]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/migrate.c
mm: vmscan: do not OOM if aborting reclaim to start compaction
[mirror_ubuntu-artful-kernel.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
5a0e3ad6 36#include <linux/gfp.h>
b20a3503 37
0d1836c3
MN
38#include <asm/tlbflush.h>
39
b20a3503
CL
40#include "internal.h"
41
b20a3503 42/*
742755a1 43 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45 * undesirable, use migrate_prep_local()
b20a3503
CL
46 */
47int migrate_prep(void)
48{
b20a3503
CL
49 /*
50 * Clear the LRU lists so pages can be isolated.
51 * Note that pages may be moved off the LRU after we have
52 * drained them. Those pages will fail to migrate like other
53 * pages that may be busy.
54 */
55 lru_add_drain_all();
56
57 return 0;
58}
59
748446bb
MG
60/* Do the necessary work of migrate_prep but not if it involves other CPUs */
61int migrate_prep_local(void)
62{
63 lru_add_drain();
64
65 return 0;
66}
67
b20a3503 68/*
894bc310
LS
69 * Add isolated pages on the list back to the LRU under page lock
70 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 71 */
e13861d8 72void putback_lru_pages(struct list_head *l)
b20a3503
CL
73{
74 struct page *page;
75 struct page *page2;
b20a3503
CL
76
77 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 78 list_del(&page->lru);
a731286d 79 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 80 page_is_file_cache(page));
894bc310 81 putback_lru_page(page);
b20a3503 82 }
b20a3503
CL
83}
84
0697212a
CL
85/*
86 * Restore a potential migration pte to a working pte entry
87 */
e9995ef9
HD
88static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89 unsigned long addr, void *old)
0697212a
CL
90{
91 struct mm_struct *mm = vma->vm_mm;
92 swp_entry_t entry;
93 pgd_t *pgd;
94 pud_t *pud;
95 pmd_t *pmd;
96 pte_t *ptep, pte;
97 spinlock_t *ptl;
98
290408d4
NH
99 if (unlikely(PageHuge(new))) {
100 ptep = huge_pte_offset(mm, addr);
101 if (!ptep)
102 goto out;
103 ptl = &mm->page_table_lock;
104 } else {
105 pgd = pgd_offset(mm, addr);
106 if (!pgd_present(*pgd))
107 goto out;
0697212a 108
290408d4
NH
109 pud = pud_offset(pgd, addr);
110 if (!pud_present(*pud))
111 goto out;
0697212a 112
290408d4 113 pmd = pmd_offset(pud, addr);
500d65d4
AA
114 if (pmd_trans_huge(*pmd))
115 goto out;
290408d4
NH
116 if (!pmd_present(*pmd))
117 goto out;
0697212a 118
290408d4 119 ptep = pte_offset_map(pmd, addr);
0697212a 120
486cf46f
HD
121 /*
122 * Peek to check is_swap_pte() before taking ptlock? No, we
123 * can race mremap's move_ptes(), which skips anon_vma lock.
124 */
290408d4
NH
125
126 ptl = pte_lockptr(mm, pmd);
127 }
0697212a 128
0697212a
CL
129 spin_lock(ptl);
130 pte = *ptep;
131 if (!is_swap_pte(pte))
e9995ef9 132 goto unlock;
0697212a
CL
133
134 entry = pte_to_swp_entry(pte);
135
e9995ef9
HD
136 if (!is_migration_entry(entry) ||
137 migration_entry_to_page(entry) != old)
138 goto unlock;
0697212a 139
0697212a
CL
140 get_page(new);
141 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
142 if (is_write_migration_entry(entry))
143 pte = pte_mkwrite(pte);
3ef8fd7f 144#ifdef CONFIG_HUGETLB_PAGE
290408d4
NH
145 if (PageHuge(new))
146 pte = pte_mkhuge(pte);
3ef8fd7f 147#endif
97ee0524 148 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 149 set_pte_at(mm, addr, ptep, pte);
04e62a29 150
290408d4
NH
151 if (PageHuge(new)) {
152 if (PageAnon(new))
153 hugepage_add_anon_rmap(new, vma, addr);
154 else
155 page_dup_rmap(new);
156 } else if (PageAnon(new))
04e62a29
CL
157 page_add_anon_rmap(new, vma, addr);
158 else
159 page_add_file_rmap(new);
160
161 /* No need to invalidate - it was non-present before */
4b3073e1 162 update_mmu_cache(vma, addr, ptep);
e9995ef9 163unlock:
0697212a 164 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
165out:
166 return SWAP_AGAIN;
0697212a
CL
167}
168
04e62a29
CL
169/*
170 * Get rid of all migration entries and replace them by
171 * references to the indicated page.
172 */
173static void remove_migration_ptes(struct page *old, struct page *new)
174{
e9995ef9 175 rmap_walk(new, remove_migration_pte, old);
04e62a29
CL
176}
177
0697212a
CL
178/*
179 * Something used the pte of a page under migration. We need to
180 * get to the page and wait until migration is finished.
181 * When we return from this function the fault will be retried.
0697212a
CL
182 */
183void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
184 unsigned long address)
185{
186 pte_t *ptep, pte;
187 spinlock_t *ptl;
188 swp_entry_t entry;
189 struct page *page;
190
191 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
192 pte = *ptep;
193 if (!is_swap_pte(pte))
194 goto out;
195
196 entry = pte_to_swp_entry(pte);
197 if (!is_migration_entry(entry))
198 goto out;
199
200 page = migration_entry_to_page(entry);
201
e286781d
NP
202 /*
203 * Once radix-tree replacement of page migration started, page_count
204 * *must* be zero. And, we don't want to call wait_on_page_locked()
205 * against a page without get_page().
206 * So, we use get_page_unless_zero(), here. Even failed, page fault
207 * will occur again.
208 */
209 if (!get_page_unless_zero(page))
210 goto out;
0697212a
CL
211 pte_unmap_unlock(ptep, ptl);
212 wait_on_page_locked(page);
213 put_page(page);
214 return;
215out:
216 pte_unmap_unlock(ptep, ptl);
217}
218
b20a3503 219/*
c3fcf8a5 220 * Replace the page in the mapping.
5b5c7120
CL
221 *
222 * The number of remaining references must be:
223 * 1 for anonymous pages without a mapping
224 * 2 for pages with a mapping
266cf658 225 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 226 */
2d1db3b1
CL
227static int migrate_page_move_mapping(struct address_space *mapping,
228 struct page *newpage, struct page *page)
b20a3503 229{
e286781d 230 int expected_count;
7cf9c2c7 231 void **pslot;
b20a3503 232
6c5240ae 233 if (!mapping) {
0e8c7d0f 234 /* Anonymous page without mapping */
6c5240ae
CL
235 if (page_count(page) != 1)
236 return -EAGAIN;
237 return 0;
238 }
239
19fd6231 240 spin_lock_irq(&mapping->tree_lock);
b20a3503 241
7cf9c2c7
NP
242 pslot = radix_tree_lookup_slot(&mapping->page_tree,
243 page_index(page));
b20a3503 244
edcf4748 245 expected_count = 2 + page_has_private(page);
e286781d 246 if (page_count(page) != expected_count ||
29c1f677 247 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 248 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 249 return -EAGAIN;
b20a3503
CL
250 }
251
e286781d 252 if (!page_freeze_refs(page, expected_count)) {
19fd6231 253 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
254 return -EAGAIN;
255 }
256
b20a3503
CL
257 /*
258 * Now we know that no one else is looking at the page.
b20a3503 259 */
7cf9c2c7 260 get_page(newpage); /* add cache reference */
b20a3503
CL
261 if (PageSwapCache(page)) {
262 SetPageSwapCache(newpage);
263 set_page_private(newpage, page_private(page));
264 }
265
7cf9c2c7
NP
266 radix_tree_replace_slot(pslot, newpage);
267
268 /*
937a94c9
JG
269 * Drop cache reference from old page by unfreezing
270 * to one less reference.
7cf9c2c7
NP
271 * We know this isn't the last reference.
272 */
937a94c9 273 page_unfreeze_refs(page, expected_count - 1);
7cf9c2c7 274
0e8c7d0f
CL
275 /*
276 * If moved to a different zone then also account
277 * the page for that zone. Other VM counters will be
278 * taken care of when we establish references to the
279 * new page and drop references to the old page.
280 *
281 * Note that anonymous pages are accounted for
282 * via NR_FILE_PAGES and NR_ANON_PAGES if they
283 * are mapped to swap space.
284 */
285 __dec_zone_page_state(page, NR_FILE_PAGES);
286 __inc_zone_page_state(newpage, NR_FILE_PAGES);
99a15e21 287 if (!PageSwapCache(page) && PageSwapBacked(page)) {
4b02108a
KM
288 __dec_zone_page_state(page, NR_SHMEM);
289 __inc_zone_page_state(newpage, NR_SHMEM);
290 }
19fd6231 291 spin_unlock_irq(&mapping->tree_lock);
b20a3503
CL
292
293 return 0;
294}
b20a3503 295
290408d4
NH
296/*
297 * The expected number of remaining references is the same as that
298 * of migrate_page_move_mapping().
299 */
300int migrate_huge_page_move_mapping(struct address_space *mapping,
301 struct page *newpage, struct page *page)
302{
303 int expected_count;
304 void **pslot;
305
306 if (!mapping) {
307 if (page_count(page) != 1)
308 return -EAGAIN;
309 return 0;
310 }
311
312 spin_lock_irq(&mapping->tree_lock);
313
314 pslot = radix_tree_lookup_slot(&mapping->page_tree,
315 page_index(page));
316
317 expected_count = 2 + page_has_private(page);
318 if (page_count(page) != expected_count ||
29c1f677 319 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
320 spin_unlock_irq(&mapping->tree_lock);
321 return -EAGAIN;
322 }
323
324 if (!page_freeze_refs(page, expected_count)) {
325 spin_unlock_irq(&mapping->tree_lock);
326 return -EAGAIN;
327 }
328
329 get_page(newpage);
330
331 radix_tree_replace_slot(pslot, newpage);
332
937a94c9 333 page_unfreeze_refs(page, expected_count - 1);
290408d4
NH
334
335 spin_unlock_irq(&mapping->tree_lock);
336 return 0;
337}
338
b20a3503
CL
339/*
340 * Copy the page to its new location
341 */
290408d4 342void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 343{
290408d4
NH
344 if (PageHuge(page))
345 copy_huge_page(newpage, page);
346 else
347 copy_highpage(newpage, page);
b20a3503
CL
348
349 if (PageError(page))
350 SetPageError(newpage);
351 if (PageReferenced(page))
352 SetPageReferenced(newpage);
353 if (PageUptodate(page))
354 SetPageUptodate(newpage);
894bc310
LS
355 if (TestClearPageActive(page)) {
356 VM_BUG_ON(PageUnevictable(page));
b20a3503 357 SetPageActive(newpage);
418b27ef
LS
358 } else if (TestClearPageUnevictable(page))
359 SetPageUnevictable(newpage);
b20a3503
CL
360 if (PageChecked(page))
361 SetPageChecked(newpage);
362 if (PageMappedToDisk(page))
363 SetPageMappedToDisk(newpage);
364
365 if (PageDirty(page)) {
366 clear_page_dirty_for_io(page);
3a902c5f
NP
367 /*
368 * Want to mark the page and the radix tree as dirty, and
369 * redo the accounting that clear_page_dirty_for_io undid,
370 * but we can't use set_page_dirty because that function
371 * is actually a signal that all of the page has become dirty.
25985edc 372 * Whereas only part of our page may be dirty.
3a902c5f
NP
373 */
374 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
375 }
376
b291f000 377 mlock_migrate_page(newpage, page);
e9995ef9 378 ksm_migrate_page(newpage, page);
b291f000 379
b20a3503 380 ClearPageSwapCache(page);
b20a3503
CL
381 ClearPagePrivate(page);
382 set_page_private(page, 0);
383 page->mapping = NULL;
384
385 /*
386 * If any waiters have accumulated on the new page then
387 * wake them up.
388 */
389 if (PageWriteback(newpage))
390 end_page_writeback(newpage);
391}
b20a3503 392
1d8b85cc
CL
393/************************************************************
394 * Migration functions
395 ***********************************************************/
396
397/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
398int fail_migrate_page(struct address_space *mapping,
399 struct page *newpage, struct page *page)
1d8b85cc
CL
400{
401 return -EIO;
402}
403EXPORT_SYMBOL(fail_migrate_page);
404
b20a3503
CL
405/*
406 * Common logic to directly migrate a single page suitable for
266cf658 407 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
408 *
409 * Pages are locked upon entry and exit.
410 */
2d1db3b1
CL
411int migrate_page(struct address_space *mapping,
412 struct page *newpage, struct page *page)
b20a3503
CL
413{
414 int rc;
415
416 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
417
2d1db3b1 418 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
419
420 if (rc)
421 return rc;
422
423 migrate_page_copy(newpage, page);
b20a3503
CL
424 return 0;
425}
426EXPORT_SYMBOL(migrate_page);
427
9361401e 428#ifdef CONFIG_BLOCK
1d8b85cc
CL
429/*
430 * Migration function for pages with buffers. This function can only be used
431 * if the underlying filesystem guarantees that no other references to "page"
432 * exist.
433 */
2d1db3b1
CL
434int buffer_migrate_page(struct address_space *mapping,
435 struct page *newpage, struct page *page)
1d8b85cc 436{
1d8b85cc
CL
437 struct buffer_head *bh, *head;
438 int rc;
439
1d8b85cc 440 if (!page_has_buffers(page))
2d1db3b1 441 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
442
443 head = page_buffers(page);
444
2d1db3b1 445 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
446
447 if (rc)
448 return rc;
449
450 bh = head;
451 do {
452 get_bh(bh);
453 lock_buffer(bh);
454 bh = bh->b_this_page;
455
456 } while (bh != head);
457
458 ClearPagePrivate(page);
459 set_page_private(newpage, page_private(page));
460 set_page_private(page, 0);
461 put_page(page);
462 get_page(newpage);
463
464 bh = head;
465 do {
466 set_bh_page(bh, newpage, bh_offset(bh));
467 bh = bh->b_this_page;
468
469 } while (bh != head);
470
471 SetPagePrivate(newpage);
472
473 migrate_page_copy(newpage, page);
474
475 bh = head;
476 do {
477 unlock_buffer(bh);
478 put_bh(bh);
479 bh = bh->b_this_page;
480
481 } while (bh != head);
482
483 return 0;
484}
485EXPORT_SYMBOL(buffer_migrate_page);
9361401e 486#endif
1d8b85cc 487
04e62a29
CL
488/*
489 * Writeback a page to clean the dirty state
490 */
491static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 492{
04e62a29
CL
493 struct writeback_control wbc = {
494 .sync_mode = WB_SYNC_NONE,
495 .nr_to_write = 1,
496 .range_start = 0,
497 .range_end = LLONG_MAX,
04e62a29
CL
498 .for_reclaim = 1
499 };
500 int rc;
501
502 if (!mapping->a_ops->writepage)
503 /* No write method for the address space */
504 return -EINVAL;
505
506 if (!clear_page_dirty_for_io(page))
507 /* Someone else already triggered a write */
508 return -EAGAIN;
509
8351a6e4 510 /*
04e62a29
CL
511 * A dirty page may imply that the underlying filesystem has
512 * the page on some queue. So the page must be clean for
513 * migration. Writeout may mean we loose the lock and the
514 * page state is no longer what we checked for earlier.
515 * At this point we know that the migration attempt cannot
516 * be successful.
8351a6e4 517 */
04e62a29 518 remove_migration_ptes(page, page);
8351a6e4 519
04e62a29 520 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 521
04e62a29
CL
522 if (rc != AOP_WRITEPAGE_ACTIVATE)
523 /* unlocked. Relock */
524 lock_page(page);
525
bda8550d 526 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
527}
528
529/*
530 * Default handling if a filesystem does not provide a migration function.
531 */
532static int fallback_migrate_page(struct address_space *mapping,
533 struct page *newpage, struct page *page)
534{
535 if (PageDirty(page))
536 return writeout(mapping, page);
8351a6e4
CL
537
538 /*
539 * Buffers may be managed in a filesystem specific way.
540 * We must have no buffers or drop them.
541 */
266cf658 542 if (page_has_private(page) &&
8351a6e4
CL
543 !try_to_release_page(page, GFP_KERNEL))
544 return -EAGAIN;
545
546 return migrate_page(mapping, newpage, page);
547}
548
e24f0b8f
CL
549/*
550 * Move a page to a newly allocated page
551 * The page is locked and all ptes have been successfully removed.
552 *
553 * The new page will have replaced the old page if this function
554 * is successful.
894bc310
LS
555 *
556 * Return value:
557 * < 0 - error code
558 * == 0 - success
e24f0b8f 559 */
3fe2011f 560static int move_to_new_page(struct page *newpage, struct page *page,
11bc82d6 561 int remap_swapcache, bool sync)
e24f0b8f
CL
562{
563 struct address_space *mapping;
564 int rc;
565
566 /*
567 * Block others from accessing the page when we get around to
568 * establishing additional references. We are the only one
569 * holding a reference to the new page at this point.
570 */
529ae9aa 571 if (!trylock_page(newpage))
e24f0b8f
CL
572 BUG();
573
574 /* Prepare mapping for the new page.*/
575 newpage->index = page->index;
576 newpage->mapping = page->mapping;
b2e18538
RR
577 if (PageSwapBacked(page))
578 SetPageSwapBacked(newpage);
e24f0b8f
CL
579
580 mapping = page_mapping(page);
581 if (!mapping)
582 rc = migrate_page(mapping, newpage, page);
11bc82d6 583 else {
e24f0b8f 584 /*
11bc82d6
AA
585 * Do not writeback pages if !sync and migratepage is
586 * not pointing to migrate_page() which is nonblocking
587 * (swapcache/tmpfs uses migratepage = migrate_page).
e24f0b8f 588 */
11bc82d6
AA
589 if (PageDirty(page) && !sync &&
590 mapping->a_ops->migratepage != migrate_page)
591 rc = -EBUSY;
592 else if (mapping->a_ops->migratepage)
593 /*
594 * Most pages have a mapping and most filesystems
595 * should provide a migration function. Anonymous
596 * pages are part of swap space which also has its
597 * own migration function. This is the most common
598 * path for page migration.
599 */
600 rc = mapping->a_ops->migratepage(mapping,
601 newpage, page);
602 else
603 rc = fallback_migrate_page(mapping, newpage, page);
604 }
e24f0b8f 605
3fe2011f 606 if (rc) {
e24f0b8f 607 newpage->mapping = NULL;
3fe2011f
MG
608 } else {
609 if (remap_swapcache)
610 remove_migration_ptes(page, newpage);
611 }
e24f0b8f
CL
612
613 unlock_page(newpage);
614
615 return rc;
616}
617
0dabec93
MK
618static int __unmap_and_move(struct page *page, struct page *newpage,
619 int force, bool offlining, bool sync)
e24f0b8f 620{
0dabec93 621 int rc = -EAGAIN;
3fe2011f 622 int remap_swapcache = 1;
ae41be37 623 int charge = 0;
56039efa 624 struct mem_cgroup *mem;
3f6c8272 625 struct anon_vma *anon_vma = NULL;
95a402c3 626
529ae9aa 627 if (!trylock_page(page)) {
11bc82d6 628 if (!force || !sync)
0dabec93 629 goto out;
3e7d3449
MG
630
631 /*
632 * It's not safe for direct compaction to call lock_page.
633 * For example, during page readahead pages are added locked
634 * to the LRU. Later, when the IO completes the pages are
635 * marked uptodate and unlocked. However, the queueing
636 * could be merging multiple pages for one bio (e.g.
637 * mpage_readpages). If an allocation happens for the
638 * second or third page, the process can end up locking
639 * the same page twice and deadlocking. Rather than
640 * trying to be clever about what pages can be locked,
641 * avoid the use of lock_page for direct compaction
642 * altogether.
643 */
644 if (current->flags & PF_MEMALLOC)
0dabec93 645 goto out;
3e7d3449 646
e24f0b8f
CL
647 lock_page(page);
648 }
649
62b61f61
HD
650 /*
651 * Only memory hotplug's offline_pages() caller has locked out KSM,
652 * and can safely migrate a KSM page. The other cases have skipped
653 * PageKsm along with PageReserved - but it is only now when we have
654 * the page lock that we can be certain it will not go KSM beneath us
655 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
656 * its pagecount raised, but only here do we take the page lock which
657 * serializes that).
658 */
659 if (PageKsm(page) && !offlining) {
660 rc = -EBUSY;
661 goto unlock;
662 }
663
01b1ae63 664 /* charge against new page */
ef6a3c63 665 charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
01b1ae63
KH
666 if (charge == -ENOMEM) {
667 rc = -ENOMEM;
668 goto unlock;
669 }
670 BUG_ON(charge);
671
e24f0b8f 672 if (PageWriteback(page)) {
11bc82d6
AA
673 /*
674 * For !sync, there is no point retrying as the retry loop
675 * is expected to be too short for PageWriteback to be cleared
676 */
677 if (!sync) {
678 rc = -EBUSY;
679 goto uncharge;
680 }
681 if (!force)
01b1ae63 682 goto uncharge;
e24f0b8f
CL
683 wait_on_page_writeback(page);
684 }
e24f0b8f 685 /*
dc386d4d
KH
686 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
687 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 688 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 689 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
690 * File Caches may use write_page() or lock_page() in migration, then,
691 * just care Anon page here.
dc386d4d 692 */
989f89c5 693 if (PageAnon(page)) {
1ce82b69
HD
694 /*
695 * Only page_lock_anon_vma() understands the subtleties of
696 * getting a hold on an anon_vma from outside one of its mms.
697 */
746b18d4 698 anon_vma = page_get_anon_vma(page);
1ce82b69
HD
699 if (anon_vma) {
700 /*
746b18d4 701 * Anon page
1ce82b69 702 */
1ce82b69 703 } else if (PageSwapCache(page)) {
3fe2011f
MG
704 /*
705 * We cannot be sure that the anon_vma of an unmapped
706 * swapcache page is safe to use because we don't
707 * know in advance if the VMA that this page belonged
708 * to still exists. If the VMA and others sharing the
709 * data have been freed, then the anon_vma could
710 * already be invalid.
711 *
712 * To avoid this possibility, swapcache pages get
713 * migrated but are not remapped when migration
714 * completes
715 */
716 remap_swapcache = 0;
717 } else {
1ce82b69 718 goto uncharge;
3fe2011f 719 }
989f89c5 720 }
62e1c553 721
dc386d4d 722 /*
62e1c553
SL
723 * Corner case handling:
724 * 1. When a new swap-cache page is read into, it is added to the LRU
725 * and treated as swapcache but it has no rmap yet.
726 * Calling try_to_unmap() against a page->mapping==NULL page will
727 * trigger a BUG. So handle it here.
728 * 2. An orphaned page (see truncate_complete_page) might have
729 * fs-private metadata. The page can be picked up due to memory
730 * offlining. Everywhere else except page reclaim, the page is
731 * invisible to the vm, so the page can not be migrated. So try to
732 * free the metadata, so the page can be freed.
e24f0b8f 733 */
62e1c553 734 if (!page->mapping) {
1ce82b69
HD
735 VM_BUG_ON(PageAnon(page));
736 if (page_has_private(page)) {
62e1c553 737 try_to_free_buffers(page);
1ce82b69 738 goto uncharge;
62e1c553 739 }
abfc3488 740 goto skip_unmap;
62e1c553
SL
741 }
742
dc386d4d 743 /* Establish migration ptes or remove ptes */
14fa31b8 744 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 745
abfc3488 746skip_unmap:
e6a1530d 747 if (!page_mapped(page))
11bc82d6 748 rc = move_to_new_page(newpage, page, remap_swapcache, sync);
e24f0b8f 749
3fe2011f 750 if (rc && remap_swapcache)
e24f0b8f 751 remove_migration_ptes(page, page);
3f6c8272
MG
752
753 /* Drop an anon_vma reference if we took one */
76545066 754 if (anon_vma)
9e60109f 755 put_anon_vma(anon_vma);
3f6c8272 756
01b1ae63
KH
757uncharge:
758 if (!charge)
50de1dd9 759 mem_cgroup_end_migration(mem, page, newpage, rc == 0);
e24f0b8f
CL
760unlock:
761 unlock_page(page);
0dabec93
MK
762out:
763 return rc;
764}
95a402c3 765
0dabec93
MK
766/*
767 * Obtain the lock on page, remove all ptes and migrate the page
768 * to the newly allocated page in newpage.
769 */
770static int unmap_and_move(new_page_t get_new_page, unsigned long private,
771 struct page *page, int force, bool offlining, bool sync)
772{
773 int rc = 0;
774 int *result = NULL;
775 struct page *newpage = get_new_page(page, private, &result);
776
777 if (!newpage)
778 return -ENOMEM;
779
4e5f01c2
KH
780 mem_cgroup_reset_owner(newpage);
781
0dabec93
MK
782 if (page_count(page) == 1) {
783 /* page was freed from under us. So we are done. */
784 goto out;
785 }
786
787 if (unlikely(PageTransHuge(page)))
788 if (unlikely(split_huge_page(page)))
789 goto out;
790
791 rc = __unmap_and_move(page, newpage, force, offlining, sync);
792out:
e24f0b8f 793 if (rc != -EAGAIN) {
0dabec93
MK
794 /*
795 * A page that has been migrated has all references
796 * removed and will be freed. A page that has not been
797 * migrated will have kepts its references and be
798 * restored.
799 */
800 list_del(&page->lru);
a731286d 801 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 802 page_is_file_cache(page));
894bc310 803 putback_lru_page(page);
e24f0b8f 804 }
95a402c3
CL
805 /*
806 * Move the new page to the LRU. If migration was not successful
807 * then this will free the page.
808 */
894bc310 809 putback_lru_page(newpage);
742755a1
CL
810 if (result) {
811 if (rc)
812 *result = rc;
813 else
814 *result = page_to_nid(newpage);
815 }
e24f0b8f
CL
816 return rc;
817}
818
290408d4
NH
819/*
820 * Counterpart of unmap_and_move_page() for hugepage migration.
821 *
822 * This function doesn't wait the completion of hugepage I/O
823 * because there is no race between I/O and migration for hugepage.
824 * Note that currently hugepage I/O occurs only in direct I/O
825 * where no lock is held and PG_writeback is irrelevant,
826 * and writeback status of all subpages are counted in the reference
827 * count of the head page (i.e. if all subpages of a 2MB hugepage are
828 * under direct I/O, the reference of the head page is 512 and a bit more.)
829 * This means that when we try to migrate hugepage whose subpages are
830 * doing direct I/O, some references remain after try_to_unmap() and
831 * hugepage migration fails without data corruption.
832 *
833 * There is also no race when direct I/O is issued on the page under migration,
834 * because then pte is replaced with migration swap entry and direct I/O code
835 * will wait in the page fault for migration to complete.
836 */
837static int unmap_and_move_huge_page(new_page_t get_new_page,
838 unsigned long private, struct page *hpage,
7f0f2496 839 int force, bool offlining, bool sync)
290408d4
NH
840{
841 int rc = 0;
842 int *result = NULL;
843 struct page *new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
844 struct anon_vma *anon_vma = NULL;
845
846 if (!new_hpage)
847 return -ENOMEM;
848
849 rc = -EAGAIN;
850
851 if (!trylock_page(hpage)) {
77f1fe6b 852 if (!force || !sync)
290408d4
NH
853 goto out;
854 lock_page(hpage);
855 }
856
746b18d4
PZ
857 if (PageAnon(hpage))
858 anon_vma = page_get_anon_vma(hpage);
290408d4
NH
859
860 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
861
862 if (!page_mapped(hpage))
11bc82d6 863 rc = move_to_new_page(new_hpage, hpage, 1, sync);
290408d4
NH
864
865 if (rc)
866 remove_migration_ptes(hpage, hpage);
867
fd4a4663 868 if (anon_vma)
9e60109f 869 put_anon_vma(anon_vma);
290408d4
NH
870 unlock_page(hpage);
871
09761333 872out:
290408d4
NH
873 if (rc != -EAGAIN) {
874 list_del(&hpage->lru);
875 put_page(hpage);
876 }
877
878 put_page(new_hpage);
879
880 if (result) {
881 if (rc)
882 *result = rc;
883 else
884 *result = page_to_nid(new_hpage);
885 }
886 return rc;
887}
888
b20a3503
CL
889/*
890 * migrate_pages
891 *
95a402c3
CL
892 * The function takes one list of pages to migrate and a function
893 * that determines from the page to be migrated and the private data
894 * the target of the move and allocates the page.
b20a3503
CL
895 *
896 * The function returns after 10 attempts or if no pages
897 * are movable anymore because to has become empty
cf608ac1
MK
898 * or no retryable pages exist anymore.
899 * Caller should call putback_lru_pages to return pages to the LRU
28bd6578 900 * or free list only if ret != 0.
b20a3503 901 *
95a402c3 902 * Return: Number of pages not migrated or error code.
b20a3503 903 */
95a402c3 904int migrate_pages(struct list_head *from,
7f0f2496 905 new_page_t get_new_page, unsigned long private, bool offlining,
77f1fe6b 906 bool sync)
b20a3503 907{
e24f0b8f 908 int retry = 1;
b20a3503
CL
909 int nr_failed = 0;
910 int pass = 0;
911 struct page *page;
912 struct page *page2;
913 int swapwrite = current->flags & PF_SWAPWRITE;
914 int rc;
915
916 if (!swapwrite)
917 current->flags |= PF_SWAPWRITE;
918
e24f0b8f
CL
919 for(pass = 0; pass < 10 && retry; pass++) {
920 retry = 0;
b20a3503 921
e24f0b8f 922 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 923 cond_resched();
2d1db3b1 924
95a402c3 925 rc = unmap_and_move(get_new_page, private,
77f1fe6b
MG
926 page, pass > 2, offlining,
927 sync);
2d1db3b1 928
e24f0b8f 929 switch(rc) {
95a402c3
CL
930 case -ENOMEM:
931 goto out;
e24f0b8f 932 case -EAGAIN:
2d1db3b1 933 retry++;
e24f0b8f
CL
934 break;
935 case 0:
e24f0b8f
CL
936 break;
937 default:
2d1db3b1 938 /* Permanent failure */
2d1db3b1 939 nr_failed++;
e24f0b8f 940 break;
2d1db3b1 941 }
b20a3503
CL
942 }
943 }
95a402c3
CL
944 rc = 0;
945out:
b20a3503
CL
946 if (!swapwrite)
947 current->flags &= ~PF_SWAPWRITE;
948
95a402c3
CL
949 if (rc)
950 return rc;
b20a3503 951
95a402c3 952 return nr_failed + retry;
b20a3503 953}
95a402c3 954
290408d4 955int migrate_huge_pages(struct list_head *from,
7f0f2496 956 new_page_t get_new_page, unsigned long private, bool offlining,
77f1fe6b 957 bool sync)
290408d4
NH
958{
959 int retry = 1;
960 int nr_failed = 0;
961 int pass = 0;
962 struct page *page;
963 struct page *page2;
964 int rc;
965
966 for (pass = 0; pass < 10 && retry; pass++) {
967 retry = 0;
968
969 list_for_each_entry_safe(page, page2, from, lru) {
970 cond_resched();
971
972 rc = unmap_and_move_huge_page(get_new_page,
77f1fe6b
MG
973 private, page, pass > 2, offlining,
974 sync);
290408d4
NH
975
976 switch(rc) {
977 case -ENOMEM:
978 goto out;
979 case -EAGAIN:
980 retry++;
981 break;
982 case 0:
983 break;
984 default:
985 /* Permanent failure */
986 nr_failed++;
987 break;
988 }
989 }
990 }
991 rc = 0;
992out:
290408d4
NH
993 if (rc)
994 return rc;
995
996 return nr_failed + retry;
997}
998
742755a1
CL
999#ifdef CONFIG_NUMA
1000/*
1001 * Move a list of individual pages
1002 */
1003struct page_to_node {
1004 unsigned long addr;
1005 struct page *page;
1006 int node;
1007 int status;
1008};
1009
1010static struct page *new_page_node(struct page *p, unsigned long private,
1011 int **result)
1012{
1013 struct page_to_node *pm = (struct page_to_node *)private;
1014
1015 while (pm->node != MAX_NUMNODES && pm->page != p)
1016 pm++;
1017
1018 if (pm->node == MAX_NUMNODES)
1019 return NULL;
1020
1021 *result = &pm->status;
1022
6484eb3e 1023 return alloc_pages_exact_node(pm->node,
769848c0 1024 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1025}
1026
1027/*
1028 * Move a set of pages as indicated in the pm array. The addr
1029 * field must be set to the virtual address of the page to be moved
1030 * and the node number must contain a valid target node.
5e9a0f02 1031 * The pm array ends with node = MAX_NUMNODES.
742755a1 1032 */
5e9a0f02
BG
1033static int do_move_page_to_node_array(struct mm_struct *mm,
1034 struct page_to_node *pm,
1035 int migrate_all)
742755a1
CL
1036{
1037 int err;
1038 struct page_to_node *pp;
1039 LIST_HEAD(pagelist);
1040
1041 down_read(&mm->mmap_sem);
1042
1043 /*
1044 * Build a list of pages to migrate
1045 */
742755a1
CL
1046 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1047 struct vm_area_struct *vma;
1048 struct page *page;
1049
742755a1
CL
1050 err = -EFAULT;
1051 vma = find_vma(mm, pp->addr);
70384dc6 1052 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1053 goto set_status;
1054
500d65d4 1055 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
89f5b7da
LT
1056
1057 err = PTR_ERR(page);
1058 if (IS_ERR(page))
1059 goto set_status;
1060
742755a1
CL
1061 err = -ENOENT;
1062 if (!page)
1063 goto set_status;
1064
62b61f61
HD
1065 /* Use PageReserved to check for zero page */
1066 if (PageReserved(page) || PageKsm(page))
742755a1
CL
1067 goto put_and_set;
1068
1069 pp->page = page;
1070 err = page_to_nid(page);
1071
1072 if (err == pp->node)
1073 /*
1074 * Node already in the right place
1075 */
1076 goto put_and_set;
1077
1078 err = -EACCES;
1079 if (page_mapcount(page) > 1 &&
1080 !migrate_all)
1081 goto put_and_set;
1082
62695a84 1083 err = isolate_lru_page(page);
6d9c285a 1084 if (!err) {
62695a84 1085 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1086 inc_zone_page_state(page, NR_ISOLATED_ANON +
1087 page_is_file_cache(page));
1088 }
742755a1
CL
1089put_and_set:
1090 /*
1091 * Either remove the duplicate refcount from
1092 * isolate_lru_page() or drop the page ref if it was
1093 * not isolated.
1094 */
1095 put_page(page);
1096set_status:
1097 pp->status = err;
1098 }
1099
e78bbfa8 1100 err = 0;
cf608ac1 1101 if (!list_empty(&pagelist)) {
742755a1 1102 err = migrate_pages(&pagelist, new_page_node,
77f1fe6b 1103 (unsigned long)pm, 0, true);
cf608ac1
MK
1104 if (err)
1105 putback_lru_pages(&pagelist);
1106 }
742755a1
CL
1107
1108 up_read(&mm->mmap_sem);
1109 return err;
1110}
1111
5e9a0f02
BG
1112/*
1113 * Migrate an array of page address onto an array of nodes and fill
1114 * the corresponding array of status.
1115 */
1116static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1117 unsigned long nr_pages,
1118 const void __user * __user *pages,
1119 const int __user *nodes,
1120 int __user *status, int flags)
1121{
3140a227 1122 struct page_to_node *pm;
5e9a0f02 1123 nodemask_t task_nodes;
3140a227
BG
1124 unsigned long chunk_nr_pages;
1125 unsigned long chunk_start;
1126 int err;
5e9a0f02
BG
1127
1128 task_nodes = cpuset_mems_allowed(task);
1129
3140a227
BG
1130 err = -ENOMEM;
1131 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1132 if (!pm)
5e9a0f02 1133 goto out;
35282a2d
BG
1134
1135 migrate_prep();
1136
5e9a0f02 1137 /*
3140a227
BG
1138 * Store a chunk of page_to_node array in a page,
1139 * but keep the last one as a marker
5e9a0f02 1140 */
3140a227 1141 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1142
3140a227
BG
1143 for (chunk_start = 0;
1144 chunk_start < nr_pages;
1145 chunk_start += chunk_nr_pages) {
1146 int j;
5e9a0f02 1147
3140a227
BG
1148 if (chunk_start + chunk_nr_pages > nr_pages)
1149 chunk_nr_pages = nr_pages - chunk_start;
1150
1151 /* fill the chunk pm with addrs and nodes from user-space */
1152 for (j = 0; j < chunk_nr_pages; j++) {
1153 const void __user *p;
5e9a0f02
BG
1154 int node;
1155
3140a227
BG
1156 err = -EFAULT;
1157 if (get_user(p, pages + j + chunk_start))
1158 goto out_pm;
1159 pm[j].addr = (unsigned long) p;
1160
1161 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1162 goto out_pm;
1163
1164 err = -ENODEV;
6f5a55f1
LT
1165 if (node < 0 || node >= MAX_NUMNODES)
1166 goto out_pm;
1167
5e9a0f02
BG
1168 if (!node_state(node, N_HIGH_MEMORY))
1169 goto out_pm;
1170
1171 err = -EACCES;
1172 if (!node_isset(node, task_nodes))
1173 goto out_pm;
1174
3140a227
BG
1175 pm[j].node = node;
1176 }
1177
1178 /* End marker for this chunk */
1179 pm[chunk_nr_pages].node = MAX_NUMNODES;
1180
1181 /* Migrate this chunk */
1182 err = do_move_page_to_node_array(mm, pm,
1183 flags & MPOL_MF_MOVE_ALL);
1184 if (err < 0)
1185 goto out_pm;
5e9a0f02 1186
5e9a0f02 1187 /* Return status information */
3140a227
BG
1188 for (j = 0; j < chunk_nr_pages; j++)
1189 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1190 err = -EFAULT;
3140a227
BG
1191 goto out_pm;
1192 }
1193 }
1194 err = 0;
5e9a0f02
BG
1195
1196out_pm:
3140a227 1197 free_page((unsigned long)pm);
5e9a0f02
BG
1198out:
1199 return err;
1200}
1201
742755a1 1202/*
2f007e74 1203 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1204 */
80bba129
BG
1205static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1206 const void __user **pages, int *status)
742755a1 1207{
2f007e74 1208 unsigned long i;
2f007e74 1209
742755a1
CL
1210 down_read(&mm->mmap_sem);
1211
2f007e74 1212 for (i = 0; i < nr_pages; i++) {
80bba129 1213 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1214 struct vm_area_struct *vma;
1215 struct page *page;
c095adbc 1216 int err = -EFAULT;
2f007e74
BG
1217
1218 vma = find_vma(mm, addr);
70384dc6 1219 if (!vma || addr < vma->vm_start)
742755a1
CL
1220 goto set_status;
1221
2f007e74 1222 page = follow_page(vma, addr, 0);
89f5b7da
LT
1223
1224 err = PTR_ERR(page);
1225 if (IS_ERR(page))
1226 goto set_status;
1227
742755a1
CL
1228 err = -ENOENT;
1229 /* Use PageReserved to check for zero page */
62b61f61 1230 if (!page || PageReserved(page) || PageKsm(page))
742755a1
CL
1231 goto set_status;
1232
1233 err = page_to_nid(page);
1234set_status:
80bba129
BG
1235 *status = err;
1236
1237 pages++;
1238 status++;
1239 }
1240
1241 up_read(&mm->mmap_sem);
1242}
1243
1244/*
1245 * Determine the nodes of a user array of pages and store it in
1246 * a user array of status.
1247 */
1248static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1249 const void __user * __user *pages,
1250 int __user *status)
1251{
1252#define DO_PAGES_STAT_CHUNK_NR 16
1253 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1254 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1255
87b8d1ad
PA
1256 while (nr_pages) {
1257 unsigned long chunk_nr;
80bba129 1258
87b8d1ad
PA
1259 chunk_nr = nr_pages;
1260 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1261 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1262
1263 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1264 break;
80bba129
BG
1265
1266 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1267
87b8d1ad
PA
1268 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1269 break;
742755a1 1270
87b8d1ad
PA
1271 pages += chunk_nr;
1272 status += chunk_nr;
1273 nr_pages -= chunk_nr;
1274 }
1275 return nr_pages ? -EFAULT : 0;
742755a1
CL
1276}
1277
1278/*
1279 * Move a list of pages in the address space of the currently executing
1280 * process.
1281 */
938bb9f5
HC
1282SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1283 const void __user * __user *, pages,
1284 const int __user *, nodes,
1285 int __user *, status, int, flags)
742755a1 1286{
c69e8d9c 1287 const struct cred *cred = current_cred(), *tcred;
742755a1 1288 struct task_struct *task;
742755a1 1289 struct mm_struct *mm;
5e9a0f02 1290 int err;
742755a1
CL
1291
1292 /* Check flags */
1293 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1294 return -EINVAL;
1295
1296 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1297 return -EPERM;
1298
1299 /* Find the mm_struct */
a879bf58 1300 rcu_read_lock();
228ebcbe 1301 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1302 if (!task) {
a879bf58 1303 rcu_read_unlock();
742755a1
CL
1304 return -ESRCH;
1305 }
1306 mm = get_task_mm(task);
a879bf58 1307 rcu_read_unlock();
742755a1
CL
1308
1309 if (!mm)
1310 return -EINVAL;
1311
1312 /*
1313 * Check if this process has the right to modify the specified
1314 * process. The right exists if the process has administrative
1315 * capabilities, superuser privileges or the same
1316 * userid as the target process.
1317 */
c69e8d9c
DH
1318 rcu_read_lock();
1319 tcred = __task_cred(task);
b6dff3ec
DH
1320 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1321 cred->uid != tcred->suid && cred->uid != tcred->uid &&
742755a1 1322 !capable(CAP_SYS_NICE)) {
c69e8d9c 1323 rcu_read_unlock();
742755a1 1324 err = -EPERM;
5e9a0f02 1325 goto out;
742755a1 1326 }
c69e8d9c 1327 rcu_read_unlock();
742755a1 1328
86c3a764
DQ
1329 err = security_task_movememory(task);
1330 if (err)
5e9a0f02 1331 goto out;
86c3a764 1332
5e9a0f02
BG
1333 if (nodes) {
1334 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1335 flags);
1336 } else {
2f007e74 1337 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1
CL
1338 }
1339
742755a1 1340out:
742755a1
CL
1341 mmput(mm);
1342 return err;
1343}
742755a1 1344
7b2259b3
CL
1345/*
1346 * Call migration functions in the vma_ops that may prepare
1347 * memory in a vm for migration. migration functions may perform
1348 * the migration for vmas that do not have an underlying page struct.
1349 */
1350int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1351 const nodemask_t *from, unsigned long flags)
1352{
1353 struct vm_area_struct *vma;
1354 int err = 0;
1355
1001c9fb 1356 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1357 if (vma->vm_ops && vma->vm_ops->migrate) {
1358 err = vma->vm_ops->migrate(vma, to, from, flags);
1359 if (err)
1360 break;
1361 }
1362 }
1363 return err;
1364}
83d1674a 1365#endif