]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
b20a3503 | 2 | /* |
14e0f9bc | 3 | * Memory Migration functionality - linux/mm/migrate.c |
b20a3503 CL |
4 | * |
5 | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | |
6 | * | |
7 | * Page migration was first developed in the context of the memory hotplug | |
8 | * project. The main authors of the migration code are: | |
9 | * | |
10 | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | |
11 | * Hirokazu Takahashi <taka@valinux.co.jp> | |
12 | * Dave Hansen <haveblue@us.ibm.com> | |
cde53535 | 13 | * Christoph Lameter |
b20a3503 CL |
14 | */ |
15 | ||
16 | #include <linux/migrate.h> | |
b95f1b31 | 17 | #include <linux/export.h> |
b20a3503 | 18 | #include <linux/swap.h> |
0697212a | 19 | #include <linux/swapops.h> |
b20a3503 | 20 | #include <linux/pagemap.h> |
e23ca00b | 21 | #include <linux/buffer_head.h> |
b20a3503 | 22 | #include <linux/mm_inline.h> |
b488893a | 23 | #include <linux/nsproxy.h> |
b20a3503 | 24 | #include <linux/pagevec.h> |
e9995ef9 | 25 | #include <linux/ksm.h> |
b20a3503 CL |
26 | #include <linux/rmap.h> |
27 | #include <linux/topology.h> | |
28 | #include <linux/cpu.h> | |
29 | #include <linux/cpuset.h> | |
04e62a29 | 30 | #include <linux/writeback.h> |
742755a1 CL |
31 | #include <linux/mempolicy.h> |
32 | #include <linux/vmalloc.h> | |
86c3a764 | 33 | #include <linux/security.h> |
42cb14b1 | 34 | #include <linux/backing-dev.h> |
bda807d4 | 35 | #include <linux/compaction.h> |
4f5ca265 | 36 | #include <linux/syscalls.h> |
7addf443 | 37 | #include <linux/compat.h> |
290408d4 | 38 | #include <linux/hugetlb.h> |
8e6ac7fa | 39 | #include <linux/hugetlb_cgroup.h> |
5a0e3ad6 | 40 | #include <linux/gfp.h> |
a520110e | 41 | #include <linux/pagewalk.h> |
df6ad698 | 42 | #include <linux/pfn_t.h> |
a5430dda | 43 | #include <linux/memremap.h> |
8315ada7 | 44 | #include <linux/userfaultfd_k.h> |
bf6bddf1 | 45 | #include <linux/balloon_compaction.h> |
f714f4f2 | 46 | #include <linux/mmu_notifier.h> |
33c3fc71 | 47 | #include <linux/page_idle.h> |
d435edca | 48 | #include <linux/page_owner.h> |
6e84f315 | 49 | #include <linux/sched/mm.h> |
197e7e52 | 50 | #include <linux/ptrace.h> |
34290e2c | 51 | #include <linux/oom.h> |
b20a3503 | 52 | |
0d1836c3 MN |
53 | #include <asm/tlbflush.h> |
54 | ||
7b2a2d4a MG |
55 | #define CREATE_TRACE_POINTS |
56 | #include <trace/events/migrate.h> | |
57 | ||
b20a3503 CL |
58 | #include "internal.h" |
59 | ||
b20a3503 | 60 | /* |
742755a1 | 61 | * migrate_prep() needs to be called before we start compiling a list of pages |
748446bb MG |
62 | * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is |
63 | * undesirable, use migrate_prep_local() | |
b20a3503 CL |
64 | */ |
65 | int migrate_prep(void) | |
66 | { | |
b20a3503 CL |
67 | /* |
68 | * Clear the LRU lists so pages can be isolated. | |
69 | * Note that pages may be moved off the LRU after we have | |
70 | * drained them. Those pages will fail to migrate like other | |
71 | * pages that may be busy. | |
72 | */ | |
73 | lru_add_drain_all(); | |
74 | ||
75 | return 0; | |
76 | } | |
77 | ||
748446bb MG |
78 | /* Do the necessary work of migrate_prep but not if it involves other CPUs */ |
79 | int migrate_prep_local(void) | |
80 | { | |
81 | lru_add_drain(); | |
82 | ||
83 | return 0; | |
84 | } | |
85 | ||
9e5bcd61 | 86 | int isolate_movable_page(struct page *page, isolate_mode_t mode) |
bda807d4 MK |
87 | { |
88 | struct address_space *mapping; | |
89 | ||
90 | /* | |
91 | * Avoid burning cycles with pages that are yet under __free_pages(), | |
92 | * or just got freed under us. | |
93 | * | |
94 | * In case we 'win' a race for a movable page being freed under us and | |
95 | * raise its refcount preventing __free_pages() from doing its job | |
96 | * the put_page() at the end of this block will take care of | |
97 | * release this page, thus avoiding a nasty leakage. | |
98 | */ | |
99 | if (unlikely(!get_page_unless_zero(page))) | |
100 | goto out; | |
101 | ||
102 | /* | |
103 | * Check PageMovable before holding a PG_lock because page's owner | |
104 | * assumes anybody doesn't touch PG_lock of newly allocated page | |
8bb4e7a2 | 105 | * so unconditionally grabbing the lock ruins page's owner side. |
bda807d4 MK |
106 | */ |
107 | if (unlikely(!__PageMovable(page))) | |
108 | goto out_putpage; | |
109 | /* | |
110 | * As movable pages are not isolated from LRU lists, concurrent | |
111 | * compaction threads can race against page migration functions | |
112 | * as well as race against the releasing a page. | |
113 | * | |
114 | * In order to avoid having an already isolated movable page | |
115 | * being (wrongly) re-isolated while it is under migration, | |
116 | * or to avoid attempting to isolate pages being released, | |
117 | * lets be sure we have the page lock | |
118 | * before proceeding with the movable page isolation steps. | |
119 | */ | |
120 | if (unlikely(!trylock_page(page))) | |
121 | goto out_putpage; | |
122 | ||
123 | if (!PageMovable(page) || PageIsolated(page)) | |
124 | goto out_no_isolated; | |
125 | ||
126 | mapping = page_mapping(page); | |
127 | VM_BUG_ON_PAGE(!mapping, page); | |
128 | ||
129 | if (!mapping->a_ops->isolate_page(page, mode)) | |
130 | goto out_no_isolated; | |
131 | ||
132 | /* Driver shouldn't use PG_isolated bit of page->flags */ | |
133 | WARN_ON_ONCE(PageIsolated(page)); | |
134 | __SetPageIsolated(page); | |
135 | unlock_page(page); | |
136 | ||
9e5bcd61 | 137 | return 0; |
bda807d4 MK |
138 | |
139 | out_no_isolated: | |
140 | unlock_page(page); | |
141 | out_putpage: | |
142 | put_page(page); | |
143 | out: | |
9e5bcd61 | 144 | return -EBUSY; |
bda807d4 MK |
145 | } |
146 | ||
147 | /* It should be called on page which is PG_movable */ | |
148 | void putback_movable_page(struct page *page) | |
149 | { | |
150 | struct address_space *mapping; | |
151 | ||
152 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
153 | VM_BUG_ON_PAGE(!PageMovable(page), page); | |
154 | VM_BUG_ON_PAGE(!PageIsolated(page), page); | |
155 | ||
156 | mapping = page_mapping(page); | |
157 | mapping->a_ops->putback_page(page); | |
158 | __ClearPageIsolated(page); | |
159 | } | |
160 | ||
5733c7d1 RA |
161 | /* |
162 | * Put previously isolated pages back onto the appropriate lists | |
163 | * from where they were once taken off for compaction/migration. | |
164 | * | |
59c82b70 JK |
165 | * This function shall be used whenever the isolated pageset has been |
166 | * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() | |
167 | * and isolate_huge_page(). | |
5733c7d1 RA |
168 | */ |
169 | void putback_movable_pages(struct list_head *l) | |
170 | { | |
171 | struct page *page; | |
172 | struct page *page2; | |
173 | ||
b20a3503 | 174 | list_for_each_entry_safe(page, page2, l, lru) { |
31caf665 NH |
175 | if (unlikely(PageHuge(page))) { |
176 | putback_active_hugepage(page); | |
177 | continue; | |
178 | } | |
e24f0b8f | 179 | list_del(&page->lru); |
bda807d4 MK |
180 | /* |
181 | * We isolated non-lru movable page so here we can use | |
182 | * __PageMovable because LRU page's mapping cannot have | |
183 | * PAGE_MAPPING_MOVABLE. | |
184 | */ | |
b1123ea6 | 185 | if (unlikely(__PageMovable(page))) { |
bda807d4 MK |
186 | VM_BUG_ON_PAGE(!PageIsolated(page), page); |
187 | lock_page(page); | |
188 | if (PageMovable(page)) | |
189 | putback_movable_page(page); | |
190 | else | |
191 | __ClearPageIsolated(page); | |
192 | unlock_page(page); | |
193 | put_page(page); | |
194 | } else { | |
e8db67eb | 195 | mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + |
6c357848 | 196 | page_is_file_lru(page), -thp_nr_pages(page)); |
fc280fe8 | 197 | putback_lru_page(page); |
bda807d4 | 198 | } |
b20a3503 | 199 | } |
b20a3503 CL |
200 | } |
201 | ||
0697212a CL |
202 | /* |
203 | * Restore a potential migration pte to a working pte entry | |
204 | */ | |
e4b82222 | 205 | static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, |
e9995ef9 | 206 | unsigned long addr, void *old) |
0697212a | 207 | { |
3fe87967 KS |
208 | struct page_vma_mapped_walk pvmw = { |
209 | .page = old, | |
210 | .vma = vma, | |
211 | .address = addr, | |
212 | .flags = PVMW_SYNC | PVMW_MIGRATION, | |
213 | }; | |
214 | struct page *new; | |
215 | pte_t pte; | |
0697212a | 216 | swp_entry_t entry; |
0697212a | 217 | |
3fe87967 KS |
218 | VM_BUG_ON_PAGE(PageTail(page), page); |
219 | while (page_vma_mapped_walk(&pvmw)) { | |
4b0ece6f NH |
220 | if (PageKsm(page)) |
221 | new = page; | |
222 | else | |
223 | new = page - pvmw.page->index + | |
224 | linear_page_index(vma, pvmw.address); | |
0697212a | 225 | |
616b8371 ZY |
226 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
227 | /* PMD-mapped THP migration entry */ | |
228 | if (!pvmw.pte) { | |
229 | VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); | |
230 | remove_migration_pmd(&pvmw, new); | |
231 | continue; | |
232 | } | |
233 | #endif | |
234 | ||
3fe87967 KS |
235 | get_page(new); |
236 | pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); | |
237 | if (pte_swp_soft_dirty(*pvmw.pte)) | |
238 | pte = pte_mksoft_dirty(pte); | |
0697212a | 239 | |
3fe87967 KS |
240 | /* |
241 | * Recheck VMA as permissions can change since migration started | |
242 | */ | |
243 | entry = pte_to_swp_entry(*pvmw.pte); | |
244 | if (is_write_migration_entry(entry)) | |
245 | pte = maybe_mkwrite(pte, vma); | |
f45ec5ff PX |
246 | else if (pte_swp_uffd_wp(*pvmw.pte)) |
247 | pte = pte_mkuffd_wp(pte); | |
d3cb8bf6 | 248 | |
6128763f RC |
249 | if (unlikely(is_device_private_page(new))) { |
250 | entry = make_device_private_entry(new, pte_write(pte)); | |
251 | pte = swp_entry_to_pte(entry); | |
3d321bf8 RC |
252 | if (pte_swp_soft_dirty(*pvmw.pte)) |
253 | pte = pte_swp_mksoft_dirty(pte); | |
6128763f RC |
254 | if (pte_swp_uffd_wp(*pvmw.pte)) |
255 | pte = pte_swp_mkuffd_wp(pte); | |
d2b2c6dd | 256 | } |
a5430dda | 257 | |
3ef8fd7f | 258 | #ifdef CONFIG_HUGETLB_PAGE |
3fe87967 KS |
259 | if (PageHuge(new)) { |
260 | pte = pte_mkhuge(pte); | |
261 | pte = arch_make_huge_pte(pte, vma, new, 0); | |
383321ab | 262 | set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); |
3fe87967 KS |
263 | if (PageAnon(new)) |
264 | hugepage_add_anon_rmap(new, vma, pvmw.address); | |
265 | else | |
266 | page_dup_rmap(new, true); | |
383321ab AK |
267 | } else |
268 | #endif | |
269 | { | |
270 | set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); | |
04e62a29 | 271 | |
383321ab AK |
272 | if (PageAnon(new)) |
273 | page_add_anon_rmap(new, vma, pvmw.address, false); | |
274 | else | |
275 | page_add_file_rmap(new, false); | |
276 | } | |
3fe87967 KS |
277 | if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) |
278 | mlock_vma_page(new); | |
279 | ||
e125fe40 KS |
280 | if (PageTransHuge(page) && PageMlocked(page)) |
281 | clear_page_mlock(page); | |
282 | ||
3fe87967 KS |
283 | /* No need to invalidate - it was non-present before */ |
284 | update_mmu_cache(vma, pvmw.address, pvmw.pte); | |
285 | } | |
51afb12b | 286 | |
e4b82222 | 287 | return true; |
0697212a CL |
288 | } |
289 | ||
04e62a29 CL |
290 | /* |
291 | * Get rid of all migration entries and replace them by | |
292 | * references to the indicated page. | |
293 | */ | |
e388466d | 294 | void remove_migration_ptes(struct page *old, struct page *new, bool locked) |
04e62a29 | 295 | { |
051ac83a JK |
296 | struct rmap_walk_control rwc = { |
297 | .rmap_one = remove_migration_pte, | |
298 | .arg = old, | |
299 | }; | |
300 | ||
e388466d KS |
301 | if (locked) |
302 | rmap_walk_locked(new, &rwc); | |
303 | else | |
304 | rmap_walk(new, &rwc); | |
04e62a29 CL |
305 | } |
306 | ||
0697212a CL |
307 | /* |
308 | * Something used the pte of a page under migration. We need to | |
309 | * get to the page and wait until migration is finished. | |
310 | * When we return from this function the fault will be retried. | |
0697212a | 311 | */ |
e66f17ff | 312 | void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, |
30dad309 | 313 | spinlock_t *ptl) |
0697212a | 314 | { |
30dad309 | 315 | pte_t pte; |
0697212a CL |
316 | swp_entry_t entry; |
317 | struct page *page; | |
318 | ||
30dad309 | 319 | spin_lock(ptl); |
0697212a CL |
320 | pte = *ptep; |
321 | if (!is_swap_pte(pte)) | |
322 | goto out; | |
323 | ||
324 | entry = pte_to_swp_entry(pte); | |
325 | if (!is_migration_entry(entry)) | |
326 | goto out; | |
327 | ||
328 | page = migration_entry_to_page(entry); | |
329 | ||
e286781d | 330 | /* |
89eb946a | 331 | * Once page cache replacement of page migration started, page_count |
9a1ea439 HD |
332 | * is zero; but we must not call put_and_wait_on_page_locked() without |
333 | * a ref. Use get_page_unless_zero(), and just fault again if it fails. | |
e286781d NP |
334 | */ |
335 | if (!get_page_unless_zero(page)) | |
336 | goto out; | |
0697212a | 337 | pte_unmap_unlock(ptep, ptl); |
9a1ea439 | 338 | put_and_wait_on_page_locked(page); |
0697212a CL |
339 | return; |
340 | out: | |
341 | pte_unmap_unlock(ptep, ptl); | |
342 | } | |
343 | ||
30dad309 NH |
344 | void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, |
345 | unsigned long address) | |
346 | { | |
347 | spinlock_t *ptl = pte_lockptr(mm, pmd); | |
348 | pte_t *ptep = pte_offset_map(pmd, address); | |
349 | __migration_entry_wait(mm, ptep, ptl); | |
350 | } | |
351 | ||
cb900f41 KS |
352 | void migration_entry_wait_huge(struct vm_area_struct *vma, |
353 | struct mm_struct *mm, pte_t *pte) | |
30dad309 | 354 | { |
cb900f41 | 355 | spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); |
30dad309 NH |
356 | __migration_entry_wait(mm, pte, ptl); |
357 | } | |
358 | ||
616b8371 ZY |
359 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
360 | void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) | |
361 | { | |
362 | spinlock_t *ptl; | |
363 | struct page *page; | |
364 | ||
365 | ptl = pmd_lock(mm, pmd); | |
366 | if (!is_pmd_migration_entry(*pmd)) | |
367 | goto unlock; | |
368 | page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); | |
369 | if (!get_page_unless_zero(page)) | |
370 | goto unlock; | |
371 | spin_unlock(ptl); | |
9a1ea439 | 372 | put_and_wait_on_page_locked(page); |
616b8371 ZY |
373 | return; |
374 | unlock: | |
375 | spin_unlock(ptl); | |
376 | } | |
377 | #endif | |
378 | ||
f900482d | 379 | static int expected_page_refs(struct address_space *mapping, struct page *page) |
0b3901b3 JK |
380 | { |
381 | int expected_count = 1; | |
382 | ||
383 | /* | |
f1f4f3ab | 384 | * Device private pages have an extra refcount as they are |
0b3901b3 JK |
385 | * ZONE_DEVICE pages. |
386 | */ | |
387 | expected_count += is_device_private_page(page); | |
f900482d | 388 | if (mapping) |
6c357848 | 389 | expected_count += thp_nr_pages(page) + page_has_private(page); |
0b3901b3 JK |
390 | |
391 | return expected_count; | |
392 | } | |
393 | ||
b20a3503 | 394 | /* |
c3fcf8a5 | 395 | * Replace the page in the mapping. |
5b5c7120 CL |
396 | * |
397 | * The number of remaining references must be: | |
398 | * 1 for anonymous pages without a mapping | |
399 | * 2 for pages with a mapping | |
266cf658 | 400 | * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. |
b20a3503 | 401 | */ |
36bc08cc | 402 | int migrate_page_move_mapping(struct address_space *mapping, |
37109694 | 403 | struct page *newpage, struct page *page, int extra_count) |
b20a3503 | 404 | { |
89eb946a | 405 | XA_STATE(xas, &mapping->i_pages, page_index(page)); |
42cb14b1 HD |
406 | struct zone *oldzone, *newzone; |
407 | int dirty; | |
f900482d | 408 | int expected_count = expected_page_refs(mapping, page) + extra_count; |
8763cb45 | 409 | |
6c5240ae | 410 | if (!mapping) { |
0e8c7d0f | 411 | /* Anonymous page without mapping */ |
8e321fef | 412 | if (page_count(page) != expected_count) |
6c5240ae | 413 | return -EAGAIN; |
cf4b769a HD |
414 | |
415 | /* No turning back from here */ | |
cf4b769a HD |
416 | newpage->index = page->index; |
417 | newpage->mapping = page->mapping; | |
418 | if (PageSwapBacked(page)) | |
fa9949da | 419 | __SetPageSwapBacked(newpage); |
cf4b769a | 420 | |
78bd5209 | 421 | return MIGRATEPAGE_SUCCESS; |
6c5240ae CL |
422 | } |
423 | ||
42cb14b1 HD |
424 | oldzone = page_zone(page); |
425 | newzone = page_zone(newpage); | |
426 | ||
89eb946a | 427 | xas_lock_irq(&xas); |
89eb946a MW |
428 | if (page_count(page) != expected_count || xas_load(&xas) != page) { |
429 | xas_unlock_irq(&xas); | |
e23ca00b | 430 | return -EAGAIN; |
b20a3503 CL |
431 | } |
432 | ||
fe896d18 | 433 | if (!page_ref_freeze(page, expected_count)) { |
89eb946a | 434 | xas_unlock_irq(&xas); |
e286781d NP |
435 | return -EAGAIN; |
436 | } | |
437 | ||
b20a3503 | 438 | /* |
cf4b769a HD |
439 | * Now we know that no one else is looking at the page: |
440 | * no turning back from here. | |
b20a3503 | 441 | */ |
cf4b769a HD |
442 | newpage->index = page->index; |
443 | newpage->mapping = page->mapping; | |
6c357848 | 444 | page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */ |
6326fec1 NP |
445 | if (PageSwapBacked(page)) { |
446 | __SetPageSwapBacked(newpage); | |
447 | if (PageSwapCache(page)) { | |
448 | SetPageSwapCache(newpage); | |
449 | set_page_private(newpage, page_private(page)); | |
450 | } | |
451 | } else { | |
452 | VM_BUG_ON_PAGE(PageSwapCache(page), page); | |
b20a3503 CL |
453 | } |
454 | ||
42cb14b1 HD |
455 | /* Move dirty while page refs frozen and newpage not yet exposed */ |
456 | dirty = PageDirty(page); | |
457 | if (dirty) { | |
458 | ClearPageDirty(page); | |
459 | SetPageDirty(newpage); | |
460 | } | |
461 | ||
89eb946a | 462 | xas_store(&xas, newpage); |
e71769ae NH |
463 | if (PageTransHuge(page)) { |
464 | int i; | |
e71769ae | 465 | |
013567be | 466 | for (i = 1; i < HPAGE_PMD_NR; i++) { |
89eb946a | 467 | xas_next(&xas); |
4101196b | 468 | xas_store(&xas, newpage); |
e71769ae | 469 | } |
e71769ae | 470 | } |
7cf9c2c7 NP |
471 | |
472 | /* | |
937a94c9 JG |
473 | * Drop cache reference from old page by unfreezing |
474 | * to one less reference. | |
7cf9c2c7 NP |
475 | * We know this isn't the last reference. |
476 | */ | |
6c357848 | 477 | page_ref_unfreeze(page, expected_count - thp_nr_pages(page)); |
7cf9c2c7 | 478 | |
89eb946a | 479 | xas_unlock(&xas); |
42cb14b1 HD |
480 | /* Leave irq disabled to prevent preemption while updating stats */ |
481 | ||
0e8c7d0f CL |
482 | /* |
483 | * If moved to a different zone then also account | |
484 | * the page for that zone. Other VM counters will be | |
485 | * taken care of when we establish references to the | |
486 | * new page and drop references to the old page. | |
487 | * | |
488 | * Note that anonymous pages are accounted for | |
4b9d0fab | 489 | * via NR_FILE_PAGES and NR_ANON_MAPPED if they |
0e8c7d0f CL |
490 | * are mapped to swap space. |
491 | */ | |
42cb14b1 | 492 | if (newzone != oldzone) { |
0d1c2072 JW |
493 | struct lruvec *old_lruvec, *new_lruvec; |
494 | struct mem_cgroup *memcg; | |
495 | ||
496 | memcg = page_memcg(page); | |
497 | old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); | |
498 | new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); | |
499 | ||
500 | __dec_lruvec_state(old_lruvec, NR_FILE_PAGES); | |
501 | __inc_lruvec_state(new_lruvec, NR_FILE_PAGES); | |
42cb14b1 | 502 | if (PageSwapBacked(page) && !PageSwapCache(page)) { |
0d1c2072 JW |
503 | __dec_lruvec_state(old_lruvec, NR_SHMEM); |
504 | __inc_lruvec_state(new_lruvec, NR_SHMEM); | |
42cb14b1 | 505 | } |
f56753ac | 506 | if (dirty && mapping_can_writeback(mapping)) { |
11fb9989 | 507 | __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); |
5a1c84b4 | 508 | __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); |
11fb9989 | 509 | __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); |
5a1c84b4 | 510 | __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); |
42cb14b1 | 511 | } |
4b02108a | 512 | } |
42cb14b1 | 513 | local_irq_enable(); |
b20a3503 | 514 | |
78bd5209 | 515 | return MIGRATEPAGE_SUCCESS; |
b20a3503 | 516 | } |
1118dce7 | 517 | EXPORT_SYMBOL(migrate_page_move_mapping); |
b20a3503 | 518 | |
290408d4 NH |
519 | /* |
520 | * The expected number of remaining references is the same as that | |
521 | * of migrate_page_move_mapping(). | |
522 | */ | |
523 | int migrate_huge_page_move_mapping(struct address_space *mapping, | |
524 | struct page *newpage, struct page *page) | |
525 | { | |
89eb946a | 526 | XA_STATE(xas, &mapping->i_pages, page_index(page)); |
290408d4 | 527 | int expected_count; |
290408d4 | 528 | |
89eb946a | 529 | xas_lock_irq(&xas); |
290408d4 | 530 | expected_count = 2 + page_has_private(page); |
89eb946a MW |
531 | if (page_count(page) != expected_count || xas_load(&xas) != page) { |
532 | xas_unlock_irq(&xas); | |
290408d4 NH |
533 | return -EAGAIN; |
534 | } | |
535 | ||
fe896d18 | 536 | if (!page_ref_freeze(page, expected_count)) { |
89eb946a | 537 | xas_unlock_irq(&xas); |
290408d4 NH |
538 | return -EAGAIN; |
539 | } | |
540 | ||
cf4b769a HD |
541 | newpage->index = page->index; |
542 | newpage->mapping = page->mapping; | |
6a93ca8f | 543 | |
290408d4 NH |
544 | get_page(newpage); |
545 | ||
89eb946a | 546 | xas_store(&xas, newpage); |
290408d4 | 547 | |
fe896d18 | 548 | page_ref_unfreeze(page, expected_count - 1); |
290408d4 | 549 | |
89eb946a | 550 | xas_unlock_irq(&xas); |
6a93ca8f | 551 | |
78bd5209 | 552 | return MIGRATEPAGE_SUCCESS; |
290408d4 NH |
553 | } |
554 | ||
30b0a105 DH |
555 | /* |
556 | * Gigantic pages are so large that we do not guarantee that page++ pointer | |
557 | * arithmetic will work across the entire page. We need something more | |
558 | * specialized. | |
559 | */ | |
560 | static void __copy_gigantic_page(struct page *dst, struct page *src, | |
561 | int nr_pages) | |
562 | { | |
563 | int i; | |
564 | struct page *dst_base = dst; | |
565 | struct page *src_base = src; | |
566 | ||
567 | for (i = 0; i < nr_pages; ) { | |
568 | cond_resched(); | |
569 | copy_highpage(dst, src); | |
570 | ||
571 | i++; | |
572 | dst = mem_map_next(dst, dst_base, i); | |
573 | src = mem_map_next(src, src_base, i); | |
574 | } | |
575 | } | |
576 | ||
577 | static void copy_huge_page(struct page *dst, struct page *src) | |
578 | { | |
579 | int i; | |
580 | int nr_pages; | |
581 | ||
582 | if (PageHuge(src)) { | |
583 | /* hugetlbfs page */ | |
584 | struct hstate *h = page_hstate(src); | |
585 | nr_pages = pages_per_huge_page(h); | |
586 | ||
587 | if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { | |
588 | __copy_gigantic_page(dst, src, nr_pages); | |
589 | return; | |
590 | } | |
591 | } else { | |
592 | /* thp page */ | |
593 | BUG_ON(!PageTransHuge(src)); | |
6c357848 | 594 | nr_pages = thp_nr_pages(src); |
30b0a105 DH |
595 | } |
596 | ||
597 | for (i = 0; i < nr_pages; i++) { | |
598 | cond_resched(); | |
599 | copy_highpage(dst + i, src + i); | |
600 | } | |
601 | } | |
602 | ||
b20a3503 CL |
603 | /* |
604 | * Copy the page to its new location | |
605 | */ | |
2916ecc0 | 606 | void migrate_page_states(struct page *newpage, struct page *page) |
b20a3503 | 607 | { |
7851a45c RR |
608 | int cpupid; |
609 | ||
b20a3503 CL |
610 | if (PageError(page)) |
611 | SetPageError(newpage); | |
612 | if (PageReferenced(page)) | |
613 | SetPageReferenced(newpage); | |
614 | if (PageUptodate(page)) | |
615 | SetPageUptodate(newpage); | |
894bc310 | 616 | if (TestClearPageActive(page)) { |
309381fe | 617 | VM_BUG_ON_PAGE(PageUnevictable(page), page); |
b20a3503 | 618 | SetPageActive(newpage); |
418b27ef LS |
619 | } else if (TestClearPageUnevictable(page)) |
620 | SetPageUnevictable(newpage); | |
1899ad18 JW |
621 | if (PageWorkingset(page)) |
622 | SetPageWorkingset(newpage); | |
b20a3503 CL |
623 | if (PageChecked(page)) |
624 | SetPageChecked(newpage); | |
625 | if (PageMappedToDisk(page)) | |
626 | SetPageMappedToDisk(newpage); | |
627 | ||
42cb14b1 HD |
628 | /* Move dirty on pages not done by migrate_page_move_mapping() */ |
629 | if (PageDirty(page)) | |
630 | SetPageDirty(newpage); | |
b20a3503 | 631 | |
33c3fc71 VD |
632 | if (page_is_young(page)) |
633 | set_page_young(newpage); | |
634 | if (page_is_idle(page)) | |
635 | set_page_idle(newpage); | |
636 | ||
7851a45c RR |
637 | /* |
638 | * Copy NUMA information to the new page, to prevent over-eager | |
639 | * future migrations of this same page. | |
640 | */ | |
641 | cpupid = page_cpupid_xchg_last(page, -1); | |
642 | page_cpupid_xchg_last(newpage, cpupid); | |
643 | ||
e9995ef9 | 644 | ksm_migrate_page(newpage, page); |
c8d6553b HD |
645 | /* |
646 | * Please do not reorder this without considering how mm/ksm.c's | |
647 | * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). | |
648 | */ | |
b3b3a99c NH |
649 | if (PageSwapCache(page)) |
650 | ClearPageSwapCache(page); | |
b20a3503 CL |
651 | ClearPagePrivate(page); |
652 | set_page_private(page, 0); | |
b20a3503 CL |
653 | |
654 | /* | |
655 | * If any waiters have accumulated on the new page then | |
656 | * wake them up. | |
657 | */ | |
658 | if (PageWriteback(newpage)) | |
659 | end_page_writeback(newpage); | |
d435edca | 660 | |
6aeff241 YS |
661 | /* |
662 | * PG_readahead shares the same bit with PG_reclaim. The above | |
663 | * end_page_writeback() may clear PG_readahead mistakenly, so set the | |
664 | * bit after that. | |
665 | */ | |
666 | if (PageReadahead(page)) | |
667 | SetPageReadahead(newpage); | |
668 | ||
d435edca | 669 | copy_page_owner(page, newpage); |
74485cf2 | 670 | |
a333e3e7 HD |
671 | if (!PageHuge(page)) |
672 | mem_cgroup_migrate(page, newpage); | |
b20a3503 | 673 | } |
2916ecc0 JG |
674 | EXPORT_SYMBOL(migrate_page_states); |
675 | ||
676 | void migrate_page_copy(struct page *newpage, struct page *page) | |
677 | { | |
678 | if (PageHuge(page) || PageTransHuge(page)) | |
679 | copy_huge_page(newpage, page); | |
680 | else | |
681 | copy_highpage(newpage, page); | |
682 | ||
683 | migrate_page_states(newpage, page); | |
684 | } | |
1118dce7 | 685 | EXPORT_SYMBOL(migrate_page_copy); |
b20a3503 | 686 | |
1d8b85cc CL |
687 | /************************************************************ |
688 | * Migration functions | |
689 | ***********************************************************/ | |
690 | ||
b20a3503 | 691 | /* |
bda807d4 | 692 | * Common logic to directly migrate a single LRU page suitable for |
266cf658 | 693 | * pages that do not use PagePrivate/PagePrivate2. |
b20a3503 CL |
694 | * |
695 | * Pages are locked upon entry and exit. | |
696 | */ | |
2d1db3b1 | 697 | int migrate_page(struct address_space *mapping, |
a6bc32b8 MG |
698 | struct page *newpage, struct page *page, |
699 | enum migrate_mode mode) | |
b20a3503 CL |
700 | { |
701 | int rc; | |
702 | ||
703 | BUG_ON(PageWriteback(page)); /* Writeback must be complete */ | |
704 | ||
37109694 | 705 | rc = migrate_page_move_mapping(mapping, newpage, page, 0); |
b20a3503 | 706 | |
78bd5209 | 707 | if (rc != MIGRATEPAGE_SUCCESS) |
b20a3503 CL |
708 | return rc; |
709 | ||
2916ecc0 JG |
710 | if (mode != MIGRATE_SYNC_NO_COPY) |
711 | migrate_page_copy(newpage, page); | |
712 | else | |
713 | migrate_page_states(newpage, page); | |
78bd5209 | 714 | return MIGRATEPAGE_SUCCESS; |
b20a3503 CL |
715 | } |
716 | EXPORT_SYMBOL(migrate_page); | |
717 | ||
9361401e | 718 | #ifdef CONFIG_BLOCK |
84ade7c1 JK |
719 | /* Returns true if all buffers are successfully locked */ |
720 | static bool buffer_migrate_lock_buffers(struct buffer_head *head, | |
721 | enum migrate_mode mode) | |
722 | { | |
723 | struct buffer_head *bh = head; | |
724 | ||
725 | /* Simple case, sync compaction */ | |
726 | if (mode != MIGRATE_ASYNC) { | |
727 | do { | |
84ade7c1 JK |
728 | lock_buffer(bh); |
729 | bh = bh->b_this_page; | |
730 | ||
731 | } while (bh != head); | |
732 | ||
733 | return true; | |
734 | } | |
735 | ||
736 | /* async case, we cannot block on lock_buffer so use trylock_buffer */ | |
737 | do { | |
84ade7c1 JK |
738 | if (!trylock_buffer(bh)) { |
739 | /* | |
740 | * We failed to lock the buffer and cannot stall in | |
741 | * async migration. Release the taken locks | |
742 | */ | |
743 | struct buffer_head *failed_bh = bh; | |
84ade7c1 JK |
744 | bh = head; |
745 | while (bh != failed_bh) { | |
746 | unlock_buffer(bh); | |
84ade7c1 JK |
747 | bh = bh->b_this_page; |
748 | } | |
749 | return false; | |
750 | } | |
751 | ||
752 | bh = bh->b_this_page; | |
753 | } while (bh != head); | |
754 | return true; | |
755 | } | |
756 | ||
89cb0888 JK |
757 | static int __buffer_migrate_page(struct address_space *mapping, |
758 | struct page *newpage, struct page *page, enum migrate_mode mode, | |
759 | bool check_refs) | |
1d8b85cc | 760 | { |
1d8b85cc CL |
761 | struct buffer_head *bh, *head; |
762 | int rc; | |
cc4f11e6 | 763 | int expected_count; |
1d8b85cc | 764 | |
1d8b85cc | 765 | if (!page_has_buffers(page)) |
a6bc32b8 | 766 | return migrate_page(mapping, newpage, page, mode); |
1d8b85cc | 767 | |
cc4f11e6 | 768 | /* Check whether page does not have extra refs before we do more work */ |
f900482d | 769 | expected_count = expected_page_refs(mapping, page); |
cc4f11e6 JK |
770 | if (page_count(page) != expected_count) |
771 | return -EAGAIN; | |
1d8b85cc | 772 | |
cc4f11e6 JK |
773 | head = page_buffers(page); |
774 | if (!buffer_migrate_lock_buffers(head, mode)) | |
775 | return -EAGAIN; | |
1d8b85cc | 776 | |
89cb0888 JK |
777 | if (check_refs) { |
778 | bool busy; | |
779 | bool invalidated = false; | |
780 | ||
781 | recheck_buffers: | |
782 | busy = false; | |
783 | spin_lock(&mapping->private_lock); | |
784 | bh = head; | |
785 | do { | |
786 | if (atomic_read(&bh->b_count)) { | |
787 | busy = true; | |
788 | break; | |
789 | } | |
790 | bh = bh->b_this_page; | |
791 | } while (bh != head); | |
89cb0888 JK |
792 | if (busy) { |
793 | if (invalidated) { | |
794 | rc = -EAGAIN; | |
795 | goto unlock_buffers; | |
796 | } | |
ebdf4de5 | 797 | spin_unlock(&mapping->private_lock); |
89cb0888 JK |
798 | invalidate_bh_lrus(); |
799 | invalidated = true; | |
800 | goto recheck_buffers; | |
801 | } | |
802 | } | |
803 | ||
37109694 | 804 | rc = migrate_page_move_mapping(mapping, newpage, page, 0); |
78bd5209 | 805 | if (rc != MIGRATEPAGE_SUCCESS) |
cc4f11e6 | 806 | goto unlock_buffers; |
1d8b85cc | 807 | |
cd0f3715 | 808 | attach_page_private(newpage, detach_page_private(page)); |
1d8b85cc CL |
809 | |
810 | bh = head; | |
811 | do { | |
812 | set_bh_page(bh, newpage, bh_offset(bh)); | |
813 | bh = bh->b_this_page; | |
814 | ||
815 | } while (bh != head); | |
816 | ||
2916ecc0 JG |
817 | if (mode != MIGRATE_SYNC_NO_COPY) |
818 | migrate_page_copy(newpage, page); | |
819 | else | |
820 | migrate_page_states(newpage, page); | |
1d8b85cc | 821 | |
cc4f11e6 JK |
822 | rc = MIGRATEPAGE_SUCCESS; |
823 | unlock_buffers: | |
ebdf4de5 JK |
824 | if (check_refs) |
825 | spin_unlock(&mapping->private_lock); | |
1d8b85cc CL |
826 | bh = head; |
827 | do { | |
828 | unlock_buffer(bh); | |
1d8b85cc CL |
829 | bh = bh->b_this_page; |
830 | ||
831 | } while (bh != head); | |
832 | ||
cc4f11e6 | 833 | return rc; |
1d8b85cc | 834 | } |
89cb0888 JK |
835 | |
836 | /* | |
837 | * Migration function for pages with buffers. This function can only be used | |
838 | * if the underlying filesystem guarantees that no other references to "page" | |
839 | * exist. For example attached buffer heads are accessed only under page lock. | |
840 | */ | |
841 | int buffer_migrate_page(struct address_space *mapping, | |
842 | struct page *newpage, struct page *page, enum migrate_mode mode) | |
843 | { | |
844 | return __buffer_migrate_page(mapping, newpage, page, mode, false); | |
845 | } | |
1d8b85cc | 846 | EXPORT_SYMBOL(buffer_migrate_page); |
89cb0888 JK |
847 | |
848 | /* | |
849 | * Same as above except that this variant is more careful and checks that there | |
850 | * are also no buffer head references. This function is the right one for | |
851 | * mappings where buffer heads are directly looked up and referenced (such as | |
852 | * block device mappings). | |
853 | */ | |
854 | int buffer_migrate_page_norefs(struct address_space *mapping, | |
855 | struct page *newpage, struct page *page, enum migrate_mode mode) | |
856 | { | |
857 | return __buffer_migrate_page(mapping, newpage, page, mode, true); | |
858 | } | |
9361401e | 859 | #endif |
1d8b85cc | 860 | |
04e62a29 CL |
861 | /* |
862 | * Writeback a page to clean the dirty state | |
863 | */ | |
864 | static int writeout(struct address_space *mapping, struct page *page) | |
8351a6e4 | 865 | { |
04e62a29 CL |
866 | struct writeback_control wbc = { |
867 | .sync_mode = WB_SYNC_NONE, | |
868 | .nr_to_write = 1, | |
869 | .range_start = 0, | |
870 | .range_end = LLONG_MAX, | |
04e62a29 CL |
871 | .for_reclaim = 1 |
872 | }; | |
873 | int rc; | |
874 | ||
875 | if (!mapping->a_ops->writepage) | |
876 | /* No write method for the address space */ | |
877 | return -EINVAL; | |
878 | ||
879 | if (!clear_page_dirty_for_io(page)) | |
880 | /* Someone else already triggered a write */ | |
881 | return -EAGAIN; | |
882 | ||
8351a6e4 | 883 | /* |
04e62a29 CL |
884 | * A dirty page may imply that the underlying filesystem has |
885 | * the page on some queue. So the page must be clean for | |
886 | * migration. Writeout may mean we loose the lock and the | |
887 | * page state is no longer what we checked for earlier. | |
888 | * At this point we know that the migration attempt cannot | |
889 | * be successful. | |
8351a6e4 | 890 | */ |
e388466d | 891 | remove_migration_ptes(page, page, false); |
8351a6e4 | 892 | |
04e62a29 | 893 | rc = mapping->a_ops->writepage(page, &wbc); |
8351a6e4 | 894 | |
04e62a29 CL |
895 | if (rc != AOP_WRITEPAGE_ACTIVATE) |
896 | /* unlocked. Relock */ | |
897 | lock_page(page); | |
898 | ||
bda8550d | 899 | return (rc < 0) ? -EIO : -EAGAIN; |
04e62a29 CL |
900 | } |
901 | ||
902 | /* | |
903 | * Default handling if a filesystem does not provide a migration function. | |
904 | */ | |
905 | static int fallback_migrate_page(struct address_space *mapping, | |
a6bc32b8 | 906 | struct page *newpage, struct page *page, enum migrate_mode mode) |
04e62a29 | 907 | { |
b969c4ab | 908 | if (PageDirty(page)) { |
a6bc32b8 | 909 | /* Only writeback pages in full synchronous migration */ |
2916ecc0 JG |
910 | switch (mode) { |
911 | case MIGRATE_SYNC: | |
912 | case MIGRATE_SYNC_NO_COPY: | |
913 | break; | |
914 | default: | |
b969c4ab | 915 | return -EBUSY; |
2916ecc0 | 916 | } |
04e62a29 | 917 | return writeout(mapping, page); |
b969c4ab | 918 | } |
8351a6e4 CL |
919 | |
920 | /* | |
921 | * Buffers may be managed in a filesystem specific way. | |
922 | * We must have no buffers or drop them. | |
923 | */ | |
266cf658 | 924 | if (page_has_private(page) && |
8351a6e4 | 925 | !try_to_release_page(page, GFP_KERNEL)) |
806031bb | 926 | return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; |
8351a6e4 | 927 | |
a6bc32b8 | 928 | return migrate_page(mapping, newpage, page, mode); |
8351a6e4 CL |
929 | } |
930 | ||
e24f0b8f CL |
931 | /* |
932 | * Move a page to a newly allocated page | |
933 | * The page is locked and all ptes have been successfully removed. | |
934 | * | |
935 | * The new page will have replaced the old page if this function | |
936 | * is successful. | |
894bc310 LS |
937 | * |
938 | * Return value: | |
939 | * < 0 - error code | |
78bd5209 | 940 | * MIGRATEPAGE_SUCCESS - success |
e24f0b8f | 941 | */ |
3fe2011f | 942 | static int move_to_new_page(struct page *newpage, struct page *page, |
5c3f9a67 | 943 | enum migrate_mode mode) |
e24f0b8f CL |
944 | { |
945 | struct address_space *mapping; | |
bda807d4 MK |
946 | int rc = -EAGAIN; |
947 | bool is_lru = !__PageMovable(page); | |
e24f0b8f | 948 | |
7db7671f HD |
949 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
950 | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | |
e24f0b8f | 951 | |
e24f0b8f | 952 | mapping = page_mapping(page); |
bda807d4 MK |
953 | |
954 | if (likely(is_lru)) { | |
955 | if (!mapping) | |
956 | rc = migrate_page(mapping, newpage, page, mode); | |
957 | else if (mapping->a_ops->migratepage) | |
958 | /* | |
959 | * Most pages have a mapping and most filesystems | |
960 | * provide a migratepage callback. Anonymous pages | |
961 | * are part of swap space which also has its own | |
962 | * migratepage callback. This is the most common path | |
963 | * for page migration. | |
964 | */ | |
965 | rc = mapping->a_ops->migratepage(mapping, newpage, | |
966 | page, mode); | |
967 | else | |
968 | rc = fallback_migrate_page(mapping, newpage, | |
969 | page, mode); | |
970 | } else { | |
e24f0b8f | 971 | /* |
bda807d4 MK |
972 | * In case of non-lru page, it could be released after |
973 | * isolation step. In that case, we shouldn't try migration. | |
e24f0b8f | 974 | */ |
bda807d4 MK |
975 | VM_BUG_ON_PAGE(!PageIsolated(page), page); |
976 | if (!PageMovable(page)) { | |
977 | rc = MIGRATEPAGE_SUCCESS; | |
978 | __ClearPageIsolated(page); | |
979 | goto out; | |
980 | } | |
981 | ||
982 | rc = mapping->a_ops->migratepage(mapping, newpage, | |
983 | page, mode); | |
984 | WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && | |
985 | !PageIsolated(page)); | |
986 | } | |
e24f0b8f | 987 | |
5c3f9a67 HD |
988 | /* |
989 | * When successful, old pagecache page->mapping must be cleared before | |
990 | * page is freed; but stats require that PageAnon be left as PageAnon. | |
991 | */ | |
992 | if (rc == MIGRATEPAGE_SUCCESS) { | |
bda807d4 MK |
993 | if (__PageMovable(page)) { |
994 | VM_BUG_ON_PAGE(!PageIsolated(page), page); | |
995 | ||
996 | /* | |
997 | * We clear PG_movable under page_lock so any compactor | |
998 | * cannot try to migrate this page. | |
999 | */ | |
1000 | __ClearPageIsolated(page); | |
1001 | } | |
1002 | ||
1003 | /* | |
c23a0c99 | 1004 | * Anonymous and movable page->mapping will be cleared by |
bda807d4 MK |
1005 | * free_pages_prepare so don't reset it here for keeping |
1006 | * the type to work PageAnon, for example. | |
1007 | */ | |
1008 | if (!PageMappingFlags(page)) | |
5c3f9a67 | 1009 | page->mapping = NULL; |
d2b2c6dd | 1010 | |
25b2995a | 1011 | if (likely(!is_zone_device_page(newpage))) |
d2b2c6dd LP |
1012 | flush_dcache_page(newpage); |
1013 | ||
3fe2011f | 1014 | } |
bda807d4 | 1015 | out: |
e24f0b8f CL |
1016 | return rc; |
1017 | } | |
1018 | ||
0dabec93 | 1019 | static int __unmap_and_move(struct page *page, struct page *newpage, |
9c620e2b | 1020 | int force, enum migrate_mode mode) |
e24f0b8f | 1021 | { |
0dabec93 | 1022 | int rc = -EAGAIN; |
2ebba6b7 | 1023 | int page_was_mapped = 0; |
3f6c8272 | 1024 | struct anon_vma *anon_vma = NULL; |
bda807d4 | 1025 | bool is_lru = !__PageMovable(page); |
95a402c3 | 1026 | |
529ae9aa | 1027 | if (!trylock_page(page)) { |
a6bc32b8 | 1028 | if (!force || mode == MIGRATE_ASYNC) |
0dabec93 | 1029 | goto out; |
3e7d3449 MG |
1030 | |
1031 | /* | |
1032 | * It's not safe for direct compaction to call lock_page. | |
1033 | * For example, during page readahead pages are added locked | |
1034 | * to the LRU. Later, when the IO completes the pages are | |
1035 | * marked uptodate and unlocked. However, the queueing | |
1036 | * could be merging multiple pages for one bio (e.g. | |
d4388340 | 1037 | * mpage_readahead). If an allocation happens for the |
3e7d3449 MG |
1038 | * second or third page, the process can end up locking |
1039 | * the same page twice and deadlocking. Rather than | |
1040 | * trying to be clever about what pages can be locked, | |
1041 | * avoid the use of lock_page for direct compaction | |
1042 | * altogether. | |
1043 | */ | |
1044 | if (current->flags & PF_MEMALLOC) | |
0dabec93 | 1045 | goto out; |
3e7d3449 | 1046 | |
e24f0b8f CL |
1047 | lock_page(page); |
1048 | } | |
1049 | ||
1050 | if (PageWriteback(page)) { | |
11bc82d6 | 1051 | /* |
fed5b64a | 1052 | * Only in the case of a full synchronous migration is it |
a6bc32b8 MG |
1053 | * necessary to wait for PageWriteback. In the async case, |
1054 | * the retry loop is too short and in the sync-light case, | |
1055 | * the overhead of stalling is too much | |
11bc82d6 | 1056 | */ |
2916ecc0 JG |
1057 | switch (mode) { |
1058 | case MIGRATE_SYNC: | |
1059 | case MIGRATE_SYNC_NO_COPY: | |
1060 | break; | |
1061 | default: | |
11bc82d6 | 1062 | rc = -EBUSY; |
0a31bc97 | 1063 | goto out_unlock; |
11bc82d6 AA |
1064 | } |
1065 | if (!force) | |
0a31bc97 | 1066 | goto out_unlock; |
e24f0b8f CL |
1067 | wait_on_page_writeback(page); |
1068 | } | |
03f15c86 | 1069 | |
e24f0b8f | 1070 | /* |
dc386d4d KH |
1071 | * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, |
1072 | * we cannot notice that anon_vma is freed while we migrates a page. | |
1ce82b69 | 1073 | * This get_anon_vma() delays freeing anon_vma pointer until the end |
dc386d4d | 1074 | * of migration. File cache pages are no problem because of page_lock() |
989f89c5 KH |
1075 | * File Caches may use write_page() or lock_page() in migration, then, |
1076 | * just care Anon page here. | |
03f15c86 HD |
1077 | * |
1078 | * Only page_get_anon_vma() understands the subtleties of | |
1079 | * getting a hold on an anon_vma from outside one of its mms. | |
1080 | * But if we cannot get anon_vma, then we won't need it anyway, | |
1081 | * because that implies that the anon page is no longer mapped | |
1082 | * (and cannot be remapped so long as we hold the page lock). | |
dc386d4d | 1083 | */ |
03f15c86 | 1084 | if (PageAnon(page) && !PageKsm(page)) |
746b18d4 | 1085 | anon_vma = page_get_anon_vma(page); |
62e1c553 | 1086 | |
7db7671f HD |
1087 | /* |
1088 | * Block others from accessing the new page when we get around to | |
1089 | * establishing additional references. We are usually the only one | |
1090 | * holding a reference to newpage at this point. We used to have a BUG | |
1091 | * here if trylock_page(newpage) fails, but would like to allow for | |
1092 | * cases where there might be a race with the previous use of newpage. | |
1093 | * This is much like races on refcount of oldpage: just don't BUG(). | |
1094 | */ | |
1095 | if (unlikely(!trylock_page(newpage))) | |
1096 | goto out_unlock; | |
1097 | ||
bda807d4 MK |
1098 | if (unlikely(!is_lru)) { |
1099 | rc = move_to_new_page(newpage, page, mode); | |
1100 | goto out_unlock_both; | |
1101 | } | |
1102 | ||
dc386d4d | 1103 | /* |
62e1c553 SL |
1104 | * Corner case handling: |
1105 | * 1. When a new swap-cache page is read into, it is added to the LRU | |
1106 | * and treated as swapcache but it has no rmap yet. | |
1107 | * Calling try_to_unmap() against a page->mapping==NULL page will | |
1108 | * trigger a BUG. So handle it here. | |
1109 | * 2. An orphaned page (see truncate_complete_page) might have | |
1110 | * fs-private metadata. The page can be picked up due to memory | |
1111 | * offlining. Everywhere else except page reclaim, the page is | |
1112 | * invisible to the vm, so the page can not be migrated. So try to | |
1113 | * free the metadata, so the page can be freed. | |
e24f0b8f | 1114 | */ |
62e1c553 | 1115 | if (!page->mapping) { |
309381fe | 1116 | VM_BUG_ON_PAGE(PageAnon(page), page); |
1ce82b69 | 1117 | if (page_has_private(page)) { |
62e1c553 | 1118 | try_to_free_buffers(page); |
7db7671f | 1119 | goto out_unlock_both; |
62e1c553 | 1120 | } |
7db7671f HD |
1121 | } else if (page_mapped(page)) { |
1122 | /* Establish migration ptes */ | |
03f15c86 HD |
1123 | VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, |
1124 | page); | |
2ebba6b7 | 1125 | try_to_unmap(page, |
da1b13cc | 1126 | TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); |
2ebba6b7 HD |
1127 | page_was_mapped = 1; |
1128 | } | |
dc386d4d | 1129 | |
e6a1530d | 1130 | if (!page_mapped(page)) |
5c3f9a67 | 1131 | rc = move_to_new_page(newpage, page, mode); |
e24f0b8f | 1132 | |
5c3f9a67 HD |
1133 | if (page_was_mapped) |
1134 | remove_migration_ptes(page, | |
e388466d | 1135 | rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); |
3f6c8272 | 1136 | |
7db7671f HD |
1137 | out_unlock_both: |
1138 | unlock_page(newpage); | |
1139 | out_unlock: | |
3f6c8272 | 1140 | /* Drop an anon_vma reference if we took one */ |
76545066 | 1141 | if (anon_vma) |
9e60109f | 1142 | put_anon_vma(anon_vma); |
e24f0b8f | 1143 | unlock_page(page); |
0dabec93 | 1144 | out: |
c6c919eb MK |
1145 | /* |
1146 | * If migration is successful, decrease refcount of the newpage | |
1147 | * which will not free the page because new page owner increased | |
1148 | * refcounter. As well, if it is LRU page, add the page to LRU | |
e0a352fa DH |
1149 | * list in here. Use the old state of the isolated source page to |
1150 | * determine if we migrated a LRU page. newpage was already unlocked | |
1151 | * and possibly modified by its owner - don't rely on the page | |
1152 | * state. | |
c6c919eb MK |
1153 | */ |
1154 | if (rc == MIGRATEPAGE_SUCCESS) { | |
e0a352fa | 1155 | if (unlikely(!is_lru)) |
c6c919eb MK |
1156 | put_page(newpage); |
1157 | else | |
1158 | putback_lru_page(newpage); | |
1159 | } | |
1160 | ||
0dabec93 MK |
1161 | return rc; |
1162 | } | |
95a402c3 | 1163 | |
0dabec93 MK |
1164 | /* |
1165 | * Obtain the lock on page, remove all ptes and migrate the page | |
1166 | * to the newly allocated page in newpage. | |
1167 | */ | |
6ec4476a | 1168 | static int unmap_and_move(new_page_t get_new_page, |
ef2a5153 GU |
1169 | free_page_t put_new_page, |
1170 | unsigned long private, struct page *page, | |
add05cec NH |
1171 | int force, enum migrate_mode mode, |
1172 | enum migrate_reason reason) | |
0dabec93 | 1173 | { |
2def7424 | 1174 | int rc = MIGRATEPAGE_SUCCESS; |
74d4a579 | 1175 | struct page *newpage = NULL; |
0dabec93 | 1176 | |
94723aaf MH |
1177 | if (!thp_migration_supported() && PageTransHuge(page)) |
1178 | return -ENOMEM; | |
1179 | ||
0dabec93 MK |
1180 | if (page_count(page) == 1) { |
1181 | /* page was freed from under us. So we are done. */ | |
c6c919eb MK |
1182 | ClearPageActive(page); |
1183 | ClearPageUnevictable(page); | |
bda807d4 MK |
1184 | if (unlikely(__PageMovable(page))) { |
1185 | lock_page(page); | |
1186 | if (!PageMovable(page)) | |
1187 | __ClearPageIsolated(page); | |
1188 | unlock_page(page); | |
1189 | } | |
0dabec93 MK |
1190 | goto out; |
1191 | } | |
1192 | ||
74d4a579 YS |
1193 | newpage = get_new_page(page, private); |
1194 | if (!newpage) | |
1195 | return -ENOMEM; | |
1196 | ||
9c620e2b | 1197 | rc = __unmap_and_move(page, newpage, force, mode); |
c6c919eb | 1198 | if (rc == MIGRATEPAGE_SUCCESS) |
7cd12b4a | 1199 | set_page_owner_migrate_reason(newpage, reason); |
bf6bddf1 | 1200 | |
0dabec93 | 1201 | out: |
e24f0b8f | 1202 | if (rc != -EAGAIN) { |
0dabec93 MK |
1203 | /* |
1204 | * A page that has been migrated has all references | |
1205 | * removed and will be freed. A page that has not been | |
c23a0c99 | 1206 | * migrated will have kept its references and be restored. |
0dabec93 MK |
1207 | */ |
1208 | list_del(&page->lru); | |
6afcf8ef ML |
1209 | |
1210 | /* | |
1211 | * Compaction can migrate also non-LRU pages which are | |
1212 | * not accounted to NR_ISOLATED_*. They can be recognized | |
1213 | * as __PageMovable | |
1214 | */ | |
1215 | if (likely(!__PageMovable(page))) | |
e8db67eb | 1216 | mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + |
6c357848 | 1217 | page_is_file_lru(page), -thp_nr_pages(page)); |
c6c919eb MK |
1218 | } |
1219 | ||
1220 | /* | |
1221 | * If migration is successful, releases reference grabbed during | |
1222 | * isolation. Otherwise, restore the page to right list unless | |
1223 | * we want to retry. | |
1224 | */ | |
1225 | if (rc == MIGRATEPAGE_SUCCESS) { | |
79f5f8fa | 1226 | if (reason != MR_MEMORY_FAILURE) |
d7e69488 | 1227 | /* |
79f5f8fa | 1228 | * We release the page in page_handle_poison. |
d7e69488 | 1229 | */ |
79f5f8fa | 1230 | put_page(page); |
c6c919eb | 1231 | } else { |
bda807d4 MK |
1232 | if (rc != -EAGAIN) { |
1233 | if (likely(!__PageMovable(page))) { | |
1234 | putback_lru_page(page); | |
1235 | goto put_new; | |
1236 | } | |
1237 | ||
1238 | lock_page(page); | |
1239 | if (PageMovable(page)) | |
1240 | putback_movable_page(page); | |
1241 | else | |
1242 | __ClearPageIsolated(page); | |
1243 | unlock_page(page); | |
1244 | put_page(page); | |
1245 | } | |
1246 | put_new: | |
c6c919eb MK |
1247 | if (put_new_page) |
1248 | put_new_page(newpage, private); | |
1249 | else | |
1250 | put_page(newpage); | |
e24f0b8f | 1251 | } |
68711a74 | 1252 | |
e24f0b8f CL |
1253 | return rc; |
1254 | } | |
1255 | ||
290408d4 NH |
1256 | /* |
1257 | * Counterpart of unmap_and_move_page() for hugepage migration. | |
1258 | * | |
1259 | * This function doesn't wait the completion of hugepage I/O | |
1260 | * because there is no race between I/O and migration for hugepage. | |
1261 | * Note that currently hugepage I/O occurs only in direct I/O | |
1262 | * where no lock is held and PG_writeback is irrelevant, | |
1263 | * and writeback status of all subpages are counted in the reference | |
1264 | * count of the head page (i.e. if all subpages of a 2MB hugepage are | |
1265 | * under direct I/O, the reference of the head page is 512 and a bit more.) | |
1266 | * This means that when we try to migrate hugepage whose subpages are | |
1267 | * doing direct I/O, some references remain after try_to_unmap() and | |
1268 | * hugepage migration fails without data corruption. | |
1269 | * | |
1270 | * There is also no race when direct I/O is issued on the page under migration, | |
1271 | * because then pte is replaced with migration swap entry and direct I/O code | |
1272 | * will wait in the page fault for migration to complete. | |
1273 | */ | |
1274 | static int unmap_and_move_huge_page(new_page_t get_new_page, | |
68711a74 DR |
1275 | free_page_t put_new_page, unsigned long private, |
1276 | struct page *hpage, int force, | |
7cd12b4a | 1277 | enum migrate_mode mode, int reason) |
290408d4 | 1278 | { |
2def7424 | 1279 | int rc = -EAGAIN; |
2ebba6b7 | 1280 | int page_was_mapped = 0; |
32665f2b | 1281 | struct page *new_hpage; |
290408d4 | 1282 | struct anon_vma *anon_vma = NULL; |
c0d0381a | 1283 | struct address_space *mapping = NULL; |
290408d4 | 1284 | |
83467efb | 1285 | /* |
7ed2c31d | 1286 | * Migratability of hugepages depends on architectures and their size. |
83467efb NH |
1287 | * This check is necessary because some callers of hugepage migration |
1288 | * like soft offline and memory hotremove don't walk through page | |
1289 | * tables or check whether the hugepage is pmd-based or not before | |
1290 | * kicking migration. | |
1291 | */ | |
100873d7 | 1292 | if (!hugepage_migration_supported(page_hstate(hpage))) { |
32665f2b | 1293 | putback_active_hugepage(hpage); |
83467efb | 1294 | return -ENOSYS; |
32665f2b | 1295 | } |
83467efb | 1296 | |
666feb21 | 1297 | new_hpage = get_new_page(hpage, private); |
290408d4 NH |
1298 | if (!new_hpage) |
1299 | return -ENOMEM; | |
1300 | ||
290408d4 | 1301 | if (!trylock_page(hpage)) { |
2916ecc0 | 1302 | if (!force) |
290408d4 | 1303 | goto out; |
2916ecc0 JG |
1304 | switch (mode) { |
1305 | case MIGRATE_SYNC: | |
1306 | case MIGRATE_SYNC_NO_COPY: | |
1307 | break; | |
1308 | default: | |
1309 | goto out; | |
1310 | } | |
290408d4 NH |
1311 | lock_page(hpage); |
1312 | } | |
1313 | ||
cb6acd01 MK |
1314 | /* |
1315 | * Check for pages which are in the process of being freed. Without | |
1316 | * page_mapping() set, hugetlbfs specific move page routine will not | |
1317 | * be called and we could leak usage counts for subpools. | |
1318 | */ | |
1319 | if (page_private(hpage) && !page_mapping(hpage)) { | |
1320 | rc = -EBUSY; | |
1321 | goto out_unlock; | |
1322 | } | |
1323 | ||
746b18d4 PZ |
1324 | if (PageAnon(hpage)) |
1325 | anon_vma = page_get_anon_vma(hpage); | |
290408d4 | 1326 | |
7db7671f HD |
1327 | if (unlikely(!trylock_page(new_hpage))) |
1328 | goto put_anon; | |
1329 | ||
2ebba6b7 | 1330 | if (page_mapped(hpage)) { |
c0d0381a MK |
1331 | /* |
1332 | * try_to_unmap could potentially call huge_pmd_unshare. | |
1333 | * Because of this, take semaphore in write mode here and | |
1334 | * set TTU_RMAP_LOCKED to let lower levels know we have | |
1335 | * taken the lock. | |
1336 | */ | |
1337 | mapping = hugetlb_page_mapping_lock_write(hpage); | |
1338 | if (unlikely(!mapping)) | |
1339 | goto unlock_put_anon; | |
1340 | ||
2ebba6b7 | 1341 | try_to_unmap(hpage, |
c0d0381a MK |
1342 | TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS| |
1343 | TTU_RMAP_LOCKED); | |
2ebba6b7 | 1344 | page_was_mapped = 1; |
c0d0381a MK |
1345 | /* |
1346 | * Leave mapping locked until after subsequent call to | |
1347 | * remove_migration_ptes() | |
1348 | */ | |
2ebba6b7 | 1349 | } |
290408d4 NH |
1350 | |
1351 | if (!page_mapped(hpage)) | |
5c3f9a67 | 1352 | rc = move_to_new_page(new_hpage, hpage, mode); |
290408d4 | 1353 | |
c0d0381a | 1354 | if (page_was_mapped) { |
5c3f9a67 | 1355 | remove_migration_ptes(hpage, |
c0d0381a MK |
1356 | rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true); |
1357 | i_mmap_unlock_write(mapping); | |
1358 | } | |
290408d4 | 1359 | |
c0d0381a | 1360 | unlock_put_anon: |
7db7671f HD |
1361 | unlock_page(new_hpage); |
1362 | ||
1363 | put_anon: | |
fd4a4663 | 1364 | if (anon_vma) |
9e60109f | 1365 | put_anon_vma(anon_vma); |
8e6ac7fa | 1366 | |
2def7424 | 1367 | if (rc == MIGRATEPAGE_SUCCESS) { |
ab5ac90a | 1368 | move_hugetlb_state(hpage, new_hpage, reason); |
2def7424 HD |
1369 | put_new_page = NULL; |
1370 | } | |
8e6ac7fa | 1371 | |
cb6acd01 | 1372 | out_unlock: |
290408d4 | 1373 | unlock_page(hpage); |
09761333 | 1374 | out: |
b8ec1cee NH |
1375 | if (rc != -EAGAIN) |
1376 | putback_active_hugepage(hpage); | |
68711a74 DR |
1377 | |
1378 | /* | |
1379 | * If migration was not successful and there's a freeing callback, use | |
1380 | * it. Otherwise, put_page() will drop the reference grabbed during | |
1381 | * isolation. | |
1382 | */ | |
2def7424 | 1383 | if (put_new_page) |
68711a74 DR |
1384 | put_new_page(new_hpage, private); |
1385 | else | |
3aaa76e1 | 1386 | putback_active_hugepage(new_hpage); |
68711a74 | 1387 | |
290408d4 NH |
1388 | return rc; |
1389 | } | |
1390 | ||
b20a3503 | 1391 | /* |
c73e5c9c SB |
1392 | * migrate_pages - migrate the pages specified in a list, to the free pages |
1393 | * supplied as the target for the page migration | |
b20a3503 | 1394 | * |
c73e5c9c SB |
1395 | * @from: The list of pages to be migrated. |
1396 | * @get_new_page: The function used to allocate free pages to be used | |
1397 | * as the target of the page migration. | |
68711a74 DR |
1398 | * @put_new_page: The function used to free target pages if migration |
1399 | * fails, or NULL if no special handling is necessary. | |
c73e5c9c SB |
1400 | * @private: Private data to be passed on to get_new_page() |
1401 | * @mode: The migration mode that specifies the constraints for | |
1402 | * page migration, if any. | |
1403 | * @reason: The reason for page migration. | |
b20a3503 | 1404 | * |
c73e5c9c SB |
1405 | * The function returns after 10 attempts or if no pages are movable any more |
1406 | * because the list has become empty or no retryable pages exist any more. | |
14e0f9bc | 1407 | * The caller should call putback_movable_pages() to return pages to the LRU |
28bd6578 | 1408 | * or free list only if ret != 0. |
b20a3503 | 1409 | * |
c73e5c9c | 1410 | * Returns the number of pages that were not migrated, or an error code. |
b20a3503 | 1411 | */ |
9c620e2b | 1412 | int migrate_pages(struct list_head *from, new_page_t get_new_page, |
68711a74 DR |
1413 | free_page_t put_new_page, unsigned long private, |
1414 | enum migrate_mode mode, int reason) | |
b20a3503 | 1415 | { |
e24f0b8f | 1416 | int retry = 1; |
1a5bae25 | 1417 | int thp_retry = 1; |
b20a3503 | 1418 | int nr_failed = 0; |
5647bc29 | 1419 | int nr_succeeded = 0; |
1a5bae25 AK |
1420 | int nr_thp_succeeded = 0; |
1421 | int nr_thp_failed = 0; | |
1422 | int nr_thp_split = 0; | |
b20a3503 | 1423 | int pass = 0; |
1a5bae25 | 1424 | bool is_thp = false; |
b20a3503 CL |
1425 | struct page *page; |
1426 | struct page *page2; | |
1427 | int swapwrite = current->flags & PF_SWAPWRITE; | |
1a5bae25 | 1428 | int rc, nr_subpages; |
b20a3503 CL |
1429 | |
1430 | if (!swapwrite) | |
1431 | current->flags |= PF_SWAPWRITE; | |
1432 | ||
1a5bae25 | 1433 | for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { |
e24f0b8f | 1434 | retry = 0; |
1a5bae25 | 1435 | thp_retry = 0; |
b20a3503 | 1436 | |
e24f0b8f | 1437 | list_for_each_entry_safe(page, page2, from, lru) { |
94723aaf | 1438 | retry: |
1a5bae25 AK |
1439 | /* |
1440 | * THP statistics is based on the source huge page. | |
1441 | * Capture required information that might get lost | |
1442 | * during migration. | |
1443 | */ | |
6c5c7b9f | 1444 | is_thp = PageTransHuge(page) && !PageHuge(page); |
6c357848 | 1445 | nr_subpages = thp_nr_pages(page); |
e24f0b8f | 1446 | cond_resched(); |
2d1db3b1 | 1447 | |
31caf665 NH |
1448 | if (PageHuge(page)) |
1449 | rc = unmap_and_move_huge_page(get_new_page, | |
68711a74 | 1450 | put_new_page, private, page, |
7cd12b4a | 1451 | pass > 2, mode, reason); |
31caf665 | 1452 | else |
68711a74 | 1453 | rc = unmap_and_move(get_new_page, put_new_page, |
add05cec NH |
1454 | private, page, pass > 2, mode, |
1455 | reason); | |
2d1db3b1 | 1456 | |
e24f0b8f | 1457 | switch(rc) { |
95a402c3 | 1458 | case -ENOMEM: |
94723aaf MH |
1459 | /* |
1460 | * THP migration might be unsupported or the | |
1461 | * allocation could've failed so we should | |
1462 | * retry on the same page with the THP split | |
1463 | * to base pages. | |
1464 | * | |
1465 | * Head page is retried immediately and tail | |
1466 | * pages are added to the tail of the list so | |
1467 | * we encounter them after the rest of the list | |
1468 | * is processed. | |
1469 | */ | |
6c5c7b9f | 1470 | if (is_thp) { |
94723aaf MH |
1471 | lock_page(page); |
1472 | rc = split_huge_page_to_list(page, from); | |
1473 | unlock_page(page); | |
1474 | if (!rc) { | |
1475 | list_safe_reset_next(page, page2, lru); | |
1a5bae25 | 1476 | nr_thp_split++; |
94723aaf MH |
1477 | goto retry; |
1478 | } | |
6c5c7b9f | 1479 | |
1a5bae25 AK |
1480 | nr_thp_failed++; |
1481 | nr_failed += nr_subpages; | |
1482 | goto out; | |
1483 | } | |
dfef2ef4 | 1484 | nr_failed++; |
95a402c3 | 1485 | goto out; |
e24f0b8f | 1486 | case -EAGAIN: |
1a5bae25 AK |
1487 | if (is_thp) { |
1488 | thp_retry++; | |
1489 | break; | |
1490 | } | |
2d1db3b1 | 1491 | retry++; |
e24f0b8f | 1492 | break; |
78bd5209 | 1493 | case MIGRATEPAGE_SUCCESS: |
1a5bae25 AK |
1494 | if (is_thp) { |
1495 | nr_thp_succeeded++; | |
1496 | nr_succeeded += nr_subpages; | |
1497 | break; | |
1498 | } | |
5647bc29 | 1499 | nr_succeeded++; |
e24f0b8f CL |
1500 | break; |
1501 | default: | |
354a3363 NH |
1502 | /* |
1503 | * Permanent failure (-EBUSY, -ENOSYS, etc.): | |
1504 | * unlike -EAGAIN case, the failed page is | |
1505 | * removed from migration page list and not | |
1506 | * retried in the next outer loop. | |
1507 | */ | |
1a5bae25 AK |
1508 | if (is_thp) { |
1509 | nr_thp_failed++; | |
1510 | nr_failed += nr_subpages; | |
1511 | break; | |
1512 | } | |
2d1db3b1 | 1513 | nr_failed++; |
e24f0b8f | 1514 | break; |
2d1db3b1 | 1515 | } |
b20a3503 CL |
1516 | } |
1517 | } | |
1a5bae25 AK |
1518 | nr_failed += retry + thp_retry; |
1519 | nr_thp_failed += thp_retry; | |
f2f81fb2 | 1520 | rc = nr_failed; |
95a402c3 | 1521 | out: |
1a5bae25 AK |
1522 | count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); |
1523 | count_vm_events(PGMIGRATE_FAIL, nr_failed); | |
1524 | count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); | |
1525 | count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); | |
1526 | count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); | |
1527 | trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, | |
1528 | nr_thp_failed, nr_thp_split, mode, reason); | |
7b2a2d4a | 1529 | |
b20a3503 CL |
1530 | if (!swapwrite) |
1531 | current->flags &= ~PF_SWAPWRITE; | |
1532 | ||
78bd5209 | 1533 | return rc; |
b20a3503 | 1534 | } |
95a402c3 | 1535 | |
19fc7bed | 1536 | struct page *alloc_migration_target(struct page *page, unsigned long private) |
b4b38223 | 1537 | { |
19fc7bed JK |
1538 | struct migration_target_control *mtc; |
1539 | gfp_t gfp_mask; | |
b4b38223 JK |
1540 | unsigned int order = 0; |
1541 | struct page *new_page = NULL; | |
19fc7bed JK |
1542 | int nid; |
1543 | int zidx; | |
1544 | ||
1545 | mtc = (struct migration_target_control *)private; | |
1546 | gfp_mask = mtc->gfp_mask; | |
1547 | nid = mtc->nid; | |
1548 | if (nid == NUMA_NO_NODE) | |
1549 | nid = page_to_nid(page); | |
b4b38223 | 1550 | |
d92bbc27 JK |
1551 | if (PageHuge(page)) { |
1552 | struct hstate *h = page_hstate(compound_head(page)); | |
1553 | ||
19fc7bed JK |
1554 | gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); |
1555 | return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); | |
d92bbc27 | 1556 | } |
b4b38223 JK |
1557 | |
1558 | if (PageTransHuge(page)) { | |
9933a0c8 JK |
1559 | /* |
1560 | * clear __GFP_RECLAIM to make the migration callback | |
1561 | * consistent with regular THP allocations. | |
1562 | */ | |
1563 | gfp_mask &= ~__GFP_RECLAIM; | |
b4b38223 JK |
1564 | gfp_mask |= GFP_TRANSHUGE; |
1565 | order = HPAGE_PMD_ORDER; | |
1566 | } | |
19fc7bed JK |
1567 | zidx = zone_idx(page_zone(page)); |
1568 | if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) | |
b4b38223 JK |
1569 | gfp_mask |= __GFP_HIGHMEM; |
1570 | ||
19fc7bed | 1571 | new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask); |
b4b38223 JK |
1572 | |
1573 | if (new_page && PageTransHuge(new_page)) | |
1574 | prep_transhuge_page(new_page); | |
1575 | ||
1576 | return new_page; | |
1577 | } | |
1578 | ||
742755a1 | 1579 | #ifdef CONFIG_NUMA |
742755a1 | 1580 | |
a49bd4d7 | 1581 | static int store_status(int __user *status, int start, int value, int nr) |
742755a1 | 1582 | { |
a49bd4d7 MH |
1583 | while (nr-- > 0) { |
1584 | if (put_user(value, status + start)) | |
1585 | return -EFAULT; | |
1586 | start++; | |
1587 | } | |
1588 | ||
1589 | return 0; | |
1590 | } | |
1591 | ||
1592 | static int do_move_pages_to_node(struct mm_struct *mm, | |
1593 | struct list_head *pagelist, int node) | |
1594 | { | |
1595 | int err; | |
a0976311 JK |
1596 | struct migration_target_control mtc = { |
1597 | .nid = node, | |
1598 | .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, | |
1599 | }; | |
a49bd4d7 | 1600 | |
a0976311 JK |
1601 | err = migrate_pages(pagelist, alloc_migration_target, NULL, |
1602 | (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); | |
a49bd4d7 MH |
1603 | if (err) |
1604 | putback_movable_pages(pagelist); | |
1605 | return err; | |
742755a1 CL |
1606 | } |
1607 | ||
1608 | /* | |
a49bd4d7 MH |
1609 | * Resolves the given address to a struct page, isolates it from the LRU and |
1610 | * puts it to the given pagelist. | |
e0153fc2 YS |
1611 | * Returns: |
1612 | * errno - if the page cannot be found/isolated | |
1613 | * 0 - when it doesn't have to be migrated because it is already on the | |
1614 | * target node | |
1615 | * 1 - when it has been queued | |
742755a1 | 1616 | */ |
a49bd4d7 MH |
1617 | static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, |
1618 | int node, struct list_head *pagelist, bool migrate_all) | |
742755a1 | 1619 | { |
a49bd4d7 MH |
1620 | struct vm_area_struct *vma; |
1621 | struct page *page; | |
1622 | unsigned int follflags; | |
742755a1 | 1623 | int err; |
742755a1 | 1624 | |
d8ed45c5 | 1625 | mmap_read_lock(mm); |
a49bd4d7 MH |
1626 | err = -EFAULT; |
1627 | vma = find_vma(mm, addr); | |
1628 | if (!vma || addr < vma->vm_start || !vma_migratable(vma)) | |
1629 | goto out; | |
742755a1 | 1630 | |
a49bd4d7 MH |
1631 | /* FOLL_DUMP to ignore special (like zero) pages */ |
1632 | follflags = FOLL_GET | FOLL_DUMP; | |
a49bd4d7 | 1633 | page = follow_page(vma, addr, follflags); |
89f5b7da | 1634 | |
a49bd4d7 MH |
1635 | err = PTR_ERR(page); |
1636 | if (IS_ERR(page)) | |
1637 | goto out; | |
89f5b7da | 1638 | |
a49bd4d7 MH |
1639 | err = -ENOENT; |
1640 | if (!page) | |
1641 | goto out; | |
742755a1 | 1642 | |
a49bd4d7 MH |
1643 | err = 0; |
1644 | if (page_to_nid(page) == node) | |
1645 | goto out_putpage; | |
742755a1 | 1646 | |
a49bd4d7 MH |
1647 | err = -EACCES; |
1648 | if (page_mapcount(page) > 1 && !migrate_all) | |
1649 | goto out_putpage; | |
742755a1 | 1650 | |
a49bd4d7 MH |
1651 | if (PageHuge(page)) { |
1652 | if (PageHead(page)) { | |
1653 | isolate_huge_page(page, pagelist); | |
e0153fc2 | 1654 | err = 1; |
e632a938 | 1655 | } |
a49bd4d7 MH |
1656 | } else { |
1657 | struct page *head; | |
e632a938 | 1658 | |
e8db67eb NH |
1659 | head = compound_head(page); |
1660 | err = isolate_lru_page(head); | |
cf608ac1 | 1661 | if (err) |
a49bd4d7 | 1662 | goto out_putpage; |
742755a1 | 1663 | |
e0153fc2 | 1664 | err = 1; |
a49bd4d7 MH |
1665 | list_add_tail(&head->lru, pagelist); |
1666 | mod_node_page_state(page_pgdat(head), | |
9de4f22a | 1667 | NR_ISOLATED_ANON + page_is_file_lru(head), |
6c357848 | 1668 | thp_nr_pages(head)); |
a49bd4d7 MH |
1669 | } |
1670 | out_putpage: | |
1671 | /* | |
1672 | * Either remove the duplicate refcount from | |
1673 | * isolate_lru_page() or drop the page ref if it was | |
1674 | * not isolated. | |
1675 | */ | |
1676 | put_page(page); | |
1677 | out: | |
d8ed45c5 | 1678 | mmap_read_unlock(mm); |
742755a1 CL |
1679 | return err; |
1680 | } | |
1681 | ||
7ca8783a WY |
1682 | static int move_pages_and_store_status(struct mm_struct *mm, int node, |
1683 | struct list_head *pagelist, int __user *status, | |
1684 | int start, int i, unsigned long nr_pages) | |
1685 | { | |
1686 | int err; | |
1687 | ||
5d7ae891 WY |
1688 | if (list_empty(pagelist)) |
1689 | return 0; | |
1690 | ||
7ca8783a WY |
1691 | err = do_move_pages_to_node(mm, pagelist, node); |
1692 | if (err) { | |
1693 | /* | |
1694 | * Positive err means the number of failed | |
1695 | * pages to migrate. Since we are going to | |
1696 | * abort and return the number of non-migrated | |
1697 | * pages, so need to incude the rest of the | |
1698 | * nr_pages that have not been attempted as | |
1699 | * well. | |
1700 | */ | |
1701 | if (err > 0) | |
1702 | err += nr_pages - i - 1; | |
1703 | return err; | |
1704 | } | |
1705 | return store_status(status, start, node, i - start); | |
1706 | } | |
1707 | ||
5e9a0f02 BG |
1708 | /* |
1709 | * Migrate an array of page address onto an array of nodes and fill | |
1710 | * the corresponding array of status. | |
1711 | */ | |
3268c63e | 1712 | static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, |
5e9a0f02 BG |
1713 | unsigned long nr_pages, |
1714 | const void __user * __user *pages, | |
1715 | const int __user *nodes, | |
1716 | int __user *status, int flags) | |
1717 | { | |
a49bd4d7 MH |
1718 | int current_node = NUMA_NO_NODE; |
1719 | LIST_HEAD(pagelist); | |
1720 | int start, i; | |
1721 | int err = 0, err1; | |
35282a2d BG |
1722 | |
1723 | migrate_prep(); | |
1724 | ||
a49bd4d7 MH |
1725 | for (i = start = 0; i < nr_pages; i++) { |
1726 | const void __user *p; | |
1727 | unsigned long addr; | |
1728 | int node; | |
3140a227 | 1729 | |
a49bd4d7 MH |
1730 | err = -EFAULT; |
1731 | if (get_user(p, pages + i)) | |
1732 | goto out_flush; | |
1733 | if (get_user(node, nodes + i)) | |
1734 | goto out_flush; | |
057d3389 | 1735 | addr = (unsigned long)untagged_addr(p); |
a49bd4d7 MH |
1736 | |
1737 | err = -ENODEV; | |
1738 | if (node < 0 || node >= MAX_NUMNODES) | |
1739 | goto out_flush; | |
1740 | if (!node_state(node, N_MEMORY)) | |
1741 | goto out_flush; | |
5e9a0f02 | 1742 | |
a49bd4d7 MH |
1743 | err = -EACCES; |
1744 | if (!node_isset(node, task_nodes)) | |
1745 | goto out_flush; | |
1746 | ||
1747 | if (current_node == NUMA_NO_NODE) { | |
1748 | current_node = node; | |
1749 | start = i; | |
1750 | } else if (node != current_node) { | |
7ca8783a WY |
1751 | err = move_pages_and_store_status(mm, current_node, |
1752 | &pagelist, status, start, i, nr_pages); | |
a49bd4d7 MH |
1753 | if (err) |
1754 | goto out; | |
1755 | start = i; | |
1756 | current_node = node; | |
3140a227 BG |
1757 | } |
1758 | ||
a49bd4d7 MH |
1759 | /* |
1760 | * Errors in the page lookup or isolation are not fatal and we simply | |
1761 | * report them via status | |
1762 | */ | |
1763 | err = add_page_for_migration(mm, addr, current_node, | |
1764 | &pagelist, flags & MPOL_MF_MOVE_ALL); | |
e0153fc2 | 1765 | |
d08221a0 | 1766 | if (err > 0) { |
e0153fc2 YS |
1767 | /* The page is successfully queued for migration */ |
1768 | continue; | |
1769 | } | |
3140a227 | 1770 | |
d08221a0 WY |
1771 | /* |
1772 | * If the page is already on the target node (!err), store the | |
1773 | * node, otherwise, store the err. | |
1774 | */ | |
1775 | err = store_status(status, i, err ? : current_node, 1); | |
a49bd4d7 MH |
1776 | if (err) |
1777 | goto out_flush; | |
5e9a0f02 | 1778 | |
7ca8783a WY |
1779 | err = move_pages_and_store_status(mm, current_node, &pagelist, |
1780 | status, start, i, nr_pages); | |
4afdacec WY |
1781 | if (err) |
1782 | goto out; | |
a49bd4d7 | 1783 | current_node = NUMA_NO_NODE; |
3140a227 | 1784 | } |
a49bd4d7 MH |
1785 | out_flush: |
1786 | /* Make sure we do not overwrite the existing error */ | |
7ca8783a WY |
1787 | err1 = move_pages_and_store_status(mm, current_node, &pagelist, |
1788 | status, start, i, nr_pages); | |
dfe9aa23 | 1789 | if (err >= 0) |
a49bd4d7 | 1790 | err = err1; |
5e9a0f02 BG |
1791 | out: |
1792 | return err; | |
1793 | } | |
1794 | ||
742755a1 | 1795 | /* |
2f007e74 | 1796 | * Determine the nodes of an array of pages and store it in an array of status. |
742755a1 | 1797 | */ |
80bba129 BG |
1798 | static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, |
1799 | const void __user **pages, int *status) | |
742755a1 | 1800 | { |
2f007e74 | 1801 | unsigned long i; |
2f007e74 | 1802 | |
d8ed45c5 | 1803 | mmap_read_lock(mm); |
742755a1 | 1804 | |
2f007e74 | 1805 | for (i = 0; i < nr_pages; i++) { |
80bba129 | 1806 | unsigned long addr = (unsigned long)(*pages); |
742755a1 CL |
1807 | struct vm_area_struct *vma; |
1808 | struct page *page; | |
c095adbc | 1809 | int err = -EFAULT; |
2f007e74 BG |
1810 | |
1811 | vma = find_vma(mm, addr); | |
70384dc6 | 1812 | if (!vma || addr < vma->vm_start) |
742755a1 CL |
1813 | goto set_status; |
1814 | ||
d899844e KS |
1815 | /* FOLL_DUMP to ignore special (like zero) pages */ |
1816 | page = follow_page(vma, addr, FOLL_DUMP); | |
89f5b7da LT |
1817 | |
1818 | err = PTR_ERR(page); | |
1819 | if (IS_ERR(page)) | |
1820 | goto set_status; | |
1821 | ||
d899844e | 1822 | err = page ? page_to_nid(page) : -ENOENT; |
742755a1 | 1823 | set_status: |
80bba129 BG |
1824 | *status = err; |
1825 | ||
1826 | pages++; | |
1827 | status++; | |
1828 | } | |
1829 | ||
d8ed45c5 | 1830 | mmap_read_unlock(mm); |
80bba129 BG |
1831 | } |
1832 | ||
1833 | /* | |
1834 | * Determine the nodes of a user array of pages and store it in | |
1835 | * a user array of status. | |
1836 | */ | |
1837 | static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, | |
1838 | const void __user * __user *pages, | |
1839 | int __user *status) | |
1840 | { | |
1841 | #define DO_PAGES_STAT_CHUNK_NR 16 | |
1842 | const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; | |
1843 | int chunk_status[DO_PAGES_STAT_CHUNK_NR]; | |
80bba129 | 1844 | |
87b8d1ad PA |
1845 | while (nr_pages) { |
1846 | unsigned long chunk_nr; | |
80bba129 | 1847 | |
87b8d1ad PA |
1848 | chunk_nr = nr_pages; |
1849 | if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) | |
1850 | chunk_nr = DO_PAGES_STAT_CHUNK_NR; | |
1851 | ||
1852 | if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) | |
1853 | break; | |
80bba129 BG |
1854 | |
1855 | do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); | |
1856 | ||
87b8d1ad PA |
1857 | if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) |
1858 | break; | |
742755a1 | 1859 | |
87b8d1ad PA |
1860 | pages += chunk_nr; |
1861 | status += chunk_nr; | |
1862 | nr_pages -= chunk_nr; | |
1863 | } | |
1864 | return nr_pages ? -EFAULT : 0; | |
742755a1 CL |
1865 | } |
1866 | ||
4dc200ce | 1867 | static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) |
742755a1 | 1868 | { |
742755a1 | 1869 | struct task_struct *task; |
742755a1 | 1870 | struct mm_struct *mm; |
742755a1 | 1871 | |
4dc200ce ML |
1872 | /* |
1873 | * There is no need to check if current process has the right to modify | |
1874 | * the specified process when they are same. | |
1875 | */ | |
1876 | if (!pid) { | |
1877 | mmget(current->mm); | |
1878 | *mem_nodes = cpuset_mems_allowed(current); | |
1879 | return current->mm; | |
1880 | } | |
742755a1 CL |
1881 | |
1882 | /* Find the mm_struct */ | |
a879bf58 | 1883 | rcu_read_lock(); |
4dc200ce | 1884 | task = find_task_by_vpid(pid); |
742755a1 | 1885 | if (!task) { |
a879bf58 | 1886 | rcu_read_unlock(); |
4dc200ce | 1887 | return ERR_PTR(-ESRCH); |
742755a1 | 1888 | } |
3268c63e | 1889 | get_task_struct(task); |
742755a1 CL |
1890 | |
1891 | /* | |
1892 | * Check if this process has the right to modify the specified | |
197e7e52 | 1893 | * process. Use the regular "ptrace_may_access()" checks. |
742755a1 | 1894 | */ |
197e7e52 | 1895 | if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { |
c69e8d9c | 1896 | rcu_read_unlock(); |
4dc200ce | 1897 | mm = ERR_PTR(-EPERM); |
5e9a0f02 | 1898 | goto out; |
742755a1 | 1899 | } |
c69e8d9c | 1900 | rcu_read_unlock(); |
742755a1 | 1901 | |
4dc200ce ML |
1902 | mm = ERR_PTR(security_task_movememory(task)); |
1903 | if (IS_ERR(mm)) | |
5e9a0f02 | 1904 | goto out; |
4dc200ce | 1905 | *mem_nodes = cpuset_mems_allowed(task); |
3268c63e | 1906 | mm = get_task_mm(task); |
4dc200ce | 1907 | out: |
3268c63e | 1908 | put_task_struct(task); |
6e8b09ea | 1909 | if (!mm) |
4dc200ce ML |
1910 | mm = ERR_PTR(-EINVAL); |
1911 | return mm; | |
1912 | } | |
1913 | ||
1914 | /* | |
1915 | * Move a list of pages in the address space of the currently executing | |
1916 | * process. | |
1917 | */ | |
1918 | static int kernel_move_pages(pid_t pid, unsigned long nr_pages, | |
1919 | const void __user * __user *pages, | |
1920 | const int __user *nodes, | |
1921 | int __user *status, int flags) | |
1922 | { | |
1923 | struct mm_struct *mm; | |
1924 | int err; | |
1925 | nodemask_t task_nodes; | |
1926 | ||
1927 | /* Check flags */ | |
1928 | if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) | |
6e8b09ea SL |
1929 | return -EINVAL; |
1930 | ||
4dc200ce ML |
1931 | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) |
1932 | return -EPERM; | |
1933 | ||
1934 | mm = find_mm_struct(pid, &task_nodes); | |
1935 | if (IS_ERR(mm)) | |
1936 | return PTR_ERR(mm); | |
1937 | ||
6e8b09ea SL |
1938 | if (nodes) |
1939 | err = do_pages_move(mm, task_nodes, nr_pages, pages, | |
1940 | nodes, status, flags); | |
1941 | else | |
1942 | err = do_pages_stat(mm, nr_pages, pages, status); | |
742755a1 | 1943 | |
742755a1 CL |
1944 | mmput(mm); |
1945 | return err; | |
1946 | } | |
742755a1 | 1947 | |
7addf443 DB |
1948 | SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, |
1949 | const void __user * __user *, pages, | |
1950 | const int __user *, nodes, | |
1951 | int __user *, status, int, flags) | |
1952 | { | |
1953 | return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); | |
1954 | } | |
1955 | ||
1956 | #ifdef CONFIG_COMPAT | |
1957 | COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, | |
1958 | compat_uptr_t __user *, pages32, | |
1959 | const int __user *, nodes, | |
1960 | int __user *, status, | |
1961 | int, flags) | |
1962 | { | |
1963 | const void __user * __user *pages; | |
1964 | int i; | |
1965 | ||
1966 | pages = compat_alloc_user_space(nr_pages * sizeof(void *)); | |
1967 | for (i = 0; i < nr_pages; i++) { | |
1968 | compat_uptr_t p; | |
1969 | ||
1970 | if (get_user(p, pages32 + i) || | |
1971 | put_user(compat_ptr(p), pages + i)) | |
1972 | return -EFAULT; | |
1973 | } | |
1974 | return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); | |
1975 | } | |
1976 | #endif /* CONFIG_COMPAT */ | |
1977 | ||
7039e1db PZ |
1978 | #ifdef CONFIG_NUMA_BALANCING |
1979 | /* | |
1980 | * Returns true if this is a safe migration target node for misplaced NUMA | |
1981 | * pages. Currently it only checks the watermarks which crude | |
1982 | */ | |
1983 | static bool migrate_balanced_pgdat(struct pglist_data *pgdat, | |
3abef4e6 | 1984 | unsigned long nr_migrate_pages) |
7039e1db PZ |
1985 | { |
1986 | int z; | |
599d0c95 | 1987 | |
7039e1db PZ |
1988 | for (z = pgdat->nr_zones - 1; z >= 0; z--) { |
1989 | struct zone *zone = pgdat->node_zones + z; | |
1990 | ||
1991 | if (!populated_zone(zone)) | |
1992 | continue; | |
1993 | ||
7039e1db PZ |
1994 | /* Avoid waking kswapd by allocating pages_to_migrate pages. */ |
1995 | if (!zone_watermark_ok(zone, 0, | |
1996 | high_wmark_pages(zone) + | |
1997 | nr_migrate_pages, | |
bfe9d006 | 1998 | ZONE_MOVABLE, 0)) |
7039e1db PZ |
1999 | continue; |
2000 | return true; | |
2001 | } | |
2002 | return false; | |
2003 | } | |
2004 | ||
2005 | static struct page *alloc_misplaced_dst_page(struct page *page, | |
666feb21 | 2006 | unsigned long data) |
7039e1db PZ |
2007 | { |
2008 | int nid = (int) data; | |
2009 | struct page *newpage; | |
2010 | ||
96db800f | 2011 | newpage = __alloc_pages_node(nid, |
e97ca8e5 JW |
2012 | (GFP_HIGHUSER_MOVABLE | |
2013 | __GFP_THISNODE | __GFP_NOMEMALLOC | | |
2014 | __GFP_NORETRY | __GFP_NOWARN) & | |
8479eba7 | 2015 | ~__GFP_RECLAIM, 0); |
bac0382c | 2016 | |
7039e1db PZ |
2017 | return newpage; |
2018 | } | |
2019 | ||
1c30e017 | 2020 | static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) |
b32967ff | 2021 | { |
340ef390 | 2022 | int page_lru; |
a8f60772 | 2023 | |
309381fe | 2024 | VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); |
3abef4e6 | 2025 | |
7039e1db | 2026 | /* Avoid migrating to a node that is nearly full */ |
d8c6546b | 2027 | if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) |
340ef390 | 2028 | return 0; |
7039e1db | 2029 | |
340ef390 HD |
2030 | if (isolate_lru_page(page)) |
2031 | return 0; | |
7039e1db | 2032 | |
340ef390 HD |
2033 | /* |
2034 | * migrate_misplaced_transhuge_page() skips page migration's usual | |
2035 | * check on page_count(), so we must do it here, now that the page | |
2036 | * has been isolated: a GUP pin, or any other pin, prevents migration. | |
2037 | * The expected page count is 3: 1 for page's mapcount and 1 for the | |
2038 | * caller's pin and 1 for the reference taken by isolate_lru_page(). | |
2039 | */ | |
2040 | if (PageTransHuge(page) && page_count(page) != 3) { | |
2041 | putback_lru_page(page); | |
2042 | return 0; | |
7039e1db PZ |
2043 | } |
2044 | ||
9de4f22a | 2045 | page_lru = page_is_file_lru(page); |
599d0c95 | 2046 | mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, |
6c357848 | 2047 | thp_nr_pages(page)); |
340ef390 | 2048 | |
149c33e1 | 2049 | /* |
340ef390 HD |
2050 | * Isolating the page has taken another reference, so the |
2051 | * caller's reference can be safely dropped without the page | |
2052 | * disappearing underneath us during migration. | |
149c33e1 MG |
2053 | */ |
2054 | put_page(page); | |
340ef390 | 2055 | return 1; |
b32967ff MG |
2056 | } |
2057 | ||
de466bd6 MG |
2058 | bool pmd_trans_migrating(pmd_t pmd) |
2059 | { | |
2060 | struct page *page = pmd_page(pmd); | |
2061 | return PageLocked(page); | |
2062 | } | |
2063 | ||
b32967ff MG |
2064 | /* |
2065 | * Attempt to migrate a misplaced page to the specified destination | |
2066 | * node. Caller is expected to have an elevated reference count on | |
2067 | * the page that will be dropped by this function before returning. | |
2068 | */ | |
1bc115d8 MG |
2069 | int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, |
2070 | int node) | |
b32967ff MG |
2071 | { |
2072 | pg_data_t *pgdat = NODE_DATA(node); | |
340ef390 | 2073 | int isolated; |
b32967ff MG |
2074 | int nr_remaining; |
2075 | LIST_HEAD(migratepages); | |
2076 | ||
2077 | /* | |
1bc115d8 MG |
2078 | * Don't migrate file pages that are mapped in multiple processes |
2079 | * with execute permissions as they are probably shared libraries. | |
b32967ff | 2080 | */ |
9de4f22a | 2081 | if (page_mapcount(page) != 1 && page_is_file_lru(page) && |
1bc115d8 | 2082 | (vma->vm_flags & VM_EXEC)) |
b32967ff | 2083 | goto out; |
b32967ff | 2084 | |
09a913a7 MG |
2085 | /* |
2086 | * Also do not migrate dirty pages as not all filesystems can move | |
2087 | * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. | |
2088 | */ | |
9de4f22a | 2089 | if (page_is_file_lru(page) && PageDirty(page)) |
09a913a7 MG |
2090 | goto out; |
2091 | ||
b32967ff MG |
2092 | isolated = numamigrate_isolate_page(pgdat, page); |
2093 | if (!isolated) | |
2094 | goto out; | |
2095 | ||
2096 | list_add(&page->lru, &migratepages); | |
9c620e2b | 2097 | nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, |
68711a74 DR |
2098 | NULL, node, MIGRATE_ASYNC, |
2099 | MR_NUMA_MISPLACED); | |
b32967ff | 2100 | if (nr_remaining) { |
59c82b70 JK |
2101 | if (!list_empty(&migratepages)) { |
2102 | list_del(&page->lru); | |
599d0c95 | 2103 | dec_node_page_state(page, NR_ISOLATED_ANON + |
9de4f22a | 2104 | page_is_file_lru(page)); |
59c82b70 JK |
2105 | putback_lru_page(page); |
2106 | } | |
b32967ff MG |
2107 | isolated = 0; |
2108 | } else | |
2109 | count_vm_numa_event(NUMA_PAGE_MIGRATE); | |
7039e1db | 2110 | BUG_ON(!list_empty(&migratepages)); |
7039e1db | 2111 | return isolated; |
340ef390 HD |
2112 | |
2113 | out: | |
2114 | put_page(page); | |
2115 | return 0; | |
7039e1db | 2116 | } |
220018d3 | 2117 | #endif /* CONFIG_NUMA_BALANCING */ |
b32967ff | 2118 | |
220018d3 | 2119 | #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
340ef390 HD |
2120 | /* |
2121 | * Migrates a THP to a given target node. page must be locked and is unlocked | |
2122 | * before returning. | |
2123 | */ | |
b32967ff MG |
2124 | int migrate_misplaced_transhuge_page(struct mm_struct *mm, |
2125 | struct vm_area_struct *vma, | |
2126 | pmd_t *pmd, pmd_t entry, | |
2127 | unsigned long address, | |
2128 | struct page *page, int node) | |
2129 | { | |
c4088ebd | 2130 | spinlock_t *ptl; |
b32967ff MG |
2131 | pg_data_t *pgdat = NODE_DATA(node); |
2132 | int isolated = 0; | |
2133 | struct page *new_page = NULL; | |
9de4f22a | 2134 | int page_lru = page_is_file_lru(page); |
7066f0f9 | 2135 | unsigned long start = address & HPAGE_PMD_MASK; |
b32967ff | 2136 | |
b32967ff | 2137 | new_page = alloc_pages_node(node, |
25160354 | 2138 | (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), |
e97ca8e5 | 2139 | HPAGE_PMD_ORDER); |
340ef390 HD |
2140 | if (!new_page) |
2141 | goto out_fail; | |
9a982250 | 2142 | prep_transhuge_page(new_page); |
340ef390 | 2143 | |
b32967ff | 2144 | isolated = numamigrate_isolate_page(pgdat, page); |
340ef390 | 2145 | if (!isolated) { |
b32967ff | 2146 | put_page(new_page); |
340ef390 | 2147 | goto out_fail; |
b32967ff | 2148 | } |
b0943d61 | 2149 | |
b32967ff | 2150 | /* Prepare a page as a migration target */ |
48c935ad | 2151 | __SetPageLocked(new_page); |
d44d363f SL |
2152 | if (PageSwapBacked(page)) |
2153 | __SetPageSwapBacked(new_page); | |
b32967ff MG |
2154 | |
2155 | /* anon mapping, we can simply copy page->mapping to the new page: */ | |
2156 | new_page->mapping = page->mapping; | |
2157 | new_page->index = page->index; | |
7eef5f97 AA |
2158 | /* flush the cache before copying using the kernel virtual address */ |
2159 | flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); | |
b32967ff MG |
2160 | migrate_page_copy(new_page, page); |
2161 | WARN_ON(PageLRU(new_page)); | |
2162 | ||
2163 | /* Recheck the target PMD */ | |
c4088ebd | 2164 | ptl = pmd_lock(mm, pmd); |
f4e177d1 | 2165 | if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { |
c4088ebd | 2166 | spin_unlock(ptl); |
b32967ff MG |
2167 | |
2168 | /* Reverse changes made by migrate_page_copy() */ | |
2169 | if (TestClearPageActive(new_page)) | |
2170 | SetPageActive(page); | |
2171 | if (TestClearPageUnevictable(new_page)) | |
2172 | SetPageUnevictable(page); | |
b32967ff MG |
2173 | |
2174 | unlock_page(new_page); | |
2175 | put_page(new_page); /* Free it */ | |
2176 | ||
a54a407f MG |
2177 | /* Retake the callers reference and putback on LRU */ |
2178 | get_page(page); | |
b32967ff | 2179 | putback_lru_page(page); |
599d0c95 | 2180 | mod_node_page_state(page_pgdat(page), |
a54a407f | 2181 | NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); |
eb4489f6 MG |
2182 | |
2183 | goto out_unlock; | |
b32967ff MG |
2184 | } |
2185 | ||
10102459 | 2186 | entry = mk_huge_pmd(new_page, vma->vm_page_prot); |
f55e1014 | 2187 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
b32967ff | 2188 | |
2b4847e7 | 2189 | /* |
d7c33934 AA |
2190 | * Overwrite the old entry under pagetable lock and establish |
2191 | * the new PTE. Any parallel GUP will either observe the old | |
2192 | * page blocking on the page lock, block on the page table | |
2193 | * lock or observe the new page. The SetPageUptodate on the | |
2194 | * new page and page_add_new_anon_rmap guarantee the copy is | |
2195 | * visible before the pagetable update. | |
2b4847e7 | 2196 | */ |
7066f0f9 | 2197 | page_add_anon_rmap(new_page, vma, start, true); |
d7c33934 AA |
2198 | /* |
2199 | * At this point the pmd is numa/protnone (i.e. non present) and the TLB | |
2200 | * has already been flushed globally. So no TLB can be currently | |
2201 | * caching this non present pmd mapping. There's no need to clear the | |
2202 | * pmd before doing set_pmd_at(), nor to flush the TLB after | |
2203 | * set_pmd_at(). Clearing the pmd here would introduce a race | |
2204 | * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the | |
c1e8d7c6 | 2205 | * mmap_lock for reading. If the pmd is set to NULL at any given time, |
d7c33934 AA |
2206 | * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this |
2207 | * pmd. | |
2208 | */ | |
7066f0f9 | 2209 | set_pmd_at(mm, start, pmd, entry); |
ce4a9cc5 | 2210 | update_mmu_cache_pmd(vma, address, &entry); |
2b4847e7 | 2211 | |
f4e177d1 | 2212 | page_ref_unfreeze(page, 2); |
51afb12b | 2213 | mlock_migrate_page(new_page, page); |
d281ee61 | 2214 | page_remove_rmap(page, true); |
7cd12b4a | 2215 | set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); |
2b4847e7 | 2216 | |
c4088ebd | 2217 | spin_unlock(ptl); |
b32967ff | 2218 | |
11de9927 MG |
2219 | /* Take an "isolate" reference and put new page on the LRU. */ |
2220 | get_page(new_page); | |
2221 | putback_lru_page(new_page); | |
2222 | ||
b32967ff MG |
2223 | unlock_page(new_page); |
2224 | unlock_page(page); | |
2225 | put_page(page); /* Drop the rmap reference */ | |
2226 | put_page(page); /* Drop the LRU isolation reference */ | |
2227 | ||
2228 | count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); | |
2229 | count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); | |
2230 | ||
599d0c95 | 2231 | mod_node_page_state(page_pgdat(page), |
b32967ff MG |
2232 | NR_ISOLATED_ANON + page_lru, |
2233 | -HPAGE_PMD_NR); | |
2234 | return isolated; | |
2235 | ||
340ef390 HD |
2236 | out_fail: |
2237 | count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); | |
2b4847e7 MG |
2238 | ptl = pmd_lock(mm, pmd); |
2239 | if (pmd_same(*pmd, entry)) { | |
4d942466 | 2240 | entry = pmd_modify(entry, vma->vm_page_prot); |
7066f0f9 | 2241 | set_pmd_at(mm, start, pmd, entry); |
2b4847e7 MG |
2242 | update_mmu_cache_pmd(vma, address, &entry); |
2243 | } | |
2244 | spin_unlock(ptl); | |
a54a407f | 2245 | |
eb4489f6 | 2246 | out_unlock: |
340ef390 | 2247 | unlock_page(page); |
b32967ff | 2248 | put_page(page); |
b32967ff MG |
2249 | return 0; |
2250 | } | |
7039e1db PZ |
2251 | #endif /* CONFIG_NUMA_BALANCING */ |
2252 | ||
2253 | #endif /* CONFIG_NUMA */ | |
8763cb45 | 2254 | |
9b2ed9cb | 2255 | #ifdef CONFIG_DEVICE_PRIVATE |
8763cb45 JG |
2256 | static int migrate_vma_collect_hole(unsigned long start, |
2257 | unsigned long end, | |
b7a16c7a | 2258 | __always_unused int depth, |
8763cb45 JG |
2259 | struct mm_walk *walk) |
2260 | { | |
2261 | struct migrate_vma *migrate = walk->private; | |
2262 | unsigned long addr; | |
2263 | ||
0744f280 RC |
2264 | /* Only allow populating anonymous memory. */ |
2265 | if (!vma_is_anonymous(walk->vma)) { | |
2266 | for (addr = start; addr < end; addr += PAGE_SIZE) { | |
2267 | migrate->src[migrate->npages] = 0; | |
2268 | migrate->dst[migrate->npages] = 0; | |
2269 | migrate->npages++; | |
2270 | } | |
2271 | return 0; | |
2272 | } | |
2273 | ||
872ea707 | 2274 | for (addr = start; addr < end; addr += PAGE_SIZE) { |
e20d103b | 2275 | migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; |
8315ada7 | 2276 | migrate->dst[migrate->npages] = 0; |
e20d103b | 2277 | migrate->npages++; |
8315ada7 JG |
2278 | migrate->cpages++; |
2279 | } | |
2280 | ||
2281 | return 0; | |
2282 | } | |
2283 | ||
2284 | static int migrate_vma_collect_skip(unsigned long start, | |
2285 | unsigned long end, | |
2286 | struct mm_walk *walk) | |
2287 | { | |
2288 | struct migrate_vma *migrate = walk->private; | |
2289 | unsigned long addr; | |
2290 | ||
872ea707 | 2291 | for (addr = start; addr < end; addr += PAGE_SIZE) { |
8763cb45 JG |
2292 | migrate->dst[migrate->npages] = 0; |
2293 | migrate->src[migrate->npages++] = 0; | |
2294 | } | |
2295 | ||
2296 | return 0; | |
2297 | } | |
2298 | ||
2299 | static int migrate_vma_collect_pmd(pmd_t *pmdp, | |
2300 | unsigned long start, | |
2301 | unsigned long end, | |
2302 | struct mm_walk *walk) | |
2303 | { | |
2304 | struct migrate_vma *migrate = walk->private; | |
2305 | struct vm_area_struct *vma = walk->vma; | |
2306 | struct mm_struct *mm = vma->vm_mm; | |
8c3328f1 | 2307 | unsigned long addr = start, unmapped = 0; |
8763cb45 JG |
2308 | spinlock_t *ptl; |
2309 | pte_t *ptep; | |
2310 | ||
2311 | again: | |
2312 | if (pmd_none(*pmdp)) | |
b7a16c7a | 2313 | return migrate_vma_collect_hole(start, end, -1, walk); |
8763cb45 JG |
2314 | |
2315 | if (pmd_trans_huge(*pmdp)) { | |
2316 | struct page *page; | |
2317 | ||
2318 | ptl = pmd_lock(mm, pmdp); | |
2319 | if (unlikely(!pmd_trans_huge(*pmdp))) { | |
2320 | spin_unlock(ptl); | |
2321 | goto again; | |
2322 | } | |
2323 | ||
2324 | page = pmd_page(*pmdp); | |
2325 | if (is_huge_zero_page(page)) { | |
2326 | spin_unlock(ptl); | |
2327 | split_huge_pmd(vma, pmdp, addr); | |
2328 | if (pmd_trans_unstable(pmdp)) | |
8315ada7 | 2329 | return migrate_vma_collect_skip(start, end, |
8763cb45 JG |
2330 | walk); |
2331 | } else { | |
2332 | int ret; | |
2333 | ||
2334 | get_page(page); | |
2335 | spin_unlock(ptl); | |
2336 | if (unlikely(!trylock_page(page))) | |
8315ada7 | 2337 | return migrate_vma_collect_skip(start, end, |
8763cb45 JG |
2338 | walk); |
2339 | ret = split_huge_page(page); | |
2340 | unlock_page(page); | |
2341 | put_page(page); | |
8315ada7 JG |
2342 | if (ret) |
2343 | return migrate_vma_collect_skip(start, end, | |
2344 | walk); | |
2345 | if (pmd_none(*pmdp)) | |
b7a16c7a | 2346 | return migrate_vma_collect_hole(start, end, -1, |
8763cb45 JG |
2347 | walk); |
2348 | } | |
2349 | } | |
2350 | ||
2351 | if (unlikely(pmd_bad(*pmdp))) | |
8315ada7 | 2352 | return migrate_vma_collect_skip(start, end, walk); |
8763cb45 JG |
2353 | |
2354 | ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); | |
8c3328f1 JG |
2355 | arch_enter_lazy_mmu_mode(); |
2356 | ||
8763cb45 | 2357 | for (; addr < end; addr += PAGE_SIZE, ptep++) { |
800bb1c8 | 2358 | unsigned long mpfn = 0, pfn; |
8763cb45 | 2359 | struct page *page; |
8c3328f1 | 2360 | swp_entry_t entry; |
8763cb45 JG |
2361 | pte_t pte; |
2362 | ||
2363 | pte = *ptep; | |
8763cb45 | 2364 | |
a5430dda | 2365 | if (pte_none(pte)) { |
0744f280 RC |
2366 | if (vma_is_anonymous(vma)) { |
2367 | mpfn = MIGRATE_PFN_MIGRATE; | |
2368 | migrate->cpages++; | |
2369 | } | |
8763cb45 JG |
2370 | goto next; |
2371 | } | |
2372 | ||
a5430dda | 2373 | if (!pte_present(pte)) { |
a5430dda JG |
2374 | /* |
2375 | * Only care about unaddressable device page special | |
2376 | * page table entry. Other special swap entries are not | |
2377 | * migratable, and we ignore regular swapped page. | |
2378 | */ | |
2379 | entry = pte_to_swp_entry(pte); | |
2380 | if (!is_device_private_entry(entry)) | |
2381 | goto next; | |
2382 | ||
2383 | page = device_private_entry_to_page(entry); | |
5143192c RC |
2384 | if (!(migrate->flags & |
2385 | MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || | |
2386 | page->pgmap->owner != migrate->pgmap_owner) | |
800bb1c8 CH |
2387 | goto next; |
2388 | ||
06d462be CH |
2389 | mpfn = migrate_pfn(page_to_pfn(page)) | |
2390 | MIGRATE_PFN_MIGRATE; | |
a5430dda JG |
2391 | if (is_write_device_private_entry(entry)) |
2392 | mpfn |= MIGRATE_PFN_WRITE; | |
2393 | } else { | |
5143192c | 2394 | if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) |
800bb1c8 | 2395 | goto next; |
276f756d | 2396 | pfn = pte_pfn(pte); |
8315ada7 JG |
2397 | if (is_zero_pfn(pfn)) { |
2398 | mpfn = MIGRATE_PFN_MIGRATE; | |
2399 | migrate->cpages++; | |
8315ada7 JG |
2400 | goto next; |
2401 | } | |
25b2995a | 2402 | page = vm_normal_page(migrate->vma, addr, pte); |
a5430dda JG |
2403 | mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; |
2404 | mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; | |
2405 | } | |
2406 | ||
8763cb45 | 2407 | /* FIXME support THP */ |
8763cb45 | 2408 | if (!page || !page->mapping || PageTransCompound(page)) { |
276f756d | 2409 | mpfn = 0; |
8763cb45 JG |
2410 | goto next; |
2411 | } | |
2412 | ||
2413 | /* | |
2414 | * By getting a reference on the page we pin it and that blocks | |
2415 | * any kind of migration. Side effect is that it "freezes" the | |
2416 | * pte. | |
2417 | * | |
2418 | * We drop this reference after isolating the page from the lru | |
2419 | * for non device page (device page are not on the lru and thus | |
2420 | * can't be dropped from it). | |
2421 | */ | |
2422 | get_page(page); | |
2423 | migrate->cpages++; | |
8763cb45 | 2424 | |
8c3328f1 JG |
2425 | /* |
2426 | * Optimize for the common case where page is only mapped once | |
2427 | * in one process. If we can lock the page, then we can safely | |
2428 | * set up a special migration page table entry now. | |
2429 | */ | |
2430 | if (trylock_page(page)) { | |
2431 | pte_t swp_pte; | |
2432 | ||
2433 | mpfn |= MIGRATE_PFN_LOCKED; | |
2434 | ptep_get_and_clear(mm, addr, ptep); | |
2435 | ||
2436 | /* Setup special migration page table entry */ | |
07707125 RC |
2437 | entry = make_migration_entry(page, mpfn & |
2438 | MIGRATE_PFN_WRITE); | |
8c3328f1 | 2439 | swp_pte = swp_entry_to_pte(entry); |
ad7df764 AP |
2440 | if (pte_present(pte)) { |
2441 | if (pte_soft_dirty(pte)) | |
2442 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2443 | if (pte_uffd_wp(pte)) | |
2444 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
2445 | } else { | |
2446 | if (pte_swp_soft_dirty(pte)) | |
2447 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2448 | if (pte_swp_uffd_wp(pte)) | |
2449 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
2450 | } | |
8c3328f1 JG |
2451 | set_pte_at(mm, addr, ptep, swp_pte); |
2452 | ||
2453 | /* | |
2454 | * This is like regular unmap: we remove the rmap and | |
2455 | * drop page refcount. Page won't be freed, as we took | |
2456 | * a reference just above. | |
2457 | */ | |
2458 | page_remove_rmap(page, false); | |
2459 | put_page(page); | |
a5430dda JG |
2460 | |
2461 | if (pte_present(pte)) | |
2462 | unmapped++; | |
8c3328f1 JG |
2463 | } |
2464 | ||
8763cb45 | 2465 | next: |
a5430dda | 2466 | migrate->dst[migrate->npages] = 0; |
8763cb45 JG |
2467 | migrate->src[migrate->npages++] = mpfn; |
2468 | } | |
8c3328f1 | 2469 | arch_leave_lazy_mmu_mode(); |
8763cb45 JG |
2470 | pte_unmap_unlock(ptep - 1, ptl); |
2471 | ||
8c3328f1 JG |
2472 | /* Only flush the TLB if we actually modified any entries */ |
2473 | if (unmapped) | |
2474 | flush_tlb_range(walk->vma, start, end); | |
2475 | ||
8763cb45 JG |
2476 | return 0; |
2477 | } | |
2478 | ||
7b86ac33 CH |
2479 | static const struct mm_walk_ops migrate_vma_walk_ops = { |
2480 | .pmd_entry = migrate_vma_collect_pmd, | |
2481 | .pte_hole = migrate_vma_collect_hole, | |
2482 | }; | |
2483 | ||
8763cb45 JG |
2484 | /* |
2485 | * migrate_vma_collect() - collect pages over a range of virtual addresses | |
2486 | * @migrate: migrate struct containing all migration information | |
2487 | * | |
2488 | * This will walk the CPU page table. For each virtual address backed by a | |
2489 | * valid page, it updates the src array and takes a reference on the page, in | |
2490 | * order to pin the page until we lock it and unmap it. | |
2491 | */ | |
2492 | static void migrate_vma_collect(struct migrate_vma *migrate) | |
2493 | { | |
ac46d4f3 | 2494 | struct mmu_notifier_range range; |
8763cb45 | 2495 | |
998427b3 RC |
2496 | /* |
2497 | * Note that the pgmap_owner is passed to the mmu notifier callback so | |
2498 | * that the registered device driver can skip invalidating device | |
2499 | * private page mappings that won't be migrated. | |
2500 | */ | |
c1a06df6 RC |
2501 | mmu_notifier_range_init_migrate(&range, 0, migrate->vma, |
2502 | migrate->vma->vm_mm, migrate->start, migrate->end, | |
2503 | migrate->pgmap_owner); | |
ac46d4f3 | 2504 | mmu_notifier_invalidate_range_start(&range); |
8763cb45 | 2505 | |
7b86ac33 CH |
2506 | walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, |
2507 | &migrate_vma_walk_ops, migrate); | |
2508 | ||
2509 | mmu_notifier_invalidate_range_end(&range); | |
8763cb45 JG |
2510 | migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); |
2511 | } | |
2512 | ||
2513 | /* | |
2514 | * migrate_vma_check_page() - check if page is pinned or not | |
2515 | * @page: struct page to check | |
2516 | * | |
2517 | * Pinned pages cannot be migrated. This is the same test as in | |
2518 | * migrate_page_move_mapping(), except that here we allow migration of a | |
2519 | * ZONE_DEVICE page. | |
2520 | */ | |
2521 | static bool migrate_vma_check_page(struct page *page) | |
2522 | { | |
2523 | /* | |
2524 | * One extra ref because caller holds an extra reference, either from | |
2525 | * isolate_lru_page() for a regular page, or migrate_vma_collect() for | |
2526 | * a device page. | |
2527 | */ | |
2528 | int extra = 1; | |
2529 | ||
2530 | /* | |
2531 | * FIXME support THP (transparent huge page), it is bit more complex to | |
2532 | * check them than regular pages, because they can be mapped with a pmd | |
2533 | * or with a pte (split pte mapping). | |
2534 | */ | |
2535 | if (PageCompound(page)) | |
2536 | return false; | |
2537 | ||
a5430dda JG |
2538 | /* Page from ZONE_DEVICE have one extra reference */ |
2539 | if (is_zone_device_page(page)) { | |
2540 | /* | |
2541 | * Private page can never be pin as they have no valid pte and | |
2542 | * GUP will fail for those. Yet if there is a pending migration | |
2543 | * a thread might try to wait on the pte migration entry and | |
2544 | * will bump the page reference count. Sadly there is no way to | |
2545 | * differentiate a regular pin from migration wait. Hence to | |
2546 | * avoid 2 racing thread trying to migrate back to CPU to enter | |
2547 | * infinite loop (one stoping migration because the other is | |
2548 | * waiting on pte migration entry). We always return true here. | |
2549 | * | |
2550 | * FIXME proper solution is to rework migration_entry_wait() so | |
2551 | * it does not need to take a reference on page. | |
2552 | */ | |
25b2995a | 2553 | return is_device_private_page(page); |
a5430dda JG |
2554 | } |
2555 | ||
df6ad698 JG |
2556 | /* For file back page */ |
2557 | if (page_mapping(page)) | |
2558 | extra += 1 + page_has_private(page); | |
2559 | ||
8763cb45 JG |
2560 | if ((page_count(page) - extra) > page_mapcount(page)) |
2561 | return false; | |
2562 | ||
2563 | return true; | |
2564 | } | |
2565 | ||
2566 | /* | |
2567 | * migrate_vma_prepare() - lock pages and isolate them from the lru | |
2568 | * @migrate: migrate struct containing all migration information | |
2569 | * | |
2570 | * This locks pages that have been collected by migrate_vma_collect(). Once each | |
2571 | * page is locked it is isolated from the lru (for non-device pages). Finally, | |
2572 | * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be | |
2573 | * migrated by concurrent kernel threads. | |
2574 | */ | |
2575 | static void migrate_vma_prepare(struct migrate_vma *migrate) | |
2576 | { | |
2577 | const unsigned long npages = migrate->npages; | |
8c3328f1 JG |
2578 | const unsigned long start = migrate->start; |
2579 | unsigned long addr, i, restore = 0; | |
8763cb45 | 2580 | bool allow_drain = true; |
8763cb45 JG |
2581 | |
2582 | lru_add_drain(); | |
2583 | ||
2584 | for (i = 0; (i < npages) && migrate->cpages; i++) { | |
2585 | struct page *page = migrate_pfn_to_page(migrate->src[i]); | |
8c3328f1 | 2586 | bool remap = true; |
8763cb45 JG |
2587 | |
2588 | if (!page) | |
2589 | continue; | |
2590 | ||
8c3328f1 JG |
2591 | if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { |
2592 | /* | |
2593 | * Because we are migrating several pages there can be | |
2594 | * a deadlock between 2 concurrent migration where each | |
2595 | * are waiting on each other page lock. | |
2596 | * | |
2597 | * Make migrate_vma() a best effort thing and backoff | |
2598 | * for any page we can not lock right away. | |
2599 | */ | |
2600 | if (!trylock_page(page)) { | |
2601 | migrate->src[i] = 0; | |
2602 | migrate->cpages--; | |
2603 | put_page(page); | |
2604 | continue; | |
2605 | } | |
2606 | remap = false; | |
2607 | migrate->src[i] |= MIGRATE_PFN_LOCKED; | |
8763cb45 | 2608 | } |
8763cb45 | 2609 | |
a5430dda JG |
2610 | /* ZONE_DEVICE pages are not on LRU */ |
2611 | if (!is_zone_device_page(page)) { | |
2612 | if (!PageLRU(page) && allow_drain) { | |
2613 | /* Drain CPU's pagevec */ | |
2614 | lru_add_drain_all(); | |
2615 | allow_drain = false; | |
2616 | } | |
8763cb45 | 2617 | |
a5430dda JG |
2618 | if (isolate_lru_page(page)) { |
2619 | if (remap) { | |
2620 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
2621 | migrate->cpages--; | |
2622 | restore++; | |
2623 | } else { | |
2624 | migrate->src[i] = 0; | |
2625 | unlock_page(page); | |
2626 | migrate->cpages--; | |
2627 | put_page(page); | |
2628 | } | |
2629 | continue; | |
8c3328f1 | 2630 | } |
a5430dda JG |
2631 | |
2632 | /* Drop the reference we took in collect */ | |
2633 | put_page(page); | |
8763cb45 JG |
2634 | } |
2635 | ||
2636 | if (!migrate_vma_check_page(page)) { | |
8c3328f1 JG |
2637 | if (remap) { |
2638 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
2639 | migrate->cpages--; | |
2640 | restore++; | |
8763cb45 | 2641 | |
a5430dda JG |
2642 | if (!is_zone_device_page(page)) { |
2643 | get_page(page); | |
2644 | putback_lru_page(page); | |
2645 | } | |
8c3328f1 JG |
2646 | } else { |
2647 | migrate->src[i] = 0; | |
2648 | unlock_page(page); | |
2649 | migrate->cpages--; | |
2650 | ||
a5430dda JG |
2651 | if (!is_zone_device_page(page)) |
2652 | putback_lru_page(page); | |
2653 | else | |
2654 | put_page(page); | |
8c3328f1 | 2655 | } |
8763cb45 JG |
2656 | } |
2657 | } | |
8c3328f1 JG |
2658 | |
2659 | for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { | |
2660 | struct page *page = migrate_pfn_to_page(migrate->src[i]); | |
2661 | ||
2662 | if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) | |
2663 | continue; | |
2664 | ||
2665 | remove_migration_pte(page, migrate->vma, addr, page); | |
2666 | ||
2667 | migrate->src[i] = 0; | |
2668 | unlock_page(page); | |
2669 | put_page(page); | |
2670 | restore--; | |
2671 | } | |
8763cb45 JG |
2672 | } |
2673 | ||
2674 | /* | |
2675 | * migrate_vma_unmap() - replace page mapping with special migration pte entry | |
2676 | * @migrate: migrate struct containing all migration information | |
2677 | * | |
2678 | * Replace page mapping (CPU page table pte) with a special migration pte entry | |
2679 | * and check again if it has been pinned. Pinned pages are restored because we | |
2680 | * cannot migrate them. | |
2681 | * | |
2682 | * This is the last step before we call the device driver callback to allocate | |
2683 | * destination memory and copy contents of original page over to new page. | |
2684 | */ | |
2685 | static void migrate_vma_unmap(struct migrate_vma *migrate) | |
2686 | { | |
2687 | int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; | |
2688 | const unsigned long npages = migrate->npages; | |
2689 | const unsigned long start = migrate->start; | |
2690 | unsigned long addr, i, restore = 0; | |
2691 | ||
2692 | for (i = 0; i < npages; i++) { | |
2693 | struct page *page = migrate_pfn_to_page(migrate->src[i]); | |
2694 | ||
2695 | if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) | |
2696 | continue; | |
2697 | ||
8c3328f1 JG |
2698 | if (page_mapped(page)) { |
2699 | try_to_unmap(page, flags); | |
2700 | if (page_mapped(page)) | |
2701 | goto restore; | |
8763cb45 | 2702 | } |
8c3328f1 JG |
2703 | |
2704 | if (migrate_vma_check_page(page)) | |
2705 | continue; | |
2706 | ||
2707 | restore: | |
2708 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
2709 | migrate->cpages--; | |
2710 | restore++; | |
8763cb45 JG |
2711 | } |
2712 | ||
2713 | for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { | |
2714 | struct page *page = migrate_pfn_to_page(migrate->src[i]); | |
2715 | ||
2716 | if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) | |
2717 | continue; | |
2718 | ||
2719 | remove_migration_ptes(page, page, false); | |
2720 | ||
2721 | migrate->src[i] = 0; | |
2722 | unlock_page(page); | |
2723 | restore--; | |
2724 | ||
a5430dda JG |
2725 | if (is_zone_device_page(page)) |
2726 | put_page(page); | |
2727 | else | |
2728 | putback_lru_page(page); | |
8763cb45 JG |
2729 | } |
2730 | } | |
2731 | ||
a7d1f22b CH |
2732 | /** |
2733 | * migrate_vma_setup() - prepare to migrate a range of memory | |
eaf444de | 2734 | * @args: contains the vma, start, and pfns arrays for the migration |
a7d1f22b CH |
2735 | * |
2736 | * Returns: negative errno on failures, 0 when 0 or more pages were migrated | |
2737 | * without an error. | |
2738 | * | |
2739 | * Prepare to migrate a range of memory virtual address range by collecting all | |
2740 | * the pages backing each virtual address in the range, saving them inside the | |
2741 | * src array. Then lock those pages and unmap them. Once the pages are locked | |
2742 | * and unmapped, check whether each page is pinned or not. Pages that aren't | |
2743 | * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the | |
2744 | * corresponding src array entry. Then restores any pages that are pinned, by | |
2745 | * remapping and unlocking those pages. | |
2746 | * | |
2747 | * The caller should then allocate destination memory and copy source memory to | |
2748 | * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE | |
2749 | * flag set). Once these are allocated and copied, the caller must update each | |
2750 | * corresponding entry in the dst array with the pfn value of the destination | |
2751 | * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set | |
2752 | * (destination pages must have their struct pages locked, via lock_page()). | |
2753 | * | |
2754 | * Note that the caller does not have to migrate all the pages that are marked | |
2755 | * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from | |
2756 | * device memory to system memory. If the caller cannot migrate a device page | |
2757 | * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe | |
2758 | * consequences for the userspace process, so it must be avoided if at all | |
2759 | * possible. | |
2760 | * | |
2761 | * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we | |
2762 | * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus | |
2763 | * allowing the caller to allocate device memory for those unback virtual | |
2764 | * address. For this the caller simply has to allocate device memory and | |
2765 | * properly set the destination entry like for regular migration. Note that | |
2766 | * this can still fails and thus inside the device driver must check if the | |
2767 | * migration was successful for those entries after calling migrate_vma_pages() | |
2768 | * just like for regular migration. | |
2769 | * | |
2770 | * After that, the callers must call migrate_vma_pages() to go over each entry | |
2771 | * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag | |
2772 | * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, | |
2773 | * then migrate_vma_pages() to migrate struct page information from the source | |
2774 | * struct page to the destination struct page. If it fails to migrate the | |
2775 | * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the | |
2776 | * src array. | |
2777 | * | |
2778 | * At this point all successfully migrated pages have an entry in the src | |
2779 | * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst | |
2780 | * array entry with MIGRATE_PFN_VALID flag set. | |
2781 | * | |
2782 | * Once migrate_vma_pages() returns the caller may inspect which pages were | |
2783 | * successfully migrated, and which were not. Successfully migrated pages will | |
2784 | * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. | |
2785 | * | |
2786 | * It is safe to update device page table after migrate_vma_pages() because | |
c1e8d7c6 | 2787 | * both destination and source page are still locked, and the mmap_lock is held |
a7d1f22b CH |
2788 | * in read mode (hence no one can unmap the range being migrated). |
2789 | * | |
2790 | * Once the caller is done cleaning up things and updating its page table (if it | |
2791 | * chose to do so, this is not an obligation) it finally calls | |
2792 | * migrate_vma_finalize() to update the CPU page table to point to new pages | |
2793 | * for successfully migrated pages or otherwise restore the CPU page table to | |
2794 | * point to the original source pages. | |
2795 | */ | |
2796 | int migrate_vma_setup(struct migrate_vma *args) | |
2797 | { | |
2798 | long nr_pages = (args->end - args->start) >> PAGE_SHIFT; | |
2799 | ||
2800 | args->start &= PAGE_MASK; | |
2801 | args->end &= PAGE_MASK; | |
2802 | if (!args->vma || is_vm_hugetlb_page(args->vma) || | |
2803 | (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) | |
2804 | return -EINVAL; | |
2805 | if (nr_pages <= 0) | |
2806 | return -EINVAL; | |
2807 | if (args->start < args->vma->vm_start || | |
2808 | args->start >= args->vma->vm_end) | |
2809 | return -EINVAL; | |
2810 | if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) | |
2811 | return -EINVAL; | |
2812 | if (!args->src || !args->dst) | |
2813 | return -EINVAL; | |
2814 | ||
2815 | memset(args->src, 0, sizeof(*args->src) * nr_pages); | |
2816 | args->cpages = 0; | |
2817 | args->npages = 0; | |
2818 | ||
2819 | migrate_vma_collect(args); | |
2820 | ||
2821 | if (args->cpages) | |
2822 | migrate_vma_prepare(args); | |
2823 | if (args->cpages) | |
2824 | migrate_vma_unmap(args); | |
2825 | ||
2826 | /* | |
2827 | * At this point pages are locked and unmapped, and thus they have | |
2828 | * stable content and can safely be copied to destination memory that | |
2829 | * is allocated by the drivers. | |
2830 | */ | |
2831 | return 0; | |
2832 | ||
2833 | } | |
2834 | EXPORT_SYMBOL(migrate_vma_setup); | |
2835 | ||
34290e2c RC |
2836 | /* |
2837 | * This code closely matches the code in: | |
2838 | * __handle_mm_fault() | |
2839 | * handle_pte_fault() | |
2840 | * do_anonymous_page() | |
2841 | * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE | |
2842 | * private page. | |
2843 | */ | |
8315ada7 JG |
2844 | static void migrate_vma_insert_page(struct migrate_vma *migrate, |
2845 | unsigned long addr, | |
2846 | struct page *page, | |
2847 | unsigned long *src, | |
2848 | unsigned long *dst) | |
2849 | { | |
2850 | struct vm_area_struct *vma = migrate->vma; | |
2851 | struct mm_struct *mm = vma->vm_mm; | |
8315ada7 JG |
2852 | bool flush = false; |
2853 | spinlock_t *ptl; | |
2854 | pte_t entry; | |
2855 | pgd_t *pgdp; | |
2856 | p4d_t *p4dp; | |
2857 | pud_t *pudp; | |
2858 | pmd_t *pmdp; | |
2859 | pte_t *ptep; | |
2860 | ||
2861 | /* Only allow populating anonymous memory */ | |
2862 | if (!vma_is_anonymous(vma)) | |
2863 | goto abort; | |
2864 | ||
2865 | pgdp = pgd_offset(mm, addr); | |
2866 | p4dp = p4d_alloc(mm, pgdp, addr); | |
2867 | if (!p4dp) | |
2868 | goto abort; | |
2869 | pudp = pud_alloc(mm, p4dp, addr); | |
2870 | if (!pudp) | |
2871 | goto abort; | |
2872 | pmdp = pmd_alloc(mm, pudp, addr); | |
2873 | if (!pmdp) | |
2874 | goto abort; | |
2875 | ||
2876 | if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) | |
2877 | goto abort; | |
2878 | ||
2879 | /* | |
2880 | * Use pte_alloc() instead of pte_alloc_map(). We can't run | |
2881 | * pte_offset_map() on pmds where a huge pmd might be created | |
2882 | * from a different thread. | |
2883 | * | |
3e4e28c5 | 2884 | * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when |
8315ada7 JG |
2885 | * parallel threads are excluded by other means. |
2886 | * | |
3e4e28c5 | 2887 | * Here we only have mmap_read_lock(mm). |
8315ada7 | 2888 | */ |
4cf58924 | 2889 | if (pte_alloc(mm, pmdp)) |
8315ada7 JG |
2890 | goto abort; |
2891 | ||
2892 | /* See the comment in pte_alloc_one_map() */ | |
2893 | if (unlikely(pmd_trans_unstable(pmdp))) | |
2894 | goto abort; | |
2895 | ||
2896 | if (unlikely(anon_vma_prepare(vma))) | |
2897 | goto abort; | |
d9eb1ea2 | 2898 | if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) |
8315ada7 JG |
2899 | goto abort; |
2900 | ||
2901 | /* | |
2902 | * The memory barrier inside __SetPageUptodate makes sure that | |
2903 | * preceding stores to the page contents become visible before | |
2904 | * the set_pte_at() write. | |
2905 | */ | |
2906 | __SetPageUptodate(page); | |
2907 | ||
df6ad698 JG |
2908 | if (is_zone_device_page(page)) { |
2909 | if (is_device_private_page(page)) { | |
2910 | swp_entry_t swp_entry; | |
2911 | ||
2912 | swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); | |
2913 | entry = swp_entry_to_pte(swp_entry); | |
df6ad698 | 2914 | } |
8315ada7 JG |
2915 | } else { |
2916 | entry = mk_pte(page, vma->vm_page_prot); | |
2917 | if (vma->vm_flags & VM_WRITE) | |
2918 | entry = pte_mkwrite(pte_mkdirty(entry)); | |
2919 | } | |
2920 | ||
2921 | ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); | |
2922 | ||
34290e2c RC |
2923 | if (check_stable_address_space(mm)) |
2924 | goto unlock_abort; | |
2925 | ||
8315ada7 JG |
2926 | if (pte_present(*ptep)) { |
2927 | unsigned long pfn = pte_pfn(*ptep); | |
2928 | ||
c23a0c99 RC |
2929 | if (!is_zero_pfn(pfn)) |
2930 | goto unlock_abort; | |
8315ada7 | 2931 | flush = true; |
c23a0c99 RC |
2932 | } else if (!pte_none(*ptep)) |
2933 | goto unlock_abort; | |
8315ada7 JG |
2934 | |
2935 | /* | |
c23a0c99 | 2936 | * Check for userfaultfd but do not deliver the fault. Instead, |
8315ada7 JG |
2937 | * just back off. |
2938 | */ | |
c23a0c99 RC |
2939 | if (userfaultfd_missing(vma)) |
2940 | goto unlock_abort; | |
8315ada7 JG |
2941 | |
2942 | inc_mm_counter(mm, MM_ANONPAGES); | |
be5d0a74 | 2943 | page_add_new_anon_rmap(page, vma, addr, false); |
8315ada7 | 2944 | if (!is_zone_device_page(page)) |
b518154e | 2945 | lru_cache_add_inactive_or_unevictable(page, vma); |
8315ada7 JG |
2946 | get_page(page); |
2947 | ||
2948 | if (flush) { | |
2949 | flush_cache_page(vma, addr, pte_pfn(*ptep)); | |
2950 | ptep_clear_flush_notify(vma, addr, ptep); | |
2951 | set_pte_at_notify(mm, addr, ptep, entry); | |
2952 | update_mmu_cache(vma, addr, ptep); | |
2953 | } else { | |
2954 | /* No need to invalidate - it was non-present before */ | |
2955 | set_pte_at(mm, addr, ptep, entry); | |
2956 | update_mmu_cache(vma, addr, ptep); | |
2957 | } | |
2958 | ||
2959 | pte_unmap_unlock(ptep, ptl); | |
2960 | *src = MIGRATE_PFN_MIGRATE; | |
2961 | return; | |
2962 | ||
c23a0c99 RC |
2963 | unlock_abort: |
2964 | pte_unmap_unlock(ptep, ptl); | |
8315ada7 JG |
2965 | abort: |
2966 | *src &= ~MIGRATE_PFN_MIGRATE; | |
2967 | } | |
2968 | ||
a7d1f22b | 2969 | /** |
8763cb45 JG |
2970 | * migrate_vma_pages() - migrate meta-data from src page to dst page |
2971 | * @migrate: migrate struct containing all migration information | |
2972 | * | |
2973 | * This migrates struct page meta-data from source struct page to destination | |
2974 | * struct page. This effectively finishes the migration from source page to the | |
2975 | * destination page. | |
2976 | */ | |
a7d1f22b | 2977 | void migrate_vma_pages(struct migrate_vma *migrate) |
8763cb45 JG |
2978 | { |
2979 | const unsigned long npages = migrate->npages; | |
2980 | const unsigned long start = migrate->start; | |
ac46d4f3 JG |
2981 | struct mmu_notifier_range range; |
2982 | unsigned long addr, i; | |
8315ada7 | 2983 | bool notified = false; |
8763cb45 JG |
2984 | |
2985 | for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { | |
2986 | struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); | |
2987 | struct page *page = migrate_pfn_to_page(migrate->src[i]); | |
2988 | struct address_space *mapping; | |
2989 | int r; | |
2990 | ||
8315ada7 JG |
2991 | if (!newpage) { |
2992 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
8763cb45 | 2993 | continue; |
8315ada7 JG |
2994 | } |
2995 | ||
2996 | if (!page) { | |
c23a0c99 | 2997 | if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) |
8315ada7 | 2998 | continue; |
8315ada7 | 2999 | if (!notified) { |
8315ada7 | 3000 | notified = true; |
ac46d4f3 JG |
3001 | |
3002 | mmu_notifier_range_init(&range, | |
7269f999 | 3003 | MMU_NOTIFY_CLEAR, 0, |
6f4f13e8 | 3004 | NULL, |
ac46d4f3 JG |
3005 | migrate->vma->vm_mm, |
3006 | addr, migrate->end); | |
3007 | mmu_notifier_invalidate_range_start(&range); | |
8315ada7 JG |
3008 | } |
3009 | migrate_vma_insert_page(migrate, addr, newpage, | |
3010 | &migrate->src[i], | |
3011 | &migrate->dst[i]); | |
8763cb45 | 3012 | continue; |
8315ada7 | 3013 | } |
8763cb45 JG |
3014 | |
3015 | mapping = page_mapping(page); | |
3016 | ||
a5430dda JG |
3017 | if (is_zone_device_page(newpage)) { |
3018 | if (is_device_private_page(newpage)) { | |
3019 | /* | |
3020 | * For now only support private anonymous when | |
3021 | * migrating to un-addressable device memory. | |
3022 | */ | |
3023 | if (mapping) { | |
3024 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
3025 | continue; | |
3026 | } | |
25b2995a | 3027 | } else { |
a5430dda JG |
3028 | /* |
3029 | * Other types of ZONE_DEVICE page are not | |
3030 | * supported. | |
3031 | */ | |
3032 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
3033 | continue; | |
3034 | } | |
3035 | } | |
3036 | ||
8763cb45 JG |
3037 | r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); |
3038 | if (r != MIGRATEPAGE_SUCCESS) | |
3039 | migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; | |
3040 | } | |
8315ada7 | 3041 | |
4645b9fe JG |
3042 | /* |
3043 | * No need to double call mmu_notifier->invalidate_range() callback as | |
3044 | * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() | |
3045 | * did already call it. | |
3046 | */ | |
8315ada7 | 3047 | if (notified) |
ac46d4f3 | 3048 | mmu_notifier_invalidate_range_only_end(&range); |
8763cb45 | 3049 | } |
a7d1f22b | 3050 | EXPORT_SYMBOL(migrate_vma_pages); |
8763cb45 | 3051 | |
a7d1f22b | 3052 | /** |
8763cb45 JG |
3053 | * migrate_vma_finalize() - restore CPU page table entry |
3054 | * @migrate: migrate struct containing all migration information | |
3055 | * | |
3056 | * This replaces the special migration pte entry with either a mapping to the | |
3057 | * new page if migration was successful for that page, or to the original page | |
3058 | * otherwise. | |
3059 | * | |
3060 | * This also unlocks the pages and puts them back on the lru, or drops the extra | |
3061 | * refcount, for device pages. | |
3062 | */ | |
a7d1f22b | 3063 | void migrate_vma_finalize(struct migrate_vma *migrate) |
8763cb45 JG |
3064 | { |
3065 | const unsigned long npages = migrate->npages; | |
3066 | unsigned long i; | |
3067 | ||
3068 | for (i = 0; i < npages; i++) { | |
3069 | struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); | |
3070 | struct page *page = migrate_pfn_to_page(migrate->src[i]); | |
3071 | ||
8315ada7 JG |
3072 | if (!page) { |
3073 | if (newpage) { | |
3074 | unlock_page(newpage); | |
3075 | put_page(newpage); | |
3076 | } | |
8763cb45 | 3077 | continue; |
8315ada7 JG |
3078 | } |
3079 | ||
8763cb45 JG |
3080 | if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { |
3081 | if (newpage) { | |
3082 | unlock_page(newpage); | |
3083 | put_page(newpage); | |
3084 | } | |
3085 | newpage = page; | |
3086 | } | |
3087 | ||
3088 | remove_migration_ptes(page, newpage, false); | |
3089 | unlock_page(page); | |
8763cb45 | 3090 | |
a5430dda JG |
3091 | if (is_zone_device_page(page)) |
3092 | put_page(page); | |
3093 | else | |
3094 | putback_lru_page(page); | |
8763cb45 JG |
3095 | |
3096 | if (newpage != page) { | |
3097 | unlock_page(newpage); | |
a5430dda JG |
3098 | if (is_zone_device_page(newpage)) |
3099 | put_page(newpage); | |
3100 | else | |
3101 | putback_lru_page(newpage); | |
8763cb45 JG |
3102 | } |
3103 | } | |
3104 | } | |
a7d1f22b | 3105 | EXPORT_SYMBOL(migrate_vma_finalize); |
9b2ed9cb | 3106 | #endif /* CONFIG_DEVICE_PRIVATE */ |