]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/migrate.c
mm/sparsemem: cleanup 'section number' data types
[mirror_ubuntu-jammy-kernel.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
df6ad698 41#include <linux/pfn_t.h>
a5430dda 42#include <linux/memremap.h>
8315ada7 43#include <linux/userfaultfd_k.h>
bf6bddf1 44#include <linux/balloon_compaction.h>
f714f4f2 45#include <linux/mmu_notifier.h>
33c3fc71 46#include <linux/page_idle.h>
d435edca 47#include <linux/page_owner.h>
6e84f315 48#include <linux/sched/mm.h>
197e7e52 49#include <linux/ptrace.h>
b20a3503 50
0d1836c3
MN
51#include <asm/tlbflush.h>
52
7b2a2d4a
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/migrate.h>
55
b20a3503
CL
56#include "internal.h"
57
b20a3503 58/*
742755a1 59 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
b20a3503
CL
62 */
63int migrate_prep(void)
64{
b20a3503
CL
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74}
75
748446bb
MG
76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
77int migrate_prep_local(void)
78{
79 lru_add_drain();
80
81 return 0;
82}
83
9e5bcd61 84int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
85{
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
8bb4e7a2 103 * so unconditionally grabbing the lock ruins page's owner side.
bda807d4
MK
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
9e5bcd61 135 return 0;
bda807d4
MK
136
137out_no_isolated:
138 unlock_page(page);
139out_putpage:
140 put_page(page);
141out:
9e5bcd61 142 return -EBUSY;
bda807d4
MK
143}
144
145/* It should be called on page which is PG_movable */
146void putback_movable_page(struct page *page)
147{
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157}
158
5733c7d1
RA
159/*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
59c82b70
JK
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
5733c7d1
RA
166 */
167void putback_movable_pages(struct list_head *l)
168{
169 struct page *page;
170 struct page *page2;
171
b20a3503 172 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
e24f0b8f 177 list_del(&page->lru);
bda807d4
MK
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
b1123ea6 183 if (unlikely(__PageMovable(page))) {
bda807d4
MK
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
e8db67eb
NH
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
fc280fe8 195 putback_lru_page(page);
bda807d4 196 }
b20a3503 197 }
b20a3503
CL
198}
199
0697212a
CL
200/*
201 * Restore a potential migration pte to a working pte entry
202 */
e4b82222 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 204 unsigned long addr, void *old)
0697212a 205{
3fe87967
KS
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
0697212a 214 swp_entry_t entry;
0697212a 215
3fe87967
KS
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
0697212a 223
616b8371
ZY
224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231#endif
232
3fe87967
KS
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
0697212a 237
3fe87967
KS
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 244
df6ad698
JG
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
df6ad698 249 }
d2b2c6dd 250 }
a5430dda 251
3ef8fd7f 252#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
253 if (PageHuge(new)) {
254 pte = pte_mkhuge(pte);
255 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
257 if (PageAnon(new))
258 hugepage_add_anon_rmap(new, vma, pvmw.address);
259 else
260 page_dup_rmap(new, true);
383321ab
AK
261 } else
262#endif
263 {
264 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 265
383321ab
AK
266 if (PageAnon(new))
267 page_add_anon_rmap(new, vma, pvmw.address, false);
268 else
269 page_add_file_rmap(new, false);
270 }
3fe87967
KS
271 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
272 mlock_vma_page(new);
273
e125fe40
KS
274 if (PageTransHuge(page) && PageMlocked(page))
275 clear_page_mlock(page);
276
3fe87967
KS
277 /* No need to invalidate - it was non-present before */
278 update_mmu_cache(vma, pvmw.address, pvmw.pte);
279 }
51afb12b 280
e4b82222 281 return true;
0697212a
CL
282}
283
04e62a29
CL
284/*
285 * Get rid of all migration entries and replace them by
286 * references to the indicated page.
287 */
e388466d 288void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 289{
051ac83a
JK
290 struct rmap_walk_control rwc = {
291 .rmap_one = remove_migration_pte,
292 .arg = old,
293 };
294
e388466d
KS
295 if (locked)
296 rmap_walk_locked(new, &rwc);
297 else
298 rmap_walk(new, &rwc);
04e62a29
CL
299}
300
0697212a
CL
301/*
302 * Something used the pte of a page under migration. We need to
303 * get to the page and wait until migration is finished.
304 * When we return from this function the fault will be retried.
0697212a 305 */
e66f17ff 306void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 307 spinlock_t *ptl)
0697212a 308{
30dad309 309 pte_t pte;
0697212a
CL
310 swp_entry_t entry;
311 struct page *page;
312
30dad309 313 spin_lock(ptl);
0697212a
CL
314 pte = *ptep;
315 if (!is_swap_pte(pte))
316 goto out;
317
318 entry = pte_to_swp_entry(pte);
319 if (!is_migration_entry(entry))
320 goto out;
321
322 page = migration_entry_to_page(entry);
323
e286781d 324 /*
89eb946a 325 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
326 * is zero; but we must not call put_and_wait_on_page_locked() without
327 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
328 */
329 if (!get_page_unless_zero(page))
330 goto out;
0697212a 331 pte_unmap_unlock(ptep, ptl);
9a1ea439 332 put_and_wait_on_page_locked(page);
0697212a
CL
333 return;
334out:
335 pte_unmap_unlock(ptep, ptl);
336}
337
30dad309
NH
338void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
339 unsigned long address)
340{
341 spinlock_t *ptl = pte_lockptr(mm, pmd);
342 pte_t *ptep = pte_offset_map(pmd, address);
343 __migration_entry_wait(mm, ptep, ptl);
344}
345
cb900f41
KS
346void migration_entry_wait_huge(struct vm_area_struct *vma,
347 struct mm_struct *mm, pte_t *pte)
30dad309 348{
cb900f41 349 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
350 __migration_entry_wait(mm, pte, ptl);
351}
352
616b8371
ZY
353#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
354void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
355{
356 spinlock_t *ptl;
357 struct page *page;
358
359 ptl = pmd_lock(mm, pmd);
360 if (!is_pmd_migration_entry(*pmd))
361 goto unlock;
362 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
363 if (!get_page_unless_zero(page))
364 goto unlock;
365 spin_unlock(ptl);
9a1ea439 366 put_and_wait_on_page_locked(page);
616b8371
ZY
367 return;
368unlock:
369 spin_unlock(ptl);
370}
371#endif
372
f900482d 373static int expected_page_refs(struct address_space *mapping, struct page *page)
0b3901b3
JK
374{
375 int expected_count = 1;
376
377 /*
378 * Device public or private pages have an extra refcount as they are
379 * ZONE_DEVICE pages.
380 */
381 expected_count += is_device_private_page(page);
f900482d 382 if (mapping)
0b3901b3
JK
383 expected_count += hpage_nr_pages(page) + page_has_private(page);
384
385 return expected_count;
386}
387
b20a3503 388/*
c3fcf8a5 389 * Replace the page in the mapping.
5b5c7120
CL
390 *
391 * The number of remaining references must be:
392 * 1 for anonymous pages without a mapping
393 * 2 for pages with a mapping
266cf658 394 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 395 */
36bc08cc 396int migrate_page_move_mapping(struct address_space *mapping,
ab41ee68 397 struct page *newpage, struct page *page, enum migrate_mode mode,
8e321fef 398 int extra_count)
b20a3503 399{
89eb946a 400 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
401 struct zone *oldzone, *newzone;
402 int dirty;
f900482d 403 int expected_count = expected_page_refs(mapping, page) + extra_count;
8763cb45 404
6c5240ae 405 if (!mapping) {
0e8c7d0f 406 /* Anonymous page without mapping */
8e321fef 407 if (page_count(page) != expected_count)
6c5240ae 408 return -EAGAIN;
cf4b769a
HD
409
410 /* No turning back from here */
cf4b769a
HD
411 newpage->index = page->index;
412 newpage->mapping = page->mapping;
413 if (PageSwapBacked(page))
fa9949da 414 __SetPageSwapBacked(newpage);
cf4b769a 415
78bd5209 416 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
417 }
418
42cb14b1
HD
419 oldzone = page_zone(page);
420 newzone = page_zone(newpage);
421
89eb946a 422 xas_lock_irq(&xas);
89eb946a
MW
423 if (page_count(page) != expected_count || xas_load(&xas) != page) {
424 xas_unlock_irq(&xas);
e23ca00b 425 return -EAGAIN;
b20a3503
CL
426 }
427
fe896d18 428 if (!page_ref_freeze(page, expected_count)) {
89eb946a 429 xas_unlock_irq(&xas);
e286781d
NP
430 return -EAGAIN;
431 }
432
b20a3503 433 /*
cf4b769a
HD
434 * Now we know that no one else is looking at the page:
435 * no turning back from here.
b20a3503 436 */
cf4b769a
HD
437 newpage->index = page->index;
438 newpage->mapping = page->mapping;
e71769ae 439 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
6326fec1
NP
440 if (PageSwapBacked(page)) {
441 __SetPageSwapBacked(newpage);
442 if (PageSwapCache(page)) {
443 SetPageSwapCache(newpage);
444 set_page_private(newpage, page_private(page));
445 }
446 } else {
447 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
448 }
449
42cb14b1
HD
450 /* Move dirty while page refs frozen and newpage not yet exposed */
451 dirty = PageDirty(page);
452 if (dirty) {
453 ClearPageDirty(page);
454 SetPageDirty(newpage);
455 }
456
89eb946a 457 xas_store(&xas, newpage);
e71769ae
NH
458 if (PageTransHuge(page)) {
459 int i;
e71769ae 460
013567be 461 for (i = 1; i < HPAGE_PMD_NR; i++) {
89eb946a 462 xas_next(&xas);
69bf4b6b 463 xas_store(&xas, newpage + i);
e71769ae 464 }
e71769ae 465 }
7cf9c2c7
NP
466
467 /*
937a94c9
JG
468 * Drop cache reference from old page by unfreezing
469 * to one less reference.
7cf9c2c7
NP
470 * We know this isn't the last reference.
471 */
e71769ae 472 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
7cf9c2c7 473
89eb946a 474 xas_unlock(&xas);
42cb14b1
HD
475 /* Leave irq disabled to prevent preemption while updating stats */
476
0e8c7d0f
CL
477 /*
478 * If moved to a different zone then also account
479 * the page for that zone. Other VM counters will be
480 * taken care of when we establish references to the
481 * new page and drop references to the old page.
482 *
483 * Note that anonymous pages are accounted for
4b9d0fab 484 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
485 * are mapped to swap space.
486 */
42cb14b1 487 if (newzone != oldzone) {
11fb9989
MG
488 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
489 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 490 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
491 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
492 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
493 }
494 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 495 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 496 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 497 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 498 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 499 }
4b02108a 500 }
42cb14b1 501 local_irq_enable();
b20a3503 502
78bd5209 503 return MIGRATEPAGE_SUCCESS;
b20a3503 504}
1118dce7 505EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 506
290408d4
NH
507/*
508 * The expected number of remaining references is the same as that
509 * of migrate_page_move_mapping().
510 */
511int migrate_huge_page_move_mapping(struct address_space *mapping,
512 struct page *newpage, struct page *page)
513{
89eb946a 514 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 515 int expected_count;
290408d4 516
89eb946a 517 xas_lock_irq(&xas);
290408d4 518 expected_count = 2 + page_has_private(page);
89eb946a
MW
519 if (page_count(page) != expected_count || xas_load(&xas) != page) {
520 xas_unlock_irq(&xas);
290408d4
NH
521 return -EAGAIN;
522 }
523
fe896d18 524 if (!page_ref_freeze(page, expected_count)) {
89eb946a 525 xas_unlock_irq(&xas);
290408d4
NH
526 return -EAGAIN;
527 }
528
cf4b769a
HD
529 newpage->index = page->index;
530 newpage->mapping = page->mapping;
6a93ca8f 531
290408d4
NH
532 get_page(newpage);
533
89eb946a 534 xas_store(&xas, newpage);
290408d4 535
fe896d18 536 page_ref_unfreeze(page, expected_count - 1);
290408d4 537
89eb946a 538 xas_unlock_irq(&xas);
6a93ca8f 539
78bd5209 540 return MIGRATEPAGE_SUCCESS;
290408d4
NH
541}
542
30b0a105
DH
543/*
544 * Gigantic pages are so large that we do not guarantee that page++ pointer
545 * arithmetic will work across the entire page. We need something more
546 * specialized.
547 */
548static void __copy_gigantic_page(struct page *dst, struct page *src,
549 int nr_pages)
550{
551 int i;
552 struct page *dst_base = dst;
553 struct page *src_base = src;
554
555 for (i = 0; i < nr_pages; ) {
556 cond_resched();
557 copy_highpage(dst, src);
558
559 i++;
560 dst = mem_map_next(dst, dst_base, i);
561 src = mem_map_next(src, src_base, i);
562 }
563}
564
565static void copy_huge_page(struct page *dst, struct page *src)
566{
567 int i;
568 int nr_pages;
569
570 if (PageHuge(src)) {
571 /* hugetlbfs page */
572 struct hstate *h = page_hstate(src);
573 nr_pages = pages_per_huge_page(h);
574
575 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
576 __copy_gigantic_page(dst, src, nr_pages);
577 return;
578 }
579 } else {
580 /* thp page */
581 BUG_ON(!PageTransHuge(src));
582 nr_pages = hpage_nr_pages(src);
583 }
584
585 for (i = 0; i < nr_pages; i++) {
586 cond_resched();
587 copy_highpage(dst + i, src + i);
588 }
589}
590
b20a3503
CL
591/*
592 * Copy the page to its new location
593 */
2916ecc0 594void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 595{
7851a45c
RR
596 int cpupid;
597
b20a3503
CL
598 if (PageError(page))
599 SetPageError(newpage);
600 if (PageReferenced(page))
601 SetPageReferenced(newpage);
602 if (PageUptodate(page))
603 SetPageUptodate(newpage);
894bc310 604 if (TestClearPageActive(page)) {
309381fe 605 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 606 SetPageActive(newpage);
418b27ef
LS
607 } else if (TestClearPageUnevictable(page))
608 SetPageUnevictable(newpage);
1899ad18
JW
609 if (PageWorkingset(page))
610 SetPageWorkingset(newpage);
b20a3503
CL
611 if (PageChecked(page))
612 SetPageChecked(newpage);
613 if (PageMappedToDisk(page))
614 SetPageMappedToDisk(newpage);
615
42cb14b1
HD
616 /* Move dirty on pages not done by migrate_page_move_mapping() */
617 if (PageDirty(page))
618 SetPageDirty(newpage);
b20a3503 619
33c3fc71
VD
620 if (page_is_young(page))
621 set_page_young(newpage);
622 if (page_is_idle(page))
623 set_page_idle(newpage);
624
7851a45c
RR
625 /*
626 * Copy NUMA information to the new page, to prevent over-eager
627 * future migrations of this same page.
628 */
629 cpupid = page_cpupid_xchg_last(page, -1);
630 page_cpupid_xchg_last(newpage, cpupid);
631
e9995ef9 632 ksm_migrate_page(newpage, page);
c8d6553b
HD
633 /*
634 * Please do not reorder this without considering how mm/ksm.c's
635 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
636 */
b3b3a99c
NH
637 if (PageSwapCache(page))
638 ClearPageSwapCache(page);
b20a3503
CL
639 ClearPagePrivate(page);
640 set_page_private(page, 0);
b20a3503
CL
641
642 /*
643 * If any waiters have accumulated on the new page then
644 * wake them up.
645 */
646 if (PageWriteback(newpage))
647 end_page_writeback(newpage);
d435edca
VB
648
649 copy_page_owner(page, newpage);
74485cf2
JW
650
651 mem_cgroup_migrate(page, newpage);
b20a3503 652}
2916ecc0
JG
653EXPORT_SYMBOL(migrate_page_states);
654
655void migrate_page_copy(struct page *newpage, struct page *page)
656{
657 if (PageHuge(page) || PageTransHuge(page))
658 copy_huge_page(newpage, page);
659 else
660 copy_highpage(newpage, page);
661
662 migrate_page_states(newpage, page);
663}
1118dce7 664EXPORT_SYMBOL(migrate_page_copy);
b20a3503 665
1d8b85cc
CL
666/************************************************************
667 * Migration functions
668 ***********************************************************/
669
b20a3503 670/*
bda807d4 671 * Common logic to directly migrate a single LRU page suitable for
266cf658 672 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
673 *
674 * Pages are locked upon entry and exit.
675 */
2d1db3b1 676int migrate_page(struct address_space *mapping,
a6bc32b8
MG
677 struct page *newpage, struct page *page,
678 enum migrate_mode mode)
b20a3503
CL
679{
680 int rc;
681
682 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
683
ab41ee68 684 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
b20a3503 685
78bd5209 686 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
687 return rc;
688
2916ecc0
JG
689 if (mode != MIGRATE_SYNC_NO_COPY)
690 migrate_page_copy(newpage, page);
691 else
692 migrate_page_states(newpage, page);
78bd5209 693 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
694}
695EXPORT_SYMBOL(migrate_page);
696
9361401e 697#ifdef CONFIG_BLOCK
84ade7c1
JK
698/* Returns true if all buffers are successfully locked */
699static bool buffer_migrate_lock_buffers(struct buffer_head *head,
700 enum migrate_mode mode)
701{
702 struct buffer_head *bh = head;
703
704 /* Simple case, sync compaction */
705 if (mode != MIGRATE_ASYNC) {
706 do {
84ade7c1
JK
707 lock_buffer(bh);
708 bh = bh->b_this_page;
709
710 } while (bh != head);
711
712 return true;
713 }
714
715 /* async case, we cannot block on lock_buffer so use trylock_buffer */
716 do {
84ade7c1
JK
717 if (!trylock_buffer(bh)) {
718 /*
719 * We failed to lock the buffer and cannot stall in
720 * async migration. Release the taken locks
721 */
722 struct buffer_head *failed_bh = bh;
84ade7c1
JK
723 bh = head;
724 while (bh != failed_bh) {
725 unlock_buffer(bh);
84ade7c1
JK
726 bh = bh->b_this_page;
727 }
728 return false;
729 }
730
731 bh = bh->b_this_page;
732 } while (bh != head);
733 return true;
734}
735
89cb0888
JK
736static int __buffer_migrate_page(struct address_space *mapping,
737 struct page *newpage, struct page *page, enum migrate_mode mode,
738 bool check_refs)
1d8b85cc 739{
1d8b85cc
CL
740 struct buffer_head *bh, *head;
741 int rc;
cc4f11e6 742 int expected_count;
1d8b85cc 743
1d8b85cc 744 if (!page_has_buffers(page))
a6bc32b8 745 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 746
cc4f11e6 747 /* Check whether page does not have extra refs before we do more work */
f900482d 748 expected_count = expected_page_refs(mapping, page);
cc4f11e6
JK
749 if (page_count(page) != expected_count)
750 return -EAGAIN;
1d8b85cc 751
cc4f11e6
JK
752 head = page_buffers(page);
753 if (!buffer_migrate_lock_buffers(head, mode))
754 return -EAGAIN;
1d8b85cc 755
89cb0888
JK
756 if (check_refs) {
757 bool busy;
758 bool invalidated = false;
759
760recheck_buffers:
761 busy = false;
762 spin_lock(&mapping->private_lock);
763 bh = head;
764 do {
765 if (atomic_read(&bh->b_count)) {
766 busy = true;
767 break;
768 }
769 bh = bh->b_this_page;
770 } while (bh != head);
771 spin_unlock(&mapping->private_lock);
772 if (busy) {
773 if (invalidated) {
774 rc = -EAGAIN;
775 goto unlock_buffers;
776 }
777 invalidate_bh_lrus();
778 invalidated = true;
779 goto recheck_buffers;
780 }
781 }
782
ab41ee68 783 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
78bd5209 784 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 785 goto unlock_buffers;
1d8b85cc
CL
786
787 ClearPagePrivate(page);
788 set_page_private(newpage, page_private(page));
789 set_page_private(page, 0);
790 put_page(page);
791 get_page(newpage);
792
793 bh = head;
794 do {
795 set_bh_page(bh, newpage, bh_offset(bh));
796 bh = bh->b_this_page;
797
798 } while (bh != head);
799
800 SetPagePrivate(newpage);
801
2916ecc0
JG
802 if (mode != MIGRATE_SYNC_NO_COPY)
803 migrate_page_copy(newpage, page);
804 else
805 migrate_page_states(newpage, page);
1d8b85cc 806
cc4f11e6
JK
807 rc = MIGRATEPAGE_SUCCESS;
808unlock_buffers:
1d8b85cc
CL
809 bh = head;
810 do {
811 unlock_buffer(bh);
1d8b85cc
CL
812 bh = bh->b_this_page;
813
814 } while (bh != head);
815
cc4f11e6 816 return rc;
1d8b85cc 817}
89cb0888
JK
818
819/*
820 * Migration function for pages with buffers. This function can only be used
821 * if the underlying filesystem guarantees that no other references to "page"
822 * exist. For example attached buffer heads are accessed only under page lock.
823 */
824int buffer_migrate_page(struct address_space *mapping,
825 struct page *newpage, struct page *page, enum migrate_mode mode)
826{
827 return __buffer_migrate_page(mapping, newpage, page, mode, false);
828}
1d8b85cc 829EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
830
831/*
832 * Same as above except that this variant is more careful and checks that there
833 * are also no buffer head references. This function is the right one for
834 * mappings where buffer heads are directly looked up and referenced (such as
835 * block device mappings).
836 */
837int buffer_migrate_page_norefs(struct address_space *mapping,
838 struct page *newpage, struct page *page, enum migrate_mode mode)
839{
840 return __buffer_migrate_page(mapping, newpage, page, mode, true);
841}
9361401e 842#endif
1d8b85cc 843
04e62a29
CL
844/*
845 * Writeback a page to clean the dirty state
846 */
847static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 848{
04e62a29
CL
849 struct writeback_control wbc = {
850 .sync_mode = WB_SYNC_NONE,
851 .nr_to_write = 1,
852 .range_start = 0,
853 .range_end = LLONG_MAX,
04e62a29
CL
854 .for_reclaim = 1
855 };
856 int rc;
857
858 if (!mapping->a_ops->writepage)
859 /* No write method for the address space */
860 return -EINVAL;
861
862 if (!clear_page_dirty_for_io(page))
863 /* Someone else already triggered a write */
864 return -EAGAIN;
865
8351a6e4 866 /*
04e62a29
CL
867 * A dirty page may imply that the underlying filesystem has
868 * the page on some queue. So the page must be clean for
869 * migration. Writeout may mean we loose the lock and the
870 * page state is no longer what we checked for earlier.
871 * At this point we know that the migration attempt cannot
872 * be successful.
8351a6e4 873 */
e388466d 874 remove_migration_ptes(page, page, false);
8351a6e4 875
04e62a29 876 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 877
04e62a29
CL
878 if (rc != AOP_WRITEPAGE_ACTIVATE)
879 /* unlocked. Relock */
880 lock_page(page);
881
bda8550d 882 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
883}
884
885/*
886 * Default handling if a filesystem does not provide a migration function.
887 */
888static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 889 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 890{
b969c4ab 891 if (PageDirty(page)) {
a6bc32b8 892 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
893 switch (mode) {
894 case MIGRATE_SYNC:
895 case MIGRATE_SYNC_NO_COPY:
896 break;
897 default:
b969c4ab 898 return -EBUSY;
2916ecc0 899 }
04e62a29 900 return writeout(mapping, page);
b969c4ab 901 }
8351a6e4
CL
902
903 /*
904 * Buffers may be managed in a filesystem specific way.
905 * We must have no buffers or drop them.
906 */
266cf658 907 if (page_has_private(page) &&
8351a6e4 908 !try_to_release_page(page, GFP_KERNEL))
806031bb 909 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
8351a6e4 910
a6bc32b8 911 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
912}
913
e24f0b8f
CL
914/*
915 * Move a page to a newly allocated page
916 * The page is locked and all ptes have been successfully removed.
917 *
918 * The new page will have replaced the old page if this function
919 * is successful.
894bc310
LS
920 *
921 * Return value:
922 * < 0 - error code
78bd5209 923 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 924 */
3fe2011f 925static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 926 enum migrate_mode mode)
e24f0b8f
CL
927{
928 struct address_space *mapping;
bda807d4
MK
929 int rc = -EAGAIN;
930 bool is_lru = !__PageMovable(page);
e24f0b8f 931
7db7671f
HD
932 VM_BUG_ON_PAGE(!PageLocked(page), page);
933 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 934
e24f0b8f 935 mapping = page_mapping(page);
bda807d4
MK
936
937 if (likely(is_lru)) {
938 if (!mapping)
939 rc = migrate_page(mapping, newpage, page, mode);
940 else if (mapping->a_ops->migratepage)
941 /*
942 * Most pages have a mapping and most filesystems
943 * provide a migratepage callback. Anonymous pages
944 * are part of swap space which also has its own
945 * migratepage callback. This is the most common path
946 * for page migration.
947 */
948 rc = mapping->a_ops->migratepage(mapping, newpage,
949 page, mode);
950 else
951 rc = fallback_migrate_page(mapping, newpage,
952 page, mode);
953 } else {
e24f0b8f 954 /*
bda807d4
MK
955 * In case of non-lru page, it could be released after
956 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 957 */
bda807d4
MK
958 VM_BUG_ON_PAGE(!PageIsolated(page), page);
959 if (!PageMovable(page)) {
960 rc = MIGRATEPAGE_SUCCESS;
961 __ClearPageIsolated(page);
962 goto out;
963 }
964
965 rc = mapping->a_ops->migratepage(mapping, newpage,
966 page, mode);
967 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
968 !PageIsolated(page));
969 }
e24f0b8f 970
5c3f9a67
HD
971 /*
972 * When successful, old pagecache page->mapping must be cleared before
973 * page is freed; but stats require that PageAnon be left as PageAnon.
974 */
975 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
976 if (__PageMovable(page)) {
977 VM_BUG_ON_PAGE(!PageIsolated(page), page);
978
979 /*
980 * We clear PG_movable under page_lock so any compactor
981 * cannot try to migrate this page.
982 */
983 __ClearPageIsolated(page);
984 }
985
986 /*
987 * Anonymous and movable page->mapping will be cleard by
988 * free_pages_prepare so don't reset it here for keeping
989 * the type to work PageAnon, for example.
990 */
991 if (!PageMappingFlags(page))
5c3f9a67 992 page->mapping = NULL;
d2b2c6dd 993
25b2995a 994 if (likely(!is_zone_device_page(newpage)))
d2b2c6dd
LP
995 flush_dcache_page(newpage);
996
3fe2011f 997 }
bda807d4 998out:
e24f0b8f
CL
999 return rc;
1000}
1001
0dabec93 1002static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 1003 int force, enum migrate_mode mode)
e24f0b8f 1004{
0dabec93 1005 int rc = -EAGAIN;
2ebba6b7 1006 int page_was_mapped = 0;
3f6c8272 1007 struct anon_vma *anon_vma = NULL;
bda807d4 1008 bool is_lru = !__PageMovable(page);
95a402c3 1009
529ae9aa 1010 if (!trylock_page(page)) {
a6bc32b8 1011 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1012 goto out;
3e7d3449
MG
1013
1014 /*
1015 * It's not safe for direct compaction to call lock_page.
1016 * For example, during page readahead pages are added locked
1017 * to the LRU. Later, when the IO completes the pages are
1018 * marked uptodate and unlocked. However, the queueing
1019 * could be merging multiple pages for one bio (e.g.
1020 * mpage_readpages). If an allocation happens for the
1021 * second or third page, the process can end up locking
1022 * the same page twice and deadlocking. Rather than
1023 * trying to be clever about what pages can be locked,
1024 * avoid the use of lock_page for direct compaction
1025 * altogether.
1026 */
1027 if (current->flags & PF_MEMALLOC)
0dabec93 1028 goto out;
3e7d3449 1029
e24f0b8f
CL
1030 lock_page(page);
1031 }
1032
1033 if (PageWriteback(page)) {
11bc82d6 1034 /*
fed5b64a 1035 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1036 * necessary to wait for PageWriteback. In the async case,
1037 * the retry loop is too short and in the sync-light case,
1038 * the overhead of stalling is too much
11bc82d6 1039 */
2916ecc0
JG
1040 switch (mode) {
1041 case MIGRATE_SYNC:
1042 case MIGRATE_SYNC_NO_COPY:
1043 break;
1044 default:
11bc82d6 1045 rc = -EBUSY;
0a31bc97 1046 goto out_unlock;
11bc82d6
AA
1047 }
1048 if (!force)
0a31bc97 1049 goto out_unlock;
e24f0b8f
CL
1050 wait_on_page_writeback(page);
1051 }
03f15c86 1052
e24f0b8f 1053 /*
dc386d4d
KH
1054 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1055 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1056 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1057 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1058 * File Caches may use write_page() or lock_page() in migration, then,
1059 * just care Anon page here.
03f15c86
HD
1060 *
1061 * Only page_get_anon_vma() understands the subtleties of
1062 * getting a hold on an anon_vma from outside one of its mms.
1063 * But if we cannot get anon_vma, then we won't need it anyway,
1064 * because that implies that the anon page is no longer mapped
1065 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1066 */
03f15c86 1067 if (PageAnon(page) && !PageKsm(page))
746b18d4 1068 anon_vma = page_get_anon_vma(page);
62e1c553 1069
7db7671f
HD
1070 /*
1071 * Block others from accessing the new page when we get around to
1072 * establishing additional references. We are usually the only one
1073 * holding a reference to newpage at this point. We used to have a BUG
1074 * here if trylock_page(newpage) fails, but would like to allow for
1075 * cases where there might be a race with the previous use of newpage.
1076 * This is much like races on refcount of oldpage: just don't BUG().
1077 */
1078 if (unlikely(!trylock_page(newpage)))
1079 goto out_unlock;
1080
bda807d4
MK
1081 if (unlikely(!is_lru)) {
1082 rc = move_to_new_page(newpage, page, mode);
1083 goto out_unlock_both;
1084 }
1085
dc386d4d 1086 /*
62e1c553
SL
1087 * Corner case handling:
1088 * 1. When a new swap-cache page is read into, it is added to the LRU
1089 * and treated as swapcache but it has no rmap yet.
1090 * Calling try_to_unmap() against a page->mapping==NULL page will
1091 * trigger a BUG. So handle it here.
1092 * 2. An orphaned page (see truncate_complete_page) might have
1093 * fs-private metadata. The page can be picked up due to memory
1094 * offlining. Everywhere else except page reclaim, the page is
1095 * invisible to the vm, so the page can not be migrated. So try to
1096 * free the metadata, so the page can be freed.
e24f0b8f 1097 */
62e1c553 1098 if (!page->mapping) {
309381fe 1099 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1100 if (page_has_private(page)) {
62e1c553 1101 try_to_free_buffers(page);
7db7671f 1102 goto out_unlock_both;
62e1c553 1103 }
7db7671f
HD
1104 } else if (page_mapped(page)) {
1105 /* Establish migration ptes */
03f15c86
HD
1106 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1107 page);
2ebba6b7 1108 try_to_unmap(page,
da1b13cc 1109 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1110 page_was_mapped = 1;
1111 }
dc386d4d 1112
e6a1530d 1113 if (!page_mapped(page))
5c3f9a67 1114 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1115
5c3f9a67
HD
1116 if (page_was_mapped)
1117 remove_migration_ptes(page,
e388466d 1118 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1119
7db7671f
HD
1120out_unlock_both:
1121 unlock_page(newpage);
1122out_unlock:
3f6c8272 1123 /* Drop an anon_vma reference if we took one */
76545066 1124 if (anon_vma)
9e60109f 1125 put_anon_vma(anon_vma);
e24f0b8f 1126 unlock_page(page);
0dabec93 1127out:
c6c919eb
MK
1128 /*
1129 * If migration is successful, decrease refcount of the newpage
1130 * which will not free the page because new page owner increased
1131 * refcounter. As well, if it is LRU page, add the page to LRU
e0a352fa
DH
1132 * list in here. Use the old state of the isolated source page to
1133 * determine if we migrated a LRU page. newpage was already unlocked
1134 * and possibly modified by its owner - don't rely on the page
1135 * state.
c6c919eb
MK
1136 */
1137 if (rc == MIGRATEPAGE_SUCCESS) {
e0a352fa 1138 if (unlikely(!is_lru))
c6c919eb
MK
1139 put_page(newpage);
1140 else
1141 putback_lru_page(newpage);
1142 }
1143
0dabec93
MK
1144 return rc;
1145}
95a402c3 1146
ef2a5153
GU
1147/*
1148 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1149 * around it.
1150 */
815f0ddb
ND
1151#if defined(CONFIG_ARM) && \
1152 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
ef2a5153
GU
1153#define ICE_noinline noinline
1154#else
1155#define ICE_noinline
1156#endif
1157
0dabec93
MK
1158/*
1159 * Obtain the lock on page, remove all ptes and migrate the page
1160 * to the newly allocated page in newpage.
1161 */
ef2a5153
GU
1162static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1163 free_page_t put_new_page,
1164 unsigned long private, struct page *page,
add05cec
NH
1165 int force, enum migrate_mode mode,
1166 enum migrate_reason reason)
0dabec93 1167{
2def7424 1168 int rc = MIGRATEPAGE_SUCCESS;
2def7424 1169 struct page *newpage;
0dabec93 1170
94723aaf
MH
1171 if (!thp_migration_supported() && PageTransHuge(page))
1172 return -ENOMEM;
1173
666feb21 1174 newpage = get_new_page(page, private);
0dabec93
MK
1175 if (!newpage)
1176 return -ENOMEM;
1177
1178 if (page_count(page) == 1) {
1179 /* page was freed from under us. So we are done. */
c6c919eb
MK
1180 ClearPageActive(page);
1181 ClearPageUnevictable(page);
bda807d4
MK
1182 if (unlikely(__PageMovable(page))) {
1183 lock_page(page);
1184 if (!PageMovable(page))
1185 __ClearPageIsolated(page);
1186 unlock_page(page);
1187 }
c6c919eb
MK
1188 if (put_new_page)
1189 put_new_page(newpage, private);
1190 else
1191 put_page(newpage);
0dabec93
MK
1192 goto out;
1193 }
1194
9c620e2b 1195 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1196 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1197 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1198
0dabec93 1199out:
e24f0b8f 1200 if (rc != -EAGAIN) {
0dabec93
MK
1201 /*
1202 * A page that has been migrated has all references
1203 * removed and will be freed. A page that has not been
1204 * migrated will have kepts its references and be
1205 * restored.
1206 */
1207 list_del(&page->lru);
6afcf8ef
ML
1208
1209 /*
1210 * Compaction can migrate also non-LRU pages which are
1211 * not accounted to NR_ISOLATED_*. They can be recognized
1212 * as __PageMovable
1213 */
1214 if (likely(!__PageMovable(page)))
e8db67eb
NH
1215 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1216 page_is_file_cache(page), -hpage_nr_pages(page));
c6c919eb
MK
1217 }
1218
1219 /*
1220 * If migration is successful, releases reference grabbed during
1221 * isolation. Otherwise, restore the page to right list unless
1222 * we want to retry.
1223 */
1224 if (rc == MIGRATEPAGE_SUCCESS) {
1225 put_page(page);
1226 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1227 /*
c6c919eb
MK
1228 * Set PG_HWPoison on just freed page
1229 * intentionally. Although it's rather weird,
1230 * it's how HWPoison flag works at the moment.
d7e69488 1231 */
d4ae9916 1232 if (set_hwpoison_free_buddy_page(page))
da1b13cc 1233 num_poisoned_pages_inc();
c6c919eb
MK
1234 }
1235 } else {
bda807d4
MK
1236 if (rc != -EAGAIN) {
1237 if (likely(!__PageMovable(page))) {
1238 putback_lru_page(page);
1239 goto put_new;
1240 }
1241
1242 lock_page(page);
1243 if (PageMovable(page))
1244 putback_movable_page(page);
1245 else
1246 __ClearPageIsolated(page);
1247 unlock_page(page);
1248 put_page(page);
1249 }
1250put_new:
c6c919eb
MK
1251 if (put_new_page)
1252 put_new_page(newpage, private);
1253 else
1254 put_page(newpage);
e24f0b8f 1255 }
68711a74 1256
e24f0b8f
CL
1257 return rc;
1258}
1259
290408d4
NH
1260/*
1261 * Counterpart of unmap_and_move_page() for hugepage migration.
1262 *
1263 * This function doesn't wait the completion of hugepage I/O
1264 * because there is no race between I/O and migration for hugepage.
1265 * Note that currently hugepage I/O occurs only in direct I/O
1266 * where no lock is held and PG_writeback is irrelevant,
1267 * and writeback status of all subpages are counted in the reference
1268 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1269 * under direct I/O, the reference of the head page is 512 and a bit more.)
1270 * This means that when we try to migrate hugepage whose subpages are
1271 * doing direct I/O, some references remain after try_to_unmap() and
1272 * hugepage migration fails without data corruption.
1273 *
1274 * There is also no race when direct I/O is issued on the page under migration,
1275 * because then pte is replaced with migration swap entry and direct I/O code
1276 * will wait in the page fault for migration to complete.
1277 */
1278static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1279 free_page_t put_new_page, unsigned long private,
1280 struct page *hpage, int force,
7cd12b4a 1281 enum migrate_mode mode, int reason)
290408d4 1282{
2def7424 1283 int rc = -EAGAIN;
2ebba6b7 1284 int page_was_mapped = 0;
32665f2b 1285 struct page *new_hpage;
290408d4
NH
1286 struct anon_vma *anon_vma = NULL;
1287
83467efb 1288 /*
7ed2c31d 1289 * Migratability of hugepages depends on architectures and their size.
83467efb
NH
1290 * This check is necessary because some callers of hugepage migration
1291 * like soft offline and memory hotremove don't walk through page
1292 * tables or check whether the hugepage is pmd-based or not before
1293 * kicking migration.
1294 */
100873d7 1295 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1296 putback_active_hugepage(hpage);
83467efb 1297 return -ENOSYS;
32665f2b 1298 }
83467efb 1299
666feb21 1300 new_hpage = get_new_page(hpage, private);
290408d4
NH
1301 if (!new_hpage)
1302 return -ENOMEM;
1303
290408d4 1304 if (!trylock_page(hpage)) {
2916ecc0 1305 if (!force)
290408d4 1306 goto out;
2916ecc0
JG
1307 switch (mode) {
1308 case MIGRATE_SYNC:
1309 case MIGRATE_SYNC_NO_COPY:
1310 break;
1311 default:
1312 goto out;
1313 }
290408d4
NH
1314 lock_page(hpage);
1315 }
1316
cb6acd01
MK
1317 /*
1318 * Check for pages which are in the process of being freed. Without
1319 * page_mapping() set, hugetlbfs specific move page routine will not
1320 * be called and we could leak usage counts for subpools.
1321 */
1322 if (page_private(hpage) && !page_mapping(hpage)) {
1323 rc = -EBUSY;
1324 goto out_unlock;
1325 }
1326
746b18d4
PZ
1327 if (PageAnon(hpage))
1328 anon_vma = page_get_anon_vma(hpage);
290408d4 1329
7db7671f
HD
1330 if (unlikely(!trylock_page(new_hpage)))
1331 goto put_anon;
1332
2ebba6b7
HD
1333 if (page_mapped(hpage)) {
1334 try_to_unmap(hpage,
ddeaab32 1335 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1336 page_was_mapped = 1;
1337 }
290408d4
NH
1338
1339 if (!page_mapped(hpage))
5c3f9a67 1340 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1341
5c3f9a67
HD
1342 if (page_was_mapped)
1343 remove_migration_ptes(hpage,
e388466d 1344 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1345
7db7671f
HD
1346 unlock_page(new_hpage);
1347
1348put_anon:
fd4a4663 1349 if (anon_vma)
9e60109f 1350 put_anon_vma(anon_vma);
8e6ac7fa 1351
2def7424 1352 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1353 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1354 put_new_page = NULL;
1355 }
8e6ac7fa 1356
cb6acd01 1357out_unlock:
290408d4 1358 unlock_page(hpage);
09761333 1359out:
b8ec1cee
NH
1360 if (rc != -EAGAIN)
1361 putback_active_hugepage(hpage);
68711a74
DR
1362
1363 /*
1364 * If migration was not successful and there's a freeing callback, use
1365 * it. Otherwise, put_page() will drop the reference grabbed during
1366 * isolation.
1367 */
2def7424 1368 if (put_new_page)
68711a74
DR
1369 put_new_page(new_hpage, private);
1370 else
3aaa76e1 1371 putback_active_hugepage(new_hpage);
68711a74 1372
290408d4
NH
1373 return rc;
1374}
1375
b20a3503 1376/*
c73e5c9c
SB
1377 * migrate_pages - migrate the pages specified in a list, to the free pages
1378 * supplied as the target for the page migration
b20a3503 1379 *
c73e5c9c
SB
1380 * @from: The list of pages to be migrated.
1381 * @get_new_page: The function used to allocate free pages to be used
1382 * as the target of the page migration.
68711a74
DR
1383 * @put_new_page: The function used to free target pages if migration
1384 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1385 * @private: Private data to be passed on to get_new_page()
1386 * @mode: The migration mode that specifies the constraints for
1387 * page migration, if any.
1388 * @reason: The reason for page migration.
b20a3503 1389 *
c73e5c9c
SB
1390 * The function returns after 10 attempts or if no pages are movable any more
1391 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1392 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1393 * or free list only if ret != 0.
b20a3503 1394 *
c73e5c9c 1395 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1396 */
9c620e2b 1397int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1398 free_page_t put_new_page, unsigned long private,
1399 enum migrate_mode mode, int reason)
b20a3503 1400{
e24f0b8f 1401 int retry = 1;
b20a3503 1402 int nr_failed = 0;
5647bc29 1403 int nr_succeeded = 0;
b20a3503
CL
1404 int pass = 0;
1405 struct page *page;
1406 struct page *page2;
1407 int swapwrite = current->flags & PF_SWAPWRITE;
1408 int rc;
1409
1410 if (!swapwrite)
1411 current->flags |= PF_SWAPWRITE;
1412
e24f0b8f
CL
1413 for(pass = 0; pass < 10 && retry; pass++) {
1414 retry = 0;
b20a3503 1415
e24f0b8f 1416 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1417retry:
e24f0b8f 1418 cond_resched();
2d1db3b1 1419
31caf665
NH
1420 if (PageHuge(page))
1421 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1422 put_new_page, private, page,
7cd12b4a 1423 pass > 2, mode, reason);
31caf665 1424 else
68711a74 1425 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1426 private, page, pass > 2, mode,
1427 reason);
2d1db3b1 1428
e24f0b8f 1429 switch(rc) {
95a402c3 1430 case -ENOMEM:
94723aaf
MH
1431 /*
1432 * THP migration might be unsupported or the
1433 * allocation could've failed so we should
1434 * retry on the same page with the THP split
1435 * to base pages.
1436 *
1437 * Head page is retried immediately and tail
1438 * pages are added to the tail of the list so
1439 * we encounter them after the rest of the list
1440 * is processed.
1441 */
e6112fc3 1442 if (PageTransHuge(page) && !PageHuge(page)) {
94723aaf
MH
1443 lock_page(page);
1444 rc = split_huge_page_to_list(page, from);
1445 unlock_page(page);
1446 if (!rc) {
1447 list_safe_reset_next(page, page2, lru);
1448 goto retry;
1449 }
1450 }
dfef2ef4 1451 nr_failed++;
95a402c3 1452 goto out;
e24f0b8f 1453 case -EAGAIN:
2d1db3b1 1454 retry++;
e24f0b8f 1455 break;
78bd5209 1456 case MIGRATEPAGE_SUCCESS:
5647bc29 1457 nr_succeeded++;
e24f0b8f
CL
1458 break;
1459 default:
354a3363
NH
1460 /*
1461 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1462 * unlike -EAGAIN case, the failed page is
1463 * removed from migration page list and not
1464 * retried in the next outer loop.
1465 */
2d1db3b1 1466 nr_failed++;
e24f0b8f 1467 break;
2d1db3b1 1468 }
b20a3503
CL
1469 }
1470 }
f2f81fb2
VB
1471 nr_failed += retry;
1472 rc = nr_failed;
95a402c3 1473out:
5647bc29
MG
1474 if (nr_succeeded)
1475 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1476 if (nr_failed)
1477 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1478 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1479
b20a3503
CL
1480 if (!swapwrite)
1481 current->flags &= ~PF_SWAPWRITE;
1482
78bd5209 1483 return rc;
b20a3503 1484}
95a402c3 1485
742755a1 1486#ifdef CONFIG_NUMA
742755a1 1487
a49bd4d7 1488static int store_status(int __user *status, int start, int value, int nr)
742755a1 1489{
a49bd4d7
MH
1490 while (nr-- > 0) {
1491 if (put_user(value, status + start))
1492 return -EFAULT;
1493 start++;
1494 }
1495
1496 return 0;
1497}
1498
1499static int do_move_pages_to_node(struct mm_struct *mm,
1500 struct list_head *pagelist, int node)
1501{
1502 int err;
1503
1504 if (list_empty(pagelist))
1505 return 0;
1506
1507 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1508 MIGRATE_SYNC, MR_SYSCALL);
1509 if (err)
1510 putback_movable_pages(pagelist);
1511 return err;
742755a1
CL
1512}
1513
1514/*
a49bd4d7
MH
1515 * Resolves the given address to a struct page, isolates it from the LRU and
1516 * puts it to the given pagelist.
1517 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1518 * queued or the page doesn't need to be migrated because it is already on
1519 * the target node
742755a1 1520 */
a49bd4d7
MH
1521static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1522 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1523{
a49bd4d7
MH
1524 struct vm_area_struct *vma;
1525 struct page *page;
1526 unsigned int follflags;
742755a1 1527 int err;
742755a1
CL
1528
1529 down_read(&mm->mmap_sem);
a49bd4d7
MH
1530 err = -EFAULT;
1531 vma = find_vma(mm, addr);
1532 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1533 goto out;
742755a1 1534
a49bd4d7
MH
1535 /* FOLL_DUMP to ignore special (like zero) pages */
1536 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1537 page = follow_page(vma, addr, follflags);
89f5b7da 1538
a49bd4d7
MH
1539 err = PTR_ERR(page);
1540 if (IS_ERR(page))
1541 goto out;
89f5b7da 1542
a49bd4d7
MH
1543 err = -ENOENT;
1544 if (!page)
1545 goto out;
742755a1 1546
a49bd4d7
MH
1547 err = 0;
1548 if (page_to_nid(page) == node)
1549 goto out_putpage;
742755a1 1550
a49bd4d7
MH
1551 err = -EACCES;
1552 if (page_mapcount(page) > 1 && !migrate_all)
1553 goto out_putpage;
742755a1 1554
a49bd4d7
MH
1555 if (PageHuge(page)) {
1556 if (PageHead(page)) {
1557 isolate_huge_page(page, pagelist);
1558 err = 0;
e632a938 1559 }
a49bd4d7
MH
1560 } else {
1561 struct page *head;
e632a938 1562
e8db67eb
NH
1563 head = compound_head(page);
1564 err = isolate_lru_page(head);
cf608ac1 1565 if (err)
a49bd4d7 1566 goto out_putpage;
742755a1 1567
a49bd4d7
MH
1568 err = 0;
1569 list_add_tail(&head->lru, pagelist);
1570 mod_node_page_state(page_pgdat(head),
1571 NR_ISOLATED_ANON + page_is_file_cache(head),
1572 hpage_nr_pages(head));
1573 }
1574out_putpage:
1575 /*
1576 * Either remove the duplicate refcount from
1577 * isolate_lru_page() or drop the page ref if it was
1578 * not isolated.
1579 */
1580 put_page(page);
1581out:
742755a1
CL
1582 up_read(&mm->mmap_sem);
1583 return err;
1584}
1585
5e9a0f02
BG
1586/*
1587 * Migrate an array of page address onto an array of nodes and fill
1588 * the corresponding array of status.
1589 */
3268c63e 1590static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1591 unsigned long nr_pages,
1592 const void __user * __user *pages,
1593 const int __user *nodes,
1594 int __user *status, int flags)
1595{
a49bd4d7
MH
1596 int current_node = NUMA_NO_NODE;
1597 LIST_HEAD(pagelist);
1598 int start, i;
1599 int err = 0, err1;
35282a2d
BG
1600
1601 migrate_prep();
1602
a49bd4d7
MH
1603 for (i = start = 0; i < nr_pages; i++) {
1604 const void __user *p;
1605 unsigned long addr;
1606 int node;
3140a227 1607
a49bd4d7
MH
1608 err = -EFAULT;
1609 if (get_user(p, pages + i))
1610 goto out_flush;
1611 if (get_user(node, nodes + i))
1612 goto out_flush;
1613 addr = (unsigned long)p;
1614
1615 err = -ENODEV;
1616 if (node < 0 || node >= MAX_NUMNODES)
1617 goto out_flush;
1618 if (!node_state(node, N_MEMORY))
1619 goto out_flush;
5e9a0f02 1620
a49bd4d7
MH
1621 err = -EACCES;
1622 if (!node_isset(node, task_nodes))
1623 goto out_flush;
1624
1625 if (current_node == NUMA_NO_NODE) {
1626 current_node = node;
1627 start = i;
1628 } else if (node != current_node) {
1629 err = do_move_pages_to_node(mm, &pagelist, current_node);
1630 if (err)
1631 goto out;
1632 err = store_status(status, start, current_node, i - start);
1633 if (err)
1634 goto out;
1635 start = i;
1636 current_node = node;
3140a227
BG
1637 }
1638
a49bd4d7
MH
1639 /*
1640 * Errors in the page lookup or isolation are not fatal and we simply
1641 * report them via status
1642 */
1643 err = add_page_for_migration(mm, addr, current_node,
1644 &pagelist, flags & MPOL_MF_MOVE_ALL);
1645 if (!err)
1646 continue;
3140a227 1647
a49bd4d7
MH
1648 err = store_status(status, i, err, 1);
1649 if (err)
1650 goto out_flush;
5e9a0f02 1651
a49bd4d7
MH
1652 err = do_move_pages_to_node(mm, &pagelist, current_node);
1653 if (err)
1654 goto out;
1655 if (i > start) {
1656 err = store_status(status, start, current_node, i - start);
1657 if (err)
1658 goto out;
1659 }
1660 current_node = NUMA_NO_NODE;
3140a227 1661 }
a49bd4d7 1662out_flush:
8f175cf5
MH
1663 if (list_empty(&pagelist))
1664 return err;
1665
a49bd4d7
MH
1666 /* Make sure we do not overwrite the existing error */
1667 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1668 if (!err1)
1669 err1 = store_status(status, start, current_node, i - start);
1670 if (!err)
1671 err = err1;
5e9a0f02
BG
1672out:
1673 return err;
1674}
1675
742755a1 1676/*
2f007e74 1677 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1678 */
80bba129
BG
1679static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1680 const void __user **pages, int *status)
742755a1 1681{
2f007e74 1682 unsigned long i;
2f007e74 1683
742755a1
CL
1684 down_read(&mm->mmap_sem);
1685
2f007e74 1686 for (i = 0; i < nr_pages; i++) {
80bba129 1687 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1688 struct vm_area_struct *vma;
1689 struct page *page;
c095adbc 1690 int err = -EFAULT;
2f007e74
BG
1691
1692 vma = find_vma(mm, addr);
70384dc6 1693 if (!vma || addr < vma->vm_start)
742755a1
CL
1694 goto set_status;
1695
d899844e
KS
1696 /* FOLL_DUMP to ignore special (like zero) pages */
1697 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1698
1699 err = PTR_ERR(page);
1700 if (IS_ERR(page))
1701 goto set_status;
1702
d899844e 1703 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1704set_status:
80bba129
BG
1705 *status = err;
1706
1707 pages++;
1708 status++;
1709 }
1710
1711 up_read(&mm->mmap_sem);
1712}
1713
1714/*
1715 * Determine the nodes of a user array of pages and store it in
1716 * a user array of status.
1717 */
1718static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1719 const void __user * __user *pages,
1720 int __user *status)
1721{
1722#define DO_PAGES_STAT_CHUNK_NR 16
1723 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1724 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1725
87b8d1ad
PA
1726 while (nr_pages) {
1727 unsigned long chunk_nr;
80bba129 1728
87b8d1ad
PA
1729 chunk_nr = nr_pages;
1730 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1731 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1732
1733 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1734 break;
80bba129
BG
1735
1736 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1737
87b8d1ad
PA
1738 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1739 break;
742755a1 1740
87b8d1ad
PA
1741 pages += chunk_nr;
1742 status += chunk_nr;
1743 nr_pages -= chunk_nr;
1744 }
1745 return nr_pages ? -EFAULT : 0;
742755a1
CL
1746}
1747
1748/*
1749 * Move a list of pages in the address space of the currently executing
1750 * process.
1751 */
7addf443
DB
1752static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1753 const void __user * __user *pages,
1754 const int __user *nodes,
1755 int __user *status, int flags)
742755a1 1756{
742755a1 1757 struct task_struct *task;
742755a1 1758 struct mm_struct *mm;
5e9a0f02 1759 int err;
3268c63e 1760 nodemask_t task_nodes;
742755a1
CL
1761
1762 /* Check flags */
1763 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1764 return -EINVAL;
1765
1766 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1767 return -EPERM;
1768
1769 /* Find the mm_struct */
a879bf58 1770 rcu_read_lock();
228ebcbe 1771 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1772 if (!task) {
a879bf58 1773 rcu_read_unlock();
742755a1
CL
1774 return -ESRCH;
1775 }
3268c63e 1776 get_task_struct(task);
742755a1
CL
1777
1778 /*
1779 * Check if this process has the right to modify the specified
197e7e52 1780 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1781 */
197e7e52 1782 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1783 rcu_read_unlock();
742755a1 1784 err = -EPERM;
5e9a0f02 1785 goto out;
742755a1 1786 }
c69e8d9c 1787 rcu_read_unlock();
742755a1 1788
86c3a764
DQ
1789 err = security_task_movememory(task);
1790 if (err)
5e9a0f02 1791 goto out;
86c3a764 1792
3268c63e
CL
1793 task_nodes = cpuset_mems_allowed(task);
1794 mm = get_task_mm(task);
1795 put_task_struct(task);
1796
6e8b09ea
SL
1797 if (!mm)
1798 return -EINVAL;
1799
1800 if (nodes)
1801 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1802 nodes, status, flags);
1803 else
1804 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1805
742755a1
CL
1806 mmput(mm);
1807 return err;
3268c63e
CL
1808
1809out:
1810 put_task_struct(task);
1811 return err;
742755a1 1812}
742755a1 1813
7addf443
DB
1814SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1815 const void __user * __user *, pages,
1816 const int __user *, nodes,
1817 int __user *, status, int, flags)
1818{
1819 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1820}
1821
1822#ifdef CONFIG_COMPAT
1823COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1824 compat_uptr_t __user *, pages32,
1825 const int __user *, nodes,
1826 int __user *, status,
1827 int, flags)
1828{
1829 const void __user * __user *pages;
1830 int i;
1831
1832 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1833 for (i = 0; i < nr_pages; i++) {
1834 compat_uptr_t p;
1835
1836 if (get_user(p, pages32 + i) ||
1837 put_user(compat_ptr(p), pages + i))
1838 return -EFAULT;
1839 }
1840 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1841}
1842#endif /* CONFIG_COMPAT */
1843
7039e1db
PZ
1844#ifdef CONFIG_NUMA_BALANCING
1845/*
1846 * Returns true if this is a safe migration target node for misplaced NUMA
1847 * pages. Currently it only checks the watermarks which crude
1848 */
1849static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1850 unsigned long nr_migrate_pages)
7039e1db
PZ
1851{
1852 int z;
599d0c95 1853
7039e1db
PZ
1854 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1855 struct zone *zone = pgdat->node_zones + z;
1856
1857 if (!populated_zone(zone))
1858 continue;
1859
7039e1db
PZ
1860 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1861 if (!zone_watermark_ok(zone, 0,
1862 high_wmark_pages(zone) +
1863 nr_migrate_pages,
1864 0, 0))
1865 continue;
1866 return true;
1867 }
1868 return false;
1869}
1870
1871static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 1872 unsigned long data)
7039e1db
PZ
1873{
1874 int nid = (int) data;
1875 struct page *newpage;
1876
96db800f 1877 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1878 (GFP_HIGHUSER_MOVABLE |
1879 __GFP_THISNODE | __GFP_NOMEMALLOC |
1880 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1881 ~__GFP_RECLAIM, 0);
bac0382c 1882
7039e1db
PZ
1883 return newpage;
1884}
1885
1c30e017 1886static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1887{
340ef390 1888 int page_lru;
a8f60772 1889
309381fe 1890 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1891
7039e1db 1892 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1893 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1894 return 0;
7039e1db 1895
340ef390
HD
1896 if (isolate_lru_page(page))
1897 return 0;
7039e1db 1898
340ef390
HD
1899 /*
1900 * migrate_misplaced_transhuge_page() skips page migration's usual
1901 * check on page_count(), so we must do it here, now that the page
1902 * has been isolated: a GUP pin, or any other pin, prevents migration.
1903 * The expected page count is 3: 1 for page's mapcount and 1 for the
1904 * caller's pin and 1 for the reference taken by isolate_lru_page().
1905 */
1906 if (PageTransHuge(page) && page_count(page) != 3) {
1907 putback_lru_page(page);
1908 return 0;
7039e1db
PZ
1909 }
1910
340ef390 1911 page_lru = page_is_file_cache(page);
599d0c95 1912 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1913 hpage_nr_pages(page));
1914
149c33e1 1915 /*
340ef390
HD
1916 * Isolating the page has taken another reference, so the
1917 * caller's reference can be safely dropped without the page
1918 * disappearing underneath us during migration.
149c33e1
MG
1919 */
1920 put_page(page);
340ef390 1921 return 1;
b32967ff
MG
1922}
1923
de466bd6
MG
1924bool pmd_trans_migrating(pmd_t pmd)
1925{
1926 struct page *page = pmd_page(pmd);
1927 return PageLocked(page);
1928}
1929
b32967ff
MG
1930/*
1931 * Attempt to migrate a misplaced page to the specified destination
1932 * node. Caller is expected to have an elevated reference count on
1933 * the page that will be dropped by this function before returning.
1934 */
1bc115d8
MG
1935int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1936 int node)
b32967ff
MG
1937{
1938 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1939 int isolated;
b32967ff
MG
1940 int nr_remaining;
1941 LIST_HEAD(migratepages);
1942
1943 /*
1bc115d8
MG
1944 * Don't migrate file pages that are mapped in multiple processes
1945 * with execute permissions as they are probably shared libraries.
b32967ff 1946 */
1bc115d8
MG
1947 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1948 (vma->vm_flags & VM_EXEC))
b32967ff 1949 goto out;
b32967ff 1950
09a913a7
MG
1951 /*
1952 * Also do not migrate dirty pages as not all filesystems can move
1953 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1954 */
1955 if (page_is_file_cache(page) && PageDirty(page))
1956 goto out;
1957
b32967ff
MG
1958 isolated = numamigrate_isolate_page(pgdat, page);
1959 if (!isolated)
1960 goto out;
1961
1962 list_add(&page->lru, &migratepages);
9c620e2b 1963 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1964 NULL, node, MIGRATE_ASYNC,
1965 MR_NUMA_MISPLACED);
b32967ff 1966 if (nr_remaining) {
59c82b70
JK
1967 if (!list_empty(&migratepages)) {
1968 list_del(&page->lru);
599d0c95 1969 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
1970 page_is_file_cache(page));
1971 putback_lru_page(page);
1972 }
b32967ff
MG
1973 isolated = 0;
1974 } else
1975 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1976 BUG_ON(!list_empty(&migratepages));
7039e1db 1977 return isolated;
340ef390
HD
1978
1979out:
1980 put_page(page);
1981 return 0;
7039e1db 1982}
220018d3 1983#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1984
220018d3 1985#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1986/*
1987 * Migrates a THP to a given target node. page must be locked and is unlocked
1988 * before returning.
1989 */
b32967ff
MG
1990int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1991 struct vm_area_struct *vma,
1992 pmd_t *pmd, pmd_t entry,
1993 unsigned long address,
1994 struct page *page, int node)
1995{
c4088ebd 1996 spinlock_t *ptl;
b32967ff
MG
1997 pg_data_t *pgdat = NODE_DATA(node);
1998 int isolated = 0;
1999 struct page *new_page = NULL;
b32967ff 2000 int page_lru = page_is_file_cache(page);
7066f0f9 2001 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 2002
b32967ff 2003 new_page = alloc_pages_node(node,
25160354 2004 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2005 HPAGE_PMD_ORDER);
340ef390
HD
2006 if (!new_page)
2007 goto out_fail;
9a982250 2008 prep_transhuge_page(new_page);
340ef390 2009
b32967ff 2010 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2011 if (!isolated) {
b32967ff 2012 put_page(new_page);
340ef390 2013 goto out_fail;
b32967ff 2014 }
b0943d61 2015
b32967ff 2016 /* Prepare a page as a migration target */
48c935ad 2017 __SetPageLocked(new_page);
d44d363f
SL
2018 if (PageSwapBacked(page))
2019 __SetPageSwapBacked(new_page);
b32967ff
MG
2020
2021 /* anon mapping, we can simply copy page->mapping to the new page: */
2022 new_page->mapping = page->mapping;
2023 new_page->index = page->index;
7eef5f97
AA
2024 /* flush the cache before copying using the kernel virtual address */
2025 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2026 migrate_page_copy(new_page, page);
2027 WARN_ON(PageLRU(new_page));
2028
2029 /* Recheck the target PMD */
c4088ebd 2030 ptl = pmd_lock(mm, pmd);
f4e177d1 2031 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2032 spin_unlock(ptl);
b32967ff
MG
2033
2034 /* Reverse changes made by migrate_page_copy() */
2035 if (TestClearPageActive(new_page))
2036 SetPageActive(page);
2037 if (TestClearPageUnevictable(new_page))
2038 SetPageUnevictable(page);
b32967ff
MG
2039
2040 unlock_page(new_page);
2041 put_page(new_page); /* Free it */
2042
a54a407f
MG
2043 /* Retake the callers reference and putback on LRU */
2044 get_page(page);
b32967ff 2045 putback_lru_page(page);
599d0c95 2046 mod_node_page_state(page_pgdat(page),
a54a407f 2047 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2048
2049 goto out_unlock;
b32967ff
MG
2050 }
2051
10102459 2052 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2053 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2054
2b4847e7 2055 /*
d7c33934
AA
2056 * Overwrite the old entry under pagetable lock and establish
2057 * the new PTE. Any parallel GUP will either observe the old
2058 * page blocking on the page lock, block on the page table
2059 * lock or observe the new page. The SetPageUptodate on the
2060 * new page and page_add_new_anon_rmap guarantee the copy is
2061 * visible before the pagetable update.
2b4847e7 2062 */
7066f0f9 2063 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2064 /*
2065 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2066 * has already been flushed globally. So no TLB can be currently
2067 * caching this non present pmd mapping. There's no need to clear the
2068 * pmd before doing set_pmd_at(), nor to flush the TLB after
2069 * set_pmd_at(). Clearing the pmd here would introduce a race
2070 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2071 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2072 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2073 * pmd.
2074 */
7066f0f9 2075 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2076 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2077
f4e177d1 2078 page_ref_unfreeze(page, 2);
51afb12b 2079 mlock_migrate_page(new_page, page);
d281ee61 2080 page_remove_rmap(page, true);
7cd12b4a 2081 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2082
c4088ebd 2083 spin_unlock(ptl);
b32967ff 2084
11de9927
MG
2085 /* Take an "isolate" reference and put new page on the LRU. */
2086 get_page(new_page);
2087 putback_lru_page(new_page);
2088
b32967ff
MG
2089 unlock_page(new_page);
2090 unlock_page(page);
2091 put_page(page); /* Drop the rmap reference */
2092 put_page(page); /* Drop the LRU isolation reference */
2093
2094 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2095 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2096
599d0c95 2097 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2098 NR_ISOLATED_ANON + page_lru,
2099 -HPAGE_PMD_NR);
2100 return isolated;
2101
340ef390
HD
2102out_fail:
2103 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2104 ptl = pmd_lock(mm, pmd);
2105 if (pmd_same(*pmd, entry)) {
4d942466 2106 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2107 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2108 update_mmu_cache_pmd(vma, address, &entry);
2109 }
2110 spin_unlock(ptl);
a54a407f 2111
eb4489f6 2112out_unlock:
340ef390 2113 unlock_page(page);
b32967ff 2114 put_page(page);
b32967ff
MG
2115 return 0;
2116}
7039e1db
PZ
2117#endif /* CONFIG_NUMA_BALANCING */
2118
2119#endif /* CONFIG_NUMA */
8763cb45 2120
6b368cd4 2121#if defined(CONFIG_MIGRATE_VMA_HELPER)
8763cb45
JG
2122struct migrate_vma {
2123 struct vm_area_struct *vma;
2124 unsigned long *dst;
2125 unsigned long *src;
2126 unsigned long cpages;
2127 unsigned long npages;
2128 unsigned long start;
2129 unsigned long end;
2130};
2131
2132static int migrate_vma_collect_hole(unsigned long start,
2133 unsigned long end,
2134 struct mm_walk *walk)
2135{
2136 struct migrate_vma *migrate = walk->private;
2137 unsigned long addr;
2138
8315ada7 2139 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
e20d103b 2140 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2141 migrate->dst[migrate->npages] = 0;
e20d103b 2142 migrate->npages++;
8315ada7
JG
2143 migrate->cpages++;
2144 }
2145
2146 return 0;
2147}
2148
2149static int migrate_vma_collect_skip(unsigned long start,
2150 unsigned long end,
2151 struct mm_walk *walk)
2152{
2153 struct migrate_vma *migrate = walk->private;
2154 unsigned long addr;
2155
8763cb45
JG
2156 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2157 migrate->dst[migrate->npages] = 0;
2158 migrate->src[migrate->npages++] = 0;
2159 }
2160
2161 return 0;
2162}
2163
2164static int migrate_vma_collect_pmd(pmd_t *pmdp,
2165 unsigned long start,
2166 unsigned long end,
2167 struct mm_walk *walk)
2168{
2169 struct migrate_vma *migrate = walk->private;
2170 struct vm_area_struct *vma = walk->vma;
2171 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2172 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2173 spinlock_t *ptl;
2174 pte_t *ptep;
2175
2176again:
2177 if (pmd_none(*pmdp))
2178 return migrate_vma_collect_hole(start, end, walk);
2179
2180 if (pmd_trans_huge(*pmdp)) {
2181 struct page *page;
2182
2183 ptl = pmd_lock(mm, pmdp);
2184 if (unlikely(!pmd_trans_huge(*pmdp))) {
2185 spin_unlock(ptl);
2186 goto again;
2187 }
2188
2189 page = pmd_page(*pmdp);
2190 if (is_huge_zero_page(page)) {
2191 spin_unlock(ptl);
2192 split_huge_pmd(vma, pmdp, addr);
2193 if (pmd_trans_unstable(pmdp))
8315ada7 2194 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2195 walk);
2196 } else {
2197 int ret;
2198
2199 get_page(page);
2200 spin_unlock(ptl);
2201 if (unlikely(!trylock_page(page)))
8315ada7 2202 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2203 walk);
2204 ret = split_huge_page(page);
2205 unlock_page(page);
2206 put_page(page);
8315ada7
JG
2207 if (ret)
2208 return migrate_vma_collect_skip(start, end,
2209 walk);
2210 if (pmd_none(*pmdp))
8763cb45
JG
2211 return migrate_vma_collect_hole(start, end,
2212 walk);
2213 }
2214 }
2215
2216 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2217 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2218
2219 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2220 arch_enter_lazy_mmu_mode();
2221
8763cb45
JG
2222 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2223 unsigned long mpfn, pfn;
2224 struct page *page;
8c3328f1 2225 swp_entry_t entry;
8763cb45
JG
2226 pte_t pte;
2227
2228 pte = *ptep;
2229 pfn = pte_pfn(pte);
2230
a5430dda 2231 if (pte_none(pte)) {
8315ada7
JG
2232 mpfn = MIGRATE_PFN_MIGRATE;
2233 migrate->cpages++;
2234 pfn = 0;
8763cb45
JG
2235 goto next;
2236 }
2237
a5430dda
JG
2238 if (!pte_present(pte)) {
2239 mpfn = pfn = 0;
2240
2241 /*
2242 * Only care about unaddressable device page special
2243 * page table entry. Other special swap entries are not
2244 * migratable, and we ignore regular swapped page.
2245 */
2246 entry = pte_to_swp_entry(pte);
2247 if (!is_device_private_entry(entry))
2248 goto next;
2249
2250 page = device_private_entry_to_page(entry);
2251 mpfn = migrate_pfn(page_to_pfn(page))|
2252 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2253 if (is_write_device_private_entry(entry))
2254 mpfn |= MIGRATE_PFN_WRITE;
2255 } else {
8315ada7
JG
2256 if (is_zero_pfn(pfn)) {
2257 mpfn = MIGRATE_PFN_MIGRATE;
2258 migrate->cpages++;
2259 pfn = 0;
2260 goto next;
2261 }
25b2995a 2262 page = vm_normal_page(migrate->vma, addr, pte);
a5430dda
JG
2263 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2264 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2265 }
2266
8763cb45 2267 /* FIXME support THP */
8763cb45
JG
2268 if (!page || !page->mapping || PageTransCompound(page)) {
2269 mpfn = pfn = 0;
2270 goto next;
2271 }
a5430dda 2272 pfn = page_to_pfn(page);
8763cb45
JG
2273
2274 /*
2275 * By getting a reference on the page we pin it and that blocks
2276 * any kind of migration. Side effect is that it "freezes" the
2277 * pte.
2278 *
2279 * We drop this reference after isolating the page from the lru
2280 * for non device page (device page are not on the lru and thus
2281 * can't be dropped from it).
2282 */
2283 get_page(page);
2284 migrate->cpages++;
8763cb45 2285
8c3328f1
JG
2286 /*
2287 * Optimize for the common case where page is only mapped once
2288 * in one process. If we can lock the page, then we can safely
2289 * set up a special migration page table entry now.
2290 */
2291 if (trylock_page(page)) {
2292 pte_t swp_pte;
2293
2294 mpfn |= MIGRATE_PFN_LOCKED;
2295 ptep_get_and_clear(mm, addr, ptep);
2296
2297 /* Setup special migration page table entry */
07707125
RC
2298 entry = make_migration_entry(page, mpfn &
2299 MIGRATE_PFN_WRITE);
8c3328f1
JG
2300 swp_pte = swp_entry_to_pte(entry);
2301 if (pte_soft_dirty(pte))
2302 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2303 set_pte_at(mm, addr, ptep, swp_pte);
2304
2305 /*
2306 * This is like regular unmap: we remove the rmap and
2307 * drop page refcount. Page won't be freed, as we took
2308 * a reference just above.
2309 */
2310 page_remove_rmap(page, false);
2311 put_page(page);
a5430dda
JG
2312
2313 if (pte_present(pte))
2314 unmapped++;
8c3328f1
JG
2315 }
2316
8763cb45 2317next:
a5430dda 2318 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2319 migrate->src[migrate->npages++] = mpfn;
2320 }
8c3328f1 2321 arch_leave_lazy_mmu_mode();
8763cb45
JG
2322 pte_unmap_unlock(ptep - 1, ptl);
2323
8c3328f1
JG
2324 /* Only flush the TLB if we actually modified any entries */
2325 if (unmapped)
2326 flush_tlb_range(walk->vma, start, end);
2327
8763cb45
JG
2328 return 0;
2329}
2330
2331/*
2332 * migrate_vma_collect() - collect pages over a range of virtual addresses
2333 * @migrate: migrate struct containing all migration information
2334 *
2335 * This will walk the CPU page table. For each virtual address backed by a
2336 * valid page, it updates the src array and takes a reference on the page, in
2337 * order to pin the page until we lock it and unmap it.
2338 */
2339static void migrate_vma_collect(struct migrate_vma *migrate)
2340{
ac46d4f3 2341 struct mmu_notifier_range range;
8763cb45
JG
2342 struct mm_walk mm_walk;
2343
2344 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2345 mm_walk.pte_entry = NULL;
2346 mm_walk.pte_hole = migrate_vma_collect_hole;
2347 mm_walk.hugetlb_entry = NULL;
2348 mm_walk.test_walk = NULL;
2349 mm_walk.vma = migrate->vma;
2350 mm_walk.mm = migrate->vma->vm_mm;
2351 mm_walk.private = migrate;
2352
7269f999 2353 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm_walk.mm,
6f4f13e8 2354 migrate->start,
ac46d4f3
JG
2355 migrate->end);
2356 mmu_notifier_invalidate_range_start(&range);
8763cb45 2357 walk_page_range(migrate->start, migrate->end, &mm_walk);
ac46d4f3 2358 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2359
2360 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2361}
2362
2363/*
2364 * migrate_vma_check_page() - check if page is pinned or not
2365 * @page: struct page to check
2366 *
2367 * Pinned pages cannot be migrated. This is the same test as in
2368 * migrate_page_move_mapping(), except that here we allow migration of a
2369 * ZONE_DEVICE page.
2370 */
2371static bool migrate_vma_check_page(struct page *page)
2372{
2373 /*
2374 * One extra ref because caller holds an extra reference, either from
2375 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2376 * a device page.
2377 */
2378 int extra = 1;
2379
2380 /*
2381 * FIXME support THP (transparent huge page), it is bit more complex to
2382 * check them than regular pages, because they can be mapped with a pmd
2383 * or with a pte (split pte mapping).
2384 */
2385 if (PageCompound(page))
2386 return false;
2387
a5430dda
JG
2388 /* Page from ZONE_DEVICE have one extra reference */
2389 if (is_zone_device_page(page)) {
2390 /*
2391 * Private page can never be pin as they have no valid pte and
2392 * GUP will fail for those. Yet if there is a pending migration
2393 * a thread might try to wait on the pte migration entry and
2394 * will bump the page reference count. Sadly there is no way to
2395 * differentiate a regular pin from migration wait. Hence to
2396 * avoid 2 racing thread trying to migrate back to CPU to enter
2397 * infinite loop (one stoping migration because the other is
2398 * waiting on pte migration entry). We always return true here.
2399 *
2400 * FIXME proper solution is to rework migration_entry_wait() so
2401 * it does not need to take a reference on page.
2402 */
25b2995a 2403 return is_device_private_page(page);
a5430dda
JG
2404 }
2405
df6ad698
JG
2406 /* For file back page */
2407 if (page_mapping(page))
2408 extra += 1 + page_has_private(page);
2409
8763cb45
JG
2410 if ((page_count(page) - extra) > page_mapcount(page))
2411 return false;
2412
2413 return true;
2414}
2415
2416/*
2417 * migrate_vma_prepare() - lock pages and isolate them from the lru
2418 * @migrate: migrate struct containing all migration information
2419 *
2420 * This locks pages that have been collected by migrate_vma_collect(). Once each
2421 * page is locked it is isolated from the lru (for non-device pages). Finally,
2422 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2423 * migrated by concurrent kernel threads.
2424 */
2425static void migrate_vma_prepare(struct migrate_vma *migrate)
2426{
2427 const unsigned long npages = migrate->npages;
8c3328f1
JG
2428 const unsigned long start = migrate->start;
2429 unsigned long addr, i, restore = 0;
8763cb45 2430 bool allow_drain = true;
8763cb45
JG
2431
2432 lru_add_drain();
2433
2434 for (i = 0; (i < npages) && migrate->cpages; i++) {
2435 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2436 bool remap = true;
8763cb45
JG
2437
2438 if (!page)
2439 continue;
2440
8c3328f1
JG
2441 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2442 /*
2443 * Because we are migrating several pages there can be
2444 * a deadlock between 2 concurrent migration where each
2445 * are waiting on each other page lock.
2446 *
2447 * Make migrate_vma() a best effort thing and backoff
2448 * for any page we can not lock right away.
2449 */
2450 if (!trylock_page(page)) {
2451 migrate->src[i] = 0;
2452 migrate->cpages--;
2453 put_page(page);
2454 continue;
2455 }
2456 remap = false;
2457 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2458 }
8763cb45 2459
a5430dda
JG
2460 /* ZONE_DEVICE pages are not on LRU */
2461 if (!is_zone_device_page(page)) {
2462 if (!PageLRU(page) && allow_drain) {
2463 /* Drain CPU's pagevec */
2464 lru_add_drain_all();
2465 allow_drain = false;
2466 }
8763cb45 2467
a5430dda
JG
2468 if (isolate_lru_page(page)) {
2469 if (remap) {
2470 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2471 migrate->cpages--;
2472 restore++;
2473 } else {
2474 migrate->src[i] = 0;
2475 unlock_page(page);
2476 migrate->cpages--;
2477 put_page(page);
2478 }
2479 continue;
8c3328f1 2480 }
a5430dda
JG
2481
2482 /* Drop the reference we took in collect */
2483 put_page(page);
8763cb45
JG
2484 }
2485
2486 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2487 if (remap) {
2488 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2489 migrate->cpages--;
2490 restore++;
8763cb45 2491
a5430dda
JG
2492 if (!is_zone_device_page(page)) {
2493 get_page(page);
2494 putback_lru_page(page);
2495 }
8c3328f1
JG
2496 } else {
2497 migrate->src[i] = 0;
2498 unlock_page(page);
2499 migrate->cpages--;
2500
a5430dda
JG
2501 if (!is_zone_device_page(page))
2502 putback_lru_page(page);
2503 else
2504 put_page(page);
8c3328f1 2505 }
8763cb45
JG
2506 }
2507 }
8c3328f1
JG
2508
2509 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2510 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2511
2512 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2513 continue;
2514
2515 remove_migration_pte(page, migrate->vma, addr, page);
2516
2517 migrate->src[i] = 0;
2518 unlock_page(page);
2519 put_page(page);
2520 restore--;
2521 }
8763cb45
JG
2522}
2523
2524/*
2525 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2526 * @migrate: migrate struct containing all migration information
2527 *
2528 * Replace page mapping (CPU page table pte) with a special migration pte entry
2529 * and check again if it has been pinned. Pinned pages are restored because we
2530 * cannot migrate them.
2531 *
2532 * This is the last step before we call the device driver callback to allocate
2533 * destination memory and copy contents of original page over to new page.
2534 */
2535static void migrate_vma_unmap(struct migrate_vma *migrate)
2536{
2537 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2538 const unsigned long npages = migrate->npages;
2539 const unsigned long start = migrate->start;
2540 unsigned long addr, i, restore = 0;
2541
2542 for (i = 0; i < npages; i++) {
2543 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2544
2545 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2546 continue;
2547
8c3328f1
JG
2548 if (page_mapped(page)) {
2549 try_to_unmap(page, flags);
2550 if (page_mapped(page))
2551 goto restore;
8763cb45 2552 }
8c3328f1
JG
2553
2554 if (migrate_vma_check_page(page))
2555 continue;
2556
2557restore:
2558 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2559 migrate->cpages--;
2560 restore++;
8763cb45
JG
2561 }
2562
2563 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2564 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2565
2566 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2567 continue;
2568
2569 remove_migration_ptes(page, page, false);
2570
2571 migrate->src[i] = 0;
2572 unlock_page(page);
2573 restore--;
2574
a5430dda
JG
2575 if (is_zone_device_page(page))
2576 put_page(page);
2577 else
2578 putback_lru_page(page);
8763cb45
JG
2579 }
2580}
2581
8315ada7
JG
2582static void migrate_vma_insert_page(struct migrate_vma *migrate,
2583 unsigned long addr,
2584 struct page *page,
2585 unsigned long *src,
2586 unsigned long *dst)
2587{
2588 struct vm_area_struct *vma = migrate->vma;
2589 struct mm_struct *mm = vma->vm_mm;
2590 struct mem_cgroup *memcg;
2591 bool flush = false;
2592 spinlock_t *ptl;
2593 pte_t entry;
2594 pgd_t *pgdp;
2595 p4d_t *p4dp;
2596 pud_t *pudp;
2597 pmd_t *pmdp;
2598 pte_t *ptep;
2599
2600 /* Only allow populating anonymous memory */
2601 if (!vma_is_anonymous(vma))
2602 goto abort;
2603
2604 pgdp = pgd_offset(mm, addr);
2605 p4dp = p4d_alloc(mm, pgdp, addr);
2606 if (!p4dp)
2607 goto abort;
2608 pudp = pud_alloc(mm, p4dp, addr);
2609 if (!pudp)
2610 goto abort;
2611 pmdp = pmd_alloc(mm, pudp, addr);
2612 if (!pmdp)
2613 goto abort;
2614
2615 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2616 goto abort;
2617
2618 /*
2619 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2620 * pte_offset_map() on pmds where a huge pmd might be created
2621 * from a different thread.
2622 *
2623 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2624 * parallel threads are excluded by other means.
2625 *
2626 * Here we only have down_read(mmap_sem).
2627 */
4cf58924 2628 if (pte_alloc(mm, pmdp))
8315ada7
JG
2629 goto abort;
2630
2631 /* See the comment in pte_alloc_one_map() */
2632 if (unlikely(pmd_trans_unstable(pmdp)))
2633 goto abort;
2634
2635 if (unlikely(anon_vma_prepare(vma)))
2636 goto abort;
2637 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2638 goto abort;
2639
2640 /*
2641 * The memory barrier inside __SetPageUptodate makes sure that
2642 * preceding stores to the page contents become visible before
2643 * the set_pte_at() write.
2644 */
2645 __SetPageUptodate(page);
2646
df6ad698
JG
2647 if (is_zone_device_page(page)) {
2648 if (is_device_private_page(page)) {
2649 swp_entry_t swp_entry;
2650
2651 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2652 entry = swp_entry_to_pte(swp_entry);
df6ad698 2653 }
8315ada7
JG
2654 } else {
2655 entry = mk_pte(page, vma->vm_page_prot);
2656 if (vma->vm_flags & VM_WRITE)
2657 entry = pte_mkwrite(pte_mkdirty(entry));
2658 }
2659
2660 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2661
2662 if (pte_present(*ptep)) {
2663 unsigned long pfn = pte_pfn(*ptep);
2664
2665 if (!is_zero_pfn(pfn)) {
2666 pte_unmap_unlock(ptep, ptl);
2667 mem_cgroup_cancel_charge(page, memcg, false);
2668 goto abort;
2669 }
2670 flush = true;
2671 } else if (!pte_none(*ptep)) {
2672 pte_unmap_unlock(ptep, ptl);
2673 mem_cgroup_cancel_charge(page, memcg, false);
2674 goto abort;
2675 }
2676
2677 /*
2678 * Check for usefaultfd but do not deliver the fault. Instead,
2679 * just back off.
2680 */
2681 if (userfaultfd_missing(vma)) {
2682 pte_unmap_unlock(ptep, ptl);
2683 mem_cgroup_cancel_charge(page, memcg, false);
2684 goto abort;
2685 }
2686
2687 inc_mm_counter(mm, MM_ANONPAGES);
2688 page_add_new_anon_rmap(page, vma, addr, false);
2689 mem_cgroup_commit_charge(page, memcg, false, false);
2690 if (!is_zone_device_page(page))
2691 lru_cache_add_active_or_unevictable(page, vma);
2692 get_page(page);
2693
2694 if (flush) {
2695 flush_cache_page(vma, addr, pte_pfn(*ptep));
2696 ptep_clear_flush_notify(vma, addr, ptep);
2697 set_pte_at_notify(mm, addr, ptep, entry);
2698 update_mmu_cache(vma, addr, ptep);
2699 } else {
2700 /* No need to invalidate - it was non-present before */
2701 set_pte_at(mm, addr, ptep, entry);
2702 update_mmu_cache(vma, addr, ptep);
2703 }
2704
2705 pte_unmap_unlock(ptep, ptl);
2706 *src = MIGRATE_PFN_MIGRATE;
2707 return;
2708
2709abort:
2710 *src &= ~MIGRATE_PFN_MIGRATE;
2711}
2712
8763cb45
JG
2713/*
2714 * migrate_vma_pages() - migrate meta-data from src page to dst page
2715 * @migrate: migrate struct containing all migration information
2716 *
2717 * This migrates struct page meta-data from source struct page to destination
2718 * struct page. This effectively finishes the migration from source page to the
2719 * destination page.
2720 */
2721static void migrate_vma_pages(struct migrate_vma *migrate)
2722{
2723 const unsigned long npages = migrate->npages;
2724 const unsigned long start = migrate->start;
ac46d4f3
JG
2725 struct mmu_notifier_range range;
2726 unsigned long addr, i;
8315ada7 2727 bool notified = false;
8763cb45
JG
2728
2729 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2730 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2731 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2732 struct address_space *mapping;
2733 int r;
2734
8315ada7
JG
2735 if (!newpage) {
2736 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2737 continue;
8315ada7
JG
2738 }
2739
2740 if (!page) {
2741 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2742 continue;
2743 }
2744 if (!notified) {
8315ada7 2745 notified = true;
ac46d4f3
JG
2746
2747 mmu_notifier_range_init(&range,
7269f999 2748 MMU_NOTIFY_CLEAR, 0,
6f4f13e8 2749 NULL,
ac46d4f3
JG
2750 migrate->vma->vm_mm,
2751 addr, migrate->end);
2752 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
2753 }
2754 migrate_vma_insert_page(migrate, addr, newpage,
2755 &migrate->src[i],
2756 &migrate->dst[i]);
8763cb45 2757 continue;
8315ada7 2758 }
8763cb45
JG
2759
2760 mapping = page_mapping(page);
2761
a5430dda
JG
2762 if (is_zone_device_page(newpage)) {
2763 if (is_device_private_page(newpage)) {
2764 /*
2765 * For now only support private anonymous when
2766 * migrating to un-addressable device memory.
2767 */
2768 if (mapping) {
2769 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2770 continue;
2771 }
25b2995a 2772 } else {
a5430dda
JG
2773 /*
2774 * Other types of ZONE_DEVICE page are not
2775 * supported.
2776 */
2777 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2778 continue;
2779 }
2780 }
2781
8763cb45
JG
2782 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2783 if (r != MIGRATEPAGE_SUCCESS)
2784 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2785 }
8315ada7 2786
4645b9fe
JG
2787 /*
2788 * No need to double call mmu_notifier->invalidate_range() callback as
2789 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2790 * did already call it.
2791 */
8315ada7 2792 if (notified)
ac46d4f3 2793 mmu_notifier_invalidate_range_only_end(&range);
8763cb45
JG
2794}
2795
2796/*
2797 * migrate_vma_finalize() - restore CPU page table entry
2798 * @migrate: migrate struct containing all migration information
2799 *
2800 * This replaces the special migration pte entry with either a mapping to the
2801 * new page if migration was successful for that page, or to the original page
2802 * otherwise.
2803 *
2804 * This also unlocks the pages and puts them back on the lru, or drops the extra
2805 * refcount, for device pages.
2806 */
2807static void migrate_vma_finalize(struct migrate_vma *migrate)
2808{
2809 const unsigned long npages = migrate->npages;
2810 unsigned long i;
2811
2812 for (i = 0; i < npages; i++) {
2813 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2814 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2815
8315ada7
JG
2816 if (!page) {
2817 if (newpage) {
2818 unlock_page(newpage);
2819 put_page(newpage);
2820 }
8763cb45 2821 continue;
8315ada7
JG
2822 }
2823
8763cb45
JG
2824 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2825 if (newpage) {
2826 unlock_page(newpage);
2827 put_page(newpage);
2828 }
2829 newpage = page;
2830 }
2831
2832 remove_migration_ptes(page, newpage, false);
2833 unlock_page(page);
2834 migrate->cpages--;
2835
a5430dda
JG
2836 if (is_zone_device_page(page))
2837 put_page(page);
2838 else
2839 putback_lru_page(page);
8763cb45
JG
2840
2841 if (newpage != page) {
2842 unlock_page(newpage);
a5430dda
JG
2843 if (is_zone_device_page(newpage))
2844 put_page(newpage);
2845 else
2846 putback_lru_page(newpage);
8763cb45
JG
2847 }
2848 }
2849}
2850
2851/*
2852 * migrate_vma() - migrate a range of memory inside vma
2853 *
2854 * @ops: migration callback for allocating destination memory and copying
2855 * @vma: virtual memory area containing the range to be migrated
2856 * @start: start address of the range to migrate (inclusive)
2857 * @end: end address of the range to migrate (exclusive)
2858 * @src: array of hmm_pfn_t containing source pfns
2859 * @dst: array of hmm_pfn_t containing destination pfns
2860 * @private: pointer passed back to each of the callback
2861 * Returns: 0 on success, error code otherwise
2862 *
2863 * This function tries to migrate a range of memory virtual address range, using
2864 * callbacks to allocate and copy memory from source to destination. First it
2865 * collects all the pages backing each virtual address in the range, saving this
2866 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2867 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2868 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2869 * in the corresponding src array entry. It then restores any pages that are
2870 * pinned, by remapping and unlocking those pages.
2871 *
2872 * At this point it calls the alloc_and_copy() callback. For documentation on
2873 * what is expected from that callback, see struct migrate_vma_ops comments in
2874 * include/linux/migrate.h
2875 *
2876 * After the alloc_and_copy() callback, this function goes over each entry in
2877 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2878 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2879 * then the function tries to migrate struct page information from the source
2880 * struct page to the destination struct page. If it fails to migrate the struct
2881 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2882 * array.
2883 *
2884 * At this point all successfully migrated pages have an entry in the src
2885 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2886 * array entry with MIGRATE_PFN_VALID flag set.
2887 *
2888 * It then calls the finalize_and_map() callback. See comments for "struct
2889 * migrate_vma_ops", in include/linux/migrate.h for details about
2890 * finalize_and_map() behavior.
2891 *
2892 * After the finalize_and_map() callback, for successfully migrated pages, this
2893 * function updates the CPU page table to point to new pages, otherwise it
2894 * restores the CPU page table to point to the original source pages.
2895 *
2896 * Function returns 0 after the above steps, even if no pages were migrated
2897 * (The function only returns an error if any of the arguments are invalid.)
2898 *
2899 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2900 * unsigned long entries.
2901 */
2902int migrate_vma(const struct migrate_vma_ops *ops,
2903 struct vm_area_struct *vma,
2904 unsigned long start,
2905 unsigned long end,
2906 unsigned long *src,
2907 unsigned long *dst,
2908 void *private)
2909{
2910 struct migrate_vma migrate;
2911
2912 /* Sanity check the arguments */
2913 start &= PAGE_MASK;
2914 end &= PAGE_MASK;
e1fb4a08
DJ
2915 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2916 vma_is_dax(vma))
8763cb45
JG
2917 return -EINVAL;
2918 if (start < vma->vm_start || start >= vma->vm_end)
2919 return -EINVAL;
2920 if (end <= vma->vm_start || end > vma->vm_end)
2921 return -EINVAL;
2922 if (!ops || !src || !dst || start >= end)
2923 return -EINVAL;
2924
2925 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2926 migrate.src = src;
2927 migrate.dst = dst;
2928 migrate.start = start;
2929 migrate.npages = 0;
2930 migrate.cpages = 0;
2931 migrate.end = end;
2932 migrate.vma = vma;
2933
2934 /* Collect, and try to unmap source pages */
2935 migrate_vma_collect(&migrate);
2936 if (!migrate.cpages)
2937 return 0;
2938
2939 /* Lock and isolate page */
2940 migrate_vma_prepare(&migrate);
2941 if (!migrate.cpages)
2942 return 0;
2943
2944 /* Unmap pages */
2945 migrate_vma_unmap(&migrate);
2946 if (!migrate.cpages)
2947 return 0;
2948
2949 /*
2950 * At this point pages are locked and unmapped, and thus they have
2951 * stable content and can safely be copied to destination memory that
2952 * is allocated by the callback.
2953 *
2954 * Note that migration can fail in migrate_vma_struct_page() for each
2955 * individual page.
2956 */
2957 ops->alloc_and_copy(vma, src, dst, start, end, private);
2958
2959 /* This does the real migration of struct page */
2960 migrate_vma_pages(&migrate);
2961
2962 ops->finalize_and_map(vma, src, dst, start, end, private);
2963
2964 /* Unlock and remap pages */
2965 migrate_vma_finalize(&migrate);
2966
2967 return 0;
2968}
2969EXPORT_SYMBOL(migrate_vma);
6b368cd4 2970#endif /* defined(MIGRATE_VMA_HELPER) */