]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/migrate.c
thp: set compound tail page _count to zero
[mirror_ubuntu-artful-kernel.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
5a0e3ad6 36#include <linux/gfp.h>
b20a3503 37
0d1836c3
MN
38#include <asm/tlbflush.h>
39
b20a3503
CL
40#include "internal.h"
41
b20a3503
CL
42#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
43
b20a3503 44/*
742755a1 45 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47 * undesirable, use migrate_prep_local()
b20a3503
CL
48 */
49int migrate_prep(void)
50{
b20a3503
CL
51 /*
52 * Clear the LRU lists so pages can be isolated.
53 * Note that pages may be moved off the LRU after we have
54 * drained them. Those pages will fail to migrate like other
55 * pages that may be busy.
56 */
57 lru_add_drain_all();
58
59 return 0;
60}
61
748446bb
MG
62/* Do the necessary work of migrate_prep but not if it involves other CPUs */
63int migrate_prep_local(void)
64{
65 lru_add_drain();
66
67 return 0;
68}
69
b20a3503 70/*
894bc310
LS
71 * Add isolated pages on the list back to the LRU under page lock
72 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 73 */
e13861d8 74void putback_lru_pages(struct list_head *l)
b20a3503
CL
75{
76 struct page *page;
77 struct page *page2;
b20a3503
CL
78
79 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 80 list_del(&page->lru);
a731286d 81 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 82 page_is_file_cache(page));
894bc310 83 putback_lru_page(page);
b20a3503 84 }
b20a3503
CL
85}
86
0697212a
CL
87/*
88 * Restore a potential migration pte to a working pte entry
89 */
e9995ef9
HD
90static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
91 unsigned long addr, void *old)
0697212a
CL
92{
93 struct mm_struct *mm = vma->vm_mm;
94 swp_entry_t entry;
95 pgd_t *pgd;
96 pud_t *pud;
97 pmd_t *pmd;
98 pte_t *ptep, pte;
99 spinlock_t *ptl;
100
290408d4
NH
101 if (unlikely(PageHuge(new))) {
102 ptep = huge_pte_offset(mm, addr);
103 if (!ptep)
104 goto out;
105 ptl = &mm->page_table_lock;
106 } else {
107 pgd = pgd_offset(mm, addr);
108 if (!pgd_present(*pgd))
109 goto out;
0697212a 110
290408d4
NH
111 pud = pud_offset(pgd, addr);
112 if (!pud_present(*pud))
113 goto out;
0697212a 114
290408d4 115 pmd = pmd_offset(pud, addr);
500d65d4
AA
116 if (pmd_trans_huge(*pmd))
117 goto out;
290408d4
NH
118 if (!pmd_present(*pmd))
119 goto out;
0697212a 120
290408d4 121 ptep = pte_offset_map(pmd, addr);
0697212a 122
486cf46f
HD
123 /*
124 * Peek to check is_swap_pte() before taking ptlock? No, we
125 * can race mremap's move_ptes(), which skips anon_vma lock.
126 */
290408d4
NH
127
128 ptl = pte_lockptr(mm, pmd);
129 }
0697212a 130
0697212a
CL
131 spin_lock(ptl);
132 pte = *ptep;
133 if (!is_swap_pte(pte))
e9995ef9 134 goto unlock;
0697212a
CL
135
136 entry = pte_to_swp_entry(pte);
137
e9995ef9
HD
138 if (!is_migration_entry(entry) ||
139 migration_entry_to_page(entry) != old)
140 goto unlock;
0697212a 141
0697212a
CL
142 get_page(new);
143 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
144 if (is_write_migration_entry(entry))
145 pte = pte_mkwrite(pte);
3ef8fd7f 146#ifdef CONFIG_HUGETLB_PAGE
290408d4
NH
147 if (PageHuge(new))
148 pte = pte_mkhuge(pte);
3ef8fd7f 149#endif
97ee0524 150 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 151 set_pte_at(mm, addr, ptep, pte);
04e62a29 152
290408d4
NH
153 if (PageHuge(new)) {
154 if (PageAnon(new))
155 hugepage_add_anon_rmap(new, vma, addr);
156 else
157 page_dup_rmap(new);
158 } else if (PageAnon(new))
04e62a29
CL
159 page_add_anon_rmap(new, vma, addr);
160 else
161 page_add_file_rmap(new);
162
163 /* No need to invalidate - it was non-present before */
4b3073e1 164 update_mmu_cache(vma, addr, ptep);
e9995ef9 165unlock:
0697212a 166 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
167out:
168 return SWAP_AGAIN;
0697212a
CL
169}
170
04e62a29
CL
171/*
172 * Get rid of all migration entries and replace them by
173 * references to the indicated page.
174 */
175static void remove_migration_ptes(struct page *old, struct page *new)
176{
e9995ef9 177 rmap_walk(new, remove_migration_pte, old);
04e62a29
CL
178}
179
0697212a
CL
180/*
181 * Something used the pte of a page under migration. We need to
182 * get to the page and wait until migration is finished.
183 * When we return from this function the fault will be retried.
184 *
185 * This function is called from do_swap_page().
186 */
187void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
188 unsigned long address)
189{
190 pte_t *ptep, pte;
191 spinlock_t *ptl;
192 swp_entry_t entry;
193 struct page *page;
194
195 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
196 pte = *ptep;
197 if (!is_swap_pte(pte))
198 goto out;
199
200 entry = pte_to_swp_entry(pte);
201 if (!is_migration_entry(entry))
202 goto out;
203
204 page = migration_entry_to_page(entry);
205
e286781d
NP
206 /*
207 * Once radix-tree replacement of page migration started, page_count
208 * *must* be zero. And, we don't want to call wait_on_page_locked()
209 * against a page without get_page().
210 * So, we use get_page_unless_zero(), here. Even failed, page fault
211 * will occur again.
212 */
213 if (!get_page_unless_zero(page))
214 goto out;
0697212a
CL
215 pte_unmap_unlock(ptep, ptl);
216 wait_on_page_locked(page);
217 put_page(page);
218 return;
219out:
220 pte_unmap_unlock(ptep, ptl);
221}
222
b20a3503 223/*
c3fcf8a5 224 * Replace the page in the mapping.
5b5c7120
CL
225 *
226 * The number of remaining references must be:
227 * 1 for anonymous pages without a mapping
228 * 2 for pages with a mapping
266cf658 229 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 230 */
2d1db3b1
CL
231static int migrate_page_move_mapping(struct address_space *mapping,
232 struct page *newpage, struct page *page)
b20a3503 233{
e286781d 234 int expected_count;
7cf9c2c7 235 void **pslot;
b20a3503 236
6c5240ae 237 if (!mapping) {
0e8c7d0f 238 /* Anonymous page without mapping */
6c5240ae
CL
239 if (page_count(page) != 1)
240 return -EAGAIN;
241 return 0;
242 }
243
19fd6231 244 spin_lock_irq(&mapping->tree_lock);
b20a3503 245
7cf9c2c7
NP
246 pslot = radix_tree_lookup_slot(&mapping->page_tree,
247 page_index(page));
b20a3503 248
edcf4748 249 expected_count = 2 + page_has_private(page);
e286781d 250 if (page_count(page) != expected_count ||
29c1f677 251 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 252 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 253 return -EAGAIN;
b20a3503
CL
254 }
255
e286781d 256 if (!page_freeze_refs(page, expected_count)) {
19fd6231 257 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
258 return -EAGAIN;
259 }
260
b20a3503
CL
261 /*
262 * Now we know that no one else is looking at the page.
b20a3503 263 */
7cf9c2c7 264 get_page(newpage); /* add cache reference */
b20a3503
CL
265 if (PageSwapCache(page)) {
266 SetPageSwapCache(newpage);
267 set_page_private(newpage, page_private(page));
268 }
269
7cf9c2c7
NP
270 radix_tree_replace_slot(pslot, newpage);
271
e286781d 272 page_unfreeze_refs(page, expected_count);
7cf9c2c7
NP
273 /*
274 * Drop cache reference from old page.
275 * We know this isn't the last reference.
276 */
b20a3503 277 __put_page(page);
7cf9c2c7 278
0e8c7d0f
CL
279 /*
280 * If moved to a different zone then also account
281 * the page for that zone. Other VM counters will be
282 * taken care of when we establish references to the
283 * new page and drop references to the old page.
284 *
285 * Note that anonymous pages are accounted for
286 * via NR_FILE_PAGES and NR_ANON_PAGES if they
287 * are mapped to swap space.
288 */
289 __dec_zone_page_state(page, NR_FILE_PAGES);
290 __inc_zone_page_state(newpage, NR_FILE_PAGES);
99a15e21 291 if (!PageSwapCache(page) && PageSwapBacked(page)) {
4b02108a
KM
292 __dec_zone_page_state(page, NR_SHMEM);
293 __inc_zone_page_state(newpage, NR_SHMEM);
294 }
19fd6231 295 spin_unlock_irq(&mapping->tree_lock);
b20a3503
CL
296
297 return 0;
298}
b20a3503 299
290408d4
NH
300/*
301 * The expected number of remaining references is the same as that
302 * of migrate_page_move_mapping().
303 */
304int migrate_huge_page_move_mapping(struct address_space *mapping,
305 struct page *newpage, struct page *page)
306{
307 int expected_count;
308 void **pslot;
309
310 if (!mapping) {
311 if (page_count(page) != 1)
312 return -EAGAIN;
313 return 0;
314 }
315
316 spin_lock_irq(&mapping->tree_lock);
317
318 pslot = radix_tree_lookup_slot(&mapping->page_tree,
319 page_index(page));
320
321 expected_count = 2 + page_has_private(page);
322 if (page_count(page) != expected_count ||
29c1f677 323 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
324 spin_unlock_irq(&mapping->tree_lock);
325 return -EAGAIN;
326 }
327
328 if (!page_freeze_refs(page, expected_count)) {
329 spin_unlock_irq(&mapping->tree_lock);
330 return -EAGAIN;
331 }
332
333 get_page(newpage);
334
335 radix_tree_replace_slot(pslot, newpage);
336
337 page_unfreeze_refs(page, expected_count);
338
339 __put_page(page);
340
341 spin_unlock_irq(&mapping->tree_lock);
342 return 0;
343}
344
b20a3503
CL
345/*
346 * Copy the page to its new location
347 */
290408d4 348void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 349{
290408d4
NH
350 if (PageHuge(page))
351 copy_huge_page(newpage, page);
352 else
353 copy_highpage(newpage, page);
b20a3503
CL
354
355 if (PageError(page))
356 SetPageError(newpage);
357 if (PageReferenced(page))
358 SetPageReferenced(newpage);
359 if (PageUptodate(page))
360 SetPageUptodate(newpage);
894bc310
LS
361 if (TestClearPageActive(page)) {
362 VM_BUG_ON(PageUnevictable(page));
b20a3503 363 SetPageActive(newpage);
418b27ef
LS
364 } else if (TestClearPageUnevictable(page))
365 SetPageUnevictable(newpage);
b20a3503
CL
366 if (PageChecked(page))
367 SetPageChecked(newpage);
368 if (PageMappedToDisk(page))
369 SetPageMappedToDisk(newpage);
370
371 if (PageDirty(page)) {
372 clear_page_dirty_for_io(page);
3a902c5f
NP
373 /*
374 * Want to mark the page and the radix tree as dirty, and
375 * redo the accounting that clear_page_dirty_for_io undid,
376 * but we can't use set_page_dirty because that function
377 * is actually a signal that all of the page has become dirty.
25985edc 378 * Whereas only part of our page may be dirty.
3a902c5f
NP
379 */
380 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
381 }
382
b291f000 383 mlock_migrate_page(newpage, page);
e9995ef9 384 ksm_migrate_page(newpage, page);
b291f000 385
b20a3503 386 ClearPageSwapCache(page);
b20a3503
CL
387 ClearPagePrivate(page);
388 set_page_private(page, 0);
389 page->mapping = NULL;
390
391 /*
392 * If any waiters have accumulated on the new page then
393 * wake them up.
394 */
395 if (PageWriteback(newpage))
396 end_page_writeback(newpage);
397}
b20a3503 398
1d8b85cc
CL
399/************************************************************
400 * Migration functions
401 ***********************************************************/
402
403/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
404int fail_migrate_page(struct address_space *mapping,
405 struct page *newpage, struct page *page)
1d8b85cc
CL
406{
407 return -EIO;
408}
409EXPORT_SYMBOL(fail_migrate_page);
410
b20a3503
CL
411/*
412 * Common logic to directly migrate a single page suitable for
266cf658 413 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
414 *
415 * Pages are locked upon entry and exit.
416 */
2d1db3b1
CL
417int migrate_page(struct address_space *mapping,
418 struct page *newpage, struct page *page)
b20a3503
CL
419{
420 int rc;
421
422 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
423
2d1db3b1 424 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
425
426 if (rc)
427 return rc;
428
429 migrate_page_copy(newpage, page);
b20a3503
CL
430 return 0;
431}
432EXPORT_SYMBOL(migrate_page);
433
9361401e 434#ifdef CONFIG_BLOCK
1d8b85cc
CL
435/*
436 * Migration function for pages with buffers. This function can only be used
437 * if the underlying filesystem guarantees that no other references to "page"
438 * exist.
439 */
2d1db3b1
CL
440int buffer_migrate_page(struct address_space *mapping,
441 struct page *newpage, struct page *page)
1d8b85cc 442{
1d8b85cc
CL
443 struct buffer_head *bh, *head;
444 int rc;
445
1d8b85cc 446 if (!page_has_buffers(page))
2d1db3b1 447 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
448
449 head = page_buffers(page);
450
2d1db3b1 451 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
452
453 if (rc)
454 return rc;
455
456 bh = head;
457 do {
458 get_bh(bh);
459 lock_buffer(bh);
460 bh = bh->b_this_page;
461
462 } while (bh != head);
463
464 ClearPagePrivate(page);
465 set_page_private(newpage, page_private(page));
466 set_page_private(page, 0);
467 put_page(page);
468 get_page(newpage);
469
470 bh = head;
471 do {
472 set_bh_page(bh, newpage, bh_offset(bh));
473 bh = bh->b_this_page;
474
475 } while (bh != head);
476
477 SetPagePrivate(newpage);
478
479 migrate_page_copy(newpage, page);
480
481 bh = head;
482 do {
483 unlock_buffer(bh);
484 put_bh(bh);
485 bh = bh->b_this_page;
486
487 } while (bh != head);
488
489 return 0;
490}
491EXPORT_SYMBOL(buffer_migrate_page);
9361401e 492#endif
1d8b85cc 493
04e62a29
CL
494/*
495 * Writeback a page to clean the dirty state
496 */
497static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 498{
04e62a29
CL
499 struct writeback_control wbc = {
500 .sync_mode = WB_SYNC_NONE,
501 .nr_to_write = 1,
502 .range_start = 0,
503 .range_end = LLONG_MAX,
04e62a29
CL
504 .for_reclaim = 1
505 };
506 int rc;
507
508 if (!mapping->a_ops->writepage)
509 /* No write method for the address space */
510 return -EINVAL;
511
512 if (!clear_page_dirty_for_io(page))
513 /* Someone else already triggered a write */
514 return -EAGAIN;
515
8351a6e4 516 /*
04e62a29
CL
517 * A dirty page may imply that the underlying filesystem has
518 * the page on some queue. So the page must be clean for
519 * migration. Writeout may mean we loose the lock and the
520 * page state is no longer what we checked for earlier.
521 * At this point we know that the migration attempt cannot
522 * be successful.
8351a6e4 523 */
04e62a29 524 remove_migration_ptes(page, page);
8351a6e4 525
04e62a29 526 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 527
04e62a29
CL
528 if (rc != AOP_WRITEPAGE_ACTIVATE)
529 /* unlocked. Relock */
530 lock_page(page);
531
bda8550d 532 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
533}
534
535/*
536 * Default handling if a filesystem does not provide a migration function.
537 */
538static int fallback_migrate_page(struct address_space *mapping,
539 struct page *newpage, struct page *page)
540{
541 if (PageDirty(page))
542 return writeout(mapping, page);
8351a6e4
CL
543
544 /*
545 * Buffers may be managed in a filesystem specific way.
546 * We must have no buffers or drop them.
547 */
266cf658 548 if (page_has_private(page) &&
8351a6e4
CL
549 !try_to_release_page(page, GFP_KERNEL))
550 return -EAGAIN;
551
552 return migrate_page(mapping, newpage, page);
553}
554
e24f0b8f
CL
555/*
556 * Move a page to a newly allocated page
557 * The page is locked and all ptes have been successfully removed.
558 *
559 * The new page will have replaced the old page if this function
560 * is successful.
894bc310
LS
561 *
562 * Return value:
563 * < 0 - error code
564 * == 0 - success
e24f0b8f 565 */
3fe2011f 566static int move_to_new_page(struct page *newpage, struct page *page,
11bc82d6 567 int remap_swapcache, bool sync)
e24f0b8f
CL
568{
569 struct address_space *mapping;
570 int rc;
571
572 /*
573 * Block others from accessing the page when we get around to
574 * establishing additional references. We are the only one
575 * holding a reference to the new page at this point.
576 */
529ae9aa 577 if (!trylock_page(newpage))
e24f0b8f
CL
578 BUG();
579
580 /* Prepare mapping for the new page.*/
581 newpage->index = page->index;
582 newpage->mapping = page->mapping;
b2e18538
RR
583 if (PageSwapBacked(page))
584 SetPageSwapBacked(newpage);
e24f0b8f
CL
585
586 mapping = page_mapping(page);
587 if (!mapping)
588 rc = migrate_page(mapping, newpage, page);
11bc82d6 589 else {
e24f0b8f 590 /*
11bc82d6
AA
591 * Do not writeback pages if !sync and migratepage is
592 * not pointing to migrate_page() which is nonblocking
593 * (swapcache/tmpfs uses migratepage = migrate_page).
e24f0b8f 594 */
11bc82d6
AA
595 if (PageDirty(page) && !sync &&
596 mapping->a_ops->migratepage != migrate_page)
597 rc = -EBUSY;
598 else if (mapping->a_ops->migratepage)
599 /*
600 * Most pages have a mapping and most filesystems
601 * should provide a migration function. Anonymous
602 * pages are part of swap space which also has its
603 * own migration function. This is the most common
604 * path for page migration.
605 */
606 rc = mapping->a_ops->migratepage(mapping,
607 newpage, page);
608 else
609 rc = fallback_migrate_page(mapping, newpage, page);
610 }
e24f0b8f 611
3fe2011f 612 if (rc) {
e24f0b8f 613 newpage->mapping = NULL;
3fe2011f
MG
614 } else {
615 if (remap_swapcache)
616 remove_migration_ptes(page, newpage);
617 }
e24f0b8f
CL
618
619 unlock_page(newpage);
620
621 return rc;
622}
623
0dabec93
MK
624static int __unmap_and_move(struct page *page, struct page *newpage,
625 int force, bool offlining, bool sync)
e24f0b8f 626{
0dabec93 627 int rc = -EAGAIN;
3fe2011f 628 int remap_swapcache = 1;
ae41be37 629 int charge = 0;
56039efa 630 struct mem_cgroup *mem;
3f6c8272 631 struct anon_vma *anon_vma = NULL;
95a402c3 632
529ae9aa 633 if (!trylock_page(page)) {
11bc82d6 634 if (!force || !sync)
0dabec93 635 goto out;
3e7d3449
MG
636
637 /*
638 * It's not safe for direct compaction to call lock_page.
639 * For example, during page readahead pages are added locked
640 * to the LRU. Later, when the IO completes the pages are
641 * marked uptodate and unlocked. However, the queueing
642 * could be merging multiple pages for one bio (e.g.
643 * mpage_readpages). If an allocation happens for the
644 * second or third page, the process can end up locking
645 * the same page twice and deadlocking. Rather than
646 * trying to be clever about what pages can be locked,
647 * avoid the use of lock_page for direct compaction
648 * altogether.
649 */
650 if (current->flags & PF_MEMALLOC)
0dabec93 651 goto out;
3e7d3449 652
e24f0b8f
CL
653 lock_page(page);
654 }
655
62b61f61
HD
656 /*
657 * Only memory hotplug's offline_pages() caller has locked out KSM,
658 * and can safely migrate a KSM page. The other cases have skipped
659 * PageKsm along with PageReserved - but it is only now when we have
660 * the page lock that we can be certain it will not go KSM beneath us
661 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
662 * its pagecount raised, but only here do we take the page lock which
663 * serializes that).
664 */
665 if (PageKsm(page) && !offlining) {
666 rc = -EBUSY;
667 goto unlock;
668 }
669
01b1ae63 670 /* charge against new page */
ef6a3c63 671 charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
01b1ae63
KH
672 if (charge == -ENOMEM) {
673 rc = -ENOMEM;
674 goto unlock;
675 }
676 BUG_ON(charge);
677
e24f0b8f 678 if (PageWriteback(page)) {
11bc82d6
AA
679 /*
680 * For !sync, there is no point retrying as the retry loop
681 * is expected to be too short for PageWriteback to be cleared
682 */
683 if (!sync) {
684 rc = -EBUSY;
685 goto uncharge;
686 }
687 if (!force)
01b1ae63 688 goto uncharge;
e24f0b8f
CL
689 wait_on_page_writeback(page);
690 }
e24f0b8f 691 /*
dc386d4d
KH
692 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
693 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 694 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 695 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
696 * File Caches may use write_page() or lock_page() in migration, then,
697 * just care Anon page here.
dc386d4d 698 */
989f89c5 699 if (PageAnon(page)) {
1ce82b69
HD
700 /*
701 * Only page_lock_anon_vma() understands the subtleties of
702 * getting a hold on an anon_vma from outside one of its mms.
703 */
746b18d4 704 anon_vma = page_get_anon_vma(page);
1ce82b69
HD
705 if (anon_vma) {
706 /*
746b18d4 707 * Anon page
1ce82b69 708 */
1ce82b69 709 } else if (PageSwapCache(page)) {
3fe2011f
MG
710 /*
711 * We cannot be sure that the anon_vma of an unmapped
712 * swapcache page is safe to use because we don't
713 * know in advance if the VMA that this page belonged
714 * to still exists. If the VMA and others sharing the
715 * data have been freed, then the anon_vma could
716 * already be invalid.
717 *
718 * To avoid this possibility, swapcache pages get
719 * migrated but are not remapped when migration
720 * completes
721 */
722 remap_swapcache = 0;
723 } else {
1ce82b69 724 goto uncharge;
3fe2011f 725 }
989f89c5 726 }
62e1c553 727
dc386d4d 728 /*
62e1c553
SL
729 * Corner case handling:
730 * 1. When a new swap-cache page is read into, it is added to the LRU
731 * and treated as swapcache but it has no rmap yet.
732 * Calling try_to_unmap() against a page->mapping==NULL page will
733 * trigger a BUG. So handle it here.
734 * 2. An orphaned page (see truncate_complete_page) might have
735 * fs-private metadata. The page can be picked up due to memory
736 * offlining. Everywhere else except page reclaim, the page is
737 * invisible to the vm, so the page can not be migrated. So try to
738 * free the metadata, so the page can be freed.
e24f0b8f 739 */
62e1c553 740 if (!page->mapping) {
1ce82b69
HD
741 VM_BUG_ON(PageAnon(page));
742 if (page_has_private(page)) {
62e1c553 743 try_to_free_buffers(page);
1ce82b69 744 goto uncharge;
62e1c553 745 }
abfc3488 746 goto skip_unmap;
62e1c553
SL
747 }
748
dc386d4d 749 /* Establish migration ptes or remove ptes */
14fa31b8 750 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 751
abfc3488 752skip_unmap:
e6a1530d 753 if (!page_mapped(page))
11bc82d6 754 rc = move_to_new_page(newpage, page, remap_swapcache, sync);
e24f0b8f 755
3fe2011f 756 if (rc && remap_swapcache)
e24f0b8f 757 remove_migration_ptes(page, page);
3f6c8272
MG
758
759 /* Drop an anon_vma reference if we took one */
76545066 760 if (anon_vma)
9e60109f 761 put_anon_vma(anon_vma);
3f6c8272 762
01b1ae63
KH
763uncharge:
764 if (!charge)
50de1dd9 765 mem_cgroup_end_migration(mem, page, newpage, rc == 0);
e24f0b8f
CL
766unlock:
767 unlock_page(page);
0dabec93
MK
768out:
769 return rc;
770}
95a402c3 771
0dabec93
MK
772/*
773 * Obtain the lock on page, remove all ptes and migrate the page
774 * to the newly allocated page in newpage.
775 */
776static int unmap_and_move(new_page_t get_new_page, unsigned long private,
777 struct page *page, int force, bool offlining, bool sync)
778{
779 int rc = 0;
780 int *result = NULL;
781 struct page *newpage = get_new_page(page, private, &result);
782
783 if (!newpage)
784 return -ENOMEM;
785
786 if (page_count(page) == 1) {
787 /* page was freed from under us. So we are done. */
788 goto out;
789 }
790
791 if (unlikely(PageTransHuge(page)))
792 if (unlikely(split_huge_page(page)))
793 goto out;
794
795 rc = __unmap_and_move(page, newpage, force, offlining, sync);
796out:
e24f0b8f 797 if (rc != -EAGAIN) {
0dabec93
MK
798 /*
799 * A page that has been migrated has all references
800 * removed and will be freed. A page that has not been
801 * migrated will have kepts its references and be
802 * restored.
803 */
804 list_del(&page->lru);
a731286d 805 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 806 page_is_file_cache(page));
894bc310 807 putback_lru_page(page);
e24f0b8f 808 }
95a402c3
CL
809 /*
810 * Move the new page to the LRU. If migration was not successful
811 * then this will free the page.
812 */
894bc310 813 putback_lru_page(newpage);
742755a1
CL
814 if (result) {
815 if (rc)
816 *result = rc;
817 else
818 *result = page_to_nid(newpage);
819 }
e24f0b8f
CL
820 return rc;
821}
822
290408d4
NH
823/*
824 * Counterpart of unmap_and_move_page() for hugepage migration.
825 *
826 * This function doesn't wait the completion of hugepage I/O
827 * because there is no race between I/O and migration for hugepage.
828 * Note that currently hugepage I/O occurs only in direct I/O
829 * where no lock is held and PG_writeback is irrelevant,
830 * and writeback status of all subpages are counted in the reference
831 * count of the head page (i.e. if all subpages of a 2MB hugepage are
832 * under direct I/O, the reference of the head page is 512 and a bit more.)
833 * This means that when we try to migrate hugepage whose subpages are
834 * doing direct I/O, some references remain after try_to_unmap() and
835 * hugepage migration fails without data corruption.
836 *
837 * There is also no race when direct I/O is issued on the page under migration,
838 * because then pte is replaced with migration swap entry and direct I/O code
839 * will wait in the page fault for migration to complete.
840 */
841static int unmap_and_move_huge_page(new_page_t get_new_page,
842 unsigned long private, struct page *hpage,
7f0f2496 843 int force, bool offlining, bool sync)
290408d4
NH
844{
845 int rc = 0;
846 int *result = NULL;
847 struct page *new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
848 struct anon_vma *anon_vma = NULL;
849
850 if (!new_hpage)
851 return -ENOMEM;
852
853 rc = -EAGAIN;
854
855 if (!trylock_page(hpage)) {
77f1fe6b 856 if (!force || !sync)
290408d4
NH
857 goto out;
858 lock_page(hpage);
859 }
860
746b18d4
PZ
861 if (PageAnon(hpage))
862 anon_vma = page_get_anon_vma(hpage);
290408d4
NH
863
864 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
865
866 if (!page_mapped(hpage))
11bc82d6 867 rc = move_to_new_page(new_hpage, hpage, 1, sync);
290408d4
NH
868
869 if (rc)
870 remove_migration_ptes(hpage, hpage);
871
fd4a4663 872 if (anon_vma)
9e60109f 873 put_anon_vma(anon_vma);
290408d4
NH
874out:
875 unlock_page(hpage);
876
877 if (rc != -EAGAIN) {
878 list_del(&hpage->lru);
879 put_page(hpage);
880 }
881
882 put_page(new_hpage);
883
884 if (result) {
885 if (rc)
886 *result = rc;
887 else
888 *result = page_to_nid(new_hpage);
889 }
890 return rc;
891}
892
b20a3503
CL
893/*
894 * migrate_pages
895 *
95a402c3
CL
896 * The function takes one list of pages to migrate and a function
897 * that determines from the page to be migrated and the private data
898 * the target of the move and allocates the page.
b20a3503
CL
899 *
900 * The function returns after 10 attempts or if no pages
901 * are movable anymore because to has become empty
cf608ac1
MK
902 * or no retryable pages exist anymore.
903 * Caller should call putback_lru_pages to return pages to the LRU
28bd6578 904 * or free list only if ret != 0.
b20a3503 905 *
95a402c3 906 * Return: Number of pages not migrated or error code.
b20a3503 907 */
95a402c3 908int migrate_pages(struct list_head *from,
7f0f2496 909 new_page_t get_new_page, unsigned long private, bool offlining,
77f1fe6b 910 bool sync)
b20a3503 911{
e24f0b8f 912 int retry = 1;
b20a3503
CL
913 int nr_failed = 0;
914 int pass = 0;
915 struct page *page;
916 struct page *page2;
917 int swapwrite = current->flags & PF_SWAPWRITE;
918 int rc;
919
920 if (!swapwrite)
921 current->flags |= PF_SWAPWRITE;
922
e24f0b8f
CL
923 for(pass = 0; pass < 10 && retry; pass++) {
924 retry = 0;
b20a3503 925
e24f0b8f 926 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 927 cond_resched();
2d1db3b1 928
95a402c3 929 rc = unmap_and_move(get_new_page, private,
77f1fe6b
MG
930 page, pass > 2, offlining,
931 sync);
2d1db3b1 932
e24f0b8f 933 switch(rc) {
95a402c3
CL
934 case -ENOMEM:
935 goto out;
e24f0b8f 936 case -EAGAIN:
2d1db3b1 937 retry++;
e24f0b8f
CL
938 break;
939 case 0:
e24f0b8f
CL
940 break;
941 default:
2d1db3b1 942 /* Permanent failure */
2d1db3b1 943 nr_failed++;
e24f0b8f 944 break;
2d1db3b1 945 }
b20a3503
CL
946 }
947 }
95a402c3
CL
948 rc = 0;
949out:
b20a3503
CL
950 if (!swapwrite)
951 current->flags &= ~PF_SWAPWRITE;
952
95a402c3
CL
953 if (rc)
954 return rc;
b20a3503 955
95a402c3 956 return nr_failed + retry;
b20a3503 957}
95a402c3 958
290408d4 959int migrate_huge_pages(struct list_head *from,
7f0f2496 960 new_page_t get_new_page, unsigned long private, bool offlining,
77f1fe6b 961 bool sync)
290408d4
NH
962{
963 int retry = 1;
964 int nr_failed = 0;
965 int pass = 0;
966 struct page *page;
967 struct page *page2;
968 int rc;
969
970 for (pass = 0; pass < 10 && retry; pass++) {
971 retry = 0;
972
973 list_for_each_entry_safe(page, page2, from, lru) {
974 cond_resched();
975
976 rc = unmap_and_move_huge_page(get_new_page,
77f1fe6b
MG
977 private, page, pass > 2, offlining,
978 sync);
290408d4
NH
979
980 switch(rc) {
981 case -ENOMEM:
982 goto out;
983 case -EAGAIN:
984 retry++;
985 break;
986 case 0:
987 break;
988 default:
989 /* Permanent failure */
990 nr_failed++;
991 break;
992 }
993 }
994 }
995 rc = 0;
996out:
290408d4
NH
997 if (rc)
998 return rc;
999
1000 return nr_failed + retry;
1001}
1002
742755a1
CL
1003#ifdef CONFIG_NUMA
1004/*
1005 * Move a list of individual pages
1006 */
1007struct page_to_node {
1008 unsigned long addr;
1009 struct page *page;
1010 int node;
1011 int status;
1012};
1013
1014static struct page *new_page_node(struct page *p, unsigned long private,
1015 int **result)
1016{
1017 struct page_to_node *pm = (struct page_to_node *)private;
1018
1019 while (pm->node != MAX_NUMNODES && pm->page != p)
1020 pm++;
1021
1022 if (pm->node == MAX_NUMNODES)
1023 return NULL;
1024
1025 *result = &pm->status;
1026
6484eb3e 1027 return alloc_pages_exact_node(pm->node,
769848c0 1028 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1029}
1030
1031/*
1032 * Move a set of pages as indicated in the pm array. The addr
1033 * field must be set to the virtual address of the page to be moved
1034 * and the node number must contain a valid target node.
5e9a0f02 1035 * The pm array ends with node = MAX_NUMNODES.
742755a1 1036 */
5e9a0f02
BG
1037static int do_move_page_to_node_array(struct mm_struct *mm,
1038 struct page_to_node *pm,
1039 int migrate_all)
742755a1
CL
1040{
1041 int err;
1042 struct page_to_node *pp;
1043 LIST_HEAD(pagelist);
1044
1045 down_read(&mm->mmap_sem);
1046
1047 /*
1048 * Build a list of pages to migrate
1049 */
742755a1
CL
1050 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1051 struct vm_area_struct *vma;
1052 struct page *page;
1053
742755a1
CL
1054 err = -EFAULT;
1055 vma = find_vma(mm, pp->addr);
70384dc6 1056 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1057 goto set_status;
1058
500d65d4 1059 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
89f5b7da
LT
1060
1061 err = PTR_ERR(page);
1062 if (IS_ERR(page))
1063 goto set_status;
1064
742755a1
CL
1065 err = -ENOENT;
1066 if (!page)
1067 goto set_status;
1068
62b61f61
HD
1069 /* Use PageReserved to check for zero page */
1070 if (PageReserved(page) || PageKsm(page))
742755a1
CL
1071 goto put_and_set;
1072
1073 pp->page = page;
1074 err = page_to_nid(page);
1075
1076 if (err == pp->node)
1077 /*
1078 * Node already in the right place
1079 */
1080 goto put_and_set;
1081
1082 err = -EACCES;
1083 if (page_mapcount(page) > 1 &&
1084 !migrate_all)
1085 goto put_and_set;
1086
62695a84 1087 err = isolate_lru_page(page);
6d9c285a 1088 if (!err) {
62695a84 1089 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1090 inc_zone_page_state(page, NR_ISOLATED_ANON +
1091 page_is_file_cache(page));
1092 }
742755a1
CL
1093put_and_set:
1094 /*
1095 * Either remove the duplicate refcount from
1096 * isolate_lru_page() or drop the page ref if it was
1097 * not isolated.
1098 */
1099 put_page(page);
1100set_status:
1101 pp->status = err;
1102 }
1103
e78bbfa8 1104 err = 0;
cf608ac1 1105 if (!list_empty(&pagelist)) {
742755a1 1106 err = migrate_pages(&pagelist, new_page_node,
77f1fe6b 1107 (unsigned long)pm, 0, true);
cf608ac1
MK
1108 if (err)
1109 putback_lru_pages(&pagelist);
1110 }
742755a1
CL
1111
1112 up_read(&mm->mmap_sem);
1113 return err;
1114}
1115
5e9a0f02
BG
1116/*
1117 * Migrate an array of page address onto an array of nodes and fill
1118 * the corresponding array of status.
1119 */
1120static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1121 unsigned long nr_pages,
1122 const void __user * __user *pages,
1123 const int __user *nodes,
1124 int __user *status, int flags)
1125{
3140a227 1126 struct page_to_node *pm;
5e9a0f02 1127 nodemask_t task_nodes;
3140a227
BG
1128 unsigned long chunk_nr_pages;
1129 unsigned long chunk_start;
1130 int err;
5e9a0f02
BG
1131
1132 task_nodes = cpuset_mems_allowed(task);
1133
3140a227
BG
1134 err = -ENOMEM;
1135 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1136 if (!pm)
5e9a0f02 1137 goto out;
35282a2d
BG
1138
1139 migrate_prep();
1140
5e9a0f02 1141 /*
3140a227
BG
1142 * Store a chunk of page_to_node array in a page,
1143 * but keep the last one as a marker
5e9a0f02 1144 */
3140a227 1145 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1146
3140a227
BG
1147 for (chunk_start = 0;
1148 chunk_start < nr_pages;
1149 chunk_start += chunk_nr_pages) {
1150 int j;
5e9a0f02 1151
3140a227
BG
1152 if (chunk_start + chunk_nr_pages > nr_pages)
1153 chunk_nr_pages = nr_pages - chunk_start;
1154
1155 /* fill the chunk pm with addrs and nodes from user-space */
1156 for (j = 0; j < chunk_nr_pages; j++) {
1157 const void __user *p;
5e9a0f02
BG
1158 int node;
1159
3140a227
BG
1160 err = -EFAULT;
1161 if (get_user(p, pages + j + chunk_start))
1162 goto out_pm;
1163 pm[j].addr = (unsigned long) p;
1164
1165 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1166 goto out_pm;
1167
1168 err = -ENODEV;
6f5a55f1
LT
1169 if (node < 0 || node >= MAX_NUMNODES)
1170 goto out_pm;
1171
5e9a0f02
BG
1172 if (!node_state(node, N_HIGH_MEMORY))
1173 goto out_pm;
1174
1175 err = -EACCES;
1176 if (!node_isset(node, task_nodes))
1177 goto out_pm;
1178
3140a227
BG
1179 pm[j].node = node;
1180 }
1181
1182 /* End marker for this chunk */
1183 pm[chunk_nr_pages].node = MAX_NUMNODES;
1184
1185 /* Migrate this chunk */
1186 err = do_move_page_to_node_array(mm, pm,
1187 flags & MPOL_MF_MOVE_ALL);
1188 if (err < 0)
1189 goto out_pm;
5e9a0f02 1190
5e9a0f02 1191 /* Return status information */
3140a227
BG
1192 for (j = 0; j < chunk_nr_pages; j++)
1193 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1194 err = -EFAULT;
3140a227
BG
1195 goto out_pm;
1196 }
1197 }
1198 err = 0;
5e9a0f02
BG
1199
1200out_pm:
3140a227 1201 free_page((unsigned long)pm);
5e9a0f02
BG
1202out:
1203 return err;
1204}
1205
742755a1 1206/*
2f007e74 1207 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1208 */
80bba129
BG
1209static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1210 const void __user **pages, int *status)
742755a1 1211{
2f007e74 1212 unsigned long i;
2f007e74 1213
742755a1
CL
1214 down_read(&mm->mmap_sem);
1215
2f007e74 1216 for (i = 0; i < nr_pages; i++) {
80bba129 1217 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1218 struct vm_area_struct *vma;
1219 struct page *page;
c095adbc 1220 int err = -EFAULT;
2f007e74
BG
1221
1222 vma = find_vma(mm, addr);
70384dc6 1223 if (!vma || addr < vma->vm_start)
742755a1
CL
1224 goto set_status;
1225
2f007e74 1226 page = follow_page(vma, addr, 0);
89f5b7da
LT
1227
1228 err = PTR_ERR(page);
1229 if (IS_ERR(page))
1230 goto set_status;
1231
742755a1
CL
1232 err = -ENOENT;
1233 /* Use PageReserved to check for zero page */
62b61f61 1234 if (!page || PageReserved(page) || PageKsm(page))
742755a1
CL
1235 goto set_status;
1236
1237 err = page_to_nid(page);
1238set_status:
80bba129
BG
1239 *status = err;
1240
1241 pages++;
1242 status++;
1243 }
1244
1245 up_read(&mm->mmap_sem);
1246}
1247
1248/*
1249 * Determine the nodes of a user array of pages and store it in
1250 * a user array of status.
1251 */
1252static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1253 const void __user * __user *pages,
1254 int __user *status)
1255{
1256#define DO_PAGES_STAT_CHUNK_NR 16
1257 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1258 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1259
87b8d1ad
PA
1260 while (nr_pages) {
1261 unsigned long chunk_nr;
80bba129 1262
87b8d1ad
PA
1263 chunk_nr = nr_pages;
1264 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1265 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1266
1267 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1268 break;
80bba129
BG
1269
1270 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1271
87b8d1ad
PA
1272 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1273 break;
742755a1 1274
87b8d1ad
PA
1275 pages += chunk_nr;
1276 status += chunk_nr;
1277 nr_pages -= chunk_nr;
1278 }
1279 return nr_pages ? -EFAULT : 0;
742755a1
CL
1280}
1281
1282/*
1283 * Move a list of pages in the address space of the currently executing
1284 * process.
1285 */
938bb9f5
HC
1286SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1287 const void __user * __user *, pages,
1288 const int __user *, nodes,
1289 int __user *, status, int, flags)
742755a1 1290{
c69e8d9c 1291 const struct cred *cred = current_cred(), *tcred;
742755a1 1292 struct task_struct *task;
742755a1 1293 struct mm_struct *mm;
5e9a0f02 1294 int err;
742755a1
CL
1295
1296 /* Check flags */
1297 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1298 return -EINVAL;
1299
1300 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1301 return -EPERM;
1302
1303 /* Find the mm_struct */
a879bf58 1304 rcu_read_lock();
228ebcbe 1305 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1306 if (!task) {
a879bf58 1307 rcu_read_unlock();
742755a1
CL
1308 return -ESRCH;
1309 }
1310 mm = get_task_mm(task);
a879bf58 1311 rcu_read_unlock();
742755a1
CL
1312
1313 if (!mm)
1314 return -EINVAL;
1315
1316 /*
1317 * Check if this process has the right to modify the specified
1318 * process. The right exists if the process has administrative
1319 * capabilities, superuser privileges or the same
1320 * userid as the target process.
1321 */
c69e8d9c
DH
1322 rcu_read_lock();
1323 tcred = __task_cred(task);
b6dff3ec
DH
1324 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1325 cred->uid != tcred->suid && cred->uid != tcred->uid &&
742755a1 1326 !capable(CAP_SYS_NICE)) {
c69e8d9c 1327 rcu_read_unlock();
742755a1 1328 err = -EPERM;
5e9a0f02 1329 goto out;
742755a1 1330 }
c69e8d9c 1331 rcu_read_unlock();
742755a1 1332
86c3a764
DQ
1333 err = security_task_movememory(task);
1334 if (err)
5e9a0f02 1335 goto out;
86c3a764 1336
5e9a0f02
BG
1337 if (nodes) {
1338 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1339 flags);
1340 } else {
2f007e74 1341 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1
CL
1342 }
1343
742755a1 1344out:
742755a1
CL
1345 mmput(mm);
1346 return err;
1347}
742755a1 1348
7b2259b3
CL
1349/*
1350 * Call migration functions in the vma_ops that may prepare
1351 * memory in a vm for migration. migration functions may perform
1352 * the migration for vmas that do not have an underlying page struct.
1353 */
1354int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1355 const nodemask_t *from, unsigned long flags)
1356{
1357 struct vm_area_struct *vma;
1358 int err = 0;
1359
1001c9fb 1360 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1361 if (vma->vm_ops && vma->vm_ops->migrate) {
1362 err = vma->vm_ops->migrate(vma, to, from, flags);
1363 if (err)
1364 break;
1365 }
1366 }
1367 return err;
1368}
83d1674a 1369#endif