]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/migrate.c
mm: remove the unused MIGRATE_PFN_ERROR flag
[mirror_ubuntu-jammy-kernel.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
df6ad698 41#include <linux/pfn_t.h>
a5430dda 42#include <linux/memremap.h>
8315ada7 43#include <linux/userfaultfd_k.h>
bf6bddf1 44#include <linux/balloon_compaction.h>
f714f4f2 45#include <linux/mmu_notifier.h>
33c3fc71 46#include <linux/page_idle.h>
d435edca 47#include <linux/page_owner.h>
6e84f315 48#include <linux/sched/mm.h>
197e7e52 49#include <linux/ptrace.h>
b20a3503 50
0d1836c3
MN
51#include <asm/tlbflush.h>
52
7b2a2d4a
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/migrate.h>
55
b20a3503
CL
56#include "internal.h"
57
b20a3503 58/*
742755a1 59 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
b20a3503
CL
62 */
63int migrate_prep(void)
64{
b20a3503
CL
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74}
75
748446bb
MG
76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
77int migrate_prep_local(void)
78{
79 lru_add_drain();
80
81 return 0;
82}
83
9e5bcd61 84int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
85{
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
8bb4e7a2 103 * so unconditionally grabbing the lock ruins page's owner side.
bda807d4
MK
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
9e5bcd61 135 return 0;
bda807d4
MK
136
137out_no_isolated:
138 unlock_page(page);
139out_putpage:
140 put_page(page);
141out:
9e5bcd61 142 return -EBUSY;
bda807d4
MK
143}
144
145/* It should be called on page which is PG_movable */
146void putback_movable_page(struct page *page)
147{
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157}
158
5733c7d1
RA
159/*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
59c82b70
JK
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
5733c7d1
RA
166 */
167void putback_movable_pages(struct list_head *l)
168{
169 struct page *page;
170 struct page *page2;
171
b20a3503 172 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
e24f0b8f 177 list_del(&page->lru);
bda807d4
MK
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
b1123ea6 183 if (unlikely(__PageMovable(page))) {
bda807d4
MK
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
e8db67eb
NH
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
fc280fe8 195 putback_lru_page(page);
bda807d4 196 }
b20a3503 197 }
b20a3503
CL
198}
199
0697212a
CL
200/*
201 * Restore a potential migration pte to a working pte entry
202 */
e4b82222 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 204 unsigned long addr, void *old)
0697212a 205{
3fe87967
KS
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
0697212a 214 swp_entry_t entry;
0697212a 215
3fe87967
KS
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
0697212a 223
616b8371
ZY
224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231#endif
232
3fe87967
KS
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
0697212a 237
3fe87967
KS
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 244
df6ad698
JG
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
df6ad698 249 }
d2b2c6dd 250 }
a5430dda 251
3ef8fd7f 252#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
253 if (PageHuge(new)) {
254 pte = pte_mkhuge(pte);
255 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
257 if (PageAnon(new))
258 hugepage_add_anon_rmap(new, vma, pvmw.address);
259 else
260 page_dup_rmap(new, true);
383321ab
AK
261 } else
262#endif
263 {
264 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 265
383321ab
AK
266 if (PageAnon(new))
267 page_add_anon_rmap(new, vma, pvmw.address, false);
268 else
269 page_add_file_rmap(new, false);
270 }
3fe87967
KS
271 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
272 mlock_vma_page(new);
273
e125fe40
KS
274 if (PageTransHuge(page) && PageMlocked(page))
275 clear_page_mlock(page);
276
3fe87967
KS
277 /* No need to invalidate - it was non-present before */
278 update_mmu_cache(vma, pvmw.address, pvmw.pte);
279 }
51afb12b 280
e4b82222 281 return true;
0697212a
CL
282}
283
04e62a29
CL
284/*
285 * Get rid of all migration entries and replace them by
286 * references to the indicated page.
287 */
e388466d 288void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 289{
051ac83a
JK
290 struct rmap_walk_control rwc = {
291 .rmap_one = remove_migration_pte,
292 .arg = old,
293 };
294
e388466d
KS
295 if (locked)
296 rmap_walk_locked(new, &rwc);
297 else
298 rmap_walk(new, &rwc);
04e62a29
CL
299}
300
0697212a
CL
301/*
302 * Something used the pte of a page under migration. We need to
303 * get to the page and wait until migration is finished.
304 * When we return from this function the fault will be retried.
0697212a 305 */
e66f17ff 306void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 307 spinlock_t *ptl)
0697212a 308{
30dad309 309 pte_t pte;
0697212a
CL
310 swp_entry_t entry;
311 struct page *page;
312
30dad309 313 spin_lock(ptl);
0697212a
CL
314 pte = *ptep;
315 if (!is_swap_pte(pte))
316 goto out;
317
318 entry = pte_to_swp_entry(pte);
319 if (!is_migration_entry(entry))
320 goto out;
321
322 page = migration_entry_to_page(entry);
323
e286781d 324 /*
89eb946a 325 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
326 * is zero; but we must not call put_and_wait_on_page_locked() without
327 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
328 */
329 if (!get_page_unless_zero(page))
330 goto out;
0697212a 331 pte_unmap_unlock(ptep, ptl);
9a1ea439 332 put_and_wait_on_page_locked(page);
0697212a
CL
333 return;
334out:
335 pte_unmap_unlock(ptep, ptl);
336}
337
30dad309
NH
338void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
339 unsigned long address)
340{
341 spinlock_t *ptl = pte_lockptr(mm, pmd);
342 pte_t *ptep = pte_offset_map(pmd, address);
343 __migration_entry_wait(mm, ptep, ptl);
344}
345
cb900f41
KS
346void migration_entry_wait_huge(struct vm_area_struct *vma,
347 struct mm_struct *mm, pte_t *pte)
30dad309 348{
cb900f41 349 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
350 __migration_entry_wait(mm, pte, ptl);
351}
352
616b8371
ZY
353#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
354void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
355{
356 spinlock_t *ptl;
357 struct page *page;
358
359 ptl = pmd_lock(mm, pmd);
360 if (!is_pmd_migration_entry(*pmd))
361 goto unlock;
362 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
363 if (!get_page_unless_zero(page))
364 goto unlock;
365 spin_unlock(ptl);
9a1ea439 366 put_and_wait_on_page_locked(page);
616b8371
ZY
367 return;
368unlock:
369 spin_unlock(ptl);
370}
371#endif
372
f900482d 373static int expected_page_refs(struct address_space *mapping, struct page *page)
0b3901b3
JK
374{
375 int expected_count = 1;
376
377 /*
378 * Device public or private pages have an extra refcount as they are
379 * ZONE_DEVICE pages.
380 */
381 expected_count += is_device_private_page(page);
f900482d 382 if (mapping)
0b3901b3
JK
383 expected_count += hpage_nr_pages(page) + page_has_private(page);
384
385 return expected_count;
386}
387
b20a3503 388/*
c3fcf8a5 389 * Replace the page in the mapping.
5b5c7120
CL
390 *
391 * The number of remaining references must be:
392 * 1 for anonymous pages without a mapping
393 * 2 for pages with a mapping
266cf658 394 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 395 */
36bc08cc 396int migrate_page_move_mapping(struct address_space *mapping,
37109694 397 struct page *newpage, struct page *page, int extra_count)
b20a3503 398{
89eb946a 399 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
400 struct zone *oldzone, *newzone;
401 int dirty;
f900482d 402 int expected_count = expected_page_refs(mapping, page) + extra_count;
8763cb45 403
6c5240ae 404 if (!mapping) {
0e8c7d0f 405 /* Anonymous page without mapping */
8e321fef 406 if (page_count(page) != expected_count)
6c5240ae 407 return -EAGAIN;
cf4b769a
HD
408
409 /* No turning back from here */
cf4b769a
HD
410 newpage->index = page->index;
411 newpage->mapping = page->mapping;
412 if (PageSwapBacked(page))
fa9949da 413 __SetPageSwapBacked(newpage);
cf4b769a 414
78bd5209 415 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
416 }
417
42cb14b1
HD
418 oldzone = page_zone(page);
419 newzone = page_zone(newpage);
420
89eb946a 421 xas_lock_irq(&xas);
89eb946a
MW
422 if (page_count(page) != expected_count || xas_load(&xas) != page) {
423 xas_unlock_irq(&xas);
e23ca00b 424 return -EAGAIN;
b20a3503
CL
425 }
426
fe896d18 427 if (!page_ref_freeze(page, expected_count)) {
89eb946a 428 xas_unlock_irq(&xas);
e286781d
NP
429 return -EAGAIN;
430 }
431
b20a3503 432 /*
cf4b769a
HD
433 * Now we know that no one else is looking at the page:
434 * no turning back from here.
b20a3503 435 */
cf4b769a
HD
436 newpage->index = page->index;
437 newpage->mapping = page->mapping;
e71769ae 438 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
6326fec1
NP
439 if (PageSwapBacked(page)) {
440 __SetPageSwapBacked(newpage);
441 if (PageSwapCache(page)) {
442 SetPageSwapCache(newpage);
443 set_page_private(newpage, page_private(page));
444 }
445 } else {
446 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
447 }
448
42cb14b1
HD
449 /* Move dirty while page refs frozen and newpage not yet exposed */
450 dirty = PageDirty(page);
451 if (dirty) {
452 ClearPageDirty(page);
453 SetPageDirty(newpage);
454 }
455
89eb946a 456 xas_store(&xas, newpage);
e71769ae
NH
457 if (PageTransHuge(page)) {
458 int i;
e71769ae 459
013567be 460 for (i = 1; i < HPAGE_PMD_NR; i++) {
89eb946a 461 xas_next(&xas);
69bf4b6b 462 xas_store(&xas, newpage + i);
e71769ae 463 }
e71769ae 464 }
7cf9c2c7
NP
465
466 /*
937a94c9
JG
467 * Drop cache reference from old page by unfreezing
468 * to one less reference.
7cf9c2c7
NP
469 * We know this isn't the last reference.
470 */
e71769ae 471 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
7cf9c2c7 472
89eb946a 473 xas_unlock(&xas);
42cb14b1
HD
474 /* Leave irq disabled to prevent preemption while updating stats */
475
0e8c7d0f
CL
476 /*
477 * If moved to a different zone then also account
478 * the page for that zone. Other VM counters will be
479 * taken care of when we establish references to the
480 * new page and drop references to the old page.
481 *
482 * Note that anonymous pages are accounted for
4b9d0fab 483 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
484 * are mapped to swap space.
485 */
42cb14b1 486 if (newzone != oldzone) {
11fb9989
MG
487 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
488 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 489 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
490 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
491 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
492 }
493 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 494 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 495 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 496 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 497 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 498 }
4b02108a 499 }
42cb14b1 500 local_irq_enable();
b20a3503 501
78bd5209 502 return MIGRATEPAGE_SUCCESS;
b20a3503 503}
1118dce7 504EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 505
290408d4
NH
506/*
507 * The expected number of remaining references is the same as that
508 * of migrate_page_move_mapping().
509 */
510int migrate_huge_page_move_mapping(struct address_space *mapping,
511 struct page *newpage, struct page *page)
512{
89eb946a 513 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 514 int expected_count;
290408d4 515
89eb946a 516 xas_lock_irq(&xas);
290408d4 517 expected_count = 2 + page_has_private(page);
89eb946a
MW
518 if (page_count(page) != expected_count || xas_load(&xas) != page) {
519 xas_unlock_irq(&xas);
290408d4
NH
520 return -EAGAIN;
521 }
522
fe896d18 523 if (!page_ref_freeze(page, expected_count)) {
89eb946a 524 xas_unlock_irq(&xas);
290408d4
NH
525 return -EAGAIN;
526 }
527
cf4b769a
HD
528 newpage->index = page->index;
529 newpage->mapping = page->mapping;
6a93ca8f 530
290408d4
NH
531 get_page(newpage);
532
89eb946a 533 xas_store(&xas, newpage);
290408d4 534
fe896d18 535 page_ref_unfreeze(page, expected_count - 1);
290408d4 536
89eb946a 537 xas_unlock_irq(&xas);
6a93ca8f 538
78bd5209 539 return MIGRATEPAGE_SUCCESS;
290408d4
NH
540}
541
30b0a105
DH
542/*
543 * Gigantic pages are so large that we do not guarantee that page++ pointer
544 * arithmetic will work across the entire page. We need something more
545 * specialized.
546 */
547static void __copy_gigantic_page(struct page *dst, struct page *src,
548 int nr_pages)
549{
550 int i;
551 struct page *dst_base = dst;
552 struct page *src_base = src;
553
554 for (i = 0; i < nr_pages; ) {
555 cond_resched();
556 copy_highpage(dst, src);
557
558 i++;
559 dst = mem_map_next(dst, dst_base, i);
560 src = mem_map_next(src, src_base, i);
561 }
562}
563
564static void copy_huge_page(struct page *dst, struct page *src)
565{
566 int i;
567 int nr_pages;
568
569 if (PageHuge(src)) {
570 /* hugetlbfs page */
571 struct hstate *h = page_hstate(src);
572 nr_pages = pages_per_huge_page(h);
573
574 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
575 __copy_gigantic_page(dst, src, nr_pages);
576 return;
577 }
578 } else {
579 /* thp page */
580 BUG_ON(!PageTransHuge(src));
581 nr_pages = hpage_nr_pages(src);
582 }
583
584 for (i = 0; i < nr_pages; i++) {
585 cond_resched();
586 copy_highpage(dst + i, src + i);
587 }
588}
589
b20a3503
CL
590/*
591 * Copy the page to its new location
592 */
2916ecc0 593void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 594{
7851a45c
RR
595 int cpupid;
596
b20a3503
CL
597 if (PageError(page))
598 SetPageError(newpage);
599 if (PageReferenced(page))
600 SetPageReferenced(newpage);
601 if (PageUptodate(page))
602 SetPageUptodate(newpage);
894bc310 603 if (TestClearPageActive(page)) {
309381fe 604 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 605 SetPageActive(newpage);
418b27ef
LS
606 } else if (TestClearPageUnevictable(page))
607 SetPageUnevictable(newpage);
1899ad18
JW
608 if (PageWorkingset(page))
609 SetPageWorkingset(newpage);
b20a3503
CL
610 if (PageChecked(page))
611 SetPageChecked(newpage);
612 if (PageMappedToDisk(page))
613 SetPageMappedToDisk(newpage);
614
42cb14b1
HD
615 /* Move dirty on pages not done by migrate_page_move_mapping() */
616 if (PageDirty(page))
617 SetPageDirty(newpage);
b20a3503 618
33c3fc71
VD
619 if (page_is_young(page))
620 set_page_young(newpage);
621 if (page_is_idle(page))
622 set_page_idle(newpage);
623
7851a45c
RR
624 /*
625 * Copy NUMA information to the new page, to prevent over-eager
626 * future migrations of this same page.
627 */
628 cpupid = page_cpupid_xchg_last(page, -1);
629 page_cpupid_xchg_last(newpage, cpupid);
630
e9995ef9 631 ksm_migrate_page(newpage, page);
c8d6553b
HD
632 /*
633 * Please do not reorder this without considering how mm/ksm.c's
634 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
635 */
b3b3a99c
NH
636 if (PageSwapCache(page))
637 ClearPageSwapCache(page);
b20a3503
CL
638 ClearPagePrivate(page);
639 set_page_private(page, 0);
b20a3503
CL
640
641 /*
642 * If any waiters have accumulated on the new page then
643 * wake them up.
644 */
645 if (PageWriteback(newpage))
646 end_page_writeback(newpage);
d435edca
VB
647
648 copy_page_owner(page, newpage);
74485cf2
JW
649
650 mem_cgroup_migrate(page, newpage);
b20a3503 651}
2916ecc0
JG
652EXPORT_SYMBOL(migrate_page_states);
653
654void migrate_page_copy(struct page *newpage, struct page *page)
655{
656 if (PageHuge(page) || PageTransHuge(page))
657 copy_huge_page(newpage, page);
658 else
659 copy_highpage(newpage, page);
660
661 migrate_page_states(newpage, page);
662}
1118dce7 663EXPORT_SYMBOL(migrate_page_copy);
b20a3503 664
1d8b85cc
CL
665/************************************************************
666 * Migration functions
667 ***********************************************************/
668
b20a3503 669/*
bda807d4 670 * Common logic to directly migrate a single LRU page suitable for
266cf658 671 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
672 *
673 * Pages are locked upon entry and exit.
674 */
2d1db3b1 675int migrate_page(struct address_space *mapping,
a6bc32b8
MG
676 struct page *newpage, struct page *page,
677 enum migrate_mode mode)
b20a3503
CL
678{
679 int rc;
680
681 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
682
37109694 683 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
b20a3503 684
78bd5209 685 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
686 return rc;
687
2916ecc0
JG
688 if (mode != MIGRATE_SYNC_NO_COPY)
689 migrate_page_copy(newpage, page);
690 else
691 migrate_page_states(newpage, page);
78bd5209 692 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
693}
694EXPORT_SYMBOL(migrate_page);
695
9361401e 696#ifdef CONFIG_BLOCK
84ade7c1
JK
697/* Returns true if all buffers are successfully locked */
698static bool buffer_migrate_lock_buffers(struct buffer_head *head,
699 enum migrate_mode mode)
700{
701 struct buffer_head *bh = head;
702
703 /* Simple case, sync compaction */
704 if (mode != MIGRATE_ASYNC) {
705 do {
84ade7c1
JK
706 lock_buffer(bh);
707 bh = bh->b_this_page;
708
709 } while (bh != head);
710
711 return true;
712 }
713
714 /* async case, we cannot block on lock_buffer so use trylock_buffer */
715 do {
84ade7c1
JK
716 if (!trylock_buffer(bh)) {
717 /*
718 * We failed to lock the buffer and cannot stall in
719 * async migration. Release the taken locks
720 */
721 struct buffer_head *failed_bh = bh;
84ade7c1
JK
722 bh = head;
723 while (bh != failed_bh) {
724 unlock_buffer(bh);
84ade7c1
JK
725 bh = bh->b_this_page;
726 }
727 return false;
728 }
729
730 bh = bh->b_this_page;
731 } while (bh != head);
732 return true;
733}
734
89cb0888
JK
735static int __buffer_migrate_page(struct address_space *mapping,
736 struct page *newpage, struct page *page, enum migrate_mode mode,
737 bool check_refs)
1d8b85cc 738{
1d8b85cc
CL
739 struct buffer_head *bh, *head;
740 int rc;
cc4f11e6 741 int expected_count;
1d8b85cc 742
1d8b85cc 743 if (!page_has_buffers(page))
a6bc32b8 744 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 745
cc4f11e6 746 /* Check whether page does not have extra refs before we do more work */
f900482d 747 expected_count = expected_page_refs(mapping, page);
cc4f11e6
JK
748 if (page_count(page) != expected_count)
749 return -EAGAIN;
1d8b85cc 750
cc4f11e6
JK
751 head = page_buffers(page);
752 if (!buffer_migrate_lock_buffers(head, mode))
753 return -EAGAIN;
1d8b85cc 754
89cb0888
JK
755 if (check_refs) {
756 bool busy;
757 bool invalidated = false;
758
759recheck_buffers:
760 busy = false;
761 spin_lock(&mapping->private_lock);
762 bh = head;
763 do {
764 if (atomic_read(&bh->b_count)) {
765 busy = true;
766 break;
767 }
768 bh = bh->b_this_page;
769 } while (bh != head);
770 spin_unlock(&mapping->private_lock);
771 if (busy) {
772 if (invalidated) {
773 rc = -EAGAIN;
774 goto unlock_buffers;
775 }
776 invalidate_bh_lrus();
777 invalidated = true;
778 goto recheck_buffers;
779 }
780 }
781
37109694 782 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
78bd5209 783 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 784 goto unlock_buffers;
1d8b85cc
CL
785
786 ClearPagePrivate(page);
787 set_page_private(newpage, page_private(page));
788 set_page_private(page, 0);
789 put_page(page);
790 get_page(newpage);
791
792 bh = head;
793 do {
794 set_bh_page(bh, newpage, bh_offset(bh));
795 bh = bh->b_this_page;
796
797 } while (bh != head);
798
799 SetPagePrivate(newpage);
800
2916ecc0
JG
801 if (mode != MIGRATE_SYNC_NO_COPY)
802 migrate_page_copy(newpage, page);
803 else
804 migrate_page_states(newpage, page);
1d8b85cc 805
cc4f11e6
JK
806 rc = MIGRATEPAGE_SUCCESS;
807unlock_buffers:
1d8b85cc
CL
808 bh = head;
809 do {
810 unlock_buffer(bh);
1d8b85cc
CL
811 bh = bh->b_this_page;
812
813 } while (bh != head);
814
cc4f11e6 815 return rc;
1d8b85cc 816}
89cb0888
JK
817
818/*
819 * Migration function for pages with buffers. This function can only be used
820 * if the underlying filesystem guarantees that no other references to "page"
821 * exist. For example attached buffer heads are accessed only under page lock.
822 */
823int buffer_migrate_page(struct address_space *mapping,
824 struct page *newpage, struct page *page, enum migrate_mode mode)
825{
826 return __buffer_migrate_page(mapping, newpage, page, mode, false);
827}
1d8b85cc 828EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
829
830/*
831 * Same as above except that this variant is more careful and checks that there
832 * are also no buffer head references. This function is the right one for
833 * mappings where buffer heads are directly looked up and referenced (such as
834 * block device mappings).
835 */
836int buffer_migrate_page_norefs(struct address_space *mapping,
837 struct page *newpage, struct page *page, enum migrate_mode mode)
838{
839 return __buffer_migrate_page(mapping, newpage, page, mode, true);
840}
9361401e 841#endif
1d8b85cc 842
04e62a29
CL
843/*
844 * Writeback a page to clean the dirty state
845 */
846static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 847{
04e62a29
CL
848 struct writeback_control wbc = {
849 .sync_mode = WB_SYNC_NONE,
850 .nr_to_write = 1,
851 .range_start = 0,
852 .range_end = LLONG_MAX,
04e62a29
CL
853 .for_reclaim = 1
854 };
855 int rc;
856
857 if (!mapping->a_ops->writepage)
858 /* No write method for the address space */
859 return -EINVAL;
860
861 if (!clear_page_dirty_for_io(page))
862 /* Someone else already triggered a write */
863 return -EAGAIN;
864
8351a6e4 865 /*
04e62a29
CL
866 * A dirty page may imply that the underlying filesystem has
867 * the page on some queue. So the page must be clean for
868 * migration. Writeout may mean we loose the lock and the
869 * page state is no longer what we checked for earlier.
870 * At this point we know that the migration attempt cannot
871 * be successful.
8351a6e4 872 */
e388466d 873 remove_migration_ptes(page, page, false);
8351a6e4 874
04e62a29 875 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 876
04e62a29
CL
877 if (rc != AOP_WRITEPAGE_ACTIVATE)
878 /* unlocked. Relock */
879 lock_page(page);
880
bda8550d 881 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
882}
883
884/*
885 * Default handling if a filesystem does not provide a migration function.
886 */
887static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 888 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 889{
b969c4ab 890 if (PageDirty(page)) {
a6bc32b8 891 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
892 switch (mode) {
893 case MIGRATE_SYNC:
894 case MIGRATE_SYNC_NO_COPY:
895 break;
896 default:
b969c4ab 897 return -EBUSY;
2916ecc0 898 }
04e62a29 899 return writeout(mapping, page);
b969c4ab 900 }
8351a6e4
CL
901
902 /*
903 * Buffers may be managed in a filesystem specific way.
904 * We must have no buffers or drop them.
905 */
266cf658 906 if (page_has_private(page) &&
8351a6e4 907 !try_to_release_page(page, GFP_KERNEL))
806031bb 908 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
8351a6e4 909
a6bc32b8 910 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
911}
912
e24f0b8f
CL
913/*
914 * Move a page to a newly allocated page
915 * The page is locked and all ptes have been successfully removed.
916 *
917 * The new page will have replaced the old page if this function
918 * is successful.
894bc310
LS
919 *
920 * Return value:
921 * < 0 - error code
78bd5209 922 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 923 */
3fe2011f 924static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 925 enum migrate_mode mode)
e24f0b8f
CL
926{
927 struct address_space *mapping;
bda807d4
MK
928 int rc = -EAGAIN;
929 bool is_lru = !__PageMovable(page);
e24f0b8f 930
7db7671f
HD
931 VM_BUG_ON_PAGE(!PageLocked(page), page);
932 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 933
e24f0b8f 934 mapping = page_mapping(page);
bda807d4
MK
935
936 if (likely(is_lru)) {
937 if (!mapping)
938 rc = migrate_page(mapping, newpage, page, mode);
939 else if (mapping->a_ops->migratepage)
940 /*
941 * Most pages have a mapping and most filesystems
942 * provide a migratepage callback. Anonymous pages
943 * are part of swap space which also has its own
944 * migratepage callback. This is the most common path
945 * for page migration.
946 */
947 rc = mapping->a_ops->migratepage(mapping, newpage,
948 page, mode);
949 else
950 rc = fallback_migrate_page(mapping, newpage,
951 page, mode);
952 } else {
e24f0b8f 953 /*
bda807d4
MK
954 * In case of non-lru page, it could be released after
955 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 956 */
bda807d4
MK
957 VM_BUG_ON_PAGE(!PageIsolated(page), page);
958 if (!PageMovable(page)) {
959 rc = MIGRATEPAGE_SUCCESS;
960 __ClearPageIsolated(page);
961 goto out;
962 }
963
964 rc = mapping->a_ops->migratepage(mapping, newpage,
965 page, mode);
966 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
967 !PageIsolated(page));
968 }
e24f0b8f 969
5c3f9a67
HD
970 /*
971 * When successful, old pagecache page->mapping must be cleared before
972 * page is freed; but stats require that PageAnon be left as PageAnon.
973 */
974 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
975 if (__PageMovable(page)) {
976 VM_BUG_ON_PAGE(!PageIsolated(page), page);
977
978 /*
979 * We clear PG_movable under page_lock so any compactor
980 * cannot try to migrate this page.
981 */
982 __ClearPageIsolated(page);
983 }
984
985 /*
986 * Anonymous and movable page->mapping will be cleard by
987 * free_pages_prepare so don't reset it here for keeping
988 * the type to work PageAnon, for example.
989 */
990 if (!PageMappingFlags(page))
5c3f9a67 991 page->mapping = NULL;
d2b2c6dd 992
25b2995a 993 if (likely(!is_zone_device_page(newpage)))
d2b2c6dd
LP
994 flush_dcache_page(newpage);
995
3fe2011f 996 }
bda807d4 997out:
e24f0b8f
CL
998 return rc;
999}
1000
0dabec93 1001static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 1002 int force, enum migrate_mode mode)
e24f0b8f 1003{
0dabec93 1004 int rc = -EAGAIN;
2ebba6b7 1005 int page_was_mapped = 0;
3f6c8272 1006 struct anon_vma *anon_vma = NULL;
bda807d4 1007 bool is_lru = !__PageMovable(page);
95a402c3 1008
529ae9aa 1009 if (!trylock_page(page)) {
a6bc32b8 1010 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1011 goto out;
3e7d3449
MG
1012
1013 /*
1014 * It's not safe for direct compaction to call lock_page.
1015 * For example, during page readahead pages are added locked
1016 * to the LRU. Later, when the IO completes the pages are
1017 * marked uptodate and unlocked. However, the queueing
1018 * could be merging multiple pages for one bio (e.g.
1019 * mpage_readpages). If an allocation happens for the
1020 * second or third page, the process can end up locking
1021 * the same page twice and deadlocking. Rather than
1022 * trying to be clever about what pages can be locked,
1023 * avoid the use of lock_page for direct compaction
1024 * altogether.
1025 */
1026 if (current->flags & PF_MEMALLOC)
0dabec93 1027 goto out;
3e7d3449 1028
e24f0b8f
CL
1029 lock_page(page);
1030 }
1031
1032 if (PageWriteback(page)) {
11bc82d6 1033 /*
fed5b64a 1034 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1035 * necessary to wait for PageWriteback. In the async case,
1036 * the retry loop is too short and in the sync-light case,
1037 * the overhead of stalling is too much
11bc82d6 1038 */
2916ecc0
JG
1039 switch (mode) {
1040 case MIGRATE_SYNC:
1041 case MIGRATE_SYNC_NO_COPY:
1042 break;
1043 default:
11bc82d6 1044 rc = -EBUSY;
0a31bc97 1045 goto out_unlock;
11bc82d6
AA
1046 }
1047 if (!force)
0a31bc97 1048 goto out_unlock;
e24f0b8f
CL
1049 wait_on_page_writeback(page);
1050 }
03f15c86 1051
e24f0b8f 1052 /*
dc386d4d
KH
1053 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1054 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1055 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1056 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1057 * File Caches may use write_page() or lock_page() in migration, then,
1058 * just care Anon page here.
03f15c86
HD
1059 *
1060 * Only page_get_anon_vma() understands the subtleties of
1061 * getting a hold on an anon_vma from outside one of its mms.
1062 * But if we cannot get anon_vma, then we won't need it anyway,
1063 * because that implies that the anon page is no longer mapped
1064 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1065 */
03f15c86 1066 if (PageAnon(page) && !PageKsm(page))
746b18d4 1067 anon_vma = page_get_anon_vma(page);
62e1c553 1068
7db7671f
HD
1069 /*
1070 * Block others from accessing the new page when we get around to
1071 * establishing additional references. We are usually the only one
1072 * holding a reference to newpage at this point. We used to have a BUG
1073 * here if trylock_page(newpage) fails, but would like to allow for
1074 * cases where there might be a race with the previous use of newpage.
1075 * This is much like races on refcount of oldpage: just don't BUG().
1076 */
1077 if (unlikely(!trylock_page(newpage)))
1078 goto out_unlock;
1079
bda807d4
MK
1080 if (unlikely(!is_lru)) {
1081 rc = move_to_new_page(newpage, page, mode);
1082 goto out_unlock_both;
1083 }
1084
dc386d4d 1085 /*
62e1c553
SL
1086 * Corner case handling:
1087 * 1. When a new swap-cache page is read into, it is added to the LRU
1088 * and treated as swapcache but it has no rmap yet.
1089 * Calling try_to_unmap() against a page->mapping==NULL page will
1090 * trigger a BUG. So handle it here.
1091 * 2. An orphaned page (see truncate_complete_page) might have
1092 * fs-private metadata. The page can be picked up due to memory
1093 * offlining. Everywhere else except page reclaim, the page is
1094 * invisible to the vm, so the page can not be migrated. So try to
1095 * free the metadata, so the page can be freed.
e24f0b8f 1096 */
62e1c553 1097 if (!page->mapping) {
309381fe 1098 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1099 if (page_has_private(page)) {
62e1c553 1100 try_to_free_buffers(page);
7db7671f 1101 goto out_unlock_both;
62e1c553 1102 }
7db7671f
HD
1103 } else if (page_mapped(page)) {
1104 /* Establish migration ptes */
03f15c86
HD
1105 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1106 page);
2ebba6b7 1107 try_to_unmap(page,
da1b13cc 1108 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1109 page_was_mapped = 1;
1110 }
dc386d4d 1111
e6a1530d 1112 if (!page_mapped(page))
5c3f9a67 1113 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1114
5c3f9a67
HD
1115 if (page_was_mapped)
1116 remove_migration_ptes(page,
e388466d 1117 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1118
7db7671f
HD
1119out_unlock_both:
1120 unlock_page(newpage);
1121out_unlock:
3f6c8272 1122 /* Drop an anon_vma reference if we took one */
76545066 1123 if (anon_vma)
9e60109f 1124 put_anon_vma(anon_vma);
e24f0b8f 1125 unlock_page(page);
0dabec93 1126out:
c6c919eb
MK
1127 /*
1128 * If migration is successful, decrease refcount of the newpage
1129 * which will not free the page because new page owner increased
1130 * refcounter. As well, if it is LRU page, add the page to LRU
e0a352fa
DH
1131 * list in here. Use the old state of the isolated source page to
1132 * determine if we migrated a LRU page. newpage was already unlocked
1133 * and possibly modified by its owner - don't rely on the page
1134 * state.
c6c919eb
MK
1135 */
1136 if (rc == MIGRATEPAGE_SUCCESS) {
e0a352fa 1137 if (unlikely(!is_lru))
c6c919eb
MK
1138 put_page(newpage);
1139 else
1140 putback_lru_page(newpage);
1141 }
1142
0dabec93
MK
1143 return rc;
1144}
95a402c3 1145
ef2a5153
GU
1146/*
1147 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1148 * around it.
1149 */
815f0ddb
ND
1150#if defined(CONFIG_ARM) && \
1151 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
ef2a5153
GU
1152#define ICE_noinline noinline
1153#else
1154#define ICE_noinline
1155#endif
1156
0dabec93
MK
1157/*
1158 * Obtain the lock on page, remove all ptes and migrate the page
1159 * to the newly allocated page in newpage.
1160 */
ef2a5153
GU
1161static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1162 free_page_t put_new_page,
1163 unsigned long private, struct page *page,
add05cec
NH
1164 int force, enum migrate_mode mode,
1165 enum migrate_reason reason)
0dabec93 1166{
2def7424 1167 int rc = MIGRATEPAGE_SUCCESS;
2def7424 1168 struct page *newpage;
0dabec93 1169
94723aaf
MH
1170 if (!thp_migration_supported() && PageTransHuge(page))
1171 return -ENOMEM;
1172
666feb21 1173 newpage = get_new_page(page, private);
0dabec93
MK
1174 if (!newpage)
1175 return -ENOMEM;
1176
1177 if (page_count(page) == 1) {
1178 /* page was freed from under us. So we are done. */
c6c919eb
MK
1179 ClearPageActive(page);
1180 ClearPageUnevictable(page);
bda807d4
MK
1181 if (unlikely(__PageMovable(page))) {
1182 lock_page(page);
1183 if (!PageMovable(page))
1184 __ClearPageIsolated(page);
1185 unlock_page(page);
1186 }
c6c919eb
MK
1187 if (put_new_page)
1188 put_new_page(newpage, private);
1189 else
1190 put_page(newpage);
0dabec93
MK
1191 goto out;
1192 }
1193
9c620e2b 1194 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1195 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1196 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1197
0dabec93 1198out:
e24f0b8f 1199 if (rc != -EAGAIN) {
0dabec93
MK
1200 /*
1201 * A page that has been migrated has all references
1202 * removed and will be freed. A page that has not been
1203 * migrated will have kepts its references and be
1204 * restored.
1205 */
1206 list_del(&page->lru);
6afcf8ef
ML
1207
1208 /*
1209 * Compaction can migrate also non-LRU pages which are
1210 * not accounted to NR_ISOLATED_*. They can be recognized
1211 * as __PageMovable
1212 */
1213 if (likely(!__PageMovable(page)))
e8db67eb
NH
1214 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1215 page_is_file_cache(page), -hpage_nr_pages(page));
c6c919eb
MK
1216 }
1217
1218 /*
1219 * If migration is successful, releases reference grabbed during
1220 * isolation. Otherwise, restore the page to right list unless
1221 * we want to retry.
1222 */
1223 if (rc == MIGRATEPAGE_SUCCESS) {
1224 put_page(page);
1225 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1226 /*
c6c919eb
MK
1227 * Set PG_HWPoison on just freed page
1228 * intentionally. Although it's rather weird,
1229 * it's how HWPoison flag works at the moment.
d7e69488 1230 */
d4ae9916 1231 if (set_hwpoison_free_buddy_page(page))
da1b13cc 1232 num_poisoned_pages_inc();
c6c919eb
MK
1233 }
1234 } else {
bda807d4
MK
1235 if (rc != -EAGAIN) {
1236 if (likely(!__PageMovable(page))) {
1237 putback_lru_page(page);
1238 goto put_new;
1239 }
1240
1241 lock_page(page);
1242 if (PageMovable(page))
1243 putback_movable_page(page);
1244 else
1245 __ClearPageIsolated(page);
1246 unlock_page(page);
1247 put_page(page);
1248 }
1249put_new:
c6c919eb
MK
1250 if (put_new_page)
1251 put_new_page(newpage, private);
1252 else
1253 put_page(newpage);
e24f0b8f 1254 }
68711a74 1255
e24f0b8f
CL
1256 return rc;
1257}
1258
290408d4
NH
1259/*
1260 * Counterpart of unmap_and_move_page() for hugepage migration.
1261 *
1262 * This function doesn't wait the completion of hugepage I/O
1263 * because there is no race between I/O and migration for hugepage.
1264 * Note that currently hugepage I/O occurs only in direct I/O
1265 * where no lock is held and PG_writeback is irrelevant,
1266 * and writeback status of all subpages are counted in the reference
1267 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1268 * under direct I/O, the reference of the head page is 512 and a bit more.)
1269 * This means that when we try to migrate hugepage whose subpages are
1270 * doing direct I/O, some references remain after try_to_unmap() and
1271 * hugepage migration fails without data corruption.
1272 *
1273 * There is also no race when direct I/O is issued on the page under migration,
1274 * because then pte is replaced with migration swap entry and direct I/O code
1275 * will wait in the page fault for migration to complete.
1276 */
1277static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1278 free_page_t put_new_page, unsigned long private,
1279 struct page *hpage, int force,
7cd12b4a 1280 enum migrate_mode mode, int reason)
290408d4 1281{
2def7424 1282 int rc = -EAGAIN;
2ebba6b7 1283 int page_was_mapped = 0;
32665f2b 1284 struct page *new_hpage;
290408d4
NH
1285 struct anon_vma *anon_vma = NULL;
1286
83467efb 1287 /*
7ed2c31d 1288 * Migratability of hugepages depends on architectures and their size.
83467efb
NH
1289 * This check is necessary because some callers of hugepage migration
1290 * like soft offline and memory hotremove don't walk through page
1291 * tables or check whether the hugepage is pmd-based or not before
1292 * kicking migration.
1293 */
100873d7 1294 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1295 putback_active_hugepage(hpage);
83467efb 1296 return -ENOSYS;
32665f2b 1297 }
83467efb 1298
666feb21 1299 new_hpage = get_new_page(hpage, private);
290408d4
NH
1300 if (!new_hpage)
1301 return -ENOMEM;
1302
290408d4 1303 if (!trylock_page(hpage)) {
2916ecc0 1304 if (!force)
290408d4 1305 goto out;
2916ecc0
JG
1306 switch (mode) {
1307 case MIGRATE_SYNC:
1308 case MIGRATE_SYNC_NO_COPY:
1309 break;
1310 default:
1311 goto out;
1312 }
290408d4
NH
1313 lock_page(hpage);
1314 }
1315
cb6acd01
MK
1316 /*
1317 * Check for pages which are in the process of being freed. Without
1318 * page_mapping() set, hugetlbfs specific move page routine will not
1319 * be called and we could leak usage counts for subpools.
1320 */
1321 if (page_private(hpage) && !page_mapping(hpage)) {
1322 rc = -EBUSY;
1323 goto out_unlock;
1324 }
1325
746b18d4
PZ
1326 if (PageAnon(hpage))
1327 anon_vma = page_get_anon_vma(hpage);
290408d4 1328
7db7671f
HD
1329 if (unlikely(!trylock_page(new_hpage)))
1330 goto put_anon;
1331
2ebba6b7
HD
1332 if (page_mapped(hpage)) {
1333 try_to_unmap(hpage,
ddeaab32 1334 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1335 page_was_mapped = 1;
1336 }
290408d4
NH
1337
1338 if (!page_mapped(hpage))
5c3f9a67 1339 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1340
5c3f9a67
HD
1341 if (page_was_mapped)
1342 remove_migration_ptes(hpage,
e388466d 1343 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1344
7db7671f
HD
1345 unlock_page(new_hpage);
1346
1347put_anon:
fd4a4663 1348 if (anon_vma)
9e60109f 1349 put_anon_vma(anon_vma);
8e6ac7fa 1350
2def7424 1351 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1352 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1353 put_new_page = NULL;
1354 }
8e6ac7fa 1355
cb6acd01 1356out_unlock:
290408d4 1357 unlock_page(hpage);
09761333 1358out:
b8ec1cee
NH
1359 if (rc != -EAGAIN)
1360 putback_active_hugepage(hpage);
68711a74
DR
1361
1362 /*
1363 * If migration was not successful and there's a freeing callback, use
1364 * it. Otherwise, put_page() will drop the reference grabbed during
1365 * isolation.
1366 */
2def7424 1367 if (put_new_page)
68711a74
DR
1368 put_new_page(new_hpage, private);
1369 else
3aaa76e1 1370 putback_active_hugepage(new_hpage);
68711a74 1371
290408d4
NH
1372 return rc;
1373}
1374
b20a3503 1375/*
c73e5c9c
SB
1376 * migrate_pages - migrate the pages specified in a list, to the free pages
1377 * supplied as the target for the page migration
b20a3503 1378 *
c73e5c9c
SB
1379 * @from: The list of pages to be migrated.
1380 * @get_new_page: The function used to allocate free pages to be used
1381 * as the target of the page migration.
68711a74
DR
1382 * @put_new_page: The function used to free target pages if migration
1383 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1384 * @private: Private data to be passed on to get_new_page()
1385 * @mode: The migration mode that specifies the constraints for
1386 * page migration, if any.
1387 * @reason: The reason for page migration.
b20a3503 1388 *
c73e5c9c
SB
1389 * The function returns after 10 attempts or if no pages are movable any more
1390 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1391 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1392 * or free list only if ret != 0.
b20a3503 1393 *
c73e5c9c 1394 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1395 */
9c620e2b 1396int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1397 free_page_t put_new_page, unsigned long private,
1398 enum migrate_mode mode, int reason)
b20a3503 1399{
e24f0b8f 1400 int retry = 1;
b20a3503 1401 int nr_failed = 0;
5647bc29 1402 int nr_succeeded = 0;
b20a3503
CL
1403 int pass = 0;
1404 struct page *page;
1405 struct page *page2;
1406 int swapwrite = current->flags & PF_SWAPWRITE;
1407 int rc;
1408
1409 if (!swapwrite)
1410 current->flags |= PF_SWAPWRITE;
1411
e24f0b8f
CL
1412 for(pass = 0; pass < 10 && retry; pass++) {
1413 retry = 0;
b20a3503 1414
e24f0b8f 1415 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1416retry:
e24f0b8f 1417 cond_resched();
2d1db3b1 1418
31caf665
NH
1419 if (PageHuge(page))
1420 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1421 put_new_page, private, page,
7cd12b4a 1422 pass > 2, mode, reason);
31caf665 1423 else
68711a74 1424 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1425 private, page, pass > 2, mode,
1426 reason);
2d1db3b1 1427
e24f0b8f 1428 switch(rc) {
95a402c3 1429 case -ENOMEM:
94723aaf
MH
1430 /*
1431 * THP migration might be unsupported or the
1432 * allocation could've failed so we should
1433 * retry on the same page with the THP split
1434 * to base pages.
1435 *
1436 * Head page is retried immediately and tail
1437 * pages are added to the tail of the list so
1438 * we encounter them after the rest of the list
1439 * is processed.
1440 */
e6112fc3 1441 if (PageTransHuge(page) && !PageHuge(page)) {
94723aaf
MH
1442 lock_page(page);
1443 rc = split_huge_page_to_list(page, from);
1444 unlock_page(page);
1445 if (!rc) {
1446 list_safe_reset_next(page, page2, lru);
1447 goto retry;
1448 }
1449 }
dfef2ef4 1450 nr_failed++;
95a402c3 1451 goto out;
e24f0b8f 1452 case -EAGAIN:
2d1db3b1 1453 retry++;
e24f0b8f 1454 break;
78bd5209 1455 case MIGRATEPAGE_SUCCESS:
5647bc29 1456 nr_succeeded++;
e24f0b8f
CL
1457 break;
1458 default:
354a3363
NH
1459 /*
1460 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1461 * unlike -EAGAIN case, the failed page is
1462 * removed from migration page list and not
1463 * retried in the next outer loop.
1464 */
2d1db3b1 1465 nr_failed++;
e24f0b8f 1466 break;
2d1db3b1 1467 }
b20a3503
CL
1468 }
1469 }
f2f81fb2
VB
1470 nr_failed += retry;
1471 rc = nr_failed;
95a402c3 1472out:
5647bc29
MG
1473 if (nr_succeeded)
1474 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1475 if (nr_failed)
1476 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1477 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1478
b20a3503
CL
1479 if (!swapwrite)
1480 current->flags &= ~PF_SWAPWRITE;
1481
78bd5209 1482 return rc;
b20a3503 1483}
95a402c3 1484
742755a1 1485#ifdef CONFIG_NUMA
742755a1 1486
a49bd4d7 1487static int store_status(int __user *status, int start, int value, int nr)
742755a1 1488{
a49bd4d7
MH
1489 while (nr-- > 0) {
1490 if (put_user(value, status + start))
1491 return -EFAULT;
1492 start++;
1493 }
1494
1495 return 0;
1496}
1497
1498static int do_move_pages_to_node(struct mm_struct *mm,
1499 struct list_head *pagelist, int node)
1500{
1501 int err;
1502
1503 if (list_empty(pagelist))
1504 return 0;
1505
1506 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1507 MIGRATE_SYNC, MR_SYSCALL);
1508 if (err)
1509 putback_movable_pages(pagelist);
1510 return err;
742755a1
CL
1511}
1512
1513/*
a49bd4d7
MH
1514 * Resolves the given address to a struct page, isolates it from the LRU and
1515 * puts it to the given pagelist.
1516 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1517 * queued or the page doesn't need to be migrated because it is already on
1518 * the target node
742755a1 1519 */
a49bd4d7
MH
1520static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1521 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1522{
a49bd4d7
MH
1523 struct vm_area_struct *vma;
1524 struct page *page;
1525 unsigned int follflags;
742755a1 1526 int err;
742755a1
CL
1527
1528 down_read(&mm->mmap_sem);
a49bd4d7
MH
1529 err = -EFAULT;
1530 vma = find_vma(mm, addr);
1531 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1532 goto out;
742755a1 1533
a49bd4d7
MH
1534 /* FOLL_DUMP to ignore special (like zero) pages */
1535 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1536 page = follow_page(vma, addr, follflags);
89f5b7da 1537
a49bd4d7
MH
1538 err = PTR_ERR(page);
1539 if (IS_ERR(page))
1540 goto out;
89f5b7da 1541
a49bd4d7
MH
1542 err = -ENOENT;
1543 if (!page)
1544 goto out;
742755a1 1545
a49bd4d7
MH
1546 err = 0;
1547 if (page_to_nid(page) == node)
1548 goto out_putpage;
742755a1 1549
a49bd4d7
MH
1550 err = -EACCES;
1551 if (page_mapcount(page) > 1 && !migrate_all)
1552 goto out_putpage;
742755a1 1553
a49bd4d7
MH
1554 if (PageHuge(page)) {
1555 if (PageHead(page)) {
1556 isolate_huge_page(page, pagelist);
1557 err = 0;
e632a938 1558 }
a49bd4d7
MH
1559 } else {
1560 struct page *head;
e632a938 1561
e8db67eb
NH
1562 head = compound_head(page);
1563 err = isolate_lru_page(head);
cf608ac1 1564 if (err)
a49bd4d7 1565 goto out_putpage;
742755a1 1566
a49bd4d7
MH
1567 err = 0;
1568 list_add_tail(&head->lru, pagelist);
1569 mod_node_page_state(page_pgdat(head),
1570 NR_ISOLATED_ANON + page_is_file_cache(head),
1571 hpage_nr_pages(head));
1572 }
1573out_putpage:
1574 /*
1575 * Either remove the duplicate refcount from
1576 * isolate_lru_page() or drop the page ref if it was
1577 * not isolated.
1578 */
1579 put_page(page);
1580out:
742755a1
CL
1581 up_read(&mm->mmap_sem);
1582 return err;
1583}
1584
5e9a0f02
BG
1585/*
1586 * Migrate an array of page address onto an array of nodes and fill
1587 * the corresponding array of status.
1588 */
3268c63e 1589static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1590 unsigned long nr_pages,
1591 const void __user * __user *pages,
1592 const int __user *nodes,
1593 int __user *status, int flags)
1594{
a49bd4d7
MH
1595 int current_node = NUMA_NO_NODE;
1596 LIST_HEAD(pagelist);
1597 int start, i;
1598 int err = 0, err1;
35282a2d
BG
1599
1600 migrate_prep();
1601
a49bd4d7
MH
1602 for (i = start = 0; i < nr_pages; i++) {
1603 const void __user *p;
1604 unsigned long addr;
1605 int node;
3140a227 1606
a49bd4d7
MH
1607 err = -EFAULT;
1608 if (get_user(p, pages + i))
1609 goto out_flush;
1610 if (get_user(node, nodes + i))
1611 goto out_flush;
1612 addr = (unsigned long)p;
1613
1614 err = -ENODEV;
1615 if (node < 0 || node >= MAX_NUMNODES)
1616 goto out_flush;
1617 if (!node_state(node, N_MEMORY))
1618 goto out_flush;
5e9a0f02 1619
a49bd4d7
MH
1620 err = -EACCES;
1621 if (!node_isset(node, task_nodes))
1622 goto out_flush;
1623
1624 if (current_node == NUMA_NO_NODE) {
1625 current_node = node;
1626 start = i;
1627 } else if (node != current_node) {
1628 err = do_move_pages_to_node(mm, &pagelist, current_node);
1629 if (err)
1630 goto out;
1631 err = store_status(status, start, current_node, i - start);
1632 if (err)
1633 goto out;
1634 start = i;
1635 current_node = node;
3140a227
BG
1636 }
1637
a49bd4d7
MH
1638 /*
1639 * Errors in the page lookup or isolation are not fatal and we simply
1640 * report them via status
1641 */
1642 err = add_page_for_migration(mm, addr, current_node,
1643 &pagelist, flags & MPOL_MF_MOVE_ALL);
1644 if (!err)
1645 continue;
3140a227 1646
a49bd4d7
MH
1647 err = store_status(status, i, err, 1);
1648 if (err)
1649 goto out_flush;
5e9a0f02 1650
a49bd4d7
MH
1651 err = do_move_pages_to_node(mm, &pagelist, current_node);
1652 if (err)
1653 goto out;
1654 if (i > start) {
1655 err = store_status(status, start, current_node, i - start);
1656 if (err)
1657 goto out;
1658 }
1659 current_node = NUMA_NO_NODE;
3140a227 1660 }
a49bd4d7 1661out_flush:
8f175cf5
MH
1662 if (list_empty(&pagelist))
1663 return err;
1664
a49bd4d7
MH
1665 /* Make sure we do not overwrite the existing error */
1666 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1667 if (!err1)
1668 err1 = store_status(status, start, current_node, i - start);
1669 if (!err)
1670 err = err1;
5e9a0f02
BG
1671out:
1672 return err;
1673}
1674
742755a1 1675/*
2f007e74 1676 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1677 */
80bba129
BG
1678static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1679 const void __user **pages, int *status)
742755a1 1680{
2f007e74 1681 unsigned long i;
2f007e74 1682
742755a1
CL
1683 down_read(&mm->mmap_sem);
1684
2f007e74 1685 for (i = 0; i < nr_pages; i++) {
80bba129 1686 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1687 struct vm_area_struct *vma;
1688 struct page *page;
c095adbc 1689 int err = -EFAULT;
2f007e74
BG
1690
1691 vma = find_vma(mm, addr);
70384dc6 1692 if (!vma || addr < vma->vm_start)
742755a1
CL
1693 goto set_status;
1694
d899844e
KS
1695 /* FOLL_DUMP to ignore special (like zero) pages */
1696 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1697
1698 err = PTR_ERR(page);
1699 if (IS_ERR(page))
1700 goto set_status;
1701
d899844e 1702 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1703set_status:
80bba129
BG
1704 *status = err;
1705
1706 pages++;
1707 status++;
1708 }
1709
1710 up_read(&mm->mmap_sem);
1711}
1712
1713/*
1714 * Determine the nodes of a user array of pages and store it in
1715 * a user array of status.
1716 */
1717static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1718 const void __user * __user *pages,
1719 int __user *status)
1720{
1721#define DO_PAGES_STAT_CHUNK_NR 16
1722 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1723 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1724
87b8d1ad
PA
1725 while (nr_pages) {
1726 unsigned long chunk_nr;
80bba129 1727
87b8d1ad
PA
1728 chunk_nr = nr_pages;
1729 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1730 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1731
1732 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1733 break;
80bba129
BG
1734
1735 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1736
87b8d1ad
PA
1737 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1738 break;
742755a1 1739
87b8d1ad
PA
1740 pages += chunk_nr;
1741 status += chunk_nr;
1742 nr_pages -= chunk_nr;
1743 }
1744 return nr_pages ? -EFAULT : 0;
742755a1
CL
1745}
1746
1747/*
1748 * Move a list of pages in the address space of the currently executing
1749 * process.
1750 */
7addf443
DB
1751static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1752 const void __user * __user *pages,
1753 const int __user *nodes,
1754 int __user *status, int flags)
742755a1 1755{
742755a1 1756 struct task_struct *task;
742755a1 1757 struct mm_struct *mm;
5e9a0f02 1758 int err;
3268c63e 1759 nodemask_t task_nodes;
742755a1
CL
1760
1761 /* Check flags */
1762 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1763 return -EINVAL;
1764
1765 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1766 return -EPERM;
1767
1768 /* Find the mm_struct */
a879bf58 1769 rcu_read_lock();
228ebcbe 1770 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1771 if (!task) {
a879bf58 1772 rcu_read_unlock();
742755a1
CL
1773 return -ESRCH;
1774 }
3268c63e 1775 get_task_struct(task);
742755a1
CL
1776
1777 /*
1778 * Check if this process has the right to modify the specified
197e7e52 1779 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1780 */
197e7e52 1781 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1782 rcu_read_unlock();
742755a1 1783 err = -EPERM;
5e9a0f02 1784 goto out;
742755a1 1785 }
c69e8d9c 1786 rcu_read_unlock();
742755a1 1787
86c3a764
DQ
1788 err = security_task_movememory(task);
1789 if (err)
5e9a0f02 1790 goto out;
86c3a764 1791
3268c63e
CL
1792 task_nodes = cpuset_mems_allowed(task);
1793 mm = get_task_mm(task);
1794 put_task_struct(task);
1795
6e8b09ea
SL
1796 if (!mm)
1797 return -EINVAL;
1798
1799 if (nodes)
1800 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1801 nodes, status, flags);
1802 else
1803 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1804
742755a1
CL
1805 mmput(mm);
1806 return err;
3268c63e
CL
1807
1808out:
1809 put_task_struct(task);
1810 return err;
742755a1 1811}
742755a1 1812
7addf443
DB
1813SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1814 const void __user * __user *, pages,
1815 const int __user *, nodes,
1816 int __user *, status, int, flags)
1817{
1818 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1819}
1820
1821#ifdef CONFIG_COMPAT
1822COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1823 compat_uptr_t __user *, pages32,
1824 const int __user *, nodes,
1825 int __user *, status,
1826 int, flags)
1827{
1828 const void __user * __user *pages;
1829 int i;
1830
1831 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1832 for (i = 0; i < nr_pages; i++) {
1833 compat_uptr_t p;
1834
1835 if (get_user(p, pages32 + i) ||
1836 put_user(compat_ptr(p), pages + i))
1837 return -EFAULT;
1838 }
1839 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1840}
1841#endif /* CONFIG_COMPAT */
1842
7039e1db
PZ
1843#ifdef CONFIG_NUMA_BALANCING
1844/*
1845 * Returns true if this is a safe migration target node for misplaced NUMA
1846 * pages. Currently it only checks the watermarks which crude
1847 */
1848static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1849 unsigned long nr_migrate_pages)
7039e1db
PZ
1850{
1851 int z;
599d0c95 1852
7039e1db
PZ
1853 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1854 struct zone *zone = pgdat->node_zones + z;
1855
1856 if (!populated_zone(zone))
1857 continue;
1858
7039e1db
PZ
1859 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1860 if (!zone_watermark_ok(zone, 0,
1861 high_wmark_pages(zone) +
1862 nr_migrate_pages,
1863 0, 0))
1864 continue;
1865 return true;
1866 }
1867 return false;
1868}
1869
1870static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 1871 unsigned long data)
7039e1db
PZ
1872{
1873 int nid = (int) data;
1874 struct page *newpage;
1875
96db800f 1876 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1877 (GFP_HIGHUSER_MOVABLE |
1878 __GFP_THISNODE | __GFP_NOMEMALLOC |
1879 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1880 ~__GFP_RECLAIM, 0);
bac0382c 1881
7039e1db
PZ
1882 return newpage;
1883}
1884
1c30e017 1885static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1886{
340ef390 1887 int page_lru;
a8f60772 1888
309381fe 1889 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1890
7039e1db 1891 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1892 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1893 return 0;
7039e1db 1894
340ef390
HD
1895 if (isolate_lru_page(page))
1896 return 0;
7039e1db 1897
340ef390
HD
1898 /*
1899 * migrate_misplaced_transhuge_page() skips page migration's usual
1900 * check on page_count(), so we must do it here, now that the page
1901 * has been isolated: a GUP pin, or any other pin, prevents migration.
1902 * The expected page count is 3: 1 for page's mapcount and 1 for the
1903 * caller's pin and 1 for the reference taken by isolate_lru_page().
1904 */
1905 if (PageTransHuge(page) && page_count(page) != 3) {
1906 putback_lru_page(page);
1907 return 0;
7039e1db
PZ
1908 }
1909
340ef390 1910 page_lru = page_is_file_cache(page);
599d0c95 1911 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1912 hpage_nr_pages(page));
1913
149c33e1 1914 /*
340ef390
HD
1915 * Isolating the page has taken another reference, so the
1916 * caller's reference can be safely dropped without the page
1917 * disappearing underneath us during migration.
149c33e1
MG
1918 */
1919 put_page(page);
340ef390 1920 return 1;
b32967ff
MG
1921}
1922
de466bd6
MG
1923bool pmd_trans_migrating(pmd_t pmd)
1924{
1925 struct page *page = pmd_page(pmd);
1926 return PageLocked(page);
1927}
1928
b32967ff
MG
1929/*
1930 * Attempt to migrate a misplaced page to the specified destination
1931 * node. Caller is expected to have an elevated reference count on
1932 * the page that will be dropped by this function before returning.
1933 */
1bc115d8
MG
1934int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1935 int node)
b32967ff
MG
1936{
1937 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1938 int isolated;
b32967ff
MG
1939 int nr_remaining;
1940 LIST_HEAD(migratepages);
1941
1942 /*
1bc115d8
MG
1943 * Don't migrate file pages that are mapped in multiple processes
1944 * with execute permissions as they are probably shared libraries.
b32967ff 1945 */
1bc115d8
MG
1946 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1947 (vma->vm_flags & VM_EXEC))
b32967ff 1948 goto out;
b32967ff 1949
09a913a7
MG
1950 /*
1951 * Also do not migrate dirty pages as not all filesystems can move
1952 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1953 */
1954 if (page_is_file_cache(page) && PageDirty(page))
1955 goto out;
1956
b32967ff
MG
1957 isolated = numamigrate_isolate_page(pgdat, page);
1958 if (!isolated)
1959 goto out;
1960
1961 list_add(&page->lru, &migratepages);
9c620e2b 1962 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1963 NULL, node, MIGRATE_ASYNC,
1964 MR_NUMA_MISPLACED);
b32967ff 1965 if (nr_remaining) {
59c82b70
JK
1966 if (!list_empty(&migratepages)) {
1967 list_del(&page->lru);
599d0c95 1968 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
1969 page_is_file_cache(page));
1970 putback_lru_page(page);
1971 }
b32967ff
MG
1972 isolated = 0;
1973 } else
1974 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1975 BUG_ON(!list_empty(&migratepages));
7039e1db 1976 return isolated;
340ef390
HD
1977
1978out:
1979 put_page(page);
1980 return 0;
7039e1db 1981}
220018d3 1982#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1983
220018d3 1984#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1985/*
1986 * Migrates a THP to a given target node. page must be locked and is unlocked
1987 * before returning.
1988 */
b32967ff
MG
1989int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1990 struct vm_area_struct *vma,
1991 pmd_t *pmd, pmd_t entry,
1992 unsigned long address,
1993 struct page *page, int node)
1994{
c4088ebd 1995 spinlock_t *ptl;
b32967ff
MG
1996 pg_data_t *pgdat = NODE_DATA(node);
1997 int isolated = 0;
1998 struct page *new_page = NULL;
b32967ff 1999 int page_lru = page_is_file_cache(page);
7066f0f9 2000 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 2001
b32967ff 2002 new_page = alloc_pages_node(node,
25160354 2003 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2004 HPAGE_PMD_ORDER);
340ef390
HD
2005 if (!new_page)
2006 goto out_fail;
9a982250 2007 prep_transhuge_page(new_page);
340ef390 2008
b32967ff 2009 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2010 if (!isolated) {
b32967ff 2011 put_page(new_page);
340ef390 2012 goto out_fail;
b32967ff 2013 }
b0943d61 2014
b32967ff 2015 /* Prepare a page as a migration target */
48c935ad 2016 __SetPageLocked(new_page);
d44d363f
SL
2017 if (PageSwapBacked(page))
2018 __SetPageSwapBacked(new_page);
b32967ff
MG
2019
2020 /* anon mapping, we can simply copy page->mapping to the new page: */
2021 new_page->mapping = page->mapping;
2022 new_page->index = page->index;
7eef5f97
AA
2023 /* flush the cache before copying using the kernel virtual address */
2024 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2025 migrate_page_copy(new_page, page);
2026 WARN_ON(PageLRU(new_page));
2027
2028 /* Recheck the target PMD */
c4088ebd 2029 ptl = pmd_lock(mm, pmd);
f4e177d1 2030 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2031 spin_unlock(ptl);
b32967ff
MG
2032
2033 /* Reverse changes made by migrate_page_copy() */
2034 if (TestClearPageActive(new_page))
2035 SetPageActive(page);
2036 if (TestClearPageUnevictable(new_page))
2037 SetPageUnevictable(page);
b32967ff
MG
2038
2039 unlock_page(new_page);
2040 put_page(new_page); /* Free it */
2041
a54a407f
MG
2042 /* Retake the callers reference and putback on LRU */
2043 get_page(page);
b32967ff 2044 putback_lru_page(page);
599d0c95 2045 mod_node_page_state(page_pgdat(page),
a54a407f 2046 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2047
2048 goto out_unlock;
b32967ff
MG
2049 }
2050
10102459 2051 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2052 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2053
2b4847e7 2054 /*
d7c33934
AA
2055 * Overwrite the old entry under pagetable lock and establish
2056 * the new PTE. Any parallel GUP will either observe the old
2057 * page blocking on the page lock, block on the page table
2058 * lock or observe the new page. The SetPageUptodate on the
2059 * new page and page_add_new_anon_rmap guarantee the copy is
2060 * visible before the pagetable update.
2b4847e7 2061 */
7066f0f9 2062 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2063 /*
2064 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2065 * has already been flushed globally. So no TLB can be currently
2066 * caching this non present pmd mapping. There's no need to clear the
2067 * pmd before doing set_pmd_at(), nor to flush the TLB after
2068 * set_pmd_at(). Clearing the pmd here would introduce a race
2069 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2070 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2071 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2072 * pmd.
2073 */
7066f0f9 2074 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2075 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2076
f4e177d1 2077 page_ref_unfreeze(page, 2);
51afb12b 2078 mlock_migrate_page(new_page, page);
d281ee61 2079 page_remove_rmap(page, true);
7cd12b4a 2080 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2081
c4088ebd 2082 spin_unlock(ptl);
b32967ff 2083
11de9927
MG
2084 /* Take an "isolate" reference and put new page on the LRU. */
2085 get_page(new_page);
2086 putback_lru_page(new_page);
2087
b32967ff
MG
2088 unlock_page(new_page);
2089 unlock_page(page);
2090 put_page(page); /* Drop the rmap reference */
2091 put_page(page); /* Drop the LRU isolation reference */
2092
2093 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2094 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2095
599d0c95 2096 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2097 NR_ISOLATED_ANON + page_lru,
2098 -HPAGE_PMD_NR);
2099 return isolated;
2100
340ef390
HD
2101out_fail:
2102 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2103 ptl = pmd_lock(mm, pmd);
2104 if (pmd_same(*pmd, entry)) {
4d942466 2105 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2106 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2107 update_mmu_cache_pmd(vma, address, &entry);
2108 }
2109 spin_unlock(ptl);
a54a407f 2110
eb4489f6 2111out_unlock:
340ef390 2112 unlock_page(page);
b32967ff 2113 put_page(page);
b32967ff
MG
2114 return 0;
2115}
7039e1db
PZ
2116#endif /* CONFIG_NUMA_BALANCING */
2117
2118#endif /* CONFIG_NUMA */
8763cb45 2119
6b368cd4 2120#if defined(CONFIG_MIGRATE_VMA_HELPER)
8763cb45
JG
2121static int migrate_vma_collect_hole(unsigned long start,
2122 unsigned long end,
2123 struct mm_walk *walk)
2124{
2125 struct migrate_vma *migrate = walk->private;
2126 unsigned long addr;
2127
8315ada7 2128 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
e20d103b 2129 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2130 migrate->dst[migrate->npages] = 0;
e20d103b 2131 migrate->npages++;
8315ada7
JG
2132 migrate->cpages++;
2133 }
2134
2135 return 0;
2136}
2137
2138static int migrate_vma_collect_skip(unsigned long start,
2139 unsigned long end,
2140 struct mm_walk *walk)
2141{
2142 struct migrate_vma *migrate = walk->private;
2143 unsigned long addr;
2144
8763cb45
JG
2145 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2146 migrate->dst[migrate->npages] = 0;
2147 migrate->src[migrate->npages++] = 0;
2148 }
2149
2150 return 0;
2151}
2152
2153static int migrate_vma_collect_pmd(pmd_t *pmdp,
2154 unsigned long start,
2155 unsigned long end,
2156 struct mm_walk *walk)
2157{
2158 struct migrate_vma *migrate = walk->private;
2159 struct vm_area_struct *vma = walk->vma;
2160 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2161 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2162 spinlock_t *ptl;
2163 pte_t *ptep;
2164
2165again:
2166 if (pmd_none(*pmdp))
2167 return migrate_vma_collect_hole(start, end, walk);
2168
2169 if (pmd_trans_huge(*pmdp)) {
2170 struct page *page;
2171
2172 ptl = pmd_lock(mm, pmdp);
2173 if (unlikely(!pmd_trans_huge(*pmdp))) {
2174 spin_unlock(ptl);
2175 goto again;
2176 }
2177
2178 page = pmd_page(*pmdp);
2179 if (is_huge_zero_page(page)) {
2180 spin_unlock(ptl);
2181 split_huge_pmd(vma, pmdp, addr);
2182 if (pmd_trans_unstable(pmdp))
8315ada7 2183 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2184 walk);
2185 } else {
2186 int ret;
2187
2188 get_page(page);
2189 spin_unlock(ptl);
2190 if (unlikely(!trylock_page(page)))
8315ada7 2191 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2192 walk);
2193 ret = split_huge_page(page);
2194 unlock_page(page);
2195 put_page(page);
8315ada7
JG
2196 if (ret)
2197 return migrate_vma_collect_skip(start, end,
2198 walk);
2199 if (pmd_none(*pmdp))
8763cb45
JG
2200 return migrate_vma_collect_hole(start, end,
2201 walk);
2202 }
2203 }
2204
2205 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2206 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2207
2208 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2209 arch_enter_lazy_mmu_mode();
2210
8763cb45
JG
2211 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2212 unsigned long mpfn, pfn;
2213 struct page *page;
8c3328f1 2214 swp_entry_t entry;
8763cb45
JG
2215 pte_t pte;
2216
2217 pte = *ptep;
2218 pfn = pte_pfn(pte);
2219
a5430dda 2220 if (pte_none(pte)) {
8315ada7
JG
2221 mpfn = MIGRATE_PFN_MIGRATE;
2222 migrate->cpages++;
2223 pfn = 0;
8763cb45
JG
2224 goto next;
2225 }
2226
a5430dda
JG
2227 if (!pte_present(pte)) {
2228 mpfn = pfn = 0;
2229
2230 /*
2231 * Only care about unaddressable device page special
2232 * page table entry. Other special swap entries are not
2233 * migratable, and we ignore regular swapped page.
2234 */
2235 entry = pte_to_swp_entry(pte);
2236 if (!is_device_private_entry(entry))
2237 goto next;
2238
2239 page = device_private_entry_to_page(entry);
2240 mpfn = migrate_pfn(page_to_pfn(page))|
2241 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2242 if (is_write_device_private_entry(entry))
2243 mpfn |= MIGRATE_PFN_WRITE;
2244 } else {
8315ada7
JG
2245 if (is_zero_pfn(pfn)) {
2246 mpfn = MIGRATE_PFN_MIGRATE;
2247 migrate->cpages++;
2248 pfn = 0;
2249 goto next;
2250 }
25b2995a 2251 page = vm_normal_page(migrate->vma, addr, pte);
a5430dda
JG
2252 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2253 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2254 }
2255
8763cb45 2256 /* FIXME support THP */
8763cb45
JG
2257 if (!page || !page->mapping || PageTransCompound(page)) {
2258 mpfn = pfn = 0;
2259 goto next;
2260 }
a5430dda 2261 pfn = page_to_pfn(page);
8763cb45
JG
2262
2263 /*
2264 * By getting a reference on the page we pin it and that blocks
2265 * any kind of migration. Side effect is that it "freezes" the
2266 * pte.
2267 *
2268 * We drop this reference after isolating the page from the lru
2269 * for non device page (device page are not on the lru and thus
2270 * can't be dropped from it).
2271 */
2272 get_page(page);
2273 migrate->cpages++;
8763cb45 2274
8c3328f1
JG
2275 /*
2276 * Optimize for the common case where page is only mapped once
2277 * in one process. If we can lock the page, then we can safely
2278 * set up a special migration page table entry now.
2279 */
2280 if (trylock_page(page)) {
2281 pte_t swp_pte;
2282
2283 mpfn |= MIGRATE_PFN_LOCKED;
2284 ptep_get_and_clear(mm, addr, ptep);
2285
2286 /* Setup special migration page table entry */
07707125
RC
2287 entry = make_migration_entry(page, mpfn &
2288 MIGRATE_PFN_WRITE);
8c3328f1
JG
2289 swp_pte = swp_entry_to_pte(entry);
2290 if (pte_soft_dirty(pte))
2291 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2292 set_pte_at(mm, addr, ptep, swp_pte);
2293
2294 /*
2295 * This is like regular unmap: we remove the rmap and
2296 * drop page refcount. Page won't be freed, as we took
2297 * a reference just above.
2298 */
2299 page_remove_rmap(page, false);
2300 put_page(page);
a5430dda
JG
2301
2302 if (pte_present(pte))
2303 unmapped++;
8c3328f1
JG
2304 }
2305
8763cb45 2306next:
a5430dda 2307 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2308 migrate->src[migrate->npages++] = mpfn;
2309 }
8c3328f1 2310 arch_leave_lazy_mmu_mode();
8763cb45
JG
2311 pte_unmap_unlock(ptep - 1, ptl);
2312
8c3328f1
JG
2313 /* Only flush the TLB if we actually modified any entries */
2314 if (unmapped)
2315 flush_tlb_range(walk->vma, start, end);
2316
8763cb45
JG
2317 return 0;
2318}
2319
2320/*
2321 * migrate_vma_collect() - collect pages over a range of virtual addresses
2322 * @migrate: migrate struct containing all migration information
2323 *
2324 * This will walk the CPU page table. For each virtual address backed by a
2325 * valid page, it updates the src array and takes a reference on the page, in
2326 * order to pin the page until we lock it and unmap it.
2327 */
2328static void migrate_vma_collect(struct migrate_vma *migrate)
2329{
ac46d4f3 2330 struct mmu_notifier_range range;
8763cb45
JG
2331 struct mm_walk mm_walk;
2332
2333 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2334 mm_walk.pte_entry = NULL;
2335 mm_walk.pte_hole = migrate_vma_collect_hole;
2336 mm_walk.hugetlb_entry = NULL;
2337 mm_walk.test_walk = NULL;
2338 mm_walk.vma = migrate->vma;
2339 mm_walk.mm = migrate->vma->vm_mm;
2340 mm_walk.private = migrate;
2341
7269f999 2342 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm_walk.mm,
6f4f13e8 2343 migrate->start,
ac46d4f3
JG
2344 migrate->end);
2345 mmu_notifier_invalidate_range_start(&range);
8763cb45 2346 walk_page_range(migrate->start, migrate->end, &mm_walk);
ac46d4f3 2347 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2348
2349 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2350}
2351
2352/*
2353 * migrate_vma_check_page() - check if page is pinned or not
2354 * @page: struct page to check
2355 *
2356 * Pinned pages cannot be migrated. This is the same test as in
2357 * migrate_page_move_mapping(), except that here we allow migration of a
2358 * ZONE_DEVICE page.
2359 */
2360static bool migrate_vma_check_page(struct page *page)
2361{
2362 /*
2363 * One extra ref because caller holds an extra reference, either from
2364 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2365 * a device page.
2366 */
2367 int extra = 1;
2368
2369 /*
2370 * FIXME support THP (transparent huge page), it is bit more complex to
2371 * check them than regular pages, because they can be mapped with a pmd
2372 * or with a pte (split pte mapping).
2373 */
2374 if (PageCompound(page))
2375 return false;
2376
a5430dda
JG
2377 /* Page from ZONE_DEVICE have one extra reference */
2378 if (is_zone_device_page(page)) {
2379 /*
2380 * Private page can never be pin as they have no valid pte and
2381 * GUP will fail for those. Yet if there is a pending migration
2382 * a thread might try to wait on the pte migration entry and
2383 * will bump the page reference count. Sadly there is no way to
2384 * differentiate a regular pin from migration wait. Hence to
2385 * avoid 2 racing thread trying to migrate back to CPU to enter
2386 * infinite loop (one stoping migration because the other is
2387 * waiting on pte migration entry). We always return true here.
2388 *
2389 * FIXME proper solution is to rework migration_entry_wait() so
2390 * it does not need to take a reference on page.
2391 */
25b2995a 2392 return is_device_private_page(page);
a5430dda
JG
2393 }
2394
df6ad698
JG
2395 /* For file back page */
2396 if (page_mapping(page))
2397 extra += 1 + page_has_private(page);
2398
8763cb45
JG
2399 if ((page_count(page) - extra) > page_mapcount(page))
2400 return false;
2401
2402 return true;
2403}
2404
2405/*
2406 * migrate_vma_prepare() - lock pages and isolate them from the lru
2407 * @migrate: migrate struct containing all migration information
2408 *
2409 * This locks pages that have been collected by migrate_vma_collect(). Once each
2410 * page is locked it is isolated from the lru (for non-device pages). Finally,
2411 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2412 * migrated by concurrent kernel threads.
2413 */
2414static void migrate_vma_prepare(struct migrate_vma *migrate)
2415{
2416 const unsigned long npages = migrate->npages;
8c3328f1
JG
2417 const unsigned long start = migrate->start;
2418 unsigned long addr, i, restore = 0;
8763cb45 2419 bool allow_drain = true;
8763cb45
JG
2420
2421 lru_add_drain();
2422
2423 for (i = 0; (i < npages) && migrate->cpages; i++) {
2424 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2425 bool remap = true;
8763cb45
JG
2426
2427 if (!page)
2428 continue;
2429
8c3328f1
JG
2430 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2431 /*
2432 * Because we are migrating several pages there can be
2433 * a deadlock between 2 concurrent migration where each
2434 * are waiting on each other page lock.
2435 *
2436 * Make migrate_vma() a best effort thing and backoff
2437 * for any page we can not lock right away.
2438 */
2439 if (!trylock_page(page)) {
2440 migrate->src[i] = 0;
2441 migrate->cpages--;
2442 put_page(page);
2443 continue;
2444 }
2445 remap = false;
2446 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2447 }
8763cb45 2448
a5430dda
JG
2449 /* ZONE_DEVICE pages are not on LRU */
2450 if (!is_zone_device_page(page)) {
2451 if (!PageLRU(page) && allow_drain) {
2452 /* Drain CPU's pagevec */
2453 lru_add_drain_all();
2454 allow_drain = false;
2455 }
8763cb45 2456
a5430dda
JG
2457 if (isolate_lru_page(page)) {
2458 if (remap) {
2459 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2460 migrate->cpages--;
2461 restore++;
2462 } else {
2463 migrate->src[i] = 0;
2464 unlock_page(page);
2465 migrate->cpages--;
2466 put_page(page);
2467 }
2468 continue;
8c3328f1 2469 }
a5430dda
JG
2470
2471 /* Drop the reference we took in collect */
2472 put_page(page);
8763cb45
JG
2473 }
2474
2475 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2476 if (remap) {
2477 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2478 migrate->cpages--;
2479 restore++;
8763cb45 2480
a5430dda
JG
2481 if (!is_zone_device_page(page)) {
2482 get_page(page);
2483 putback_lru_page(page);
2484 }
8c3328f1
JG
2485 } else {
2486 migrate->src[i] = 0;
2487 unlock_page(page);
2488 migrate->cpages--;
2489
a5430dda
JG
2490 if (!is_zone_device_page(page))
2491 putback_lru_page(page);
2492 else
2493 put_page(page);
8c3328f1 2494 }
8763cb45
JG
2495 }
2496 }
8c3328f1
JG
2497
2498 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2499 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2500
2501 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2502 continue;
2503
2504 remove_migration_pte(page, migrate->vma, addr, page);
2505
2506 migrate->src[i] = 0;
2507 unlock_page(page);
2508 put_page(page);
2509 restore--;
2510 }
8763cb45
JG
2511}
2512
2513/*
2514 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2515 * @migrate: migrate struct containing all migration information
2516 *
2517 * Replace page mapping (CPU page table pte) with a special migration pte entry
2518 * and check again if it has been pinned. Pinned pages are restored because we
2519 * cannot migrate them.
2520 *
2521 * This is the last step before we call the device driver callback to allocate
2522 * destination memory and copy contents of original page over to new page.
2523 */
2524static void migrate_vma_unmap(struct migrate_vma *migrate)
2525{
2526 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2527 const unsigned long npages = migrate->npages;
2528 const unsigned long start = migrate->start;
2529 unsigned long addr, i, restore = 0;
2530
2531 for (i = 0; i < npages; i++) {
2532 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2533
2534 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2535 continue;
2536
8c3328f1
JG
2537 if (page_mapped(page)) {
2538 try_to_unmap(page, flags);
2539 if (page_mapped(page))
2540 goto restore;
8763cb45 2541 }
8c3328f1
JG
2542
2543 if (migrate_vma_check_page(page))
2544 continue;
2545
2546restore:
2547 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2548 migrate->cpages--;
2549 restore++;
8763cb45
JG
2550 }
2551
2552 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2553 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2554
2555 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2556 continue;
2557
2558 remove_migration_ptes(page, page, false);
2559
2560 migrate->src[i] = 0;
2561 unlock_page(page);
2562 restore--;
2563
a5430dda
JG
2564 if (is_zone_device_page(page))
2565 put_page(page);
2566 else
2567 putback_lru_page(page);
8763cb45
JG
2568 }
2569}
2570
a7d1f22b
CH
2571/**
2572 * migrate_vma_setup() - prepare to migrate a range of memory
2573 * @args: contains the vma, start, and and pfns arrays for the migration
2574 *
2575 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2576 * without an error.
2577 *
2578 * Prepare to migrate a range of memory virtual address range by collecting all
2579 * the pages backing each virtual address in the range, saving them inside the
2580 * src array. Then lock those pages and unmap them. Once the pages are locked
2581 * and unmapped, check whether each page is pinned or not. Pages that aren't
2582 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2583 * corresponding src array entry. Then restores any pages that are pinned, by
2584 * remapping and unlocking those pages.
2585 *
2586 * The caller should then allocate destination memory and copy source memory to
2587 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2588 * flag set). Once these are allocated and copied, the caller must update each
2589 * corresponding entry in the dst array with the pfn value of the destination
2590 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2591 * (destination pages must have their struct pages locked, via lock_page()).
2592 *
2593 * Note that the caller does not have to migrate all the pages that are marked
2594 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2595 * device memory to system memory. If the caller cannot migrate a device page
2596 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2597 * consequences for the userspace process, so it must be avoided if at all
2598 * possible.
2599 *
2600 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2601 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2602 * allowing the caller to allocate device memory for those unback virtual
2603 * address. For this the caller simply has to allocate device memory and
2604 * properly set the destination entry like for regular migration. Note that
2605 * this can still fails and thus inside the device driver must check if the
2606 * migration was successful for those entries after calling migrate_vma_pages()
2607 * just like for regular migration.
2608 *
2609 * After that, the callers must call migrate_vma_pages() to go over each entry
2610 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2611 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2612 * then migrate_vma_pages() to migrate struct page information from the source
2613 * struct page to the destination struct page. If it fails to migrate the
2614 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2615 * src array.
2616 *
2617 * At this point all successfully migrated pages have an entry in the src
2618 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2619 * array entry with MIGRATE_PFN_VALID flag set.
2620 *
2621 * Once migrate_vma_pages() returns the caller may inspect which pages were
2622 * successfully migrated, and which were not. Successfully migrated pages will
2623 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2624 *
2625 * It is safe to update device page table after migrate_vma_pages() because
2626 * both destination and source page are still locked, and the mmap_sem is held
2627 * in read mode (hence no one can unmap the range being migrated).
2628 *
2629 * Once the caller is done cleaning up things and updating its page table (if it
2630 * chose to do so, this is not an obligation) it finally calls
2631 * migrate_vma_finalize() to update the CPU page table to point to new pages
2632 * for successfully migrated pages or otherwise restore the CPU page table to
2633 * point to the original source pages.
2634 */
2635int migrate_vma_setup(struct migrate_vma *args)
2636{
2637 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2638
2639 args->start &= PAGE_MASK;
2640 args->end &= PAGE_MASK;
2641 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2642 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2643 return -EINVAL;
2644 if (nr_pages <= 0)
2645 return -EINVAL;
2646 if (args->start < args->vma->vm_start ||
2647 args->start >= args->vma->vm_end)
2648 return -EINVAL;
2649 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2650 return -EINVAL;
2651 if (!args->src || !args->dst)
2652 return -EINVAL;
2653
2654 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2655 args->cpages = 0;
2656 args->npages = 0;
2657
2658 migrate_vma_collect(args);
2659
2660 if (args->cpages)
2661 migrate_vma_prepare(args);
2662 if (args->cpages)
2663 migrate_vma_unmap(args);
2664
2665 /*
2666 * At this point pages are locked and unmapped, and thus they have
2667 * stable content and can safely be copied to destination memory that
2668 * is allocated by the drivers.
2669 */
2670 return 0;
2671
2672}
2673EXPORT_SYMBOL(migrate_vma_setup);
2674
8315ada7
JG
2675static void migrate_vma_insert_page(struct migrate_vma *migrate,
2676 unsigned long addr,
2677 struct page *page,
2678 unsigned long *src,
2679 unsigned long *dst)
2680{
2681 struct vm_area_struct *vma = migrate->vma;
2682 struct mm_struct *mm = vma->vm_mm;
2683 struct mem_cgroup *memcg;
2684 bool flush = false;
2685 spinlock_t *ptl;
2686 pte_t entry;
2687 pgd_t *pgdp;
2688 p4d_t *p4dp;
2689 pud_t *pudp;
2690 pmd_t *pmdp;
2691 pte_t *ptep;
2692
2693 /* Only allow populating anonymous memory */
2694 if (!vma_is_anonymous(vma))
2695 goto abort;
2696
2697 pgdp = pgd_offset(mm, addr);
2698 p4dp = p4d_alloc(mm, pgdp, addr);
2699 if (!p4dp)
2700 goto abort;
2701 pudp = pud_alloc(mm, p4dp, addr);
2702 if (!pudp)
2703 goto abort;
2704 pmdp = pmd_alloc(mm, pudp, addr);
2705 if (!pmdp)
2706 goto abort;
2707
2708 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2709 goto abort;
2710
2711 /*
2712 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2713 * pte_offset_map() on pmds where a huge pmd might be created
2714 * from a different thread.
2715 *
2716 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2717 * parallel threads are excluded by other means.
2718 *
2719 * Here we only have down_read(mmap_sem).
2720 */
4cf58924 2721 if (pte_alloc(mm, pmdp))
8315ada7
JG
2722 goto abort;
2723
2724 /* See the comment in pte_alloc_one_map() */
2725 if (unlikely(pmd_trans_unstable(pmdp)))
2726 goto abort;
2727
2728 if (unlikely(anon_vma_prepare(vma)))
2729 goto abort;
2730 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2731 goto abort;
2732
2733 /*
2734 * The memory barrier inside __SetPageUptodate makes sure that
2735 * preceding stores to the page contents become visible before
2736 * the set_pte_at() write.
2737 */
2738 __SetPageUptodate(page);
2739
df6ad698
JG
2740 if (is_zone_device_page(page)) {
2741 if (is_device_private_page(page)) {
2742 swp_entry_t swp_entry;
2743
2744 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2745 entry = swp_entry_to_pte(swp_entry);
df6ad698 2746 }
8315ada7
JG
2747 } else {
2748 entry = mk_pte(page, vma->vm_page_prot);
2749 if (vma->vm_flags & VM_WRITE)
2750 entry = pte_mkwrite(pte_mkdirty(entry));
2751 }
2752
2753 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2754
2755 if (pte_present(*ptep)) {
2756 unsigned long pfn = pte_pfn(*ptep);
2757
2758 if (!is_zero_pfn(pfn)) {
2759 pte_unmap_unlock(ptep, ptl);
2760 mem_cgroup_cancel_charge(page, memcg, false);
2761 goto abort;
2762 }
2763 flush = true;
2764 } else if (!pte_none(*ptep)) {
2765 pte_unmap_unlock(ptep, ptl);
2766 mem_cgroup_cancel_charge(page, memcg, false);
2767 goto abort;
2768 }
2769
2770 /*
2771 * Check for usefaultfd but do not deliver the fault. Instead,
2772 * just back off.
2773 */
2774 if (userfaultfd_missing(vma)) {
2775 pte_unmap_unlock(ptep, ptl);
2776 mem_cgroup_cancel_charge(page, memcg, false);
2777 goto abort;
2778 }
2779
2780 inc_mm_counter(mm, MM_ANONPAGES);
2781 page_add_new_anon_rmap(page, vma, addr, false);
2782 mem_cgroup_commit_charge(page, memcg, false, false);
2783 if (!is_zone_device_page(page))
2784 lru_cache_add_active_or_unevictable(page, vma);
2785 get_page(page);
2786
2787 if (flush) {
2788 flush_cache_page(vma, addr, pte_pfn(*ptep));
2789 ptep_clear_flush_notify(vma, addr, ptep);
2790 set_pte_at_notify(mm, addr, ptep, entry);
2791 update_mmu_cache(vma, addr, ptep);
2792 } else {
2793 /* No need to invalidate - it was non-present before */
2794 set_pte_at(mm, addr, ptep, entry);
2795 update_mmu_cache(vma, addr, ptep);
2796 }
2797
2798 pte_unmap_unlock(ptep, ptl);
2799 *src = MIGRATE_PFN_MIGRATE;
2800 return;
2801
2802abort:
2803 *src &= ~MIGRATE_PFN_MIGRATE;
2804}
2805
a7d1f22b 2806/**
8763cb45
JG
2807 * migrate_vma_pages() - migrate meta-data from src page to dst page
2808 * @migrate: migrate struct containing all migration information
2809 *
2810 * This migrates struct page meta-data from source struct page to destination
2811 * struct page. This effectively finishes the migration from source page to the
2812 * destination page.
2813 */
a7d1f22b 2814void migrate_vma_pages(struct migrate_vma *migrate)
8763cb45
JG
2815{
2816 const unsigned long npages = migrate->npages;
2817 const unsigned long start = migrate->start;
ac46d4f3
JG
2818 struct mmu_notifier_range range;
2819 unsigned long addr, i;
8315ada7 2820 bool notified = false;
8763cb45
JG
2821
2822 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2823 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2824 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2825 struct address_space *mapping;
2826 int r;
2827
8315ada7
JG
2828 if (!newpage) {
2829 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2830 continue;
8315ada7
JG
2831 }
2832
2833 if (!page) {
2834 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2835 continue;
2836 }
2837 if (!notified) {
8315ada7 2838 notified = true;
ac46d4f3
JG
2839
2840 mmu_notifier_range_init(&range,
7269f999 2841 MMU_NOTIFY_CLEAR, 0,
6f4f13e8 2842 NULL,
ac46d4f3
JG
2843 migrate->vma->vm_mm,
2844 addr, migrate->end);
2845 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
2846 }
2847 migrate_vma_insert_page(migrate, addr, newpage,
2848 &migrate->src[i],
2849 &migrate->dst[i]);
8763cb45 2850 continue;
8315ada7 2851 }
8763cb45
JG
2852
2853 mapping = page_mapping(page);
2854
a5430dda
JG
2855 if (is_zone_device_page(newpage)) {
2856 if (is_device_private_page(newpage)) {
2857 /*
2858 * For now only support private anonymous when
2859 * migrating to un-addressable device memory.
2860 */
2861 if (mapping) {
2862 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2863 continue;
2864 }
25b2995a 2865 } else {
a5430dda
JG
2866 /*
2867 * Other types of ZONE_DEVICE page are not
2868 * supported.
2869 */
2870 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2871 continue;
2872 }
2873 }
2874
8763cb45
JG
2875 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2876 if (r != MIGRATEPAGE_SUCCESS)
2877 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2878 }
8315ada7 2879
4645b9fe
JG
2880 /*
2881 * No need to double call mmu_notifier->invalidate_range() callback as
2882 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2883 * did already call it.
2884 */
8315ada7 2885 if (notified)
ac46d4f3 2886 mmu_notifier_invalidate_range_only_end(&range);
8763cb45 2887}
a7d1f22b 2888EXPORT_SYMBOL(migrate_vma_pages);
8763cb45 2889
a7d1f22b 2890/**
8763cb45
JG
2891 * migrate_vma_finalize() - restore CPU page table entry
2892 * @migrate: migrate struct containing all migration information
2893 *
2894 * This replaces the special migration pte entry with either a mapping to the
2895 * new page if migration was successful for that page, or to the original page
2896 * otherwise.
2897 *
2898 * This also unlocks the pages and puts them back on the lru, or drops the extra
2899 * refcount, for device pages.
2900 */
a7d1f22b 2901void migrate_vma_finalize(struct migrate_vma *migrate)
8763cb45
JG
2902{
2903 const unsigned long npages = migrate->npages;
2904 unsigned long i;
2905
2906 for (i = 0; i < npages; i++) {
2907 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2908 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2909
8315ada7
JG
2910 if (!page) {
2911 if (newpage) {
2912 unlock_page(newpage);
2913 put_page(newpage);
2914 }
8763cb45 2915 continue;
8315ada7
JG
2916 }
2917
8763cb45
JG
2918 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2919 if (newpage) {
2920 unlock_page(newpage);
2921 put_page(newpage);
2922 }
2923 newpage = page;
2924 }
2925
2926 remove_migration_ptes(page, newpage, false);
2927 unlock_page(page);
2928 migrate->cpages--;
2929
a5430dda
JG
2930 if (is_zone_device_page(page))
2931 put_page(page);
2932 else
2933 putback_lru_page(page);
8763cb45
JG
2934
2935 if (newpage != page) {
2936 unlock_page(newpage);
a5430dda
JG
2937 if (is_zone_device_page(newpage))
2938 put_page(newpage);
2939 else
2940 putback_lru_page(newpage);
8763cb45
JG
2941 }
2942 }
2943}
a7d1f22b 2944EXPORT_SYMBOL(migrate_vma_finalize);
6b368cd4 2945#endif /* defined(MIGRATE_VMA_HELPER) */