]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/migrate.c
mm: numa: fix minor typo in numa_next_scan
[mirror_ubuntu-jammy-kernel.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
8e6ac7fa 36#include <linux/hugetlb_cgroup.h>
5a0e3ad6 37#include <linux/gfp.h>
bf6bddf1 38#include <linux/balloon_compaction.h>
b20a3503 39
0d1836c3
MN
40#include <asm/tlbflush.h>
41
7b2a2d4a
MG
42#define CREATE_TRACE_POINTS
43#include <trace/events/migrate.h>
44
b20a3503
CL
45#include "internal.h"
46
b20a3503 47/*
742755a1 48 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50 * undesirable, use migrate_prep_local()
b20a3503
CL
51 */
52int migrate_prep(void)
53{
b20a3503
CL
54 /*
55 * Clear the LRU lists so pages can be isolated.
56 * Note that pages may be moved off the LRU after we have
57 * drained them. Those pages will fail to migrate like other
58 * pages that may be busy.
59 */
60 lru_add_drain_all();
61
62 return 0;
63}
64
748446bb
MG
65/* Do the necessary work of migrate_prep but not if it involves other CPUs */
66int migrate_prep_local(void)
67{
68 lru_add_drain();
69
70 return 0;
71}
72
b20a3503 73/*
894bc310
LS
74 * Add isolated pages on the list back to the LRU under page lock
75 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 76 */
e13861d8 77void putback_lru_pages(struct list_head *l)
b20a3503
CL
78{
79 struct page *page;
80 struct page *page2;
b20a3503 81
5733c7d1
RA
82 list_for_each_entry_safe(page, page2, l, lru) {
83 list_del(&page->lru);
84 dec_zone_page_state(page, NR_ISOLATED_ANON +
85 page_is_file_cache(page));
86 putback_lru_page(page);
87 }
88}
89
90/*
91 * Put previously isolated pages back onto the appropriate lists
92 * from where they were once taken off for compaction/migration.
93 *
94 * This function shall be used instead of putback_lru_pages(),
95 * whenever the isolated pageset has been built by isolate_migratepages_range()
96 */
97void putback_movable_pages(struct list_head *l)
98{
99 struct page *page;
100 struct page *page2;
101
b20a3503 102 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 103 list_del(&page->lru);
a731286d 104 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 105 page_is_file_cache(page));
bf6bddf1
RA
106 if (unlikely(balloon_page_movable(page)))
107 balloon_page_putback(page);
108 else
109 putback_lru_page(page);
b20a3503 110 }
b20a3503
CL
111}
112
0697212a
CL
113/*
114 * Restore a potential migration pte to a working pte entry
115 */
e9995ef9
HD
116static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
117 unsigned long addr, void *old)
0697212a
CL
118{
119 struct mm_struct *mm = vma->vm_mm;
120 swp_entry_t entry;
0697212a
CL
121 pmd_t *pmd;
122 pte_t *ptep, pte;
123 spinlock_t *ptl;
124
290408d4
NH
125 if (unlikely(PageHuge(new))) {
126 ptep = huge_pte_offset(mm, addr);
127 if (!ptep)
128 goto out;
129 ptl = &mm->page_table_lock;
130 } else {
6219049a
BL
131 pmd = mm_find_pmd(mm, addr);
132 if (!pmd)
290408d4 133 goto out;
500d65d4
AA
134 if (pmd_trans_huge(*pmd))
135 goto out;
0697212a 136
290408d4 137 ptep = pte_offset_map(pmd, addr);
0697212a 138
486cf46f
HD
139 /*
140 * Peek to check is_swap_pte() before taking ptlock? No, we
141 * can race mremap's move_ptes(), which skips anon_vma lock.
142 */
290408d4
NH
143
144 ptl = pte_lockptr(mm, pmd);
145 }
0697212a 146
0697212a
CL
147 spin_lock(ptl);
148 pte = *ptep;
149 if (!is_swap_pte(pte))
e9995ef9 150 goto unlock;
0697212a
CL
151
152 entry = pte_to_swp_entry(pte);
153
e9995ef9
HD
154 if (!is_migration_entry(entry) ||
155 migration_entry_to_page(entry) != old)
156 goto unlock;
0697212a 157
0697212a
CL
158 get_page(new);
159 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
160 if (is_write_migration_entry(entry))
161 pte = pte_mkwrite(pte);
3ef8fd7f 162#ifdef CONFIG_HUGETLB_PAGE
be7517d6 163 if (PageHuge(new)) {
290408d4 164 pte = pte_mkhuge(pte);
be7517d6
TL
165 pte = arch_make_huge_pte(pte, vma, new, 0);
166 }
3ef8fd7f 167#endif
97ee0524 168 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 169 set_pte_at(mm, addr, ptep, pte);
04e62a29 170
290408d4
NH
171 if (PageHuge(new)) {
172 if (PageAnon(new))
173 hugepage_add_anon_rmap(new, vma, addr);
174 else
175 page_dup_rmap(new);
176 } else if (PageAnon(new))
04e62a29
CL
177 page_add_anon_rmap(new, vma, addr);
178 else
179 page_add_file_rmap(new);
180
181 /* No need to invalidate - it was non-present before */
4b3073e1 182 update_mmu_cache(vma, addr, ptep);
e9995ef9 183unlock:
0697212a 184 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
185out:
186 return SWAP_AGAIN;
0697212a
CL
187}
188
04e62a29
CL
189/*
190 * Get rid of all migration entries and replace them by
191 * references to the indicated page.
192 */
193static void remove_migration_ptes(struct page *old, struct page *new)
194{
e9995ef9 195 rmap_walk(new, remove_migration_pte, old);
04e62a29
CL
196}
197
0697212a
CL
198/*
199 * Something used the pte of a page under migration. We need to
200 * get to the page and wait until migration is finished.
201 * When we return from this function the fault will be retried.
0697212a
CL
202 */
203void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
204 unsigned long address)
205{
206 pte_t *ptep, pte;
207 spinlock_t *ptl;
208 swp_entry_t entry;
209 struct page *page;
210
211 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
212 pte = *ptep;
213 if (!is_swap_pte(pte))
214 goto out;
215
216 entry = pte_to_swp_entry(pte);
217 if (!is_migration_entry(entry))
218 goto out;
219
220 page = migration_entry_to_page(entry);
221
e286781d
NP
222 /*
223 * Once radix-tree replacement of page migration started, page_count
224 * *must* be zero. And, we don't want to call wait_on_page_locked()
225 * against a page without get_page().
226 * So, we use get_page_unless_zero(), here. Even failed, page fault
227 * will occur again.
228 */
229 if (!get_page_unless_zero(page))
230 goto out;
0697212a
CL
231 pte_unmap_unlock(ptep, ptl);
232 wait_on_page_locked(page);
233 put_page(page);
234 return;
235out:
236 pte_unmap_unlock(ptep, ptl);
237}
238
b969c4ab
MG
239#ifdef CONFIG_BLOCK
240/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
241static bool buffer_migrate_lock_buffers(struct buffer_head *head,
242 enum migrate_mode mode)
b969c4ab
MG
243{
244 struct buffer_head *bh = head;
245
246 /* Simple case, sync compaction */
a6bc32b8 247 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
248 do {
249 get_bh(bh);
250 lock_buffer(bh);
251 bh = bh->b_this_page;
252
253 } while (bh != head);
254
255 return true;
256 }
257
258 /* async case, we cannot block on lock_buffer so use trylock_buffer */
259 do {
260 get_bh(bh);
261 if (!trylock_buffer(bh)) {
262 /*
263 * We failed to lock the buffer and cannot stall in
264 * async migration. Release the taken locks
265 */
266 struct buffer_head *failed_bh = bh;
267 put_bh(failed_bh);
268 bh = head;
269 while (bh != failed_bh) {
270 unlock_buffer(bh);
271 put_bh(bh);
272 bh = bh->b_this_page;
273 }
274 return false;
275 }
276
277 bh = bh->b_this_page;
278 } while (bh != head);
279 return true;
280}
281#else
282static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 283 enum migrate_mode mode)
b969c4ab
MG
284{
285 return true;
286}
287#endif /* CONFIG_BLOCK */
288
b20a3503 289/*
c3fcf8a5 290 * Replace the page in the mapping.
5b5c7120
CL
291 *
292 * The number of remaining references must be:
293 * 1 for anonymous pages without a mapping
294 * 2 for pages with a mapping
266cf658 295 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 296 */
2d1db3b1 297static int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 298 struct page *newpage, struct page *page,
a6bc32b8 299 struct buffer_head *head, enum migrate_mode mode)
b20a3503 300{
7039e1db 301 int expected_count = 0;
7cf9c2c7 302 void **pslot;
b20a3503 303
6c5240ae 304 if (!mapping) {
0e8c7d0f 305 /* Anonymous page without mapping */
6c5240ae
CL
306 if (page_count(page) != 1)
307 return -EAGAIN;
78bd5209 308 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
309 }
310
19fd6231 311 spin_lock_irq(&mapping->tree_lock);
b20a3503 312
7cf9c2c7
NP
313 pslot = radix_tree_lookup_slot(&mapping->page_tree,
314 page_index(page));
b20a3503 315
edcf4748 316 expected_count = 2 + page_has_private(page);
e286781d 317 if (page_count(page) != expected_count ||
29c1f677 318 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 319 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 320 return -EAGAIN;
b20a3503
CL
321 }
322
e286781d 323 if (!page_freeze_refs(page, expected_count)) {
19fd6231 324 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
325 return -EAGAIN;
326 }
327
b969c4ab
MG
328 /*
329 * In the async migration case of moving a page with buffers, lock the
330 * buffers using trylock before the mapping is moved. If the mapping
331 * was moved, we later failed to lock the buffers and could not move
332 * the mapping back due to an elevated page count, we would have to
333 * block waiting on other references to be dropped.
334 */
a6bc32b8
MG
335 if (mode == MIGRATE_ASYNC && head &&
336 !buffer_migrate_lock_buffers(head, mode)) {
b969c4ab
MG
337 page_unfreeze_refs(page, expected_count);
338 spin_unlock_irq(&mapping->tree_lock);
339 return -EAGAIN;
340 }
341
b20a3503
CL
342 /*
343 * Now we know that no one else is looking at the page.
b20a3503 344 */
7cf9c2c7 345 get_page(newpage); /* add cache reference */
b20a3503
CL
346 if (PageSwapCache(page)) {
347 SetPageSwapCache(newpage);
348 set_page_private(newpage, page_private(page));
349 }
350
7cf9c2c7
NP
351 radix_tree_replace_slot(pslot, newpage);
352
353 /*
937a94c9
JG
354 * Drop cache reference from old page by unfreezing
355 * to one less reference.
7cf9c2c7
NP
356 * We know this isn't the last reference.
357 */
937a94c9 358 page_unfreeze_refs(page, expected_count - 1);
7cf9c2c7 359
0e8c7d0f
CL
360 /*
361 * If moved to a different zone then also account
362 * the page for that zone. Other VM counters will be
363 * taken care of when we establish references to the
364 * new page and drop references to the old page.
365 *
366 * Note that anonymous pages are accounted for
367 * via NR_FILE_PAGES and NR_ANON_PAGES if they
368 * are mapped to swap space.
369 */
370 __dec_zone_page_state(page, NR_FILE_PAGES);
371 __inc_zone_page_state(newpage, NR_FILE_PAGES);
99a15e21 372 if (!PageSwapCache(page) && PageSwapBacked(page)) {
4b02108a
KM
373 __dec_zone_page_state(page, NR_SHMEM);
374 __inc_zone_page_state(newpage, NR_SHMEM);
375 }
19fd6231 376 spin_unlock_irq(&mapping->tree_lock);
b20a3503 377
78bd5209 378 return MIGRATEPAGE_SUCCESS;
b20a3503 379}
b20a3503 380
290408d4
NH
381/*
382 * The expected number of remaining references is the same as that
383 * of migrate_page_move_mapping().
384 */
385int migrate_huge_page_move_mapping(struct address_space *mapping,
386 struct page *newpage, struct page *page)
387{
388 int expected_count;
389 void **pslot;
390
391 if (!mapping) {
392 if (page_count(page) != 1)
393 return -EAGAIN;
78bd5209 394 return MIGRATEPAGE_SUCCESS;
290408d4
NH
395 }
396
397 spin_lock_irq(&mapping->tree_lock);
398
399 pslot = radix_tree_lookup_slot(&mapping->page_tree,
400 page_index(page));
401
402 expected_count = 2 + page_has_private(page);
403 if (page_count(page) != expected_count ||
29c1f677 404 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
405 spin_unlock_irq(&mapping->tree_lock);
406 return -EAGAIN;
407 }
408
409 if (!page_freeze_refs(page, expected_count)) {
410 spin_unlock_irq(&mapping->tree_lock);
411 return -EAGAIN;
412 }
413
414 get_page(newpage);
415
416 radix_tree_replace_slot(pslot, newpage);
417
937a94c9 418 page_unfreeze_refs(page, expected_count - 1);
290408d4
NH
419
420 spin_unlock_irq(&mapping->tree_lock);
78bd5209 421 return MIGRATEPAGE_SUCCESS;
290408d4
NH
422}
423
b20a3503
CL
424/*
425 * Copy the page to its new location
426 */
290408d4 427void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 428{
b32967ff 429 if (PageHuge(page) || PageTransHuge(page))
290408d4
NH
430 copy_huge_page(newpage, page);
431 else
432 copy_highpage(newpage, page);
b20a3503
CL
433
434 if (PageError(page))
435 SetPageError(newpage);
436 if (PageReferenced(page))
437 SetPageReferenced(newpage);
438 if (PageUptodate(page))
439 SetPageUptodate(newpage);
894bc310
LS
440 if (TestClearPageActive(page)) {
441 VM_BUG_ON(PageUnevictable(page));
b20a3503 442 SetPageActive(newpage);
418b27ef
LS
443 } else if (TestClearPageUnevictable(page))
444 SetPageUnevictable(newpage);
b20a3503
CL
445 if (PageChecked(page))
446 SetPageChecked(newpage);
447 if (PageMappedToDisk(page))
448 SetPageMappedToDisk(newpage);
449
450 if (PageDirty(page)) {
451 clear_page_dirty_for_io(page);
3a902c5f
NP
452 /*
453 * Want to mark the page and the radix tree as dirty, and
454 * redo the accounting that clear_page_dirty_for_io undid,
455 * but we can't use set_page_dirty because that function
456 * is actually a signal that all of the page has become dirty.
25985edc 457 * Whereas only part of our page may be dirty.
3a902c5f 458 */
752dc185
HD
459 if (PageSwapBacked(page))
460 SetPageDirty(newpage);
461 else
462 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
463 }
464
b291f000 465 mlock_migrate_page(newpage, page);
e9995ef9 466 ksm_migrate_page(newpage, page);
b291f000 467
b20a3503 468 ClearPageSwapCache(page);
b20a3503
CL
469 ClearPagePrivate(page);
470 set_page_private(page, 0);
b20a3503
CL
471
472 /*
473 * If any waiters have accumulated on the new page then
474 * wake them up.
475 */
476 if (PageWriteback(newpage))
477 end_page_writeback(newpage);
478}
b20a3503 479
1d8b85cc
CL
480/************************************************************
481 * Migration functions
482 ***********************************************************/
483
484/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
485int fail_migrate_page(struct address_space *mapping,
486 struct page *newpage, struct page *page)
1d8b85cc
CL
487{
488 return -EIO;
489}
490EXPORT_SYMBOL(fail_migrate_page);
491
b20a3503
CL
492/*
493 * Common logic to directly migrate a single page suitable for
266cf658 494 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
495 *
496 * Pages are locked upon entry and exit.
497 */
2d1db3b1 498int migrate_page(struct address_space *mapping,
a6bc32b8
MG
499 struct page *newpage, struct page *page,
500 enum migrate_mode mode)
b20a3503
CL
501{
502 int rc;
503
504 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
505
a6bc32b8 506 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
b20a3503 507
78bd5209 508 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
509 return rc;
510
511 migrate_page_copy(newpage, page);
78bd5209 512 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
513}
514EXPORT_SYMBOL(migrate_page);
515
9361401e 516#ifdef CONFIG_BLOCK
1d8b85cc
CL
517/*
518 * Migration function for pages with buffers. This function can only be used
519 * if the underlying filesystem guarantees that no other references to "page"
520 * exist.
521 */
2d1db3b1 522int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 523 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 524{
1d8b85cc
CL
525 struct buffer_head *bh, *head;
526 int rc;
527
1d8b85cc 528 if (!page_has_buffers(page))
a6bc32b8 529 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
530
531 head = page_buffers(page);
532
a6bc32b8 533 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
1d8b85cc 534
78bd5209 535 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
536 return rc;
537
b969c4ab
MG
538 /*
539 * In the async case, migrate_page_move_mapping locked the buffers
540 * with an IRQ-safe spinlock held. In the sync case, the buffers
541 * need to be locked now
542 */
a6bc32b8
MG
543 if (mode != MIGRATE_ASYNC)
544 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
545
546 ClearPagePrivate(page);
547 set_page_private(newpage, page_private(page));
548 set_page_private(page, 0);
549 put_page(page);
550 get_page(newpage);
551
552 bh = head;
553 do {
554 set_bh_page(bh, newpage, bh_offset(bh));
555 bh = bh->b_this_page;
556
557 } while (bh != head);
558
559 SetPagePrivate(newpage);
560
561 migrate_page_copy(newpage, page);
562
563 bh = head;
564 do {
565 unlock_buffer(bh);
566 put_bh(bh);
567 bh = bh->b_this_page;
568
569 } while (bh != head);
570
78bd5209 571 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
572}
573EXPORT_SYMBOL(buffer_migrate_page);
9361401e 574#endif
1d8b85cc 575
04e62a29
CL
576/*
577 * Writeback a page to clean the dirty state
578 */
579static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 580{
04e62a29
CL
581 struct writeback_control wbc = {
582 .sync_mode = WB_SYNC_NONE,
583 .nr_to_write = 1,
584 .range_start = 0,
585 .range_end = LLONG_MAX,
04e62a29
CL
586 .for_reclaim = 1
587 };
588 int rc;
589
590 if (!mapping->a_ops->writepage)
591 /* No write method for the address space */
592 return -EINVAL;
593
594 if (!clear_page_dirty_for_io(page))
595 /* Someone else already triggered a write */
596 return -EAGAIN;
597
8351a6e4 598 /*
04e62a29
CL
599 * A dirty page may imply that the underlying filesystem has
600 * the page on some queue. So the page must be clean for
601 * migration. Writeout may mean we loose the lock and the
602 * page state is no longer what we checked for earlier.
603 * At this point we know that the migration attempt cannot
604 * be successful.
8351a6e4 605 */
04e62a29 606 remove_migration_ptes(page, page);
8351a6e4 607
04e62a29 608 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 609
04e62a29
CL
610 if (rc != AOP_WRITEPAGE_ACTIVATE)
611 /* unlocked. Relock */
612 lock_page(page);
613
bda8550d 614 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
615}
616
617/*
618 * Default handling if a filesystem does not provide a migration function.
619 */
620static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 621 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 622{
b969c4ab 623 if (PageDirty(page)) {
a6bc32b8
MG
624 /* Only writeback pages in full synchronous migration */
625 if (mode != MIGRATE_SYNC)
b969c4ab 626 return -EBUSY;
04e62a29 627 return writeout(mapping, page);
b969c4ab 628 }
8351a6e4
CL
629
630 /*
631 * Buffers may be managed in a filesystem specific way.
632 * We must have no buffers or drop them.
633 */
266cf658 634 if (page_has_private(page) &&
8351a6e4
CL
635 !try_to_release_page(page, GFP_KERNEL))
636 return -EAGAIN;
637
a6bc32b8 638 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
639}
640
e24f0b8f
CL
641/*
642 * Move a page to a newly allocated page
643 * The page is locked and all ptes have been successfully removed.
644 *
645 * The new page will have replaced the old page if this function
646 * is successful.
894bc310
LS
647 *
648 * Return value:
649 * < 0 - error code
78bd5209 650 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 651 */
3fe2011f 652static int move_to_new_page(struct page *newpage, struct page *page,
a6bc32b8 653 int remap_swapcache, enum migrate_mode mode)
e24f0b8f
CL
654{
655 struct address_space *mapping;
656 int rc;
657
658 /*
659 * Block others from accessing the page when we get around to
660 * establishing additional references. We are the only one
661 * holding a reference to the new page at this point.
662 */
529ae9aa 663 if (!trylock_page(newpage))
e24f0b8f
CL
664 BUG();
665
666 /* Prepare mapping for the new page.*/
667 newpage->index = page->index;
668 newpage->mapping = page->mapping;
b2e18538
RR
669 if (PageSwapBacked(page))
670 SetPageSwapBacked(newpage);
e24f0b8f
CL
671
672 mapping = page_mapping(page);
673 if (!mapping)
a6bc32b8 674 rc = migrate_page(mapping, newpage, page, mode);
b969c4ab 675 else if (mapping->a_ops->migratepage)
e24f0b8f 676 /*
b969c4ab
MG
677 * Most pages have a mapping and most filesystems provide a
678 * migratepage callback. Anonymous pages are part of swap
679 * space which also has its own migratepage callback. This
680 * is the most common path for page migration.
e24f0b8f 681 */
b969c4ab 682 rc = mapping->a_ops->migratepage(mapping,
a6bc32b8 683 newpage, page, mode);
b969c4ab 684 else
a6bc32b8 685 rc = fallback_migrate_page(mapping, newpage, page, mode);
e24f0b8f 686
78bd5209 687 if (rc != MIGRATEPAGE_SUCCESS) {
e24f0b8f 688 newpage->mapping = NULL;
3fe2011f
MG
689 } else {
690 if (remap_swapcache)
691 remove_migration_ptes(page, newpage);
35512eca 692 page->mapping = NULL;
3fe2011f 693 }
e24f0b8f
CL
694
695 unlock_page(newpage);
696
697 return rc;
698}
699
0dabec93 700static int __unmap_and_move(struct page *page, struct page *newpage,
a6bc32b8 701 int force, bool offlining, enum migrate_mode mode)
e24f0b8f 702{
0dabec93 703 int rc = -EAGAIN;
3fe2011f 704 int remap_swapcache = 1;
56039efa 705 struct mem_cgroup *mem;
3f6c8272 706 struct anon_vma *anon_vma = NULL;
95a402c3 707
529ae9aa 708 if (!trylock_page(page)) {
a6bc32b8 709 if (!force || mode == MIGRATE_ASYNC)
0dabec93 710 goto out;
3e7d3449
MG
711
712 /*
713 * It's not safe for direct compaction to call lock_page.
714 * For example, during page readahead pages are added locked
715 * to the LRU. Later, when the IO completes the pages are
716 * marked uptodate and unlocked. However, the queueing
717 * could be merging multiple pages for one bio (e.g.
718 * mpage_readpages). If an allocation happens for the
719 * second or third page, the process can end up locking
720 * the same page twice and deadlocking. Rather than
721 * trying to be clever about what pages can be locked,
722 * avoid the use of lock_page for direct compaction
723 * altogether.
724 */
725 if (current->flags & PF_MEMALLOC)
0dabec93 726 goto out;
3e7d3449 727
e24f0b8f
CL
728 lock_page(page);
729 }
730
62b61f61
HD
731 /*
732 * Only memory hotplug's offline_pages() caller has locked out KSM,
733 * and can safely migrate a KSM page. The other cases have skipped
734 * PageKsm along with PageReserved - but it is only now when we have
735 * the page lock that we can be certain it will not go KSM beneath us
736 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
737 * its pagecount raised, but only here do we take the page lock which
738 * serializes that).
739 */
740 if (PageKsm(page) && !offlining) {
741 rc = -EBUSY;
742 goto unlock;
743 }
744
01b1ae63 745 /* charge against new page */
0030f535 746 mem_cgroup_prepare_migration(page, newpage, &mem);
01b1ae63 747
e24f0b8f 748 if (PageWriteback(page)) {
11bc82d6 749 /*
a6bc32b8
MG
750 * Only in the case of a full syncronous migration is it
751 * necessary to wait for PageWriteback. In the async case,
752 * the retry loop is too short and in the sync-light case,
753 * the overhead of stalling is too much
11bc82d6 754 */
a6bc32b8 755 if (mode != MIGRATE_SYNC) {
11bc82d6
AA
756 rc = -EBUSY;
757 goto uncharge;
758 }
759 if (!force)
01b1ae63 760 goto uncharge;
e24f0b8f
CL
761 wait_on_page_writeback(page);
762 }
e24f0b8f 763 /*
dc386d4d
KH
764 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
765 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 766 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 767 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
768 * File Caches may use write_page() or lock_page() in migration, then,
769 * just care Anon page here.
dc386d4d 770 */
989f89c5 771 if (PageAnon(page)) {
1ce82b69 772 /*
4fc3f1d6 773 * Only page_lock_anon_vma_read() understands the subtleties of
1ce82b69
HD
774 * getting a hold on an anon_vma from outside one of its mms.
775 */
746b18d4 776 anon_vma = page_get_anon_vma(page);
1ce82b69
HD
777 if (anon_vma) {
778 /*
746b18d4 779 * Anon page
1ce82b69 780 */
1ce82b69 781 } else if (PageSwapCache(page)) {
3fe2011f
MG
782 /*
783 * We cannot be sure that the anon_vma of an unmapped
784 * swapcache page is safe to use because we don't
785 * know in advance if the VMA that this page belonged
786 * to still exists. If the VMA and others sharing the
787 * data have been freed, then the anon_vma could
788 * already be invalid.
789 *
790 * To avoid this possibility, swapcache pages get
791 * migrated but are not remapped when migration
792 * completes
793 */
794 remap_swapcache = 0;
795 } else {
1ce82b69 796 goto uncharge;
3fe2011f 797 }
989f89c5 798 }
62e1c553 799
bf6bddf1
RA
800 if (unlikely(balloon_page_movable(page))) {
801 /*
802 * A ballooned page does not need any special attention from
803 * physical to virtual reverse mapping procedures.
804 * Skip any attempt to unmap PTEs or to remap swap cache,
805 * in order to avoid burning cycles at rmap level, and perform
806 * the page migration right away (proteced by page lock).
807 */
808 rc = balloon_page_migrate(newpage, page, mode);
809 goto uncharge;
810 }
811
dc386d4d 812 /*
62e1c553
SL
813 * Corner case handling:
814 * 1. When a new swap-cache page is read into, it is added to the LRU
815 * and treated as swapcache but it has no rmap yet.
816 * Calling try_to_unmap() against a page->mapping==NULL page will
817 * trigger a BUG. So handle it here.
818 * 2. An orphaned page (see truncate_complete_page) might have
819 * fs-private metadata. The page can be picked up due to memory
820 * offlining. Everywhere else except page reclaim, the page is
821 * invisible to the vm, so the page can not be migrated. So try to
822 * free the metadata, so the page can be freed.
e24f0b8f 823 */
62e1c553 824 if (!page->mapping) {
1ce82b69
HD
825 VM_BUG_ON(PageAnon(page));
826 if (page_has_private(page)) {
62e1c553 827 try_to_free_buffers(page);
1ce82b69 828 goto uncharge;
62e1c553 829 }
abfc3488 830 goto skip_unmap;
62e1c553
SL
831 }
832
dc386d4d 833 /* Establish migration ptes or remove ptes */
14fa31b8 834 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 835
abfc3488 836skip_unmap:
e6a1530d 837 if (!page_mapped(page))
a6bc32b8 838 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
e24f0b8f 839
3fe2011f 840 if (rc && remap_swapcache)
e24f0b8f 841 remove_migration_ptes(page, page);
3f6c8272
MG
842
843 /* Drop an anon_vma reference if we took one */
76545066 844 if (anon_vma)
9e60109f 845 put_anon_vma(anon_vma);
3f6c8272 846
01b1ae63 847uncharge:
bf6bddf1
RA
848 mem_cgroup_end_migration(mem, page, newpage,
849 (rc == MIGRATEPAGE_SUCCESS ||
850 rc == MIGRATEPAGE_BALLOON_SUCCESS));
e24f0b8f
CL
851unlock:
852 unlock_page(page);
0dabec93
MK
853out:
854 return rc;
855}
95a402c3 856
0dabec93
MK
857/*
858 * Obtain the lock on page, remove all ptes and migrate the page
859 * to the newly allocated page in newpage.
860 */
861static int unmap_and_move(new_page_t get_new_page, unsigned long private,
a6bc32b8
MG
862 struct page *page, int force, bool offlining,
863 enum migrate_mode mode)
0dabec93
MK
864{
865 int rc = 0;
866 int *result = NULL;
867 struct page *newpage = get_new_page(page, private, &result);
868
869 if (!newpage)
870 return -ENOMEM;
871
872 if (page_count(page) == 1) {
873 /* page was freed from under us. So we are done. */
874 goto out;
875 }
876
877 if (unlikely(PageTransHuge(page)))
878 if (unlikely(split_huge_page(page)))
879 goto out;
880
a6bc32b8 881 rc = __unmap_and_move(page, newpage, force, offlining, mode);
bf6bddf1
RA
882
883 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
884 /*
885 * A ballooned page has been migrated already.
886 * Now, it's the time to wrap-up counters,
887 * handle the page back to Buddy and return.
888 */
889 dec_zone_page_state(page, NR_ISOLATED_ANON +
890 page_is_file_cache(page));
891 balloon_page_free(page);
892 return MIGRATEPAGE_SUCCESS;
893 }
0dabec93 894out:
e24f0b8f 895 if (rc != -EAGAIN) {
0dabec93
MK
896 /*
897 * A page that has been migrated has all references
898 * removed and will be freed. A page that has not been
899 * migrated will have kepts its references and be
900 * restored.
901 */
902 list_del(&page->lru);
a731286d 903 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 904 page_is_file_cache(page));
894bc310 905 putback_lru_page(page);
e24f0b8f 906 }
95a402c3
CL
907 /*
908 * Move the new page to the LRU. If migration was not successful
909 * then this will free the page.
910 */
894bc310 911 putback_lru_page(newpage);
742755a1
CL
912 if (result) {
913 if (rc)
914 *result = rc;
915 else
916 *result = page_to_nid(newpage);
917 }
e24f0b8f
CL
918 return rc;
919}
920
290408d4
NH
921/*
922 * Counterpart of unmap_and_move_page() for hugepage migration.
923 *
924 * This function doesn't wait the completion of hugepage I/O
925 * because there is no race between I/O and migration for hugepage.
926 * Note that currently hugepage I/O occurs only in direct I/O
927 * where no lock is held and PG_writeback is irrelevant,
928 * and writeback status of all subpages are counted in the reference
929 * count of the head page (i.e. if all subpages of a 2MB hugepage are
930 * under direct I/O, the reference of the head page is 512 and a bit more.)
931 * This means that when we try to migrate hugepage whose subpages are
932 * doing direct I/O, some references remain after try_to_unmap() and
933 * hugepage migration fails without data corruption.
934 *
935 * There is also no race when direct I/O is issued on the page under migration,
936 * because then pte is replaced with migration swap entry and direct I/O code
937 * will wait in the page fault for migration to complete.
938 */
939static int unmap_and_move_huge_page(new_page_t get_new_page,
940 unsigned long private, struct page *hpage,
a6bc32b8
MG
941 int force, bool offlining,
942 enum migrate_mode mode)
290408d4
NH
943{
944 int rc = 0;
945 int *result = NULL;
946 struct page *new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
947 struct anon_vma *anon_vma = NULL;
948
949 if (!new_hpage)
950 return -ENOMEM;
951
952 rc = -EAGAIN;
953
954 if (!trylock_page(hpage)) {
a6bc32b8 955 if (!force || mode != MIGRATE_SYNC)
290408d4
NH
956 goto out;
957 lock_page(hpage);
958 }
959
746b18d4
PZ
960 if (PageAnon(hpage))
961 anon_vma = page_get_anon_vma(hpage);
290408d4
NH
962
963 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
964
965 if (!page_mapped(hpage))
a6bc32b8 966 rc = move_to_new_page(new_hpage, hpage, 1, mode);
290408d4
NH
967
968 if (rc)
969 remove_migration_ptes(hpage, hpage);
970
fd4a4663 971 if (anon_vma)
9e60109f 972 put_anon_vma(anon_vma);
8e6ac7fa
AK
973
974 if (!rc)
975 hugetlb_cgroup_migrate(hpage, new_hpage);
976
290408d4 977 unlock_page(hpage);
09761333 978out:
290408d4 979 put_page(new_hpage);
290408d4
NH
980 if (result) {
981 if (rc)
982 *result = rc;
983 else
984 *result = page_to_nid(new_hpage);
985 }
986 return rc;
987}
988
b20a3503
CL
989/*
990 * migrate_pages
991 *
95a402c3
CL
992 * The function takes one list of pages to migrate and a function
993 * that determines from the page to be migrated and the private data
994 * the target of the move and allocates the page.
b20a3503
CL
995 *
996 * The function returns after 10 attempts or if no pages
997 * are movable anymore because to has become empty
cf608ac1
MK
998 * or no retryable pages exist anymore.
999 * Caller should call putback_lru_pages to return pages to the LRU
28bd6578 1000 * or free list only if ret != 0.
b20a3503 1001 *
95a402c3 1002 * Return: Number of pages not migrated or error code.
b20a3503 1003 */
95a402c3 1004int migrate_pages(struct list_head *from,
7f0f2496 1005 new_page_t get_new_page, unsigned long private, bool offlining,
7b2a2d4a 1006 enum migrate_mode mode, int reason)
b20a3503 1007{
e24f0b8f 1008 int retry = 1;
b20a3503 1009 int nr_failed = 0;
5647bc29 1010 int nr_succeeded = 0;
b20a3503
CL
1011 int pass = 0;
1012 struct page *page;
1013 struct page *page2;
1014 int swapwrite = current->flags & PF_SWAPWRITE;
1015 int rc;
1016
1017 if (!swapwrite)
1018 current->flags |= PF_SWAPWRITE;
1019
e24f0b8f
CL
1020 for(pass = 0; pass < 10 && retry; pass++) {
1021 retry = 0;
b20a3503 1022
e24f0b8f 1023 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 1024 cond_resched();
2d1db3b1 1025
95a402c3 1026 rc = unmap_and_move(get_new_page, private,
77f1fe6b 1027 page, pass > 2, offlining,
a6bc32b8 1028 mode);
2d1db3b1 1029
e24f0b8f 1030 switch(rc) {
95a402c3
CL
1031 case -ENOMEM:
1032 goto out;
e24f0b8f 1033 case -EAGAIN:
2d1db3b1 1034 retry++;
e24f0b8f 1035 break;
78bd5209 1036 case MIGRATEPAGE_SUCCESS:
5647bc29 1037 nr_succeeded++;
e24f0b8f
CL
1038 break;
1039 default:
2d1db3b1 1040 /* Permanent failure */
2d1db3b1 1041 nr_failed++;
e24f0b8f 1042 break;
2d1db3b1 1043 }
b20a3503
CL
1044 }
1045 }
78bd5209 1046 rc = nr_failed + retry;
95a402c3 1047out:
5647bc29
MG
1048 if (nr_succeeded)
1049 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1050 if (nr_failed)
1051 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1052 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1053
b20a3503
CL
1054 if (!swapwrite)
1055 current->flags &= ~PF_SWAPWRITE;
1056
78bd5209 1057 return rc;
b20a3503 1058}
95a402c3 1059
189ebff2
AK
1060int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
1061 unsigned long private, bool offlining,
1062 enum migrate_mode mode)
290408d4 1063{
189ebff2
AK
1064 int pass, rc;
1065
1066 for (pass = 0; pass < 10; pass++) {
1067 rc = unmap_and_move_huge_page(get_new_page,
1068 private, hpage, pass > 2, offlining,
1069 mode);
1070 switch (rc) {
1071 case -ENOMEM:
1072 goto out;
1073 case -EAGAIN:
1074 /* try again */
290408d4 1075 cond_resched();
189ebff2 1076 break;
78bd5209 1077 case MIGRATEPAGE_SUCCESS:
189ebff2
AK
1078 goto out;
1079 default:
1080 rc = -EIO;
1081 goto out;
290408d4
NH
1082 }
1083 }
290408d4 1084out:
189ebff2 1085 return rc;
290408d4
NH
1086}
1087
742755a1
CL
1088#ifdef CONFIG_NUMA
1089/*
1090 * Move a list of individual pages
1091 */
1092struct page_to_node {
1093 unsigned long addr;
1094 struct page *page;
1095 int node;
1096 int status;
1097};
1098
1099static struct page *new_page_node(struct page *p, unsigned long private,
1100 int **result)
1101{
1102 struct page_to_node *pm = (struct page_to_node *)private;
1103
1104 while (pm->node != MAX_NUMNODES && pm->page != p)
1105 pm++;
1106
1107 if (pm->node == MAX_NUMNODES)
1108 return NULL;
1109
1110 *result = &pm->status;
1111
6484eb3e 1112 return alloc_pages_exact_node(pm->node,
769848c0 1113 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1114}
1115
1116/*
1117 * Move a set of pages as indicated in the pm array. The addr
1118 * field must be set to the virtual address of the page to be moved
1119 * and the node number must contain a valid target node.
5e9a0f02 1120 * The pm array ends with node = MAX_NUMNODES.
742755a1 1121 */
5e9a0f02
BG
1122static int do_move_page_to_node_array(struct mm_struct *mm,
1123 struct page_to_node *pm,
1124 int migrate_all)
742755a1
CL
1125{
1126 int err;
1127 struct page_to_node *pp;
1128 LIST_HEAD(pagelist);
1129
1130 down_read(&mm->mmap_sem);
1131
1132 /*
1133 * Build a list of pages to migrate
1134 */
742755a1
CL
1135 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1136 struct vm_area_struct *vma;
1137 struct page *page;
1138
742755a1
CL
1139 err = -EFAULT;
1140 vma = find_vma(mm, pp->addr);
70384dc6 1141 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1142 goto set_status;
1143
500d65d4 1144 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
89f5b7da
LT
1145
1146 err = PTR_ERR(page);
1147 if (IS_ERR(page))
1148 goto set_status;
1149
742755a1
CL
1150 err = -ENOENT;
1151 if (!page)
1152 goto set_status;
1153
62b61f61
HD
1154 /* Use PageReserved to check for zero page */
1155 if (PageReserved(page) || PageKsm(page))
742755a1
CL
1156 goto put_and_set;
1157
1158 pp->page = page;
1159 err = page_to_nid(page);
1160
1161 if (err == pp->node)
1162 /*
1163 * Node already in the right place
1164 */
1165 goto put_and_set;
1166
1167 err = -EACCES;
1168 if (page_mapcount(page) > 1 &&
1169 !migrate_all)
1170 goto put_and_set;
1171
62695a84 1172 err = isolate_lru_page(page);
6d9c285a 1173 if (!err) {
62695a84 1174 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1175 inc_zone_page_state(page, NR_ISOLATED_ANON +
1176 page_is_file_cache(page));
1177 }
742755a1
CL
1178put_and_set:
1179 /*
1180 * Either remove the duplicate refcount from
1181 * isolate_lru_page() or drop the page ref if it was
1182 * not isolated.
1183 */
1184 put_page(page);
1185set_status:
1186 pp->status = err;
1187 }
1188
e78bbfa8 1189 err = 0;
cf608ac1 1190 if (!list_empty(&pagelist)) {
742755a1 1191 err = migrate_pages(&pagelist, new_page_node,
7b2a2d4a
MG
1192 (unsigned long)pm, 0, MIGRATE_SYNC,
1193 MR_SYSCALL);
cf608ac1
MK
1194 if (err)
1195 putback_lru_pages(&pagelist);
1196 }
742755a1
CL
1197
1198 up_read(&mm->mmap_sem);
1199 return err;
1200}
1201
5e9a0f02
BG
1202/*
1203 * Migrate an array of page address onto an array of nodes and fill
1204 * the corresponding array of status.
1205 */
3268c63e 1206static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1207 unsigned long nr_pages,
1208 const void __user * __user *pages,
1209 const int __user *nodes,
1210 int __user *status, int flags)
1211{
3140a227 1212 struct page_to_node *pm;
3140a227
BG
1213 unsigned long chunk_nr_pages;
1214 unsigned long chunk_start;
1215 int err;
5e9a0f02 1216
3140a227
BG
1217 err = -ENOMEM;
1218 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1219 if (!pm)
5e9a0f02 1220 goto out;
35282a2d
BG
1221
1222 migrate_prep();
1223
5e9a0f02 1224 /*
3140a227
BG
1225 * Store a chunk of page_to_node array in a page,
1226 * but keep the last one as a marker
5e9a0f02 1227 */
3140a227 1228 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1229
3140a227
BG
1230 for (chunk_start = 0;
1231 chunk_start < nr_pages;
1232 chunk_start += chunk_nr_pages) {
1233 int j;
5e9a0f02 1234
3140a227
BG
1235 if (chunk_start + chunk_nr_pages > nr_pages)
1236 chunk_nr_pages = nr_pages - chunk_start;
1237
1238 /* fill the chunk pm with addrs and nodes from user-space */
1239 for (j = 0; j < chunk_nr_pages; j++) {
1240 const void __user *p;
5e9a0f02
BG
1241 int node;
1242
3140a227
BG
1243 err = -EFAULT;
1244 if (get_user(p, pages + j + chunk_start))
1245 goto out_pm;
1246 pm[j].addr = (unsigned long) p;
1247
1248 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1249 goto out_pm;
1250
1251 err = -ENODEV;
6f5a55f1
LT
1252 if (node < 0 || node >= MAX_NUMNODES)
1253 goto out_pm;
1254
389162c2 1255 if (!node_state(node, N_MEMORY))
5e9a0f02
BG
1256 goto out_pm;
1257
1258 err = -EACCES;
1259 if (!node_isset(node, task_nodes))
1260 goto out_pm;
1261
3140a227
BG
1262 pm[j].node = node;
1263 }
1264
1265 /* End marker for this chunk */
1266 pm[chunk_nr_pages].node = MAX_NUMNODES;
1267
1268 /* Migrate this chunk */
1269 err = do_move_page_to_node_array(mm, pm,
1270 flags & MPOL_MF_MOVE_ALL);
1271 if (err < 0)
1272 goto out_pm;
5e9a0f02 1273
5e9a0f02 1274 /* Return status information */
3140a227
BG
1275 for (j = 0; j < chunk_nr_pages; j++)
1276 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1277 err = -EFAULT;
3140a227
BG
1278 goto out_pm;
1279 }
1280 }
1281 err = 0;
5e9a0f02
BG
1282
1283out_pm:
3140a227 1284 free_page((unsigned long)pm);
5e9a0f02
BG
1285out:
1286 return err;
1287}
1288
742755a1 1289/*
2f007e74 1290 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1291 */
80bba129
BG
1292static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1293 const void __user **pages, int *status)
742755a1 1294{
2f007e74 1295 unsigned long i;
2f007e74 1296
742755a1
CL
1297 down_read(&mm->mmap_sem);
1298
2f007e74 1299 for (i = 0; i < nr_pages; i++) {
80bba129 1300 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1301 struct vm_area_struct *vma;
1302 struct page *page;
c095adbc 1303 int err = -EFAULT;
2f007e74
BG
1304
1305 vma = find_vma(mm, addr);
70384dc6 1306 if (!vma || addr < vma->vm_start)
742755a1
CL
1307 goto set_status;
1308
2f007e74 1309 page = follow_page(vma, addr, 0);
89f5b7da
LT
1310
1311 err = PTR_ERR(page);
1312 if (IS_ERR(page))
1313 goto set_status;
1314
742755a1
CL
1315 err = -ENOENT;
1316 /* Use PageReserved to check for zero page */
62b61f61 1317 if (!page || PageReserved(page) || PageKsm(page))
742755a1
CL
1318 goto set_status;
1319
1320 err = page_to_nid(page);
1321set_status:
80bba129
BG
1322 *status = err;
1323
1324 pages++;
1325 status++;
1326 }
1327
1328 up_read(&mm->mmap_sem);
1329}
1330
1331/*
1332 * Determine the nodes of a user array of pages and store it in
1333 * a user array of status.
1334 */
1335static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1336 const void __user * __user *pages,
1337 int __user *status)
1338{
1339#define DO_PAGES_STAT_CHUNK_NR 16
1340 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1341 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1342
87b8d1ad
PA
1343 while (nr_pages) {
1344 unsigned long chunk_nr;
80bba129 1345
87b8d1ad
PA
1346 chunk_nr = nr_pages;
1347 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1348 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1349
1350 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1351 break;
80bba129
BG
1352
1353 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1354
87b8d1ad
PA
1355 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1356 break;
742755a1 1357
87b8d1ad
PA
1358 pages += chunk_nr;
1359 status += chunk_nr;
1360 nr_pages -= chunk_nr;
1361 }
1362 return nr_pages ? -EFAULT : 0;
742755a1
CL
1363}
1364
1365/*
1366 * Move a list of pages in the address space of the currently executing
1367 * process.
1368 */
938bb9f5
HC
1369SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1370 const void __user * __user *, pages,
1371 const int __user *, nodes,
1372 int __user *, status, int, flags)
742755a1 1373{
c69e8d9c 1374 const struct cred *cred = current_cred(), *tcred;
742755a1 1375 struct task_struct *task;
742755a1 1376 struct mm_struct *mm;
5e9a0f02 1377 int err;
3268c63e 1378 nodemask_t task_nodes;
742755a1
CL
1379
1380 /* Check flags */
1381 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1382 return -EINVAL;
1383
1384 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1385 return -EPERM;
1386
1387 /* Find the mm_struct */
a879bf58 1388 rcu_read_lock();
228ebcbe 1389 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1390 if (!task) {
a879bf58 1391 rcu_read_unlock();
742755a1
CL
1392 return -ESRCH;
1393 }
3268c63e 1394 get_task_struct(task);
742755a1
CL
1395
1396 /*
1397 * Check if this process has the right to modify the specified
1398 * process. The right exists if the process has administrative
1399 * capabilities, superuser privileges or the same
1400 * userid as the target process.
1401 */
c69e8d9c 1402 tcred = __task_cred(task);
b38a86eb
EB
1403 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1404 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
742755a1 1405 !capable(CAP_SYS_NICE)) {
c69e8d9c 1406 rcu_read_unlock();
742755a1 1407 err = -EPERM;
5e9a0f02 1408 goto out;
742755a1 1409 }
c69e8d9c 1410 rcu_read_unlock();
742755a1 1411
86c3a764
DQ
1412 err = security_task_movememory(task);
1413 if (err)
5e9a0f02 1414 goto out;
86c3a764 1415
3268c63e
CL
1416 task_nodes = cpuset_mems_allowed(task);
1417 mm = get_task_mm(task);
1418 put_task_struct(task);
1419
6e8b09ea
SL
1420 if (!mm)
1421 return -EINVAL;
1422
1423 if (nodes)
1424 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1425 nodes, status, flags);
1426 else
1427 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1428
742755a1
CL
1429 mmput(mm);
1430 return err;
3268c63e
CL
1431
1432out:
1433 put_task_struct(task);
1434 return err;
742755a1 1435}
742755a1 1436
7b2259b3
CL
1437/*
1438 * Call migration functions in the vma_ops that may prepare
1439 * memory in a vm for migration. migration functions may perform
1440 * the migration for vmas that do not have an underlying page struct.
1441 */
1442int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1443 const nodemask_t *from, unsigned long flags)
1444{
1445 struct vm_area_struct *vma;
1446 int err = 0;
1447
1001c9fb 1448 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1449 if (vma->vm_ops && vma->vm_ops->migrate) {
1450 err = vma->vm_ops->migrate(vma, to, from, flags);
1451 if (err)
1452 break;
1453 }
1454 }
1455 return err;
1456}
7039e1db
PZ
1457
1458#ifdef CONFIG_NUMA_BALANCING
1459/*
1460 * Returns true if this is a safe migration target node for misplaced NUMA
1461 * pages. Currently it only checks the watermarks which crude
1462 */
1463static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1464 int nr_migrate_pages)
1465{
1466 int z;
1467 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1468 struct zone *zone = pgdat->node_zones + z;
1469
1470 if (!populated_zone(zone))
1471 continue;
1472
1473 if (zone->all_unreclaimable)
1474 continue;
1475
1476 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1477 if (!zone_watermark_ok(zone, 0,
1478 high_wmark_pages(zone) +
1479 nr_migrate_pages,
1480 0, 0))
1481 continue;
1482 return true;
1483 }
1484 return false;
1485}
1486
1487static struct page *alloc_misplaced_dst_page(struct page *page,
1488 unsigned long data,
1489 int **result)
1490{
1491 int nid = (int) data;
1492 struct page *newpage;
1493
1494 newpage = alloc_pages_exact_node(nid,
1495 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1496 __GFP_NOMEMALLOC | __GFP_NORETRY |
1497 __GFP_NOWARN) &
1498 ~GFP_IOFS, 0);
bac0382c
HD
1499 if (newpage)
1500 page_xchg_last_nid(newpage, page_last_nid(page));
1501
7039e1db
PZ
1502 return newpage;
1503}
1504
a8f60772
MG
1505/*
1506 * page migration rate limiting control.
1507 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1508 * window of time. Default here says do not migrate more than 1280M per second.
e14808b4
MG
1509 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1510 * as it is faults that reset the window, pte updates will happen unconditionally
1511 * if there has not been a fault since @pteupdate_interval_millisecs after the
1512 * throttle window closed.
a8f60772
MG
1513 */
1514static unsigned int migrate_interval_millisecs __read_mostly = 100;
e14808b4 1515static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
a8f60772
MG
1516static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1517
e14808b4
MG
1518/* Returns true if NUMA migration is currently rate limited */
1519bool migrate_ratelimited(int node)
1520{
1521 pg_data_t *pgdat = NODE_DATA(node);
1522
1523 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1524 msecs_to_jiffies(pteupdate_interval_millisecs)))
1525 return false;
1526
1527 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1528 return false;
1529
1530 return true;
1531}
1532
b32967ff 1533/* Returns true if the node is migrate rate-limited after the update */
d28d4335 1534bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
7039e1db 1535{
b32967ff 1536 bool rate_limited = false;
7039e1db 1537
a8f60772
MG
1538 /*
1539 * Rate-limit the amount of data that is being migrated to a node.
1540 * Optimal placement is no good if the memory bus is saturated and
1541 * all the time is being spent migrating!
1542 */
1543 spin_lock(&pgdat->numabalancing_migrate_lock);
1544 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1545 pgdat->numabalancing_migrate_nr_pages = 0;
1546 pgdat->numabalancing_migrate_next_window = jiffies +
1547 msecs_to_jiffies(migrate_interval_millisecs);
1548 }
b32967ff
MG
1549 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1550 rate_limited = true;
1551 else
d28d4335 1552 pgdat->numabalancing_migrate_nr_pages += nr_pages;
a8f60772 1553 spin_unlock(&pgdat->numabalancing_migrate_lock);
b32967ff
MG
1554
1555 return rate_limited;
1556}
1557
1558int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1559{
1560 int ret = 0;
a8f60772 1561
7039e1db 1562 /* Avoid migrating to a node that is nearly full */
a8f60772 1563 if (migrate_balanced_pgdat(pgdat, 1)) {
7039e1db
PZ
1564 int page_lru;
1565
1566 if (isolate_lru_page(page)) {
1567 put_page(page);
b32967ff 1568 return 0;
7039e1db 1569 }
7039e1db 1570
b32967ff
MG
1571 /* Page is isolated */
1572 ret = 1;
7039e1db 1573 page_lru = page_is_file_cache(page);
b32967ff
MG
1574 if (!PageTransHuge(page))
1575 inc_zone_page_state(page, NR_ISOLATED_ANON + page_lru);
1576 else
1577 mod_zone_page_state(page_zone(page),
1578 NR_ISOLATED_ANON + page_lru,
1579 HPAGE_PMD_NR);
7039e1db
PZ
1580 }
1581
149c33e1
MG
1582 /*
1583 * Page is either isolated or there is not enough space on the target
1584 * node. If isolated, then it has taken a reference count and the
1585 * callers reference can be safely dropped without the page
1586 * disappearing underneath us during migration. Otherwise the page is
1587 * not to be migrated but the callers reference should still be
1588 * dropped so it does not leak.
1589 */
1590 put_page(page);
1591
b32967ff
MG
1592 return ret;
1593}
1594
1595/*
1596 * Attempt to migrate a misplaced page to the specified destination
1597 * node. Caller is expected to have an elevated reference count on
1598 * the page that will be dropped by this function before returning.
1599 */
1600int migrate_misplaced_page(struct page *page, int node)
1601{
1602 pg_data_t *pgdat = NODE_DATA(node);
1603 int isolated = 0;
1604 int nr_remaining;
1605 LIST_HEAD(migratepages);
1606
1607 /*
1608 * Don't migrate pages that are mapped in multiple processes.
1609 * TODO: Handle false sharing detection instead of this hammer
1610 */
1611 if (page_mapcount(page) != 1) {
1612 put_page(page);
1613 goto out;
7039e1db 1614 }
b32967ff
MG
1615
1616 /*
1617 * Rate-limit the amount of data that is being migrated to a node.
1618 * Optimal placement is no good if the memory bus is saturated and
1619 * all the time is being spent migrating!
1620 */
d28d4335 1621 if (numamigrate_update_ratelimit(pgdat, 1)) {
b32967ff
MG
1622 put_page(page);
1623 goto out;
1624 }
1625
1626 isolated = numamigrate_isolate_page(pgdat, page);
1627 if (!isolated)
1628 goto out;
1629
1630 list_add(&page->lru, &migratepages);
1631 nr_remaining = migrate_pages(&migratepages,
1632 alloc_misplaced_dst_page,
1633 node, false, MIGRATE_ASYNC,
1634 MR_NUMA_MISPLACED);
1635 if (nr_remaining) {
1636 putback_lru_pages(&migratepages);
1637 isolated = 0;
1638 } else
1639 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db
PZ
1640 BUG_ON(!list_empty(&migratepages));
1641out:
1642 return isolated;
1643}
220018d3 1644#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1645
220018d3 1646#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b32967ff
MG
1647int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1648 struct vm_area_struct *vma,
1649 pmd_t *pmd, pmd_t entry,
1650 unsigned long address,
1651 struct page *page, int node)
1652{
1653 unsigned long haddr = address & HPAGE_PMD_MASK;
1654 pg_data_t *pgdat = NODE_DATA(node);
1655 int isolated = 0;
1656 struct page *new_page = NULL;
1657 struct mem_cgroup *memcg = NULL;
1658 int page_lru = page_is_file_cache(page);
1659
1660 /*
1661 * Don't migrate pages that are mapped in multiple processes.
1662 * TODO: Handle false sharing detection instead of this hammer
1663 */
1664 if (page_mapcount(page) != 1)
1665 goto out_dropref;
1666
1667 /*
1668 * Rate-limit the amount of data that is being migrated to a node.
1669 * Optimal placement is no good if the memory bus is saturated and
1670 * all the time is being spent migrating!
1671 */
d28d4335 1672 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
1673 goto out_dropref;
1674
1675 new_page = alloc_pages_node(node,
1676 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
7548341b
MG
1677 if (!new_page) {
1678 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 1679 goto out_dropref;
7548341b 1680 }
b32967ff
MG
1681 page_xchg_last_nid(new_page, page_last_nid(page));
1682
1683 isolated = numamigrate_isolate_page(pgdat, page);
04fa5d6a
MG
1684
1685 /*
1686 * Failing to isolate or a GUP pin prevents migration. The expected
1687 * page count is 2. 1 for anonymous pages without a mapping and 1
1688 * for the callers pin. If the page was isolated, the page will
1689 * need to be put back on the LRU.
1690 */
1691 if (!isolated || page_count(page) != 2) {
7548341b 1692 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 1693 put_page(new_page);
04fa5d6a
MG
1694 if (isolated) {
1695 putback_lru_page(page);
1696 isolated = 0;
1697 goto out;
1698 }
b32967ff
MG
1699 goto out_keep_locked;
1700 }
1701
1702 /* Prepare a page as a migration target */
1703 __set_page_locked(new_page);
1704 SetPageSwapBacked(new_page);
1705
1706 /* anon mapping, we can simply copy page->mapping to the new page: */
1707 new_page->mapping = page->mapping;
1708 new_page->index = page->index;
1709 migrate_page_copy(new_page, page);
1710 WARN_ON(PageLRU(new_page));
1711
1712 /* Recheck the target PMD */
1713 spin_lock(&mm->page_table_lock);
1714 if (unlikely(!pmd_same(*pmd, entry))) {
1715 spin_unlock(&mm->page_table_lock);
1716
1717 /* Reverse changes made by migrate_page_copy() */
1718 if (TestClearPageActive(new_page))
1719 SetPageActive(page);
1720 if (TestClearPageUnevictable(new_page))
1721 SetPageUnevictable(page);
1722 mlock_migrate_page(page, new_page);
1723
1724 unlock_page(new_page);
1725 put_page(new_page); /* Free it */
1726
1727 unlock_page(page);
1728 putback_lru_page(page);
1729
1730 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1731 goto out;
1732 }
1733
1734 /*
1735 * Traditional migration needs to prepare the memcg charge
1736 * transaction early to prevent the old page from being
1737 * uncharged when installing migration entries. Here we can
1738 * save the potential rollback and start the charge transfer
1739 * only when migration is already known to end successfully.
1740 */
1741 mem_cgroup_prepare_migration(page, new_page, &memcg);
1742
1743 entry = mk_pmd(new_page, vma->vm_page_prot);
1744 entry = pmd_mknonnuma(entry);
1745 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1746 entry = pmd_mkhuge(entry);
1747
1748 page_add_new_anon_rmap(new_page, vma, haddr);
1749
1750 set_pmd_at(mm, haddr, pmd, entry);
ce4a9cc5 1751 update_mmu_cache_pmd(vma, address, &entry);
b32967ff
MG
1752 page_remove_rmap(page);
1753 /*
1754 * Finish the charge transaction under the page table lock to
1755 * prevent split_huge_page() from dividing up the charge
1756 * before it's fully transferred to the new page.
1757 */
1758 mem_cgroup_end_migration(memcg, page, new_page, true);
1759 spin_unlock(&mm->page_table_lock);
1760
1761 unlock_page(new_page);
1762 unlock_page(page);
1763 put_page(page); /* Drop the rmap reference */
1764 put_page(page); /* Drop the LRU isolation reference */
1765
1766 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1767 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1768
1769out:
1770 mod_zone_page_state(page_zone(page),
1771 NR_ISOLATED_ANON + page_lru,
1772 -HPAGE_PMD_NR);
1773 return isolated;
1774
1775out_dropref:
1776 put_page(page);
1777out_keep_locked:
1778 return 0;
1779}
7039e1db
PZ
1780#endif /* CONFIG_NUMA_BALANCING */
1781
1782#endif /* CONFIG_NUMA */