]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/migrate.c
ocfs2: fix crash in ocfs2_duplicate_clusters_by_page()
[mirror_ubuntu-focal-kernel.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
df6ad698 41#include <linux/pfn_t.h>
a5430dda 42#include <linux/memremap.h>
8315ada7 43#include <linux/userfaultfd_k.h>
bf6bddf1 44#include <linux/balloon_compaction.h>
f714f4f2 45#include <linux/mmu_notifier.h>
33c3fc71 46#include <linux/page_idle.h>
d435edca 47#include <linux/page_owner.h>
6e84f315 48#include <linux/sched/mm.h>
197e7e52 49#include <linux/ptrace.h>
b20a3503 50
0d1836c3
MN
51#include <asm/tlbflush.h>
52
7b2a2d4a
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/migrate.h>
55
b20a3503
CL
56#include "internal.h"
57
b20a3503 58/*
742755a1 59 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
b20a3503
CL
62 */
63int migrate_prep(void)
64{
b20a3503
CL
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74}
75
748446bb
MG
76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
77int migrate_prep_local(void)
78{
79 lru_add_drain();
80
81 return 0;
82}
83
9e5bcd61 84int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
85{
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
9e5bcd61 135 return 0;
bda807d4
MK
136
137out_no_isolated:
138 unlock_page(page);
139out_putpage:
140 put_page(page);
141out:
9e5bcd61 142 return -EBUSY;
bda807d4
MK
143}
144
145/* It should be called on page which is PG_movable */
146void putback_movable_page(struct page *page)
147{
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157}
158
5733c7d1
RA
159/*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
59c82b70
JK
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
5733c7d1
RA
166 */
167void putback_movable_pages(struct list_head *l)
168{
169 struct page *page;
170 struct page *page2;
171
b20a3503 172 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
e24f0b8f 177 list_del(&page->lru);
bda807d4
MK
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
b1123ea6 183 if (unlikely(__PageMovable(page))) {
bda807d4
MK
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
e8db67eb
NH
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
fc280fe8 195 putback_lru_page(page);
bda807d4 196 }
b20a3503 197 }
b20a3503
CL
198}
199
0697212a
CL
200/*
201 * Restore a potential migration pte to a working pte entry
202 */
e4b82222 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 204 unsigned long addr, void *old)
0697212a 205{
3fe87967
KS
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
0697212a 214 swp_entry_t entry;
0697212a 215
3fe87967
KS
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
0697212a 223
616b8371
ZY
224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231#endif
232
3fe87967
KS
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
0697212a 237
3fe87967
KS
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 244
df6ad698
JG
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
252 }
a5430dda
JG
253 } else
254 flush_dcache_page(new);
255
3ef8fd7f 256#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
383321ab
AK
265 } else
266#endif
267 {
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 269
383321ab
AK
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
274 }
3fe87967
KS
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
277
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 }
51afb12b 281
e4b82222 282 return true;
0697212a
CL
283}
284
04e62a29
CL
285/*
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
288 */
e388466d 289void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 290{
051ac83a
JK
291 struct rmap_walk_control rwc = {
292 .rmap_one = remove_migration_pte,
293 .arg = old,
294 };
295
e388466d
KS
296 if (locked)
297 rmap_walk_locked(new, &rwc);
298 else
299 rmap_walk(new, &rwc);
04e62a29
CL
300}
301
0697212a
CL
302/*
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
0697212a 306 */
e66f17ff 307void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 308 spinlock_t *ptl)
0697212a 309{
30dad309 310 pte_t pte;
0697212a
CL
311 swp_entry_t entry;
312 struct page *page;
313
30dad309 314 spin_lock(ptl);
0697212a
CL
315 pte = *ptep;
316 if (!is_swap_pte(pte))
317 goto out;
318
319 entry = pte_to_swp_entry(pte);
320 if (!is_migration_entry(entry))
321 goto out;
322
323 page = migration_entry_to_page(entry);
324
e286781d
NP
325 /*
326 * Once radix-tree replacement of page migration started, page_count
327 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 * against a page without get_page().
329 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 * will occur again.
331 */
332 if (!get_page_unless_zero(page))
333 goto out;
0697212a
CL
334 pte_unmap_unlock(ptep, ptl);
335 wait_on_page_locked(page);
336 put_page(page);
337 return;
338out:
339 pte_unmap_unlock(ptep, ptl);
340}
341
30dad309
NH
342void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
344{
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
348}
349
cb900f41
KS
350void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
30dad309 352{
cb900f41 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
354 __migration_entry_wait(mm, pte, ptl);
355}
356
616b8371
ZY
357#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359{
360 spinlock_t *ptl;
361 struct page *page;
362
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
370 wait_on_page_locked(page);
371 put_page(page);
372 return;
373unlock:
374 spin_unlock(ptl);
375}
376#endif
377
b969c4ab
MG
378#ifdef CONFIG_BLOCK
379/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
380static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 enum migrate_mode mode)
b969c4ab
MG
382{
383 struct buffer_head *bh = head;
384
385 /* Simple case, sync compaction */
a6bc32b8 386 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
387 do {
388 get_bh(bh);
389 lock_buffer(bh);
390 bh = bh->b_this_page;
391
392 } while (bh != head);
393
394 return true;
395 }
396
397 /* async case, we cannot block on lock_buffer so use trylock_buffer */
398 do {
399 get_bh(bh);
400 if (!trylock_buffer(bh)) {
401 /*
402 * We failed to lock the buffer and cannot stall in
403 * async migration. Release the taken locks
404 */
405 struct buffer_head *failed_bh = bh;
406 put_bh(failed_bh);
407 bh = head;
408 while (bh != failed_bh) {
409 unlock_buffer(bh);
410 put_bh(bh);
411 bh = bh->b_this_page;
412 }
413 return false;
414 }
415
416 bh = bh->b_this_page;
417 } while (bh != head);
418 return true;
419}
420#else
421static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 422 enum migrate_mode mode)
b969c4ab
MG
423{
424 return true;
425}
426#endif /* CONFIG_BLOCK */
427
b20a3503 428/*
c3fcf8a5 429 * Replace the page in the mapping.
5b5c7120
CL
430 *
431 * The number of remaining references must be:
432 * 1 for anonymous pages without a mapping
433 * 2 for pages with a mapping
266cf658 434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 435 */
36bc08cc 436int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 437 struct page *newpage, struct page *page,
8e321fef
BL
438 struct buffer_head *head, enum migrate_mode mode,
439 int extra_count)
b20a3503 440{
42cb14b1
HD
441 struct zone *oldzone, *newzone;
442 int dirty;
8e321fef 443 int expected_count = 1 + extra_count;
7cf9c2c7 444 void **pslot;
b20a3503 445
8763cb45 446 /*
df6ad698
JG
447 * Device public or private pages have an extra refcount as they are
448 * ZONE_DEVICE pages.
8763cb45 449 */
df6ad698
JG
450 expected_count += is_device_private_page(page);
451 expected_count += is_device_public_page(page);
8763cb45 452
6c5240ae 453 if (!mapping) {
0e8c7d0f 454 /* Anonymous page without mapping */
8e321fef 455 if (page_count(page) != expected_count)
6c5240ae 456 return -EAGAIN;
cf4b769a
HD
457
458 /* No turning back from here */
cf4b769a
HD
459 newpage->index = page->index;
460 newpage->mapping = page->mapping;
461 if (PageSwapBacked(page))
fa9949da 462 __SetPageSwapBacked(newpage);
cf4b769a 463
78bd5209 464 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
465 }
466
42cb14b1
HD
467 oldzone = page_zone(page);
468 newzone = page_zone(newpage);
469
b93b0163 470 xa_lock_irq(&mapping->i_pages);
b20a3503 471
b93b0163 472 pslot = radix_tree_lookup_slot(&mapping->i_pages,
7cf9c2c7 473 page_index(page));
b20a3503 474
e71769ae 475 expected_count += hpage_nr_pages(page) + page_has_private(page);
e286781d 476 if (page_count(page) != expected_count ||
b93b0163
MW
477 radix_tree_deref_slot_protected(pslot,
478 &mapping->i_pages.xa_lock) != page) {
479 xa_unlock_irq(&mapping->i_pages);
e23ca00b 480 return -EAGAIN;
b20a3503
CL
481 }
482
fe896d18 483 if (!page_ref_freeze(page, expected_count)) {
b93b0163 484 xa_unlock_irq(&mapping->i_pages);
e286781d
NP
485 return -EAGAIN;
486 }
487
b969c4ab
MG
488 /*
489 * In the async migration case of moving a page with buffers, lock the
490 * buffers using trylock before the mapping is moved. If the mapping
491 * was moved, we later failed to lock the buffers and could not move
492 * the mapping back due to an elevated page count, we would have to
493 * block waiting on other references to be dropped.
494 */
a6bc32b8
MG
495 if (mode == MIGRATE_ASYNC && head &&
496 !buffer_migrate_lock_buffers(head, mode)) {
fe896d18 497 page_ref_unfreeze(page, expected_count);
b93b0163 498 xa_unlock_irq(&mapping->i_pages);
b969c4ab
MG
499 return -EAGAIN;
500 }
501
b20a3503 502 /*
cf4b769a
HD
503 * Now we know that no one else is looking at the page:
504 * no turning back from here.
b20a3503 505 */
cf4b769a
HD
506 newpage->index = page->index;
507 newpage->mapping = page->mapping;
e71769ae 508 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
6326fec1
NP
509 if (PageSwapBacked(page)) {
510 __SetPageSwapBacked(newpage);
511 if (PageSwapCache(page)) {
512 SetPageSwapCache(newpage);
513 set_page_private(newpage, page_private(page));
514 }
515 } else {
516 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
517 }
518
42cb14b1
HD
519 /* Move dirty while page refs frozen and newpage not yet exposed */
520 dirty = PageDirty(page);
521 if (dirty) {
522 ClearPageDirty(page);
523 SetPageDirty(newpage);
524 }
525
b93b0163 526 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
e71769ae
NH
527 if (PageTransHuge(page)) {
528 int i;
529 int index = page_index(page);
530
013567be 531 for (i = 1; i < HPAGE_PMD_NR; i++) {
e71769ae
NH
532 pslot = radix_tree_lookup_slot(&mapping->i_pages,
533 index + i);
534 radix_tree_replace_slot(&mapping->i_pages, pslot,
535 newpage + i);
536 }
e71769ae 537 }
7cf9c2c7
NP
538
539 /*
937a94c9
JG
540 * Drop cache reference from old page by unfreezing
541 * to one less reference.
7cf9c2c7
NP
542 * We know this isn't the last reference.
543 */
e71769ae 544 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
7cf9c2c7 545
b93b0163 546 xa_unlock(&mapping->i_pages);
42cb14b1
HD
547 /* Leave irq disabled to prevent preemption while updating stats */
548
0e8c7d0f
CL
549 /*
550 * If moved to a different zone then also account
551 * the page for that zone. Other VM counters will be
552 * taken care of when we establish references to the
553 * new page and drop references to the old page.
554 *
555 * Note that anonymous pages are accounted for
4b9d0fab 556 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
557 * are mapped to swap space.
558 */
42cb14b1 559 if (newzone != oldzone) {
11fb9989
MG
560 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
561 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 562 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
563 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
564 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
565 }
566 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 567 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 568 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 569 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 570 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 571 }
4b02108a 572 }
42cb14b1 573 local_irq_enable();
b20a3503 574
78bd5209 575 return MIGRATEPAGE_SUCCESS;
b20a3503 576}
1118dce7 577EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 578
290408d4
NH
579/*
580 * The expected number of remaining references is the same as that
581 * of migrate_page_move_mapping().
582 */
583int migrate_huge_page_move_mapping(struct address_space *mapping,
584 struct page *newpage, struct page *page)
585{
586 int expected_count;
587 void **pslot;
588
b93b0163 589 xa_lock_irq(&mapping->i_pages);
290408d4 590
b93b0163 591 pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
290408d4
NH
592
593 expected_count = 2 + page_has_private(page);
594 if (page_count(page) != expected_count ||
b93b0163
MW
595 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
596 xa_unlock_irq(&mapping->i_pages);
290408d4
NH
597 return -EAGAIN;
598 }
599
fe896d18 600 if (!page_ref_freeze(page, expected_count)) {
b93b0163 601 xa_unlock_irq(&mapping->i_pages);
290408d4
NH
602 return -EAGAIN;
603 }
604
cf4b769a
HD
605 newpage->index = page->index;
606 newpage->mapping = page->mapping;
6a93ca8f 607
290408d4
NH
608 get_page(newpage);
609
b93b0163 610 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
290408d4 611
fe896d18 612 page_ref_unfreeze(page, expected_count - 1);
290408d4 613
b93b0163 614 xa_unlock_irq(&mapping->i_pages);
6a93ca8f 615
78bd5209 616 return MIGRATEPAGE_SUCCESS;
290408d4
NH
617}
618
30b0a105
DH
619/*
620 * Gigantic pages are so large that we do not guarantee that page++ pointer
621 * arithmetic will work across the entire page. We need something more
622 * specialized.
623 */
624static void __copy_gigantic_page(struct page *dst, struct page *src,
625 int nr_pages)
626{
627 int i;
628 struct page *dst_base = dst;
629 struct page *src_base = src;
630
631 for (i = 0; i < nr_pages; ) {
632 cond_resched();
633 copy_highpage(dst, src);
634
635 i++;
636 dst = mem_map_next(dst, dst_base, i);
637 src = mem_map_next(src, src_base, i);
638 }
639}
640
641static void copy_huge_page(struct page *dst, struct page *src)
642{
643 int i;
644 int nr_pages;
645
646 if (PageHuge(src)) {
647 /* hugetlbfs page */
648 struct hstate *h = page_hstate(src);
649 nr_pages = pages_per_huge_page(h);
650
651 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
652 __copy_gigantic_page(dst, src, nr_pages);
653 return;
654 }
655 } else {
656 /* thp page */
657 BUG_ON(!PageTransHuge(src));
658 nr_pages = hpage_nr_pages(src);
659 }
660
661 for (i = 0; i < nr_pages; i++) {
662 cond_resched();
663 copy_highpage(dst + i, src + i);
664 }
665}
666
b20a3503
CL
667/*
668 * Copy the page to its new location
669 */
2916ecc0 670void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 671{
7851a45c
RR
672 int cpupid;
673
b20a3503
CL
674 if (PageError(page))
675 SetPageError(newpage);
676 if (PageReferenced(page))
677 SetPageReferenced(newpage);
678 if (PageUptodate(page))
679 SetPageUptodate(newpage);
894bc310 680 if (TestClearPageActive(page)) {
309381fe 681 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 682 SetPageActive(newpage);
418b27ef
LS
683 } else if (TestClearPageUnevictable(page))
684 SetPageUnevictable(newpage);
b20a3503
CL
685 if (PageChecked(page))
686 SetPageChecked(newpage);
687 if (PageMappedToDisk(page))
688 SetPageMappedToDisk(newpage);
689
42cb14b1
HD
690 /* Move dirty on pages not done by migrate_page_move_mapping() */
691 if (PageDirty(page))
692 SetPageDirty(newpage);
b20a3503 693
33c3fc71
VD
694 if (page_is_young(page))
695 set_page_young(newpage);
696 if (page_is_idle(page))
697 set_page_idle(newpage);
698
7851a45c
RR
699 /*
700 * Copy NUMA information to the new page, to prevent over-eager
701 * future migrations of this same page.
702 */
703 cpupid = page_cpupid_xchg_last(page, -1);
704 page_cpupid_xchg_last(newpage, cpupid);
705
e9995ef9 706 ksm_migrate_page(newpage, page);
c8d6553b
HD
707 /*
708 * Please do not reorder this without considering how mm/ksm.c's
709 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
710 */
b3b3a99c
NH
711 if (PageSwapCache(page))
712 ClearPageSwapCache(page);
b20a3503
CL
713 ClearPagePrivate(page);
714 set_page_private(page, 0);
b20a3503
CL
715
716 /*
717 * If any waiters have accumulated on the new page then
718 * wake them up.
719 */
720 if (PageWriteback(newpage))
721 end_page_writeback(newpage);
d435edca
VB
722
723 copy_page_owner(page, newpage);
74485cf2
JW
724
725 mem_cgroup_migrate(page, newpage);
b20a3503 726}
2916ecc0
JG
727EXPORT_SYMBOL(migrate_page_states);
728
729void migrate_page_copy(struct page *newpage, struct page *page)
730{
731 if (PageHuge(page) || PageTransHuge(page))
732 copy_huge_page(newpage, page);
733 else
734 copy_highpage(newpage, page);
735
736 migrate_page_states(newpage, page);
737}
1118dce7 738EXPORT_SYMBOL(migrate_page_copy);
b20a3503 739
1d8b85cc
CL
740/************************************************************
741 * Migration functions
742 ***********************************************************/
743
b20a3503 744/*
bda807d4 745 * Common logic to directly migrate a single LRU page suitable for
266cf658 746 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
747 *
748 * Pages are locked upon entry and exit.
749 */
2d1db3b1 750int migrate_page(struct address_space *mapping,
a6bc32b8
MG
751 struct page *newpage, struct page *page,
752 enum migrate_mode mode)
b20a3503
CL
753{
754 int rc;
755
756 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
757
8e321fef 758 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 759
78bd5209 760 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
761 return rc;
762
2916ecc0
JG
763 if (mode != MIGRATE_SYNC_NO_COPY)
764 migrate_page_copy(newpage, page);
765 else
766 migrate_page_states(newpage, page);
78bd5209 767 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
768}
769EXPORT_SYMBOL(migrate_page);
770
9361401e 771#ifdef CONFIG_BLOCK
1d8b85cc
CL
772/*
773 * Migration function for pages with buffers. This function can only be used
774 * if the underlying filesystem guarantees that no other references to "page"
775 * exist.
776 */
2d1db3b1 777int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 778 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 779{
1d8b85cc
CL
780 struct buffer_head *bh, *head;
781 int rc;
782
1d8b85cc 783 if (!page_has_buffers(page))
a6bc32b8 784 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
785
786 head = page_buffers(page);
787
8e321fef 788 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
1d8b85cc 789
78bd5209 790 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
791 return rc;
792
b969c4ab
MG
793 /*
794 * In the async case, migrate_page_move_mapping locked the buffers
795 * with an IRQ-safe spinlock held. In the sync case, the buffers
796 * need to be locked now
797 */
a6bc32b8
MG
798 if (mode != MIGRATE_ASYNC)
799 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
800
801 ClearPagePrivate(page);
802 set_page_private(newpage, page_private(page));
803 set_page_private(page, 0);
804 put_page(page);
805 get_page(newpage);
806
807 bh = head;
808 do {
809 set_bh_page(bh, newpage, bh_offset(bh));
810 bh = bh->b_this_page;
811
812 } while (bh != head);
813
814 SetPagePrivate(newpage);
815
2916ecc0
JG
816 if (mode != MIGRATE_SYNC_NO_COPY)
817 migrate_page_copy(newpage, page);
818 else
819 migrate_page_states(newpage, page);
1d8b85cc
CL
820
821 bh = head;
822 do {
823 unlock_buffer(bh);
2916ecc0 824 put_bh(bh);
1d8b85cc
CL
825 bh = bh->b_this_page;
826
827 } while (bh != head);
828
78bd5209 829 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
830}
831EXPORT_SYMBOL(buffer_migrate_page);
9361401e 832#endif
1d8b85cc 833
04e62a29
CL
834/*
835 * Writeback a page to clean the dirty state
836 */
837static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 838{
04e62a29
CL
839 struct writeback_control wbc = {
840 .sync_mode = WB_SYNC_NONE,
841 .nr_to_write = 1,
842 .range_start = 0,
843 .range_end = LLONG_MAX,
04e62a29
CL
844 .for_reclaim = 1
845 };
846 int rc;
847
848 if (!mapping->a_ops->writepage)
849 /* No write method for the address space */
850 return -EINVAL;
851
852 if (!clear_page_dirty_for_io(page))
853 /* Someone else already triggered a write */
854 return -EAGAIN;
855
8351a6e4 856 /*
04e62a29
CL
857 * A dirty page may imply that the underlying filesystem has
858 * the page on some queue. So the page must be clean for
859 * migration. Writeout may mean we loose the lock and the
860 * page state is no longer what we checked for earlier.
861 * At this point we know that the migration attempt cannot
862 * be successful.
8351a6e4 863 */
e388466d 864 remove_migration_ptes(page, page, false);
8351a6e4 865
04e62a29 866 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 867
04e62a29
CL
868 if (rc != AOP_WRITEPAGE_ACTIVATE)
869 /* unlocked. Relock */
870 lock_page(page);
871
bda8550d 872 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
873}
874
875/*
876 * Default handling if a filesystem does not provide a migration function.
877 */
878static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 879 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 880{
b969c4ab 881 if (PageDirty(page)) {
a6bc32b8 882 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
883 switch (mode) {
884 case MIGRATE_SYNC:
885 case MIGRATE_SYNC_NO_COPY:
886 break;
887 default:
b969c4ab 888 return -EBUSY;
2916ecc0 889 }
04e62a29 890 return writeout(mapping, page);
b969c4ab 891 }
8351a6e4
CL
892
893 /*
894 * Buffers may be managed in a filesystem specific way.
895 * We must have no buffers or drop them.
896 */
266cf658 897 if (page_has_private(page) &&
8351a6e4
CL
898 !try_to_release_page(page, GFP_KERNEL))
899 return -EAGAIN;
900
a6bc32b8 901 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
902}
903
e24f0b8f
CL
904/*
905 * Move a page to a newly allocated page
906 * The page is locked and all ptes have been successfully removed.
907 *
908 * The new page will have replaced the old page if this function
909 * is successful.
894bc310
LS
910 *
911 * Return value:
912 * < 0 - error code
78bd5209 913 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 914 */
3fe2011f 915static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 916 enum migrate_mode mode)
e24f0b8f
CL
917{
918 struct address_space *mapping;
bda807d4
MK
919 int rc = -EAGAIN;
920 bool is_lru = !__PageMovable(page);
e24f0b8f 921
7db7671f
HD
922 VM_BUG_ON_PAGE(!PageLocked(page), page);
923 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 924
e24f0b8f 925 mapping = page_mapping(page);
bda807d4
MK
926
927 if (likely(is_lru)) {
928 if (!mapping)
929 rc = migrate_page(mapping, newpage, page, mode);
930 else if (mapping->a_ops->migratepage)
931 /*
932 * Most pages have a mapping and most filesystems
933 * provide a migratepage callback. Anonymous pages
934 * are part of swap space which also has its own
935 * migratepage callback. This is the most common path
936 * for page migration.
937 */
938 rc = mapping->a_ops->migratepage(mapping, newpage,
939 page, mode);
940 else
941 rc = fallback_migrate_page(mapping, newpage,
942 page, mode);
943 } else {
e24f0b8f 944 /*
bda807d4
MK
945 * In case of non-lru page, it could be released after
946 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 947 */
bda807d4
MK
948 VM_BUG_ON_PAGE(!PageIsolated(page), page);
949 if (!PageMovable(page)) {
950 rc = MIGRATEPAGE_SUCCESS;
951 __ClearPageIsolated(page);
952 goto out;
953 }
954
955 rc = mapping->a_ops->migratepage(mapping, newpage,
956 page, mode);
957 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
958 !PageIsolated(page));
959 }
e24f0b8f 960
5c3f9a67
HD
961 /*
962 * When successful, old pagecache page->mapping must be cleared before
963 * page is freed; but stats require that PageAnon be left as PageAnon.
964 */
965 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
966 if (__PageMovable(page)) {
967 VM_BUG_ON_PAGE(!PageIsolated(page), page);
968
969 /*
970 * We clear PG_movable under page_lock so any compactor
971 * cannot try to migrate this page.
972 */
973 __ClearPageIsolated(page);
974 }
975
976 /*
977 * Anonymous and movable page->mapping will be cleard by
978 * free_pages_prepare so don't reset it here for keeping
979 * the type to work PageAnon, for example.
980 */
981 if (!PageMappingFlags(page))
5c3f9a67 982 page->mapping = NULL;
3fe2011f 983 }
bda807d4 984out:
e24f0b8f
CL
985 return rc;
986}
987
0dabec93 988static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 989 int force, enum migrate_mode mode)
e24f0b8f 990{
0dabec93 991 int rc = -EAGAIN;
2ebba6b7 992 int page_was_mapped = 0;
3f6c8272 993 struct anon_vma *anon_vma = NULL;
bda807d4 994 bool is_lru = !__PageMovable(page);
95a402c3 995
529ae9aa 996 if (!trylock_page(page)) {
a6bc32b8 997 if (!force || mode == MIGRATE_ASYNC)
0dabec93 998 goto out;
3e7d3449
MG
999
1000 /*
1001 * It's not safe for direct compaction to call lock_page.
1002 * For example, during page readahead pages are added locked
1003 * to the LRU. Later, when the IO completes the pages are
1004 * marked uptodate and unlocked. However, the queueing
1005 * could be merging multiple pages for one bio (e.g.
1006 * mpage_readpages). If an allocation happens for the
1007 * second or third page, the process can end up locking
1008 * the same page twice and deadlocking. Rather than
1009 * trying to be clever about what pages can be locked,
1010 * avoid the use of lock_page for direct compaction
1011 * altogether.
1012 */
1013 if (current->flags & PF_MEMALLOC)
0dabec93 1014 goto out;
3e7d3449 1015
e24f0b8f
CL
1016 lock_page(page);
1017 }
1018
1019 if (PageWriteback(page)) {
11bc82d6 1020 /*
fed5b64a 1021 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1022 * necessary to wait for PageWriteback. In the async case,
1023 * the retry loop is too short and in the sync-light case,
1024 * the overhead of stalling is too much
11bc82d6 1025 */
2916ecc0
JG
1026 switch (mode) {
1027 case MIGRATE_SYNC:
1028 case MIGRATE_SYNC_NO_COPY:
1029 break;
1030 default:
11bc82d6 1031 rc = -EBUSY;
0a31bc97 1032 goto out_unlock;
11bc82d6
AA
1033 }
1034 if (!force)
0a31bc97 1035 goto out_unlock;
e24f0b8f
CL
1036 wait_on_page_writeback(page);
1037 }
03f15c86 1038
e24f0b8f 1039 /*
dc386d4d
KH
1040 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1041 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1042 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1043 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1044 * File Caches may use write_page() or lock_page() in migration, then,
1045 * just care Anon page here.
03f15c86
HD
1046 *
1047 * Only page_get_anon_vma() understands the subtleties of
1048 * getting a hold on an anon_vma from outside one of its mms.
1049 * But if we cannot get anon_vma, then we won't need it anyway,
1050 * because that implies that the anon page is no longer mapped
1051 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1052 */
03f15c86 1053 if (PageAnon(page) && !PageKsm(page))
746b18d4 1054 anon_vma = page_get_anon_vma(page);
62e1c553 1055
7db7671f
HD
1056 /*
1057 * Block others from accessing the new page when we get around to
1058 * establishing additional references. We are usually the only one
1059 * holding a reference to newpage at this point. We used to have a BUG
1060 * here if trylock_page(newpage) fails, but would like to allow for
1061 * cases where there might be a race with the previous use of newpage.
1062 * This is much like races on refcount of oldpage: just don't BUG().
1063 */
1064 if (unlikely(!trylock_page(newpage)))
1065 goto out_unlock;
1066
bda807d4
MK
1067 if (unlikely(!is_lru)) {
1068 rc = move_to_new_page(newpage, page, mode);
1069 goto out_unlock_both;
1070 }
1071
dc386d4d 1072 /*
62e1c553
SL
1073 * Corner case handling:
1074 * 1. When a new swap-cache page is read into, it is added to the LRU
1075 * and treated as swapcache but it has no rmap yet.
1076 * Calling try_to_unmap() against a page->mapping==NULL page will
1077 * trigger a BUG. So handle it here.
1078 * 2. An orphaned page (see truncate_complete_page) might have
1079 * fs-private metadata. The page can be picked up due to memory
1080 * offlining. Everywhere else except page reclaim, the page is
1081 * invisible to the vm, so the page can not be migrated. So try to
1082 * free the metadata, so the page can be freed.
e24f0b8f 1083 */
62e1c553 1084 if (!page->mapping) {
309381fe 1085 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1086 if (page_has_private(page)) {
62e1c553 1087 try_to_free_buffers(page);
7db7671f 1088 goto out_unlock_both;
62e1c553 1089 }
7db7671f
HD
1090 } else if (page_mapped(page)) {
1091 /* Establish migration ptes */
03f15c86
HD
1092 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1093 page);
2ebba6b7 1094 try_to_unmap(page,
da1b13cc 1095 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1096 page_was_mapped = 1;
1097 }
dc386d4d 1098
e6a1530d 1099 if (!page_mapped(page))
5c3f9a67 1100 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1101
5c3f9a67
HD
1102 if (page_was_mapped)
1103 remove_migration_ptes(page,
e388466d 1104 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1105
7db7671f
HD
1106out_unlock_both:
1107 unlock_page(newpage);
1108out_unlock:
3f6c8272 1109 /* Drop an anon_vma reference if we took one */
76545066 1110 if (anon_vma)
9e60109f 1111 put_anon_vma(anon_vma);
e24f0b8f 1112 unlock_page(page);
0dabec93 1113out:
c6c919eb
MK
1114 /*
1115 * If migration is successful, decrease refcount of the newpage
1116 * which will not free the page because new page owner increased
1117 * refcounter. As well, if it is LRU page, add the page to LRU
1118 * list in here.
1119 */
1120 if (rc == MIGRATEPAGE_SUCCESS) {
b1123ea6 1121 if (unlikely(__PageMovable(newpage)))
c6c919eb
MK
1122 put_page(newpage);
1123 else
1124 putback_lru_page(newpage);
1125 }
1126
0dabec93
MK
1127 return rc;
1128}
95a402c3 1129
ef2a5153
GU
1130/*
1131 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1132 * around it.
1133 */
815f0ddb
ND
1134#if defined(CONFIG_ARM) && \
1135 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
ef2a5153
GU
1136#define ICE_noinline noinline
1137#else
1138#define ICE_noinline
1139#endif
1140
0dabec93
MK
1141/*
1142 * Obtain the lock on page, remove all ptes and migrate the page
1143 * to the newly allocated page in newpage.
1144 */
ef2a5153
GU
1145static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1146 free_page_t put_new_page,
1147 unsigned long private, struct page *page,
add05cec
NH
1148 int force, enum migrate_mode mode,
1149 enum migrate_reason reason)
0dabec93 1150{
2def7424 1151 int rc = MIGRATEPAGE_SUCCESS;
2def7424 1152 struct page *newpage;
0dabec93 1153
94723aaf
MH
1154 if (!thp_migration_supported() && PageTransHuge(page))
1155 return -ENOMEM;
1156
666feb21 1157 newpage = get_new_page(page, private);
0dabec93
MK
1158 if (!newpage)
1159 return -ENOMEM;
1160
1161 if (page_count(page) == 1) {
1162 /* page was freed from under us. So we are done. */
c6c919eb
MK
1163 ClearPageActive(page);
1164 ClearPageUnevictable(page);
bda807d4
MK
1165 if (unlikely(__PageMovable(page))) {
1166 lock_page(page);
1167 if (!PageMovable(page))
1168 __ClearPageIsolated(page);
1169 unlock_page(page);
1170 }
c6c919eb
MK
1171 if (put_new_page)
1172 put_new_page(newpage, private);
1173 else
1174 put_page(newpage);
0dabec93
MK
1175 goto out;
1176 }
1177
9c620e2b 1178 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1179 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1180 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1181
0dabec93 1182out:
e24f0b8f 1183 if (rc != -EAGAIN) {
0dabec93
MK
1184 /*
1185 * A page that has been migrated has all references
1186 * removed and will be freed. A page that has not been
1187 * migrated will have kepts its references and be
1188 * restored.
1189 */
1190 list_del(&page->lru);
6afcf8ef
ML
1191
1192 /*
1193 * Compaction can migrate also non-LRU pages which are
1194 * not accounted to NR_ISOLATED_*. They can be recognized
1195 * as __PageMovable
1196 */
1197 if (likely(!__PageMovable(page)))
e8db67eb
NH
1198 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1199 page_is_file_cache(page), -hpage_nr_pages(page));
c6c919eb
MK
1200 }
1201
1202 /*
1203 * If migration is successful, releases reference grabbed during
1204 * isolation. Otherwise, restore the page to right list unless
1205 * we want to retry.
1206 */
1207 if (rc == MIGRATEPAGE_SUCCESS) {
1208 put_page(page);
1209 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1210 /*
c6c919eb
MK
1211 * Set PG_HWPoison on just freed page
1212 * intentionally. Although it's rather weird,
1213 * it's how HWPoison flag works at the moment.
d7e69488 1214 */
d4ae9916 1215 if (set_hwpoison_free_buddy_page(page))
da1b13cc 1216 num_poisoned_pages_inc();
c6c919eb
MK
1217 }
1218 } else {
bda807d4
MK
1219 if (rc != -EAGAIN) {
1220 if (likely(!__PageMovable(page))) {
1221 putback_lru_page(page);
1222 goto put_new;
1223 }
1224
1225 lock_page(page);
1226 if (PageMovable(page))
1227 putback_movable_page(page);
1228 else
1229 __ClearPageIsolated(page);
1230 unlock_page(page);
1231 put_page(page);
1232 }
1233put_new:
c6c919eb
MK
1234 if (put_new_page)
1235 put_new_page(newpage, private);
1236 else
1237 put_page(newpage);
e24f0b8f 1238 }
68711a74 1239
e24f0b8f
CL
1240 return rc;
1241}
1242
290408d4
NH
1243/*
1244 * Counterpart of unmap_and_move_page() for hugepage migration.
1245 *
1246 * This function doesn't wait the completion of hugepage I/O
1247 * because there is no race between I/O and migration for hugepage.
1248 * Note that currently hugepage I/O occurs only in direct I/O
1249 * where no lock is held and PG_writeback is irrelevant,
1250 * and writeback status of all subpages are counted in the reference
1251 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252 * under direct I/O, the reference of the head page is 512 and a bit more.)
1253 * This means that when we try to migrate hugepage whose subpages are
1254 * doing direct I/O, some references remain after try_to_unmap() and
1255 * hugepage migration fails without data corruption.
1256 *
1257 * There is also no race when direct I/O is issued on the page under migration,
1258 * because then pte is replaced with migration swap entry and direct I/O code
1259 * will wait in the page fault for migration to complete.
1260 */
1261static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1262 free_page_t put_new_page, unsigned long private,
1263 struct page *hpage, int force,
7cd12b4a 1264 enum migrate_mode mode, int reason)
290408d4 1265{
2def7424 1266 int rc = -EAGAIN;
2ebba6b7 1267 int page_was_mapped = 0;
32665f2b 1268 struct page *new_hpage;
290408d4
NH
1269 struct anon_vma *anon_vma = NULL;
1270
83467efb
NH
1271 /*
1272 * Movability of hugepages depends on architectures and hugepage size.
1273 * This check is necessary because some callers of hugepage migration
1274 * like soft offline and memory hotremove don't walk through page
1275 * tables or check whether the hugepage is pmd-based or not before
1276 * kicking migration.
1277 */
100873d7 1278 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1279 putback_active_hugepage(hpage);
83467efb 1280 return -ENOSYS;
32665f2b 1281 }
83467efb 1282
666feb21 1283 new_hpage = get_new_page(hpage, private);
290408d4
NH
1284 if (!new_hpage)
1285 return -ENOMEM;
1286
290408d4 1287 if (!trylock_page(hpage)) {
2916ecc0 1288 if (!force)
290408d4 1289 goto out;
2916ecc0
JG
1290 switch (mode) {
1291 case MIGRATE_SYNC:
1292 case MIGRATE_SYNC_NO_COPY:
1293 break;
1294 default:
1295 goto out;
1296 }
290408d4
NH
1297 lock_page(hpage);
1298 }
1299
746b18d4
PZ
1300 if (PageAnon(hpage))
1301 anon_vma = page_get_anon_vma(hpage);
290408d4 1302
7db7671f
HD
1303 if (unlikely(!trylock_page(new_hpage)))
1304 goto put_anon;
1305
2ebba6b7
HD
1306 if (page_mapped(hpage)) {
1307 try_to_unmap(hpage,
1308 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1309 page_was_mapped = 1;
1310 }
290408d4
NH
1311
1312 if (!page_mapped(hpage))
5c3f9a67 1313 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1314
5c3f9a67
HD
1315 if (page_was_mapped)
1316 remove_migration_ptes(hpage,
e388466d 1317 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1318
7db7671f
HD
1319 unlock_page(new_hpage);
1320
1321put_anon:
fd4a4663 1322 if (anon_vma)
9e60109f 1323 put_anon_vma(anon_vma);
8e6ac7fa 1324
2def7424 1325 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1326 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1327 put_new_page = NULL;
1328 }
8e6ac7fa 1329
290408d4 1330 unlock_page(hpage);
09761333 1331out:
b8ec1cee
NH
1332 if (rc != -EAGAIN)
1333 putback_active_hugepage(hpage);
68711a74
DR
1334
1335 /*
1336 * If migration was not successful and there's a freeing callback, use
1337 * it. Otherwise, put_page() will drop the reference grabbed during
1338 * isolation.
1339 */
2def7424 1340 if (put_new_page)
68711a74
DR
1341 put_new_page(new_hpage, private);
1342 else
3aaa76e1 1343 putback_active_hugepage(new_hpage);
68711a74 1344
290408d4
NH
1345 return rc;
1346}
1347
b20a3503 1348/*
c73e5c9c
SB
1349 * migrate_pages - migrate the pages specified in a list, to the free pages
1350 * supplied as the target for the page migration
b20a3503 1351 *
c73e5c9c
SB
1352 * @from: The list of pages to be migrated.
1353 * @get_new_page: The function used to allocate free pages to be used
1354 * as the target of the page migration.
68711a74
DR
1355 * @put_new_page: The function used to free target pages if migration
1356 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1357 * @private: Private data to be passed on to get_new_page()
1358 * @mode: The migration mode that specifies the constraints for
1359 * page migration, if any.
1360 * @reason: The reason for page migration.
b20a3503 1361 *
c73e5c9c
SB
1362 * The function returns after 10 attempts or if no pages are movable any more
1363 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1364 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1365 * or free list only if ret != 0.
b20a3503 1366 *
c73e5c9c 1367 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1368 */
9c620e2b 1369int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1370 free_page_t put_new_page, unsigned long private,
1371 enum migrate_mode mode, int reason)
b20a3503 1372{
e24f0b8f 1373 int retry = 1;
b20a3503 1374 int nr_failed = 0;
5647bc29 1375 int nr_succeeded = 0;
b20a3503
CL
1376 int pass = 0;
1377 struct page *page;
1378 struct page *page2;
1379 int swapwrite = current->flags & PF_SWAPWRITE;
1380 int rc;
1381
1382 if (!swapwrite)
1383 current->flags |= PF_SWAPWRITE;
1384
e24f0b8f
CL
1385 for(pass = 0; pass < 10 && retry; pass++) {
1386 retry = 0;
b20a3503 1387
e24f0b8f 1388 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1389retry:
e24f0b8f 1390 cond_resched();
2d1db3b1 1391
31caf665
NH
1392 if (PageHuge(page))
1393 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1394 put_new_page, private, page,
7cd12b4a 1395 pass > 2, mode, reason);
31caf665 1396 else
68711a74 1397 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1398 private, page, pass > 2, mode,
1399 reason);
2d1db3b1 1400
e24f0b8f 1401 switch(rc) {
95a402c3 1402 case -ENOMEM:
94723aaf
MH
1403 /*
1404 * THP migration might be unsupported or the
1405 * allocation could've failed so we should
1406 * retry on the same page with the THP split
1407 * to base pages.
1408 *
1409 * Head page is retried immediately and tail
1410 * pages are added to the tail of the list so
1411 * we encounter them after the rest of the list
1412 * is processed.
1413 */
1414 if (PageTransHuge(page)) {
1415 lock_page(page);
1416 rc = split_huge_page_to_list(page, from);
1417 unlock_page(page);
1418 if (!rc) {
1419 list_safe_reset_next(page, page2, lru);
1420 goto retry;
1421 }
1422 }
dfef2ef4 1423 nr_failed++;
95a402c3 1424 goto out;
e24f0b8f 1425 case -EAGAIN:
2d1db3b1 1426 retry++;
e24f0b8f 1427 break;
78bd5209 1428 case MIGRATEPAGE_SUCCESS:
5647bc29 1429 nr_succeeded++;
e24f0b8f
CL
1430 break;
1431 default:
354a3363
NH
1432 /*
1433 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1434 * unlike -EAGAIN case, the failed page is
1435 * removed from migration page list and not
1436 * retried in the next outer loop.
1437 */
2d1db3b1 1438 nr_failed++;
e24f0b8f 1439 break;
2d1db3b1 1440 }
b20a3503
CL
1441 }
1442 }
f2f81fb2
VB
1443 nr_failed += retry;
1444 rc = nr_failed;
95a402c3 1445out:
5647bc29
MG
1446 if (nr_succeeded)
1447 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1448 if (nr_failed)
1449 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1450 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1451
b20a3503
CL
1452 if (!swapwrite)
1453 current->flags &= ~PF_SWAPWRITE;
1454
78bd5209 1455 return rc;
b20a3503 1456}
95a402c3 1457
742755a1 1458#ifdef CONFIG_NUMA
742755a1 1459
a49bd4d7 1460static int store_status(int __user *status, int start, int value, int nr)
742755a1 1461{
a49bd4d7
MH
1462 while (nr-- > 0) {
1463 if (put_user(value, status + start))
1464 return -EFAULT;
1465 start++;
1466 }
1467
1468 return 0;
1469}
1470
1471static int do_move_pages_to_node(struct mm_struct *mm,
1472 struct list_head *pagelist, int node)
1473{
1474 int err;
1475
1476 if (list_empty(pagelist))
1477 return 0;
1478
1479 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1480 MIGRATE_SYNC, MR_SYSCALL);
1481 if (err)
1482 putback_movable_pages(pagelist);
1483 return err;
742755a1
CL
1484}
1485
1486/*
a49bd4d7
MH
1487 * Resolves the given address to a struct page, isolates it from the LRU and
1488 * puts it to the given pagelist.
1489 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1490 * queued or the page doesn't need to be migrated because it is already on
1491 * the target node
742755a1 1492 */
a49bd4d7
MH
1493static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1494 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1495{
a49bd4d7
MH
1496 struct vm_area_struct *vma;
1497 struct page *page;
1498 unsigned int follflags;
742755a1 1499 int err;
742755a1
CL
1500
1501 down_read(&mm->mmap_sem);
a49bd4d7
MH
1502 err = -EFAULT;
1503 vma = find_vma(mm, addr);
1504 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1505 goto out;
742755a1 1506
a49bd4d7
MH
1507 /* FOLL_DUMP to ignore special (like zero) pages */
1508 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1509 page = follow_page(vma, addr, follflags);
89f5b7da 1510
a49bd4d7
MH
1511 err = PTR_ERR(page);
1512 if (IS_ERR(page))
1513 goto out;
89f5b7da 1514
a49bd4d7
MH
1515 err = -ENOENT;
1516 if (!page)
1517 goto out;
742755a1 1518
a49bd4d7
MH
1519 err = 0;
1520 if (page_to_nid(page) == node)
1521 goto out_putpage;
742755a1 1522
a49bd4d7
MH
1523 err = -EACCES;
1524 if (page_mapcount(page) > 1 && !migrate_all)
1525 goto out_putpage;
742755a1 1526
a49bd4d7
MH
1527 if (PageHuge(page)) {
1528 if (PageHead(page)) {
1529 isolate_huge_page(page, pagelist);
1530 err = 0;
e632a938 1531 }
a49bd4d7
MH
1532 } else {
1533 struct page *head;
e632a938 1534
e8db67eb
NH
1535 head = compound_head(page);
1536 err = isolate_lru_page(head);
cf608ac1 1537 if (err)
a49bd4d7 1538 goto out_putpage;
742755a1 1539
a49bd4d7
MH
1540 err = 0;
1541 list_add_tail(&head->lru, pagelist);
1542 mod_node_page_state(page_pgdat(head),
1543 NR_ISOLATED_ANON + page_is_file_cache(head),
1544 hpage_nr_pages(head));
1545 }
1546out_putpage:
1547 /*
1548 * Either remove the duplicate refcount from
1549 * isolate_lru_page() or drop the page ref if it was
1550 * not isolated.
1551 */
1552 put_page(page);
1553out:
742755a1
CL
1554 up_read(&mm->mmap_sem);
1555 return err;
1556}
1557
5e9a0f02
BG
1558/*
1559 * Migrate an array of page address onto an array of nodes and fill
1560 * the corresponding array of status.
1561 */
3268c63e 1562static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1563 unsigned long nr_pages,
1564 const void __user * __user *pages,
1565 const int __user *nodes,
1566 int __user *status, int flags)
1567{
a49bd4d7
MH
1568 int current_node = NUMA_NO_NODE;
1569 LIST_HEAD(pagelist);
1570 int start, i;
1571 int err = 0, err1;
35282a2d
BG
1572
1573 migrate_prep();
1574
a49bd4d7
MH
1575 for (i = start = 0; i < nr_pages; i++) {
1576 const void __user *p;
1577 unsigned long addr;
1578 int node;
3140a227 1579
a49bd4d7
MH
1580 err = -EFAULT;
1581 if (get_user(p, pages + i))
1582 goto out_flush;
1583 if (get_user(node, nodes + i))
1584 goto out_flush;
1585 addr = (unsigned long)p;
1586
1587 err = -ENODEV;
1588 if (node < 0 || node >= MAX_NUMNODES)
1589 goto out_flush;
1590 if (!node_state(node, N_MEMORY))
1591 goto out_flush;
5e9a0f02 1592
a49bd4d7
MH
1593 err = -EACCES;
1594 if (!node_isset(node, task_nodes))
1595 goto out_flush;
1596
1597 if (current_node == NUMA_NO_NODE) {
1598 current_node = node;
1599 start = i;
1600 } else if (node != current_node) {
1601 err = do_move_pages_to_node(mm, &pagelist, current_node);
1602 if (err)
1603 goto out;
1604 err = store_status(status, start, current_node, i - start);
1605 if (err)
1606 goto out;
1607 start = i;
1608 current_node = node;
3140a227
BG
1609 }
1610
a49bd4d7
MH
1611 /*
1612 * Errors in the page lookup or isolation are not fatal and we simply
1613 * report them via status
1614 */
1615 err = add_page_for_migration(mm, addr, current_node,
1616 &pagelist, flags & MPOL_MF_MOVE_ALL);
1617 if (!err)
1618 continue;
3140a227 1619
a49bd4d7
MH
1620 err = store_status(status, i, err, 1);
1621 if (err)
1622 goto out_flush;
5e9a0f02 1623
a49bd4d7
MH
1624 err = do_move_pages_to_node(mm, &pagelist, current_node);
1625 if (err)
1626 goto out;
1627 if (i > start) {
1628 err = store_status(status, start, current_node, i - start);
1629 if (err)
1630 goto out;
1631 }
1632 current_node = NUMA_NO_NODE;
3140a227 1633 }
a49bd4d7 1634out_flush:
8f175cf5
MH
1635 if (list_empty(&pagelist))
1636 return err;
1637
a49bd4d7
MH
1638 /* Make sure we do not overwrite the existing error */
1639 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1640 if (!err1)
1641 err1 = store_status(status, start, current_node, i - start);
1642 if (!err)
1643 err = err1;
5e9a0f02
BG
1644out:
1645 return err;
1646}
1647
742755a1 1648/*
2f007e74 1649 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1650 */
80bba129
BG
1651static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1652 const void __user **pages, int *status)
742755a1 1653{
2f007e74 1654 unsigned long i;
2f007e74 1655
742755a1
CL
1656 down_read(&mm->mmap_sem);
1657
2f007e74 1658 for (i = 0; i < nr_pages; i++) {
80bba129 1659 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1660 struct vm_area_struct *vma;
1661 struct page *page;
c095adbc 1662 int err = -EFAULT;
2f007e74
BG
1663
1664 vma = find_vma(mm, addr);
70384dc6 1665 if (!vma || addr < vma->vm_start)
742755a1
CL
1666 goto set_status;
1667
d899844e
KS
1668 /* FOLL_DUMP to ignore special (like zero) pages */
1669 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1670
1671 err = PTR_ERR(page);
1672 if (IS_ERR(page))
1673 goto set_status;
1674
d899844e 1675 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1676set_status:
80bba129
BG
1677 *status = err;
1678
1679 pages++;
1680 status++;
1681 }
1682
1683 up_read(&mm->mmap_sem);
1684}
1685
1686/*
1687 * Determine the nodes of a user array of pages and store it in
1688 * a user array of status.
1689 */
1690static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1691 const void __user * __user *pages,
1692 int __user *status)
1693{
1694#define DO_PAGES_STAT_CHUNK_NR 16
1695 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1696 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1697
87b8d1ad
PA
1698 while (nr_pages) {
1699 unsigned long chunk_nr;
80bba129 1700
87b8d1ad
PA
1701 chunk_nr = nr_pages;
1702 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1703 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1704
1705 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1706 break;
80bba129
BG
1707
1708 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1709
87b8d1ad
PA
1710 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1711 break;
742755a1 1712
87b8d1ad
PA
1713 pages += chunk_nr;
1714 status += chunk_nr;
1715 nr_pages -= chunk_nr;
1716 }
1717 return nr_pages ? -EFAULT : 0;
742755a1
CL
1718}
1719
1720/*
1721 * Move a list of pages in the address space of the currently executing
1722 * process.
1723 */
7addf443
DB
1724static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1725 const void __user * __user *pages,
1726 const int __user *nodes,
1727 int __user *status, int flags)
742755a1 1728{
742755a1 1729 struct task_struct *task;
742755a1 1730 struct mm_struct *mm;
5e9a0f02 1731 int err;
3268c63e 1732 nodemask_t task_nodes;
742755a1
CL
1733
1734 /* Check flags */
1735 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1736 return -EINVAL;
1737
1738 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1739 return -EPERM;
1740
1741 /* Find the mm_struct */
a879bf58 1742 rcu_read_lock();
228ebcbe 1743 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1744 if (!task) {
a879bf58 1745 rcu_read_unlock();
742755a1
CL
1746 return -ESRCH;
1747 }
3268c63e 1748 get_task_struct(task);
742755a1
CL
1749
1750 /*
1751 * Check if this process has the right to modify the specified
197e7e52 1752 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1753 */
197e7e52 1754 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1755 rcu_read_unlock();
742755a1 1756 err = -EPERM;
5e9a0f02 1757 goto out;
742755a1 1758 }
c69e8d9c 1759 rcu_read_unlock();
742755a1 1760
86c3a764
DQ
1761 err = security_task_movememory(task);
1762 if (err)
5e9a0f02 1763 goto out;
86c3a764 1764
3268c63e
CL
1765 task_nodes = cpuset_mems_allowed(task);
1766 mm = get_task_mm(task);
1767 put_task_struct(task);
1768
6e8b09ea
SL
1769 if (!mm)
1770 return -EINVAL;
1771
1772 if (nodes)
1773 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1774 nodes, status, flags);
1775 else
1776 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1777
742755a1
CL
1778 mmput(mm);
1779 return err;
3268c63e
CL
1780
1781out:
1782 put_task_struct(task);
1783 return err;
742755a1 1784}
742755a1 1785
7addf443
DB
1786SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1787 const void __user * __user *, pages,
1788 const int __user *, nodes,
1789 int __user *, status, int, flags)
1790{
1791 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1792}
1793
1794#ifdef CONFIG_COMPAT
1795COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1796 compat_uptr_t __user *, pages32,
1797 const int __user *, nodes,
1798 int __user *, status,
1799 int, flags)
1800{
1801 const void __user * __user *pages;
1802 int i;
1803
1804 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1805 for (i = 0; i < nr_pages; i++) {
1806 compat_uptr_t p;
1807
1808 if (get_user(p, pages32 + i) ||
1809 put_user(compat_ptr(p), pages + i))
1810 return -EFAULT;
1811 }
1812 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1813}
1814#endif /* CONFIG_COMPAT */
1815
7039e1db
PZ
1816#ifdef CONFIG_NUMA_BALANCING
1817/*
1818 * Returns true if this is a safe migration target node for misplaced NUMA
1819 * pages. Currently it only checks the watermarks which crude
1820 */
1821static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1822 unsigned long nr_migrate_pages)
7039e1db
PZ
1823{
1824 int z;
599d0c95 1825
7039e1db
PZ
1826 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1827 struct zone *zone = pgdat->node_zones + z;
1828
1829 if (!populated_zone(zone))
1830 continue;
1831
7039e1db
PZ
1832 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1833 if (!zone_watermark_ok(zone, 0,
1834 high_wmark_pages(zone) +
1835 nr_migrate_pages,
1836 0, 0))
1837 continue;
1838 return true;
1839 }
1840 return false;
1841}
1842
1843static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 1844 unsigned long data)
7039e1db
PZ
1845{
1846 int nid = (int) data;
1847 struct page *newpage;
1848
96db800f 1849 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1850 (GFP_HIGHUSER_MOVABLE |
1851 __GFP_THISNODE | __GFP_NOMEMALLOC |
1852 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1853 ~__GFP_RECLAIM, 0);
bac0382c 1854
7039e1db
PZ
1855 return newpage;
1856}
1857
a8f60772
MG
1858/*
1859 * page migration rate limiting control.
1860 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1861 * window of time. Default here says do not migrate more than 1280M per second.
1862 */
1863static unsigned int migrate_interval_millisecs __read_mostly = 100;
1864static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1865
b32967ff 1866/* Returns true if the node is migrate rate-limited after the update */
1c30e017
MG
1867static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1868 unsigned long nr_pages)
7039e1db 1869{
a8f60772
MG
1870 /*
1871 * Rate-limit the amount of data that is being migrated to a node.
1872 * Optimal placement is no good if the memory bus is saturated and
1873 * all the time is being spent migrating!
1874 */
a8f60772 1875 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1c5e9c27 1876 spin_lock(&pgdat->numabalancing_migrate_lock);
a8f60772
MG
1877 pgdat->numabalancing_migrate_nr_pages = 0;
1878 pgdat->numabalancing_migrate_next_window = jiffies +
1879 msecs_to_jiffies(migrate_interval_millisecs);
1c5e9c27 1880 spin_unlock(&pgdat->numabalancing_migrate_lock);
a8f60772 1881 }
af1839d7
MG
1882 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1883 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1884 nr_pages);
1c5e9c27 1885 return true;
af1839d7 1886 }
1c5e9c27
MG
1887
1888 /*
1889 * This is an unlocked non-atomic update so errors are possible.
1890 * The consequences are failing to migrate when we potentiall should
1891 * have which is not severe enough to warrant locking. If it is ever
1892 * a problem, it can be converted to a per-cpu counter.
1893 */
1894 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1895 return false;
b32967ff
MG
1896}
1897
1c30e017 1898static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1899{
340ef390 1900 int page_lru;
a8f60772 1901
309381fe 1902 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1903
7039e1db 1904 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1905 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1906 return 0;
7039e1db 1907
340ef390
HD
1908 if (isolate_lru_page(page))
1909 return 0;
7039e1db 1910
340ef390
HD
1911 /*
1912 * migrate_misplaced_transhuge_page() skips page migration's usual
1913 * check on page_count(), so we must do it here, now that the page
1914 * has been isolated: a GUP pin, or any other pin, prevents migration.
1915 * The expected page count is 3: 1 for page's mapcount and 1 for the
1916 * caller's pin and 1 for the reference taken by isolate_lru_page().
1917 */
1918 if (PageTransHuge(page) && page_count(page) != 3) {
1919 putback_lru_page(page);
1920 return 0;
7039e1db
PZ
1921 }
1922
340ef390 1923 page_lru = page_is_file_cache(page);
599d0c95 1924 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1925 hpage_nr_pages(page));
1926
149c33e1 1927 /*
340ef390
HD
1928 * Isolating the page has taken another reference, so the
1929 * caller's reference can be safely dropped without the page
1930 * disappearing underneath us during migration.
149c33e1
MG
1931 */
1932 put_page(page);
340ef390 1933 return 1;
b32967ff
MG
1934}
1935
de466bd6
MG
1936bool pmd_trans_migrating(pmd_t pmd)
1937{
1938 struct page *page = pmd_page(pmd);
1939 return PageLocked(page);
1940}
1941
b32967ff
MG
1942/*
1943 * Attempt to migrate a misplaced page to the specified destination
1944 * node. Caller is expected to have an elevated reference count on
1945 * the page that will be dropped by this function before returning.
1946 */
1bc115d8
MG
1947int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1948 int node)
b32967ff
MG
1949{
1950 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1951 int isolated;
b32967ff
MG
1952 int nr_remaining;
1953 LIST_HEAD(migratepages);
1954
1955 /*
1bc115d8
MG
1956 * Don't migrate file pages that are mapped in multiple processes
1957 * with execute permissions as they are probably shared libraries.
b32967ff 1958 */
1bc115d8
MG
1959 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1960 (vma->vm_flags & VM_EXEC))
b32967ff 1961 goto out;
b32967ff 1962
09a913a7
MG
1963 /*
1964 * Also do not migrate dirty pages as not all filesystems can move
1965 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1966 */
1967 if (page_is_file_cache(page) && PageDirty(page))
1968 goto out;
1969
b32967ff
MG
1970 /*
1971 * Rate-limit the amount of data that is being migrated to a node.
1972 * Optimal placement is no good if the memory bus is saturated and
1973 * all the time is being spent migrating!
1974 */
340ef390 1975 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1976 goto out;
b32967ff
MG
1977
1978 isolated = numamigrate_isolate_page(pgdat, page);
1979 if (!isolated)
1980 goto out;
1981
1982 list_add(&page->lru, &migratepages);
9c620e2b 1983 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1984 NULL, node, MIGRATE_ASYNC,
1985 MR_NUMA_MISPLACED);
b32967ff 1986 if (nr_remaining) {
59c82b70
JK
1987 if (!list_empty(&migratepages)) {
1988 list_del(&page->lru);
599d0c95 1989 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
1990 page_is_file_cache(page));
1991 putback_lru_page(page);
1992 }
b32967ff
MG
1993 isolated = 0;
1994 } else
1995 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1996 BUG_ON(!list_empty(&migratepages));
7039e1db 1997 return isolated;
340ef390
HD
1998
1999out:
2000 put_page(page);
2001 return 0;
7039e1db 2002}
220018d3 2003#endif /* CONFIG_NUMA_BALANCING */
b32967ff 2004
220018d3 2005#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
2006/*
2007 * Migrates a THP to a given target node. page must be locked and is unlocked
2008 * before returning.
2009 */
b32967ff
MG
2010int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2011 struct vm_area_struct *vma,
2012 pmd_t *pmd, pmd_t entry,
2013 unsigned long address,
2014 struct page *page, int node)
2015{
c4088ebd 2016 spinlock_t *ptl;
b32967ff
MG
2017 pg_data_t *pgdat = NODE_DATA(node);
2018 int isolated = 0;
2019 struct page *new_page = NULL;
b32967ff 2020 int page_lru = page_is_file_cache(page);
f714f4f2
MG
2021 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2022 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
b32967ff 2023
b32967ff
MG
2024 /*
2025 * Rate-limit the amount of data that is being migrated to a node.
2026 * Optimal placement is no good if the memory bus is saturated and
2027 * all the time is being spent migrating!
2028 */
d28d4335 2029 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
2030 goto out_dropref;
2031
2032 new_page = alloc_pages_node(node,
25160354 2033 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2034 HPAGE_PMD_ORDER);
340ef390
HD
2035 if (!new_page)
2036 goto out_fail;
9a982250 2037 prep_transhuge_page(new_page);
340ef390 2038
b32967ff 2039 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2040 if (!isolated) {
b32967ff 2041 put_page(new_page);
340ef390 2042 goto out_fail;
b32967ff 2043 }
b0943d61 2044
b32967ff 2045 /* Prepare a page as a migration target */
48c935ad 2046 __SetPageLocked(new_page);
d44d363f
SL
2047 if (PageSwapBacked(page))
2048 __SetPageSwapBacked(new_page);
b32967ff
MG
2049
2050 /* anon mapping, we can simply copy page->mapping to the new page: */
2051 new_page->mapping = page->mapping;
2052 new_page->index = page->index;
2053 migrate_page_copy(new_page, page);
2054 WARN_ON(PageLRU(new_page));
2055
2056 /* Recheck the target PMD */
f714f4f2 2057 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2058 ptl = pmd_lock(mm, pmd);
f4e177d1 2059 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2060 spin_unlock(ptl);
f714f4f2 2061 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
2062
2063 /* Reverse changes made by migrate_page_copy() */
2064 if (TestClearPageActive(new_page))
2065 SetPageActive(page);
2066 if (TestClearPageUnevictable(new_page))
2067 SetPageUnevictable(page);
b32967ff
MG
2068
2069 unlock_page(new_page);
2070 put_page(new_page); /* Free it */
2071
a54a407f
MG
2072 /* Retake the callers reference and putback on LRU */
2073 get_page(page);
b32967ff 2074 putback_lru_page(page);
599d0c95 2075 mod_node_page_state(page_pgdat(page),
a54a407f 2076 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2077
2078 goto out_unlock;
b32967ff
MG
2079 }
2080
10102459 2081 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2082 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2083
2b4847e7
MG
2084 /*
2085 * Clear the old entry under pagetable lock and establish the new PTE.
2086 * Any parallel GUP will either observe the old page blocking on the
2087 * page lock, block on the page table lock or observe the new page.
2088 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2089 * guarantee the copy is visible before the pagetable update.
2090 */
f714f4f2 2091 flush_cache_range(vma, mmun_start, mmun_end);
d281ee61 2092 page_add_anon_rmap(new_page, vma, mmun_start, true);
8809aa2d 2093 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
f714f4f2 2094 set_pmd_at(mm, mmun_start, pmd, entry);
ce4a9cc5 2095 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2096
f4e177d1 2097 page_ref_unfreeze(page, 2);
51afb12b 2098 mlock_migrate_page(new_page, page);
d281ee61 2099 page_remove_rmap(page, true);
7cd12b4a 2100 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2101
c4088ebd 2102 spin_unlock(ptl);
4645b9fe
JG
2103 /*
2104 * No need to double call mmu_notifier->invalidate_range() callback as
2105 * the above pmdp_huge_clear_flush_notify() did already call it.
2106 */
2107 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
b32967ff 2108
11de9927
MG
2109 /* Take an "isolate" reference and put new page on the LRU. */
2110 get_page(new_page);
2111 putback_lru_page(new_page);
2112
b32967ff
MG
2113 unlock_page(new_page);
2114 unlock_page(page);
2115 put_page(page); /* Drop the rmap reference */
2116 put_page(page); /* Drop the LRU isolation reference */
2117
2118 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2119 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2120
599d0c95 2121 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2122 NR_ISOLATED_ANON + page_lru,
2123 -HPAGE_PMD_NR);
2124 return isolated;
2125
340ef390
HD
2126out_fail:
2127 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 2128out_dropref:
2b4847e7
MG
2129 ptl = pmd_lock(mm, pmd);
2130 if (pmd_same(*pmd, entry)) {
4d942466 2131 entry = pmd_modify(entry, vma->vm_page_prot);
f714f4f2 2132 set_pmd_at(mm, mmun_start, pmd, entry);
2b4847e7
MG
2133 update_mmu_cache_pmd(vma, address, &entry);
2134 }
2135 spin_unlock(ptl);
a54a407f 2136
eb4489f6 2137out_unlock:
340ef390 2138 unlock_page(page);
b32967ff 2139 put_page(page);
b32967ff
MG
2140 return 0;
2141}
7039e1db
PZ
2142#endif /* CONFIG_NUMA_BALANCING */
2143
2144#endif /* CONFIG_NUMA */
8763cb45 2145
6b368cd4 2146#if defined(CONFIG_MIGRATE_VMA_HELPER)
8763cb45
JG
2147struct migrate_vma {
2148 struct vm_area_struct *vma;
2149 unsigned long *dst;
2150 unsigned long *src;
2151 unsigned long cpages;
2152 unsigned long npages;
2153 unsigned long start;
2154 unsigned long end;
2155};
2156
2157static int migrate_vma_collect_hole(unsigned long start,
2158 unsigned long end,
2159 struct mm_walk *walk)
2160{
2161 struct migrate_vma *migrate = walk->private;
2162 unsigned long addr;
2163
8315ada7 2164 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
e20d103b 2165 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2166 migrate->dst[migrate->npages] = 0;
e20d103b 2167 migrate->npages++;
8315ada7
JG
2168 migrate->cpages++;
2169 }
2170
2171 return 0;
2172}
2173
2174static int migrate_vma_collect_skip(unsigned long start,
2175 unsigned long end,
2176 struct mm_walk *walk)
2177{
2178 struct migrate_vma *migrate = walk->private;
2179 unsigned long addr;
2180
8763cb45
JG
2181 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2182 migrate->dst[migrate->npages] = 0;
2183 migrate->src[migrate->npages++] = 0;
2184 }
2185
2186 return 0;
2187}
2188
2189static int migrate_vma_collect_pmd(pmd_t *pmdp,
2190 unsigned long start,
2191 unsigned long end,
2192 struct mm_walk *walk)
2193{
2194 struct migrate_vma *migrate = walk->private;
2195 struct vm_area_struct *vma = walk->vma;
2196 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2197 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2198 spinlock_t *ptl;
2199 pte_t *ptep;
2200
2201again:
2202 if (pmd_none(*pmdp))
2203 return migrate_vma_collect_hole(start, end, walk);
2204
2205 if (pmd_trans_huge(*pmdp)) {
2206 struct page *page;
2207
2208 ptl = pmd_lock(mm, pmdp);
2209 if (unlikely(!pmd_trans_huge(*pmdp))) {
2210 spin_unlock(ptl);
2211 goto again;
2212 }
2213
2214 page = pmd_page(*pmdp);
2215 if (is_huge_zero_page(page)) {
2216 spin_unlock(ptl);
2217 split_huge_pmd(vma, pmdp, addr);
2218 if (pmd_trans_unstable(pmdp))
8315ada7 2219 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2220 walk);
2221 } else {
2222 int ret;
2223
2224 get_page(page);
2225 spin_unlock(ptl);
2226 if (unlikely(!trylock_page(page)))
8315ada7 2227 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2228 walk);
2229 ret = split_huge_page(page);
2230 unlock_page(page);
2231 put_page(page);
8315ada7
JG
2232 if (ret)
2233 return migrate_vma_collect_skip(start, end,
2234 walk);
2235 if (pmd_none(*pmdp))
8763cb45
JG
2236 return migrate_vma_collect_hole(start, end,
2237 walk);
2238 }
2239 }
2240
2241 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2242 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2243
2244 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2245 arch_enter_lazy_mmu_mode();
2246
8763cb45
JG
2247 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2248 unsigned long mpfn, pfn;
2249 struct page *page;
8c3328f1 2250 swp_entry_t entry;
8763cb45
JG
2251 pte_t pte;
2252
2253 pte = *ptep;
2254 pfn = pte_pfn(pte);
2255
a5430dda 2256 if (pte_none(pte)) {
8315ada7
JG
2257 mpfn = MIGRATE_PFN_MIGRATE;
2258 migrate->cpages++;
2259 pfn = 0;
8763cb45
JG
2260 goto next;
2261 }
2262
a5430dda
JG
2263 if (!pte_present(pte)) {
2264 mpfn = pfn = 0;
2265
2266 /*
2267 * Only care about unaddressable device page special
2268 * page table entry. Other special swap entries are not
2269 * migratable, and we ignore regular swapped page.
2270 */
2271 entry = pte_to_swp_entry(pte);
2272 if (!is_device_private_entry(entry))
2273 goto next;
2274
2275 page = device_private_entry_to_page(entry);
2276 mpfn = migrate_pfn(page_to_pfn(page))|
2277 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2278 if (is_write_device_private_entry(entry))
2279 mpfn |= MIGRATE_PFN_WRITE;
2280 } else {
8315ada7
JG
2281 if (is_zero_pfn(pfn)) {
2282 mpfn = MIGRATE_PFN_MIGRATE;
2283 migrate->cpages++;
2284 pfn = 0;
2285 goto next;
2286 }
df6ad698 2287 page = _vm_normal_page(migrate->vma, addr, pte, true);
a5430dda
JG
2288 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2289 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2290 }
2291
8763cb45 2292 /* FIXME support THP */
8763cb45
JG
2293 if (!page || !page->mapping || PageTransCompound(page)) {
2294 mpfn = pfn = 0;
2295 goto next;
2296 }
a5430dda 2297 pfn = page_to_pfn(page);
8763cb45
JG
2298
2299 /*
2300 * By getting a reference on the page we pin it and that blocks
2301 * any kind of migration. Side effect is that it "freezes" the
2302 * pte.
2303 *
2304 * We drop this reference after isolating the page from the lru
2305 * for non device page (device page are not on the lru and thus
2306 * can't be dropped from it).
2307 */
2308 get_page(page);
2309 migrate->cpages++;
8763cb45 2310
8c3328f1
JG
2311 /*
2312 * Optimize for the common case where page is only mapped once
2313 * in one process. If we can lock the page, then we can safely
2314 * set up a special migration page table entry now.
2315 */
2316 if (trylock_page(page)) {
2317 pte_t swp_pte;
2318
2319 mpfn |= MIGRATE_PFN_LOCKED;
2320 ptep_get_and_clear(mm, addr, ptep);
2321
2322 /* Setup special migration page table entry */
07707125
RC
2323 entry = make_migration_entry(page, mpfn &
2324 MIGRATE_PFN_WRITE);
8c3328f1
JG
2325 swp_pte = swp_entry_to_pte(entry);
2326 if (pte_soft_dirty(pte))
2327 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2328 set_pte_at(mm, addr, ptep, swp_pte);
2329
2330 /*
2331 * This is like regular unmap: we remove the rmap and
2332 * drop page refcount. Page won't be freed, as we took
2333 * a reference just above.
2334 */
2335 page_remove_rmap(page, false);
2336 put_page(page);
a5430dda
JG
2337
2338 if (pte_present(pte))
2339 unmapped++;
8c3328f1
JG
2340 }
2341
8763cb45 2342next:
a5430dda 2343 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2344 migrate->src[migrate->npages++] = mpfn;
2345 }
8c3328f1 2346 arch_leave_lazy_mmu_mode();
8763cb45
JG
2347 pte_unmap_unlock(ptep - 1, ptl);
2348
8c3328f1
JG
2349 /* Only flush the TLB if we actually modified any entries */
2350 if (unmapped)
2351 flush_tlb_range(walk->vma, start, end);
2352
8763cb45
JG
2353 return 0;
2354}
2355
2356/*
2357 * migrate_vma_collect() - collect pages over a range of virtual addresses
2358 * @migrate: migrate struct containing all migration information
2359 *
2360 * This will walk the CPU page table. For each virtual address backed by a
2361 * valid page, it updates the src array and takes a reference on the page, in
2362 * order to pin the page until we lock it and unmap it.
2363 */
2364static void migrate_vma_collect(struct migrate_vma *migrate)
2365{
2366 struct mm_walk mm_walk;
2367
2368 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2369 mm_walk.pte_entry = NULL;
2370 mm_walk.pte_hole = migrate_vma_collect_hole;
2371 mm_walk.hugetlb_entry = NULL;
2372 mm_walk.test_walk = NULL;
2373 mm_walk.vma = migrate->vma;
2374 mm_walk.mm = migrate->vma->vm_mm;
2375 mm_walk.private = migrate;
2376
8c3328f1
JG
2377 mmu_notifier_invalidate_range_start(mm_walk.mm,
2378 migrate->start,
2379 migrate->end);
8763cb45 2380 walk_page_range(migrate->start, migrate->end, &mm_walk);
8c3328f1
JG
2381 mmu_notifier_invalidate_range_end(mm_walk.mm,
2382 migrate->start,
2383 migrate->end);
8763cb45
JG
2384
2385 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2386}
2387
2388/*
2389 * migrate_vma_check_page() - check if page is pinned or not
2390 * @page: struct page to check
2391 *
2392 * Pinned pages cannot be migrated. This is the same test as in
2393 * migrate_page_move_mapping(), except that here we allow migration of a
2394 * ZONE_DEVICE page.
2395 */
2396static bool migrate_vma_check_page(struct page *page)
2397{
2398 /*
2399 * One extra ref because caller holds an extra reference, either from
2400 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2401 * a device page.
2402 */
2403 int extra = 1;
2404
2405 /*
2406 * FIXME support THP (transparent huge page), it is bit more complex to
2407 * check them than regular pages, because they can be mapped with a pmd
2408 * or with a pte (split pte mapping).
2409 */
2410 if (PageCompound(page))
2411 return false;
2412
a5430dda
JG
2413 /* Page from ZONE_DEVICE have one extra reference */
2414 if (is_zone_device_page(page)) {
2415 /*
2416 * Private page can never be pin as they have no valid pte and
2417 * GUP will fail for those. Yet if there is a pending migration
2418 * a thread might try to wait on the pte migration entry and
2419 * will bump the page reference count. Sadly there is no way to
2420 * differentiate a regular pin from migration wait. Hence to
2421 * avoid 2 racing thread trying to migrate back to CPU to enter
2422 * infinite loop (one stoping migration because the other is
2423 * waiting on pte migration entry). We always return true here.
2424 *
2425 * FIXME proper solution is to rework migration_entry_wait() so
2426 * it does not need to take a reference on page.
2427 */
2428 if (is_device_private_page(page))
2429 return true;
2430
df6ad698
JG
2431 /*
2432 * Only allow device public page to be migrated and account for
2433 * the extra reference count imply by ZONE_DEVICE pages.
2434 */
2435 if (!is_device_public_page(page))
2436 return false;
2437 extra++;
a5430dda
JG
2438 }
2439
df6ad698
JG
2440 /* For file back page */
2441 if (page_mapping(page))
2442 extra += 1 + page_has_private(page);
2443
8763cb45
JG
2444 if ((page_count(page) - extra) > page_mapcount(page))
2445 return false;
2446
2447 return true;
2448}
2449
2450/*
2451 * migrate_vma_prepare() - lock pages and isolate them from the lru
2452 * @migrate: migrate struct containing all migration information
2453 *
2454 * This locks pages that have been collected by migrate_vma_collect(). Once each
2455 * page is locked it is isolated from the lru (for non-device pages). Finally,
2456 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2457 * migrated by concurrent kernel threads.
2458 */
2459static void migrate_vma_prepare(struct migrate_vma *migrate)
2460{
2461 const unsigned long npages = migrate->npages;
8c3328f1
JG
2462 const unsigned long start = migrate->start;
2463 unsigned long addr, i, restore = 0;
8763cb45 2464 bool allow_drain = true;
8763cb45
JG
2465
2466 lru_add_drain();
2467
2468 for (i = 0; (i < npages) && migrate->cpages; i++) {
2469 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2470 bool remap = true;
8763cb45
JG
2471
2472 if (!page)
2473 continue;
2474
8c3328f1
JG
2475 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2476 /*
2477 * Because we are migrating several pages there can be
2478 * a deadlock between 2 concurrent migration where each
2479 * are waiting on each other page lock.
2480 *
2481 * Make migrate_vma() a best effort thing and backoff
2482 * for any page we can not lock right away.
2483 */
2484 if (!trylock_page(page)) {
2485 migrate->src[i] = 0;
2486 migrate->cpages--;
2487 put_page(page);
2488 continue;
2489 }
2490 remap = false;
2491 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2492 }
8763cb45 2493
a5430dda
JG
2494 /* ZONE_DEVICE pages are not on LRU */
2495 if (!is_zone_device_page(page)) {
2496 if (!PageLRU(page) && allow_drain) {
2497 /* Drain CPU's pagevec */
2498 lru_add_drain_all();
2499 allow_drain = false;
2500 }
8763cb45 2501
a5430dda
JG
2502 if (isolate_lru_page(page)) {
2503 if (remap) {
2504 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2505 migrate->cpages--;
2506 restore++;
2507 } else {
2508 migrate->src[i] = 0;
2509 unlock_page(page);
2510 migrate->cpages--;
2511 put_page(page);
2512 }
2513 continue;
8c3328f1 2514 }
a5430dda
JG
2515
2516 /* Drop the reference we took in collect */
2517 put_page(page);
8763cb45
JG
2518 }
2519
2520 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2521 if (remap) {
2522 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2523 migrate->cpages--;
2524 restore++;
8763cb45 2525
a5430dda
JG
2526 if (!is_zone_device_page(page)) {
2527 get_page(page);
2528 putback_lru_page(page);
2529 }
8c3328f1
JG
2530 } else {
2531 migrate->src[i] = 0;
2532 unlock_page(page);
2533 migrate->cpages--;
2534
a5430dda
JG
2535 if (!is_zone_device_page(page))
2536 putback_lru_page(page);
2537 else
2538 put_page(page);
8c3328f1 2539 }
8763cb45
JG
2540 }
2541 }
8c3328f1
JG
2542
2543 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2544 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2545
2546 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2547 continue;
2548
2549 remove_migration_pte(page, migrate->vma, addr, page);
2550
2551 migrate->src[i] = 0;
2552 unlock_page(page);
2553 put_page(page);
2554 restore--;
2555 }
8763cb45
JG
2556}
2557
2558/*
2559 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2560 * @migrate: migrate struct containing all migration information
2561 *
2562 * Replace page mapping (CPU page table pte) with a special migration pte entry
2563 * and check again if it has been pinned. Pinned pages are restored because we
2564 * cannot migrate them.
2565 *
2566 * This is the last step before we call the device driver callback to allocate
2567 * destination memory and copy contents of original page over to new page.
2568 */
2569static void migrate_vma_unmap(struct migrate_vma *migrate)
2570{
2571 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2572 const unsigned long npages = migrate->npages;
2573 const unsigned long start = migrate->start;
2574 unsigned long addr, i, restore = 0;
2575
2576 for (i = 0; i < npages; i++) {
2577 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2578
2579 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2580 continue;
2581
8c3328f1
JG
2582 if (page_mapped(page)) {
2583 try_to_unmap(page, flags);
2584 if (page_mapped(page))
2585 goto restore;
8763cb45 2586 }
8c3328f1
JG
2587
2588 if (migrate_vma_check_page(page))
2589 continue;
2590
2591restore:
2592 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2593 migrate->cpages--;
2594 restore++;
8763cb45
JG
2595 }
2596
2597 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2598 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2599
2600 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2601 continue;
2602
2603 remove_migration_ptes(page, page, false);
2604
2605 migrate->src[i] = 0;
2606 unlock_page(page);
2607 restore--;
2608
a5430dda
JG
2609 if (is_zone_device_page(page))
2610 put_page(page);
2611 else
2612 putback_lru_page(page);
8763cb45
JG
2613 }
2614}
2615
8315ada7
JG
2616static void migrate_vma_insert_page(struct migrate_vma *migrate,
2617 unsigned long addr,
2618 struct page *page,
2619 unsigned long *src,
2620 unsigned long *dst)
2621{
2622 struct vm_area_struct *vma = migrate->vma;
2623 struct mm_struct *mm = vma->vm_mm;
2624 struct mem_cgroup *memcg;
2625 bool flush = false;
2626 spinlock_t *ptl;
2627 pte_t entry;
2628 pgd_t *pgdp;
2629 p4d_t *p4dp;
2630 pud_t *pudp;
2631 pmd_t *pmdp;
2632 pte_t *ptep;
2633
2634 /* Only allow populating anonymous memory */
2635 if (!vma_is_anonymous(vma))
2636 goto abort;
2637
2638 pgdp = pgd_offset(mm, addr);
2639 p4dp = p4d_alloc(mm, pgdp, addr);
2640 if (!p4dp)
2641 goto abort;
2642 pudp = pud_alloc(mm, p4dp, addr);
2643 if (!pudp)
2644 goto abort;
2645 pmdp = pmd_alloc(mm, pudp, addr);
2646 if (!pmdp)
2647 goto abort;
2648
2649 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2650 goto abort;
2651
2652 /*
2653 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2654 * pte_offset_map() on pmds where a huge pmd might be created
2655 * from a different thread.
2656 *
2657 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2658 * parallel threads are excluded by other means.
2659 *
2660 * Here we only have down_read(mmap_sem).
2661 */
2662 if (pte_alloc(mm, pmdp, addr))
2663 goto abort;
2664
2665 /* See the comment in pte_alloc_one_map() */
2666 if (unlikely(pmd_trans_unstable(pmdp)))
2667 goto abort;
2668
2669 if (unlikely(anon_vma_prepare(vma)))
2670 goto abort;
2671 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2672 goto abort;
2673
2674 /*
2675 * The memory barrier inside __SetPageUptodate makes sure that
2676 * preceding stores to the page contents become visible before
2677 * the set_pte_at() write.
2678 */
2679 __SetPageUptodate(page);
2680
df6ad698
JG
2681 if (is_zone_device_page(page)) {
2682 if (is_device_private_page(page)) {
2683 swp_entry_t swp_entry;
2684
2685 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2686 entry = swp_entry_to_pte(swp_entry);
2687 } else if (is_device_public_page(page)) {
2688 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2689 if (vma->vm_flags & VM_WRITE)
2690 entry = pte_mkwrite(pte_mkdirty(entry));
2691 entry = pte_mkdevmap(entry);
2692 }
8315ada7
JG
2693 } else {
2694 entry = mk_pte(page, vma->vm_page_prot);
2695 if (vma->vm_flags & VM_WRITE)
2696 entry = pte_mkwrite(pte_mkdirty(entry));
2697 }
2698
2699 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2700
2701 if (pte_present(*ptep)) {
2702 unsigned long pfn = pte_pfn(*ptep);
2703
2704 if (!is_zero_pfn(pfn)) {
2705 pte_unmap_unlock(ptep, ptl);
2706 mem_cgroup_cancel_charge(page, memcg, false);
2707 goto abort;
2708 }
2709 flush = true;
2710 } else if (!pte_none(*ptep)) {
2711 pte_unmap_unlock(ptep, ptl);
2712 mem_cgroup_cancel_charge(page, memcg, false);
2713 goto abort;
2714 }
2715
2716 /*
2717 * Check for usefaultfd but do not deliver the fault. Instead,
2718 * just back off.
2719 */
2720 if (userfaultfd_missing(vma)) {
2721 pte_unmap_unlock(ptep, ptl);
2722 mem_cgroup_cancel_charge(page, memcg, false);
2723 goto abort;
2724 }
2725
2726 inc_mm_counter(mm, MM_ANONPAGES);
2727 page_add_new_anon_rmap(page, vma, addr, false);
2728 mem_cgroup_commit_charge(page, memcg, false, false);
2729 if (!is_zone_device_page(page))
2730 lru_cache_add_active_or_unevictable(page, vma);
2731 get_page(page);
2732
2733 if (flush) {
2734 flush_cache_page(vma, addr, pte_pfn(*ptep));
2735 ptep_clear_flush_notify(vma, addr, ptep);
2736 set_pte_at_notify(mm, addr, ptep, entry);
2737 update_mmu_cache(vma, addr, ptep);
2738 } else {
2739 /* No need to invalidate - it was non-present before */
2740 set_pte_at(mm, addr, ptep, entry);
2741 update_mmu_cache(vma, addr, ptep);
2742 }
2743
2744 pte_unmap_unlock(ptep, ptl);
2745 *src = MIGRATE_PFN_MIGRATE;
2746 return;
2747
2748abort:
2749 *src &= ~MIGRATE_PFN_MIGRATE;
2750}
2751
8763cb45
JG
2752/*
2753 * migrate_vma_pages() - migrate meta-data from src page to dst page
2754 * @migrate: migrate struct containing all migration information
2755 *
2756 * This migrates struct page meta-data from source struct page to destination
2757 * struct page. This effectively finishes the migration from source page to the
2758 * destination page.
2759 */
2760static void migrate_vma_pages(struct migrate_vma *migrate)
2761{
2762 const unsigned long npages = migrate->npages;
2763 const unsigned long start = migrate->start;
8315ada7
JG
2764 struct vm_area_struct *vma = migrate->vma;
2765 struct mm_struct *mm = vma->vm_mm;
2766 unsigned long addr, i, mmu_start;
2767 bool notified = false;
8763cb45
JG
2768
2769 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2770 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2771 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2772 struct address_space *mapping;
2773 int r;
2774
8315ada7
JG
2775 if (!newpage) {
2776 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2777 continue;
8315ada7
JG
2778 }
2779
2780 if (!page) {
2781 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2782 continue;
2783 }
2784 if (!notified) {
2785 mmu_start = addr;
2786 notified = true;
2787 mmu_notifier_invalidate_range_start(mm,
2788 mmu_start,
2789 migrate->end);
2790 }
2791 migrate_vma_insert_page(migrate, addr, newpage,
2792 &migrate->src[i],
2793 &migrate->dst[i]);
8763cb45 2794 continue;
8315ada7 2795 }
8763cb45
JG
2796
2797 mapping = page_mapping(page);
2798
a5430dda
JG
2799 if (is_zone_device_page(newpage)) {
2800 if (is_device_private_page(newpage)) {
2801 /*
2802 * For now only support private anonymous when
2803 * migrating to un-addressable device memory.
2804 */
2805 if (mapping) {
2806 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2807 continue;
2808 }
df6ad698 2809 } else if (!is_device_public_page(newpage)) {
a5430dda
JG
2810 /*
2811 * Other types of ZONE_DEVICE page are not
2812 * supported.
2813 */
2814 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2815 continue;
2816 }
2817 }
2818
8763cb45
JG
2819 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2820 if (r != MIGRATEPAGE_SUCCESS)
2821 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2822 }
8315ada7 2823
4645b9fe
JG
2824 /*
2825 * No need to double call mmu_notifier->invalidate_range() callback as
2826 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2827 * did already call it.
2828 */
8315ada7 2829 if (notified)
4645b9fe
JG
2830 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2831 migrate->end);
8763cb45
JG
2832}
2833
2834/*
2835 * migrate_vma_finalize() - restore CPU page table entry
2836 * @migrate: migrate struct containing all migration information
2837 *
2838 * This replaces the special migration pte entry with either a mapping to the
2839 * new page if migration was successful for that page, or to the original page
2840 * otherwise.
2841 *
2842 * This also unlocks the pages and puts them back on the lru, or drops the extra
2843 * refcount, for device pages.
2844 */
2845static void migrate_vma_finalize(struct migrate_vma *migrate)
2846{
2847 const unsigned long npages = migrate->npages;
2848 unsigned long i;
2849
2850 for (i = 0; i < npages; i++) {
2851 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2852 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2853
8315ada7
JG
2854 if (!page) {
2855 if (newpage) {
2856 unlock_page(newpage);
2857 put_page(newpage);
2858 }
8763cb45 2859 continue;
8315ada7
JG
2860 }
2861
8763cb45
JG
2862 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2863 if (newpage) {
2864 unlock_page(newpage);
2865 put_page(newpage);
2866 }
2867 newpage = page;
2868 }
2869
2870 remove_migration_ptes(page, newpage, false);
2871 unlock_page(page);
2872 migrate->cpages--;
2873
a5430dda
JG
2874 if (is_zone_device_page(page))
2875 put_page(page);
2876 else
2877 putback_lru_page(page);
8763cb45
JG
2878
2879 if (newpage != page) {
2880 unlock_page(newpage);
a5430dda
JG
2881 if (is_zone_device_page(newpage))
2882 put_page(newpage);
2883 else
2884 putback_lru_page(newpage);
8763cb45
JG
2885 }
2886 }
2887}
2888
2889/*
2890 * migrate_vma() - migrate a range of memory inside vma
2891 *
2892 * @ops: migration callback for allocating destination memory and copying
2893 * @vma: virtual memory area containing the range to be migrated
2894 * @start: start address of the range to migrate (inclusive)
2895 * @end: end address of the range to migrate (exclusive)
2896 * @src: array of hmm_pfn_t containing source pfns
2897 * @dst: array of hmm_pfn_t containing destination pfns
2898 * @private: pointer passed back to each of the callback
2899 * Returns: 0 on success, error code otherwise
2900 *
2901 * This function tries to migrate a range of memory virtual address range, using
2902 * callbacks to allocate and copy memory from source to destination. First it
2903 * collects all the pages backing each virtual address in the range, saving this
2904 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2905 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2906 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2907 * in the corresponding src array entry. It then restores any pages that are
2908 * pinned, by remapping and unlocking those pages.
2909 *
2910 * At this point it calls the alloc_and_copy() callback. For documentation on
2911 * what is expected from that callback, see struct migrate_vma_ops comments in
2912 * include/linux/migrate.h
2913 *
2914 * After the alloc_and_copy() callback, this function goes over each entry in
2915 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2916 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2917 * then the function tries to migrate struct page information from the source
2918 * struct page to the destination struct page. If it fails to migrate the struct
2919 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2920 * array.
2921 *
2922 * At this point all successfully migrated pages have an entry in the src
2923 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2924 * array entry with MIGRATE_PFN_VALID flag set.
2925 *
2926 * It then calls the finalize_and_map() callback. See comments for "struct
2927 * migrate_vma_ops", in include/linux/migrate.h for details about
2928 * finalize_and_map() behavior.
2929 *
2930 * After the finalize_and_map() callback, for successfully migrated pages, this
2931 * function updates the CPU page table to point to new pages, otherwise it
2932 * restores the CPU page table to point to the original source pages.
2933 *
2934 * Function returns 0 after the above steps, even if no pages were migrated
2935 * (The function only returns an error if any of the arguments are invalid.)
2936 *
2937 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2938 * unsigned long entries.
2939 */
2940int migrate_vma(const struct migrate_vma_ops *ops,
2941 struct vm_area_struct *vma,
2942 unsigned long start,
2943 unsigned long end,
2944 unsigned long *src,
2945 unsigned long *dst,
2946 void *private)
2947{
2948 struct migrate_vma migrate;
2949
2950 /* Sanity check the arguments */
2951 start &= PAGE_MASK;
2952 end &= PAGE_MASK;
e1fb4a08
DJ
2953 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2954 vma_is_dax(vma))
8763cb45
JG
2955 return -EINVAL;
2956 if (start < vma->vm_start || start >= vma->vm_end)
2957 return -EINVAL;
2958 if (end <= vma->vm_start || end > vma->vm_end)
2959 return -EINVAL;
2960 if (!ops || !src || !dst || start >= end)
2961 return -EINVAL;
2962
2963 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2964 migrate.src = src;
2965 migrate.dst = dst;
2966 migrate.start = start;
2967 migrate.npages = 0;
2968 migrate.cpages = 0;
2969 migrate.end = end;
2970 migrate.vma = vma;
2971
2972 /* Collect, and try to unmap source pages */
2973 migrate_vma_collect(&migrate);
2974 if (!migrate.cpages)
2975 return 0;
2976
2977 /* Lock and isolate page */
2978 migrate_vma_prepare(&migrate);
2979 if (!migrate.cpages)
2980 return 0;
2981
2982 /* Unmap pages */
2983 migrate_vma_unmap(&migrate);
2984 if (!migrate.cpages)
2985 return 0;
2986
2987 /*
2988 * At this point pages are locked and unmapped, and thus they have
2989 * stable content and can safely be copied to destination memory that
2990 * is allocated by the callback.
2991 *
2992 * Note that migration can fail in migrate_vma_struct_page() for each
2993 * individual page.
2994 */
2995 ops->alloc_and_copy(vma, src, dst, start, end, private);
2996
2997 /* This does the real migration of struct page */
2998 migrate_vma_pages(&migrate);
2999
3000 ops->finalize_and_map(vma, src, dst, start, end, private);
3001
3002 /* Unlock and remap pages */
3003 migrate_vma_finalize(&migrate);
3004
3005 return 0;
3006}
3007EXPORT_SYMBOL(migrate_vma);
6b368cd4 3008#endif /* defined(MIGRATE_VMA_HELPER) */