual addresses
2537 * @migrate: migrate struct containing all migration information
2538 *
2539 * This will walk the CPU page table. For each virtual address backed by a
2540 * valid page, it updates the src array and takes a reference on the page, in
2541 * order to pin the page until we lock it and unmap it.
2542 */
2543static void migrate_vma_collect(struct migrate_vma *migrate)
2544{
ac46d4f3 2545 struct mmu_notifier_range range;
8763cb45 2546
998427b3
RC
2547 /*
2548 * Note that the pgmap_owner is passed to the mmu notifier callback so
2549 * that the registered device driver can skip invalidating device
2550 * private page mappings that won't be migrated.
2551 */
c1a06df6
RC
2552 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2553 migrate->vma->vm_mm, migrate->start, migrate->end,
2554 migrate->pgmap_owner);
ac46d4f3 2555 mmu_notifier_invalidate_range_start(&range);
8763cb45 2556
7b86ac33
CH
2557 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2558 &migrate_vma_walk_ops, migrate);
2559
2560 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2561 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2562}
2563
2564/*
2565 * migrate_vma_check_page() - check if page is pinned or not
2566 * @page: struct page to check
2567 *
2568 * Pinned pages cannot be migrated. This is the same test as in
2569 * migrate_page_move_mapping(), except that here we allow migration of a
2570 * ZONE_DEVICE page.
2571 */
2572static bool migrate_vma_check_page(struct page *page)
2573{
2574 /*
2575 * One extra ref because caller holds an extra reference, either from
2576 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2577 * a device page.
2578 */
2579 int extra = 1;
2580
2581 /*
2582 * FIXME support THP (transparent huge page), it is bit more complex to
2583 * check them than regular pages, because they can be mapped with a pmd
2584 * or with a pte (split pte mapping).
2585 */
2586 if (PageCompound(page))
2587 return false;
2588
a5430dda
JG
2589 /* Page from ZONE_DEVICE have one extra reference */
2590 if (is_zone_device_page(page)) {
2591 /*
2592 * Private page can never be pin as they have no valid pte and
2593 * GUP will fail for those. Yet if there is a pending migration
2594 * a thread might try to wait on the pte migration entry and
2595 * will bump the page reference count. Sadly there is no way to
2596 * differentiate a regular pin from migration wait. Hence to
2597 * avoid 2 racing thread trying to migrate back to CPU to enter
8958b249 2598 * infinite loop (one stopping migration because the other is
a5430dda
JG
2599 * waiting on pte migration entry). We always return true here.
2600 *
2601 * FIXME proper solution is to rework migration_entry_wait() so
2602 * it does not need to take a reference on page.
2603 */
25b2995a 2604 return is_device_private_page(page);
a5430dda
JG
2605 }
2606
df6ad698
JG
2607 /* For file back page */
2608 if (page_mapping(page))
2609 extra += 1 + page_has_private(page);
2610
8763cb45
JG
2611 if ((page_count(page) - extra) > page_mapcount(page))
2612 return false;
2613
2614 return true;
2615}
2616
2617/*
2618 * migrate_vma_prepare() - lock pages and isolate them from the lru
2619 * @migrate: migrate struct containing all migration information
2620 *
2621 * This locks pages that have been collected by migrate_vma_collect(). Once each
2622 * page is locked it is isolated from the lru (for non-device pages). Finally,
2623 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2624 * migrated by concurrent kernel threads.
2625 */
2626static void migrate_vma_prepare(struct migrate_vma *migrate)
2627{
2628 const unsigned long npages = migrate->npages;
8c3328f1
JG
2629 const unsigned long start = migrate->start;
2630 unsigned long addr, i, restore = 0;
8763cb45 2631 bool allow_drain = true;
8763cb45
JG
2632
2633 lru_add_drain();
2634
2635 for (i = 0; (i < npages) && migrate->cpages; i++) {
2636 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2637 bool remap = true;
8763cb45
JG
2638
2639 if (!page)
2640 continue;
2641
8c3328f1
JG
2642 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2643 /*
2644 * Because we are migrating several pages there can be
2645 * a deadlock between 2 concurrent migration where each
2646 * are waiting on each other page lock.
2647 *
2648 * Make migrate_vma() a best effort thing and backoff
2649 * for any page we can not lock right away.
2650 */
2651 if (!trylock_page(page)) {
2652 migrate->src[i] = 0;
2653 migrate->cpages--;
2654 put_page(page);
2655 continue;
2656 }
2657 remap = false;
2658 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2659 }
8763cb45 2660
a5430dda
JG
2661 /* ZONE_DEVICE pages are not on LRU */
2662 if (!is_zone_device_page(page)) {
2663 if (!PageLRU(page) && allow_drain) {
2664 /* Drain CPU's pagevec */
2665 lru_add_drain_all();
2666 allow_drain = false;
2667 }
8763cb45 2668
a5430dda
JG
2669 if (isolate_lru_page(page)) {
2670 if (remap) {
2671 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2672 migrate->cpages--;
2673 restore++;
2674 } else {
2675 migrate->src[i] = 0;
2676 unlock_page(page);
2677 migrate->cpages--;
2678 put_page(page);
2679 }
2680 continue;
8c3328f1 2681 }
a5430dda
JG
2682
2683 /* Drop the reference we took in collect */
2684 put_page(page);
8763cb45
JG
2685 }
2686
2687 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2688 if (remap) {
2689 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2690 migrate->cpages--;
2691 restore++;
8763cb45 2692
a5430dda
JG
2693 if (!is_zone_device_page(page)) {
2694 get_page(page);
2695 putback_lru_page(page);
2696 }
8c3328f1
JG
2697 } else {
2698 migrate->src[i] = 0;
2699 unlock_page(page);
2700 migrate->cpages--;
2701
a5430dda
JG
2702 if (!is_zone_device_page(page))
2703 putback_lru_page(page);
2704 else
2705 put_page(page);
8c3328f1 2706 }
8763cb45
JG
2707 }
2708 }
8c3328f1
JG
2709
2710 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2711 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2712
2713 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2714 continue;
2715
2716 remove_migration_pte(page, migrate->vma, addr, page);
2717
2718 migrate->src[i] = 0;
2719 unlock_page(page);
2720 put_page(page);
2721 restore--;
2722 }
8763cb45
JG
2723}
2724
2725/*
2726 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2727 * @migrate: migrate struct containing all migration information
2728 *
2729 * Replace page mapping (CPU page table pte) with a special migration pte entry
2730 * and check again if it has been pinned. Pinned pages are restored because we
2731 * cannot migrate them.
2732 *
2733 * This is the last step before we call the device driver callback to allocate
2734 * destination memory and copy contents of original page over to new page.
2735 */
2736static void migrate_vma_unmap(struct migrate_vma *migrate)
2737{
013339df 2738 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
8763cb45
JG
2739 const unsigned long npages = migrate->npages;
2740 const unsigned long start = migrate->start;
2741 unsigned long addr, i, restore = 0;
2742
2743 for (i = 0; i < npages; i++) {
2744 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2745
2746 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2747 continue;
2748
8c3328f1
JG
2749 if (page_mapped(page)) {
2750 try_to_unmap(page, flags);
2751 if (page_mapped(page))
2752 goto restore;
8763cb45 2753 }
8c3328f1
JG
2754
2755 if (migrate_vma_check_page(page))
2756 continue;
2757
2758restore:
2759 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2760 migrate->cpages--;
2761 restore++;
8763cb45
JG
2762 }
2763
2764 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2765 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2766
2767 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2768 continue;
2769
2770 remove_migration_ptes(page, page, false);
2771
2772 migrate->src[i] = 0;
2773 unlock_page(page);
2774 restore--;
2775
a5430dda
JG
2776 if (is_zone_device_page(page))
2777 put_page(page);
2778 else
2779 putback_lru_page(page);
8763cb45
JG
2780 }
2781}
2782
a7d1f22b
CH
2783/**
2784 * migrate_vma_setup() - prepare to migrate a range of memory
eaf444de 2785 * @args: contains the vma, start, and pfns arrays for the migration
a7d1f22b
CH
2786 *
2787 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2788 * without an error.
2789 *
2790 * Prepare to migrate a range of memory virtual address range by collecting all
2791 * the pages backing each virtual address in the range, saving them inside the
2792 * src array. Then lock those pages and unmap them. Once the pages are locked
2793 * and unmapped, check whether each page is pinned or not. Pages that aren't
2794 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2795 * corresponding src array entry. Then restores any pages that are pinned, by
2796 * remapping and unlocking those pages.
2797 *
2798 * The caller should then allocate destination memory and copy source memory to
2799 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2800 * flag set). Once these are allocated and copied, the caller must update each
2801 * corresponding entry in the dst array with the pfn value of the destination
2802 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2803 * (destination pages must have their struct pages locked, via lock_page()).
2804 *
2805 * Note that the caller does not have to migrate all the pages that are marked
2806 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2807 * device memory to system memory. If the caller cannot migrate a device page
2808 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2809 * consequences for the userspace process, so it must be avoided if at all
2810 * possible.
2811 *
2812 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2813 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2814 * allowing the caller to allocate device memory for those unback virtual
2815 * address. For this the caller simply has to allocate device memory and
2816 * properly set the destination entry like for regular migration. Note that
2817 * this can still fails and thus inside the device driver must check if the
2818 * migration was successful for those entries after calling migrate_vma_pages()
2819 * just like for regular migration.
2820 *
2821 * After that, the callers must call migrate_vma_pages() to go over each entry
2822 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2823 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2824 * then migrate_vma_pages() to migrate struct page information from the source
2825 * struct page to the destination struct page. If it fails to migrate the
2826 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2827 * src array.
2828 *
2829 * At this point all successfully migrated pages have an entry in the src
2830 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2831 * array entry with MIGRATE_PFN_VALID flag set.
2832 *
2833 * Once migrate_vma_pages() returns the caller may inspect which pages were
2834 * successfully migrated, and which were not. Successfully migrated pages will
2835 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2836 *
2837 * It is safe to update device page table after migrate_vma_pages() because
c1e8d7c6 2838 * both destination and source page are still locked, and the mmap_lock is held
a7d1f22b
CH
2839 * in read mode (hence no one can unmap the range being migrated).
2840 *
2841 * Once the caller is done cleaning up things and updating its page table (if it
2842 * chose to do so, this is not an obligation) it finally calls
2843 * migrate_vma_finalize() to update the CPU page table to point to new pages
2844 * for successfully migrated pages or otherwise restore the CPU page table to
2845 * point to the original source pages.
2846 */
2847int migrate_vma_setup(struct migrate_vma *args)
2848{
2849 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2850
2851 args->start &= PAGE_MASK;
2852 args->end &= PAGE_MASK;
2853 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2854 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2855 return -EINVAL;
2856 if (nr_pages <= 0)
2857 return -EINVAL;
2858 if (args->start < args->vma->vm_start ||
2859 args->start >= args->vma->vm_end)
2860 return -EINVAL;
2861 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2862 return -EINVAL;
2863 if (!args->src || !args->dst)
2864 return -EINVAL;
2865
2866 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2867 args->cpages = 0;
2868 args->npages = 0;
2869
2870 migrate_vma_collect(args);
2871
2872 if (args->cpages)
2873 migrate_vma_prepare(args);
2874 if (args->cpages)
2875 migrate_vma_unmap(args);
2876
2877 /*
2878 * At this point pages are locked and unmapped, and thus they have
2879 * stable content and can safely be copied to destination memory that
2880 * is allocated by the drivers.
2881 */
2882 return 0;
2883
2884}
2885EXPORT_SYMBOL(migrate_vma_setup);
2886
34290e2c
RC
2887/*
2888 * This code closely matches the code in:
2889 * __handle_mm_fault()
2890 * handle_pte_fault()
2891 * do_anonymous_page()
2892 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2893 * private page.
2894 */
8315ada7
JG
2895static void migrate_vma_insert_page(struct migrate_vma *migrate,
2896 unsigned long addr,
2897 struct page *page,
d85c6db4 2898 unsigned long *src)
8315ada7
JG
2899{
2900 struct vm_area_struct *vma = migrate->vma;
2901 struct mm_struct *mm = vma->vm_mm;
8315ada7
JG
2902 bool flush = false;
2903 spinlock_t *ptl;
2904 pte_t entry;
2905 pgd_t *pgdp;
2906 p4d_t *p4dp;
2907 pud_t *pudp;
2908 pmd_t *pmdp;
2909 pte_t *ptep;
2910
2911 /* Only allow populating anonymous memory */
2912 if (!vma_is_anonymous(vma))
2913 goto abort;
2914
2915 pgdp = pgd_offset(mm, addr);
2916 p4dp = p4d_alloc(mm, pgdp, addr);
2917 if (!p4dp)
2918 goto abort;
2919 pudp = pud_alloc(mm, p4dp, addr);
2920 if (!pudp)
2921 goto abort;
2922 pmdp = pmd_alloc(mm, pudp, addr);
2923 if (!pmdp)
2924 goto abort;
2925
2926 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2927 goto abort;
2928
2929 /*
2930 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2931 * pte_offset_map() on pmds where a huge pmd might be created
2932 * from a different thread.
2933 *
3e4e28c5 2934 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
8315ada7
JG
2935 * parallel threads are excluded by other means.
2936 *
3e4e28c5 2937 * Here we only have mmap_read_lock(mm).
8315ada7 2938 */
4cf58924 2939 if (pte_alloc(mm, pmdp))
8315ada7
JG
2940 goto abort;
2941
2942 /* See the comment in pte_alloc_one_map() */
2943 if (unlikely(pmd_trans_unstable(pmdp)))
2944 goto abort;
2945
2946 if (unlikely(anon_vma_prepare(vma)))
2947 goto abort;
d9eb1ea2 2948 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
8315ada7
JG
2949 goto abort;
2950
2951 /*
2952 * The memory barrier inside __SetPageUptodate makes sure that
2953 * preceding stores to the page contents become visible before
2954 * the set_pte_at() write.
2955 */
2956 __SetPageUptodate(page);
2957
df6ad698
JG
2958 if (is_zone_device_page(page)) {
2959 if (is_device_private_page(page)) {
2960 swp_entry_t swp_entry;
2961
2962 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2963 entry = swp_entry_to_pte(swp_entry);
df6ad698 2964 }
8315ada7
JG
2965 } else {
2966 entry = mk_pte(page, vma->vm_page_prot);
2967 if (vma->vm_flags & VM_WRITE)
2968 entry = pte_mkwrite(pte_mkdirty(entry));
2969 }
2970
2971 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2972
34290e2c
RC
2973 if (check_stable_address_space(mm))
2974 goto unlock_abort;
2975
8315ada7
JG
2976 if (pte_present(*ptep)) {
2977 unsigned long pfn = pte_pfn(*ptep);
2978
c23a0c99
RC
2979 if (!is_zero_pfn(pfn))
2980 goto unlock_abort;
8315ada7 2981 flush = true;
c23a0c99
RC
2982 } else if (!pte_none(*ptep))
2983 goto unlock_abort;
8315ada7
JG
2984
2985 /*
c23a0c99 2986 * Check for userfaultfd but do not deliver the fault. Instead,
8315ada7
JG
2987 * just back off.
2988 */
c23a0c99
RC
2989 if (userfaultfd_missing(vma))
2990 goto unlock_abort;
8315ada7
JG
2991
2992 inc_mm_counter(mm, MM_ANONPAGES);
be5d0a74 2993 page_add_new_anon_rmap(page, vma, addr, false);
8315ada7 2994 if (!is_zone_device_page(page))
b518154e 2995 lru_cache_add_inactive_or_unevictable(page, vma);
8315ada7
JG
2996 get_page(page);
2997
2998 if (flush) {
2999 flush_cache_page(vma, addr, pte_pfn(*ptep));
3000 ptep_clear_flush_notify(vma, addr, ptep);
3001 set_pte_at_notify(mm, addr, ptep, entry);
3002 update_mmu_cache(vma, addr, ptep);
3003 } else {
3004 /* No need to invalidate - it was non-present before */
3005 set_pte_at(mm, addr, ptep, entry);
3006 update_mmu_cache(vma, addr, ptep);
3007 }
3008
3009 pte_unmap_unlock(ptep, ptl);
3010 *src = MIGRATE_PFN_MIGRATE;
3011 return;
3012
c23a0c99
RC
3013unlock_abort:
3014 pte_unmap_unlock(ptep, ptl);
8315ada7
JG
3015abort:
3016 *src &= ~MIGRATE_PFN_MIGRATE;
3017}
3018
a7d1f22b 3019/**
8763cb45
JG
3020 * migrate_vma_pages() - migrate meta-data from src page to dst page
3021 * @migrate: migrate struct containing all migration information
3022 *
3023 * This migrates struct page meta-data from source struct page to destination
3024 * struct page. This effectively finishes the migration from source page to the
3025 * destination page.
3026 */
a7d1f22b 3027void migrate_vma_pages(struct migrate_vma *migrate)
8763cb45
JG
3028{
3029 const unsigned long npages = migrate->npages;
3030 const unsigned long start = migrate->start;
ac46d4f3
JG
3031 struct mmu_notifier_range range;
3032 unsigned long addr, i;
8315ada7 3033 bool notified = false;
8763cb45
JG
3034
3035 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3036 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3037 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3038 struct address_space *mapping;
3039 int r;
3040
8315ada7
JG
3041 if (!newpage) {
3042 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 3043 continue;
8315ada7
JG
3044 }
3045
3046 if (!page) {
c23a0c99 3047 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
8315ada7 3048 continue;
8315ada7 3049 if (!notified) {
8315ada7 3050 notified = true;
ac46d4f3 3051
5e5dda81
RC
3052 mmu_notifier_range_init_migrate(&range, 0,
3053 migrate->vma, migrate->vma->vm_mm,
3054 addr, migrate->end,
3055 migrate->pgmap_owner);
ac46d4f3 3056 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
3057 }
3058 migrate_vma_insert_page(migrate, addr, newpage,
d85c6db4 3059 &migrate->src[i]);
8763cb45 3060 continue;
8315ada7 3061 }
8763cb45
JG
3062
3063 mapping = page_mapping(page);
3064
a5430dda
JG
3065 if (is_zone_device_page(newpage)) {
3066 if (is_device_private_page(newpage)) {
3067 /*
3068 * For now only support private anonymous when
3069 * migrating to un-addressable device memory.
3070 */
3071 if (mapping) {
3072 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3073 continue;
3074 }
25b2995a 3075 } else {
a5430dda
JG
3076 /*
3077 * Other types of ZONE_DEVICE page are not
3078 * supported.
3079 */
3080 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3081 continue;
3082 }
3083 }
3084
8763cb45
JG
3085 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3086 if (r != MIGRATEPAGE_SUCCESS)
3087 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3088 }
8315ada7 3089
4645b9fe
JG
3090 /*
3091 * No need to double call mmu_notifier->invalidate_range() callback as
3092 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3093 * did already call it.
3094 */
8315ada7 3095 if (notified)
ac46d4f3 3096 mmu_notifier_invalidate_range_only_end(&range);
8763cb45 3097}
a7d1f22b 3098EXPORT_SYMBOL(migrate_vma_pages);
8763cb45 3099
a7d1f22b 3100/**
8763cb45
JG
3101 * migrate_vma_finalize() - restore CPU page table entry
3102 * @migrate: migrate struct containing all migration information
3103 *
3104 * This replaces the special migration pte entry with either a mapping to the
3105 * new page if migration was successful for that page, or to the original page
3106 * otherwise.
3107 *
3108 * This also unlocks the pages and puts them back on the lru, or drops the extra
3109 * refcount, for device pages.
3110 */
a7d1f22b 3111void migrate_vma_finalize(struct migrate_vma *migrate)
8763cb45
JG
3112{
3113 const unsigned long npages = migrate->npages;
3114 unsigned long i;
3115
3116 for (i = 0; i < npages; i++) {
3117 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3118 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3119
8315ada7
JG
3120 if (!page) {
3121 if (newpage) {
3122 unlock_page(newpage);
3123 put_page(newpage);
3124 }
8763cb45 3125 continue;
8315ada7
JG
3126 }
3127
8763cb45
JG
3128 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3129 if (newpage) {
3130 unlock_page(newpage);
3131 put_page(newpage);
3132 }
3133 newpage = page;
3134 }
3135
3136 remove_migration_ptes(page, newpage, false);
3137 unlock_page(page);
8763cb45 3138
a5430dda
JG
3139 if (is_zone_device_page(page))
3140 put_page(page);
3141 else
3142 putback_lru_page(page);
8763cb45
JG
3143
3144 if (newpage != page) {
3145 unlock_page(newpage);
a5430dda
JG
3146 if (is_zone_device_page(newpage))
3147 put_page(newpage);
3148 else
3149 putback_lru_page(newpage);
8763cb45
JG
3150 }
3151 }
3152}
a7d1f22b 3153EXPORT_SYMBOL(migrate_vma_finalize);
9b2ed9cb 3154#endif /* CONFIG_DEVICE_PRIVATE */