]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/migrate.c
ksm: drain pagevecs to lru
[mirror_ubuntu-hirsute-kernel.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
5a0e3ad6 36#include <linux/gfp.h>
b20a3503 37
0d1836c3
MN
38#include <asm/tlbflush.h>
39
b20a3503
CL
40#include "internal.h"
41
b20a3503
CL
42#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
43
b20a3503 44/*
742755a1 45 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47 * undesirable, use migrate_prep_local()
b20a3503
CL
48 */
49int migrate_prep(void)
50{
b20a3503
CL
51 /*
52 * Clear the LRU lists so pages can be isolated.
53 * Note that pages may be moved off the LRU after we have
54 * drained them. Those pages will fail to migrate like other
55 * pages that may be busy.
56 */
57 lru_add_drain_all();
58
59 return 0;
60}
61
748446bb
MG
62/* Do the necessary work of migrate_prep but not if it involves other CPUs */
63int migrate_prep_local(void)
64{
65 lru_add_drain();
66
67 return 0;
68}
69
b20a3503 70/*
894bc310
LS
71 * Add isolated pages on the list back to the LRU under page lock
72 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 73 */
e13861d8 74void putback_lru_pages(struct list_head *l)
b20a3503
CL
75{
76 struct page *page;
77 struct page *page2;
b20a3503
CL
78
79 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 80 list_del(&page->lru);
a731286d 81 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 82 page_is_file_cache(page));
894bc310 83 putback_lru_page(page);
b20a3503 84 }
b20a3503
CL
85}
86
0697212a
CL
87/*
88 * Restore a potential migration pte to a working pte entry
89 */
e9995ef9
HD
90static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
91 unsigned long addr, void *old)
0697212a
CL
92{
93 struct mm_struct *mm = vma->vm_mm;
94 swp_entry_t entry;
95 pgd_t *pgd;
96 pud_t *pud;
97 pmd_t *pmd;
98 pte_t *ptep, pte;
99 spinlock_t *ptl;
100
290408d4
NH
101 if (unlikely(PageHuge(new))) {
102 ptep = huge_pte_offset(mm, addr);
103 if (!ptep)
104 goto out;
105 ptl = &mm->page_table_lock;
106 } else {
107 pgd = pgd_offset(mm, addr);
108 if (!pgd_present(*pgd))
109 goto out;
0697212a 110
290408d4
NH
111 pud = pud_offset(pgd, addr);
112 if (!pud_present(*pud))
113 goto out;
0697212a 114
290408d4 115 pmd = pmd_offset(pud, addr);
500d65d4
AA
116 if (pmd_trans_huge(*pmd))
117 goto out;
290408d4
NH
118 if (!pmd_present(*pmd))
119 goto out;
0697212a 120
290408d4 121 ptep = pte_offset_map(pmd, addr);
0697212a 122
290408d4
NH
123 if (!is_swap_pte(*ptep)) {
124 pte_unmap(ptep);
125 goto out;
126 }
127
128 ptl = pte_lockptr(mm, pmd);
129 }
0697212a 130
0697212a
CL
131 spin_lock(ptl);
132 pte = *ptep;
133 if (!is_swap_pte(pte))
e9995ef9 134 goto unlock;
0697212a
CL
135
136 entry = pte_to_swp_entry(pte);
137
e9995ef9
HD
138 if (!is_migration_entry(entry) ||
139 migration_entry_to_page(entry) != old)
140 goto unlock;
0697212a 141
0697212a
CL
142 get_page(new);
143 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
144 if (is_write_migration_entry(entry))
145 pte = pte_mkwrite(pte);
3ef8fd7f 146#ifdef CONFIG_HUGETLB_PAGE
290408d4
NH
147 if (PageHuge(new))
148 pte = pte_mkhuge(pte);
3ef8fd7f 149#endif
97ee0524 150 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 151 set_pte_at(mm, addr, ptep, pte);
04e62a29 152
290408d4
NH
153 if (PageHuge(new)) {
154 if (PageAnon(new))
155 hugepage_add_anon_rmap(new, vma, addr);
156 else
157 page_dup_rmap(new);
158 } else if (PageAnon(new))
04e62a29
CL
159 page_add_anon_rmap(new, vma, addr);
160 else
161 page_add_file_rmap(new);
162
163 /* No need to invalidate - it was non-present before */
4b3073e1 164 update_mmu_cache(vma, addr, ptep);
e9995ef9 165unlock:
0697212a 166 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
167out:
168 return SWAP_AGAIN;
0697212a
CL
169}
170
04e62a29
CL
171/*
172 * Get rid of all migration entries and replace them by
173 * references to the indicated page.
174 */
175static void remove_migration_ptes(struct page *old, struct page *new)
176{
e9995ef9 177 rmap_walk(new, remove_migration_pte, old);
04e62a29
CL
178}
179
0697212a
CL
180/*
181 * Something used the pte of a page under migration. We need to
182 * get to the page and wait until migration is finished.
183 * When we return from this function the fault will be retried.
184 *
185 * This function is called from do_swap_page().
186 */
187void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
188 unsigned long address)
189{
190 pte_t *ptep, pte;
191 spinlock_t *ptl;
192 swp_entry_t entry;
193 struct page *page;
194
195 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
196 pte = *ptep;
197 if (!is_swap_pte(pte))
198 goto out;
199
200 entry = pte_to_swp_entry(pte);
201 if (!is_migration_entry(entry))
202 goto out;
203
204 page = migration_entry_to_page(entry);
205
e286781d
NP
206 /*
207 * Once radix-tree replacement of page migration started, page_count
208 * *must* be zero. And, we don't want to call wait_on_page_locked()
209 * against a page without get_page().
210 * So, we use get_page_unless_zero(), here. Even failed, page fault
211 * will occur again.
212 */
213 if (!get_page_unless_zero(page))
214 goto out;
0697212a
CL
215 pte_unmap_unlock(ptep, ptl);
216 wait_on_page_locked(page);
217 put_page(page);
218 return;
219out:
220 pte_unmap_unlock(ptep, ptl);
221}
222
b20a3503 223/*
c3fcf8a5 224 * Replace the page in the mapping.
5b5c7120
CL
225 *
226 * The number of remaining references must be:
227 * 1 for anonymous pages without a mapping
228 * 2 for pages with a mapping
266cf658 229 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 230 */
2d1db3b1
CL
231static int migrate_page_move_mapping(struct address_space *mapping,
232 struct page *newpage, struct page *page)
b20a3503 233{
e286781d 234 int expected_count;
7cf9c2c7 235 void **pslot;
b20a3503 236
6c5240ae 237 if (!mapping) {
0e8c7d0f 238 /* Anonymous page without mapping */
6c5240ae
CL
239 if (page_count(page) != 1)
240 return -EAGAIN;
241 return 0;
242 }
243
19fd6231 244 spin_lock_irq(&mapping->tree_lock);
b20a3503 245
7cf9c2c7
NP
246 pslot = radix_tree_lookup_slot(&mapping->page_tree,
247 page_index(page));
b20a3503 248
edcf4748 249 expected_count = 2 + page_has_private(page);
e286781d 250 if (page_count(page) != expected_count ||
29c1f677 251 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 252 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 253 return -EAGAIN;
b20a3503
CL
254 }
255
e286781d 256 if (!page_freeze_refs(page, expected_count)) {
19fd6231 257 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
258 return -EAGAIN;
259 }
260
b20a3503
CL
261 /*
262 * Now we know that no one else is looking at the page.
b20a3503 263 */
7cf9c2c7 264 get_page(newpage); /* add cache reference */
b20a3503
CL
265 if (PageSwapCache(page)) {
266 SetPageSwapCache(newpage);
267 set_page_private(newpage, page_private(page));
268 }
269
7cf9c2c7
NP
270 radix_tree_replace_slot(pslot, newpage);
271
e286781d 272 page_unfreeze_refs(page, expected_count);
7cf9c2c7
NP
273 /*
274 * Drop cache reference from old page.
275 * We know this isn't the last reference.
276 */
b20a3503 277 __put_page(page);
7cf9c2c7 278
0e8c7d0f
CL
279 /*
280 * If moved to a different zone then also account
281 * the page for that zone. Other VM counters will be
282 * taken care of when we establish references to the
283 * new page and drop references to the old page.
284 *
285 * Note that anonymous pages are accounted for
286 * via NR_FILE_PAGES and NR_ANON_PAGES if they
287 * are mapped to swap space.
288 */
289 __dec_zone_page_state(page, NR_FILE_PAGES);
290 __inc_zone_page_state(newpage, NR_FILE_PAGES);
4b02108a
KM
291 if (PageSwapBacked(page)) {
292 __dec_zone_page_state(page, NR_SHMEM);
293 __inc_zone_page_state(newpage, NR_SHMEM);
294 }
19fd6231 295 spin_unlock_irq(&mapping->tree_lock);
b20a3503
CL
296
297 return 0;
298}
b20a3503 299
290408d4
NH
300/*
301 * The expected number of remaining references is the same as that
302 * of migrate_page_move_mapping().
303 */
304int migrate_huge_page_move_mapping(struct address_space *mapping,
305 struct page *newpage, struct page *page)
306{
307 int expected_count;
308 void **pslot;
309
310 if (!mapping) {
311 if (page_count(page) != 1)
312 return -EAGAIN;
313 return 0;
314 }
315
316 spin_lock_irq(&mapping->tree_lock);
317
318 pslot = radix_tree_lookup_slot(&mapping->page_tree,
319 page_index(page));
320
321 expected_count = 2 + page_has_private(page);
322 if (page_count(page) != expected_count ||
29c1f677 323 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
324 spin_unlock_irq(&mapping->tree_lock);
325 return -EAGAIN;
326 }
327
328 if (!page_freeze_refs(page, expected_count)) {
329 spin_unlock_irq(&mapping->tree_lock);
330 return -EAGAIN;
331 }
332
333 get_page(newpage);
334
335 radix_tree_replace_slot(pslot, newpage);
336
337 page_unfreeze_refs(page, expected_count);
338
339 __put_page(page);
340
341 spin_unlock_irq(&mapping->tree_lock);
342 return 0;
343}
344
b20a3503
CL
345/*
346 * Copy the page to its new location
347 */
290408d4 348void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 349{
290408d4
NH
350 if (PageHuge(page))
351 copy_huge_page(newpage, page);
352 else
353 copy_highpage(newpage, page);
b20a3503
CL
354
355 if (PageError(page))
356 SetPageError(newpage);
357 if (PageReferenced(page))
358 SetPageReferenced(newpage);
359 if (PageUptodate(page))
360 SetPageUptodate(newpage);
894bc310
LS
361 if (TestClearPageActive(page)) {
362 VM_BUG_ON(PageUnevictable(page));
b20a3503 363 SetPageActive(newpage);
418b27ef
LS
364 } else if (TestClearPageUnevictable(page))
365 SetPageUnevictable(newpage);
b20a3503
CL
366 if (PageChecked(page))
367 SetPageChecked(newpage);
368 if (PageMappedToDisk(page))
369 SetPageMappedToDisk(newpage);
370
371 if (PageDirty(page)) {
372 clear_page_dirty_for_io(page);
3a902c5f
NP
373 /*
374 * Want to mark the page and the radix tree as dirty, and
375 * redo the accounting that clear_page_dirty_for_io undid,
376 * but we can't use set_page_dirty because that function
377 * is actually a signal that all of the page has become dirty.
378 * Wheras only part of our page may be dirty.
379 */
380 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
381 }
382
b291f000 383 mlock_migrate_page(newpage, page);
e9995ef9 384 ksm_migrate_page(newpage, page);
b291f000 385
b20a3503 386 ClearPageSwapCache(page);
b20a3503
CL
387 ClearPagePrivate(page);
388 set_page_private(page, 0);
389 page->mapping = NULL;
390
391 /*
392 * If any waiters have accumulated on the new page then
393 * wake them up.
394 */
395 if (PageWriteback(newpage))
396 end_page_writeback(newpage);
397}
b20a3503 398
1d8b85cc
CL
399/************************************************************
400 * Migration functions
401 ***********************************************************/
402
403/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
404int fail_migrate_page(struct address_space *mapping,
405 struct page *newpage, struct page *page)
1d8b85cc
CL
406{
407 return -EIO;
408}
409EXPORT_SYMBOL(fail_migrate_page);
410
b20a3503
CL
411/*
412 * Common logic to directly migrate a single page suitable for
266cf658 413 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
414 *
415 * Pages are locked upon entry and exit.
416 */
2d1db3b1
CL
417int migrate_page(struct address_space *mapping,
418 struct page *newpage, struct page *page)
b20a3503
CL
419{
420 int rc;
421
422 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
423
2d1db3b1 424 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
425
426 if (rc)
427 return rc;
428
429 migrate_page_copy(newpage, page);
b20a3503
CL
430 return 0;
431}
432EXPORT_SYMBOL(migrate_page);
433
9361401e 434#ifdef CONFIG_BLOCK
1d8b85cc
CL
435/*
436 * Migration function for pages with buffers. This function can only be used
437 * if the underlying filesystem guarantees that no other references to "page"
438 * exist.
439 */
2d1db3b1
CL
440int buffer_migrate_page(struct address_space *mapping,
441 struct page *newpage, struct page *page)
1d8b85cc 442{
1d8b85cc
CL
443 struct buffer_head *bh, *head;
444 int rc;
445
1d8b85cc 446 if (!page_has_buffers(page))
2d1db3b1 447 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
448
449 head = page_buffers(page);
450
2d1db3b1 451 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
452
453 if (rc)
454 return rc;
455
456 bh = head;
457 do {
458 get_bh(bh);
459 lock_buffer(bh);
460 bh = bh->b_this_page;
461
462 } while (bh != head);
463
464 ClearPagePrivate(page);
465 set_page_private(newpage, page_private(page));
466 set_page_private(page, 0);
467 put_page(page);
468 get_page(newpage);
469
470 bh = head;
471 do {
472 set_bh_page(bh, newpage, bh_offset(bh));
473 bh = bh->b_this_page;
474
475 } while (bh != head);
476
477 SetPagePrivate(newpage);
478
479 migrate_page_copy(newpage, page);
480
481 bh = head;
482 do {
483 unlock_buffer(bh);
484 put_bh(bh);
485 bh = bh->b_this_page;
486
487 } while (bh != head);
488
489 return 0;
490}
491EXPORT_SYMBOL(buffer_migrate_page);
9361401e 492#endif
1d8b85cc 493
04e62a29
CL
494/*
495 * Writeback a page to clean the dirty state
496 */
497static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 498{
04e62a29
CL
499 struct writeback_control wbc = {
500 .sync_mode = WB_SYNC_NONE,
501 .nr_to_write = 1,
502 .range_start = 0,
503 .range_end = LLONG_MAX,
04e62a29
CL
504 .for_reclaim = 1
505 };
506 int rc;
507
508 if (!mapping->a_ops->writepage)
509 /* No write method for the address space */
510 return -EINVAL;
511
512 if (!clear_page_dirty_for_io(page))
513 /* Someone else already triggered a write */
514 return -EAGAIN;
515
8351a6e4 516 /*
04e62a29
CL
517 * A dirty page may imply that the underlying filesystem has
518 * the page on some queue. So the page must be clean for
519 * migration. Writeout may mean we loose the lock and the
520 * page state is no longer what we checked for earlier.
521 * At this point we know that the migration attempt cannot
522 * be successful.
8351a6e4 523 */
04e62a29 524 remove_migration_ptes(page, page);
8351a6e4 525
04e62a29 526 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 527
04e62a29
CL
528 if (rc != AOP_WRITEPAGE_ACTIVATE)
529 /* unlocked. Relock */
530 lock_page(page);
531
bda8550d 532 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
533}
534
535/*
536 * Default handling if a filesystem does not provide a migration function.
537 */
538static int fallback_migrate_page(struct address_space *mapping,
539 struct page *newpage, struct page *page)
540{
541 if (PageDirty(page))
542 return writeout(mapping, page);
8351a6e4
CL
543
544 /*
545 * Buffers may be managed in a filesystem specific way.
546 * We must have no buffers or drop them.
547 */
266cf658 548 if (page_has_private(page) &&
8351a6e4
CL
549 !try_to_release_page(page, GFP_KERNEL))
550 return -EAGAIN;
551
552 return migrate_page(mapping, newpage, page);
553}
554
e24f0b8f
CL
555/*
556 * Move a page to a newly allocated page
557 * The page is locked and all ptes have been successfully removed.
558 *
559 * The new page will have replaced the old page if this function
560 * is successful.
894bc310
LS
561 *
562 * Return value:
563 * < 0 - error code
564 * == 0 - success
e24f0b8f 565 */
3fe2011f
MG
566static int move_to_new_page(struct page *newpage, struct page *page,
567 int remap_swapcache)
e24f0b8f
CL
568{
569 struct address_space *mapping;
570 int rc;
571
572 /*
573 * Block others from accessing the page when we get around to
574 * establishing additional references. We are the only one
575 * holding a reference to the new page at this point.
576 */
529ae9aa 577 if (!trylock_page(newpage))
e24f0b8f
CL
578 BUG();
579
580 /* Prepare mapping for the new page.*/
581 newpage->index = page->index;
582 newpage->mapping = page->mapping;
b2e18538
RR
583 if (PageSwapBacked(page))
584 SetPageSwapBacked(newpage);
e24f0b8f
CL
585
586 mapping = page_mapping(page);
587 if (!mapping)
588 rc = migrate_page(mapping, newpage, page);
589 else if (mapping->a_ops->migratepage)
590 /*
591 * Most pages have a mapping and most filesystems
592 * should provide a migration function. Anonymous
593 * pages are part of swap space which also has its
594 * own migration function. This is the most common
595 * path for page migration.
596 */
597 rc = mapping->a_ops->migratepage(mapping,
598 newpage, page);
599 else
600 rc = fallback_migrate_page(mapping, newpage, page);
601
3fe2011f 602 if (rc) {
e24f0b8f 603 newpage->mapping = NULL;
3fe2011f
MG
604 } else {
605 if (remap_swapcache)
606 remove_migration_ptes(page, newpage);
607 }
e24f0b8f
CL
608
609 unlock_page(newpage);
610
611 return rc;
612}
613
614/*
615 * Obtain the lock on page, remove all ptes and migrate the page
616 * to the newly allocated page in newpage.
617 */
95a402c3 618static int unmap_and_move(new_page_t get_new_page, unsigned long private,
7f0f2496 619 struct page *page, int force, bool offlining, bool sync)
e24f0b8f
CL
620{
621 int rc = 0;
742755a1
CL
622 int *result = NULL;
623 struct page *newpage = get_new_page(page, private, &result);
3fe2011f 624 int remap_swapcache = 1;
989f89c5 625 int rcu_locked = 0;
ae41be37 626 int charge = 0;
e00e4316 627 struct mem_cgroup *mem = NULL;
3f6c8272 628 struct anon_vma *anon_vma = NULL;
95a402c3
CL
629
630 if (!newpage)
631 return -ENOMEM;
e24f0b8f 632
894bc310 633 if (page_count(page) == 1) {
e24f0b8f 634 /* page was freed from under us. So we are done. */
95a402c3 635 goto move_newpage;
894bc310 636 }
500d65d4
AA
637 if (unlikely(PageTransHuge(page)))
638 if (unlikely(split_huge_page(page)))
639 goto move_newpage;
e24f0b8f 640
e8589cc1 641 /* prepare cgroup just returns 0 or -ENOMEM */
e24f0b8f 642 rc = -EAGAIN;
01b1ae63 643
529ae9aa 644 if (!trylock_page(page)) {
e24f0b8f 645 if (!force)
95a402c3 646 goto move_newpage;
3e7d3449
MG
647
648 /*
649 * It's not safe for direct compaction to call lock_page.
650 * For example, during page readahead pages are added locked
651 * to the LRU. Later, when the IO completes the pages are
652 * marked uptodate and unlocked. However, the queueing
653 * could be merging multiple pages for one bio (e.g.
654 * mpage_readpages). If an allocation happens for the
655 * second or third page, the process can end up locking
656 * the same page twice and deadlocking. Rather than
657 * trying to be clever about what pages can be locked,
658 * avoid the use of lock_page for direct compaction
659 * altogether.
660 */
661 if (current->flags & PF_MEMALLOC)
662 goto move_newpage;
663
e24f0b8f
CL
664 lock_page(page);
665 }
666
62b61f61
HD
667 /*
668 * Only memory hotplug's offline_pages() caller has locked out KSM,
669 * and can safely migrate a KSM page. The other cases have skipped
670 * PageKsm along with PageReserved - but it is only now when we have
671 * the page lock that we can be certain it will not go KSM beneath us
672 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
673 * its pagecount raised, but only here do we take the page lock which
674 * serializes that).
675 */
676 if (PageKsm(page) && !offlining) {
677 rc = -EBUSY;
678 goto unlock;
679 }
680
01b1ae63 681 /* charge against new page */
ac39cf8c 682 charge = mem_cgroup_prepare_migration(page, newpage, &mem);
01b1ae63
KH
683 if (charge == -ENOMEM) {
684 rc = -ENOMEM;
685 goto unlock;
686 }
687 BUG_ON(charge);
688
e24f0b8f 689 if (PageWriteback(page)) {
77f1fe6b 690 if (!force || !sync)
01b1ae63 691 goto uncharge;
e24f0b8f
CL
692 wait_on_page_writeback(page);
693 }
e24f0b8f 694 /*
dc386d4d
KH
695 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
696 * we cannot notice that anon_vma is freed while we migrates a page.
697 * This rcu_read_lock() delays freeing anon_vma pointer until the end
698 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
699 * File Caches may use write_page() or lock_page() in migration, then,
700 * just care Anon page here.
dc386d4d 701 */
989f89c5
KH
702 if (PageAnon(page)) {
703 rcu_read_lock();
704 rcu_locked = 1;
67b9509b 705
3fe2011f
MG
706 /* Determine how to safely use anon_vma */
707 if (!page_mapped(page)) {
708 if (!PageSwapCache(page))
709 goto rcu_unlock;
67b9509b 710
3fe2011f
MG
711 /*
712 * We cannot be sure that the anon_vma of an unmapped
713 * swapcache page is safe to use because we don't
714 * know in advance if the VMA that this page belonged
715 * to still exists. If the VMA and others sharing the
716 * data have been freed, then the anon_vma could
717 * already be invalid.
718 *
719 * To avoid this possibility, swapcache pages get
720 * migrated but are not remapped when migration
721 * completes
722 */
723 remap_swapcache = 0;
724 } else {
725 /*
726 * Take a reference count on the anon_vma if the
727 * page is mapped so that it is guaranteed to
728 * exist when the page is remapped later
729 */
730 anon_vma = page_anon_vma(page);
76545066 731 get_anon_vma(anon_vma);
3fe2011f 732 }
989f89c5 733 }
62e1c553 734
dc386d4d 735 /*
62e1c553
SL
736 * Corner case handling:
737 * 1. When a new swap-cache page is read into, it is added to the LRU
738 * and treated as swapcache but it has no rmap yet.
739 * Calling try_to_unmap() against a page->mapping==NULL page will
740 * trigger a BUG. So handle it here.
741 * 2. An orphaned page (see truncate_complete_page) might have
742 * fs-private metadata. The page can be picked up due to memory
743 * offlining. Everywhere else except page reclaim, the page is
744 * invisible to the vm, so the page can not be migrated. So try to
745 * free the metadata, so the page can be freed.
e24f0b8f 746 */
62e1c553 747 if (!page->mapping) {
266cf658 748 if (!PageAnon(page) && page_has_private(page)) {
62e1c553
SL
749 /*
750 * Go direct to try_to_free_buffers() here because
751 * a) that's what try_to_release_page() would do anyway
752 * b) we may be under rcu_read_lock() here, so we can't
753 * use GFP_KERNEL which is what try_to_release_page()
754 * needs to be effective.
755 */
756 try_to_free_buffers(page);
abfc3488 757 goto rcu_unlock;
62e1c553 758 }
abfc3488 759 goto skip_unmap;
62e1c553
SL
760 }
761
dc386d4d 762 /* Establish migration ptes or remove ptes */
14fa31b8 763 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 764
abfc3488 765skip_unmap:
e6a1530d 766 if (!page_mapped(page))
3fe2011f 767 rc = move_to_new_page(newpage, page, remap_swapcache);
e24f0b8f 768
3fe2011f 769 if (rc && remap_swapcache)
e24f0b8f 770 remove_migration_ptes(page, page);
dc386d4d 771rcu_unlock:
3f6c8272
MG
772
773 /* Drop an anon_vma reference if we took one */
76545066
RR
774 if (anon_vma)
775 drop_anon_vma(anon_vma);
3f6c8272 776
989f89c5
KH
777 if (rcu_locked)
778 rcu_read_unlock();
01b1ae63
KH
779uncharge:
780 if (!charge)
781 mem_cgroup_end_migration(mem, page, newpage);
e24f0b8f
CL
782unlock:
783 unlock_page(page);
95a402c3 784
e24f0b8f 785 if (rc != -EAGAIN) {
aaa994b3
CL
786 /*
787 * A page that has been migrated has all references
788 * removed and will be freed. A page that has not been
789 * migrated will have kepts its references and be
790 * restored.
791 */
792 list_del(&page->lru);
a731286d 793 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 794 page_is_file_cache(page));
894bc310 795 putback_lru_page(page);
e24f0b8f 796 }
95a402c3
CL
797
798move_newpage:
894bc310 799
95a402c3
CL
800 /*
801 * Move the new page to the LRU. If migration was not successful
802 * then this will free the page.
803 */
894bc310
LS
804 putback_lru_page(newpage);
805
742755a1
CL
806 if (result) {
807 if (rc)
808 *result = rc;
809 else
810 *result = page_to_nid(newpage);
811 }
e24f0b8f
CL
812 return rc;
813}
814
290408d4
NH
815/*
816 * Counterpart of unmap_and_move_page() for hugepage migration.
817 *
818 * This function doesn't wait the completion of hugepage I/O
819 * because there is no race between I/O and migration for hugepage.
820 * Note that currently hugepage I/O occurs only in direct I/O
821 * where no lock is held and PG_writeback is irrelevant,
822 * and writeback status of all subpages are counted in the reference
823 * count of the head page (i.e. if all subpages of a 2MB hugepage are
824 * under direct I/O, the reference of the head page is 512 and a bit more.)
825 * This means that when we try to migrate hugepage whose subpages are
826 * doing direct I/O, some references remain after try_to_unmap() and
827 * hugepage migration fails without data corruption.
828 *
829 * There is also no race when direct I/O is issued on the page under migration,
830 * because then pte is replaced with migration swap entry and direct I/O code
831 * will wait in the page fault for migration to complete.
832 */
833static int unmap_and_move_huge_page(new_page_t get_new_page,
834 unsigned long private, struct page *hpage,
7f0f2496 835 int force, bool offlining, bool sync)
290408d4
NH
836{
837 int rc = 0;
838 int *result = NULL;
839 struct page *new_hpage = get_new_page(hpage, private, &result);
840 int rcu_locked = 0;
841 struct anon_vma *anon_vma = NULL;
842
843 if (!new_hpage)
844 return -ENOMEM;
845
846 rc = -EAGAIN;
847
848 if (!trylock_page(hpage)) {
77f1fe6b 849 if (!force || !sync)
290408d4
NH
850 goto out;
851 lock_page(hpage);
852 }
853
854 if (PageAnon(hpage)) {
855 rcu_read_lock();
856 rcu_locked = 1;
857
858 if (page_mapped(hpage)) {
859 anon_vma = page_anon_vma(hpage);
860 atomic_inc(&anon_vma->external_refcount);
861 }
862 }
863
864 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
865
866 if (!page_mapped(hpage))
867 rc = move_to_new_page(new_hpage, hpage, 1);
868
869 if (rc)
870 remove_migration_ptes(hpage, hpage);
871
872 if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount,
873 &anon_vma->lock)) {
874 int empty = list_empty(&anon_vma->head);
875 spin_unlock(&anon_vma->lock);
876 if (empty)
877 anon_vma_free(anon_vma);
878 }
879
880 if (rcu_locked)
881 rcu_read_unlock();
882out:
883 unlock_page(hpage);
884
885 if (rc != -EAGAIN) {
886 list_del(&hpage->lru);
887 put_page(hpage);
888 }
889
890 put_page(new_hpage);
891
892 if (result) {
893 if (rc)
894 *result = rc;
895 else
896 *result = page_to_nid(new_hpage);
897 }
898 return rc;
899}
900
b20a3503
CL
901/*
902 * migrate_pages
903 *
95a402c3
CL
904 * The function takes one list of pages to migrate and a function
905 * that determines from the page to be migrated and the private data
906 * the target of the move and allocates the page.
b20a3503
CL
907 *
908 * The function returns after 10 attempts or if no pages
909 * are movable anymore because to has become empty
cf608ac1
MK
910 * or no retryable pages exist anymore.
911 * Caller should call putback_lru_pages to return pages to the LRU
912 * or free list.
b20a3503 913 *
95a402c3 914 * Return: Number of pages not migrated or error code.
b20a3503 915 */
95a402c3 916int migrate_pages(struct list_head *from,
7f0f2496 917 new_page_t get_new_page, unsigned long private, bool offlining,
77f1fe6b 918 bool sync)
b20a3503 919{
e24f0b8f 920 int retry = 1;
b20a3503
CL
921 int nr_failed = 0;
922 int pass = 0;
923 struct page *page;
924 struct page *page2;
925 int swapwrite = current->flags & PF_SWAPWRITE;
926 int rc;
927
928 if (!swapwrite)
929 current->flags |= PF_SWAPWRITE;
930
e24f0b8f
CL
931 for(pass = 0; pass < 10 && retry; pass++) {
932 retry = 0;
b20a3503 933
e24f0b8f 934 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 935 cond_resched();
2d1db3b1 936
95a402c3 937 rc = unmap_and_move(get_new_page, private,
77f1fe6b
MG
938 page, pass > 2, offlining,
939 sync);
2d1db3b1 940
e24f0b8f 941 switch(rc) {
95a402c3
CL
942 case -ENOMEM:
943 goto out;
e24f0b8f 944 case -EAGAIN:
2d1db3b1 945 retry++;
e24f0b8f
CL
946 break;
947 case 0:
e24f0b8f
CL
948 break;
949 default:
2d1db3b1 950 /* Permanent failure */
2d1db3b1 951 nr_failed++;
e24f0b8f 952 break;
2d1db3b1 953 }
b20a3503
CL
954 }
955 }
95a402c3
CL
956 rc = 0;
957out:
b20a3503
CL
958 if (!swapwrite)
959 current->flags &= ~PF_SWAPWRITE;
960
95a402c3
CL
961 if (rc)
962 return rc;
b20a3503 963
95a402c3 964 return nr_failed + retry;
b20a3503 965}
95a402c3 966
290408d4 967int migrate_huge_pages(struct list_head *from,
7f0f2496 968 new_page_t get_new_page, unsigned long private, bool offlining,
77f1fe6b 969 bool sync)
290408d4
NH
970{
971 int retry = 1;
972 int nr_failed = 0;
973 int pass = 0;
974 struct page *page;
975 struct page *page2;
976 int rc;
977
978 for (pass = 0; pass < 10 && retry; pass++) {
979 retry = 0;
980
981 list_for_each_entry_safe(page, page2, from, lru) {
982 cond_resched();
983
984 rc = unmap_and_move_huge_page(get_new_page,
77f1fe6b
MG
985 private, page, pass > 2, offlining,
986 sync);
290408d4
NH
987
988 switch(rc) {
989 case -ENOMEM:
990 goto out;
991 case -EAGAIN:
992 retry++;
993 break;
994 case 0:
995 break;
996 default:
997 /* Permanent failure */
998 nr_failed++;
999 break;
1000 }
1001 }
1002 }
1003 rc = 0;
1004out:
1005
1006 list_for_each_entry_safe(page, page2, from, lru)
1007 put_page(page);
1008
1009 if (rc)
1010 return rc;
1011
1012 return nr_failed + retry;
1013}
1014
742755a1
CL
1015#ifdef CONFIG_NUMA
1016/*
1017 * Move a list of individual pages
1018 */
1019struct page_to_node {
1020 unsigned long addr;
1021 struct page *page;
1022 int node;
1023 int status;
1024};
1025
1026static struct page *new_page_node(struct page *p, unsigned long private,
1027 int **result)
1028{
1029 struct page_to_node *pm = (struct page_to_node *)private;
1030
1031 while (pm->node != MAX_NUMNODES && pm->page != p)
1032 pm++;
1033
1034 if (pm->node == MAX_NUMNODES)
1035 return NULL;
1036
1037 *result = &pm->status;
1038
6484eb3e 1039 return alloc_pages_exact_node(pm->node,
769848c0 1040 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1041}
1042
1043/*
1044 * Move a set of pages as indicated in the pm array. The addr
1045 * field must be set to the virtual address of the page to be moved
1046 * and the node number must contain a valid target node.
5e9a0f02 1047 * The pm array ends with node = MAX_NUMNODES.
742755a1 1048 */
5e9a0f02
BG
1049static int do_move_page_to_node_array(struct mm_struct *mm,
1050 struct page_to_node *pm,
1051 int migrate_all)
742755a1
CL
1052{
1053 int err;
1054 struct page_to_node *pp;
1055 LIST_HEAD(pagelist);
1056
1057 down_read(&mm->mmap_sem);
1058
1059 /*
1060 * Build a list of pages to migrate
1061 */
742755a1
CL
1062 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1063 struct vm_area_struct *vma;
1064 struct page *page;
1065
742755a1
CL
1066 err = -EFAULT;
1067 vma = find_vma(mm, pp->addr);
70384dc6 1068 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1069 goto set_status;
1070
500d65d4 1071 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
89f5b7da
LT
1072
1073 err = PTR_ERR(page);
1074 if (IS_ERR(page))
1075 goto set_status;
1076
742755a1
CL
1077 err = -ENOENT;
1078 if (!page)
1079 goto set_status;
1080
62b61f61
HD
1081 /* Use PageReserved to check for zero page */
1082 if (PageReserved(page) || PageKsm(page))
742755a1
CL
1083 goto put_and_set;
1084
1085 pp->page = page;
1086 err = page_to_nid(page);
1087
1088 if (err == pp->node)
1089 /*
1090 * Node already in the right place
1091 */
1092 goto put_and_set;
1093
1094 err = -EACCES;
1095 if (page_mapcount(page) > 1 &&
1096 !migrate_all)
1097 goto put_and_set;
1098
62695a84 1099 err = isolate_lru_page(page);
6d9c285a 1100 if (!err) {
62695a84 1101 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1102 inc_zone_page_state(page, NR_ISOLATED_ANON +
1103 page_is_file_cache(page));
1104 }
742755a1
CL
1105put_and_set:
1106 /*
1107 * Either remove the duplicate refcount from
1108 * isolate_lru_page() or drop the page ref if it was
1109 * not isolated.
1110 */
1111 put_page(page);
1112set_status:
1113 pp->status = err;
1114 }
1115
e78bbfa8 1116 err = 0;
cf608ac1 1117 if (!list_empty(&pagelist)) {
742755a1 1118 err = migrate_pages(&pagelist, new_page_node,
77f1fe6b 1119 (unsigned long)pm, 0, true);
cf608ac1
MK
1120 if (err)
1121 putback_lru_pages(&pagelist);
1122 }
742755a1
CL
1123
1124 up_read(&mm->mmap_sem);
1125 return err;
1126}
1127
5e9a0f02
BG
1128/*
1129 * Migrate an array of page address onto an array of nodes and fill
1130 * the corresponding array of status.
1131 */
1132static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1133 unsigned long nr_pages,
1134 const void __user * __user *pages,
1135 const int __user *nodes,
1136 int __user *status, int flags)
1137{
3140a227 1138 struct page_to_node *pm;
5e9a0f02 1139 nodemask_t task_nodes;
3140a227
BG
1140 unsigned long chunk_nr_pages;
1141 unsigned long chunk_start;
1142 int err;
5e9a0f02
BG
1143
1144 task_nodes = cpuset_mems_allowed(task);
1145
3140a227
BG
1146 err = -ENOMEM;
1147 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1148 if (!pm)
5e9a0f02 1149 goto out;
35282a2d
BG
1150
1151 migrate_prep();
1152
5e9a0f02 1153 /*
3140a227
BG
1154 * Store a chunk of page_to_node array in a page,
1155 * but keep the last one as a marker
5e9a0f02 1156 */
3140a227 1157 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1158
3140a227
BG
1159 for (chunk_start = 0;
1160 chunk_start < nr_pages;
1161 chunk_start += chunk_nr_pages) {
1162 int j;
5e9a0f02 1163
3140a227
BG
1164 if (chunk_start + chunk_nr_pages > nr_pages)
1165 chunk_nr_pages = nr_pages - chunk_start;
1166
1167 /* fill the chunk pm with addrs and nodes from user-space */
1168 for (j = 0; j < chunk_nr_pages; j++) {
1169 const void __user *p;
5e9a0f02
BG
1170 int node;
1171
3140a227
BG
1172 err = -EFAULT;
1173 if (get_user(p, pages + j + chunk_start))
1174 goto out_pm;
1175 pm[j].addr = (unsigned long) p;
1176
1177 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1178 goto out_pm;
1179
1180 err = -ENODEV;
6f5a55f1
LT
1181 if (node < 0 || node >= MAX_NUMNODES)
1182 goto out_pm;
1183
5e9a0f02
BG
1184 if (!node_state(node, N_HIGH_MEMORY))
1185 goto out_pm;
1186
1187 err = -EACCES;
1188 if (!node_isset(node, task_nodes))
1189 goto out_pm;
1190
3140a227
BG
1191 pm[j].node = node;
1192 }
1193
1194 /* End marker for this chunk */
1195 pm[chunk_nr_pages].node = MAX_NUMNODES;
1196
1197 /* Migrate this chunk */
1198 err = do_move_page_to_node_array(mm, pm,
1199 flags & MPOL_MF_MOVE_ALL);
1200 if (err < 0)
1201 goto out_pm;
5e9a0f02 1202
5e9a0f02 1203 /* Return status information */
3140a227
BG
1204 for (j = 0; j < chunk_nr_pages; j++)
1205 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1206 err = -EFAULT;
3140a227
BG
1207 goto out_pm;
1208 }
1209 }
1210 err = 0;
5e9a0f02
BG
1211
1212out_pm:
3140a227 1213 free_page((unsigned long)pm);
5e9a0f02
BG
1214out:
1215 return err;
1216}
1217
742755a1 1218/*
2f007e74 1219 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1220 */
80bba129
BG
1221static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1222 const void __user **pages, int *status)
742755a1 1223{
2f007e74 1224 unsigned long i;
2f007e74 1225
742755a1
CL
1226 down_read(&mm->mmap_sem);
1227
2f007e74 1228 for (i = 0; i < nr_pages; i++) {
80bba129 1229 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1230 struct vm_area_struct *vma;
1231 struct page *page;
c095adbc 1232 int err = -EFAULT;
2f007e74
BG
1233
1234 vma = find_vma(mm, addr);
70384dc6 1235 if (!vma || addr < vma->vm_start)
742755a1
CL
1236 goto set_status;
1237
2f007e74 1238 page = follow_page(vma, addr, 0);
89f5b7da
LT
1239
1240 err = PTR_ERR(page);
1241 if (IS_ERR(page))
1242 goto set_status;
1243
742755a1
CL
1244 err = -ENOENT;
1245 /* Use PageReserved to check for zero page */
62b61f61 1246 if (!page || PageReserved(page) || PageKsm(page))
742755a1
CL
1247 goto set_status;
1248
1249 err = page_to_nid(page);
1250set_status:
80bba129
BG
1251 *status = err;
1252
1253 pages++;
1254 status++;
1255 }
1256
1257 up_read(&mm->mmap_sem);
1258}
1259
1260/*
1261 * Determine the nodes of a user array of pages and store it in
1262 * a user array of status.
1263 */
1264static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1265 const void __user * __user *pages,
1266 int __user *status)
1267{
1268#define DO_PAGES_STAT_CHUNK_NR 16
1269 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1270 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1271
87b8d1ad
PA
1272 while (nr_pages) {
1273 unsigned long chunk_nr;
80bba129 1274
87b8d1ad
PA
1275 chunk_nr = nr_pages;
1276 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1277 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1278
1279 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1280 break;
80bba129
BG
1281
1282 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1283
87b8d1ad
PA
1284 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1285 break;
742755a1 1286
87b8d1ad
PA
1287 pages += chunk_nr;
1288 status += chunk_nr;
1289 nr_pages -= chunk_nr;
1290 }
1291 return nr_pages ? -EFAULT : 0;
742755a1
CL
1292}
1293
1294/*
1295 * Move a list of pages in the address space of the currently executing
1296 * process.
1297 */
938bb9f5
HC
1298SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1299 const void __user * __user *, pages,
1300 const int __user *, nodes,
1301 int __user *, status, int, flags)
742755a1 1302{
c69e8d9c 1303 const struct cred *cred = current_cred(), *tcred;
742755a1 1304 struct task_struct *task;
742755a1 1305 struct mm_struct *mm;
5e9a0f02 1306 int err;
742755a1
CL
1307
1308 /* Check flags */
1309 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1310 return -EINVAL;
1311
1312 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1313 return -EPERM;
1314
1315 /* Find the mm_struct */
1316 read_lock(&tasklist_lock);
228ebcbe 1317 task = pid ? find_task_by_vpid(pid) : current;
742755a1
CL
1318 if (!task) {
1319 read_unlock(&tasklist_lock);
1320 return -ESRCH;
1321 }
1322 mm = get_task_mm(task);
1323 read_unlock(&tasklist_lock);
1324
1325 if (!mm)
1326 return -EINVAL;
1327
1328 /*
1329 * Check if this process has the right to modify the specified
1330 * process. The right exists if the process has administrative
1331 * capabilities, superuser privileges or the same
1332 * userid as the target process.
1333 */
c69e8d9c
DH
1334 rcu_read_lock();
1335 tcred = __task_cred(task);
b6dff3ec
DH
1336 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1337 cred->uid != tcred->suid && cred->uid != tcred->uid &&
742755a1 1338 !capable(CAP_SYS_NICE)) {
c69e8d9c 1339 rcu_read_unlock();
742755a1 1340 err = -EPERM;
5e9a0f02 1341 goto out;
742755a1 1342 }
c69e8d9c 1343 rcu_read_unlock();
742755a1 1344
86c3a764
DQ
1345 err = security_task_movememory(task);
1346 if (err)
5e9a0f02 1347 goto out;
86c3a764 1348
5e9a0f02
BG
1349 if (nodes) {
1350 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1351 flags);
1352 } else {
2f007e74 1353 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1
CL
1354 }
1355
742755a1 1356out:
742755a1
CL
1357 mmput(mm);
1358 return err;
1359}
742755a1 1360
7b2259b3
CL
1361/*
1362 * Call migration functions in the vma_ops that may prepare
1363 * memory in a vm for migration. migration functions may perform
1364 * the migration for vmas that do not have an underlying page struct.
1365 */
1366int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1367 const nodemask_t *from, unsigned long flags)
1368{
1369 struct vm_area_struct *vma;
1370 int err = 0;
1371
1001c9fb 1372 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1373 if (vma->vm_ops && vma->vm_ops->migrate) {
1374 err = vma->vm_ops->migrate(vma, to, from, flags);
1375 if (err)
1376 break;
1377 }
1378 }
1379 return err;
1380}
83d1674a 1381#endif