]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - mm/migrate.c
Merge tag 'omap-for-v5.0/fixes-rc7-signed' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
df6ad698 41#include <linux/pfn_t.h>
a5430dda 42#include <linux/memremap.h>
8315ada7 43#include <linux/userfaultfd_k.h>
bf6bddf1 44#include <linux/balloon_compaction.h>
f714f4f2 45#include <linux/mmu_notifier.h>
33c3fc71 46#include <linux/page_idle.h>
d435edca 47#include <linux/page_owner.h>
6e84f315 48#include <linux/sched/mm.h>
197e7e52 49#include <linux/ptrace.h>
b20a3503 50
0d1836c3
MN
51#include <asm/tlbflush.h>
52
7b2a2d4a
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/migrate.h>
55
b20a3503
CL
56#include "internal.h"
57
b20a3503 58/*
742755a1 59 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
b20a3503
CL
62 */
63int migrate_prep(void)
64{
b20a3503
CL
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74}
75
748446bb
MG
76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
77int migrate_prep_local(void)
78{
79 lru_add_drain();
80
81 return 0;
82}
83
9e5bcd61 84int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
85{
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
9e5bcd61 135 return 0;
bda807d4
MK
136
137out_no_isolated:
138 unlock_page(page);
139out_putpage:
140 put_page(page);
141out:
9e5bcd61 142 return -EBUSY;
bda807d4
MK
143}
144
145/* It should be called on page which is PG_movable */
146void putback_movable_page(struct page *page)
147{
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157}
158
5733c7d1
RA
159/*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
59c82b70
JK
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
5733c7d1
RA
166 */
167void putback_movable_pages(struct list_head *l)
168{
169 struct page *page;
170 struct page *page2;
171
b20a3503 172 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
e24f0b8f 177 list_del(&page->lru);
bda807d4
MK
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
b1123ea6 183 if (unlikely(__PageMovable(page))) {
bda807d4
MK
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
e8db67eb
NH
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
fc280fe8 195 putback_lru_page(page);
bda807d4 196 }
b20a3503 197 }
b20a3503
CL
198}
199
0697212a
CL
200/*
201 * Restore a potential migration pte to a working pte entry
202 */
e4b82222 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 204 unsigned long addr, void *old)
0697212a 205{
3fe87967
KS
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
0697212a 214 swp_entry_t entry;
0697212a 215
3fe87967
KS
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
0697212a 223
616b8371
ZY
224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231#endif
232
3fe87967
KS
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
0697212a 237
3fe87967
KS
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 244
df6ad698
JG
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
252 }
a5430dda
JG
253 } else
254 flush_dcache_page(new);
255
3ef8fd7f 256#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
383321ab
AK
265 } else
266#endif
267 {
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 269
383321ab
AK
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
274 }
3fe87967
KS
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
277
e125fe40
KS
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
280
3fe87967
KS
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 }
51afb12b 284
e4b82222 285 return true;
0697212a
CL
286}
287
04e62a29
CL
288/*
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
291 */
e388466d 292void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 293{
051ac83a
JK
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
296 .arg = old,
297 };
298
e388466d
KS
299 if (locked)
300 rmap_walk_locked(new, &rwc);
301 else
302 rmap_walk(new, &rwc);
04e62a29
CL
303}
304
0697212a
CL
305/*
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
0697212a 309 */
e66f17ff 310void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 311 spinlock_t *ptl)
0697212a 312{
30dad309 313 pte_t pte;
0697212a
CL
314 swp_entry_t entry;
315 struct page *page;
316
30dad309 317 spin_lock(ptl);
0697212a
CL
318 pte = *ptep;
319 if (!is_swap_pte(pte))
320 goto out;
321
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
324 goto out;
325
326 page = migration_entry_to_page(entry);
327
e286781d 328 /*
89eb946a 329 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
330 * is zero; but we must not call put_and_wait_on_page_locked() without
331 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
332 */
333 if (!get_page_unless_zero(page))
334 goto out;
0697212a 335 pte_unmap_unlock(ptep, ptl);
9a1ea439 336 put_and_wait_on_page_locked(page);
0697212a
CL
337 return;
338out:
339 pte_unmap_unlock(ptep, ptl);
340}
341
30dad309
NH
342void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
344{
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
348}
349
cb900f41
KS
350void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
30dad309 352{
cb900f41 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
354 __migration_entry_wait(mm, pte, ptl);
355}
356
616b8371
ZY
357#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359{
360 spinlock_t *ptl;
361 struct page *page;
362
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
9a1ea439 370 put_and_wait_on_page_locked(page);
616b8371
ZY
371 return;
372unlock:
373 spin_unlock(ptl);
374}
375#endif
376
0b3901b3
JK
377static int expected_page_refs(struct page *page)
378{
379 int expected_count = 1;
380
381 /*
382 * Device public or private pages have an extra refcount as they are
383 * ZONE_DEVICE pages.
384 */
385 expected_count += is_device_private_page(page);
386 expected_count += is_device_public_page(page);
387 if (page_mapping(page))
388 expected_count += hpage_nr_pages(page) + page_has_private(page);
389
390 return expected_count;
391}
392
b20a3503 393/*
c3fcf8a5 394 * Replace the page in the mapping.
5b5c7120
CL
395 *
396 * The number of remaining references must be:
397 * 1 for anonymous pages without a mapping
398 * 2 for pages with a mapping
266cf658 399 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 400 */
36bc08cc 401int migrate_page_move_mapping(struct address_space *mapping,
ab41ee68 402 struct page *newpage, struct page *page, enum migrate_mode mode,
8e321fef 403 int extra_count)
b20a3503 404{
89eb946a 405 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
406 struct zone *oldzone, *newzone;
407 int dirty;
0b3901b3 408 int expected_count = expected_page_refs(page) + extra_count;
8763cb45 409
6c5240ae 410 if (!mapping) {
0e8c7d0f 411 /* Anonymous page without mapping */
8e321fef 412 if (page_count(page) != expected_count)
6c5240ae 413 return -EAGAIN;
cf4b769a
HD
414
415 /* No turning back from here */
cf4b769a
HD
416 newpage->index = page->index;
417 newpage->mapping = page->mapping;
418 if (PageSwapBacked(page))
fa9949da 419 __SetPageSwapBacked(newpage);
cf4b769a 420
78bd5209 421 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
422 }
423
42cb14b1
HD
424 oldzone = page_zone(page);
425 newzone = page_zone(newpage);
426
89eb946a 427 xas_lock_irq(&xas);
89eb946a
MW
428 if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 xas_unlock_irq(&xas);
e23ca00b 430 return -EAGAIN;
b20a3503
CL
431 }
432
fe896d18 433 if (!page_ref_freeze(page, expected_count)) {
89eb946a 434 xas_unlock_irq(&xas);
e286781d
NP
435 return -EAGAIN;
436 }
437
b20a3503 438 /*
cf4b769a
HD
439 * Now we know that no one else is looking at the page:
440 * no turning back from here.
b20a3503 441 */
cf4b769a
HD
442 newpage->index = page->index;
443 newpage->mapping = page->mapping;
e71769ae 444 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
6326fec1
NP
445 if (PageSwapBacked(page)) {
446 __SetPageSwapBacked(newpage);
447 if (PageSwapCache(page)) {
448 SetPageSwapCache(newpage);
449 set_page_private(newpage, page_private(page));
450 }
451 } else {
452 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
453 }
454
42cb14b1
HD
455 /* Move dirty while page refs frozen and newpage not yet exposed */
456 dirty = PageDirty(page);
457 if (dirty) {
458 ClearPageDirty(page);
459 SetPageDirty(newpage);
460 }
461
89eb946a 462 xas_store(&xas, newpage);
e71769ae
NH
463 if (PageTransHuge(page)) {
464 int i;
e71769ae 465
013567be 466 for (i = 1; i < HPAGE_PMD_NR; i++) {
89eb946a
MW
467 xas_next(&xas);
468 xas_store(&xas, newpage + i);
e71769ae 469 }
e71769ae 470 }
7cf9c2c7
NP
471
472 /*
937a94c9
JG
473 * Drop cache reference from old page by unfreezing
474 * to one less reference.
7cf9c2c7
NP
475 * We know this isn't the last reference.
476 */
e71769ae 477 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
7cf9c2c7 478
89eb946a 479 xas_unlock(&xas);
42cb14b1
HD
480 /* Leave irq disabled to prevent preemption while updating stats */
481
0e8c7d0f
CL
482 /*
483 * If moved to a different zone then also account
484 * the page for that zone. Other VM counters will be
485 * taken care of when we establish references to the
486 * new page and drop references to the old page.
487 *
488 * Note that anonymous pages are accounted for
4b9d0fab 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
490 * are mapped to swap space.
491 */
42cb14b1 492 if (newzone != oldzone) {
11fb9989
MG
493 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 495 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
496 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
498 }
499 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 500 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 501 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 502 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 503 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 504 }
4b02108a 505 }
42cb14b1 506 local_irq_enable();
b20a3503 507
78bd5209 508 return MIGRATEPAGE_SUCCESS;
b20a3503 509}
1118dce7 510EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 511
290408d4
NH
512/*
513 * The expected number of remaining references is the same as that
514 * of migrate_page_move_mapping().
515 */
516int migrate_huge_page_move_mapping(struct address_space *mapping,
517 struct page *newpage, struct page *page)
518{
89eb946a 519 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 520 int expected_count;
290408d4 521
89eb946a 522 xas_lock_irq(&xas);
290408d4 523 expected_count = 2 + page_has_private(page);
89eb946a
MW
524 if (page_count(page) != expected_count || xas_load(&xas) != page) {
525 xas_unlock_irq(&xas);
290408d4
NH
526 return -EAGAIN;
527 }
528
fe896d18 529 if (!page_ref_freeze(page, expected_count)) {
89eb946a 530 xas_unlock_irq(&xas);
290408d4
NH
531 return -EAGAIN;
532 }
533
cf4b769a
HD
534 newpage->index = page->index;
535 newpage->mapping = page->mapping;
6a93ca8f 536
290408d4
NH
537 get_page(newpage);
538
89eb946a 539 xas_store(&xas, newpage);
290408d4 540
fe896d18 541 page_ref_unfreeze(page, expected_count - 1);
290408d4 542
89eb946a 543 xas_unlock_irq(&xas);
6a93ca8f 544
78bd5209 545 return MIGRATEPAGE_SUCCESS;
290408d4
NH
546}
547
30b0a105
DH
548/*
549 * Gigantic pages are so large that we do not guarantee that page++ pointer
550 * arithmetic will work across the entire page. We need something more
551 * specialized.
552 */
553static void __copy_gigantic_page(struct page *dst, struct page *src,
554 int nr_pages)
555{
556 int i;
557 struct page *dst_base = dst;
558 struct page *src_base = src;
559
560 for (i = 0; i < nr_pages; ) {
561 cond_resched();
562 copy_highpage(dst, src);
563
564 i++;
565 dst = mem_map_next(dst, dst_base, i);
566 src = mem_map_next(src, src_base, i);
567 }
568}
569
570static void copy_huge_page(struct page *dst, struct page *src)
571{
572 int i;
573 int nr_pages;
574
575 if (PageHuge(src)) {
576 /* hugetlbfs page */
577 struct hstate *h = page_hstate(src);
578 nr_pages = pages_per_huge_page(h);
579
580 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581 __copy_gigantic_page(dst, src, nr_pages);
582 return;
583 }
584 } else {
585 /* thp page */
586 BUG_ON(!PageTransHuge(src));
587 nr_pages = hpage_nr_pages(src);
588 }
589
590 for (i = 0; i < nr_pages; i++) {
591 cond_resched();
592 copy_highpage(dst + i, src + i);
593 }
594}
595
b20a3503
CL
596/*
597 * Copy the page to its new location
598 */
2916ecc0 599void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 600{
7851a45c
RR
601 int cpupid;
602
b20a3503
CL
603 if (PageError(page))
604 SetPageError(newpage);
605 if (PageReferenced(page))
606 SetPageReferenced(newpage);
607 if (PageUptodate(page))
608 SetPageUptodate(newpage);
894bc310 609 if (TestClearPageActive(page)) {
309381fe 610 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 611 SetPageActive(newpage);
418b27ef
LS
612 } else if (TestClearPageUnevictable(page))
613 SetPageUnevictable(newpage);
1899ad18
JW
614 if (PageWorkingset(page))
615 SetPageWorkingset(newpage);
b20a3503
CL
616 if (PageChecked(page))
617 SetPageChecked(newpage);
618 if (PageMappedToDisk(page))
619 SetPageMappedToDisk(newpage);
620
42cb14b1
HD
621 /* Move dirty on pages not done by migrate_page_move_mapping() */
622 if (PageDirty(page))
623 SetPageDirty(newpage);
b20a3503 624
33c3fc71
VD
625 if (page_is_young(page))
626 set_page_young(newpage);
627 if (page_is_idle(page))
628 set_page_idle(newpage);
629
7851a45c
RR
630 /*
631 * Copy NUMA information to the new page, to prevent over-eager
632 * future migrations of this same page.
633 */
634 cpupid = page_cpupid_xchg_last(page, -1);
635 page_cpupid_xchg_last(newpage, cpupid);
636
e9995ef9 637 ksm_migrate_page(newpage, page);
c8d6553b
HD
638 /*
639 * Please do not reorder this without considering how mm/ksm.c's
640 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
641 */
b3b3a99c
NH
642 if (PageSwapCache(page))
643 ClearPageSwapCache(page);
b20a3503
CL
644 ClearPagePrivate(page);
645 set_page_private(page, 0);
b20a3503
CL
646
647 /*
648 * If any waiters have accumulated on the new page then
649 * wake them up.
650 */
651 if (PageWriteback(newpage))
652 end_page_writeback(newpage);
d435edca
VB
653
654 copy_page_owner(page, newpage);
74485cf2
JW
655
656 mem_cgroup_migrate(page, newpage);
b20a3503 657}
2916ecc0
JG
658EXPORT_SYMBOL(migrate_page_states);
659
660void migrate_page_copy(struct page *newpage, struct page *page)
661{
662 if (PageHuge(page) || PageTransHuge(page))
663 copy_huge_page(newpage, page);
664 else
665 copy_highpage(newpage, page);
666
667 migrate_page_states(newpage, page);
668}
1118dce7 669EXPORT_SYMBOL(migrate_page_copy);
b20a3503 670
1d8b85cc
CL
671/************************************************************
672 * Migration functions
673 ***********************************************************/
674
b20a3503 675/*
bda807d4 676 * Common logic to directly migrate a single LRU page suitable for
266cf658 677 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
678 *
679 * Pages are locked upon entry and exit.
680 */
2d1db3b1 681int migrate_page(struct address_space *mapping,
a6bc32b8
MG
682 struct page *newpage, struct page *page,
683 enum migrate_mode mode)
b20a3503
CL
684{
685 int rc;
686
687 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
688
ab41ee68 689 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
b20a3503 690
78bd5209 691 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
692 return rc;
693
2916ecc0
JG
694 if (mode != MIGRATE_SYNC_NO_COPY)
695 migrate_page_copy(newpage, page);
696 else
697 migrate_page_states(newpage, page);
78bd5209 698 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
699}
700EXPORT_SYMBOL(migrate_page);
701
9361401e 702#ifdef CONFIG_BLOCK
84ade7c1
JK
703/* Returns true if all buffers are successfully locked */
704static bool buffer_migrate_lock_buffers(struct buffer_head *head,
705 enum migrate_mode mode)
706{
707 struct buffer_head *bh = head;
708
709 /* Simple case, sync compaction */
710 if (mode != MIGRATE_ASYNC) {
711 do {
84ade7c1
JK
712 lock_buffer(bh);
713 bh = bh->b_this_page;
714
715 } while (bh != head);
716
717 return true;
718 }
719
720 /* async case, we cannot block on lock_buffer so use trylock_buffer */
721 do {
84ade7c1
JK
722 if (!trylock_buffer(bh)) {
723 /*
724 * We failed to lock the buffer and cannot stall in
725 * async migration. Release the taken locks
726 */
727 struct buffer_head *failed_bh = bh;
84ade7c1
JK
728 bh = head;
729 while (bh != failed_bh) {
730 unlock_buffer(bh);
84ade7c1
JK
731 bh = bh->b_this_page;
732 }
733 return false;
734 }
735
736 bh = bh->b_this_page;
737 } while (bh != head);
738 return true;
739}
740
89cb0888
JK
741static int __buffer_migrate_page(struct address_space *mapping,
742 struct page *newpage, struct page *page, enum migrate_mode mode,
743 bool check_refs)
1d8b85cc 744{
1d8b85cc
CL
745 struct buffer_head *bh, *head;
746 int rc;
cc4f11e6 747 int expected_count;
1d8b85cc 748
1d8b85cc 749 if (!page_has_buffers(page))
a6bc32b8 750 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 751
cc4f11e6
JK
752 /* Check whether page does not have extra refs before we do more work */
753 expected_count = expected_page_refs(page);
754 if (page_count(page) != expected_count)
755 return -EAGAIN;
1d8b85cc 756
cc4f11e6
JK
757 head = page_buffers(page);
758 if (!buffer_migrate_lock_buffers(head, mode))
759 return -EAGAIN;
1d8b85cc 760
89cb0888
JK
761 if (check_refs) {
762 bool busy;
763 bool invalidated = false;
764
765recheck_buffers:
766 busy = false;
767 spin_lock(&mapping->private_lock);
768 bh = head;
769 do {
770 if (atomic_read(&bh->b_count)) {
771 busy = true;
772 break;
773 }
774 bh = bh->b_this_page;
775 } while (bh != head);
776 spin_unlock(&mapping->private_lock);
777 if (busy) {
778 if (invalidated) {
779 rc = -EAGAIN;
780 goto unlock_buffers;
781 }
782 invalidate_bh_lrus();
783 invalidated = true;
784 goto recheck_buffers;
785 }
786 }
787
ab41ee68 788 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
78bd5209 789 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 790 goto unlock_buffers;
1d8b85cc
CL
791
792 ClearPagePrivate(page);
793 set_page_private(newpage, page_private(page));
794 set_page_private(page, 0);
795 put_page(page);
796 get_page(newpage);
797
798 bh = head;
799 do {
800 set_bh_page(bh, newpage, bh_offset(bh));
801 bh = bh->b_this_page;
802
803 } while (bh != head);
804
805 SetPagePrivate(newpage);
806
2916ecc0
JG
807 if (mode != MIGRATE_SYNC_NO_COPY)
808 migrate_page_copy(newpage, page);
809 else
810 migrate_page_states(newpage, page);
1d8b85cc 811
cc4f11e6
JK
812 rc = MIGRATEPAGE_SUCCESS;
813unlock_buffers:
1d8b85cc
CL
814 bh = head;
815 do {
816 unlock_buffer(bh);
1d8b85cc
CL
817 bh = bh->b_this_page;
818
819 } while (bh != head);
820
cc4f11e6 821 return rc;
1d8b85cc 822}
89cb0888
JK
823
824/*
825 * Migration function for pages with buffers. This function can only be used
826 * if the underlying filesystem guarantees that no other references to "page"
827 * exist. For example attached buffer heads are accessed only under page lock.
828 */
829int buffer_migrate_page(struct address_space *mapping,
830 struct page *newpage, struct page *page, enum migrate_mode mode)
831{
832 return __buffer_migrate_page(mapping, newpage, page, mode, false);
833}
1d8b85cc 834EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
835
836/*
837 * Same as above except that this variant is more careful and checks that there
838 * are also no buffer head references. This function is the right one for
839 * mappings where buffer heads are directly looked up and referenced (such as
840 * block device mappings).
841 */
842int buffer_migrate_page_norefs(struct address_space *mapping,
843 struct page *newpage, struct page *page, enum migrate_mode mode)
844{
845 return __buffer_migrate_page(mapping, newpage, page, mode, true);
846}
9361401e 847#endif
1d8b85cc 848
04e62a29
CL
849/*
850 * Writeback a page to clean the dirty state
851 */
852static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 853{
04e62a29
CL
854 struct writeback_control wbc = {
855 .sync_mode = WB_SYNC_NONE,
856 .nr_to_write = 1,
857 .range_start = 0,
858 .range_end = LLONG_MAX,
04e62a29
CL
859 .for_reclaim = 1
860 };
861 int rc;
862
863 if (!mapping->a_ops->writepage)
864 /* No write method for the address space */
865 return -EINVAL;
866
867 if (!clear_page_dirty_for_io(page))
868 /* Someone else already triggered a write */
869 return -EAGAIN;
870
8351a6e4 871 /*
04e62a29
CL
872 * A dirty page may imply that the underlying filesystem has
873 * the page on some queue. So the page must be clean for
874 * migration. Writeout may mean we loose the lock and the
875 * page state is no longer what we checked for earlier.
876 * At this point we know that the migration attempt cannot
877 * be successful.
8351a6e4 878 */
e388466d 879 remove_migration_ptes(page, page, false);
8351a6e4 880
04e62a29 881 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 882
04e62a29
CL
883 if (rc != AOP_WRITEPAGE_ACTIVATE)
884 /* unlocked. Relock */
885 lock_page(page);
886
bda8550d 887 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
888}
889
890/*
891 * Default handling if a filesystem does not provide a migration function.
892 */
893static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 894 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 895{
b969c4ab 896 if (PageDirty(page)) {
a6bc32b8 897 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
898 switch (mode) {
899 case MIGRATE_SYNC:
900 case MIGRATE_SYNC_NO_COPY:
901 break;
902 default:
b969c4ab 903 return -EBUSY;
2916ecc0 904 }
04e62a29 905 return writeout(mapping, page);
b969c4ab 906 }
8351a6e4
CL
907
908 /*
909 * Buffers may be managed in a filesystem specific way.
910 * We must have no buffers or drop them.
911 */
266cf658 912 if (page_has_private(page) &&
8351a6e4
CL
913 !try_to_release_page(page, GFP_KERNEL))
914 return -EAGAIN;
915
a6bc32b8 916 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
917}
918
e24f0b8f
CL
919/*
920 * Move a page to a newly allocated page
921 * The page is locked and all ptes have been successfully removed.
922 *
923 * The new page will have replaced the old page if this function
924 * is successful.
894bc310
LS
925 *
926 * Return value:
927 * < 0 - error code
78bd5209 928 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 929 */
3fe2011f 930static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 931 enum migrate_mode mode)
e24f0b8f
CL
932{
933 struct address_space *mapping;
bda807d4
MK
934 int rc = -EAGAIN;
935 bool is_lru = !__PageMovable(page);
e24f0b8f 936
7db7671f
HD
937 VM_BUG_ON_PAGE(!PageLocked(page), page);
938 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 939
e24f0b8f 940 mapping = page_mapping(page);
bda807d4
MK
941
942 if (likely(is_lru)) {
943 if (!mapping)
944 rc = migrate_page(mapping, newpage, page, mode);
945 else if (mapping->a_ops->migratepage)
946 /*
947 * Most pages have a mapping and most filesystems
948 * provide a migratepage callback. Anonymous pages
949 * are part of swap space which also has its own
950 * migratepage callback. This is the most common path
951 * for page migration.
952 */
953 rc = mapping->a_ops->migratepage(mapping, newpage,
954 page, mode);
955 else
956 rc = fallback_migrate_page(mapping, newpage,
957 page, mode);
958 } else {
e24f0b8f 959 /*
bda807d4
MK
960 * In case of non-lru page, it could be released after
961 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 962 */
bda807d4
MK
963 VM_BUG_ON_PAGE(!PageIsolated(page), page);
964 if (!PageMovable(page)) {
965 rc = MIGRATEPAGE_SUCCESS;
966 __ClearPageIsolated(page);
967 goto out;
968 }
969
970 rc = mapping->a_ops->migratepage(mapping, newpage,
971 page, mode);
972 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
973 !PageIsolated(page));
974 }
e24f0b8f 975
5c3f9a67
HD
976 /*
977 * When successful, old pagecache page->mapping must be cleared before
978 * page is freed; but stats require that PageAnon be left as PageAnon.
979 */
980 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
981 if (__PageMovable(page)) {
982 VM_BUG_ON_PAGE(!PageIsolated(page), page);
983
984 /*
985 * We clear PG_movable under page_lock so any compactor
986 * cannot try to migrate this page.
987 */
988 __ClearPageIsolated(page);
989 }
990
991 /*
992 * Anonymous and movable page->mapping will be cleard by
993 * free_pages_prepare so don't reset it here for keeping
994 * the type to work PageAnon, for example.
995 */
996 if (!PageMappingFlags(page))
5c3f9a67 997 page->mapping = NULL;
3fe2011f 998 }
bda807d4 999out:
e24f0b8f
CL
1000 return rc;
1001}
1002
0dabec93 1003static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 1004 int force, enum migrate_mode mode)
e24f0b8f 1005{
0dabec93 1006 int rc = -EAGAIN;
2ebba6b7 1007 int page_was_mapped = 0;
3f6c8272 1008 struct anon_vma *anon_vma = NULL;
bda807d4 1009 bool is_lru = !__PageMovable(page);
95a402c3 1010
529ae9aa 1011 if (!trylock_page(page)) {
a6bc32b8 1012 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1013 goto out;
3e7d3449
MG
1014
1015 /*
1016 * It's not safe for direct compaction to call lock_page.
1017 * For example, during page readahead pages are added locked
1018 * to the LRU. Later, when the IO completes the pages are
1019 * marked uptodate and unlocked. However, the queueing
1020 * could be merging multiple pages for one bio (e.g.
1021 * mpage_readpages). If an allocation happens for the
1022 * second or third page, the process can end up locking
1023 * the same page twice and deadlocking. Rather than
1024 * trying to be clever about what pages can be locked,
1025 * avoid the use of lock_page for direct compaction
1026 * altogether.
1027 */
1028 if (current->flags & PF_MEMALLOC)
0dabec93 1029 goto out;
3e7d3449 1030
e24f0b8f
CL
1031 lock_page(page);
1032 }
1033
1034 if (PageWriteback(page)) {
11bc82d6 1035 /*
fed5b64a 1036 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1037 * necessary to wait for PageWriteback. In the async case,
1038 * the retry loop is too short and in the sync-light case,
1039 * the overhead of stalling is too much
11bc82d6 1040 */
2916ecc0
JG
1041 switch (mode) {
1042 case MIGRATE_SYNC:
1043 case MIGRATE_SYNC_NO_COPY:
1044 break;
1045 default:
11bc82d6 1046 rc = -EBUSY;
0a31bc97 1047 goto out_unlock;
11bc82d6
AA
1048 }
1049 if (!force)
0a31bc97 1050 goto out_unlock;
e24f0b8f
CL
1051 wait_on_page_writeback(page);
1052 }
03f15c86 1053
e24f0b8f 1054 /*
dc386d4d
KH
1055 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1056 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1057 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1058 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1059 * File Caches may use write_page() or lock_page() in migration, then,
1060 * just care Anon page here.
03f15c86
HD
1061 *
1062 * Only page_get_anon_vma() understands the subtleties of
1063 * getting a hold on an anon_vma from outside one of its mms.
1064 * But if we cannot get anon_vma, then we won't need it anyway,
1065 * because that implies that the anon page is no longer mapped
1066 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1067 */
03f15c86 1068 if (PageAnon(page) && !PageKsm(page))
746b18d4 1069 anon_vma = page_get_anon_vma(page);
62e1c553 1070
7db7671f
HD
1071 /*
1072 * Block others from accessing the new page when we get around to
1073 * establishing additional references. We are usually the only one
1074 * holding a reference to newpage at this point. We used to have a BUG
1075 * here if trylock_page(newpage) fails, but would like to allow for
1076 * cases where there might be a race with the previous use of newpage.
1077 * This is much like races on refcount of oldpage: just don't BUG().
1078 */
1079 if (unlikely(!trylock_page(newpage)))
1080 goto out_unlock;
1081
bda807d4
MK
1082 if (unlikely(!is_lru)) {
1083 rc = move_to_new_page(newpage, page, mode);
1084 goto out_unlock_both;
1085 }
1086
dc386d4d 1087 /*
62e1c553
SL
1088 * Corner case handling:
1089 * 1. When a new swap-cache page is read into, it is added to the LRU
1090 * and treated as swapcache but it has no rmap yet.
1091 * Calling try_to_unmap() against a page->mapping==NULL page will
1092 * trigger a BUG. So handle it here.
1093 * 2. An orphaned page (see truncate_complete_page) might have
1094 * fs-private metadata. The page can be picked up due to memory
1095 * offlining. Everywhere else except page reclaim, the page is
1096 * invisible to the vm, so the page can not be migrated. So try to
1097 * free the metadata, so the page can be freed.
e24f0b8f 1098 */
62e1c553 1099 if (!page->mapping) {
309381fe 1100 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1101 if (page_has_private(page)) {
62e1c553 1102 try_to_free_buffers(page);
7db7671f 1103 goto out_unlock_both;
62e1c553 1104 }
7db7671f
HD
1105 } else if (page_mapped(page)) {
1106 /* Establish migration ptes */
03f15c86
HD
1107 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1108 page);
2ebba6b7 1109 try_to_unmap(page,
da1b13cc 1110 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1111 page_was_mapped = 1;
1112 }
dc386d4d 1113
e6a1530d 1114 if (!page_mapped(page))
5c3f9a67 1115 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1116
5c3f9a67
HD
1117 if (page_was_mapped)
1118 remove_migration_ptes(page,
e388466d 1119 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1120
7db7671f
HD
1121out_unlock_both:
1122 unlock_page(newpage);
1123out_unlock:
3f6c8272 1124 /* Drop an anon_vma reference if we took one */
76545066 1125 if (anon_vma)
9e60109f 1126 put_anon_vma(anon_vma);
e24f0b8f 1127 unlock_page(page);
0dabec93 1128out:
c6c919eb
MK
1129 /*
1130 * If migration is successful, decrease refcount of the newpage
1131 * which will not free the page because new page owner increased
1132 * refcounter. As well, if it is LRU page, add the page to LRU
e0a352fa
DH
1133 * list in here. Use the old state of the isolated source page to
1134 * determine if we migrated a LRU page. newpage was already unlocked
1135 * and possibly modified by its owner - don't rely on the page
1136 * state.
c6c919eb
MK
1137 */
1138 if (rc == MIGRATEPAGE_SUCCESS) {
e0a352fa 1139 if (unlikely(!is_lru))
c6c919eb
MK
1140 put_page(newpage);
1141 else
1142 putback_lru_page(newpage);
1143 }
1144
0dabec93
MK
1145 return rc;
1146}
95a402c3 1147
ef2a5153
GU
1148/*
1149 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1150 * around it.
1151 */
815f0ddb
ND
1152#if defined(CONFIG_ARM) && \
1153 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
ef2a5153
GU
1154#define ICE_noinline noinline
1155#else
1156#define ICE_noinline
1157#endif
1158
0dabec93
MK
1159/*
1160 * Obtain the lock on page, remove all ptes and migrate the page
1161 * to the newly allocated page in newpage.
1162 */
ef2a5153
GU
1163static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1164 free_page_t put_new_page,
1165 unsigned long private, struct page *page,
add05cec
NH
1166 int force, enum migrate_mode mode,
1167 enum migrate_reason reason)
0dabec93 1168{
2def7424 1169 int rc = MIGRATEPAGE_SUCCESS;
2def7424 1170 struct page *newpage;
0dabec93 1171
94723aaf
MH
1172 if (!thp_migration_supported() && PageTransHuge(page))
1173 return -ENOMEM;
1174
666feb21 1175 newpage = get_new_page(page, private);
0dabec93
MK
1176 if (!newpage)
1177 return -ENOMEM;
1178
1179 if (page_count(page) == 1) {
1180 /* page was freed from under us. So we are done. */
c6c919eb
MK
1181 ClearPageActive(page);
1182 ClearPageUnevictable(page);
bda807d4
MK
1183 if (unlikely(__PageMovable(page))) {
1184 lock_page(page);
1185 if (!PageMovable(page))
1186 __ClearPageIsolated(page);
1187 unlock_page(page);
1188 }
c6c919eb
MK
1189 if (put_new_page)
1190 put_new_page(newpage, private);
1191 else
1192 put_page(newpage);
0dabec93
MK
1193 goto out;
1194 }
1195
9c620e2b 1196 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1197 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1198 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1199
0dabec93 1200out:
e24f0b8f 1201 if (rc != -EAGAIN) {
0dabec93
MK
1202 /*
1203 * A page that has been migrated has all references
1204 * removed and will be freed. A page that has not been
1205 * migrated will have kepts its references and be
1206 * restored.
1207 */
1208 list_del(&page->lru);
6afcf8ef
ML
1209
1210 /*
1211 * Compaction can migrate also non-LRU pages which are
1212 * not accounted to NR_ISOLATED_*. They can be recognized
1213 * as __PageMovable
1214 */
1215 if (likely(!__PageMovable(page)))
e8db67eb
NH
1216 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1217 page_is_file_cache(page), -hpage_nr_pages(page));
c6c919eb
MK
1218 }
1219
1220 /*
1221 * If migration is successful, releases reference grabbed during
1222 * isolation. Otherwise, restore the page to right list unless
1223 * we want to retry.
1224 */
1225 if (rc == MIGRATEPAGE_SUCCESS) {
1226 put_page(page);
1227 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1228 /*
c6c919eb
MK
1229 * Set PG_HWPoison on just freed page
1230 * intentionally. Although it's rather weird,
1231 * it's how HWPoison flag works at the moment.
d7e69488 1232 */
d4ae9916 1233 if (set_hwpoison_free_buddy_page(page))
da1b13cc 1234 num_poisoned_pages_inc();
c6c919eb
MK
1235 }
1236 } else {
bda807d4
MK
1237 if (rc != -EAGAIN) {
1238 if (likely(!__PageMovable(page))) {
1239 putback_lru_page(page);
1240 goto put_new;
1241 }
1242
1243 lock_page(page);
1244 if (PageMovable(page))
1245 putback_movable_page(page);
1246 else
1247 __ClearPageIsolated(page);
1248 unlock_page(page);
1249 put_page(page);
1250 }
1251put_new:
c6c919eb
MK
1252 if (put_new_page)
1253 put_new_page(newpage, private);
1254 else
1255 put_page(newpage);
e24f0b8f 1256 }
68711a74 1257
e24f0b8f
CL
1258 return rc;
1259}
1260
290408d4
NH
1261/*
1262 * Counterpart of unmap_and_move_page() for hugepage migration.
1263 *
1264 * This function doesn't wait the completion of hugepage I/O
1265 * because there is no race between I/O and migration for hugepage.
1266 * Note that currently hugepage I/O occurs only in direct I/O
1267 * where no lock is held and PG_writeback is irrelevant,
1268 * and writeback status of all subpages are counted in the reference
1269 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1270 * under direct I/O, the reference of the head page is 512 and a bit more.)
1271 * This means that when we try to migrate hugepage whose subpages are
1272 * doing direct I/O, some references remain after try_to_unmap() and
1273 * hugepage migration fails without data corruption.
1274 *
1275 * There is also no race when direct I/O is issued on the page under migration,
1276 * because then pte is replaced with migration swap entry and direct I/O code
1277 * will wait in the page fault for migration to complete.
1278 */
1279static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1280 free_page_t put_new_page, unsigned long private,
1281 struct page *hpage, int force,
7cd12b4a 1282 enum migrate_mode mode, int reason)
290408d4 1283{
2def7424 1284 int rc = -EAGAIN;
2ebba6b7 1285 int page_was_mapped = 0;
32665f2b 1286 struct page *new_hpage;
290408d4
NH
1287 struct anon_vma *anon_vma = NULL;
1288
83467efb
NH
1289 /*
1290 * Movability of hugepages depends on architectures and hugepage size.
1291 * This check is necessary because some callers of hugepage migration
1292 * like soft offline and memory hotremove don't walk through page
1293 * tables or check whether the hugepage is pmd-based or not before
1294 * kicking migration.
1295 */
100873d7 1296 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1297 putback_active_hugepage(hpage);
83467efb 1298 return -ENOSYS;
32665f2b 1299 }
83467efb 1300
666feb21 1301 new_hpage = get_new_page(hpage, private);
290408d4
NH
1302 if (!new_hpage)
1303 return -ENOMEM;
1304
290408d4 1305 if (!trylock_page(hpage)) {
2916ecc0 1306 if (!force)
290408d4 1307 goto out;
2916ecc0
JG
1308 switch (mode) {
1309 case MIGRATE_SYNC:
1310 case MIGRATE_SYNC_NO_COPY:
1311 break;
1312 default:
1313 goto out;
1314 }
290408d4
NH
1315 lock_page(hpage);
1316 }
1317
746b18d4
PZ
1318 if (PageAnon(hpage))
1319 anon_vma = page_get_anon_vma(hpage);
290408d4 1320
7db7671f
HD
1321 if (unlikely(!trylock_page(new_hpage)))
1322 goto put_anon;
1323
2ebba6b7
HD
1324 if (page_mapped(hpage)) {
1325 try_to_unmap(hpage,
ddeaab32 1326 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1327 page_was_mapped = 1;
1328 }
290408d4
NH
1329
1330 if (!page_mapped(hpage))
5c3f9a67 1331 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1332
5c3f9a67
HD
1333 if (page_was_mapped)
1334 remove_migration_ptes(hpage,
e388466d 1335 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1336
7db7671f
HD
1337 unlock_page(new_hpage);
1338
1339put_anon:
fd4a4663 1340 if (anon_vma)
9e60109f 1341 put_anon_vma(anon_vma);
8e6ac7fa 1342
2def7424 1343 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1344 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1345 put_new_page = NULL;
1346 }
8e6ac7fa 1347
290408d4 1348 unlock_page(hpage);
09761333 1349out:
b8ec1cee
NH
1350 if (rc != -EAGAIN)
1351 putback_active_hugepage(hpage);
68711a74
DR
1352
1353 /*
1354 * If migration was not successful and there's a freeing callback, use
1355 * it. Otherwise, put_page() will drop the reference grabbed during
1356 * isolation.
1357 */
2def7424 1358 if (put_new_page)
68711a74
DR
1359 put_new_page(new_hpage, private);
1360 else
3aaa76e1 1361 putback_active_hugepage(new_hpage);
68711a74 1362
290408d4
NH
1363 return rc;
1364}
1365
b20a3503 1366/*
c73e5c9c
SB
1367 * migrate_pages - migrate the pages specified in a list, to the free pages
1368 * supplied as the target for the page migration
b20a3503 1369 *
c73e5c9c
SB
1370 * @from: The list of pages to be migrated.
1371 * @get_new_page: The function used to allocate free pages to be used
1372 * as the target of the page migration.
68711a74
DR
1373 * @put_new_page: The function used to free target pages if migration
1374 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1375 * @private: Private data to be passed on to get_new_page()
1376 * @mode: The migration mode that specifies the constraints for
1377 * page migration, if any.
1378 * @reason: The reason for page migration.
b20a3503 1379 *
c73e5c9c
SB
1380 * The function returns after 10 attempts or if no pages are movable any more
1381 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1382 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1383 * or free list only if ret != 0.
b20a3503 1384 *
c73e5c9c 1385 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1386 */
9c620e2b 1387int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1388 free_page_t put_new_page, unsigned long private,
1389 enum migrate_mode mode, int reason)
b20a3503 1390{
e24f0b8f 1391 int retry = 1;
b20a3503 1392 int nr_failed = 0;
5647bc29 1393 int nr_succeeded = 0;
b20a3503
CL
1394 int pass = 0;
1395 struct page *page;
1396 struct page *page2;
1397 int swapwrite = current->flags & PF_SWAPWRITE;
1398 int rc;
1399
1400 if (!swapwrite)
1401 current->flags |= PF_SWAPWRITE;
1402
e24f0b8f
CL
1403 for(pass = 0; pass < 10 && retry; pass++) {
1404 retry = 0;
b20a3503 1405
e24f0b8f 1406 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1407retry:
e24f0b8f 1408 cond_resched();
2d1db3b1 1409
31caf665
NH
1410 if (PageHuge(page))
1411 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1412 put_new_page, private, page,
7cd12b4a 1413 pass > 2, mode, reason);
31caf665 1414 else
68711a74 1415 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1416 private, page, pass > 2, mode,
1417 reason);
2d1db3b1 1418
e24f0b8f 1419 switch(rc) {
95a402c3 1420 case -ENOMEM:
94723aaf
MH
1421 /*
1422 * THP migration might be unsupported or the
1423 * allocation could've failed so we should
1424 * retry on the same page with the THP split
1425 * to base pages.
1426 *
1427 * Head page is retried immediately and tail
1428 * pages are added to the tail of the list so
1429 * we encounter them after the rest of the list
1430 * is processed.
1431 */
e6112fc3 1432 if (PageTransHuge(page) && !PageHuge(page)) {
94723aaf
MH
1433 lock_page(page);
1434 rc = split_huge_page_to_list(page, from);
1435 unlock_page(page);
1436 if (!rc) {
1437 list_safe_reset_next(page, page2, lru);
1438 goto retry;
1439 }
1440 }
dfef2ef4 1441 nr_failed++;
95a402c3 1442 goto out;
e24f0b8f 1443 case -EAGAIN:
2d1db3b1 1444 retry++;
e24f0b8f 1445 break;
78bd5209 1446 case MIGRATEPAGE_SUCCESS:
5647bc29 1447 nr_succeeded++;
e24f0b8f
CL
1448 break;
1449 default:
354a3363
NH
1450 /*
1451 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1452 * unlike -EAGAIN case, the failed page is
1453 * removed from migration page list and not
1454 * retried in the next outer loop.
1455 */
2d1db3b1 1456 nr_failed++;
e24f0b8f 1457 break;
2d1db3b1 1458 }
b20a3503
CL
1459 }
1460 }
f2f81fb2
VB
1461 nr_failed += retry;
1462 rc = nr_failed;
95a402c3 1463out:
5647bc29
MG
1464 if (nr_succeeded)
1465 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1466 if (nr_failed)
1467 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1468 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1469
b20a3503
CL
1470 if (!swapwrite)
1471 current->flags &= ~PF_SWAPWRITE;
1472
78bd5209 1473 return rc;
b20a3503 1474}
95a402c3 1475
742755a1 1476#ifdef CONFIG_NUMA
742755a1 1477
a49bd4d7 1478static int store_status(int __user *status, int start, int value, int nr)
742755a1 1479{
a49bd4d7
MH
1480 while (nr-- > 0) {
1481 if (put_user(value, status + start))
1482 return -EFAULT;
1483 start++;
1484 }
1485
1486 return 0;
1487}
1488
1489static int do_move_pages_to_node(struct mm_struct *mm,
1490 struct list_head *pagelist, int node)
1491{
1492 int err;
1493
1494 if (list_empty(pagelist))
1495 return 0;
1496
1497 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1498 MIGRATE_SYNC, MR_SYSCALL);
1499 if (err)
1500 putback_movable_pages(pagelist);
1501 return err;
742755a1
CL
1502}
1503
1504/*
a49bd4d7
MH
1505 * Resolves the given address to a struct page, isolates it from the LRU and
1506 * puts it to the given pagelist.
1507 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1508 * queued or the page doesn't need to be migrated because it is already on
1509 * the target node
742755a1 1510 */
a49bd4d7
MH
1511static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1512 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1513{
a49bd4d7
MH
1514 struct vm_area_struct *vma;
1515 struct page *page;
1516 unsigned int follflags;
742755a1 1517 int err;
742755a1
CL
1518
1519 down_read(&mm->mmap_sem);
a49bd4d7
MH
1520 err = -EFAULT;
1521 vma = find_vma(mm, addr);
1522 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1523 goto out;
742755a1 1524
a49bd4d7
MH
1525 /* FOLL_DUMP to ignore special (like zero) pages */
1526 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1527 page = follow_page(vma, addr, follflags);
89f5b7da 1528
a49bd4d7
MH
1529 err = PTR_ERR(page);
1530 if (IS_ERR(page))
1531 goto out;
89f5b7da 1532
a49bd4d7
MH
1533 err = -ENOENT;
1534 if (!page)
1535 goto out;
742755a1 1536
a49bd4d7
MH
1537 err = 0;
1538 if (page_to_nid(page) == node)
1539 goto out_putpage;
742755a1 1540
a49bd4d7
MH
1541 err = -EACCES;
1542 if (page_mapcount(page) > 1 && !migrate_all)
1543 goto out_putpage;
742755a1 1544
a49bd4d7
MH
1545 if (PageHuge(page)) {
1546 if (PageHead(page)) {
1547 isolate_huge_page(page, pagelist);
1548 err = 0;
e632a938 1549 }
a49bd4d7
MH
1550 } else {
1551 struct page *head;
e632a938 1552
e8db67eb
NH
1553 head = compound_head(page);
1554 err = isolate_lru_page(head);
cf608ac1 1555 if (err)
a49bd4d7 1556 goto out_putpage;
742755a1 1557
a49bd4d7
MH
1558 err = 0;
1559 list_add_tail(&head->lru, pagelist);
1560 mod_node_page_state(page_pgdat(head),
1561 NR_ISOLATED_ANON + page_is_file_cache(head),
1562 hpage_nr_pages(head));
1563 }
1564out_putpage:
1565 /*
1566 * Either remove the duplicate refcount from
1567 * isolate_lru_page() or drop the page ref if it was
1568 * not isolated.
1569 */
1570 put_page(page);
1571out:
742755a1
CL
1572 up_read(&mm->mmap_sem);
1573 return err;
1574}
1575
5e9a0f02
BG
1576/*
1577 * Migrate an array of page address onto an array of nodes and fill
1578 * the corresponding array of status.
1579 */
3268c63e 1580static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1581 unsigned long nr_pages,
1582 const void __user * __user *pages,
1583 const int __user *nodes,
1584 int __user *status, int flags)
1585{
a49bd4d7
MH
1586 int current_node = NUMA_NO_NODE;
1587 LIST_HEAD(pagelist);
1588 int start, i;
1589 int err = 0, err1;
35282a2d
BG
1590
1591 migrate_prep();
1592
a49bd4d7
MH
1593 for (i = start = 0; i < nr_pages; i++) {
1594 const void __user *p;
1595 unsigned long addr;
1596 int node;
3140a227 1597
a49bd4d7
MH
1598 err = -EFAULT;
1599 if (get_user(p, pages + i))
1600 goto out_flush;
1601 if (get_user(node, nodes + i))
1602 goto out_flush;
1603 addr = (unsigned long)p;
1604
1605 err = -ENODEV;
1606 if (node < 0 || node >= MAX_NUMNODES)
1607 goto out_flush;
1608 if (!node_state(node, N_MEMORY))
1609 goto out_flush;
5e9a0f02 1610
a49bd4d7
MH
1611 err = -EACCES;
1612 if (!node_isset(node, task_nodes))
1613 goto out_flush;
1614
1615 if (current_node == NUMA_NO_NODE) {
1616 current_node = node;
1617 start = i;
1618 } else if (node != current_node) {
1619 err = do_move_pages_to_node(mm, &pagelist, current_node);
1620 if (err)
1621 goto out;
1622 err = store_status(status, start, current_node, i - start);
1623 if (err)
1624 goto out;
1625 start = i;
1626 current_node = node;
3140a227
BG
1627 }
1628
a49bd4d7
MH
1629 /*
1630 * Errors in the page lookup or isolation are not fatal and we simply
1631 * report them via status
1632 */
1633 err = add_page_for_migration(mm, addr, current_node,
1634 &pagelist, flags & MPOL_MF_MOVE_ALL);
1635 if (!err)
1636 continue;
3140a227 1637
a49bd4d7
MH
1638 err = store_status(status, i, err, 1);
1639 if (err)
1640 goto out_flush;
5e9a0f02 1641
a49bd4d7
MH
1642 err = do_move_pages_to_node(mm, &pagelist, current_node);
1643 if (err)
1644 goto out;
1645 if (i > start) {
1646 err = store_status(status, start, current_node, i - start);
1647 if (err)
1648 goto out;
1649 }
1650 current_node = NUMA_NO_NODE;
3140a227 1651 }
a49bd4d7 1652out_flush:
8f175cf5
MH
1653 if (list_empty(&pagelist))
1654 return err;
1655
a49bd4d7
MH
1656 /* Make sure we do not overwrite the existing error */
1657 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1658 if (!err1)
1659 err1 = store_status(status, start, current_node, i - start);
1660 if (!err)
1661 err = err1;
5e9a0f02
BG
1662out:
1663 return err;
1664}
1665
742755a1 1666/*
2f007e74 1667 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1668 */
80bba129
BG
1669static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1670 const void __user **pages, int *status)
742755a1 1671{
2f007e74 1672 unsigned long i;
2f007e74 1673
742755a1
CL
1674 down_read(&mm->mmap_sem);
1675
2f007e74 1676 for (i = 0; i < nr_pages; i++) {
80bba129 1677 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1678 struct vm_area_struct *vma;
1679 struct page *page;
c095adbc 1680 int err = -EFAULT;
2f007e74
BG
1681
1682 vma = find_vma(mm, addr);
70384dc6 1683 if (!vma || addr < vma->vm_start)
742755a1
CL
1684 goto set_status;
1685
d899844e
KS
1686 /* FOLL_DUMP to ignore special (like zero) pages */
1687 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1688
1689 err = PTR_ERR(page);
1690 if (IS_ERR(page))
1691 goto set_status;
1692
d899844e 1693 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1694set_status:
80bba129
BG
1695 *status = err;
1696
1697 pages++;
1698 status++;
1699 }
1700
1701 up_read(&mm->mmap_sem);
1702}
1703
1704/*
1705 * Determine the nodes of a user array of pages and store it in
1706 * a user array of status.
1707 */
1708static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1709 const void __user * __user *pages,
1710 int __user *status)
1711{
1712#define DO_PAGES_STAT_CHUNK_NR 16
1713 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1714 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1715
87b8d1ad
PA
1716 while (nr_pages) {
1717 unsigned long chunk_nr;
80bba129 1718
87b8d1ad
PA
1719 chunk_nr = nr_pages;
1720 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1721 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1722
1723 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1724 break;
80bba129
BG
1725
1726 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1727
87b8d1ad
PA
1728 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1729 break;
742755a1 1730
87b8d1ad
PA
1731 pages += chunk_nr;
1732 status += chunk_nr;
1733 nr_pages -= chunk_nr;
1734 }
1735 return nr_pages ? -EFAULT : 0;
742755a1
CL
1736}
1737
1738/*
1739 * Move a list of pages in the address space of the currently executing
1740 * process.
1741 */
7addf443
DB
1742static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1743 const void __user * __user *pages,
1744 const int __user *nodes,
1745 int __user *status, int flags)
742755a1 1746{
742755a1 1747 struct task_struct *task;
742755a1 1748 struct mm_struct *mm;
5e9a0f02 1749 int err;
3268c63e 1750 nodemask_t task_nodes;
742755a1
CL
1751
1752 /* Check flags */
1753 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1754 return -EINVAL;
1755
1756 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1757 return -EPERM;
1758
1759 /* Find the mm_struct */
a879bf58 1760 rcu_read_lock();
228ebcbe 1761 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1762 if (!task) {
a879bf58 1763 rcu_read_unlock();
742755a1
CL
1764 return -ESRCH;
1765 }
3268c63e 1766 get_task_struct(task);
742755a1
CL
1767
1768 /*
1769 * Check if this process has the right to modify the specified
197e7e52 1770 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1771 */
197e7e52 1772 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1773 rcu_read_unlock();
742755a1 1774 err = -EPERM;
5e9a0f02 1775 goto out;
742755a1 1776 }
c69e8d9c 1777 rcu_read_unlock();
742755a1 1778
86c3a764
DQ
1779 err = security_task_movememory(task);
1780 if (err)
5e9a0f02 1781 goto out;
86c3a764 1782
3268c63e
CL
1783 task_nodes = cpuset_mems_allowed(task);
1784 mm = get_task_mm(task);
1785 put_task_struct(task);
1786
6e8b09ea
SL
1787 if (!mm)
1788 return -EINVAL;
1789
1790 if (nodes)
1791 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1792 nodes, status, flags);
1793 else
1794 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1795
742755a1
CL
1796 mmput(mm);
1797 return err;
3268c63e
CL
1798
1799out:
1800 put_task_struct(task);
1801 return err;
742755a1 1802}
742755a1 1803
7addf443
DB
1804SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1805 const void __user * __user *, pages,
1806 const int __user *, nodes,
1807 int __user *, status, int, flags)
1808{
1809 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1810}
1811
1812#ifdef CONFIG_COMPAT
1813COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1814 compat_uptr_t __user *, pages32,
1815 const int __user *, nodes,
1816 int __user *, status,
1817 int, flags)
1818{
1819 const void __user * __user *pages;
1820 int i;
1821
1822 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1823 for (i = 0; i < nr_pages; i++) {
1824 compat_uptr_t p;
1825
1826 if (get_user(p, pages32 + i) ||
1827 put_user(compat_ptr(p), pages + i))
1828 return -EFAULT;
1829 }
1830 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1831}
1832#endif /* CONFIG_COMPAT */
1833
7039e1db
PZ
1834#ifdef CONFIG_NUMA_BALANCING
1835/*
1836 * Returns true if this is a safe migration target node for misplaced NUMA
1837 * pages. Currently it only checks the watermarks which crude
1838 */
1839static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1840 unsigned long nr_migrate_pages)
7039e1db
PZ
1841{
1842 int z;
599d0c95 1843
7039e1db
PZ
1844 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1845 struct zone *zone = pgdat->node_zones + z;
1846
1847 if (!populated_zone(zone))
1848 continue;
1849
7039e1db
PZ
1850 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1851 if (!zone_watermark_ok(zone, 0,
1852 high_wmark_pages(zone) +
1853 nr_migrate_pages,
1854 0, 0))
1855 continue;
1856 return true;
1857 }
1858 return false;
1859}
1860
1861static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 1862 unsigned long data)
7039e1db
PZ
1863{
1864 int nid = (int) data;
1865 struct page *newpage;
1866
96db800f 1867 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1868 (GFP_HIGHUSER_MOVABLE |
1869 __GFP_THISNODE | __GFP_NOMEMALLOC |
1870 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1871 ~__GFP_RECLAIM, 0);
bac0382c 1872
7039e1db
PZ
1873 return newpage;
1874}
1875
1c30e017 1876static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1877{
340ef390 1878 int page_lru;
a8f60772 1879
309381fe 1880 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1881
7039e1db 1882 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1883 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1884 return 0;
7039e1db 1885
340ef390
HD
1886 if (isolate_lru_page(page))
1887 return 0;
7039e1db 1888
340ef390
HD
1889 /*
1890 * migrate_misplaced_transhuge_page() skips page migration's usual
1891 * check on page_count(), so we must do it here, now that the page
1892 * has been isolated: a GUP pin, or any other pin, prevents migration.
1893 * The expected page count is 3: 1 for page's mapcount and 1 for the
1894 * caller's pin and 1 for the reference taken by isolate_lru_page().
1895 */
1896 if (PageTransHuge(page) && page_count(page) != 3) {
1897 putback_lru_page(page);
1898 return 0;
7039e1db
PZ
1899 }
1900
340ef390 1901 page_lru = page_is_file_cache(page);
599d0c95 1902 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1903 hpage_nr_pages(page));
1904
149c33e1 1905 /*
340ef390
HD
1906 * Isolating the page has taken another reference, so the
1907 * caller's reference can be safely dropped without the page
1908 * disappearing underneath us during migration.
149c33e1
MG
1909 */
1910 put_page(page);
340ef390 1911 return 1;
b32967ff
MG
1912}
1913
de466bd6
MG
1914bool pmd_trans_migrating(pmd_t pmd)
1915{
1916 struct page *page = pmd_page(pmd);
1917 return PageLocked(page);
1918}
1919
b32967ff
MG
1920/*
1921 * Attempt to migrate a misplaced page to the specified destination
1922 * node. Caller is expected to have an elevated reference count on
1923 * the page that will be dropped by this function before returning.
1924 */
1bc115d8
MG
1925int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1926 int node)
b32967ff
MG
1927{
1928 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1929 int isolated;
b32967ff
MG
1930 int nr_remaining;
1931 LIST_HEAD(migratepages);
1932
1933 /*
1bc115d8
MG
1934 * Don't migrate file pages that are mapped in multiple processes
1935 * with execute permissions as they are probably shared libraries.
b32967ff 1936 */
1bc115d8
MG
1937 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1938 (vma->vm_flags & VM_EXEC))
b32967ff 1939 goto out;
b32967ff 1940
09a913a7
MG
1941 /*
1942 * Also do not migrate dirty pages as not all filesystems can move
1943 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1944 */
1945 if (page_is_file_cache(page) && PageDirty(page))
1946 goto out;
1947
b32967ff
MG
1948 isolated = numamigrate_isolate_page(pgdat, page);
1949 if (!isolated)
1950 goto out;
1951
1952 list_add(&page->lru, &migratepages);
9c620e2b 1953 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1954 NULL, node, MIGRATE_ASYNC,
1955 MR_NUMA_MISPLACED);
b32967ff 1956 if (nr_remaining) {
59c82b70
JK
1957 if (!list_empty(&migratepages)) {
1958 list_del(&page->lru);
599d0c95 1959 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
1960 page_is_file_cache(page));
1961 putback_lru_page(page);
1962 }
b32967ff
MG
1963 isolated = 0;
1964 } else
1965 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1966 BUG_ON(!list_empty(&migratepages));
7039e1db 1967 return isolated;
340ef390
HD
1968
1969out:
1970 put_page(page);
1971 return 0;
7039e1db 1972}
220018d3 1973#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1974
220018d3 1975#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1976/*
1977 * Migrates a THP to a given target node. page must be locked and is unlocked
1978 * before returning.
1979 */
b32967ff
MG
1980int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1981 struct vm_area_struct *vma,
1982 pmd_t *pmd, pmd_t entry,
1983 unsigned long address,
1984 struct page *page, int node)
1985{
c4088ebd 1986 spinlock_t *ptl;
b32967ff
MG
1987 pg_data_t *pgdat = NODE_DATA(node);
1988 int isolated = 0;
1989 struct page *new_page = NULL;
b32967ff 1990 int page_lru = page_is_file_cache(page);
7066f0f9 1991 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 1992
b32967ff 1993 new_page = alloc_pages_node(node,
25160354 1994 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 1995 HPAGE_PMD_ORDER);
340ef390
HD
1996 if (!new_page)
1997 goto out_fail;
9a982250 1998 prep_transhuge_page(new_page);
340ef390 1999
b32967ff 2000 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2001 if (!isolated) {
b32967ff 2002 put_page(new_page);
340ef390 2003 goto out_fail;
b32967ff 2004 }
b0943d61 2005
b32967ff 2006 /* Prepare a page as a migration target */
48c935ad 2007 __SetPageLocked(new_page);
d44d363f
SL
2008 if (PageSwapBacked(page))
2009 __SetPageSwapBacked(new_page);
b32967ff
MG
2010
2011 /* anon mapping, we can simply copy page->mapping to the new page: */
2012 new_page->mapping = page->mapping;
2013 new_page->index = page->index;
7eef5f97
AA
2014 /* flush the cache before copying using the kernel virtual address */
2015 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2016 migrate_page_copy(new_page, page);
2017 WARN_ON(PageLRU(new_page));
2018
2019 /* Recheck the target PMD */
c4088ebd 2020 ptl = pmd_lock(mm, pmd);
f4e177d1 2021 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2022 spin_unlock(ptl);
b32967ff
MG
2023
2024 /* Reverse changes made by migrate_page_copy() */
2025 if (TestClearPageActive(new_page))
2026 SetPageActive(page);
2027 if (TestClearPageUnevictable(new_page))
2028 SetPageUnevictable(page);
b32967ff
MG
2029
2030 unlock_page(new_page);
2031 put_page(new_page); /* Free it */
2032
a54a407f
MG
2033 /* Retake the callers reference and putback on LRU */
2034 get_page(page);
b32967ff 2035 putback_lru_page(page);
599d0c95 2036 mod_node_page_state(page_pgdat(page),
a54a407f 2037 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2038
2039 goto out_unlock;
b32967ff
MG
2040 }
2041
10102459 2042 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2043 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2044
2b4847e7 2045 /*
d7c33934
AA
2046 * Overwrite the old entry under pagetable lock and establish
2047 * the new PTE. Any parallel GUP will either observe the old
2048 * page blocking on the page lock, block on the page table
2049 * lock or observe the new page. The SetPageUptodate on the
2050 * new page and page_add_new_anon_rmap guarantee the copy is
2051 * visible before the pagetable update.
2b4847e7 2052 */
7066f0f9 2053 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2054 /*
2055 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2056 * has already been flushed globally. So no TLB can be currently
2057 * caching this non present pmd mapping. There's no need to clear the
2058 * pmd before doing set_pmd_at(), nor to flush the TLB after
2059 * set_pmd_at(). Clearing the pmd here would introduce a race
2060 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2061 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2062 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2063 * pmd.
2064 */
7066f0f9 2065 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2066 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2067
f4e177d1 2068 page_ref_unfreeze(page, 2);
51afb12b 2069 mlock_migrate_page(new_page, page);
d281ee61 2070 page_remove_rmap(page, true);
7cd12b4a 2071 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2072
c4088ebd 2073 spin_unlock(ptl);
b32967ff 2074
11de9927
MG
2075 /* Take an "isolate" reference and put new page on the LRU. */
2076 get_page(new_page);
2077 putback_lru_page(new_page);
2078
b32967ff
MG
2079 unlock_page(new_page);
2080 unlock_page(page);
2081 put_page(page); /* Drop the rmap reference */
2082 put_page(page); /* Drop the LRU isolation reference */
2083
2084 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2085 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2086
599d0c95 2087 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2088 NR_ISOLATED_ANON + page_lru,
2089 -HPAGE_PMD_NR);
2090 return isolated;
2091
340ef390
HD
2092out_fail:
2093 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2094 ptl = pmd_lock(mm, pmd);
2095 if (pmd_same(*pmd, entry)) {
4d942466 2096 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2097 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2098 update_mmu_cache_pmd(vma, address, &entry);
2099 }
2100 spin_unlock(ptl);
a54a407f 2101
eb4489f6 2102out_unlock:
340ef390 2103 unlock_page(page);
b32967ff 2104 put_page(page);
b32967ff
MG
2105 return 0;
2106}
7039e1db
PZ
2107#endif /* CONFIG_NUMA_BALANCING */
2108
2109#endif /* CONFIG_NUMA */
8763cb45 2110
6b368cd4 2111#if defined(CONFIG_MIGRATE_VMA_HELPER)
8763cb45
JG
2112struct migrate_vma {
2113 struct vm_area_struct *vma;
2114 unsigned long *dst;
2115 unsigned long *src;
2116 unsigned long cpages;
2117 unsigned long npages;
2118 unsigned long start;
2119 unsigned long end;
2120};
2121
2122static int migrate_vma_collect_hole(unsigned long start,
2123 unsigned long end,
2124 struct mm_walk *walk)
2125{
2126 struct migrate_vma *migrate = walk->private;
2127 unsigned long addr;
2128
8315ada7 2129 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
e20d103b 2130 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2131 migrate->dst[migrate->npages] = 0;
e20d103b 2132 migrate->npages++;
8315ada7
JG
2133 migrate->cpages++;
2134 }
2135
2136 return 0;
2137}
2138
2139static int migrate_vma_collect_skip(unsigned long start,
2140 unsigned long end,
2141 struct mm_walk *walk)
2142{
2143 struct migrate_vma *migrate = walk->private;
2144 unsigned long addr;
2145
8763cb45
JG
2146 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2147 migrate->dst[migrate->npages] = 0;
2148 migrate->src[migrate->npages++] = 0;
2149 }
2150
2151 return 0;
2152}
2153
2154static int migrate_vma_collect_pmd(pmd_t *pmdp,
2155 unsigned long start,
2156 unsigned long end,
2157 struct mm_walk *walk)
2158{
2159 struct migrate_vma *migrate = walk->private;
2160 struct vm_area_struct *vma = walk->vma;
2161 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2162 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2163 spinlock_t *ptl;
2164 pte_t *ptep;
2165
2166again:
2167 if (pmd_none(*pmdp))
2168 return migrate_vma_collect_hole(start, end, walk);
2169
2170 if (pmd_trans_huge(*pmdp)) {
2171 struct page *page;
2172
2173 ptl = pmd_lock(mm, pmdp);
2174 if (unlikely(!pmd_trans_huge(*pmdp))) {
2175 spin_unlock(ptl);
2176 goto again;
2177 }
2178
2179 page = pmd_page(*pmdp);
2180 if (is_huge_zero_page(page)) {
2181 spin_unlock(ptl);
2182 split_huge_pmd(vma, pmdp, addr);
2183 if (pmd_trans_unstable(pmdp))
8315ada7 2184 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2185 walk);
2186 } else {
2187 int ret;
2188
2189 get_page(page);
2190 spin_unlock(ptl);
2191 if (unlikely(!trylock_page(page)))
8315ada7 2192 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2193 walk);
2194 ret = split_huge_page(page);
2195 unlock_page(page);
2196 put_page(page);
8315ada7
JG
2197 if (ret)
2198 return migrate_vma_collect_skip(start, end,
2199 walk);
2200 if (pmd_none(*pmdp))
8763cb45
JG
2201 return migrate_vma_collect_hole(start, end,
2202 walk);
2203 }
2204 }
2205
2206 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2207 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2208
2209 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2210 arch_enter_lazy_mmu_mode();
2211
8763cb45
JG
2212 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2213 unsigned long mpfn, pfn;
2214 struct page *page;
8c3328f1 2215 swp_entry_t entry;
8763cb45
JG
2216 pte_t pte;
2217
2218 pte = *ptep;
2219 pfn = pte_pfn(pte);
2220
a5430dda 2221 if (pte_none(pte)) {
8315ada7
JG
2222 mpfn = MIGRATE_PFN_MIGRATE;
2223 migrate->cpages++;
2224 pfn = 0;
8763cb45
JG
2225 goto next;
2226 }
2227
a5430dda
JG
2228 if (!pte_present(pte)) {
2229 mpfn = pfn = 0;
2230
2231 /*
2232 * Only care about unaddressable device page special
2233 * page table entry. Other special swap entries are not
2234 * migratable, and we ignore regular swapped page.
2235 */
2236 entry = pte_to_swp_entry(pte);
2237 if (!is_device_private_entry(entry))
2238 goto next;
2239
2240 page = device_private_entry_to_page(entry);
2241 mpfn = migrate_pfn(page_to_pfn(page))|
2242 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2243 if (is_write_device_private_entry(entry))
2244 mpfn |= MIGRATE_PFN_WRITE;
2245 } else {
8315ada7
JG
2246 if (is_zero_pfn(pfn)) {
2247 mpfn = MIGRATE_PFN_MIGRATE;
2248 migrate->cpages++;
2249 pfn = 0;
2250 goto next;
2251 }
df6ad698 2252 page = _vm_normal_page(migrate->vma, addr, pte, true);
a5430dda
JG
2253 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2254 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2255 }
2256
8763cb45 2257 /* FIXME support THP */
8763cb45
JG
2258 if (!page || !page->mapping || PageTransCompound(page)) {
2259 mpfn = pfn = 0;
2260 goto next;
2261 }
a5430dda 2262 pfn = page_to_pfn(page);
8763cb45
JG
2263
2264 /*
2265 * By getting a reference on the page we pin it and that blocks
2266 * any kind of migration. Side effect is that it "freezes" the
2267 * pte.
2268 *
2269 * We drop this reference after isolating the page from the lru
2270 * for non device page (device page are not on the lru and thus
2271 * can't be dropped from it).
2272 */
2273 get_page(page);
2274 migrate->cpages++;
8763cb45 2275
8c3328f1
JG
2276 /*
2277 * Optimize for the common case where page is only mapped once
2278 * in one process. If we can lock the page, then we can safely
2279 * set up a special migration page table entry now.
2280 */
2281 if (trylock_page(page)) {
2282 pte_t swp_pte;
2283
2284 mpfn |= MIGRATE_PFN_LOCKED;
2285 ptep_get_and_clear(mm, addr, ptep);
2286
2287 /* Setup special migration page table entry */
07707125
RC
2288 entry = make_migration_entry(page, mpfn &
2289 MIGRATE_PFN_WRITE);
8c3328f1
JG
2290 swp_pte = swp_entry_to_pte(entry);
2291 if (pte_soft_dirty(pte))
2292 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2293 set_pte_at(mm, addr, ptep, swp_pte);
2294
2295 /*
2296 * This is like regular unmap: we remove the rmap and
2297 * drop page refcount. Page won't be freed, as we took
2298 * a reference just above.
2299 */
2300 page_remove_rmap(page, false);
2301 put_page(page);
a5430dda
JG
2302
2303 if (pte_present(pte))
2304 unmapped++;
8c3328f1
JG
2305 }
2306
8763cb45 2307next:
a5430dda 2308 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2309 migrate->src[migrate->npages++] = mpfn;
2310 }
8c3328f1 2311 arch_leave_lazy_mmu_mode();
8763cb45
JG
2312 pte_unmap_unlock(ptep - 1, ptl);
2313
8c3328f1
JG
2314 /* Only flush the TLB if we actually modified any entries */
2315 if (unmapped)
2316 flush_tlb_range(walk->vma, start, end);
2317
8763cb45
JG
2318 return 0;
2319}
2320
2321/*
2322 * migrate_vma_collect() - collect pages over a range of virtual addresses
2323 * @migrate: migrate struct containing all migration information
2324 *
2325 * This will walk the CPU page table. For each virtual address backed by a
2326 * valid page, it updates the src array and takes a reference on the page, in
2327 * order to pin the page until we lock it and unmap it.
2328 */
2329static void migrate_vma_collect(struct migrate_vma *migrate)
2330{
ac46d4f3 2331 struct mmu_notifier_range range;
8763cb45
JG
2332 struct mm_walk mm_walk;
2333
2334 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2335 mm_walk.pte_entry = NULL;
2336 mm_walk.pte_hole = migrate_vma_collect_hole;
2337 mm_walk.hugetlb_entry = NULL;
2338 mm_walk.test_walk = NULL;
2339 mm_walk.vma = migrate->vma;
2340 mm_walk.mm = migrate->vma->vm_mm;
2341 mm_walk.private = migrate;
2342
ac46d4f3
JG
2343 mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2344 migrate->end);
2345 mmu_notifier_invalidate_range_start(&range);
8763cb45 2346 walk_page_range(migrate->start, migrate->end, &mm_walk);
ac46d4f3 2347 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2348
2349 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2350}
2351
2352/*
2353 * migrate_vma_check_page() - check if page is pinned or not
2354 * @page: struct page to check
2355 *
2356 * Pinned pages cannot be migrated. This is the same test as in
2357 * migrate_page_move_mapping(), except that here we allow migration of a
2358 * ZONE_DEVICE page.
2359 */
2360static bool migrate_vma_check_page(struct page *page)
2361{
2362 /*
2363 * One extra ref because caller holds an extra reference, either from
2364 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2365 * a device page.
2366 */
2367 int extra = 1;
2368
2369 /*
2370 * FIXME support THP (transparent huge page), it is bit more complex to
2371 * check them than regular pages, because they can be mapped with a pmd
2372 * or with a pte (split pte mapping).
2373 */
2374 if (PageCompound(page))
2375 return false;
2376
a5430dda
JG
2377 /* Page from ZONE_DEVICE have one extra reference */
2378 if (is_zone_device_page(page)) {
2379 /*
2380 * Private page can never be pin as they have no valid pte and
2381 * GUP will fail for those. Yet if there is a pending migration
2382 * a thread might try to wait on the pte migration entry and
2383 * will bump the page reference count. Sadly there is no way to
2384 * differentiate a regular pin from migration wait. Hence to
2385 * avoid 2 racing thread trying to migrate back to CPU to enter
2386 * infinite loop (one stoping migration because the other is
2387 * waiting on pte migration entry). We always return true here.
2388 *
2389 * FIXME proper solution is to rework migration_entry_wait() so
2390 * it does not need to take a reference on page.
2391 */
2392 if (is_device_private_page(page))
2393 return true;
2394
df6ad698
JG
2395 /*
2396 * Only allow device public page to be migrated and account for
2397 * the extra reference count imply by ZONE_DEVICE pages.
2398 */
2399 if (!is_device_public_page(page))
2400 return false;
2401 extra++;
a5430dda
JG
2402 }
2403
df6ad698
JG
2404 /* For file back page */
2405 if (page_mapping(page))
2406 extra += 1 + page_has_private(page);
2407
8763cb45
JG
2408 if ((page_count(page) - extra) > page_mapcount(page))
2409 return false;
2410
2411 return true;
2412}
2413
2414/*
2415 * migrate_vma_prepare() - lock pages and isolate them from the lru
2416 * @migrate: migrate struct containing all migration information
2417 *
2418 * This locks pages that have been collected by migrate_vma_collect(). Once each
2419 * page is locked it is isolated from the lru (for non-device pages). Finally,
2420 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2421 * migrated by concurrent kernel threads.
2422 */
2423static void migrate_vma_prepare(struct migrate_vma *migrate)
2424{
2425 const unsigned long npages = migrate->npages;
8c3328f1
JG
2426 const unsigned long start = migrate->start;
2427 unsigned long addr, i, restore = 0;
8763cb45 2428 bool allow_drain = true;
8763cb45
JG
2429
2430 lru_add_drain();
2431
2432 for (i = 0; (i < npages) && migrate->cpages; i++) {
2433 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2434 bool remap = true;
8763cb45
JG
2435
2436 if (!page)
2437 continue;
2438
8c3328f1
JG
2439 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2440 /*
2441 * Because we are migrating several pages there can be
2442 * a deadlock between 2 concurrent migration where each
2443 * are waiting on each other page lock.
2444 *
2445 * Make migrate_vma() a best effort thing and backoff
2446 * for any page we can not lock right away.
2447 */
2448 if (!trylock_page(page)) {
2449 migrate->src[i] = 0;
2450 migrate->cpages--;
2451 put_page(page);
2452 continue;
2453 }
2454 remap = false;
2455 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2456 }
8763cb45 2457
a5430dda
JG
2458 /* ZONE_DEVICE pages are not on LRU */
2459 if (!is_zone_device_page(page)) {
2460 if (!PageLRU(page) && allow_drain) {
2461 /* Drain CPU's pagevec */
2462 lru_add_drain_all();
2463 allow_drain = false;
2464 }
8763cb45 2465
a5430dda
JG
2466 if (isolate_lru_page(page)) {
2467 if (remap) {
2468 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2469 migrate->cpages--;
2470 restore++;
2471 } else {
2472 migrate->src[i] = 0;
2473 unlock_page(page);
2474 migrate->cpages--;
2475 put_page(page);
2476 }
2477 continue;
8c3328f1 2478 }
a5430dda
JG
2479
2480 /* Drop the reference we took in collect */
2481 put_page(page);
8763cb45
JG
2482 }
2483
2484 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2485 if (remap) {
2486 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2487 migrate->cpages--;
2488 restore++;
8763cb45 2489
a5430dda
JG
2490 if (!is_zone_device_page(page)) {
2491 get_page(page);
2492 putback_lru_page(page);
2493 }
8c3328f1
JG
2494 } else {
2495 migrate->src[i] = 0;
2496 unlock_page(page);
2497 migrate->cpages--;
2498
a5430dda
JG
2499 if (!is_zone_device_page(page))
2500 putback_lru_page(page);
2501 else
2502 put_page(page);
8c3328f1 2503 }
8763cb45
JG
2504 }
2505 }
8c3328f1
JG
2506
2507 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2508 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2509
2510 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2511 continue;
2512
2513 remove_migration_pte(page, migrate->vma, addr, page);
2514
2515 migrate->src[i] = 0;
2516 unlock_page(page);
2517 put_page(page);
2518 restore--;
2519 }
8763cb45
JG
2520}
2521
2522/*
2523 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2524 * @migrate: migrate struct containing all migration information
2525 *
2526 * Replace page mapping (CPU page table pte) with a special migration pte entry
2527 * and check again if it has been pinned. Pinned pages are restored because we
2528 * cannot migrate them.
2529 *
2530 * This is the last step before we call the device driver callback to allocate
2531 * destination memory and copy contents of original page over to new page.
2532 */
2533static void migrate_vma_unmap(struct migrate_vma *migrate)
2534{
2535 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2536 const unsigned long npages = migrate->npages;
2537 const unsigned long start = migrate->start;
2538 unsigned long addr, i, restore = 0;
2539
2540 for (i = 0; i < npages; i++) {
2541 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2542
2543 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2544 continue;
2545
8c3328f1
JG
2546 if (page_mapped(page)) {
2547 try_to_unmap(page, flags);
2548 if (page_mapped(page))
2549 goto restore;
8763cb45 2550 }
8c3328f1
JG
2551
2552 if (migrate_vma_check_page(page))
2553 continue;
2554
2555restore:
2556 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2557 migrate->cpages--;
2558 restore++;
8763cb45
JG
2559 }
2560
2561 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2562 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2563
2564 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565 continue;
2566
2567 remove_migration_ptes(page, page, false);
2568
2569 migrate->src[i] = 0;
2570 unlock_page(page);
2571 restore--;
2572
a5430dda
JG
2573 if (is_zone_device_page(page))
2574 put_page(page);
2575 else
2576 putback_lru_page(page);
8763cb45
JG
2577 }
2578}
2579
8315ada7
JG
2580static void migrate_vma_insert_page(struct migrate_vma *migrate,
2581 unsigned long addr,
2582 struct page *page,
2583 unsigned long *src,
2584 unsigned long *dst)
2585{
2586 struct vm_area_struct *vma = migrate->vma;
2587 struct mm_struct *mm = vma->vm_mm;
2588 struct mem_cgroup *memcg;
2589 bool flush = false;
2590 spinlock_t *ptl;
2591 pte_t entry;
2592 pgd_t *pgdp;
2593 p4d_t *p4dp;
2594 pud_t *pudp;
2595 pmd_t *pmdp;
2596 pte_t *ptep;
2597
2598 /* Only allow populating anonymous memory */
2599 if (!vma_is_anonymous(vma))
2600 goto abort;
2601
2602 pgdp = pgd_offset(mm, addr);
2603 p4dp = p4d_alloc(mm, pgdp, addr);
2604 if (!p4dp)
2605 goto abort;
2606 pudp = pud_alloc(mm, p4dp, addr);
2607 if (!pudp)
2608 goto abort;
2609 pmdp = pmd_alloc(mm, pudp, addr);
2610 if (!pmdp)
2611 goto abort;
2612
2613 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2614 goto abort;
2615
2616 /*
2617 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2618 * pte_offset_map() on pmds where a huge pmd might be created
2619 * from a different thread.
2620 *
2621 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2622 * parallel threads are excluded by other means.
2623 *
2624 * Here we only have down_read(mmap_sem).
2625 */
4cf58924 2626 if (pte_alloc(mm, pmdp))
8315ada7
JG
2627 goto abort;
2628
2629 /* See the comment in pte_alloc_one_map() */
2630 if (unlikely(pmd_trans_unstable(pmdp)))
2631 goto abort;
2632
2633 if (unlikely(anon_vma_prepare(vma)))
2634 goto abort;
2635 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2636 goto abort;
2637
2638 /*
2639 * The memory barrier inside __SetPageUptodate makes sure that
2640 * preceding stores to the page contents become visible before
2641 * the set_pte_at() write.
2642 */
2643 __SetPageUptodate(page);
2644
df6ad698
JG
2645 if (is_zone_device_page(page)) {
2646 if (is_device_private_page(page)) {
2647 swp_entry_t swp_entry;
2648
2649 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2650 entry = swp_entry_to_pte(swp_entry);
2651 } else if (is_device_public_page(page)) {
2652 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2653 if (vma->vm_flags & VM_WRITE)
2654 entry = pte_mkwrite(pte_mkdirty(entry));
2655 entry = pte_mkdevmap(entry);
2656 }
8315ada7
JG
2657 } else {
2658 entry = mk_pte(page, vma->vm_page_prot);
2659 if (vma->vm_flags & VM_WRITE)
2660 entry = pte_mkwrite(pte_mkdirty(entry));
2661 }
2662
2663 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2664
2665 if (pte_present(*ptep)) {
2666 unsigned long pfn = pte_pfn(*ptep);
2667
2668 if (!is_zero_pfn(pfn)) {
2669 pte_unmap_unlock(ptep, ptl);
2670 mem_cgroup_cancel_charge(page, memcg, false);
2671 goto abort;
2672 }
2673 flush = true;
2674 } else if (!pte_none(*ptep)) {
2675 pte_unmap_unlock(ptep, ptl);
2676 mem_cgroup_cancel_charge(page, memcg, false);
2677 goto abort;
2678 }
2679
2680 /*
2681 * Check for usefaultfd but do not deliver the fault. Instead,
2682 * just back off.
2683 */
2684 if (userfaultfd_missing(vma)) {
2685 pte_unmap_unlock(ptep, ptl);
2686 mem_cgroup_cancel_charge(page, memcg, false);
2687 goto abort;
2688 }
2689
2690 inc_mm_counter(mm, MM_ANONPAGES);
2691 page_add_new_anon_rmap(page, vma, addr, false);
2692 mem_cgroup_commit_charge(page, memcg, false, false);
2693 if (!is_zone_device_page(page))
2694 lru_cache_add_active_or_unevictable(page, vma);
2695 get_page(page);
2696
2697 if (flush) {
2698 flush_cache_page(vma, addr, pte_pfn(*ptep));
2699 ptep_clear_flush_notify(vma, addr, ptep);
2700 set_pte_at_notify(mm, addr, ptep, entry);
2701 update_mmu_cache(vma, addr, ptep);
2702 } else {
2703 /* No need to invalidate - it was non-present before */
2704 set_pte_at(mm, addr, ptep, entry);
2705 update_mmu_cache(vma, addr, ptep);
2706 }
2707
2708 pte_unmap_unlock(ptep, ptl);
2709 *src = MIGRATE_PFN_MIGRATE;
2710 return;
2711
2712abort:
2713 *src &= ~MIGRATE_PFN_MIGRATE;
2714}
2715
8763cb45
JG
2716/*
2717 * migrate_vma_pages() - migrate meta-data from src page to dst page
2718 * @migrate: migrate struct containing all migration information
2719 *
2720 * This migrates struct page meta-data from source struct page to destination
2721 * struct page. This effectively finishes the migration from source page to the
2722 * destination page.
2723 */
2724static void migrate_vma_pages(struct migrate_vma *migrate)
2725{
2726 const unsigned long npages = migrate->npages;
2727 const unsigned long start = migrate->start;
ac46d4f3
JG
2728 struct mmu_notifier_range range;
2729 unsigned long addr, i;
8315ada7 2730 bool notified = false;
8763cb45
JG
2731
2732 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2733 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2734 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2735 struct address_space *mapping;
2736 int r;
2737
8315ada7
JG
2738 if (!newpage) {
2739 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2740 continue;
8315ada7
JG
2741 }
2742
2743 if (!page) {
2744 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2745 continue;
2746 }
2747 if (!notified) {
8315ada7 2748 notified = true;
ac46d4f3
JG
2749
2750 mmu_notifier_range_init(&range,
2751 migrate->vma->vm_mm,
2752 addr, migrate->end);
2753 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
2754 }
2755 migrate_vma_insert_page(migrate, addr, newpage,
2756 &migrate->src[i],
2757 &migrate->dst[i]);
8763cb45 2758 continue;
8315ada7 2759 }
8763cb45
JG
2760
2761 mapping = page_mapping(page);
2762
a5430dda
JG
2763 if (is_zone_device_page(newpage)) {
2764 if (is_device_private_page(newpage)) {
2765 /*
2766 * For now only support private anonymous when
2767 * migrating to un-addressable device memory.
2768 */
2769 if (mapping) {
2770 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2771 continue;
2772 }
df6ad698 2773 } else if (!is_device_public_page(newpage)) {
a5430dda
JG
2774 /*
2775 * Other types of ZONE_DEVICE page are not
2776 * supported.
2777 */
2778 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2779 continue;
2780 }
2781 }
2782
8763cb45
JG
2783 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2784 if (r != MIGRATEPAGE_SUCCESS)
2785 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2786 }
8315ada7 2787
4645b9fe
JG
2788 /*
2789 * No need to double call mmu_notifier->invalidate_range() callback as
2790 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2791 * did already call it.
2792 */
8315ada7 2793 if (notified)
ac46d4f3 2794 mmu_notifier_invalidate_range_only_end(&range);
8763cb45
JG
2795}
2796
2797/*
2798 * migrate_vma_finalize() - restore CPU page table entry
2799 * @migrate: migrate struct containing all migration information
2800 *
2801 * This replaces the special migration pte entry with either a mapping to the
2802 * new page if migration was successful for that page, or to the original page
2803 * otherwise.
2804 *
2805 * This also unlocks the pages and puts them back on the lru, or drops the extra
2806 * refcount, for device pages.
2807 */
2808static void migrate_vma_finalize(struct migrate_vma *migrate)
2809{
2810 const unsigned long npages = migrate->npages;
2811 unsigned long i;
2812
2813 for (i = 0; i < npages; i++) {
2814 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2815 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2816
8315ada7
JG
2817 if (!page) {
2818 if (newpage) {
2819 unlock_page(newpage);
2820 put_page(newpage);
2821 }
8763cb45 2822 continue;
8315ada7
JG
2823 }
2824
8763cb45
JG
2825 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2826 if (newpage) {
2827 unlock_page(newpage);
2828 put_page(newpage);
2829 }
2830 newpage = page;
2831 }
2832
2833 remove_migration_ptes(page, newpage, false);
2834 unlock_page(page);
2835 migrate->cpages--;
2836
a5430dda
JG
2837 if (is_zone_device_page(page))
2838 put_page(page);
2839 else
2840 putback_lru_page(page);
8763cb45
JG
2841
2842 if (newpage != page) {
2843 unlock_page(newpage);
a5430dda
JG
2844 if (is_zone_device_page(newpage))
2845 put_page(newpage);
2846 else
2847 putback_lru_page(newpage);
8763cb45
JG
2848 }
2849 }
2850}
2851
2852/*
2853 * migrate_vma() - migrate a range of memory inside vma
2854 *
2855 * @ops: migration callback for allocating destination memory and copying
2856 * @vma: virtual memory area containing the range to be migrated
2857 * @start: start address of the range to migrate (inclusive)
2858 * @end: end address of the range to migrate (exclusive)
2859 * @src: array of hmm_pfn_t containing source pfns
2860 * @dst: array of hmm_pfn_t containing destination pfns
2861 * @private: pointer passed back to each of the callback
2862 * Returns: 0 on success, error code otherwise
2863 *
2864 * This function tries to migrate a range of memory virtual address range, using
2865 * callbacks to allocate and copy memory from source to destination. First it
2866 * collects all the pages backing each virtual address in the range, saving this
2867 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2868 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2869 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2870 * in the corresponding src array entry. It then restores any pages that are
2871 * pinned, by remapping and unlocking those pages.
2872 *
2873 * At this point it calls the alloc_and_copy() callback. For documentation on
2874 * what is expected from that callback, see struct migrate_vma_ops comments in
2875 * include/linux/migrate.h
2876 *
2877 * After the alloc_and_copy() callback, this function goes over each entry in
2878 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2879 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2880 * then the function tries to migrate struct page information from the source
2881 * struct page to the destination struct page. If it fails to migrate the struct
2882 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2883 * array.
2884 *
2885 * At this point all successfully migrated pages have an entry in the src
2886 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2887 * array entry with MIGRATE_PFN_VALID flag set.
2888 *
2889 * It then calls the finalize_and_map() callback. See comments for "struct
2890 * migrate_vma_ops", in include/linux/migrate.h for details about
2891 * finalize_and_map() behavior.
2892 *
2893 * After the finalize_and_map() callback, for successfully migrated pages, this
2894 * function updates the CPU page table to point to new pages, otherwise it
2895 * restores the CPU page table to point to the original source pages.
2896 *
2897 * Function returns 0 after the above steps, even if no pages were migrated
2898 * (The function only returns an error if any of the arguments are invalid.)
2899 *
2900 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2901 * unsigned long entries.
2902 */
2903int migrate_vma(const struct migrate_vma_ops *ops,
2904 struct vm_area_struct *vma,
2905 unsigned long start,
2906 unsigned long end,
2907 unsigned long *src,
2908 unsigned long *dst,
2909 void *private)
2910{
2911 struct migrate_vma migrate;
2912
2913 /* Sanity check the arguments */
2914 start &= PAGE_MASK;
2915 end &= PAGE_MASK;
e1fb4a08
DJ
2916 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2917 vma_is_dax(vma))
8763cb45
JG
2918 return -EINVAL;
2919 if (start < vma->vm_start || start >= vma->vm_end)
2920 return -EINVAL;
2921 if (end <= vma->vm_start || end > vma->vm_end)
2922 return -EINVAL;
2923 if (!ops || !src || !dst || start >= end)
2924 return -EINVAL;
2925
2926 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2927 migrate.src = src;
2928 migrate.dst = dst;
2929 migrate.start = start;
2930 migrate.npages = 0;
2931 migrate.cpages = 0;
2932 migrate.end = end;
2933 migrate.vma = vma;
2934
2935 /* Collect, and try to unmap source pages */
2936 migrate_vma_collect(&migrate);
2937 if (!migrate.cpages)
2938 return 0;
2939
2940 /* Lock and isolate page */
2941 migrate_vma_prepare(&migrate);
2942 if (!migrate.cpages)
2943 return 0;
2944
2945 /* Unmap pages */
2946 migrate_vma_unmap(&migrate);
2947 if (!migrate.cpages)
2948 return 0;
2949
2950 /*
2951 * At this point pages are locked and unmapped, and thus they have
2952 * stable content and can safely be copied to destination memory that
2953 * is allocated by the callback.
2954 *
2955 * Note that migration can fail in migrate_vma_struct_page() for each
2956 * individual page.
2957 */
2958 ops->alloc_and_copy(vma, src, dst, start, end, private);
2959
2960 /* This does the real migration of struct page */
2961 migrate_vma_pages(&migrate);
2962
2963 ops->finalize_and_map(vma, src, dst, start, end, private);
2964
2965 /* Unlock and remap pages */
2966 migrate_vma_finalize(&migrate);
2967
2968 return 0;
2969}
2970EXPORT_SYMBOL(migrate_vma);
6b368cd4 2971#endif /* defined(MIGRATE_VMA_HELPER) */